WO2023100600A1 - コークスの反応後強度推定モデル作成方法、コークスの反応後強度推定方法及びコークスの製造方法 - Google Patents

コークスの反応後強度推定モデル作成方法、コークスの反応後強度推定方法及びコークスの製造方法 Download PDF

Info

Publication number
WO2023100600A1
WO2023100600A1 PCT/JP2022/041426 JP2022041426W WO2023100600A1 WO 2023100600 A1 WO2023100600 A1 WO 2023100600A1 JP 2022041426 W JP2022041426 W JP 2022041426W WO 2023100600 A1 WO2023100600 A1 WO 2023100600A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
reaction
post
strength
estimation model
Prior art date
Application number
PCT/JP2022/041426
Other languages
English (en)
French (fr)
Inventor
昂平 丹所
智治 石田
匡生 猪瀬
彩良 荒川
哲也 山本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023506162A priority Critical patent/JPWO2023100600A1/ja
Priority to CA3234553A priority patent/CA3234553A1/en
Priority to AU2022403278A priority patent/AU2022403278A1/en
Publication of WO2023100600A1 publication Critical patent/WO2023100600A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B45/00Other details
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels, explosives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder

Definitions

  • the present invention relates to a method for estimating post-reaction strength of coke, a method for estimating post-reaction strength of coke, and a method for producing coke.
  • coke is an essential material as a reducing agent for iron ore.
  • the reason for this is that coke itself is porous and has air permeability that allows the blown gas from the lower part of the blast furnace to escape to the upper part.
  • coke is required to have sufficient strength to prevent crushing.
  • strength of coke a numerical value based on test results in air at room temperature, such as rotating drum type strength, is often used.
  • the inside of the blast furnace is a high-temperature environment exceeding 1000 ° C that contains gases that are reactive with coke, mainly carbon dioxide. Hard to say it shows.
  • CSR Coke Strength after Reaction
  • the CSR measurement procedure is specified in the ISO standard "ISO 18894 coal and coke test” and the ASTM standard “ASTM D 5341 coal and coke test” (hereinafter simply referred to as "ASTM standard”) regarding product specifications and test methods.
  • ASTM standard the ASTM standard
  • CSR is the lump residual rate after rotating 600 times with an I-type drum tester and Normally, a lower limit is set for CSR, and operations are carried out so as not to fall below that lower limit.
  • a problem with CSR measurement is the length of time required to obtain CSR results.
  • the reaction time between coke and carbon dioxide is 2 hours, but the furnace for carrying out this reaction is large in scale, and the temperature of the furnace is increased or decreased. require even longer time.
  • a series of operations such as pre-preparation of coke and measurement with a drum tester after heating in the furnace are combined, it may take nearly one day as the required time.
  • Patent Literature 1 discloses a method of estimating CSR using Raman spectroscopy and utilizing the intensity ratio of specific peaks.
  • Patent Literature 2 discloses a method of obtaining the CRI of blended coal by weighted average from the CRI of single coal and the total expansion rate, and estimating the CSR from the CRI of the blended coal and the drum strength of the blended coal.
  • Patent Document 3 discloses a method of estimating CSR using the abundance ratio of inorganic components in coal and the physical property values of various coking coals.
  • JP 2019-163986 A JP-A-2005-232350 JP-A-2001-172643
  • Patent Documents 2 and 3 aim to determine the blending ratio of single coal on the premise that blended coal coke is generated from single coal. , and the problem of CSR estimation error cannot be avoided. In addition, it is impossible to estimate the CSR of blended coal coke for which the blending ratio of single coal is unknown.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for creating a model for estimating post-reaction strength of coke that can quickly estimate post-reaction strength of coke.
  • the present invention has the following configurations.
  • a coke post-reaction strength estimation model is created using the TG curve obtained in the step of obtaining the coke TG curve as an explanatory variable and the post-reaction strength obtained in the step of obtaining the coke strength after reaction as an objective variable.
  • a modeling process A method for creating a post-reaction strength estimation model of coke.
  • the step of obtaining a TG curve of the coke is A heating step of heating the pulverized coke to a predetermined temperature range under an inert gas atmosphere and/or a CO2 atmosphere; After the heating step, a holding step of holding for a predetermined time at a holding temperature within the predetermined temperature range in a CO 2 atmosphere; The post-reaction strength estimation model creation method for coke according to [1].
  • post-reaction intensity estimation model creation method [4] The post-reaction strength estimation model creation method of coke according to any one of [1] to [3], wherein the model creation step creates the post-reaction strength estimation model of coke by partial least squares regression. [5] Estimating the post-reaction strength of coke by the coke post-reaction strength estimation model created by the coke post-reaction strength estimation model creation method according to any one of [1] to [4] above. post-reaction strength estimation method. [6] Estimate the post-reaction strength of coke by the method for estimating the post-reaction strength of coke described in [5] above, and change the coke production conditions based on the estimated post-reaction strength of coke. Production method. [7] The method for producing coke according to [6], wherein the change in the production conditions is a change in coal blending ratio.
  • the present invention it is possible to speed up the estimation of the post-reaction strength of coke and improve the accuracy of estimating the post-reaction strength of coke. As a result, stabilization of blast furnace operation can be achieved. In addition, it is possible to optimize the coal blend based on the estimated post-reaction strength of coke, thereby improving the quality of coke and stabilizing the operation of the coke oven.
  • FIG. 1 is a TG curve of general coke obtained when the temperature is raised from room temperature at a rate of 40° C./min in a CO 2 atmosphere and held at 1120° C. for 2 hours.
  • FIG. 2 is a graph showing the relationship between the CSR obtained by the method conforming to the ASTM standard and the CSR estimated by the present invention.
  • FIG. 1 is a TG curve of general coke obtained when the temperature is raised from room temperature at a rate of 40° C./min in a CO 2 atmosphere and held at 1120° C. for 2 hours. First, fine weight fluctuations are observed during the heating up to 1120°C. This is due to the weight increase due to the absorption of CO 2 by the inorganic substances contained in the coke of about 10% by mass, and the weight decrease due to thermal decomposition of the coke itself.
  • the weight starts to decrease rapidly. This is mainly due to the reaction of carbon and CO 2 to form CO and gasify. In other words, it means that the carbon content that forms the skeleton of coke is decomposed, and it is easy to imagine that the strength also decreases accordingly, and this TG curve (weight loss behavior) is considered to be involved in CSR. .
  • the coke decomposition reaction is caused by a combination of various factors.
  • factors such as the structure of the carbon content, the catalytic action of inorganic substances, and the pore structure that affects the reaction surface area.
  • the TG curve in Fig. 1 also looks smooth, but it is thought that it is composed of the overlapping of such complicated factors.
  • CSR can be estimated with high accuracy by machine learning this TG curve, that is, the relationship between the time from the beginning to the end of the reaction and the weight.
  • the method for estimating the post-reaction strength of coke includes the step of acquiring the post-reaction strength of coke, the step of acquiring the TG curve of the coke, and the step of acquiring the TG curve of the coke. and a model creation step of creating a post-reaction strength estimation model of coke using the TG curve of as an explanatory variable and using the post-reaction strength obtained in the step of obtaining the post-reaction strength of coke as an objective variable.
  • Step of acquiring post-reaction strength of coke the post-reaction strength (CSR) of coke is actually measured.
  • the post-reaction strength of coke is measured according to ASTM standards.
  • ASTM standards an example in which the post-reaction strength of coke is actually measured in accordance with the ASTM standard is shown, but the present invention is not limited to this, and the post-reaction strength of coke is measured in accordance with, for example, the above-mentioned ISO standards.
  • Step of obtaining TG curve of coke In the step of acquiring the TG curve of coke, the TG curve of the coke is acquired. That is, in this step, in the step of obtaining the post-reaction strength of the coke, the TG curve is obtained for the coke corresponding to (manufactured under the same conditions) as the coke subjected to the actual measurement of the post-reaction strength. Either the step of acquiring the post-reaction strength of coke or the step of acquiring a TG curve of coke may be performed first, or may be performed simultaneously (in parallel).
  • thermogravimetry (TG) device is used as a device for thermal decomposition reaction of the coke sample.
  • the TG apparatus has the characteristics of excellent atmosphere control and temperature responsiveness, and can rapidly measure the gas reaction rate of coke in a CO 2 atmosphere.
  • This step includes a heating step of heating the pulverized coke to a predetermined temperature range under an inert gas atmosphere and/or a CO2 atmosphere, and after the heating step, a CO2 atmosphere within the predetermined temperature range. and a holding step of holding at the holding temperature for a predetermined period of time.
  • the atmosphere in the holding step is preferably carbon dioxide (CO 2 ) to simulate the inside of a blast furnace. It is the same environment as the CSR analysis specified by ASTM and ISO.
  • the atmosphere of the heating process may be an inert gas atmosphere and/or a CO2 atmosphere. That is, the atmosphere of the heating process may be an atmosphere of an inert gas such as N 2 , Ar, or He, a CO 2 atmosphere, or a mixed gas atmosphere of these.
  • coke In this step, it is preferable to use pulverized coke.
  • the coke is preferably in the form of uniform fine powder. If the coke is not sufficiently pulverized, there is a risk that the weight loss cannot be measured correctly due to the effects of pores inside the coke and uneven distribution of inorganic substances.
  • the particle size of coke after pulverization is preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the particle size of coke after pulverization can be adjusted by, for example, sieving with a sieve having a predetermined mesh size.
  • the amount of coke used in this process can be adjusted according to the capabilities of the TG equipment. As for the amount of coke, it is preferable to use coke of about 50% of the volume of the reaction vessel for the purpose of realizing uniform heating. Specifically, the amount of coke is preferably 20-40 mg.
  • Heating process In the TG apparatus, it is preferable to heat the coke to a predetermined temperature range in an inert gas atmosphere such as N 2 , Ar, He, etc. and/or in a CO 2 atmosphere (heating step). That is, in the heating step, it is preferable to heat the coke to a predetermined temperature range under any one of an inert gas atmosphere, a CO 2 (CO 2 gas) atmosphere, and a mixed gas atmosphere thereof. In addition, in the heating step and the holding step described later, it is preferable to supply the atmosphere gas to the TG apparatus at a flow rate of 200 mL/min or more. If the flow rate is smaller than this, the amount of gas supplied will be insufficient for coke, and there is a risk that the weight loss due to the reaction cannot be analyzed correctly.
  • the holding step is preferably in a CO2 atmosphere.
  • a gas other than CO 2 is used in the heating step, it is preferable to switch to the CO 2 gas at the same time as transitioning to the holding step.
  • the predetermined temperature range is preferably 900° C. or higher and 1150° C. or lower.
  • the predetermined temperature range is more preferably 950° C. or higher.
  • the predetermined temperature range is more preferably 1125° C. or less. When the temperature range is less than 900°C, the weight loss rate is slow and the difference between the samples becomes difficult to see.
  • the rate of temperature increase up to the above temperature range may be appropriately adjusted according to the capability of the TG apparatus.
  • the rate of temperature increase is preferably 20° C./min or more and 150° C./min or less. If the heating rate is lower than 20° C./min, it takes a long time to reach the above temperature range, and thus the contribution to speeding up the analysis is small.
  • the rate of temperature increase is preferably a rate of temperature increase from room temperature to a holding temperature within the predetermined temperature range.
  • room temperature is 25 degreeC as an example.
  • the predetermined time is preferably 15 minutes or more and 75 minutes or less in which the sample (coke) introduced into the TG reacts sufficiently. More specifically, in the heating step, it is preferable to wait 15 minutes to 75 minutes after reaching a predetermined temperature (holding temperature) and starting holding at the predetermined temperature. If the predetermined time is shorter than 15 minutes, the decomposition reaction may include thermal decomposition of inorganic components, which may cause analytical errors. On the other hand, if the predetermined time exceeds 75 minutes, the decomposition reaction of coke will proceed sufficiently, making it difficult to see the difference in the TG curves, which may lead to analytical errors.
  • the explanatory variables used in machine learning may have a certain correlation with each other, and due to the collinearity based on the correlation, the estimation accuracy may deteriorate with simple multiple regression analysis.
  • the explanatory variables may be correlated, so in principle it is desirable to select an analysis method that does not cause the problem of collinearity.
  • a typical example is partial least squares regression (PLS).
  • the regression analysis is performed with the objective variable. It is convenient when estimating, and high estimation accuracy can be obtained.
  • the TG curve obtained in the step of obtaining the TG curve of coke is used as an explanatory variable.
  • the explanatory variable is the TG curve obtained by heating coke after pulverization in a specified temperature range for a specified period of time in a CO 2 atmosphere and using thermogravimetric analysis. That is, partial least-squares regression is performed using the post-reaction strength obtained in the step of obtaining the coke strength after reaction as an objective variable and the TG curve obtained in the step of obtaining the coke TG curve as an explanatory variable.
  • regression analysis is performed with the post-reaction strength of the coke sample from which the post-reaction strength was obtained as the objective variable, and the TG curve of the corresponding coke sample as the explanatory variable, thereby defining the relationship between the objective variable and the explanatory variable.
  • a model formula which is a regression formula, is calculated. Then, for a coke sample with an unknown post-reaction strength, the TG curve obtained from the sample (a coke sample with an unknown post-reaction strength) was substituted as an explanatory variable into the calculated model formula, and the objective variable, the post-reaction Calculate strength. That is, the method for estimating the coke strength after reaction of the present invention uses the model formula (coke strength estimation model after reaction) calculated (created) as described above to estimate the strength after reaction of coke whose strength after reaction is unknown. presume.
  • the explanatory variable it is preferable to use the coke TG curve measured during holding at a holding temperature within a prescribed temperature range for a prescribed time in the step of acquiring the coke TG curve.
  • the predetermined temperature range is preferably 900° C. or higher and 1150° C. or lower.
  • the predetermined temperature range is more preferably 950° C. or higher.
  • the predetermined temperature range is more preferably 1125° C. or lower.
  • the predetermined time is preferably 15 minutes or more and 75 minutes or less in which the sample (coke) introduced into the TG reacts sufficiently. More specifically, in the heating step, it is preferable to wait 15 minutes to 75 minutes after reaching a predetermined temperature (holding temperature) and starting holding at the predetermined temperature.
  • Table 1 shows the measured (acquired) post-reaction strengths of the 13 types of coke samples (No. 1 to 13) used in the partial least squares regression.
  • a model formula (Equation 1) based on partial least squares regression was created to derive a post-reaction strength estimation model of coke.
  • the TG curve of each coke sample used as an explanatory variable is the time of 3601 points measured at 1-second intervals from 15 minutes to 75 minutes after the start of holding at the holding temperature (here, 1120 ° C.) and weight data.
  • Y c0 + c1 * X1 + c2 * X2 +...+ cn * Xn (Equation 1) here, Y: CSR X 1 to X n : explanatory variables (TG measurement data) c 0 to c n : Regression coefficients obtained by expanding latent variables. Latent variables are defined and weighted for the regression coefficients c 0 to c n . The relationship between the latent variables and the regression equation is as follows.
  • T 1 w 11 ⁇ X 1 +w 12 ⁇ X 2 + . . .
  • FIG. 2 shows the relationship between the post-reaction strength of coke estimated by substituting the TG curve of the coke sample shown in Table 1 into the model formula and the measured post-reaction strength of coke.
  • the horizontal axis indicates the measured strength of coke after reaction (hereinafter referred to as “measured strength after reaction”), and the vertical axis indicates the estimated strength of coke after reaction (hereinafter referred to as “estimated strength after reaction”).
  • the coefficient of determination (R 2 ) is 0.9999, indicating that there is a very high correlation between the two. Therefore, the model formula based on the partial least squares regression can predict the post-reaction strength of coke with higher accuracy.
  • post-reaction strength of coke actually measured here is a numerical value obtained by a method according to the ASTM standard as described above.
  • the post-reaction strength estimated by the post-reaction strength estimation model of coke deviates from the allowable range of post-reaction strength for operation, the injection of coke into the blast furnace can be promptly stopped. It becomes possible, and stabilization of blast furnace operation can be achieved.
  • mixing ratio management such as changing the coke-to-coal mixing ratio can be efficiently performed, and the coal mixing ratio can be optimized.
  • changing the coke production conditions based on the estimated post-reaction strength of coke corresponds to the "coke production method" in the present invention.
  • changing the coke production conditions includes changing the coal blending ratio based on the estimated post-reaction strength of the coke.
  • the TG curve of coke obtained in the step of obtaining the TG curve of coke is used as an explanatory variable, and the strength after reaction obtained in the step of obtaining the strength after reaction of coke is used as an objective variable,
  • a post-reaction strength estimation model of coke is created in advance by a technique such as partial least squares regression. Then, even during operation of the blast furnace, the TG curve is acquired for coke whose post-reaction strength is unknown, and the acquired TG curve of coke is simply substituted into the previously created coke post-reaction strength estimation model.
  • the post-reaction strength of coke can be quickly estimated, and it is possible to quickly determine whether or not the coke strength after reaction deviates from the permissible range for operation.
  • the post-reaction strength of coke can be predicted with higher accuracy.
  • the estimation of post-reaction strength of coke using the post-reaction strength estimation model of coke corresponds to the "post-reaction strength estimation method of coke" in the present invention.
  • CSR can be estimated within about 2 to 3 hours, so it is possible to grasp CSR in real time even in coke oven operation.
  • Two types of coke were prepared as samples. 20 g of each coke was taken out, and the whole amount was ground and sieved to a particle size of 150 ⁇ m or less. After air drying, 30 mg was weighed.
  • As the TG device Thermo Plus 2 TG8120 manufactured by Rigaku was used. A platinum vessel attached to the device was filled with weighed coke and introduced into the device. The atmospheric gas was CO 2 and the flow rate was 300 mL/min. When the device was stabilized, the temperature was raised from room temperature to 1120°C at 40°C/min, held at 1120°C for 120 minutes, and naturally cooled to room temperature to measure the TG curve.
  • two types of coke (A, B) are added to the coke strength estimation model after reaction, which is the result of partial least squares regression performed based on the strength after reaction of 13 types of coke shown in Table 1 and the TG curve.
  • Estimate the post-reaction strength of the cokes (A, B) by applying the TG curve of, and measure the post-reaction strengths of the cokes (A, B) according to the ASTM standard, and estimate the post-reaction strength and the measured reaction After strength comparisons were made.
  • the cross-validation method was applied using "OriginPro2017" (registered trademark).
  • the TG curves of the cokes (A, B) used for post-reaction strength estimation were in the range of 60 minutes from 15 minutes to 75 minutes after starting holding at the holding temperature (1120 ° C.). .
  • Table 2 shows the results of the estimated post-reaction strength and the measured post-reaction strength for the cokes (A, B).
  • the TG curve of coke can be measured without measuring the post-reaction strength of coke based on the ASTM standard each time. It is possible to estimate the post-reaction strength of coke only by In addition, by using partial least squares regression as a method of multivariate analysis, it is possible to estimate the post-reaction strength of coke with higher accuracy.

Abstract

コークスの反応後強度を迅速に推定できるコークスの反応後強度推定モデルの作成方法を提供する。 コークスの反応後強度を取得する工程と、前記コークスのTG曲線を取得する工程と、前記コークスのTG曲線を取得する工程で取得したTG曲線を説明変数とし、前記コークスの反応後強度を取得する工程で取得した反応後強度を目的変数として、コークスの反応後強度推定モデルを作成するモデル作成工程と、を有する、コークスの反応後強度推定モデル作成方法。

Description

コークスの反応後強度推定モデル作成方法、コークスの反応後強度推定方法及びコークスの製造方法
 本発明は、コークスの反応後強度推定モデル作成方法、コークスの反応後強度推定方法及びコークスの製造方法に関する。
 高炉による銑鉄の製造において、コークスは鉄鉱石の還元剤として必要不可欠な材料である。その理由は、コークス自体が多孔質であり、高炉下部からの吹き込みガスを上部へ逃がす通気性を有する点にある。
 そして、高炉内において通気性を担保するためには、破砕を起こさない十分な強度がコークスに求められる。コークスの強度としては、通常、回転ドラム式強度などの室温空気中の試験結果に基づく数値を用いることが多い。しかし、高炉内は二酸化炭素を中心としたコークスと反応性を有するガスを含んだ1000℃を超える高温環境であり、通常の試験結果に基づくコークスの強度指標は、高炉内でのコークスの強度を示しているとは言い難い。
 ここで、高炉内におけるコークスの強度を正しく推定する指標として、コークス反応後強度(Coke Strength after Reaction:CSR)が提唱され、CSRに基づいた高炉操業が行われている。反応後とは、コークスが高炉に装入され、1000℃を超える高温環境の下で二酸化炭素等のガスと反応した後を意味する。また、コークスの反応後強度とは、反応後におけるコークスの強度を意味する。
 例えば、目標値よりも低いCSRのコークスが高炉内に投入されると、高炉内でコークスの粉化が起こり、高炉内の還元ガスの通気を妨げるとともに、生成された溶銑の高炉下部への円滑な流動が阻害される。そのため銑鉄の効率的な生成ができなくなり、場合によっては操業停止など、多大なトラブルを引き起こす可能性がある。このため、CSRを正確に把握することは重要である。
 CSRの測定手順は、ISO規格「ISO 18894 石炭とコークス試験」や、製品仕様や試験方法に関するASTM規格「ASTM D 5341 石炭とコークス試験」(以下、単に「ASTM規格」という。)に規定されている。例えば、ASTM規格に規定された方法では、二酸化炭素雰囲気において、1100℃で、2時間、一定粒度としたコークスを保持した後、I型ドラム試験機で600回転させた後の塊残存率をCSRとしている。通常はCSRに下限値を設けて、その下限値を下回ることが無いよう操業を行う。
 CSRの測定に関する問題点として、CSRの結果を得るまでの所要時間の長さがある。先述の通り、ASTM規格に規定された方法では、コークスと二酸化炭素との反応時間は2時間であるが、この反応を実施するための炉は規模が大きく、炉の昇温や降温のために更に長い時間を必要とする。また、コークスの事前調製や炉における加熱後のドラム試験機による測定など一連の作業を合わせると、所要時間として1日近く要する場合がある。
 また、通常の操業中に、コークス炉から払い出された直後のコークスを対象にCSRの測定を開始しても、CSRの測定結果を得られる時には、コークス炉から払い出されたコークスが、既に高炉に投入されている。このため、CSRの測定結果がもたらすコークスの異常が発見された場合であっても、高炉操業における即時の対応が出来ず、改善対応の遅れや高炉操業の不安定化といったリスクが潜在することになる。このため、迅速なCSRの評価が求められている。
 CSRの評価の迅速化については、様々な検討が行われている。特許文献1には、ラマン分光法を用いて、特定ピークの強度比を利用したCSRの推定方法が開示されている。
 また、CSRと高い相関を持つガス反応率(Coke Reaction Index:CRI)の利用も検討されている。特許文献2には、単味炭のCRIおよび全膨張率から加重平均によって配合炭のCRIを求め、該配合炭のCRIと配合炭のドラム強度からCSRを推定する方法が開示されている。
 さらに、特許文献3には、石炭中の無機分組成の存在比や種々の原料炭の物性値を用いて、CSRを推定する方法が開示されている。
特開2019-163986号公報 特開2005-232350号公報 特開2001-172643号公報
 しかしながら、特許文献1~3に開示されたいずれの推定方法も、適用する分析値や物性値が必ずしも短時間で求められず、推定に使用するパラメータによっては時間を要することがある。
 また、特許文献2および特許文献3に開示された推定方法では、コークス化前の石炭から得られた分析値や物性値を利用している。しかしながら、これらの推定方法では、その後のコークス化プロセス中に、不可避的に生じる操業上のエラーやそれに伴う操業データのバラつきが、CSRの推定において誤差要因となる問題がある。
 さらに、特許文献2および特許文献3に開示された加重平均や重回帰分析を用いる方法は、単味炭から配合炭のコークスを生成することを前提とした単味炭の配合比の決定を目的としており、CSRの推定誤差の問題は避けられない。また、単味炭の配合比が不明の配合炭コークスについてはCSRの推定は不可能である。
 本発明は、かかる事情を鑑みてなされたもので、コークスの反応後強度を迅速に推定できるコークスの反応後強度推定モデルの作成方法を提供することを目的とする。
 本発明者らは鋭意検討した結果、粉砕後のコークスをCO雰囲気下で熱重量分析(TG)法を用いて分析した際における、TG曲線(熱重量変化曲線)における重量減少挙動に着目し、本発明を完成させた。本発明は以下の構成を有する。
[1]コークスの反応後強度を取得する工程と、
前記コークスのTG曲線を取得する工程と、
前記コークスのTG曲線を取得する工程で取得したTG曲線を説明変数とし、前記コークスの反応後強度を取得する工程で取得した反応後強度を目的変数として、コークスの反応後強度推定モデルを作成するモデル作成工程と、
を有する、コークスの反応後強度推定モデル作成方法。
[2]前記コークスのTG曲線を取得する工程が、
粉砕後のコークスを、不活性ガス雰囲気下及び/又はCO雰囲気下で所定の温度域に加熱する加熱工程と、
前記加熱工程後、CO雰囲気下で前記所定の温度域内の保持温度で所定時間保持する保持工程と、
を有する、[1]に記載のコークスの反応後強度推定モデル作成方法。
[3]前記加熱工程では、前記粉砕後のコークスを、昇温速度20℃/min以上150℃/min以下で、900℃以上1150℃以下の温度域に加熱する、[2]に記載のコークスの反応後強度推定モデル作成方法。
[4]前記モデル作成工程は、部分最小二乗回帰により前記コークスの反応後強度推定モデルを作成する、[1]~[3]のいずれかに記載のコークスの反応後強度推定モデル作成方法。
[5]前記[1]~[4]のいずれかに記載されたコークスの反応後強度推定モデル作成方法により作成されたコークスの反応後強度推定モデルにより、コークスの反応後強度を推定する、コークスの反応後強度推定方法。
[6]前記[5]に記載されたコークスの反応後強度推定方法によりコークスの反応後強度を推定し、前記推定されたコークスの反応後強度に基づいてコークスの製造条件を変更する、コークスの製造方法。
[7]前記製造条件の変更は、石炭配合比の変更である[6]に記載のコークスの製造方法。
 本発明によれば、コークスの反応後強度を迅速に推定できるコークスの反応後強度推定モデル作成方法を提供できる。
 本発明によれば、コークスの反応後強度推定の迅速化を実現できるとともに、コークスの反応後強度の推定精度を向上できる。その結果、高炉操業の安定化を図ることができる。また、コークスの反応後強度の推定結果に基づく石炭配合の適正化が可能となり、コークスの品質の向上及びコークス炉の操業の安定化ができる。
図1は、CO雰囲気とした状態で、室温から40℃/minで昇温し、1120℃で2時間保持した際に得られた一般的なコークスのTG曲線である。 図2は、ASTM規格に準じた方法で求めたCSRと、本発明により推定したCSRとの関係を示すグラフである。
 図1は、CO雰囲気とした状態で、室温から40℃/minで昇温し、1120℃で2時間保持した際に得られた一般的なコークスのTG曲線である。まず、1120℃に到達するまでの昇温中、細かな重量変動が観察される。これはコークス中に10質量%程度含まれている無機物がCOを吸収することによる重量増加や、自身の熱分解による重量減少に起因したものである。
 保持温度に近づき、所定の温度(図1では1120℃)で保持を始めると、急激な重量減少が始まる。これは、主に炭素分とCOが反応し、COとなってガス化する反応に起因している。すなわち、コークスの骨格を成す炭素分が分解されることを意味しており、それに伴って強度も低下することが容易に想像され、このTG曲線(重量減少挙動)が、CSRに関与すると考えられる。
 コークスの分解反応は様々な要因の組み合わせで生じていると言われている。例えば、炭素分の構造、無機物による触媒作用、反応表面積に影響する空隙構造などの要因がある。図1のTG曲線もなめらかに見えるが、このような複雑な要因の重なりで構成されていると考えられ、コークスの原料である石炭の銘柄や混合比率、製造ロットによって、その概形が異なる。
 発明者らは、このTG曲線、すなわち、反応初期から終盤までの時間と重量との関係を機械学習させることで、CSRを高精度に推定出来ることを見出した。
 以下に、本発明を実施するための一実施形態について説明する。
 本発明に係るコークスの反応後強度推定モデル作成方法は、コークスの反応後強度を取得する工程と、前記コークスのTG曲線を取得する工程と、前記コークスのTG曲線を取得する工程で取得したコークスのTG曲線を説明変数とし、前記コークスの反応後強度を取得する工程で取得した反応後強度を目的変数として、コークスの反応後強度推定モデルを作成するモデル作成工程と、を有する。
 [コークスの反応後強度を取得する工程]
 コークスの反応後強度を取得する工程では、コークスの反応後強度(CSR)を実測する。具体的には、コークスの反応後強度をASTM規格に準じて実測する。なお、本実施形態では、コークスの反応後強度をASTM規格に準じて実測する例を示すが、これに限定されず、コークスの反応後強度を、例えば、上述のISO規格等に準じて実測してもよい。
 [コークスのTG曲線を取得する工程]
 コークスのTG曲線を取得する工程では、前記コークスのTG曲線を取得する。すなわち、本工程では、前記コークスの反応後強度を取得する工程で、反応後強度の実測に供したコークスと対応する(同じ条件で製造された)コークスについて、TG曲線を取得する。なお、コークスの反応後強度を取得する工程と、コークスのTG曲線を取得する工程は、どちらの工程を先に実施してもよいし、同時に(並行して)実施してもよい。
 本工程では、コークス試料の熱分解反応を行う装置として、熱重量分析(Thermo Gravimetry:TG)装置を利用する。TG装置は、雰囲気制御、温度応答性に優れているという特徴を有しており、コークスのCO雰囲気におけるガス反応率を迅速に測定することが出来る。
 本工程は、粉砕後のコークスを、不活性ガス雰囲気下及び/又はCO雰囲気下で所定の温度域に加熱する加熱工程と、前記加熱工程後、CO雰囲気下で前記所定の温度域内の保持温度で所定時間保持する保持工程と、を有することが好ましい。
 保持工程の雰囲気は、高炉内を模擬するために二酸化炭素(CO)とすることが好ましい。ASTMやISOで規定されているCSR分析と同じ環境である。なお、加熱工程の雰囲気は、不活性ガス雰囲気下及び/又はCO雰囲気下としてもよい。すなわち、加熱工程の雰囲気は、N、Ar、Heなどの不活性ガス雰囲気、CO雰囲気、これらの混合ガス雰囲気でも構わない。
 (コークス)
 本工程では、粉砕後のコークスを用いることが好ましい。前記コークスは、均一な微粉状であることが好ましい。コークスの粉砕が不十分であると、コークス内部の気孔や無機物の分布ムラの影響により正しく重量減少を測定出来ない恐れがある。粉砕後のコークスの粒径は、好ましくは500μm以下であり、より好ましくは200μm以下である。粉砕後のコークスの粒径は、例えば、所定の目開きの篩で篩い分けることで調整できる。
 本工程で用いるコークスの量は、TG装置の能力に応じて調節すればよい。前記コークスの量としては、均質な加熱を実現させる目的で、反応容器の5割程度の体積のコークスを用いることが好ましい。具体的には、前記コークスの量は20~40mgであることが好ましい。
 (加熱工程)
 TG装置では、N、Ar、Heなどの不活性ガス雰囲気下及び/又はCO雰囲気下で所定の温度域に前記コークスを加熱することが好ましい(加熱工程)。すなわち、加熱工程では、不活性ガス雰囲気下、CO(COガス)雰囲気下、これらの混合ガス雰囲気下のいずれかの雰囲気下で所定の温度域に前記コークスを加熱することが好ましい。なお、加熱工程と後述する保持工程では、雰囲気となるガスを、200mL/min以上の流量でTG装置に供給することが好ましい。これよりも小さい流量であると、ガスの供給量がコークスに対して不足状態となり、反応による重量減少を正しく分析出来ない恐れがある。
 (保持工程)
 次いで、所定の温度域内の保持温度(均熱温度)で所定時間保持することが好ましい(保持工程)。保持工程は、CO雰囲気とすることが好ましい。加熱工程でCO以外のガスを用いる場合は、保持工程に移行すると同時にCOガスに切り替えることが好ましい。前記所定の温度域としては、900℃以上1150℃以下が好ましい。前記所定の温度域としては950℃以上がより好ましい。また、前記所定の温度域としては1125℃以下がより好ましい。前記温度域が900℃未満の場合、重量減少速度が緩やかで、サンプル間の差が見えにくくなる。また、前記温度域が1150℃超の場合、急激に分解反応が進行するため、分析誤差が生じる恐れもある。前記温度域までの昇温速度(室温から前記温度域までの昇温速度)は、TG装置の能力に準じて適宜調整すれば良い。前記昇温速度は、好ましくは20℃/min以上150℃/min以下である。20℃/minよりも昇温速度が遅い場合、前記温度域に到達するまでに長時間を要することになるため、分析の迅速化に与える寄与が小さくなる。一方、150℃/minよりも昇温速度を速く設定すると、急激な温度変化により、低温領域で生じる無機分の分解反応とコークスの分解反応が重複する影響でコークスの分解反応に起因するTG曲線を正しく求める事が困難となる恐れがある。前記昇温速度は、好ましくは、室温から前記所定の温度域内の保持温度までの昇温速度である。なお、室温は、一例として、25℃である。
 前記所定時間としては、TGに導入した試料(コークス)が十分に反応する15分以上75分以下が好ましい。詳細には、前記加熱工程において、所定の温度(保持温度)に到達し、当該所定の温度での保持を開始してから15分後から75分後までの時間が好ましい。前記所定時間が15分より短い場合は、分解反応の中に無機成分の熱分解等が含まれるため、分析誤差を生じる恐れがある。また、前記所定時間が75分を超えると、コークスの分解反応が十分に進行し、TG曲線の差が見えにくくなり、分析誤差を生じる恐れがある。
 [コークスの反応後強度推定モデルを作成するモデル作成工程]
 コークスの反応後強度推定モデルを作成するモデル作成工程では、前記コークスのTG曲線を取得する工程で取得したTG曲線を説明変数とし、前記コークスの反応後強度を取得する工程で取得した反応後強度を目的変数として、コークスの反応後強度推定モデルを作成する。
 機械学習に用いる説明変数には互いに一定の相関関係を有するものが含まれる場合があり、その相関関係に基づく共線性に起因して、単純な重回帰分析では推定精度が劣化する場合がある。コークスの解析においても説明変数に相関関係が生じる可能性は否定できないため、原理的に共線性の問題が生じない解析手法を選択することが望ましい。その代表として部分最小二乗回帰(Partial Least Squares Regression:PLS)がある。
 部分最小二乗回帰は、説明変数を互いに無相関な主成分軸に変換した後に、目的変数との間で回帰分析を行うため、説明変数同士に相関が認められる複数の分析値から反応後強度を推定する場合には都合が良く、高い推定精度を得られる。
 本発明では、説明変数として、コークスのTG曲線を取得する工程で取得したTG曲線を用いる。具体的には、説明変数は、粉砕後のコークスを、CO雰囲気下で所定の温度域で所定時間の間加熱し、熱重量分析法を用いて測定したTG曲線とする。すなわち、前記コークスの反応後強度を取得する工程で取得した反応後強度を目的変数、前記コークスのTG曲線を取得する工程で取得したTG曲線を説明変数として部分最小二乗回帰を実施する。より具体的には、反応後強度を取得したコークス試料について反応後強度を目的変数とし、対応するコークス試料のTG曲線を説明変数として回帰分析を行い、目的変数と説明変数との関係を規定する回帰式であるモデル式を算出する。その後、反応後強度が未知のコークス試料を対象として、算出されたモデル式にサンプル(反応後強度が未知のコークス試料)から得られたTG曲線を説明変数として代入し、目的変数である反応後強度を算出する。すなわち、本発明のコークスの反応後強度の推定方法は、上記のように算出(作成)されたモデル式(コークスの反応後強度推定モデル)により、反応後強度が未知のコークスの反応後強度を推定する。
 ここで、説明変数としては、前記コークスのTG曲線を取得する工程において、所定の温度域内の保持温度で所定時間保持する間に測定したコークスのTG曲線を用いることが好ましい。上述したとおり、前記所定の温度域としては、900℃以上1150℃以下が好ましい。前記所定の温度域としては950℃以上がより好ましい。また、前記所定の温度域としては1125℃以下がより好ましい。前記所定時間としては、TGに導入した試料(コークス)が十分に反応する15分以上75分以下が好ましい。詳細には、前記加熱工程において、所定の温度(保持温度)に到達し、当該所定の温度での保持を開始してから15分後から75分後までの時間が好ましい。
 ここで、部分最小二乗回帰に用いた13種類のコークス試料(No.1~13)について、実測(取得)された反応後強度を表1に示す。表1に示したコークス試料のTG曲線を説明変数とし、部分最小二乗回帰に基づくモデル式(式1)を作成することで、コークスの反応後強度推定モデルを導出した。ここで、説明変数として用いた各コークス試料のTG曲線は、保持温度(ここでは1120℃)で保持を開始してから15分後から75分後まで、一秒間隔で測定した3601点の時間と重量のデータである。
 Y=c+c×X+c×X+・・・・・・+c×X  (式1)
ここで、
Y:CSR
~X:説明変数(TG測定データ)
~c:潜在変数を展開して得られる回帰係数
である。なお、c~cに示す回帰係数には、潜在変数を規定し、重み付けを加味する。潜在変数と、回帰式との関係は以下の通りである。
 Y=b+b×T+b×T+・・・・・・+b×T
ここで、
Y:CSR
~T:潜在変数
~b:潜在変数にかかる回帰係数
ただし、第1潜在変数:T=w11×X+w12×X+・・・+w1n×X
    第2潜在変数:T=w21×X+w22×X+・・・+w2n×X
    第r潜在変数:T=wr1×X+wr2×X+・・・+wrn×X
であり、w11~wrn:潜在変数の入力変数に対する重み付け
である。
(参考文献)第54回自動制御連合講演会講演論文集 2K305(2011)
Figure JPOXMLDOC01-appb-T000001
 
 表1に示したコークス試料のTG曲線をモデル式に代入して推定されたコークスの反応後強度と、実測されたコークスの反応後強度との関係を図2に示す。図中の横軸は実測されたコークスの反応後強度(以下、「実測反応後強度」という。)を示し、縦軸は推定されたコークスの反応後強度(以下、「推定反応後強度」という。)を示す。図2に示す通り、決定係数(R)は0.9999となり、両者の間には極めて高い相関関係があることがわかる。このため、部分最小二乗回帰に基づくモデル式によれば、より高い精度でコークスの反応後強度を予測できる。
 なお、ここで実測されたコークスの反応後強度とは、上述したようにASTM規格に準じた方法で取得された数値である。
 実際の運用時には、コークスの反応後強度推定モデルにより推定された反応後強度が、操業上の反応後強度の許容範囲から逸脱した場合に、高炉へのコークスの投入の停止を迅速に行うことが可能となり、高炉操業の安定化を図ることができる。また、推定されたコークスの反応後強度に基づいて、コークスの石炭配合比を変更するなどの配合比管理も効率的に実施でき、石炭配合比の最適化も可能になる。そして、石炭配合比の変更によるコークスの製造条件の変更も迅速に実施でき、コークスの品質の向上及びコークス炉の操業の安定化を図ることができる。ここで、前記推定されたコークスの反応後強度に基づくコークスの製造条件の変更が、本発明における「コークスの製造方法」に相当する。また、コークスの製造条件の変更には、前記推定されたコークスの反応後強度に基づく石炭配合比の変更が含まれる。
 以上説明したように、本発明では、コークスのTG曲線を取得する工程で取得したコークスのTG曲線を説明変数とし、コークスの反応後強度を取得する工程で取得した反応後強度を目的変数として、部分最小二乗回帰等の手法によりコークスの反応後強度推定モデルを予め作成しておく。そして、高炉の操業中であっても、反応後強度が未知のコークスについて、TG曲線を取得し、取得したコークスのTG曲線を、前記予め作成したコークスの反応後強度推定モデルに代入するだけでコークスの反応後強度を迅速に推定でき、操業上のコークスの反応後強度の許容範囲から逸脱しているか否かについて、早急に判断できる。更に、部分最小二乗回帰に基づくコークスの反応後強度推定モデルとすることで、より高い精度でコークスの反応後強度を予測できる。ここで、コークスの反応後強度推定モデルを用いた、コークスの反応後強度の推定が、本発明における「コークスの反応後強度推定方法」に相当する。
 本発明のコークスの反応後強度推定方法においては、概ね2~3時間以内でCSRを推定することが出来るため、コークス炉操業においてもリアルタイムにCSRの把握が可能となる。
 以下、本実施形態に係るコークスの反応後強度推定モデルを用いて、コークスの反応後強度を推定した実施例を説明する。ただし、本発明は、以下の実施例に限定されない。
 サンプルである2種類のコークス(A、B)を準備した。各コークスを20gずつとりわけ、それぞれ全量を150μm以下の粒度に粉砕・篩い分けを行った。風乾の後、30mgを秤量した。TG装置にはリガク社製:Thermo Plus 2 TG8120を用いた。装置付属の白金製容器に秤量したコークスを充填し、装置内部に導入した。雰囲気ガスはCO、流量は300mL/minとした。装置が安定したところで、室温から1120℃まで40℃/minで昇温し、1120℃で120分間保持し、室温まで自然冷却してTG曲線を測定した。
 そして、表1に示した13種類のコークスの反応後強度とTG曲線とに基づいて行った部分最小二乗回帰の結果であるコークスの反応後強度推定モデルに、2種類のコークス(A、B)のTG曲線を適用して前記コークス(A、B)の反応後強度をそれぞれ推定するとともに、ASTM規格により前記コークス(A、B)の反応後強度をそれぞれ実測し、推定反応後強度及び実測反応後強度の比較を行った。なお、部分最小二乗回帰を実施するにあたっては、「OriginPro2017」(登録商標)を使用し交差確認法を適用した。ここで、反応後強度推定に用いた前記コークス(A、B)のTG曲線は、保持温度(1120℃)で保持を開始してから15分後から75分後までの60分間の範囲とした。
 前記コークス(A、B)について、推定反応後強度と実測反応後強度との結果を表2に示す。実測反応後強度と部分最小二乗回帰による反応後強度の推定結果とは、極めて良く一致していた。
Figure JPOXMLDOC01-appb-T000002
 
 以上から、本発明によれば、予めコークスの反応後強度推定モデルを用意しておくことで、ASTM規格に基づくコークスの反応後強度の測定をその都度実施することなく、コークスのTG曲線の測定のみにより、コークスの反応後強度を推定可能となる。また、多変量解析の方法として部分最小二乗回帰を用いることで、より高精度なコークスの反応後強度の推定が可能となる。
 そして、本実施例においては、ASTM規格に基づく方法によりコークスの反応後強度(実測反応後強度)が判明するまでの所要時間は9.5時間を要したが、本発明によるコークスの反応後強度の推定に要した時間は約3時間であった。このため、本発明によるコークスの反応後強度の推定方法は、時間的な寄与が大きい。また、コークスの反応後強度の迅速評価により操業の安定化、高品質コークスの安定製造への寄与が期待される。

 

Claims (7)

  1.  コークスの反応後強度を取得する工程と、
    前記コークスのTG曲線を取得する工程と、
    前記コークスのTG曲線を取得する工程で取得したTG曲線を説明変数とし、前記コークスの反応後強度を取得する工程で取得した反応後強度を目的変数として、コークスの反応後強度推定モデルを作成するモデル作成工程と、
    を有する、コークスの反応後強度推定モデル作成方法。
  2.  前記コークスのTG曲線を取得する工程が、
    粉砕後のコークスを、不活性ガス雰囲気下及び/又はCO雰囲気下で所定の温度域に加熱する加熱工程と、
    前記加熱工程後、CO雰囲気下で前記所定の温度域内の保持温度で所定時間保持する保持工程と、
    を有する、請求項1に記載のコークスの反応後強度推定モデル作成方法。
  3.  前記加熱工程では、前記粉砕後のコークスを、昇温速度20℃/min以上150℃/min以下で、900℃以上1150℃以下の温度域に加熱する、請求項2に記載のコークスの反応後強度推定モデル作成方法。
  4.  前記モデル作成工程は、部分最小二乗回帰により前記コークスの反応後強度推定モデルを作成する、請求項1~3のいずれか一項に記載のコークスの反応後強度推定モデル作成方法。
  5.  請求項1~4のいずれか一項に記載されたコークスの反応後強度推定モデル作成方法により作成されたコークスの反応後強度推定モデルにより、コークスの反応後強度を推定する、コークスの反応後強度推定方法。
  6.  請求項5に記載されたコークスの反応後強度推定方法によりコークスの反応後強度を推定し、前記推定されたコークスの反応後強度に基づいてコークスの製造条件を変更する、コークスの製造方法。
  7.  前記製造条件の変更は、石炭配合比の変更である、請求項6に記載のコークスの製造方法。

     
PCT/JP2022/041426 2021-12-03 2022-11-07 コークスの反応後強度推定モデル作成方法、コークスの反応後強度推定方法及びコークスの製造方法 WO2023100600A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023506162A JPWO2023100600A1 (ja) 2021-12-03 2022-11-07
CA3234553A CA3234553A1 (en) 2021-12-03 2022-11-07 Method for establishing estimation model for coke strength after reaction, method for estimating coke strength after reaction, and method for manufacturing coke
AU2022403278A AU2022403278A1 (en) 2021-12-03 2022-11-07 Method for establishing estimation model for coke strength after reaction, method for estimating coke strength after reaction, and method for manufacturing coke

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-196962 2021-12-03
JP2021196962 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100600A1 true WO2023100600A1 (ja) 2023-06-08

Family

ID=86611999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041426 WO2023100600A1 (ja) 2021-12-03 2022-11-07 コークスの反応後強度推定モデル作成方法、コークスの反応後強度推定方法及びコークスの製造方法

Country Status (4)

Country Link
JP (1) JPWO2023100600A1 (ja)
AU (1) AU2022403278A1 (ja)
CA (1) CA3234553A1 (ja)
WO (1) WO2023100600A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302648A (ja) * 1989-05-17 1990-12-14 Sumitomo Metal Ind Ltd 石炭の揮発分測定装置
JPH11116968A (ja) * 1997-10-15 1999-04-27 Sumitomo Metal Ind Ltd コークス製造用石炭の評価および配合方法
CN103940697A (zh) * 2014-03-26 2014-07-23 北京科技大学 一种高炉焦炭反应性测试方法
CN104297282A (zh) * 2014-10-27 2015-01-21 武汉钢铁(集团)公司 焦炭热性质分析方法及实现该方法的装置
US20160200579A1 (en) * 2013-09-05 2016-07-14 Graftech International Holdings Inc. Carbon products derived from lignin/carbon residue
JP2018177885A (ja) * 2017-04-06 2018-11-15 新日鐵住金株式会社 コークス収縮率の推定方法
JP2019070534A (ja) * 2017-10-06 2019-05-09 株式会社Kri 熱膨張係数の推算方法およびか焼コークスの品質管理方法
JP2020200360A (ja) * 2019-06-06 2020-12-17 日本製鉄株式会社 コークスの熱間反応後強度の推定方法及びコークスの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302648A (ja) * 1989-05-17 1990-12-14 Sumitomo Metal Ind Ltd 石炭の揮発分測定装置
JPH11116968A (ja) * 1997-10-15 1999-04-27 Sumitomo Metal Ind Ltd コークス製造用石炭の評価および配合方法
US20160200579A1 (en) * 2013-09-05 2016-07-14 Graftech International Holdings Inc. Carbon products derived from lignin/carbon residue
CN103940697A (zh) * 2014-03-26 2014-07-23 北京科技大学 一种高炉焦炭反应性测试方法
CN104297282A (zh) * 2014-10-27 2015-01-21 武汉钢铁(集团)公司 焦炭热性质分析方法及实现该方法的装置
JP2018177885A (ja) * 2017-04-06 2018-11-15 新日鐵住金株式会社 コークス収縮率の推定方法
JP2019070534A (ja) * 2017-10-06 2019-05-09 株式会社Kri 熱膨張係数の推算方法およびか焼コークスの品質管理方法
JP2020200360A (ja) * 2019-06-06 2020-12-17 日本製鉄株式会社 コークスの熱間反応後強度の推定方法及びコークスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RODERO J. I., SANCHO-GOROSTIAGA J., ORDIALES M., FERNÁNDEZ-GONZÁLEZ D., MOCHÓN J., RUIZ-BUSTINZA I., FUENTES A., VERDEJA L. F.: "Blast furnace and metallurgical coke's reactivity and its determination by thermal gravimetric analysis", IRONMAKING & STEELMAKING: PROCESSES, PRODUCTS AND APPLICATIONS, MANEY PUBLISHING, UNITED KINGDOM, vol. 42, no. 8, 1 September 2015 (2015-09-01), United Kingdom , pages 618 - 625, XP093069894, ISSN: 0301-9233, DOI: 10.1179/1743281215Y.0000000016 *

Also Published As

Publication number Publication date
AU2022403278A1 (en) 2024-04-11
CA3234553A1 (en) 2023-06-08
JPWO2023100600A1 (ja) 2023-06-08

Similar Documents

Publication Publication Date Title
JP4691212B2 (ja) 石炭の膨張率の測定方法、石炭の比容積の推定方法、空隙充填度の測定方法及び石炭配合方法
Zhang et al. Comprehensive evaluation of inherent mineral composition and carbon structure parameters on CO2 reactivity of metallurgical coke
CN108531205A (zh) 一种焦炭生产方法
EP2832822A1 (en) Coal blending method for coke production, production method for coke
JP2016057149A (ja) 鉱石の高温性状評価試験装置
CN104697833A (zh) 一种焦炭热态强度检验的标准试样及其制备方法
WO2023100600A1 (ja) コークスの反応後強度推定モデル作成方法、コークスの反応後強度推定方法及びコークスの製造方法
An et al. Evaluation of characteristics of coke degradation after reaction in different conditions
KR101649672B1 (ko) 시료의 품질 예측방법 및 이를 이용한 코크스의 열간강도 예측방법
CN112098263B (zh) 一种参数综合预测焦炭热强度模型的方法
CN109211631B (zh) 一种测定含铁炉料软熔性能的方法
CN105842065B (zh) 冶金焦炭反应后强度的评价方法
KR101246502B1 (ko) 배합원료에 함유된 프리-카본의 함량 측정 방법
JP7226676B1 (ja) コークスの反応後強度推定方法およびコークスの製造方法
WO2023079837A1 (ja) コークスの反応後強度推定方法およびコークスの製造方法
KR101673273B1 (ko) 시료의 품질 예측방법
JP7056275B2 (ja) コークスの分析方法
JP5304049B2 (ja) 冶金用コークスの製造方法
JPH11116968A (ja) コークス製造用石炭の評価および配合方法
JPH1161284A (ja) 焼結鉱の還元粉化性の評価試験方法
KR20170103911A (ko) 소결 프로세스를 제어하기 위한 장치 및 방법
KR101225370B1 (ko) 코크스의 반응성 지수 예측방법
JP2019070534A (ja) 熱膨張係数の推算方法およびか焼コークスの品質管理方法
KR101205026B1 (ko) 코크스의 고온 강도 예측방법
KR20110130737A (ko) 코크스 열간강도 예측 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023506162

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022403278

Country of ref document: AU

Ref document number: AU2022403278

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 3234553

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022403278

Country of ref document: AU

Date of ref document: 20221107

Kind code of ref document: A