WO2023100403A1 - 積層フィルム、及びその製造方法 - Google Patents

積層フィルム、及びその製造方法 Download PDF

Info

Publication number
WO2023100403A1
WO2023100403A1 PCT/JP2022/025331 JP2022025331W WO2023100403A1 WO 2023100403 A1 WO2023100403 A1 WO 2023100403A1 JP 2022025331 W JP2022025331 W JP 2022025331W WO 2023100403 A1 WO2023100403 A1 WO 2023100403A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ethylene polymer
ethylene
less
mass
Prior art date
Application number
PCT/JP2022/025331
Other languages
English (en)
French (fr)
Inventor
奈央 井川
瑛子 伊藤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280079217.9A priority Critical patent/CN118339025A/zh
Publication of WO2023100403A1 publication Critical patent/WO2023100403A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a laminated film and its manufacturing method.
  • plastic (resin) films are often used as laminated films having multiple layers with various functions.
  • resin films include single-use resin packaging materials.
  • a resin packaging material includes a resin film such as an oriented nylon film and a polyethylene terephthalate (PET) film, a base layer formed from a metal film such as aluminum, and a sealant layer containing a polyethylene film or the like. formed by
  • the base film and the sealant film can be laminated via an adhesive or the like.
  • Patent Document 1 describes layers A, B, and C, a barrier layer and/or an adhesive layer, and a predetermined amount of ethylene, each containing an ethylene polymer containing a predetermined amount of ethylene-derived structural units.
  • a layer D containing an ethylene polymer containing a structural unit derived from is laminated, the layer B contains an inorganic filler, and the density of the ethylene polymer contained in the layer D is 880 kg / m 3 or more and less than 930 kg / m 3 and a melt flow rate of 0.01 g/10 min to 3 g/10 min.
  • a laminated film comprising a base material layer made of resin such as nylon and polyethylene terephthalate (PET) and a sealant layer made of polyethylene resin, etc., requires separation and recovery of the resin that makes up each layer. The problem is that it is difficult.
  • a base material layer made of resin such as nylon and polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • sealant layer made of polyethylene resin
  • the laminated film described in Patent Document 1 satisfies the standards of rigidity and heat shrinkage resistance required for packaging materials without laminating a resin film such as polyethylene terephthalate.
  • the laminated film described in Patent Document 1 has room for improvement in terms of impact strength.
  • An object of one aspect of the present invention is to provide a laminated film that is easy to recycle and has excellent impact strength, and related technology.
  • the present inventors have found that, in a laminated film obtained by laminating a layer containing an ethylene polymer and a layer containing an ethylene polymer and an inorganic filler, an ethylene polymer ( By providing a layer D containing D) and an inorganic filler (B), it is possible to obtain a laminated film having high impact strength while being a monomaterial film containing polyethylene resin as a main component. I came to complete it.
  • a laminated film comprises A layer A containing an ethylene polymer (A) containing 80 mol% or more of structural units derived from ethylene; A layer B containing an ethylene polymer (B) containing 70 mol% or more of structural units derived from ethylene and an inorganic filler (A); A layer C containing an ethylene polymer (C) containing 70 mol% or more of structural units derived from ethylene; one or more layers selected from the group consisting of a barrier layer and an adhesive layer; An ethylene polymer (D) containing 70 mol% or more of structural units derived from ethylene and an inorganic filler (B) are contained, and the total content of the ethylene polymer (D) and the inorganic filler (B) is 100% by mass.
  • a layer D in which the content of the ethylene polymer (D) is 75% by mass or more and less than 99.5% by mass and the content of the inorganic filler (B) is 0.5% by mass or more and less than 25% by mass Having a layer E containing an ethylene polymer (E) containing 70 mol% or more of structural units derived from ethylene, Layer A/Layer B/Layer C/Barrier layer/Layer D/Layer E in this order, In order of layer A/layer B/layer C/adhesive layer/layer D/layer E, Layer A/Layer B/Layer C/Barrier layer/Adhesive layer/Layer D/Layer E in this order, Layer A/layer B/layer C/adhesive layer/barrier layer/layer D/layer E are laminated in this order.
  • a laminated film includes a layer A containing an ethylene polymer (A), a layer B containing an ethylene polymer (B) and an inorganic filler (A), and an ethylene polymer (C).
  • layer C one or more layers selected from the group consisting of a barrier layer and an adhesive layer, a layer D containing an ethylene polymer (D) and an inorganic filler (B), and an ethylene polymer (E)
  • a layer E is laminated in this order, and at least one layer selected from a barrier layer and an adhesive layer is laminated between the layer C and the layer D.
  • a layer obtained by laminating Layer A, Layer B, and Layer C in this order may be a base layer.
  • the film forming the base layer is sometimes called a base film.
  • Layers D and E may also be sealant layers.
  • the film forming the sealant layer is sometimes called a sealant film. That is, the laminated film according to one aspect of the present invention includes a layer C in the base layer in which the layer A, the layer B, and the layer C are laminated in this order, and the layer D in the sealant layer including the layer D and the layer E and may be a laminated film laminated via one layer selected from the group consisting of a barrier layer and an adhesive layer.
  • the laminated film according to one aspect of the present invention may have a layer F containing an ethylene polymer (F) between the layer E and the layer D.
  • a printed layer may be provided between layer C and one layer selected from the group consisting of a barrier layer and an adhesive layer, and one layer selected from the group consisting of a barrier layer and an adhesive layer and layer D. You may provide a printing layer between.
  • Base film (base layer)
  • the base film includes a layer A containing the ethylene polymer (A), a layer B containing the ethylene polymer (B) and an inorganic filler, and a layer C containing the ethylene polymer (C), which are laminated in this order.
  • Layer A may be an outer layer
  • Layer B may be an intermediate layer
  • Layer C may be an inner layer.
  • the ethylene polymer (A), the ethylene polymer (B), and the ethylene polymer (C) are each the molar fraction, density, and melt flow rate (MFR) of monomer units derived from ethylene in the ethylene polymer. ).
  • the base film contains an inorganic filler at least in Layer B.
  • each layer A, layer B, and layer C constituting the base film may contain an additive, if necessary.
  • Ethylene Polymer [1-1-1] Mole Fraction of Monomer Units Derived from Ethylene
  • the molar fraction of monomer units derived from ethylene is determined by, for example, the FT-IR method and the NMR method. can be obtained by
  • the ethylene polymer (A) contained in layer A contains 80 mol% or more of structural units derived from ethylene, preferably 97 mol% or more, more preferably 98 mol% or more, and 99 mol% or more. is more preferred.
  • the ethylene polymer (A) may be composed of structural units derived from 100 mol % of ethylene. By including 80 mol % or more of structural units derived from ethylene, the effect is that high heat resistance and chemical resistance can be imparted to the film.
  • the ethylene polymer (A) contained in the layer A two or more ethylene polymers described later may be used in combination.
  • At least one of the two or more ethylene polymers should contain 80 mol % or more of structural units derived from ethylene as the ethylene polymer (A).
  • the ethylene polymer (A) and an ethylene polymer other than the ethylene polymer (A) are used in combination, the ethylene polymer (A) contained in the layer A and the ethylene polymer other than the ethylene polymer (A) Taking the total as 100% by mass, the content of the ethylene polymer (A) is preferably 60% by mass or more, more preferably 80% by mass or more.
  • Layer A can be suitably formed when the content of the ethylene polymer (A) is 90% by mass or more.
  • the ethylene polymer (B) contained in layer B contains 70 mol% or more of structural units derived from ethylene, preferably 97 mol% or more, more preferably 98 mol% or more, and 99 mol% or more. is more preferred.
  • the ethylene polymer (B) may be composed of structural units derived from 100 mol % of ethylene. By containing 70 mol % or more of structural units derived from ethylene, the ethylene polymer (B) has the effect of enhancing film formation stability and imparting rigidity to the film.
  • two or more ethylene polymers described later may be used in combination.
  • At least one of the two or more ethylene polymers should contain 70 mol % or more of structural units derived from ethylene as the ethylene polymer (B).
  • the total of the two or more ethylene polymers contained in the layer B is 100% by mass, and the ethylene polymer (
  • the content of B) is preferably 60% by mass or more, more preferably 80% by mass or more.
  • Layer B can be suitably formed when the content of the ethylene polymer (B) is 90% by mass or more.
  • the ethylene polymer (C) contained in Layer C contains 70 mol% or more of structural units derived from ethylene, preferably 97 mol% or more, more preferably 98 mol% or more, and 99 mol% or more. is more preferred.
  • the ethylene polymer (C) may be composed of structural units derived from 100 mol % of ethylene. Since the ethylene polymer (B) contains 70 mol % or more of structural units derived from ethylene, it has the effect of imparting high anti-blocking properties to the base film.
  • two or more ethylene polymers described later may be used in combination.
  • At least one of the two or more ethylene polymers should contain 70 mol % or more of structural units derived from ethylene as the ethylene polymer (C).
  • the ethylene polymer (C) and an ethylene polymer other than the ethylene polymer (C) are used in combination, the total of two or more ethylene polymers contained in the layer C is 100% by mass, and the ethylene polymer ( The content of C) is preferably 60% by mass or more, more preferably 80% by mass or more.
  • Layer C can be suitably formed when the content of the ethylene polymer (C) is 90% by mass or more.
  • the ethylene polymer (A) contained in layer A contains 80 mol% or more of ethylene-derived structural units
  • the ethylene polymer (B) contained in layer B contains 70 mol% or more of ethylene-derived structural units.
  • the ethylene polymer (C) contained in Layer C contains 70 mol % or more of structural units derived from ethylene.
  • the base film provides the layer A with the function of the outer layer, the layer B with the function of the intermediate layer, and the layer C with the function of the inner layer. ), the ethylene polymer (B), and the ethylene polymer (C) can be suitably dissolved.
  • [1-1-2] Density of Ethylene Polymer The densities of the ethylene polymer (A), ethylene polymer (B) and ethylene polymer (C) are determined after annealing treatment specified in JIS K6760-1995. , measured according to A method described in JIS K7112-1980.
  • the density of the ethylene polymer (A) contained in Layer A is preferably 930 kg/m 3 or more, more preferably 935 kg/m 3 or more, and more preferably 940 kg/m 3 from the viewpoint of increasing the rigidity of the film. It is more preferable that it is above. From the viewpoint of enhancing the transparency of the film, it is preferably less than 970 kg/m 3 , more preferably 960 kg/m 3 or less.
  • the density of the ethylene polymer (B) contained in Layer B is preferably 930 kg/m 3 or more, more preferably 935 kg/m 3 or more, and more preferably 940 kg/m 3 from the viewpoint of increasing the rigidity of the film. It is more preferable that it is above. In addition, from the viewpoint of enhancing filler receptivity to Layer B and enhancing film processing stability, it is preferably less than 970 kg/m 3 , more preferably 960 kg/m 3 or less.
  • the density of the ethylene polymer (C) contained in the layer C is determined from the viewpoint of film rigidity, handleability and impact strength, and from the viewpoint of suitable reuse together with the ethylene polymer (A) and the ethylene polymer (B). Therefore, it is preferably 900 kg/m 3 or more, more preferably 910 kg/m 3 or more, and even more preferably 915 kg/m 3 or more. Also, from the viewpoint of enhancing the transparency of the film, it is preferably less than 970 kg/m 3 , more preferably 960 kg/m 3 or less.
  • Melt flow rate of ethylene polymer Melt flow rate (MFR) of ethylene polymer (A), ethylene polymer (B), and ethylene polymer (C) is JIS K7210-1-2014. , at a temperature of 190°C and a load of 21.18N.
  • the melt flow rate (MFR) of the ethylene polymer (A) is preferably 0.01 g/10 minutes or more from the viewpoint of fish eyes, fluidity, film surface appearance, adhesiveness, and the like. It is more preferably 10 minutes or more. Moreover, from the viewpoint of increasing the strength of the film, it is preferably less than 3 g/10 minutes, more preferably 2 g/10 minutes or less.
  • the MFR of the ethylene polymer (B) is preferably 3 g/10 minutes or more, more preferably 4 g/10 minutes or more, from the viewpoints of fish eyes, fluidity, film surface appearance, adhesiveness, and the like. .
  • it is preferably less than 25 g/10 minutes, more preferably 15 g/10 minutes or less.
  • the MFR of the ethylene polymer (C) is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min, from the viewpoint of suitably adjusting the extrusion load in film forming and increasing the film strength. minutes or more, more preferably 0.5 g/10 minutes or more, and preferably less than 3 g/10 minutes, more preferably 2.5 g/10 minutes or less, still more preferably 2 g/10 minutes. minutes or less.
  • ethylene polymer Ethylene polymer (A), ethylene polymer (B) and ethylene polymer (C) are, respectively, high-pressure low-density polyethylene, high-density polyethylene, ethylene- ⁇ - Ethylene polymers such as olefin copolymers, ethylene-vinyl ester copolymers, and ethylene-unsaturated carboxylic acid ester copolymers can be used.
  • ethylene polymers ethylene- ⁇ -olefin copolymers, high-pressure low-density polyethylenes, and high-density polyethylenes are preferably used for the ethylene polymer (A). , and high density polyethylene are more preferably used.
  • Ethylene- ⁇ -olefin copolymers and high-density polyethylene are preferably used for the ethylene polymer (B).
  • high-pressure low-density polyethylene, high-density polyethylene, and ethylene- ⁇ -olefin copolymer are preferably used, and ethylene- ⁇ -olefin copolymer is more preferably used.
  • the ⁇ -olefins having 3 to 20 carbon atoms used in the constituent units of the ethylene- ⁇ -olefin copolymer include propylene, 1-butene, 1 -Pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4-methyl-1-hexene, etc., and these alone may be used, or two or more may be used in combination.
  • ethylene- ⁇ -olefin copolymers examples include ethylene-propylene copolymers, ethylene-1-butene copolymers, ethylene-1-hexene copolymers, ethylene-1-octene copolymers, ethylene-1 -Butene-1-hexene copolymer, ethylene-1-butene-1-octene copolymer, etc., may be used alone, or two or more thereof may be used in combination. Further, ethylene-1-butene copolymer, ethylene-1-hexene copolymer, and ethylene-1-butene-1-hexene copolymer are preferable.
  • Examples of methods for producing ethylene- ⁇ -olefin copolymers include production methods by known polymerization methods using known radical polymerization catalysts and ionic polymerization catalysts.
  • Examples of known catalysts include peroxide catalysts, Ziegler-Natta catalysts, metallocene catalysts, etc.
  • Examples of known polymerization methods include solution polymerization, slurry polymerization, high-pressure ion polymerization, high-pressure A radical polymerization method, a vapor phase polymerization method, and the like can be mentioned.
  • Ziegler-Natta catalysts include, for example, catalysts composed of solid catalyst components for olefin polymerization containing titanium atoms, magnesium atoms and halogen atoms, and organometallic compounds.
  • No. 322833 discloses a catalyst.
  • metallocene-based catalysts include the following catalysts (1) to (4).
  • a catalyst comprising a component containing a transition metal compound having a group having a cyclopentadiene skeleton and a component containing an alumoxane compound (2) A component containing the transition metal compound and ions such as trityl borate and anilinium borate (3) A catalyst comprising a component containing the transition metal compound, a component containing the ionic compound, and an organometallic compound (4)
  • Each of the above components is combined with SiO 2 , Al 2 O 3 and the like, and particulate polymer supports such as olefin polymers such as ethylene and styrene, and catalysts obtained by supporting or impregnating the above organometallic compounds, for example, butyllithium, triethyl Aluminum etc. are mentioned.
  • the ethylene- ⁇ -olefin copolymer is preferably an ethylene- ⁇ -olefin copolymer produced by a gas phase polymerization method using a metallocene catalyst.
  • Specific examples of the ethylene- ⁇ -olefin copolymer include ethyne- ⁇ -olefin copolymers described in JP-A-9-183816.
  • the production method includes polymerizing ethylene and an ⁇ -olefin having 3 to 12 carbon atoms by a known polymerization method using a known catalyst.
  • known catalysts include Ziegler-Natta catalysts
  • known polymerization methods include, for example, gas phase-solid phase polymerization in the presence or absence of a solvent, liquid phase-solid phase polymerization. , a homogeneous liquid phase polymerization method, and the like.
  • the polymerization temperature is usually 30 to 300° C.
  • the polymerization pressure is usually atmospheric pressure to 3000 kg/cm 2 .
  • ethylene polymers such as high-pressure low-density polyethylene, ethylene-vinyl ester copolymers, and ethylene-unsaturated carboxylic acid ester copolymers may be produced by known production methods, and commercially available products may be used. .
  • Inorganic filler (A) At least the layer B of the base film contains an inorganic filler (A).
  • the content of the inorganic filler in layer B is preferably 20% by mass to 80% by mass, preferably 30% by mass, with respect to the total content of 100% by mass of the ethylene polymer (B) and the inorganic filler (A). It is more preferably ⁇ 70% by mass.
  • a film such as a polyethylene terephthalate (PET) film or a polyamide film is not laminated on the base film, and the base film can be formed.
  • PET polyethylene terephthalate
  • the base film and the laminated film can be suitably regenerated as a molding material composition of the ethylene polymer and the inorganic filler.
  • the content of the inorganic filler (A) in the layer B is 80% by mass or less, the layers A and C can be successfully co-extruded, and the base film can be successfully formed.
  • the layers A and C may also contain an inorganic filler.
  • the content of the inorganic filler in the layer A is not particularly limited as long as it is less than 20% by mass with respect to 100% by mass of the total content of the ethylene polymer (A) and the inorganic filler.
  • the content of the inorganic filler in the layer C is not limited to 100% by mass of the total content of the ethylene polymer (C) and the inorganic filler, but may be less than 20% by mass.
  • Inorganic fillers that can be contained in layers A, B, and C constituting the base film include calcium carbonate, kaolin, metakaolin, hydrotalcite, mica, talc, and fibrous basic magnesium sulfate particles. By using these inorganic fillers, it is possible to avoid impairing the transparency of the film. Hydrotalcite, talc and fibrous basic magnesium sulfate particles are more preferred from the viewpoint of increasing the rigidity of the film. These inorganic fillers may be used alone or in combination of two or more. Moreover, the inorganic filler may be surface-treated with, for example, a coupling agent. In addition, Layer A, Layer B, and Layer C may contain coloring pigments such as titanium oxide and iron oxide as inorganic fillers.
  • the median diameter (d50) of the inorganic filler is not limited, it is preferably 0.5 to 10 ⁇ m.
  • the median diameter (d50) of the inorganic filler can be measured as a volume-based median diameter by a laser diffraction method.
  • the fiber length is preferably 8 to 30 ⁇ m and the fiber diameter is preferably 0.5 to 1.0 ⁇ m, although not limited thereto.
  • Additives Layers A, B and C may contain at least one additive, if necessary, as long as the objects and effects of the present invention are not impaired.
  • Additives include lubricants, stabilizers (antioxidants), surfactants, antistatic agents, workability improvers, anti-blocking agents, and dyes.
  • lubricants include paraffin waxes such as liquid paraffin, natural paraffin, microwax, polyethylene wax, chlorinated paraffin, fluorocarbon, and synthetic paraffin; fatty acid waxes such as stearic acid, palmitic acid, myristic acid, behenic acid, and arachidine; Fatty acid lower alcohol esters such as butyl stearate; esters such as polyhydric alcohols, polyglycol esters and higher alcohol esters; zinc stearate, magnesium stearate , calcium stearate, and Lonozinc; polyhydric alcohols such as fatty alcohols, ethylene glycol, diethylene glycol, and triethylene glycol; partial esters of fatty acids and polyhydric alcohols; partial esters of fatty acids and polyglycol/polyglycerol and two or more lubricants may be used in combination.
  • paraffin waxes such as liquid paraffin, natural paraffin, microwax, polyethylene wax, chlorinated paraffin, fluor
  • the lubricant is preferably blended in the layer containing the inorganic filler. It is preferably contained in an amount of 0 parts by mass.
  • stabilizers examples include 2,6-di-t-butyl-p-cresol (BHT), tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane (IRGANOX (registered trademark) 1010, manufactured by BASF), n-octadecyl-3-(4'-hydroxy-3,5'-di-t-butylphenyl) propionate (IRGANOX (registered trademark) 1076, manufactured by BASF), etc.
  • Phenolic stabilizers represented by, phosphites represented by bis(2,4-di-t-butylphenyl) pentaerythritol diphosphite, tris(2,4-di-t-butylphenyl) phosphite, etc. Stabilizers and the like are included.
  • surfactants include carboxylates, fatty acid salts, cyclic fatty acid salts, special polycarboxylate-type active agents, sulfonates, alkyl or alkenyl sulfonates, alkylallylsulfonates, and alkylarylsulfonates.
  • Anionic surfactants such as ester salts and inorganic phosphates
  • Nonionic surfactants such as oxyethylene/polyoxypropylene block polymers, polyoxyethylene alkylamines, polyoxyethylene alkylamides, and polyhydric alcohol derivatives
  • cationic surfactants such as alkylamine salts and quaternary ammonium salts
  • Amphoteric surfactants such as alkylbetaine; fluorosurfactants, silicon surfactants, reactive surfactants, etc. can be mentioned, and one or more of these compounds can be used.
  • Layer A, Layer B, and Layer C may contain, as an additive, a polyolefin resin such as a low-density elastomer used for improving impact strength.
  • a polyolefin resin such as a low-density elastomer used for improving impact strength.
  • Barrier Layer and Adhesive Layer At least one layer selected from the group consisting of a barrier layer and an adhesive layer is a layer positioned between the layer C and the layer D and is either a barrier layer or an adhesive layer. It may be a single layer or multiple layers including a barrier layer and an adhesive layer.
  • the barrier layer is a layer that prevents permeation of gases such as oxygen and water vapor.
  • the barrier layer includes, for example, a metal oxide layer formed by vapor-depositing an inorganic compound, and a layer formed from a composition containing an inorganic stratiform compound and a polyvinyl alcohol-based resin.
  • layers formed by vapor-depositing an inorganic compound include layers formed from silicon oxide, alumina, and spinel.
  • the barrier layer may be, for example, a layer formed from a composition containing an inorganic stratiform compound and a polyvinyl alcohol-based resin.
  • examples of inorganic layered compounds include kaolinite group, smectite group, and mica group.
  • smectites such as layered silicate minerals, hectorites, and sabonites are preferred, and resins are incorporated between the layers of the inorganic layered compound to facilitate formation of a composite.
  • layered silicate minerals are preferable and can provide high oxygen gas barrier properties.
  • a polyvinyl alcohol-based resin is a polymer whose main component is a structural unit derived from vinyl alcohol.
  • polyvinyl alcohol examples include polymers obtained by hydrolyzing the acetate moiety of vinyl acetate polymers, trifluorovinyl acetate polymers, vinyl formate polymers, vinyl pivalate polymers, t- Examples thereof include polymers obtained by hydrolyzing butyl vinyl ether polymers, trimethylsilyl vinyl ether polymers, and the like (for details of "polyvinyl alcohol", see, for example, Poval Kai, "The World of PVA", 1992, Co., Ltd.
  • the degree of "saponification" of the ester portion of the polymer is preferably 70 mol % or more, more preferably 85 mol % or more, and even more preferably 98 mol % or more.
  • the degree of polymerization of the polymer used is preferably 100 or more and 5000 or less, more preferably 200 or more and 3000 or less.
  • the vinyl alcohol may be a so-called vinyl alcohol derivative having a functional group other than a hydroxyl group.
  • examples include carboxylate groups, sulfonate ion groups, phosphate ion groups, ammonium groups, phosphonium groups, silyl groups, siloxane groups, alkyl groups, allyl groups, fluoroalkyl groups, alkoxy groups, carbonyl groups, halogen groups and the like.
  • the polyvinyl alcohol-based resin may be a copolymer containing structural units derived from vinyl alcohol and structural units derived from ⁇ -olefins such as ethylene and propylene.
  • the content of structural units derived from ⁇ -olefin contained in the copolymer is preferably 40 mol% or less from the viewpoint of solubility in an aqueous solvent. , 15 mol % or less.
  • the adhesive layer may be formed from a water-based or solvent-based dry laminating adhesive, or may be formed from a non-solvent laminating adhesive.
  • adhesives for forming the adhesive layer include polyurethane adhesives such as polyether polyurethane adhesives and polyester polyurethane adhesives, polyester adhesives, imine adhesives, titanate adhesives, and the like. can be mentioned.
  • polyurethane-based adhesives include Takelac (registered trademark) (manufactured by Mitsui Chemicals) and Takenate (registered trademark) (manufactured by Mitsui Chemicals).
  • adhesive layers include high-density polyethylene, low-density polyethylene, ultra-low-density polyethylene, ultra-low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, ethylene- Methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, saponified ethylene-vinyl acetate copolymer, ethylene-styrene copolymer, ethylene-vinylcyclohexane copolymer, ethylene- Norbornene copolymers, polyolefin rubbers, styrene-butadiene rubbers, styrene-butadiene-styrene block copolymers, isoprene rubbers, styrene-isoprene rubbers, isobutylene rubbers, layers formed
  • the sealant film is a film formed by laminating a layer D containing an ethylene polymer (D) and an inorganic filler (B) and a layer E containing an ethylene polymer (E) in this order, and the layer D is an inner layer. , layer E may be the outer layer.
  • the sealant film has an impact strength and a heat seal peel strength in the laminated film. can be compatible.
  • the sealant film may be provided with a layer F containing an ethylene polymer (F) as an intermediate layer between the layer D and the layer E.
  • F ethylene polymer
  • a laminated film according to one aspect of the present invention is a polyethylene terephthalate (PET) film and a polyamide film by laminating a sealant film in which a layer D and a layer E are laminated on a material-recyclable base film.
  • PET polyethylene terephthalate
  • the impact strength can be increased without laminating a film such as the above on the base film. That is, it is possible to increase the impact strength of the laminated film while maintaining the characteristic of being material recyclable.
  • layer D preferably contains an ethylene polymer (G) in addition to the ethylene polymer (D) and the inorganic filler (B).
  • Ethylene polymer [3-1-1] Mole fraction of monomer units derived from ethylene
  • the ethylene polymer (D) contained in the layer D contains 70 mol% of structural units derived from ethylene. or more, preferably 90 mol % or more.
  • the ethylene polymer (D) may be composed of structural units derived from 100 mol % of ethylene.
  • the layer D may contain an ethylene polymer (G) and/or an ethylene polymer other than the ethylene polymer (G), which will be described later.
  • the ethylene polymer (D) contained in the layer D and the ethylene polymer other than the ethylene polymer (G) is preferably 60% by mass or more, more preferably 80% by mass or more, with the total being 100% by mass. More preferably, it is 90% by mass or more.
  • the content of the ethylene polymer (D) contained in the layer D ethylene Assuming that the total content of the polymer (G) and the content of the ethylene polymer other than the ethylene polymer (G) is 100% by mass, the content of the ethylene polymer (D) and the ethylene polymer (G) is It is preferably 60% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more from the viewpoint of forming the layer D suitably.
  • the ethylene polymer (E) contained in the layer E may contain 70 mol% or more, preferably 90 mol% or more of structural units derived from ethylene.
  • the ethylene polymer (E) may be composed of structural units derived from 100 mol % of ethylene.
  • the total of the two or more ethylene polymers contained in the layer E is 100% by mass, and the ethylene polymer (
  • the content of E) is preferably 60% by mass or more, more preferably 80% by mass or more, and from the viewpoint of suitably forming Layer E, the content of ethylene polymer (E) is 90% It is more preferably at least 10% by mass.
  • the ethylene polymer (F) contained in the layer F may contain 70 mol% or more, preferably 90 mol% or more of structural units derived from ethylene.
  • the ethylene polymer (F) may be composed of structural units derived from 100 mol % of ethylene.
  • the total of two or more ethylene polymers contained in the layer F is 100% by mass, and the ethylene polymer (The content of F) is preferably 60% by mass or more, more preferably 80% by mass or more, and from the viewpoint of suitably forming the layer F, the content of the ethylene polymer (F) is 90% It is more preferably at least 10% by mass.
  • Layer D may contain an ethylene polymer (G) in addition to the ethylene polymer (D).
  • the ethylene polymer (G) may contain 70 mol % or more, preferably 90 mol % or more of structural units derived from ethylene.
  • the ethylene polymer (G) may be composed of structural units derived from 100 mol % of ethylene.
  • the amount of the ethylene polymer (G) is The content is preferably 0.1 parts by mass or more and 20 parts by mass or less.
  • the content of the ethylene polymer (G) is 0.1 parts by mass or more and 20 parts by mass or less with respect to the total 100 parts by mass of the content of the ethylene polymer (D) and the content of the inorganic filler (B). Thereby, the impact strength of the laminated film can be increased.
  • the ethylene polymer (D) contained in layer D, the ethylene polymer (E) contained in layer E, and the ethylene polymer (F) contained in layer F contain 70 mol% or more of structural units derived from ethylene.
  • the sealant film can form a laminated film by laminating the sealant film on the base film while giving the layer D the function of an inner layer, the layer F the function of an intermediate layer, and the layer E the function of an outer layer.
  • the ethylene polymer (A), the ethylene polymer (B), and the ethylene polymer (C) in the base film and the ethylene polymer (D ), the ethylene polymer (E), and the ethylene polymer (F) can be suitably dissolved.
  • the density of (G) is measured according to A method described in JIS K7112-1980 after performing annealing treatment specified in JIS K6760-1995.
  • the density of the ethylene polymer (D) is preferably 900 kg/m 3 or more, more preferably 910 kg/m 3 or more, still more preferably 915 kg/m 3 or more, from the viewpoint of being suitably reused together with the base film. / m 3 or more. From the viewpoint of increasing the impact strength of the sealant film, it is preferably less than 930 kg/m 3 , more preferably 925 kg/m 3 or less.
  • the density of the ethylene polymer (E) is preferably 880 kg/m 3 or more, more preferably 890 kg, from the viewpoint of maintaining the handleability as a sealant film, maintaining the transparency of the film, and increasing the heat seal peel strength. /m 3 or more, more preferably 895 kg/m 3 or more, and preferably less than 930 kg/m 3 .
  • the density of the ethylene polymer (F) is preferably 910 kg/m 3 or more, more preferably 913 kg/m 3 or more, still more preferably 915 kg/m 3 or more, and less than 930 kg/m 3 .
  • the density of the ethylene polymer (F) is 910 kg/m 3 or more and less than 930 kg/m 3 , the falling body strength of the bag formed of the laminated film can be enhanced.
  • the density of the ethylene polymer (G) is preferably 940 kg/m 3 or more, more preferably 945 kg/m 3 or more, still more preferably 950 kg/m 3 or more, from the viewpoint of increasing the impact strength of the sealant film. m 3 or more is preferred.
  • As a sealant film it is preferably less than 970 kg/m 3 , and more preferably 965 kg/m 3 or less, from the viewpoint of enhancing filler receptivity to layer D and enhancing processing stability of the film .
  • Melt flow rate of ethylene polymer Melt flow rate (MFR) of ethylene polymer (D), ethylene polymer (E), ethylene polymer (F), and ethylene polymer (G) is It is measured at a temperature of 190° C. and a load of 21.18 N according to JIS K7210-1-2014, like the ethylene polymer (A).
  • the MFR of the ethylene polymer (D) is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min, from the viewpoint of suitably adjusting the extrusion load in film forming and increasing the film strength. minutes or more, more preferably 0.5 g/10 minutes or more, preferably less than 3 g/10 minutes, and more preferably 2 g/10 minutes or less.
  • the MFR of the ethylene polymer (E) is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min, from the viewpoint of suitably adjusting the extrusion load in film forming and increasing the film strength. minutes or more, more preferably 0.5 g/10 minutes or more, preferably less than 3 g/10 minutes, and more preferably 2 g/10 minutes or less.
  • the MFR of the ethylene polymer (F) is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min, from the viewpoint of suitably adjusting the extrusion load in film forming and increasing the film strength. minutes or more, more preferably 0.5 g/10 minutes or more, preferably less than 3 g/10 minutes, and more preferably 2 g/10 minutes or less.
  • the MFR of the ethylene polymer (G) is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min, from the viewpoint of suitably adjusting the extrusion load in film forming and increasing the film strength. minutes or more, more preferably 0.5 g/10 minutes or more, preferably less than 10 g/10 minutes, more preferably 7 g/10 minutes or less, still more preferably 5 g/10 minutes. or less, and most preferably 3 g/10 minutes or less.
  • the ethylene polymer (D), ethylene polymer (E), ethylene polymer (F) and ethylene polymer (G) are each high-pressure low-density polyethylene, Ethylene polymers such as high-density polyethylene, ethylene- ⁇ -olefin copolymers, ethylene-vinyl ester copolymers, and ethylene-unsaturated carboxylic acid ester copolymers can be used.
  • ethylene- ⁇ -olefin copolymers ethylene- ⁇ -olefin copolymers, high-pressure low-density polyethylene, and high-density polyethylene are preferably used for the ethylene polymer (D) and the ethylene polymer (E).
  • - ⁇ -olefin copolymers and high-pressure low-density polyethylene are more preferably used.
  • high-pressure low-density polyethylene, high-density polyethylene, and ethylene- ⁇ -olefin copolymer are preferably used, and ethylene- ⁇ -olefin copolymer is more preferably used.
  • ethylene polymer (G) high-pressure low-density polyethylene, high-density polyethylene, and ethylene- ⁇ -olefin copolymers are preferably used, and ethylene- ⁇ -olefin copolymers and high-density polyethylene are more preferably used. Used.
  • Ethylene- ⁇ -olefin copolymers used as ethylene polymer (D), ethylene polymer (E), ethylene polymer (F) and ethylene polymer (G) include, for example, ethylene-propylene copolymer, Ethylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-1-octene copolymer, ethylene-1-butene-1-hexene copolymer, ethylene-1-butene-1-octene copolymer Polymers and the like may be mentioned, and these may be used alone or in combination of two or more. Further, ethylene-1-butene copolymer, ethylene-1-hexene copolymer, and ethylene-1-butene-1-hexene copolymer are preferable.
  • the method for producing ethylene polymers including ethylene- ⁇ -olefin copolymers is as described in the above [1-1-4] Types of ethylene polymers.
  • a sealant layer contains an inorganic filler (B) in layer D at least.
  • the content of the inorganic filler in the layer D is such that the content of the ethylene polymer (D) is 75% by mass or more with respect to the total content of 100% by mass of the ethylene polymer (D) and the inorganic filler (B). It is less than 5% by mass, and the content of the inorganic filler (B) is 0.5% by mass or more and less than 25% by mass.
  • the content of the inorganic filler (B) contained in Layer D is 0.5% by mass or more, preferably 1% by mass or more, more preferably 1.5% by mass or more, and 2% by mass or more.
  • the content is less than 25% by mass.
  • the content of the inorganic filler in the layer D is 0.5% by mass or more and less than 25% by mass, so that the impact strength of the laminated film is increased while maintaining the adhesion between the layer D and the base film. be able to.
  • the layer F may also contain an inorganic filler.
  • the content of the inorganic filler in the layer F is not limited to 100% by mass of the total content of the ethylene polymer (F) and the inorganic filler, but may be less than 20% by mass.
  • the content of the inorganic filler in layer E is not limited to 100% by mass of the total content of the ethylene polymer (E) and the inorganic filler, but may be less than 20% by mass.
  • the type, median diameter, fiber length, etc. of the inorganic filler (B) that can be contained in D constituting the sealant film are the same as those of the inorganic filler (A).
  • Additive Layers D, E and F may each contain at least one additive, if necessary, as long as the objects and effects of the present invention are not impaired.
  • additives include lubricants, stabilizers (antioxidants), surfactants, antistatic agents, workability improvers, antiblocking agents, and dyes.
  • Layer D, Layer E and Layer F may contain polyolefin resins such as low-density elastomers used for improving impact strength as additives.
  • the surface of the layer C side of the base film (layer A/layer B/layer C) in which layer A, layer B, and layer C are laminated in this order is coronalized. and laminating a sealant film on the corona-treated surface of the layer C side of the base film via one or more layers selected from the group consisting of a barrier layer and an adhesive layer. It can be manufactured by a manufacturing method including:
  • the sealant film may be formed by laminating a layer D and a layer E in this order, and a layer F may be laminated between the layer D and the layer E.
  • the layer D side is subjected to corona treatment, and a base film is laminated on the layer D side surface via one or more layers selected from the group consisting of a barrier layer and an adhesive layer.
  • the method for producing a film-forming resin composition including coalescence is not particularly limited, and may be individually melt-blended (melt-kneaded), individually dry-blended, or one type of The above masterbatch may be dry-blended.
  • Various blenders such as Henschel mixers and tumbler mixers are used for dry blending, and various mixers such as single-screw extruders, twin-screw extruders, Banbury mixers and hot rolls are used for melt blending.
  • the thickness of the layer A of the base film is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, from the viewpoint of improving the processing stability of the film. From the viewpoint of increasing the rigidity of the film, the thickness is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the thickness of the layer B of the base film is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more. Moreover, from the viewpoint of enhancing the processing stability of the film, the thickness is preferably 60 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the thickness of layer C of the base film is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, from the viewpoint of improving the processing stability of the film. From the viewpoint of increasing the rigidity of the film, the thickness is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the thickness ratio of each layer of Layer A/Layer B/Layer C is preferably 1/1/1 to 1/15/1, more preferably 1/2/1 to 1/10/ 1, more preferably 1/2/1 to 1/6/1.
  • the thickness of layer D in the sealant film is 10 ⁇ m or more and 150 ⁇ m or less, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the amount of the ethylene polymer (D) used can be reduced it is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the thickness of the layer E in the sealant film is 10 ⁇ m or more and 150 ⁇ m or less, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more, from the viewpoint of increasing the heat seal peel strength.
  • the amount of the ethylene polymer (E) used can be reduced it is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the thickness of the layer F in the sealant film is 10 ⁇ m or more and 150 ⁇ m or less, more preferably 30 ⁇ m or more, from the viewpoint of increasing the drop strength, and the amount of the ethylene polymer (D) used can be reduced. From this point of view, the thickness is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the thickness ratio of each layer of layer D/layer E is preferably 1/10 to 5/1, more preferably 1/5 to 3/1, still more preferably 1/3 to 2 /1.
  • the thickness ratio of each layer is 1/5 to It is preferably 10/1, more preferably 1/3 to 5/1, even more preferably 1/2 to 3/1.
  • the method for producing the base film and the sealant film is not particularly limited, and includes known film production methods, for example, an inflation method using an inflation film production apparatus and a T die cast film production apparatus. Extrusion molding methods such as the T-die method can be used.
  • the processed resin temperature is 180°C to 300°C
  • the chill roll temperature is 20°C to 80°C.
  • an adhesive such as polybutene may be added to the resin composition for forming Layer A, Layer B, Layer C, Layer D, Layer E, and Layer F.
  • the method of adding polybutene include a method of using a raw material obtained by compounding polybutene in advance using a Banbury kneader or the like, and a method of injecting the polybutene into an extruder.
  • the concentration of polybutene is 0.5 to 20% by weight, and may be added to all three layers of the base film, only both outer layers (layer A and layer C), or only the intermediate layer (layer B), and the sealant It may be added to all layers of the film (Layer D, Layer E and Layer F) or to any layer (eg Layer F only).
  • the polybutene commercially available products such as HV35 manufactured by Nippon Petrochemical Co., Ltd. and polybutene 100H manufactured by Idemitsu Petrochemical Co., Ltd. may be used.
  • the surface of the base film on the layer C side may be subjected to corona treatment ( corona treatment of the surface of layer C).
  • corona treatment corona treatment of the surface of layer C.
  • barrier layer for example, layers such as silicon oxide, alumina, and spinel are preferably formed by vapor deposition.
  • a barrier layer formed from a composition containing an inorganic stratiform compound and a polyvinyl alcohol-based resin may be formed by applying the composition and drying it.
  • the method of laminating the base film (Layer A/Layer B/Layer C) and the sealant film (Layer D/Layer E or Layer D/Layer F/Layer E) is appropriately determined depending on whether an adhesive layer is formed. Good choice.
  • a method of laminating preformed sealant films by a dry lamination method or an extrusion lamination method can be used.
  • a water-based or solvent-based dry lamination adhesive is applied to the corona-treated surface of the layer C of the base film or the surface on the barrier layer side, and dried to form an adhesive layer.
  • the layer C of the base film and the layer D of the sealant film can be bonded together by a dry lamination method.
  • the surface of the layer D of the sealant film facing the base film is preferably subjected to corona treatment in the same manner as the layer C of the base film (the step of corona-treating the surface of the layer D).
  • a non-solvent laminating adhesive is melt extruded between the layer C or barrier layer of the base film and the layer D of the sealant film to form an adhesive layer.
  • the layer C of the base film and the layer D of the sealant film can be bonded together via the adhesive layer.
  • layer D and layer E, or layer D, layer F and layer E may be formed by a non-solvent lamination method, and ethylene polymer may be formed on layer C or barrier layer of the base film.
  • a layer F containing an ethylene polymer (F) can be melt extruded to form a sealant layer.
  • a laminated film according to an aspect of the present invention has high rigidity and heat shrinkage resistance without laminating a polyethylene terephthalate (PET) film or a polyamide film, for example. Therefore, the laminated film according to one aspect can be suitably used, for example, as packaging bags and packaging containers for storing foods, detergents, cosmetics, and the like.
  • the base material layer and the sealant layer can be molded from an ethylene polymer, it can be suitably used as a reusable monomaterial packaging material without separating the base material layer and the sealant layer.
  • the laminated film according to one aspect of the present invention may be recovered and recycled after being used as a container for foods, detergents, cosmetics, and the like, for example.
  • the laminated film can be recycled, for example, by washing the recovered container with a solvent such as water or alcohol, drying the container, and then melting and pelletizing the container. Melting and pelletizing of the container can be done without separating all layers of the laminated film.
  • the obtained pellets may be mixed with an ethylene polymer masterbatch having a different inorganic filler content and melted to adjust the concentration of the inorganic filler. Any one of ethylene polymer (A), ethylene polymer (B), ethylene polymer (C), and ethylene polymer (D) may be selected as the ethylene polymer used in the masterbatch.
  • a resin material containing a recycled ethylene polymer can be suitably used, for example, as a molding material for foods, detergents, and cosmetics.
  • K1S Log (Io1S/I1S)/density of standard sample/sheet thickness ( ⁇ m)
  • K2S Log (Io2S/I2S)/density of standard sample/sheet thickness ( ⁇ m)
  • CH3/1000C 0.67 ⁇ f ⁇ ((K1) ⁇ 0.95 ⁇ (K2)+3.8)
  • K1 Log (Io1/I1)/sample density/sheet thickness ( ⁇ m)
  • K2 Log (Io2/I2)/sample density/sheet thickness ( ⁇ m)
  • the short chain branch is propylene, the value obtained by multiplying the obtained CH3/1000C by 0.60, in the case of hexene, the value obtained by multiplying the obtained CH3/1000C by 1.13. In the case of octene, the obtained CH3/1000C is multiplied by 1.10, and in the case of 4-methylpentene 1, the obtained CH3/1000C is multiplied by 0.62.
  • Inorganic filler 1 Talc trade name “JM620P” manufactured by Asada Flour Milling Co., Ltd., median diameter (d50) 5 ⁇ m
  • Adhesive/Adhesive 1 Adhesive for dry lamination (manufacturing method: 12 parts by mass of Takelac (registered trademark) A310 (manufactured by Mitsui Chemicals), 1 part by mass of Takenate (registered trademark) A-3 (manufactured by Mitsui Chemicals), and 32 parts by mass of acetic acid (obtained by mixing with ethyl)
  • the energy was calculated from the area of the tension-stress curve obtained by the impact strength test and divided by the cross-sectional area of the test piece to obtain the impact strength.
  • a test piece in the MD direction was cut so that the feeding direction during film production coincided with the long side direction of the test piece.
  • Each part was set on a chuck of a tensile tester (manufactured by Orientec Co., Ltd.) and peeled at 23° C., humidity of 50%, peel speed of 200 mm/min, peel angle of 180 degrees, and heat seal peel strength was measured.
  • the temperature of the heat seal bar was 140°C, and the above test was conducted.
  • Example 1 30 parts by mass of ethylene polymer 1, 70 parts by mass of inorganic filler 1, 0.2 parts by mass of lubricant 1, and 0.2 parts by mass of antioxidant 1 were mixed in a super mixer (manufactured by Kawata Co., Ltd., A mixture was obtained by stirring at a temperature of 190° C. under a nitrogen gas atmosphere. The resulting mixture was melt-kneaded using a co-directional twin-screw extruder (manufactured by Kobe Steel, Ltd., trade name “KTX-37”, screw diameter 37 mm ⁇ ) at a temperature of 220 to 240° C. and a screw rotation speed of 100 rpm. , to obtain a masterbatch pellet 1 (MB1).
  • a super mixer manufactured by Kawata Co., Ltd., A mixture was obtained by stirring at a temperature of 190° C. under a nitrogen gas atmosphere. The resulting mixture was melt-kneaded using a co-directional twin-screw extruder (manufacture
  • Layer D ethylene polymer 3; 95 parts by mass, masterbatch pellet 1; 5 parts by mass, thickness; 80 ⁇ m
  • Layer E ethylene weight A two-layer blown film having a layer structure of coalescence 4: 100 parts by mass, thickness: 40 ⁇ m was formed.
  • Molding conditions and corona treatment conditions were as follows. ⁇ Molding conditions> ⁇ Extruder: ⁇ 50mm x 3 units ⁇ Die: ⁇ 150mm, lip 2.0mmt ⁇ Set temperature of die: 180-190°C ⁇ Processing temperature of layer D: 180 to 190 ° C.
  • the corona-treated surface of the T-die film 1 and the corona-treated surface of the blown film 1 are bonded together by a dry lamination method via a dry lamination adhesive 1 to form Layer A/Layer B/Layer C.
  • a laminate film 1 having a six-layer structure of /adhesive layer/layer D/layer E was obtained.
  • Example 2 The same as in Example 1 except that a mixture obtained by dry blending 95 parts by mass of ethylene polymer 2 and 5 parts by mass of masterbatch pellets 1 was used as layer A instead of 100 parts by mass of ethylene polymer 2.
  • a T-die film 2 (TF2) was obtained under the conditions.
  • the corona-treated surface of the T-die film 2 and the corona-treated surface of the blown film 1 are bonded together by a dry lamination method via a dry lamination adhesive 1 to form a layer A/layer B/layer C.
  • a laminate film 2 having a six-layer structure of /adhesive layer/layer D/layer E was obtained.
  • Example 3 As layer D, instead of ethylene polymer 3; 95 parts by mass and masterbatch pellets 1; 5 parts by mass, ethylene polymer 3; 93 parts by mass and masterbatch pellets 1; 7 parts by mass were used. A blown film 2 (IF2) was obtained in the same manner as in 1, and a laminated film 3 was obtained.
  • IF2 blown film 2
  • Example 4 As layer D, instead of ethylene polymer 3; 95 parts by mass and masterbatch pellets 1; 5 parts by mass, ethylene polymer 3; 86 parts by mass and masterbatch pellets 1; 14 parts by mass were used. A blown film 3 (IF3) was obtained in the same manner as in 1, and a laminated film 4 was obtained.
  • IF3 blown film 3
  • Example 5 As layer D, instead of ethylene polymer 3; 95 parts by mass and masterbatch pellets 1; 5 parts by mass, ethylene polymer 3; 79 parts by mass and masterbatch pellets 1; 21 parts by mass were used. A blown film 4 (IF4) was obtained in the same manner as in 1, and a laminated film 5 was obtained.
  • IF4 blown film 4
  • Example 6 Layer D (ethylene polymer 3; 95 parts by mass, masterbatch pellet 1; 5 parts by mass, thickness; 40 ⁇ m) / Layer F (ethylene weight 50 parts by mass of coalescence, 50 parts by mass of ethylene polymer, 40 ⁇ m in thickness)/layer E (4: 100 parts by mass of ethylene polymer, 40 ⁇ m in thickness) to form a three-layer inflation film. bottom. Then, the surface of the obtained film on the layer D side was subjected to corona treatment under the same conditions as for the blown film 1 to obtain the blown film 5 .
  • Layer D ethylene polymer 3; 95 parts by mass, masterbatch pellet 1; 5 parts by mass, thickness; 40 ⁇ m
  • Layer F ethylene weight 50 parts by mass of coalescence, 50 parts by mass of ethylene polymer, 40 ⁇ m in thickness
  • layer E (4: 100 parts by mass of ethylene polymer, 40 ⁇ m in thickness)
  • ⁇ Molding conditions> ⁇ Extruder: ⁇ 50mm x 3 units ⁇ Die: ⁇ 150mm, lip 2.0mmt ⁇ Set temperature of die: 180-190°C ⁇ Processing temperature of layer D: 180 to 190 ° C.
  • the corona-treated surface of the T-die film 1 and the corona-treated surface of the blown film 5 are bonded together via the dry lamination adhesive 1 by a dry lamination method to form Layer A/Layer B/Layer C.
  • a laminate film 6 having a seven-layer structure of /adhesive layer/layer D/layer F/layer E was obtained.
  • Example 7 Inflation film 6 (IF6) was obtained in the same manner as in Example 6, except that ethylene polymer 7; 100 parts by mass was used as layer E instead of ethylene polymer 4; 100 parts by mass. got 7.
  • the corona-treated surface of the T-die film 1 and the corona-treated surface of the blown film 8 are bonded together by a dry lamination method via the dry lamination adhesive 1 to form Layer A/Layer B/Layer C.
  • a laminate film 9 having a five-layer structure of /adhesive layer/layer D was obtained.
  • Table 1 shows the components and layer structures of T-die films (TF) 1 and 2.
  • Table 2 shows the components and layer structures of blown films (IF) 1 to 4.
  • Table 3 shows the components and layer structures of blown films (IF) 5 to 8.
  • Table 4 shows the evaluation results of the components, layer structures and physical properties of laminated films 1 to 9.
  • Example 8 As Layer D, instead of ethylene polymer 3; 95 parts by mass and masterbatch pellet 1; 5 parts by mass, ethylene polymer 3; 99 parts by mass and masterbatch pellet 1; 1 part by mass were used. A blown film 9 (IF9) was obtained in the same manner as in 1, and a laminated film 10 was obtained.
  • IF9 blown film 9
  • Example 9 As layer D, instead of ethylene polymer 3; 95 parts by mass and masterbatch pellets 1; 5 parts by mass, ethylene polymer 3; 97 parts by mass and masterbatch pellets 1; 3 parts by mass were used. A blown film 10 (IF10) was obtained in the same manner as in 1, and a laminated film 11 was obtained.
  • IF10 blown film 10
  • Table 5 shows blown film (IF) 9 and 10 components and layer configurations.
  • Table 6 shows the evaluation results of the components, layer structures and physical properties of the laminated films 10 and 11.
  • the laminated film according to one aspect of the present invention exhibits good impact strength and is suitably used for various packaging materials suitable for material recycling, such as food packaging materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

マテリアルリサイクルが容易であり、衝撃強度に優れた積層フィルムの提供。 エチレン由来の構造単位が80モル%以上のエチレン重合体(A)を含む層A;、エチレン由来の構造単位が70モル%以上のエチレン重合体(B)と無機フィラー(A)とを含む層B;、エチレン由来の構造単位が70モル%以上のエチレン重合体(C)を含む層C;、バリア層及び/または接着層;、エチレン由来の構造単位が70モル%以上のエチレン重合体(D)と無機フィラー(B)とを含み、エチレン重合体(D)が75質量%以上99.5質量%未満の層D;、エチレン由来の構造単位を70モル%以上含むエチレン重合体(E)を含む層E;、が積層されてなる。

Description

積層フィルム、及びその製造方法
 本発明は、積層フィルム、及びその製造方法に関する。
 例えば、プラスチック製(樹脂製)のフィルムは、種々の機能を有する複数の層を備えた積層フィルムとして多用されている。このような樹脂製のフィルムには、シングルユースである樹脂製の包装材料が挙げられる。一例として、樹脂製の包装材料は、延伸ナイロンフィルム及びポリエチレンテレフタレート(PET)フィルム等の樹脂フィルム、並びにアルミニウム等の金属フィルムから形成される基材層と、ポリエチレンフィルム等を含むシーラント層とを積層して形成される。ここで、基材フィルムとシーラントフィルムとは接着剤等を介して積層され得る。
 例えば、特許文献1には、それぞれ所定量のエチレンに由来する構造単位を含むエチレン重合体を含有する、層A、層B、層Cと、バリア層及び/又は接着層と、所定量のエチレンに由来する構造単位を含むエチレン重合体を含有する層Dとが積層され、層Bが無機フィラーを含み、層Dに含まれるエチレン重合体の密度が880kg/m以上、930kg/m未満であり、メルトフローレートが0.01g/10分~3g/10分である、積層フィルムが記載されている。
特許第6716764号明細書
 マテリアルリサイクルにおいて、ナイロン、及びポリエチレンテレフタレート(PET)等の樹脂から形成される基材層と、ポリエチレン樹脂等から形成されるシーラント層とを備えた積層フィルムは、各層を構成する樹脂の分離回収が困難であるという問題がある。
 これについて、特許文献1に記載の積層フィルムは、ポリエチレンテレフタレート等の樹脂フィルムを積層しなくとも、剛性及び耐熱収縮性が包装材料に求められる水準を満たしている。しかしながら、特許文献1に記載の積層フィルムは、衝撃強度という点において改善の余地がある。
 本発明の一態様は、マテリアルリサイクルが容易であり、衝撃強度に優れた積層フィルム及びその関連技術を提供することを目的とする。
 本発明者らは、上記課題について鋭意検討した結果、エチレン重合体を含有する層と、エチレン重合体と無機フィラーとを含有する層とを積層してなる積層フィルムにおいて、さらに、エチレン重合体(D)と無機フィラー(B)とを含有する層Dを設けることによって、ポリエチレン樹脂を主成分とするモノマテリアルフィルムでありながら、高い衝撃強度を有する積層フィルムを得られることを見出し、本発明を完成させるに至った。
 上記の課題を解決するために、本発明の一態様に係る積層フィルムは、
 エチレンに由来する構造単位を80モル%以上含むエチレン重合体(A)を含有する層Aと、
 エチレンに由来する構造単位を70モル%以上含むエチレン重合体(B)と、無機フィラー(A)とを含有する層Bと、
 エチレンに由来する構造単位を70モル%以上含むエチレン重合体(C)を含有する層Cと、
 バリア層及び接着層からなる群から選ばれる1種以上の層と、
 エチレンに由来する構造単位を70モル%以上含むエチレン重合体(D)と、無機フィラー(B)とを含有し、エチレン重合体(D)及び無機フィラー(B)の合計含有量100質量%に対して、エチレン重合体(D)の含有量が75質量%以上99.5質量%未満であり、無機フィラー(B)の含有量が0.5質量%以上25質量%未満である層Dと、
 エチレンに由来する構造単位を70モル%以上含むエチレン重合体(E)を含有する層Eを有し、
 層A/層B/層C/バリア層/層D/層Eの順、
 層A/層B/層C/接着層/層D/層Eの順、
 層A/層B/層C/バリア層/接着層/層D/層Eの順、
 層A/層B/層C/接着層/バリア層/層D/層Eの順のうちのいずれかの順で積層されてなる。
 本発明の一態様によれば、マテリアルリサイクルが容易であり、衝撃強度に優れた積層フィルム及びその関連技術を提供することができる。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書においては特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意図する。
 以下、本発明に包含される各態様について、詳細に説明する。
 <積層フィルム>
 本態様一態様に係る積層フィルムは、エチレン重合体(A)を含有する層Aと、エチレン重合体(B)及び無機フィラー(A)を含有する層Bと、エチレン重合体(C)を含有する層Cと、バリア層及び接着層からなる群から選ばれる1種以上の層と、エチレン重合体(D)及び無機フィラー(B)を含有する層Dと、エチレン重合体(E)を含有する層Eとがこの順に積層され、層Cと層Dとの間にバリア層及び接着層から選択される少なくとも1つの層が積層されてなる。
 本発明の一態様に係る積層フィルムにおいて、層A、層B、及び層Cがこの順で積層されてなる層は基材層であり得る。ここで、基材層を形成するフィルムを基材フィルムと称することもある。また、層D及び層Eは、シーラント層であり得る。ここで、シーラント層を形成するフィルムをシーラントフィルムと称することもある。すなわち、本発明の一態様に係る積層フィルムは、層A、層B、及び層Cがこの順で積層されてなる基材層における層Cと、層D及び層Eを含むシーラント層における層Dとが、バリア層及び接着層からなる群から選ばれる1つの層を介して積層されてなる積層フィルムであり得る。ここで、本発明の一態様に係る積層フィルムは、層Eと層Dとの間に、エチレン重合体(F)を含有する層Fを備えていてもよい。また、層Cとバリア層及び接着層からなる群から選ばれる1つの層との間に印刷層を備えても良く、バリア層及び接着剤層からなる群から選ばれる1つの層と層Dとの間に印刷層を備えても良い。
 〔1〕基材フィルム(基材層)
 基材フィルムは、エチレン重合体(A)を含有する層Aと、エチレン重合体(B)及び無機フィラーを含有する層Bと、エチレン重合体(C)を含有する層Cとがこの順に積層してなるフィルムであり、層Aが外層、層Bが中間層、層Cが内層であり得る。エチレン重合体(A)、エチレン重合体(B)、及びエチレン重合体(C)は、それぞれ、エチレン重合体におけるエチレンに由来する単量体単位のモル分率、密度、及びメルトフローレート(MFR)によって選択され得る。基材フィルムは、すくなくとも層Bに無機フィラーを含む。また、基材フィルムを構成する各層A、層B及び層Cは、必要に応じて添加剤を含んでいてもよい。
 〔1-1〕エチレン重合体
〔1-1-1〕エチレンに由来する単量体単位のモル分率
 エチレンに由来する単量体単位のモル分率は、例えば、FT-IR法、NMR法により求めることができる。
 層Aに含まれるエチレン重合体(A)は、エチレンに由来する構造単位を80モル%以上含み、97モル%以上含むことが好ましく、98モル%以上含むことがより好ましく、99モル%以上含むことがさらに好ましい。エチレン重合体(A)は、100モル%のエチレンに由来する構造単位により構成されていてもよい。エチレンに由来する構造単位を80モル%以上含むことによって、高い耐熱性及び耐薬品性をフィルムに付与できるという効果を奏する。なお、層Aに含まれるエチレン重合体(A)として、後述するエチレン重合体を2種類以上併用してもよい。この場合、2種類以上のエチレン重合体の少なくとも1種類が、エチレン重合体(A)としてエチレンに由来する構造単位を80モル%以上含んでいればよい。また、エチレン重合体(A)とエチレン重合体(A)以外のエチレン重合体とを併用する場合、層Aに含まれるエチレン重合体(A)とエチレン重合体(A)以外のエチレン重合体の合計を100質量%として、エチレン重合体(A)の含有量が、60質量%以上であることが好ましく、80質量%以上であることがより好ましい。エチレン重合体(A)の含有量が90質量%以上であれば、層Aを好適に形成することができる。
 層Bに含まれるエチレン重合体(B)は、エチレンに由来する構造単位を70モル%以上含み、97モル%以上含むことが好ましく、98モル%以上含むことがより好ましく、99モル%以上含むことがさらに好ましい。エチレン重合体(B)は、100モル%のエチレンに由来する構造単位により構成されていてもよい。エチレン重合体(B)は、エチレンに由来する構造単位を70モル%以上含むことによって、成膜安定性を高めることができ、フィルムに剛性を付与できるという効果を奏する。なお、層Bに含まれるエチレン重合体(B)として後述するエチレン重合体を2種類以上併用してもよい。この場合、2種類以上のエチレン重合体の少なくとも1種類が、エチレン重合体(B)としてエチレンに由来する構造単位を70モル%以上含んでいればよい。また、エチレン重合体(B)とエチレン重合体(B)以外のエチレン重合体とを併用する場合、層Bに含まれる2種類以上のエチレン重合体の合計を100質量%として、エチレン重合体(B)の含有量が、60質量%以上であることが好ましく、80質量%以上であることがより好ましい。エチレン重合体(B)の含有量が90質量%以上であれば、層Bを好適に形成することができる。
 層Cに含まれるエチレン重合体(C)は、エチレンに由来する構造単位を70モル%以上含み、97モル%以上含むことが好ましく、98モル%以上含むことがより好ましく、99モル%以上含むことがさらに好ましい。エチレン重合体(C)は、100モル%のエチレンに由来する構造単位により構成されていてもよい。エチレン重合体(B)は、エチレンに由来する構造単位を70モル%以上含むことによって、基材フィルムに高い耐ブロッキング性を付与できるという効果を奏する。なお、層Cに含まれるエチレン重合体(C)として後述するエチレン重合体を2種類以上併用してもよい。この場合、2種類以上のエチレン重合体の少なくとも1種類が、エチレン重合体(C)としてエチレンに由来する構造単位を70モル%以上含んでいればよい。また、エチレン重合体(C)とエチレン重合体(C)以外のエチレン重合体とを併用する場合、層Cに含まれる2種類以上のエチレン重合体の合計を100質量%として、エチレン重合体(C)の含有量が、60質量%以上であることが好ましく、80質量%以上であることがより好ましい。エチレン重合体(C)の含有量が90質量%以上であれば、層Cを好適に形成することができる。
 層Aに含まれるエチレン重合体(A)は、エチレンに由来する構造単位を80モル%以上含み、層Bに含まれるエチレン重合体(B)は、エチレンに由来する構造単位を70モル%以上含み、層Cに含まれるエチレン重合体(C)は、エチレンに由来する構造単位を70モル%以上含む。これによって、基材フィルムは、層Aに外層、層Bに中間層、層Cに内層としての機能を付与しつつ、基材フィルムを使用した後、溶融混練したときにおいて、エチレン重合体(A)、エチレン重合体(B)、及びエチレン重合体(C)を好適に相溶させることができる。
 〔1-1-2〕エチレン重合体の密度
 エチレン重合体(A)、エチレン重合体(B)及びエチレン重合体(C)の密度は、JIS K6760-1995に規定されたアニーリング処理を行った後、JIS K7112-1980に記載のA法に従って測定される。
 層Aに含まれるエチレン重合体(A)の密度は、フィルムの剛性を高める観点から、930kg/m以上であることが好ましく、935kg/m以上であることがより好ましく、940kg/m以上であることが更に好ましい。また、フィルムの透明性を高める観点から、970kg/m未満であることが好ましく、960kg/m以下であることがより好ましい。
 層Bに含まれるエチレン重合体(B)の密度は、フィルムの剛性を高める観点から、930kg/m以上であることが好ましく、935kg/m以上であることがより好ましく、940kg/m以上であることが更に好ましい。また、層Bへのフィラー受容性を高め、フィルムの加工安定性を高めるという観点から、970kg/m未満であることが好ましく、960kg/m以下であることがより好ましい。
 層Cに含まれるエチレン重合体(C)の密度は、フィルムの剛性、ハンドリング性や衝撃強度の観点、並びに、エチレン重合体(A)及びエチレン重合体(B)とともに好適に再利用するという観点から、900kg/m以上であることが好ましく、より好ましくは910kg/m以上であり、さらに好ましくは、915kg/m以上であることが好ましい。また、フィルムの透明性を高める観点から、970kg/m3未満であることが好ましく、960kg/m以下であることがより好ましい。
 〔1-1-3〕エチレン重合体のメルトフローレート
 エチレン重合体(A)、エチレン重合体(B)、及びエチレン重合体(C)のメルトフローレート(MFR)は、JIS K7210-1―2014に準拠し、温度190℃、荷重21.18Nで測定される。
 エチレン重合体(A)のメルトフローレート(MFR)は、フィッシュアイ、流動性、フィルム表面の外観、粘着性等の観点から、0.01g/10分以上であることが好ましく、0.1g/10分以上であることがより好ましい。また、フィルムの強度を高める観点から、3g/10分未満であることが好ましく、2g/10分以下であることがより好ましい。
 エチレン重合体(B)のMFRは、フィッシュアイ、流動性、フィルム表面の外観、粘着性等の観点から、3g/10分以上であることが好ましく、4g/10分以上であることがより好ましい。また、20質量%~80質量%以上の無機フィラーを含有させ、フィルムの強度を高めるという観点から、25g/10分未満であることが好ましく、15g/10分以下であることがより好ましい。
 エチレン重合体(C)のMFRは、フィルム成形における押出し負荷を好適に調整し、フィルム強度を高めるという観点から、0.01g/10分以上であることが好ましく、より好ましくは0.1g/10分以上であり、さらに好ましくは0.5g/10分以上であり、また、3g/10分未満であることが好ましく、より好ましくは2.5g/10分以下であり、さらに好ましくは2g/10分以下である。
 〔1-1-4〕エチレン重合体の種類
 エチレン重合体(A)、エチレン重合体(B)及びエチレン重合体(C)には、それぞれ、高圧法低密度ポリエチレン、高密度ポリエチレン、エチレン-α-オレフィン共重合体、エチレン-ビニルエステル共重合体、エチレン-不飽和カルボン酸エステル共重合体等のエチレン重合体を用いることができる。
 エチレン重合体の中でも、エチレン重合体(A)には、エチレン-α-オレフィン共重合体、及び、高圧法低密度ポリエチレン、及び高密度ポリエチレンが好適に用いられ、エチレン-α-オレフィン共重合体、及び高密度ポリエチレンがより好適に用いられる。
 エチレン重合体(B)には、エチレン-α-オレフィン共重合体、及び高密度ポリエチレンが好適に用いられる。
 エチレン重合体(C)には、高圧法低密度ポリエチレン、高密度ポリエチレン、エチレン-α-オレフィン共重合体が好適に用いられ、エチレン-α-オレフィン共重合体がより好適に用いられる。
 エチレン重合体がエチレン-α-オレフィン共重合体である場合、エチレン-α-オレフィン共重合体の構成単位に用いられる炭素原子数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。好ましくは、1-ブテン、1-ヘキセンである。
 エチレン-α-オレフィン共重合体としては、例えば、エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ブテン-1-ヘキセン共重合体、エチレン-1-ブテン-1-オクテン共重合体等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。また、好ましくは、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-ブテン-1-ヘキセン共重合体である。
 エチレン-α-オレフィン共重合体の製造方法としては、公知のラジカル重合触媒やイオン重合触媒を用いて、公知の重合方法による製造方法が挙げられる。公知の触媒としては、例えば、過酸化物触媒、チーグラー・ナッタ系触媒、メタロセン系触媒等があげられ、公知の重合方法としては、例えば、溶液重合法、スラリー重合法、高圧イオン重合法、高圧ラジカル重合法、気相重合法等が挙げられる。
 チーグラー・ナッタ系触媒としては、例えば、チタン原子、マグネシウム原子及びハロゲン原子を含有するオレフィン重合用固体触媒成分と、有機金属化合物とからなる触媒が挙げられ、より具体的には、特開平11-322833号公報に記載された触媒が挙げられる。
 メタロセン系触媒としては、例えば、次の(1)~(4)の触媒等が挙げられる。
 (1)シクロペンタジエン形骨格を有する基を有する遷移金属化合物を含む成分と、アルモキサン化合物とを含む成分からなる触媒
 (2)前記遷移金属化合物を含む成分と、トリチルボレート、アニリニウムボレート等のイオン性化合物とを含む成分からなる触媒
 (3)前記遷移金属化合物を含む成分と、前記イオン性化合物を含む成分と、有機金属化合物とを含む成分からなる触媒
 (4)前記の各成分をSiO、Al等の無機粒子状担体や、エチレン、スチレン等のオレフィン重合体等の粒子状ポリマー担体に担持または含浸させて得られる触媒
 上記の有機金属化合物としては、例えば、ブチルリチウム、トリエチルアルミニウム等が挙げられる。
 エチレン-α-オレフィン共重合体は、メタロセン系触媒を用いた気相重合法により製造されたエチレン-α-オレフィン共重合体が好ましい。該エチレン-α-オレフィン共重合体としては、具体的には、特開平9-183816号公報に記載されているエチン-α-オレフィン共重合体を挙げることができる。
 また、エチレン重合体が高密度ポリエチレンである場合、その製造方法としては、公知の触媒を用いて、エチレンと炭素原子数3~12のα-オレフィンとを、公知の重合方法により重合する製造方法が挙げられる。公知の触媒としては、例えば、チーグラー・ナッタ系触媒が挙げられ、公知の重合方法としては、例えば、溶媒の存在下又は不存在下における気相-固相重合法、液相-固相重合法、均一液相重合法等が挙げられる。重合温度としては、通常30~300℃であり、重合圧力としては、通常、常圧~3000kg/cmである。
 その他、高圧法低密度ポリエチレン、エチレン-ビニルエステル共重合体、エチレン-不飽和カルボン酸エステル共重合体等のエチレン重合体についても公知の製造方法によって製造すればよく、市販品を用いてもよい。
 〔1-2〕無機フィラー(A)
 基材フィルムは、少なくとも層Bに無機フィラー(A)を含む。層Bにおける無機フィラーの含有量は、エチレン重合体(B)及び前記無機フィラー(A)の合計含有量100質量%に対して、20質量%~80質量%であることが好ましく、30質量%~70質量%であることがより好ましい。層Bにおける無機フィラー(A)の含有量が20質量%以上であることによって、例えば、ポリエチレンテレフタレート(PET)フィルム、及びポリアミドフィルム等のフィルムを基材フィルムに積層しなくても、基材フィルム、さらには基材フィルムにシーラントフィルムを積層した積層フィルムに高い剛性及び高い耐熱収縮性を付与することができる。このため、基材フィルム及び積層フィルムを再生するときにおいて、ポリエチレンテレフタレート(PET)フィルム、及びポリアミドフィルム等を分離する必要がない。よって、基材フィルム、及び積層フィルムをエチレン重合体と無機フィラーとの成形材料用組成物として好適に再生することができる。なお、層Bにおける無機フィラー(A)の含有量が、80質量%以下であれば、層A及び層Cと首尾よく共押出することができ、基材フィルムを首尾よく成形することができる。
 なお、層A及び層Cも無機フィラーを含んでいてもよい。層Aにおける無機フィラーの含有量は、エチレン重合体(A)及び無機フィラーの合計含有量100質量%に対し、限定されるものではないが、20質量%未満であればよい。同様に、層Cにおける無機フィラーの含有量は、エチレン重合体(C)及び無機フィラーの合計含有量100質量%に対し、限定されるものではないが、20質量%未満であればよい。
 基材フィルムを構成する層A、層B及び層Cに含まれ得る無機フィラーには、炭酸カルシウム、カオリン、メタカオリン、ハイドロタルサイト、マイカ、タルク、及び繊維状塩基性硫酸マグネシウム粒子等が挙げられ、これら無機フィラーを用いることによって、フィルムの透明性が損なわれることを回避することができる。フィルムの剛性をより高くするという観点から、より好ましくはハイドロタルサイト、タルク及び繊維状塩基性硫酸マグネシウム粒子が挙げられる。これら無機フィラーは単独で用いてもよく、2種以上を併用してもよい。また、無機フィラーは、例えば、カップリング剤等によって表面処理されていてもよい。その他、層A、層B及び層Cは、酸化チタン及び酸化鉄等の着色顔料を無機フィラーとして含んでいてもよい。
 無機フィラーのメディアン径(d50)は、限定されるものではないが、0.5~10μmであることが好ましい。なお、無機フィラーのメディアン径(d50)は、レーザ回折法によって、体積基準のメディアン径として測定することができる。
 無機フィラーが、繊維状塩基性硫酸マグネシウム粒子である場合、限定されるものではないが、繊維長が8~30μm、繊維径が0.5~1.0μmであることが好ましい。
 〔1-3〕添加剤
 層A、層B及び層Cは、必要に応じて、本発明の目的・効果を損なわない範囲で、少なくとも1つの添加剤を含んでいてもよい。
 添加剤としては、滑剤、安定剤(酸化防止剤)、界面活性剤、帯電防止剤、加工性改良剤、抗ブロッキング剤、及び染料等が挙げられる。
 滑剤としては、例えば流動パラフィン、天然パラフィン、マイクロワックス、ポリエチレンワックス、塩素化パラフィン、フルオロカーボン、合成パラフィンなどのパラフィン系ワックス;ステアリン酸、パルチミン酸、ミリスチン酸、ベヘニン酸、アラキジンなどの脂肪酸系ワックス;脂肪族アミド、アルキレンビス脂肪酸アミドなどの脂肪族アミド系ワックス;ステアリン酸ブチルなどの脂肪酸低級アルコールエステル;多価アルコール、ポリグリコールエステル、高級アルコールエステル類などのエステル系;ステアリン酸亜鉛、マグネシウムステアレート、カルシウムステアレート、ロノジンクなどの金属石鹸;脂肪アルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどの多価アルコール系;脂肪酸と多価アルコールの部分エステル、脂肪酸とポリグリコール・ポリグリセロールの部分エステルなどを挙げることができ、2つ以上の滑剤を併用してもよい。
 滑剤は、無機フィラーを含む層に配合されることが好ましく、例えば、層Bに配合するときにおいて、エチレン重合体(B)と無機フィラーとの合計100質量部に対し、0.2~5.0質量部含まれることが好ましい。
 安定剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT)、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(IRGANOX(登録商標)1010,BASF社製)、n-オクタデシル-3-(4’-ヒドロキシ-3,5’-ジ-t-ブチルフェニル)プロピオネート(IRGANOX(登録商標)1076,BASF社製)等で代表されるフェノール系安定剤、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト等で代表されるホファイト系安定剤等が挙げられる。
 界面活性剤としては、例えばカルボン酸塩、脂肪酸塩、環状脂肪酸塩、特殊ポリカルボン酸塩型活性剤、スルホン酸塩、アルキルまたはアルケニルスルホン酸塩、アルキルアリルスルホン酸塩、アルキルアリルスルホン酸塩の重縮合物、硫酸塩、アルキル硫酸エステル、ポリオキシエチレン・アルキルエーテル硫酸塩、ポリオキシエチレン・アルキルフェニルエーテル硫酸塩、りん酸エステル、アルキルりん酸エステル、ポリオキシエチレン・アルキル(フェニル)エーテルりん酸エステル塩、無機りん酸塩等のアニオン性界面活性剤;ポリオキシエチレン誘導体、ポリオキシエチレン・アルキルエーテル、ポリオキシエチレン・アルキルフェニルエーテル、ポリオキシエチレン・ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアマイド、多価アルコール系誘導体等のノニオン性界面活性剤;アルキルアミン塩、第4アンモニウム塩等のカチオン性界面活性剤;アルキルベタイン等の両性界面活性剤;フッ素系界面活性剤、シリコン系界面活性剤、反応性界面活性剤等を挙げることができ、これらの化合物の中から1種または2種以上用いることができる。
 その他、層A、層B及び層Cは、衝撃強度の改良のために用いられる低密度エラストマー等のポリオレフィン系樹脂を添加剤として含んでいてもよい。
 〔2〕バリア層及び接着層
 バリア層及び接着層からなる群から選ばれる1種以上の層は、層Cと層Dとの間に位置する層であって、バリア層または接着層のいずれかの単一層であっても、バリア層と接着層とを含む多層であってもよい。
 バリア層は、酸素及び水蒸気等のガスの透過を防ぐ層である。バリア層は、例えば、無機化合物を蒸着することによって形成される金属酸化物の層と、無機層状化合物とポリビニルアルコール系樹脂とを含む組成物から形成される層とが挙げられる。ここで、無機化合物を蒸着することによって形成される層には、酸化ケイ素、アルミナ、及びスピネルから形成される層を挙げることができる。バリア層は、例えば、無機層状化合物とポリビニルアルコール系樹脂とを含む組成物から形成される層であり得る。
 ここで、無機層状化合物としては、カオリナイト族、スメクタイト族、及びマイカ族が挙げられる。この中でも、層状ケイ酸塩鉱物、ヘクトライト、サボナイト等のスメクタイト族が好ましく、無機層状化合物の層間に樹脂を取り込み、複合体を形成し易い。スメクタイト族の中でも、層状ケイ酸塩鉱物が好ましく、高い酸素ガスバリア性を付与することができる。
 ポリビニルアルコール系樹脂とは、ビニルアルコールに由来する構造単位を主成分として有する重合体である。このような「ポリビニルアルコール」としては、例えば、酢酸ビニル重合体の酢酸エステル部分を加水分解して得られる重合体、トリフルオロ酢酸ビニル重合体、ギ酸ビニル重合体、ピバリン酸ビニル重合体、t-ブチルビニルエーテル重合体、トリメチルシリルビニルエーテル重合体等を加水分解して得られる重合体が挙げられる(「ポリビニルアルコール」の詳細については、例えば、ポバール会編、「PVAの世界」、1992年、(株)高分子刊行会;長野ら、「ポバール」、1981年、(株)高分子刊行会を参照することができる)。重合体のエステル部分の「ケン化」の程度は、70モル%以上が好ましく、85モル%以上がより好ましく、98%モル以上がさらに好ましい。また、使用する重合体の重合度は、100以上5000以下であることが好ましく、200以上3000以下であることがより好ましい。
 また、ビニルアルコールとしては、水酸基以外の官能基を有するいわゆるビニルアルコール誘導体であってもよく、水酸基以外の官能基として、例えば、アミノ基、チオール基、カルボキシル基、スルホン酸基、リン酸基、カルボキシレート基、スルホン酸イオン基、燐酸イオン基、アンモニウム基、ホスホニウム基、シリル基、シロキサン基、アルキル基、アリル基、フルオロアルキル基、アルコシキ基、カルボニル基、ハロゲン基等が例示できる。
 また、ポリビニルアルコール系樹脂としては、ビニルアルコールに由来する構造単位と、エチレン、プロピレン等のα-オレフィンに由来する構造単位とを含む共重合体であってもよい。ポリビニルアルコール系樹脂が共重合体である場合、水系溶媒への溶解性の観点から、該共重合体に含まれるα-オレフィンに由来する構造単位の含有量は40モル%以下であることが好ましく、15モル%以下であることがより好ましい。
 接着層は、水性型、及び溶剤型のドライラミネート用接着剤から形成してもよく、無溶剤型ラミネート用接着剤から形成してもよい。接着層を形成するための接着剤には、例えば、ポリエーテル系ポリウレタン接着剤、ポリエステル系ポリウレタン接着剤等のポリウレタン系接着剤、ポリエステル系接着剤、イミン系接着剤、及びチタネート系接着剤等を挙げることができる。例えば、ポリウレタン系接着剤には、タケラック(登録商標)(三井化学製)、及びタケネート(登録商標)(三井化学製)等を挙げることができる。
 その他、接着層は、高密度ポリエチレン、低密度ポリエチレン、極低密度ポリエチレン、超低密度ポリエチレンエチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、エチレン-酢酸ビニル共重合体鹸化物、エチレン-スチレン共重合体、エチレン-ビニルシクロヘキサン共重合体、エチレン-ノルボルネン共重合体、ポリオレフィンゴム、スチレン-ブタジエンゴム、スチレン-ブタジエン-スチレンブロック共重合体、イソプレンゴム、スチレン-イソプレンゴム、イソブチレンゴム、これら樹脂の酸変性体や水添物等から形成される層であってもよい。
 〔3〕シーラントフィルム(シーラント層)
 シーラントフィルムは、エチレン重合体(D)及び無機フィラー(B)を含有する層Dと、エチレン重合体(E)を含有する層Eとがこの順に積層してなるフィルムであり、層Dが内層、層Eが外層であり得る。シーラントフィルムがエチレン重合体(D)及び無機フィラー(B)を含有する層Dと、エチレン重合体(E)を含有する層Eを有することにより、積層フィルムにおける衝撃強度と、ヒートシール剥離強度とを両立させることができる。
 また、シーラントフィルムは層Dと層Eとの間に、中間層として、エチレン重合体(F)を含有する層Fが設けられていてもよい。これにより、積層フィルムで形成された袋等の容器における落強度を向上させることができる。落強度は、積層フィルムで形成された袋等を落としたときにおいて、袋の内容物が漏れること防止するための強度として評価される。
 本発明の一態様に係る積層フィルムは、マテリアルリサイクル可能である基材フィルムに、層Dと層Eとが積層されてなるシーラントフィルムを積層することで、ポリエチレンテレフタレート(PET)フィルム、及びポリアミドフィルム等のフィルムを基材フィルムに積層しなくても、衝撃強度を高めることができる。すなわち、マテリアルリサイクル可能という特性を維持しつつ、積層フィルムの衝撃強度を高めることができる。
 また、層Dは、エチレン重合体(D)及び無機フィラー(B)の他に、エチレン重合体(G)を含有していることが好ましい。
 〔3-1〕エチレン重合体
 〔3-1-1〕エチレンに由来する単量体単位のモル分率
 層Dが含有するエチレン重合体(D)は、エチレンに由来する構造単位を70モル%以上、好ましくは90モル%以上含み得る。エチレン重合体(D)は、100モル%のエチレンに由来する構造単位により構成されていてもよい。なお、層Dはエチレン重合体(D)の他に、後述するエチレン重合体(G)及び/又はエチレン重合体(G)以外のエチレン重合体を含んでいてもよい。
 層Dが、エチレン重合体(D)とエチレン重合体(G)以外のエチレン重合体を含む場合、層Dに含まれるエチレン重合体(D)及びエチレン重合体(G)以外のエチレン重合体の合計を100質量%として、エチレン重合体(D)の含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、層Dを好適に形成するという観点から、90質量%以上であることがさらに好ましい。
 層Dが、エチレン重合体(D)とエチレン重合体(G)とエチレン重合体(G)以外のエチレン重合体とを含む場合、層Dに含まれるエチレン重合体(D)の含有量、エチレン重合体(G)の含有量、及びエチレン重合体(G)以外のエチレン重合体の含有量の合計を100質量%として、エチレン重合体(D)及びエチレン重合体(G)の含有量は、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、層Dを好適に形成するという観点から、90質量%以上であることがさらに好ましい。
 層Eが含有するエチレン重合体(E)は、エチレンに由来する構造単位を70モル%以上、好ましくは90モル%以上含み得る。エチレン重合体(E)は、100モル%のエチレンに由来する構造単位により構成されていてもよい。また、エチレン重合体(E)とエチレン重合体(E)以外のエチレン重合体とを併用する場合、層Eに含まれる2種類以上のエチレン重合体の合計を100質量%として、エチレン重合体(E)の含有量が、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、層Eを好適に形成するという観点から、エチレン重合体(E)の含有量は90質量%以上であることが、さらに好ましい。
 シーラントフィルムが、層Fを備えている場合、当該層Fが含有するエチレン重合体(F)は、エチレンに由来する構造単位を70モル%以上、好ましくは90モル%以上含み得る。エチレン重合体(F)は、100モル%のエチレンに由来する構造単位により構成されていてもよい。また、エチレン重合体(F)とエチレン重合体(F)以外のエチレン重合体とを併用する場合、層Fに含まれる2種類以上のエチレン重合体の合計を100質量%として、エチレン重合体(F)の含有量が、60質量%以上であることが好ましく、80質量%以上であることがより好ましく、層Fを好適に形成するという観点から、エチレン重合体(F)の含有量は90質量%以上であることが、さらに好ましい。
 層Dは、エチレン重合体(D)の他に、エチレン重合体(G)を含有していてもよい。当該エチレン重合体(G)は、エチレンに由来する構造単位を70モル%以上、好ましくは90モル%以上含み得る。エチレン重合体(G)は、100モル%のエチレンに由来する構造単位により構成されていてもよい。また、層Dがエチレン重合体(G)を含む場合、エチレン重合体(D)の含有量、及び無機フィラー(B)の含有量の合計100質量部に対して、エチレン重合体(G)の含有量が0.1質量部以上20質量部以下であることが好ましい。エチレン重合体(D)の含有量、及び無機フィラー(B)の含有量の合計100質量部に対して、エチレン重合体(G)の含有量が0.1質量部以上20質量部以下であることにより、積層フィルムの衝撃強度を高めることができる。
 層Dに含まれるエチレン重合体(D)、層Eに含まれるエチレン重合体(E)、層Fに含まれるエチレン重合体(F)は、エチレンに由来する構造単位を70モル%以上含む。これによって、シーラントフィルムは、層Dに内層、層Fに中間層、層Eに外層としての機能を付与しつつ、シーラントフィルムを基材フィルムに積層して積層フィルムを形成できる。また、積層フィルムを使用した後、溶融混練することで、基材フィルムにおけるエチレン重合体(A)、エチレン重合体(B)、及びエチレン重合体(C)と、シーラントフィルムにおけるエチレン重合体(D)、エチレン重合体(E)、及びエチレン重合体(F)とを好適に相溶させることができる。
 〔3-1-2〕エチレン重合体の密度
 エチレン重合体(A)~(C)と同じく、エチレン重合体(D)、エチレン重合体(E)、エチレン重合体(F)、及びエチレン重合体(G)の密度は、JIS K6760-1995に規定されたアニーリング処理を行った後、JIS K7112-1980に記載のA法に従って測定される。
 エチレン重合体(D)の密度は、基材フィルムとともに好適に再利用するという観点から、900kg/m以上であることが好ましく、より好ましくは910kg/m以上であり、さらに好ましくは、915kg/m3以上である。また、シーラントフィルムとして衝撃強度を高める観点から、930kg/m未満であることが好ましく、925kg/m以下であることがより好ましい。
 エチレン重合体(E)の密度は、シーラントフィルムとしてのハンドリング性、フィルムの透明性を維持し、ヒートシール剥離強度を高めるという観点から、880kg/m以上であることが好ましく、より好ましくは890kg/m以上であり、さらに好ましくは、895kg/m以上であり、930kg/m3未満であることが好ましい。
 エチレン重合体(F)の密度は、910kg/m以上であることが好ましく、より好ましくは913kg/m以上であり、さらに好ましくは、915kg/m以上であり、930kg/m未満であることが好ましい。エチレン重合体(F)の密度が、910kg/m以上、930kg/m未満であることにより、積層フィルムにより形成された袋の落体強度を高めることができる。
 エチレン重合体(G)の密度は、シーラントフィルムとして、衝撃強度を高めるという観点から、940kg/m以上であることが好ましく、より好ましくは945kg/m以上であり、さらに好ましくは、950kg/m以上であることが好ましい。また、シーラントフィルムとして、層Dへのフィラー受容性を高め、フィルムの加工安定性を高めるという観点から、970kg/m未満であることが好ましく、965kg/m以下であることがより好ましい。
 〔3-1-3〕エチレン重合体のメルトフローレート
 エチレン重合体(D)、エチレン重合体(E)、エチレン重合体(F)、及びエチレン重合体(G)のメルトフローレート(MFR)はエチレン重合体(A)等と同じく、JIS K7210-1―2014に準拠し、温度190℃、荷重21.18Nで測定される。
 エチレン重合体(D)のMFRは、フィルム成形における押出し負荷を好適に調整し、フィルム強度を高めるという観点から、0.01g/10分以上であることが好ましく、より好ましくは0.1g/10分以上であり、さらに好ましくは0.5g/10分以上であり、また、3g/10分未満であることが好ましく、2g/10分以下であることがより好ましい。
 エチレン重合体(E)のMFRは、フィルム成形における押出し負荷を好適に調整し、フィルム強度を高めるという観点から、0.01g/10分以上であることが好ましく、より好ましくは0.1g/10分以上であり、さらに好ましくは0.5g/10分以上であり、また、3g/10分未満であることが好ましく、2g/10分以下であることがより好ましい。
 エチレン重合体(F)のMFRは、フィルム成形における押出し負荷を好適に調整し、フィルム強度を高めるという観点から、0.01g/10分以上であることが好ましく、より好ましくは0.1g/10分以上であり、さらに好ましくは0.5g/10分以上であり、また、3g/10分未満であることが好ましく、2g/10分以下であることがより好ましい。
 エチレン重合体(G)のMFRは、フィルム成形における押出し負荷を好適に調整し、フィルム強度を高めるという観点から、0.01g/10分以上であることが好ましく、より好ましくは0.1g/10分以上であり、さらに好ましくは0.5g/10分以上であり、また、10g/10分未満であることが好ましく、7g/10分以下であることがより好ましく、さらに好ましくは5g/10分以下であり、最も好ましくは3g/10分以下である。
 〔3-1-4〕エチレン重合体の種類
 エチレン重合体(D)、エチレン重合体(E)、エチレン重合体(F)及びエチレン重合体(G)には、それぞれ、高圧法低密度ポリエチレン、高密度ポリエチレン、エチレン-α-オレフィン共重合体、エチレン-ビニルエステル共重合体、エチレン-不飽和カルボン酸エステル共重合体等のエチレン重合体を用いることができる。
 エチレン重合体の中でも、エチレン重合体(D)及びエチレン重合体(E)には、エチレン-α-オレフィン共重合体、及び、高圧法低密度ポリエチレン、及び高密度ポリエチレンが好適に用いられ、エチレン-α-オレフィン共重合体、及び高圧法低密度ポリエチレンがより好適に用いられる。
 エチレン重合体(F)には、高圧法低密度ポリエチレン、高密度ポリエチレン、エチレン-α-オレフィン共重合体が好適に用いられ、エチレン-α-オレフィン共重合体がより好適に用いられる。
 エチレン重合体(G)には、高圧法低密度ポリエチレン、高密度ポリエチレン、エチレン-α-オレフィン共重合体が好適に用いられ、エチレン-α-オレフィン共重合体、及び高密度ポリエチレンがより好適に用いられる。
 エチレン重合体(D)、エチレン重合体(E)、エチレン重合体(F)及びエチレン重合体(G)として用いられる、エチレン-α-オレフィン共重合体は、例えば、エチレン-プロピレン共重合体、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体、エチレン-1-ブテン-1-ヘキセン共重合体、エチレン-1-ブテン-1-オクテン共重合体等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。また、好ましくは、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-ブテン-1-ヘキセン共重合体である。
 エチレン-α-オレフィン共重合体を始めとするエチレン重合体の製造方法は、上述の〔1-1-4〕エチレン重合体の種類の欄に説明した通りである。
 〔3-2〕無機フィラー(B)
 シーラント層は、すくなくとも層Dに無機フィラー(B)を含む。層Dにおける無機フィラーの含有量は、エチレン重合体(D)及び前記無機フィラー(B)の合計含有量100質量%に対して、エチレン重合体(D)の含有量が75質量%以上99.5質量%未満であり、無機フィラー(B)の含有量が0.5質量%以上25質量%未満である。層Dに含まれる無機フィラー(B)の含有量は0.5質量%以上であり、1質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2質量%以上であることがさらに好ましく、25質量%未満であるとよい。層Dにおける無機フィラーの含有量が0.5質量%以上であり、25質量%未満であることにより、層Dと、基材フィルムとの密着性を維持しつつ、積層フィルムの衝撃強度を高めることができる。
 なお、層Fも無機フィラーを含んでいてもよい。層Fにおける無機フィラーの含有量は、エチレン重合体(F)及び無機フィラーの合計含有量100質量%に対し、限定されるものではないが、20質量%未満であればよい。同様に、層Eにおける無機フィラーの含有量は、エチレン重合体(E)及び無機フィラーの合計含有量100質量%に対し、限定されるものではないが、20質量%未満であればよい。
 シーラントフィルムを構成するDに含まれ得る無機フィラー(B)の種類、メディアン径、繊維長等は、無機フィラー(A)と同じである。
 〔3-3〕添加剤
 層D、層E、及び層Fは、それぞれ必要に応じて、本発明の目的・効果を損なわない範囲で、少なくとも1つの添加剤を含んでいてもよい。添加剤としては、層A、層B、層Cと同じく、滑剤、安定剤(酸化防止剤)、界面活性剤、帯電防止剤、加工性改良剤、抗ブロッキング剤、及び染料等が挙げられる。
 その他、層D、層E及び層Fは、衝撃強度の改良のために用いられる低密度エラストマー等のポリオレフィン樹脂を添加剤として含んでもよい。
 <積層フィルムの製造方法>
 本実施形態に係る積層フィルムは、層Aと、層Bと、層Cとがこの順で積層されてなる基材フィルム(層A/層B/層C)の、層C側の表面をコロナ処理する工程と、基材フィルムの層C側のコロナ処理を行なった面に、バリア層及び接着層からなる群から選ばれる1種以上の層を介して、シーラントフィルムを積層する工程と、を含む製造方法により、製造することができる。
 シーラントフィルムは、層Dと、層Eとがこの順で積層されてなり、層D及び層Eの間には、層Fが積層されていてもよい。シーラントフィルムは、層D側にコロナ処理を行ない、当該層D側の面に、バリア層及び接着層からなる群から選ばれる1種以上の層を介して、基材フィルムを積層される。
 基材フィルムにおける層A、層B、及び層Cを成形するためのエチレン重合体を含むフィルム成形用樹脂組成物、及びシーラントフィルムにおける層D、層E、及び層Fを成形するためのエチレン重合体を含むフィルム成形用樹脂組成物の製造方法としては、特に限定されるものではなく、それぞれ別個に、あらかじめメルトブレンド(溶融混練)してもよく、個々にドライブレンドしてもよく、または一種以上のマスターバッチにしてドライブレンドしてもよい。ドライブレンドにおいてはヘンシェルミキサー、タンブラーミキサー等の各種ブレンダーが用いられ、メルトブレンドにおいては単軸押出機、二軸押出機、バンバリーミキサー、熱ロール等の各種ミキサーが用いられる。
 基材フィルムの層Aの厚さは、フィルムの加工安定性を高めるという観点から、5μm以上であることが好ましく、7μm以上であることがより好ましい。また、フィルムの剛性を高めるという観点から、30μm以下であることが好ましく、20μm以下であることがより好ましい。
 基材フィルムの層Bの厚さは、フィルムの剛性を高めるという観点から、10μm以上であることが好ましく、12μm以上であることがより好ましい。また、フィルムの加工安定性を高めるという観点から、60μm以下であることが好ましく、40μm以下であることがより好ましい。
 基材フィルムの層Cの厚さは、フィルムの加工安定性を高めるという観点から、5μm以上であることが好ましく、7μm以上であることがより好ましい。また、フィルムの剛性を高めるという観点から、30μm以下であることが好ましく、20μm以下であることがより好ましい。
 基材フィルムにおいて、層A/層B/層Cの各層の厚み比は、1/1/1~1/15/1であることが好ましく、より好ましくは1/2/1~1/10/1であり、さらに好ましくは1/2/1~1/6/1である。
 シーラントフィルムにおける層Dの厚さは、衝撃強度を高めるという観点から、10μm以上、150μm以下であり、20μm以上であることがより好ましく、30μm以上であることが更に好ましい。また、エチレン重合体(D)の使用量を削減できるという観点から、100μm以下であることが好ましく、80μm以下であることがより好ましい。
 シーラントフィルムにおける層Eの厚さは、ヒートシール剥離強度を高めるという観点から、10μm以上、150μm以下であり、20μm以上であることがより好ましく、30μm以上であることが更に好ましい。また、エチレン重合体(E)の使用量を削減できるという観点から、100μm以下であることが好ましく、80μm以下であることがより好ましい。
 また、シーラントフィルムにおける層Fの厚さは、落強度を高めるという観点から、10μm以上、150μm以下であり、30μm以上であることがより好ましく、エチレン重合体(D)の使用量を削減できるという観点から、100μm以下であることが好ましく、80μm以下であることがより好ましい。
 シーラントフィルムにおいて、層D/層Eの各層の厚み比は、1/10~5/1であることが好ましく、より好ましくは1/5~3/1であり、さらに好ましくは1/3~2/1である。シーラントフィルムにおいて、層D/層F/層Eが積層されてなる場合、各層の厚み比は、層Dと層Eとの厚さの合計/層Fの厚さの比として、1/5~10/1であることが好ましく、より好ましくは1/3~5/1であり、さらに好ましくは1/2~3/1である。
 基材フィルム、及びシーラントフィルムの製造方法としては、特に限定されるものではなく、公知のフィルムの製造方法が挙げられ、例えば、インフレーションフィルム製造装置を用いるインフレーション法、Tダイキャストフィルム製造装置を用いるTダイ法等の押出成形方法が挙げられる。
 Tダイ法を用いる場合、加工樹脂温度は180℃~300℃であり、チルロール温度は20℃~80℃である。
 インフレーション法を用いる場合、層A、層B、層C、層D、層E、層Fを形成するための樹脂組成物にポリブテン等の粘着剤を添加してもよい。ポリブテンの添加方法としては、ポリブテンを予めバンバリー混練機等でコンパウンドした原料を用いる方法、押出し機内に注入する方法等が挙げられる。ポリブテンの濃度は0.5~20質量%であり、基材フィルムの三層の全て、両外層(層A及び層C)のみ、または中間層(層B)のみに添加してもよく、シーラントフィルムの全ての層(層D、層E及び層F)、または何れかの層(例えば層Fのみ)に添加してもよい。ポリブテンとしては、日本石油化学(株)製HV35、出光石油化学(株)製ポリブテン100H等の市販品を用いてもよい。
 バリア層及び接着層からなる群から選ばれる1種以上の層を介して、基材フィルムと層Dとを積層する前に、基材フィルムの層C側の表面にコロナ処理を施すとよい(層Cの表面をコロナ処理する工程)。これにより、層Cとバリア層又は接着層との接着強度を高めることができる。
 バリア層を形成する方法は、例えば、酸化ケイ素、アルミナ、及びスピネル等の層は蒸着により形成するとよい。また、無機層状化合物とポリビニルアルコール系樹脂とを含む組成物から形成されるバリア層は、当該組成物を塗布し、乾燥することによって形成すればよい。
 基材フィルム(層A/層B/層C)とシーラントフィルム(層D/層E、又は層D/層F/層E)とを積層する方法は、接着層を形成するか否かによって適宜選択するとよい。例えば、接着層を形成する場合、予め成形されたシーラントフィルムをドライラミネート法、又は押出ラミネート法によって積層する方法が上げられる。
 ドライラミネート法では、例えば、基材フィルムの層Cにおけるコロナ処理した面に、又は、バリア層側の面に水性型又は溶剤型のドライラミネート用接着剤を塗布し、乾燥することで接着層を形成し、これにより基材フィルムの層Cとシーラントフィルムの層Dとをドライラミネート法で貼り合わせることができる。ここで、シーラントフィルムの層Dにおける基材フィルムに対向する側の面には、基材フィルムの層Cと同様に、コロナ処理しておことが好ましい(層Dの表面をコロナ処理する工程)。
 また、押出ラミネート法(サンドイッチラミネート法)では、基材フィルムにおける層C又はバリア層と、シーラントフィルムにおける層Dとの間に無溶剤型のラミネート用接着剤を溶融押出し、接着層を形成する。これにより、基材フィルムの層Cとシーラントフィルムの層Dとを、接着層を介して貼り合わせることができる。
 その他、接着層を形成しない場合、無溶剤ラミネート法により、層D、及び層E、若しくは層D、層F及び層Eを成形すればよく、基材フィルムにおける層C又はバリア層上にエチレン重合体(D)を含む層Dを成形するための樹脂組成物、エチレン重合体(E)を含む層Eを成形するための樹脂組成物、エチレン重合体(F)を含む層Fを成形するための樹脂組成物を溶融押出し、これにより、シーラント層を成形することができる。
 <積層フィルムの用途>
 本発明の一態様に係る積層フィルムは、例えば、ポリエチレンテレフタレート(PET)フィルムやポリアミドフィルムを積層せずとも、高い剛性及び耐熱収縮性を備えている。よって、一態様に係る積層フィルムは、例えば、食品、洗剤、及び化粧品等を収納する包装袋、及び包装用容器として好適に用いることができる。また、基材層及びシーラント層をエチレン重合体によって成形することができることから、基材層及びシーラント層と分離せずとも、再利用するができるモノマテリアル包材として好適に使用することができる。
 <再生方法>
 本発明の一態様に係る積層フィルムは、例えば、食品、洗剤、及び化粧品等の容器として用いた後、回収し、再生するとよい。積層フィルムの再生は、例えば、水やアルコール等の溶剤等によって回収した容器を洗浄し、乾燥した後に当該容器を溶融し、ペレット化すればよい。容器の溶融、及びペレット化は、積層フィルムの全層を分離することなく行うことができる。得られたペレットと、当該ペレットとは、無機フィラーの含有量が異なるエチレン重合体のマスターバッチとを混合し、溶融し、無機フィラーの濃度を調整してもよい。当該マスターバッチに用いられるエチレン重合体は、エチレン重合体(A)、エチレン重合体(B)、エチレン重合体(C)、エチレン重合体(D)の何れかを選択すればよい。
 再生したエチレン重合体を含む樹脂材料は、例えば、食品、洗剤、化粧品用途の成形材料として好適に使用することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
 (1)エチレン重合体の各種物性の測定方法は、以下の通りである。
 (1-1)エチレン重合体中のエチレンに由来する構造単位の含有量(単位:モル%) 短鎖分岐数が既知のエチレンーヘキセン共重合体の標準サンプルについて、100μmのプレスシートを作成し、日本分光社製FT-IR480にて、積算回数16回、分解4cm-1にて赤外線吸収強度を測定した。得られたスペクトルの1700cm-1と920cm-1を結びベースラインを作成した。得られたスペクトルの1378cm-1のピーク強度(I1S)と1303cm-1のピーク強度(I2S)、またベースラインの1378cm-1のピーク強度(Io1S)と1303cm-1のピーク強度(Io2S)をそれぞれ読み取り、以下の式を用いて、係数fを求めた。
f=(標準サンプルの1000C中の短鎖分岐数)/0.67{(K1S)-0.95(K2S)+3.8}
K1S=Log(Io1S/I1S)/標準サンプルの密度/シート厚み(μm)
K2S=Log(Io2S/I2S)/標準サンプルの密度/シート厚み(μm)
次に、短鎖分岐数が未知のサンプルについて、100μmのプレスシートを作成し、日本分光社製FT-IR480にて、積算回数16回、分解4cm-1にて赤外線吸収強度を測定した。得られたスペクトルの1700cm-1と920cm-1を結びベースラインを作成した。得られたスペクトルの1378cm-1のピーク強度(I1)と1303cm-1のピーク強度(I2)、またベースラインの1378cm-1のピーク強度(Io1)と1303cm-1のピーク強度(Io2)をそれぞれ読み取り、以下の式を用いてCH3/1000Cを算出した。
CH3/1000C=0.67×f×((K1)-0.95×(K2)+3.8)
K1=Log(Io1/I1)/サンプルの密度/シート厚み(μm)
K2=Log(Io2/I2)/サンプルの密度/シート厚み(μm)
短鎖分岐がプロピレンの場合は、得られたCH3/1000Cに対し0.60倍した値を、ヘキセンの場合は、得られたCH3/1000Cに対し1.13倍した値を、短鎖分岐がオクテンの場合は、得られたCH3/1000Cに対し1.10倍した値を、短鎖分岐が4メチルペンテン1の場合は、得られたCH3/1000Cに対し0.62倍した値を、短鎖分岐がプロピレン、ヘキセン、オクテン、4メチルペンテン以外の場合は、得られたCH3/1000の値を、1000炭素中の短鎖分岐度とした。
エチレン重合体中のエチレンに由来する構造単位の含有量は、1000炭素中の短差分岐度を用いて、以下式にて算出した。
エチレン重合体中のエチレンに由来する構造単位の含有量(モル%)=(1000-1000炭素中の短鎖分岐度)/10
 (1-2)エチレン重合体の密度(単位:kg/m
 JIS K6760-1995に記載のアニーリング処理を行った後、JIS K7112-1980に記載のA法に従って、エチレン重合体の密度(単位:kg/m)を測定した。
 (1-3)エチレン重合体のメルトフローレート(MFR、単位:g/10分)
 JIS K7210-1―2014に従い、温度190℃、荷重21.18Nの条件でエチレン重合体のMFR(単位:g/10分)を測定した。
 (2)実施例及び比較例に用いた材料は、以下の通りである。
 (2-1)エチレン重合体
・エチレン重合体1
 エチレン-α-オレフィン共重合体、京葉ポリエチレン株式会社製 商品名「G2500」、エチレンに由来する構造単位:99.2モル%、密度:960kg/m、MFR:5g/10分
・エチレン重合体2
 エチレン-α-オレフィン共重合体、京葉ポリエチレン株式会社製 商品名「E8080」、エチレンに由来する構造単位:99.1モル%、密度:958kg/m、MFR:1.0g/10分
・エチレン重合体3
 エチレン-ヘキセン共重合体、住友化学株式会社製 商品名「スミカセンE(登録商標)FV205」、製造方法:メタロセン触媒を用いた気相重合、エチレンに由来する構造単位:98.9モル%、密度:921kg/m、MFR:2.2g/10分
・エチレン重合体4
 エチレン-ヘキセン共重合体、住友化学株式会社製 商品名「エクセレンFX(登録商標)FX307」、製造方法:メタロセン触媒を用いた気相重合、エチレンに由来する構造単位:95.5モル%、密度:890kg/m、MFR:3.2g/10分
・エチレン重合体5
 エチレン-ヘキセン共重合体、住友化学株式会社製 商品名「スミカセンE(登録商標)FV104」、製造方法:メタロセン触媒を用いた気相重合、エチレンに由来する構造単位:98.0モル%、密度:915kg/m、MFR:1.0g/10分
・エチレン重合体6
 エチレン-ヘキセン共重合体、住友化学株式会社製 商品名「エクセレンGMH(登録商標)GH030」、製造方法:メタロセン触媒を用いた気相重合、エチレンに由来する構造単位:96.9モル%、密度:912kg/m、MFR:0.5g/10分
・エチレン重合体7
 エチレン-ヘキセン共重合体、住友化学株式会社製 商品名「スミカセンE(登録商標)FV201」、製造方法:メタロセン触媒を用いた気相重合、エチレンに由来する構造単位:98.1モル%、密度:916kg/m、MFR:2.3g/10分
・無機フィラー1
 タルク、浅田製粉株式会社製 商品名「JM620P」、メディアン径(d50)5μm
 (2-3)接着剤
・接着剤1
 ドライラミネート用接着剤(製造方法:12質量部のタケラック(登録商標)A310(三井化学製)と、1質量部のタケネート(登録商標)A―3(三井化学製)と、32質量部の酢酸エチルとを混合して得た)
 (3)フィルムの各種物性の評価方法は、以下のとおりである。
 (3-1)衝撃強度(単位:kJ/m
 フィルムをASTM TypeSダンベルにて打ち抜き、63.5mm×9.5mmの衝撃強度評価用の試験片を得た。株式会社オリエンテック製衝撃試験装置(CIT-150-T-20)を用いて、23℃、湿度50%の雰囲気下、つかみ間隔20mm、ハンマー呼称エネルギー15kgf・cm、ハンマー振り上げ角度150°、衝撃速度3.8m/秒の条件で試験片の衝撃強度試験を行った。衝撃強度試験により得られた引張-応力カーブの面積からエネルギーを算出し、試験片の断面積で除して、衝撃強度を求めた。なお、フィルム製造時にける送り出し方向と、試験片の長辺方向とが一致するように切り出したものをMD方向の試験片とした。
 (3-2)ヒートシール剥離強度(単位:N/15mm)
 同じフィルム同士を重ね合わせ、10mm幅のヒートシールバーが装着されたヒートシーラー(テスター産業(株)製TP-701S)で、ヒートシールバーの方向をフィルムのTD方向に合わせて、所定のヒートシールバー温度及び1kPaの圧力で、1秒間、上記フィルム同士を圧着してヒートシールを行った。ヒートシール後のフィルムを一昼夜、23℃、湿度50%で状態調整した後、ヒートシール部の幅が15mmとなるようにフィルムを切り出し、ヒートシールされた2枚のフィルムの対向している非シール部分をそれぞれ引張試験機((株)オリエンテック製)のチャックにセットし、23℃、湿度50%、剥離速度200mm/分、剥離角度180度で剥離し、ヒートシール剥離強度を測定した。ヒートシールバーの温度は、140℃において上記試験を行った。
 〔実施例1〕
 30質量部のエチレン重合体1と、70質量部の無機フィラー1と、0.2質量部の滑剤1と、0.2質量部の酸化防止剤1とを、スーパーミキサー(株式会社カワタ製、商品名「SMV-100」)を用いて窒素ガス雰囲気下、温度190℃で撹拌して、混合物を得た。得られた混合物を、同方向二軸押出機(株式会社神戸製鋼所製、商品名「KTX-37」、スクリュー径37mmφ)を用いて、温度220~240℃、スクリュー回転数100rpmで溶融混練し、マスターバッチペレット1(MB1)を得た。
 小型多層Tダイ(SHIモダンマシナリー株式会社製)を用いて、層A(エチレン重合体2;100質量部、厚さ;6μm)/層B(マスターバッチペレット1;43質量部、エチレン重合体1;57質量部、厚さ;13μm)/層C(マスターバッチペレット1;5質量部、エチレン重合体3;95質量部、厚さ;6μm)の層構成を有する3層Tダイフィルムを成形した。次いで、得られたフィルムの層C側の表面にコロナ処理を行い、Tダイフィルム1(TF1)を得た。成形条件及びコロナ処理条件は以下のとおりであった。
<成形条件>
・押出機:φ50mm×2台、φ40mm×1台
・ダイ開口長:600mm
・リップ:1.2mm
・層Aの加工温度:230℃
・層Aの押出条件:2.5kg/時間
・層Bの加工温度:210℃
・層Bの押出条件:5kg/時間
・層Cの加工温度:230℃
・層Cの押出条件:2.5kg/時間
<コロナ処理条件>
・コロナ処理器:ウェッジ製 AGF-B 10型
・コロナ出力:0.15kW
 3層共押出インフレーションフィルム成形機(株式会社プラコー製)を用いて、層D(エチレン重合体3;95質量部、マスターバッチペレット1;5質量部、厚さ;80μm)/層E(エチレン重合体4;100質量部、厚さ;40μm)の層構成を有する2層インフレーションフィルムを成形した。次いで、得られたフィルムの層D側の表面にコロナ処理を行い、インフレーションフィルム1(IF1)を得た。成形条件及びコロナ処理条件は以下のとおりであった。
<成形条件>
・押出機:φ50mm×3台
・ダイ:φ150mm、リップ2.0mmt
・ダイの設定温度:180~190℃
・層Dの加工温度:180~190℃
・層Dの押出条件:20kg/時
・層Eの加工温度:180~190℃
・層Eの押出条件:10kg/時
・折径:470mm
<コロナ処理条件>
・コロナ処理器:ウェッジ製 AGF-B 10型
・コロナ出力:0.2kW
 Tダイフィルム1のコロナ処理を行なった面と、インフレーションフィルム1のコロナ処理を行った面を、ドライラミネート用接着剤1を介して、ドライラミネート法で貼り合わせ、層A/層B/層C/接着剤層/層D/層Eの6層構成を有する積層フィルム1を得た。
 〔実施例2〕
 層Aとして、100質量部のエチレン重合体2に代えて、95質量部のエチレン重合体2と5質量部のマスターバッチペレット1とをドライブレンドした混合物を用いた以外は、実施例1と同じ条件にて、Tダイフィルム2(TF2)を得た。
Tダイフィルム2のコロナ処理を行なった面と、インフレーションフィルム1のコロナ処理を行った面を、ドライラミネート用接着剤1を介して、ドライラミネート法で貼り合わせ、層A/層B/層C/接着剤層/層D/層Eの6層構成を有する積層フィルム2を得た。
 〔実施例3〕
 層Dとして、エチレン重合体3;95質量部、マスターバッチペレット1;5質量部に代えて、エチレン重合体3;93質量部、マスターバッチペレット1;7質量部を用いた以外は、実施例1と同様にして、インフレーションフィルム2(IF2)を得て、積層フィルム3を得た。
 〔実施例4〕
 層Dとして、エチレン重合体3;95質量部、マスターバッチペレット1;5質量部に代えて、エチレン重合体3;86質量部、マスターバッチペレット1;14質量部を用いた以外は、実施例1と同様にして、インフレーションフィルム3(IF3)を得て、積層フィルム4を得た。
 〔実施例5〕
 層Dとして、エチレン重合体3;95質量部、マスターバッチペレット1;5質量部に代えて、エチレン重合体3;79質量部、マスターバッチペレット1;21質量部を用いた以外は、実施例1と同様にして、インフレーションフィルム4(IF4)を得て、積層フィルム5を得た。
 〔実施例6〕
 3層共押出インフレーションフィルム成形機(株式会社プラコー製)を用いて、層D(エチレン重合体3;95質量部、マスターバッチペレット1;5質量部、厚さ;40μm)/層F(エチレン重合体5;50質量部、エチレン重合体6;50質量部、厚さ;40μm)/層E(エチレン重合体4;100質量部、厚さ;40μm)の層構成を有する3層インフレーションフィルムを成形した。次いで、得られたフィルムの層D側の表面にインフレーションフィルム1と同様の条件でコロナ処理を行い、インフレーションフィルム5を得た。
<成形条件>
・押出機:φ50mm×3台
・ダイ:φ150mm、リップ2.0mmt
・ダイの設定温度:180~190℃
・層Dの加工温度:180~190℃
・層Dの押出条件:10kg/時間
・層Fの加工温度:180~190℃
・層Fの押出条件:10kg/時間
・層Eの加工温度:180~190℃
・層Eの押出条件:10kg/時間
・折径:470mm
 Tダイフィルム1のコロナ処理を行なった面と、インフレーションフィルム5のコロナ処理を行った面を、ドライラミネート用接着剤1を介して、ドライラミネート法で貼り合わせ、層A/層B/層C/接着剤層/層D/層F/層Eの7層構成を有する積層フィルム6を得た。
 〔実施例7〕
 層Eとして、エチレン重合体4;100質量部に代えて、エチレン重合体7;100質量部を用いた以外は、実施例6と同様にして、インフレーションフィルム6(IF6)を得て、積層フィルム7を得た。
〔比較例1〕
 層Dとして、エチレン重合体3;95質量部、マスターバッチペレット1;5質量部に代えて、エチレン重合体3;57質量部、マスターバッチペレット1;43質量部を用いた以外は、実施例1と同様にして、インフレーションフィルム7(IF7)を得て、積層フィルム8を得た。
 〔比較例2〕
 3層共押出インフレーションフィルム成形機(株式会社プラコー製)を用いて、層D(エチレン重合体7;100質量部、厚さ;120μm)の層構成を有するインフレーションフィルム8(IF8)を成形した。次いで、得られたインフレーションフィルム8の表面にインフレーションフィルム1と同様の条件でコロナ処理を行った。
<成形条件>
・押出機:φ50mm×3台
・ダイ:φ150mm、リップ2.0mmt
・ダイの設定温度:180~190℃
・層Dの加工温度:180~190℃
・層Dの押出条件:30kg/時
・折径:470mm
 Tダイフィルム1のコロナ処理を行なった面と、インフレーションフィルム8のコロナ処理を行った面を、ドライラミネート用接着剤1を介して、ドライラミネート法で貼り合わせ、層A/層B/層C/接着剤層/層Dの5層構成を有する積層フィルム9を得た。
 Tダイフィルム(TF)1及び2の成分及び層構成を表1に示す。
インフレーションフィルム(IF)1~4の成分及び層構成を表2に示す。
インフレーションフィルム(IF)5~8の成分及び層構成を表3に示す。
積層フィルム1~9の成分、層構成及び物性の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

 〔実施例8〕
 層Dとして、エチレン重合体3;95質量部、マスターバッチペレット1;5質量部に代えて、エチレン重合体3;99質量部、マスターバッチペレット1;1質量部を用いた以外は、実施例1と同様にして、インフレーションフィルム9(IF9)を得て、積層フィルム10を得た。
 〔実施例9〕
 層Dとして、エチレン重合体3;95質量部、マスターバッチペレット1;5質量部に代えて、エチレン重合体3;97質量部、マスターバッチペレット1;3質量部を用いた以外は、実施例1と同様にして、インフレーションフィルム10(IF10)を得て、積層フィルム11を得た。
 インフレーションフィルム(IF)9及び10成分及び層構成を表5に示す。
積層フィルム10及び11の成分、層構成及び物性の評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明の一態様に係る積層フィルムは、良好な衝撃強度を示し、マテリアルリサイクルに適した各種包装材料、例えば、食品用包装材料に好適に用いられる。

Claims (10)

  1.  エチレンに由来する構造単位を80モル%以上含むエチレン重合体(A)を含有する層Aと、
     エチレンに由来する構造単位を70モル%以上含むエチレン重合体(B)と、無機フィラー(A)とを含有する層Bと、
     エチレンに由来する構造単位を70モル%以上含むエチレン重合体(C)を含有する層Cと、
     バリア層及び接着層からなる群から選ばれる1種以上の層と、
     エチレンに由来する構造単位を70モル%以上含むエチレン重合体(D)と、無機フィラー(B)とを含有し、前記エチレン重合体(D)及び前記無機フィラー(B)の合計含有量100質量%に対して、前記エチレン重合体(D)の含有量が75質量%以上99.5質量%未満であり、前記無機フィラー(B)の含有量が0.5質量%以上25質量%未満である層Dと、
     エチレンに由来する構造単位を70モル%以上含むエチレン重合体(E)を含有する層Eを有し、
     層A/層B/層C/バリア層/層D/層Eの順、
     層A/層B/層C/接着層/層D/層Eの順、
     層A/層B/層C/バリア層/接着層/層D/層Eの順、
     層A/層B/層C/接着層/バリア層/層D/層Eの順のうちのいずれかの順で積層されてなる積層フィルム。
  2.  前記エチレン重合体(E)の密度が880kg/m以上910kg/m未満であり、温度190℃、荷重21.18Nで測定されるメルトフローレートが0.01g/10分以上5g/10分未満である、請求項1に記載の積層フィルム。
  3.  前記積層フィルムにおいて、層Dと層Eとの間に、エチレン重合体(F)を含有する層Fが積層されてなり、
     前記エチレン重合体(F)の密度が910kg/m以上930kg/m未満である、請求項1または2に記載の積層フィルム。
  4.  前記層Dが、前記エチレン重合体(D)と、エチレン重合体(G)と、無機フィラー(B)とを含有し、
     前記エチレン重合体(G)の密度が940kg/m以上970kg/m未満であり、
     前記エチレン重合体(D)、及び前記無機フィラー(B)の合計含有量100質量部に対して、前記エチレン重合体(G)の含有量が0.1質量部以上20質量部以下である、請求項1~3のいずれか一項に記載の積層フィルム。
  5.  前記無機フィラー(A)及び前記無機フィラー(B)のそれぞれが、炭酸カルシウム、カオリン、メタカオリン、ハイドロタルサイト、マイカ、タルク及び繊維状塩基性硫酸マグネシウム粒子からなる群から選ばれる1種以上のフィラーである、請求項1~4のいずれか一項に記載の積層フィルム。
  6.  前記エチレン重合体(A)の密度が930kg/m以上970kg/m未満であり、温度190℃、荷重21.18Nで測定されるメルトフローレートが0.01g/10分以上、3g/10分未満であり、
     前記エチレン重合体(B)の密度が930kg/m以上970kg/m未満であり、温度190℃、荷重21.18Nで測定されるメルトフローレートが3g/10分以上、25g/10分未満であり、
     前記エチレン重合体(C)の密度が900kg/m以上970kg/m未満であり、温度190℃、荷重21.18Nで測定されるメルトフローレートが0.01g/10分以上、3g/10分未満であり、
     前記エチレン重合体(D)の密度が900kg/m以上930kg/m未満であり、温度190℃、荷重21.18Nで測定されるメルトフローレートが0.01g/10分以上、3g/10分未満であり、
     前記エチレン重合体(E)の密度が880kg/m以上930kg/m未満であり、温度190℃、荷重21.18Nで測定されるメルトフローレートが0.01g/10分以上、3g/10分未満である、請求項1~5のいずれか一項に記載の積層フィルム。
  7.  前記層Aの厚さが5μm以上30μm以下であり、
     前記層Bの厚さが10μm以上60μm以下であり、
     前記層Cの厚さが5μm以上30μm以下である、請求項1~6のいずれか一項に記載の積層フィルム。
  8.  前記層Dの厚さが10μm以上150μm以下であり、前記層Eの厚さが10μm以上150μm以下である、請求項1~7のいずれか一項に記載の積層フィルム。
  9.  前記バリア層が酸化ケイ素、アルミナ、スピネル、ポリビニルアルコール系樹脂と無機層状鉱物の組成物からなる群から選ばれる1種以上のバリア剤を含むバリア層であり、
    前記接着層がポリウレタン系接着剤、ポリエステル系接着剤、イミン系接着剤及びチタネート系接着剤からなる群から選ばれる1種以上の接着剤を含む接着層である、請求項1~8のいずれか一項に記載の積層フィルム。
  10.  前記層Cの表面をコロナ処理する工程及び前記層Dの表面をコロナ処理する工程を含む、請求項1~9のいずれか一項に記載の積層フィルムの製造方法。
PCT/JP2022/025331 2021-11-30 2022-06-24 積層フィルム、及びその製造方法 WO2023100403A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280079217.9A CN118339025A (zh) 2021-11-30 2022-06-24 层叠膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021194581 2021-11-30
JP2021-194581 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100403A1 true WO2023100403A1 (ja) 2023-06-08

Family

ID=86611841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025331 WO2023100403A1 (ja) 2021-11-30 2022-06-24 積層フィルム、及びその製造方法

Country Status (2)

Country Link
CN (1) CN118339025A (ja)
WO (1) WO2023100403A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216839A (ja) * 1988-02-25 1989-08-30 Idemitsu Petrochem Co Ltd ポリエチレン系多層フイルム
JPH083383A (ja) * 1994-06-21 1996-01-09 Sumitomo Chem Co Ltd レトルト包装用フィルム
JPH09183816A (ja) 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd エチレン・α−オレフィン共重合体およびこの共重合体から得られるフィルム
JPH10244641A (ja) * 1997-03-07 1998-09-14 Sekisui Chem Co Ltd レトルト用多層シーラントフィルム
JPH1134253A (ja) * 1997-01-14 1999-02-09 Sekisui Chem Co Ltd オレフィン系積層シート
JPH11322833A (ja) 1998-03-11 1999-11-26 Sumitomo Chem Co Ltd オレフィン重合用固体触媒成分、オレフィン重合用触媒、及びオレフィン重合体の製造方法
JP2018062075A (ja) * 2016-10-11 2018-04-19 凸版印刷株式会社 滑性、耐ブロッキング性の良好な積層フィルム、及び、これを用いた包装材、包装体
JP2019085127A (ja) * 2017-11-02 2019-06-06 凸版印刷株式会社 包装材用シーラントフィルム
JP2019119174A (ja) * 2018-01-10 2019-07-22 凸版印刷株式会社 紫外線遮蔽性包装材用シーラントフィルム、包装材、及び包装体
JP6716764B1 (ja) 2019-09-12 2020-07-01 住友化学株式会社 積層フィルム、及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216839A (ja) * 1988-02-25 1989-08-30 Idemitsu Petrochem Co Ltd ポリエチレン系多層フイルム
JPH083383A (ja) * 1994-06-21 1996-01-09 Sumitomo Chem Co Ltd レトルト包装用フィルム
JPH09183816A (ja) 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd エチレン・α−オレフィン共重合体およびこの共重合体から得られるフィルム
JPH1134253A (ja) * 1997-01-14 1999-02-09 Sekisui Chem Co Ltd オレフィン系積層シート
JPH10244641A (ja) * 1997-03-07 1998-09-14 Sekisui Chem Co Ltd レトルト用多層シーラントフィルム
JPH11322833A (ja) 1998-03-11 1999-11-26 Sumitomo Chem Co Ltd オレフィン重合用固体触媒成分、オレフィン重合用触媒、及びオレフィン重合体の製造方法
JP2018062075A (ja) * 2016-10-11 2018-04-19 凸版印刷株式会社 滑性、耐ブロッキング性の良好な積層フィルム、及び、これを用いた包装材、包装体
JP2019085127A (ja) * 2017-11-02 2019-06-06 凸版印刷株式会社 包装材用シーラントフィルム
JP2019119174A (ja) * 2018-01-10 2019-07-22 凸版印刷株式会社 紫外線遮蔽性包装材用シーラントフィルム、包装材、及び包装体
JP6716764B1 (ja) 2019-09-12 2020-07-01 住友化学株式会社 積層フィルム、及びその製造方法
WO2021049182A1 (ja) * 2019-09-12 2021-03-18 住友化学株式会社 積層フィルム、及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"World of PVA", 1992, KOBUNSHI KANKO-KAI, CO., LTD.
NAGANO ET AL.: "Poval", 1981, KOBUNSHI KANKO-KAI CO., LTD.

Also Published As

Publication number Publication date
CN118339025A (zh) 2024-07-12

Similar Documents

Publication Publication Date Title
JP6716764B1 (ja) 積層フィルム、及びその製造方法
JP2006305886A (ja) シーラントフィルム、包装材料、蓋材及び容器
EP2984126B1 (en) Films with improved dart impact resistance
AU2004274295A1 (en) Resin composition and stretched film obtained by using the same
WO2022209424A1 (ja) 積層フィルム
JP2007045046A (ja) 高隠蔽性ヒートシール性ポリオレフィン系発泡フイルム
JP7497977B2 (ja) 多層構造体に使用するためのポリマーブレンドおよびそれを含む多層構造体
JP4642499B2 (ja) ポリオレフィン系樹脂組成物および包装用フィルム
JP5712836B2 (ja) 積層体及び建装材
WO2023100403A1 (ja) 積層フィルム、及びその製造方法
JP2002331626A (ja) 易引裂性多層フィルム
JP3132373B2 (ja) 多層フィルム
JP2000079663A (ja) 易開封性積層フィルム、蓋材及び容器
WO2020217932A1 (ja) ポリエチレン系樹脂多層フィルム、及びそれらを用いた蒸着フィルム、積層体、包装体
CN112940383A (zh) 阻隔材料及其制备方法、阻隔耐热180℃薄膜及复合薄膜
JP2009061705A (ja) ポリプロピレン系樹脂積層無延伸フィルムの製造方法
JP4781669B2 (ja) 樹脂積層一軸延伸フィルム
JP5095509B2 (ja) 積層フィルム
US20060135698A1 (en) Blends of medium density polyethylene with other polyolefins
JP4624721B2 (ja) 積層樹脂一軸延伸フィルム
JPH05125232A (ja) リグラインド品の製造方法
JP2006150892A (ja) 加熱殺菌処理包装用積層体
JP6668737B2 (ja) ヒートシール用易引裂性多層フィルム
JP2019523157A (ja) ポリエチレン系合成紙
JP7100933B1 (ja) 積層シート及び食品包装容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022571183

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447043930

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022900838

Country of ref document: EP

Effective date: 20240701