WO2023100247A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2023100247A1
WO2023100247A1 PCT/JP2021/043876 JP2021043876W WO2023100247A1 WO 2023100247 A1 WO2023100247 A1 WO 2023100247A1 JP 2021043876 W JP2021043876 W JP 2021043876W WO 2023100247 A1 WO2023100247 A1 WO 2023100247A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
component
electrodes
luminance
image
Prior art date
Application number
PCT/JP2021/043876
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 横井
幹也 鈴木
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/043876 priority Critical patent/WO2023100247A1/en
Publication of WO2023100247A1 publication Critical patent/WO2023100247A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This specification discloses an inspection device and an inspection method.
  • the main purpose of the present disclosure is to appropriately inspect the transfer state with a simple process regardless of the type of electrode.
  • the inspection device of the present disclosure includes: An inspection device for inspecting the state of a transfer material transferred to a plurality of electrodes of a component, Image processing is performed on a pre-transfer image obtained by imaging the component before transfer of the transfer material and a post-transfer image obtained by imaging the component after transfer of the transfer material, and obtaining a luminance change amount before and after transfer for each of the plurality of electrodes.
  • An image processing unit that an inspection processing unit that inspects the transfer state of the transfer material to the plurality of electrodes by comparing the amount of luminance change for each of the plurality of electrodes with a common threshold value; The gist is to provide
  • the pre-transfer image and the post-transfer image are subjected to image processing to obtain the amount of change in luminance before and after transfer for each of a plurality of electrodes, and the amount of change in luminance is compared with a common threshold value to obtain a plurality of Check the state of transfer of the transfer material to the electrodes. Even if the variation in luminance after transfer becomes large due to the difference in the luminance tendency of each electrode, the variation in luminance before and after transfer is relatively small. can be inspected. Moreover, since a common threshold is used, there is no need to set individual thresholds for each of the plurality of electrodes. Therefore, regardless of the type of electrode, the transfer state can be properly inspected with a simple process.
  • FIG. 1 is a schematic explanatory diagram showing an example of a mounting system 10 and a mounting apparatus 20;
  • FIG. Explanatory drawing which shows an example of the lower surface of component Pe.
  • FIG. 2 is an explanatory diagram showing an example of component information 28 stored in a storage unit 27;
  • 4 is a flowchart showing an example of transfer component mounting processing;
  • FIG. 4 is an explanatory diagram showing an example of a pre-transfer image G0;
  • FIG. 4 is an explanatory diagram showing an example of a post-transfer image G1;
  • FIG. 5 is an explanatory diagram showing an example of pre-transfer luminance B0, post-transfer luminance B1, luminance change amount ⁇ B, and threshold ⁇ Bref;
  • Explanatory drawing which shows the components information 28B of a modification.
  • FIG. 1 is a schematic explanatory diagram showing an example of a mounting system 10 and a mounting apparatus 20.
  • the mounting system 10 is, for example, a system that executes a mounting process related to a process of mounting a component P on a substrate S as a mounting object.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
  • the mounting system 10 is configured, for example, as a production line in which mounting apparatuses 20 for mounting components P on a board S are arranged in the direction in which the board S is conveyed.
  • the mounting object is the substrate S, but is not particularly limited as long as the component P is mounted thereon, and a three-dimensional substrate may be used.
  • the mounting system 10 includes a printing device 11, a print inspection device 12, a mounting device 20, a mounting inspection device 14, and a management device 18, as shown in FIG.
  • the printing device 11 is a device that prints a solder paste or the like on the substrate S.
  • the print inspection device 12 is a device that inspects the state of printed solder.
  • the mounting device 20 is a device for mounting the component P on the substrate S.
  • the mounting inspection device 14 is a device that inspects the state of the component P that has undergone mounting processing.
  • the mounting device 20 includes a substrate processing section 21, a component supply section 22, a parts camera 23, a control device 25, and a mounting section 30, as shown in FIG.
  • the mounting apparatus 20 has a function of executing an inspection process for inspecting the component P and the board S in addition to the function of executing the mounting process.
  • the substrate processing unit 21 is a unit that carries in the substrate S, transports it, fixes it at the mounting position, and carries it out.
  • the substrate processing section 21 includes a pair of conveyor belts that are spaced apart from each other in the front and rear of FIG. The substrate S is conveyed by this conveyor belt.
  • the component supply unit 22 has a plurality of feeders with reels and tray units, and is detachably attached to the front side of the mounting device 20 .
  • a tape is wound around each reel, and a plurality of components P are held on the surface of the tape along the longitudinal direction of the tape. This tape is unwound rearward from the reel and fed by the feeder section to a picking position where the parts are picked up by the suction nozzle 33 in a state where the parts are exposed.
  • the tray unit has a tray on which a plurality of parts P are arranged and placed, and this tray is taken in and out from a predetermined collection position.
  • the parts camera 23 is an imaging unit that captures an image, and is a unit that captures one or more components P picked and held by the mounting head 32 .
  • the parts camera 23 is arranged between the parts supply section 22 and the substrate processing section 21, and the upper side is an imaging area.
  • the parts camera 23 captures an image of the component P when the mounting head 32 holding the component P passes over the parts camera 23 and outputs captured image data to the control device 25 .
  • the mounting section 30 is a unit that picks up the component P from the component supply section 22 and places it on the board S fixed to the board processing section 21 .
  • the mounting section 30 includes a head moving section 31 , a mounting head 32 , a suction nozzle 33 , a mark camera 34 and a transfer section 35 .
  • the head moving unit 31 includes a slider that is guided by guide rails and moves in the XY directions, and a motor that drives the slider.
  • the mounting head 32 is detachably attached to the slider, and is moved in the XY directions by the head moving section 31 .
  • the mounting head 32 has one or more suction nozzles 33 (for example, 16, 8, 4, etc.) detachably attached to its lower surface side, and can pick up a plurality of components P at once.
  • the suction nozzle 33 is a picking member that picks up components using negative pressure. Note that the picking member may be a mechanical chuck that grips the part P.
  • the mark camera 34 is arranged on the lower surface side of the mounting head 32 (or slider).
  • the mark camera 34 is an imaging device capable of imaging the board S, the component P, etc. from above, and moves in the XY directions as the mounting head 32 moves.
  • the mark camera 34 has an image pickup area below, picks up an image of a reference mark or the like attached to the substrate S, and outputs the image to the control device 25 .
  • the mounting head 32 places a component P on the electrodes of the substrate S printed with solder, and also places a component Pe having a plurality of electrodes E and having solder transferred to each electrode E on the substrate S.
  • the parts Pe there are a plurality of types of parts having different numbers, shapes, positions, etc., of the electrodes E, which are referred to as parts Pe1, Pe2, Pe3, . . . , respectively.
  • the component Pe is also called a transfer component.
  • FIG. 2 is an explanatory diagram showing an example of the lower surface of the component Pe.
  • FIG. 2 shows the lower surface of the component Pe1 as an example.
  • the component Pe1 has, as a plurality of electrodes E, circular electrodes Ea1 to Ea12, rectangular electrodes Eb1 to Eb4, and rectangular electrodes Ec1 to Ec3.
  • the electrodes Ea1 to Ea8 are collectively referred to as the electrode Ea
  • the electrodes Eb1 to Eb4 are collectively referred to as the electrode Eb
  • the electrodes Ec1 to Ec4 are collectively referred to as the electrode Ec.
  • the transfer unit 35 is a unit that transfers solder to each electrode E of the component Pe.
  • the transfer unit 35 includes a dish-shaped table that stores solder paste, a squeegee that moves relative to the table, and a solder supply unit that supplies the solder paste onto the table.
  • the squeegee is a member that spreads the solder paste on the table and forms it on the film as it moves relative to the table.
  • the transfer unit 35 may include a movable table and a fixed squeegee, or may include a fixed table and a movable squeegee.
  • the mounting head 32 picks up the component Pe and lowers it to the table of the transfer unit 35 to bring each electrode E into contact with the solder paste, thereby transferring the solder paste to each electrode E of the component Pe.
  • the control device 25 is configured as a microprocessor centered on a CPU 26, and includes a storage unit 27 for storing various data, mounting condition information described later, and the like.
  • the control device 25 has a function of controlling the entire mounting device 20, as well as an abnormality inspection such as whether the component P and the electrode E are present or not and whether their shape is within an allowable range, and whether the transfer state of the solder to the electrode E is proper. It has a function to perform a transfer inspection such as whether the The control device 25 outputs control signals to the substrate processing unit 21, the component supply unit 22, the parts camera 23, and the mounting unit 30, and receives signals from the substrate processing unit 21, the component supply unit 22, the parts camera 23, and the mounting unit 30.
  • the storage unit 27 stores component information 28 about the component P, mounting condition information including the order of mounting the component P on the board S, the arrangement position of the component P, the type of the suction nozzle 33 capable of picking up the component P, and the like. remembered.
  • FIG. 3 is an explanatory diagram of an example of the component information 28 stored in the storage unit 27.
  • the component information 28 of the component Pe includes, for each component type (Pe1, Pe2, Pe3, .
  • Information such as ⁇ Bref is included.
  • the threshold value ⁇ Bref is used in an inspection as to whether solder (solder paste) has been properly transferred to each electrode E of the component Pe. Although details of the threshold value ⁇ Bref will be described later, in the present embodiment, a predetermined value is registered for each component type.
  • the management device 18 is a computer that manages information on each device of the mounting system 10 .
  • the management device 18 includes a control section, a storage section, a display, and an input device.
  • the control unit is configured as a microprocessor centering on a CPU.
  • the storage unit stores information for managing production of the mounting system 10, mounting condition information for each mounting apparatus 20, and the like.
  • the CPU 26 of the control device 25 reads the mounting condition information of each component P on which the board S to be produced is also mounted from the storage unit 27, and performs mounting processing based on the mounting condition information.
  • the CPU 26 causes the substrate processing unit 21 to transport the substrate S to the mounting position and fix it, and then causes the mounting head 32 to pick up the component P from the feeder containing the component P to be picked up and move it above the parts camera 23 .
  • the part camera 23 is caused to take an image of the picked part P by moving.
  • the CPU 26 determines whether or not the size, shape, etc., of the sampled part P is appropriate based on the imaged image, and if it determines that the part P is not appropriate due to a size or shape defect, the part is removed. Discard. On the other hand, when the CPU 26 determines that the component P is appropriate, it detects deviations in the angle and position of the component P from the captured image, corrects the detected deviations, and arranges the component P on the board S.
  • FIG. 4 is a flowchart showing an example of transfer component mounting processing.
  • the CPU 26 first causes the mounting head 32 to pick up (suck) the component Pe to be mounted from the feeder of the component supply unit 22 (S100). Next, the CPU 26 moves the mounting head 32 above the parts camera 23, causes the parts camera 23 to image the part Pe, and processes the pre-transfer image G0 (S110). In the image processing of S110, as described above, the presence/absence of an abnormality in the sampled part Pe is determined and the deviation is detected. Note that the image captured in S110 is an image before the solder is transferred to the component Pe, so it is referred to as a pre-transfer image G0.
  • the CPU 26 measures the brightness of each pixel from the area of each electrode E in the pre-transfer image G0, calculates the average brightness of each pixel (S120), and uses the calculated average brightness of each electrode E as the solder to be transferred.
  • the previous pre-transfer luminance B0 is stored in the storage unit 27 (S130).
  • the CPU 26 moves the mounting head 32 above the transfer section 35 to transfer the solder to the component Pe (S140). Then, the CPU 26 moves the mounting head 32 again above the parts camera 23 to image the part Pe with the parts camera 23, and processes the post-transfer image G1 (S150). Note that the image captured in S150 is an image after the solder has been transferred to the component Pe, and is therefore referred to as a post-transfer image G1.
  • the CPU 26 measures the luminance of each pixel from the area of each electrode E in the post-transfer image G1, calculates the average luminance of each pixel (S160), and uses the calculated average luminance of each electrode E as the solder transferred. This is stored in the storage unit 27 as the post-transfer luminance B1 (S170).
  • the CPU 26 determines in S190 that the brightness change amount ⁇ B of each electrode E is equal to or greater than the threshold value ⁇ Bref, it determines that the solder transfer state of each electrode E of the component Pe is good (S200). The Pe is mounted on the substrate S (S210), and the transfer component mounting process ends. On the other hand, if the CPU 26 determines in S190 that any of the luminance change amounts .DELTA.B of each electrode E is not equal to or greater than the threshold .DELTA.Bref, the CPU 26 determines that the solder transfer state of each electrode E of the component Pe is defective (S220). The component Pe is discarded (S230), and the transfer component mounting process ends. In addition, when the CPU 26 determines that the transfer state is defective, the CPU 26 may return to S140 and perform the solder transfer again.
  • FIG. 5 is an explanatory diagram showing an example of the pre-transfer image G0.
  • FIG. 6 is an explanatory diagram showing an example of the post-transfer image G1, showing a case where solder is properly transferred to each electrode E.
  • FIG. 7 is an explanatory diagram showing an example of the pre-transfer luminance B0, the post-transfer luminance B1, the luminance change amount ⁇ B, and the threshold ⁇ Bref.
  • FIG. 7 illustrates the pre-transfer luminance B0 measured from the pre-transfer image G0 of FIG. 5 and the post-transfer luminance B1 measured from the post-transfer image G1 of FIG.
  • the electrode E appears darker in the image after the solder is transferred than before the solder is transferred (see FIGS. 5 and 6). Therefore, as shown in FIG. 7, when the same electrode E is compared, the post-transfer luminance B1 is lower than the pre-transfer luminance B0.
  • the pre-transfer luminance B0 of the circular electrode Ea is 154 to 170 (average 160), and the post-transfer luminance B1 is 67 to 94 (average 87).
  • the pre-transfer luminance B0 of the rectangular electrode Eb is 217 to 223 (average 221)
  • the post-transfer luminance B1 is 126 to 142 (average 133)
  • the pre-transfer luminance B0 of the rectangular electrode Ec is 202 to 202. 208 (average 205)
  • the post-transfer luminance B1 has a value of 115 to 130 (average 125).
  • the circular electrode Ea tends to have lower luminance than the rectangular electrodes Eb and Ec both before and after transfer, and the luminance varies depending on the shape and size of the electrodes.
  • the luminance change amount ⁇ B calculated as the difference between the pre-transfer luminance B0 and the post-transfer luminance B1 is 62 to 95 (average 67) for the circular electrode Ea, whereas it is 62 to 95 (average 67) for the rectangular electrode Eb. 75 to 97 (88 on average), and 72 to 93 (80 on average) for the rectangular electrode Ec. That is, in the circular electrode Ea and the rectangular electrodes Eb and Ec, the variation in the post-transfer luminance B1 is about 40 to 50, while the variation in the luminance change amount ⁇ B is reduced to about 10 to 20. .
  • the luminance change amount ⁇ B is less affected by the shape and size of the electrode E, and tends to have less variation than the post-transfer luminance B1. Therefore, in the transfer inspection of the present embodiment, regardless of the shape and size of the electrodes E, by comparing the common threshold value ⁇ Bref for each electrode E of the component Pe with the luminance change amount ⁇ B of each electrode E, each It is determined whether or not the transfer state of the solder to the electrode E is good. If the solder is not properly transferred, the difference between the post-transfer luminance B1 and the pre-transfer luminance B0 is small. Therefore, in the transfer inspection, if the luminance change amount ⁇ B is less than the threshold value ⁇ Bref, it is determined that the transfer is defective. become.
  • the threshold value ⁇ Bref is set as follows based on, for example, the minimum value ⁇ Bmin of the luminance change amount ⁇ B in FIG.
  • the minimum value ⁇ Bmin of the luminance change amount ⁇ B is the value 62 of the electrode Ea3
  • the value obtained by subtracting the margin ⁇ from this minimum value ⁇ Bmin is set as the threshold value ⁇ Bref.
  • the threshold value ⁇ Bref is set to a value of 50 by subtracting an empirically determined value of about 10 (value 12 in this case) from the minimum value ⁇ Bmin as the margin ⁇ .
  • the pre-transfer luminance B0 of each electrode E and the post-transfer luminance B1 of each electrode E to which the solder is properly transferred are acquired for each component type, and the luminance change amount ⁇ B is calculated.
  • a threshold value ⁇ Bref is set in advance in consideration of the margin ⁇ with respect to the minimum value ⁇ Bmin, and registered in the component information 28 as the threshold value ⁇ Bref associated with the component type. Therefore, in the part information 28 of FIG. 3, the threshold ⁇ Bref for the part Pe1, the threshold ⁇ Bref for the part Pe2, and the threshold ⁇ Bref for the part Pe3 are registered in association with the part type. As a result, it is possible to appropriately determine whether the solder transfer state is good or bad even when there is a difference in the tendency of luminance depending on the type of component.
  • the CPU 26 of the control device 25 that executes S110 to S130 and S150 to S180 of the transfer component mounting process of this embodiment corresponds to the image processing section
  • the CPU 26 of the control device 25 that executes S190, S200 and S220 of the transfer component mounting process. corresponds to the inspection processing unit.
  • an example of the inspection method of the present disclosure is also clarified by explaining the operation of the CPU 26 of the control device 25 .
  • the pre-transfer image G0 and the post-transfer image G1 are image-processed to obtain the luminance change amount ⁇ B before and after transfer for each of the plurality of electrodes E, and the luminance change amount ⁇ B of each electrode E is used as a threshold value.
  • the transfer state of the solder is inspected by comparing with ⁇ Bref. Since the brightness change amount ⁇ B has a relatively small variation, the transfer state can be properly inspected by comparing it with the threshold value ⁇ Bref. Further, by using a common threshold value ⁇ Bref for each electrode E, there is no need to set a separate threshold value for each electrode E. FIG. Therefore, regardless of the type of the electrode E, the transfer state can be properly inspected with a simple process.
  • the threshold value ⁇ Bref is stored in the storage unit 27 (part information 28) for each part type as a predetermined value obtained by providing a margin ⁇ with respect to the minimum value ⁇ Bmin of the luminance variation amount ⁇ B of each electrode E. ing. Therefore, the transfer state can be inspected more appropriately using the threshold value ⁇ Bref according to the tendency of the luminance change amount for each component type.
  • the CPU 26 sets the average value of the luminance of each pixel measured from the electrode area of the pre-transfer image G0 to the luminance before transfer B0 for each of the plurality of electrodes E, and the luminance of each pixel measured from the electrode area of the post-transfer image G1. is used as the post-transfer luminance B1, and the difference between the two is obtained as the luminance change amount ⁇ B. Therefore, the luminance change amount ⁇ B can be appropriately obtained by obtaining the pre-transfer luminance B0 and the post-transfer luminance B1 from the electrode area without deviation, so that the transfer state can be inspected more appropriately.
  • a predetermined threshold value ⁇ Bref is registered for each component type (Pe1, Pe2, Pe3, etc.), and a common threshold value ⁇ Bref is used for each electrode E of the component Pe of the same component type.
  • FIG. 8 is an explanatory diagram showing part information 28B of a modification. As illustrated, in the component information 28B, a threshold ⁇ Bref for solder A (first solder) and a threshold ⁇ Bref for solder B (second solder) are registered as the threshold ⁇ Bref for the component Pe1. That is, a predetermined threshold value ⁇ Bref is registered for each type of solder.
  • the transfer state can be appropriately inspected using an appropriate threshold value ⁇ Bref according to the tendency.
  • the threshold value ⁇ Bref for the solder A is obtained by obtaining the luminance change amount ⁇ B before and after the transfer of the solder A to each electrode E, and providing a margin ⁇ to the minimum value ⁇ Bmin of the luminance change amount ⁇ B of each electrode E. can be determined by The same applies to the threshold value ⁇ Bref for solder B.
  • a common threshold value ⁇ Bref is registered for the part Pe2 and the part Pe3.
  • a common threshold value ⁇ Bref may be used even for different component types.
  • a common threshold value ⁇ Bref may be used for component types with similar sizes and shapes of the components Pe, patterns of the electrodes E, etc., or component types with the same tendency of the amount of luminance change ⁇ B.
  • a common threshold value ⁇ Bref may be used for components Pe of all types of components to be mounted, regardless of the type of component or the type of solder.
  • the transfer state may be inspected using the reference threshold value ⁇ Bref in general, and the transfer state may be inspected using the specific threshold value ⁇ Bref only for component types for which a specific threshold value ⁇ Bref is set in advance.
  • the pre-transfer luminance B0 which is the average value of the luminance of each pixel measured from the electrode area of the pre-transfer image G0, and the average luminance of each pixel measured from the electrode area of the post-transfer image G1.
  • the difference from the post-transfer luminance B1 which is a value, is calculated to obtain the luminance change amount ⁇ B
  • the present invention is not limited to this.
  • a representative value such as a median value or a mode value may be used as the pre-transfer brightness B0 or the post-transfer brightness B1, instead of being limited to the average value of the brightness of each pixel.
  • the luminance change amount ⁇ B is not limited to the difference between the pre-transfer luminance B0 and the post-transfer luminance B1, and the luminance change amount ⁇ B is obtained by performing image processing on the pre-transfer image G0 and the post-transfer image G1. If it is
  • the threshold value ⁇ Bref is a value obtained by providing a margin ⁇ to the minimum value ⁇ Bmin of the luminance change amount ⁇ B of each electrode E, but it is not limited to this.
  • a value obtained by providing a margin ⁇ to the average value of a predetermined number of luminance variation amounts ⁇ B from the smallest among the luminance variation amounts ⁇ B of each electrode E may be used.
  • the average value, the median value, or the value obtained by providing a margin ⁇ to the mode value of the brightness variation amount ⁇ B of each electrode E may be used.
  • the threshold value ⁇ Bref may be determined based on the brightness change amount ⁇ B calculated as the difference between the pre-transfer brightness B0 and the post-transfer brightness B1 that are measured in advance.
  • the threshold value ⁇ Bref may be determined based on the transfer state inspection results, experience, or the like.
  • the transfer material to be transferred to the component Pe is exemplified by solder, but it is not limited to this, and may be conductive paste, flux, adhesive, or the like.
  • the inspection device of the present disclosure is the control device 25 included in the mounting device 20, but is not limited to this, and may be another device included in the mounting device 20, such as an image processing device separate from the control device 25. .
  • the inspection device may be a device different from the mounting device 20 and configured to communicate with the mounting device 20, or the like.
  • the management device 18 may be an inspection device that processes the pre-transfer image G0 and the post-transfer image G1 transmitted from the mounting device 20 and inspects the transfer state.
  • the inspection device of the present disclosure may be configured as follows.
  • the threshold is the minimum luminance change among the luminance change amounts for each of the plurality of electrodes obtained by image processing the pre-transfer image and the post-transfer image for each component type.
  • a value that provides a margin for the amount may be determined in advance for each part type. In this way, the transfer state can be inspected more appropriately using a threshold corresponding to the tendency of the amount of change in luminance for each component type.
  • the image processing unit is configured to, for each of the plurality of electrodes, calculate an average luminance value of each pixel measured from the electrode area of the pre-transfer image and each pixel measured from the electrode area of the post-transfer image. may be obtained as the luminance change amount. In this way, the luminance before transfer and the luminance after transfer can be obtained without deviation from the electrode region, and the luminance change amount can be appropriately obtained, so that the transfer state can be inspected more appropriately.
  • the threshold may be determined in advance for each type of transfer material to be transferred to the plurality of electrodes. By doing so, the transfer state can be more appropriately inspected using a threshold corresponding to the tendency of the amount of change in brightness for each type of transfer material.
  • the inspection method of the present disclosure includes: An inspection method for inspecting the state of a transfer material transferred to a plurality of electrodes of a component, (a) performing image processing on a pre-transfer image obtained by imaging the part before transfer of the transfer material and a post-transfer image obtained by imaging the part after transfer of the transfer material, and changing luminance before and after transfer for each of the plurality of electrodes; obtaining a quantity; (b) inspecting the state of transfer of the transfer material to the plurality of electrodes by comparing the amount of luminance change for each of the plurality of electrodes with a common threshold value;
  • the gist is to include
  • the inspection method of the present disclosure appropriately inspects the transfer state with a simple process regardless of the type of electrode by comparing the amount of change in luminance of a plurality of electrodes with a common threshold value. can do.
  • various aspects of the above-described inspection apparatus may be employed, and steps for realizing each function of the above-described inspection apparatus may be added.
  • the present disclosure can be used in the technical field of component mounting processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

An inspection device according to the present invention that inspects the state of a transfer material transferred to a plurality of electrodes of a component, said inspection device comprising: an image processing unit that processes a pre-transfer image in which a component is imaged prior to transfer of the transfer material and a post-transfer image in which a component is imaged after transfer of the transfer material, and acquires, for each of the plurality of electrodes, a luminous change amount between before and after the transfer; and an inspection processing unit that inspects the transfer state of the transfer material to the plurality of electrodes by respectively comparing the luminance change amount of each of the plurality of electrodes with a common threshold value.

Description

検査装置および検査方法Inspection device and inspection method
 本明細書は、検査装置および検査方法を開示する。 This specification discloses an inspection device and an inspection method.
 従来、実装対象の部品が有する複数の電極に転写された転写材の状態を検査する場合に、転写材が転写された後の部品を撮像した転写後画像を画像処理して転写後の電極の輝度を取得し、その輝度が所定の閾値以下であるか否かに基づいて検査するものが知られている。例えば特許文献1には、複数の電極毎に個別の閾値を用いて転写状態を検査することが記載されている。 Conventionally, when inspecting the state of a transfer material transferred to a plurality of electrodes of a component to be mounted, image processing is performed on a post-transfer image obtained by imaging the component after the transfer material has been transferred. It is known to acquire luminance and inspect based on whether the luminance is equal to or less than a predetermined threshold. For example, Japanese Patent Application Laid-Open No. 2002-200000 describes inspecting the transfer state using individual threshold values for each of a plurality of electrodes.
WO2021/144971A1WO2021/144971A1
 上述したように、個別の閾値を用いて転写状態を検査することで、電極の種類(形状やサイズなど)の違いによって電極毎の輝度の傾向が異なる場合でも、正しい検査を行うことが可能となる。一方で、複数の電極毎に個別の閾値を設定する必要があるため、設定処理に手間がかかり負担が大きくなってしまう。 As described above, by inspecting the transfer state using individual thresholds, it is possible to perform correct inspection even when the tendency of the brightness of each electrode differs depending on the type of electrode (shape, size, etc.). Become. On the other hand, since it is necessary to set individual threshold values for each of the plurality of electrodes, the setting process is time-consuming and burdensome.
 本開示は、電極の種類に拘わらず、簡易な処理で転写状態を適切に検査することを主目的とする。 The main purpose of the present disclosure is to appropriately inspect the transfer state with a simple process regardless of the type of electrode.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure has taken the following means to achieve the above-mentioned main objectives.
 本開示の検査装置は、
 部品が有する複数の電極に転写された転写材の状態を検査する検査装置であって、
 転写材の転写前に前記部品を撮像した転写前画像と、転写材の転写後に前記部品を撮像した転写後画像とを画像処理して、前記複数の電極毎に転写前後の輝度変化量を取得する画像処理部と、
 前記複数の電極毎の前記輝度変化量を共通の閾値とそれぞれ比較することにより、前記複数の電極への転写材の転写状態を検査する検査処理部と、
 を備えることを要旨とする。
The inspection device of the present disclosure includes:
An inspection device for inspecting the state of a transfer material transferred to a plurality of electrodes of a component,
Image processing is performed on a pre-transfer image obtained by imaging the component before transfer of the transfer material and a post-transfer image obtained by imaging the component after transfer of the transfer material, and obtaining a luminance change amount before and after transfer for each of the plurality of electrodes. an image processing unit that
an inspection processing unit that inspects the transfer state of the transfer material to the plurality of electrodes by comparing the amount of luminance change for each of the plurality of electrodes with a common threshold value;
The gist is to provide
 本開示の検査装置では、転写前画像と転写後画像とを画像処理して複数の電極毎に転写前後の輝度変化量を取得し、輝度変化量を共通の閾値とそれぞれ比較することにより、複数の電極への転写材の転写状態を検査する。電極毎の輝度の傾向が異なるために転写後の輝度のバラツキが大きくなる場合でも、転写前後の輝度変化量は比較的バラツキが小さいため、輝度変化量を閾値と比較することで転写状態を適切に検査することができる。また、共通の閾値を用いるため、複数の電極毎に個別の閾値を設定する必要がない。したがって、電極の種類に拘わらず、簡易な処理で転写状態を適切に検査することができる。 In the inspection apparatus of the present disclosure, the pre-transfer image and the post-transfer image are subjected to image processing to obtain the amount of change in luminance before and after transfer for each of a plurality of electrodes, and the amount of change in luminance is compared with a common threshold value to obtain a plurality of Check the state of transfer of the transfer material to the electrodes. Even if the variation in luminance after transfer becomes large due to the difference in the luminance tendency of each electrode, the variation in luminance before and after transfer is relatively small. can be inspected. Moreover, since a common threshold is used, there is no need to set individual thresholds for each of the plurality of electrodes. Therefore, regardless of the type of electrode, the transfer state can be properly inspected with a simple process.
実装システム10および実装装置20の一例を示す概略説明図。1 is a schematic explanatory diagram showing an example of a mounting system 10 and a mounting apparatus 20; FIG. 部品Peの下面の一例を示す説明図。Explanatory drawing which shows an example of the lower surface of component Pe. 記憶部27に記憶された部品情報28の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of component information 28 stored in a storage unit 27; 転写部品実装処理の一例を示すフローチャート。4 is a flowchart showing an example of transfer component mounting processing; 転写前画像G0の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a pre-transfer image G0; 転写後画像G1の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a post-transfer image G1; 転写前輝度B0と転写後輝度B1と輝度変化量ΔBと閾値ΔBrefの一例を示す説明図。FIG. 5 is an explanatory diagram showing an example of pre-transfer luminance B0, post-transfer luminance B1, luminance change amount ΔB, and threshold ΔBref; 変形例の部品情報28Bを示す説明図。Explanatory drawing which shows the components information 28B of a modification.
 次に、本開示の実施の形態を図面を参照しながら説明する。図1は、実装システム10および実装装置20の一例を示す概略説明図である。実装システム10は、例えば、部品Pを実装対象物としての基板Sに実装する処理に関する実装処理を実行するシステムである。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)および上下方向(Z軸)は、図1に示す通りとする。 Next, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic explanatory diagram showing an example of a mounting system 10 and a mounting apparatus 20. As shown in FIG. The mounting system 10 is, for example, a system that executes a mounting process related to a process of mounting a component P on a substrate S as a mounting object. In this embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
 実装システム10は、例えば、基板Sに部品Pを実装処理する実装装置20が基板Sの搬送方向に配列された生産ラインとして構成されている。ここでは、実装対象物を基板Sとするが、部品Pが実装されるものであれば特に限定されず、3次元形状の基材でもよい。実装システム10は、図1に示すように、印刷装置11と、印刷検査装置12と、実装装置20と、実装検査装置14と、管理装置18とを備える。印刷装置11は、基板Sにはんだペーストなどを印刷する装置である。印刷検査装置12は、印刷されたはんだの状態を検査する装置である。実装装置20は、基板Sに部品Pを実装処理する装置である。実装検査装置14は、実装処理された部品Pの状態を検査する装置である。 The mounting system 10 is configured, for example, as a production line in which mounting apparatuses 20 for mounting components P on a board S are arranged in the direction in which the board S is conveyed. Here, the mounting object is the substrate S, but is not particularly limited as long as the component P is mounted thereon, and a three-dimensional substrate may be used. The mounting system 10 includes a printing device 11, a print inspection device 12, a mounting device 20, a mounting inspection device 14, and a management device 18, as shown in FIG. The printing device 11 is a device that prints a solder paste or the like on the substrate S. As shown in FIG. The print inspection device 12 is a device that inspects the state of printed solder. The mounting device 20 is a device for mounting the component P on the substrate S. As shown in FIG. The mounting inspection device 14 is a device that inspects the state of the component P that has undergone mounting processing.
 実装装置20は、図1に示すように、基板処理部21と、部品供給部22と、パーツカメラ23と、制御装置25と、実装部30とを備える。この実装装置20は、実装処理を実行する機能の他、部品Pや基板Sを検査する検査処理を実行する機能を有する。基板処理部21は、基板Sの搬入、搬送、実装位置での固定、搬出を行うユニットである。基板処理部21は、図1の前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトを備える。基板Sはこのコンベアベルトにより搬送される。 The mounting device 20 includes a substrate processing section 21, a component supply section 22, a parts camera 23, a control device 25, and a mounting section 30, as shown in FIG. The mounting apparatus 20 has a function of executing an inspection process for inspecting the component P and the board S in addition to the function of executing the mounting process. The substrate processing unit 21 is a unit that carries in the substrate S, transports it, fixes it at the mounting position, and carries it out. The substrate processing section 21 includes a pair of conveyor belts that are spaced apart from each other in the front and rear of FIG. The substrate S is conveyed by this conveyor belt.
 部品供給部22は、リールを備えた複数のフィーダやトレイユニットを有し、実装装置20の前側に着脱可能に取り付けられている。各リールには、テープが巻き付けられ、テープの表面には、複数の部品Pがテープの長手方向に沿って保持されている。このテープは、リールから後方に向かって巻きほどかれ、部品が露出した状態で、吸着ノズル33で吸着される採取位置にフィーダ部により送り出される。トレイユニットは、部品Pを複数配列して載置するトレイを有し、所定の採取位置へこのトレイを出し入れする。 The component supply unit 22 has a plurality of feeders with reels and tray units, and is detachably attached to the front side of the mounting device 20 . A tape is wound around each reel, and a plurality of components P are held on the surface of the tape along the longitudinal direction of the tape. This tape is unwound rearward from the reel and fed by the feeder section to a picking position where the parts are picked up by the suction nozzle 33 in a state where the parts are exposed. The tray unit has a tray on which a plurality of parts P are arranged and placed, and this tray is taken in and out from a predetermined collection position.
 パーツカメラ23は、画像を撮像する撮像部であり、実装ヘッド32に採取され保持された1以上の部品Pを撮像するユニットである。パーツカメラ23は、部品供給部22と基板処理部21との間に配置されており、上方が撮像領域である。パーツカメラ23は、部品Pを保持した実装ヘッド32がパーツカメラ23の上方を通過する際、その部品Pの画像を撮像し、撮像画像データを制御装置25へ出力する。 The parts camera 23 is an imaging unit that captures an image, and is a unit that captures one or more components P picked and held by the mounting head 32 . The parts camera 23 is arranged between the parts supply section 22 and the substrate processing section 21, and the upper side is an imaging area. The parts camera 23 captures an image of the component P when the mounting head 32 holding the component P passes over the parts camera 23 and outputs captured image data to the control device 25 .
 実装部30は、部品Pを部品供給部22から採取し、基板処理部21に固定された基板Sへ配置するユニットである。実装部30は、ヘッド移動部31と、実装ヘッド32と、吸着ノズル33と、マークカメラ34と、転写部35とを備える。ヘッド移動部31は、ガイドレールに導かれてXY方向へ移動するスライダと、スライダを駆動するモータとを備える。実装ヘッド32は、スライダに取り外し可能に装着されており、ヘッド移動部31によりXY方向へ移動する。実装ヘッド32は、その下面側に1以上の吸着ノズル33(例えば、16個や8個、4個など)が取り外し可能に装着されており、複数の部品Pを1度に採取可能である。吸着ノズル33は、負圧を利用して部品を採取する採取部材である。なお、採取部材は、部品Pを把持するメカニカルチャックとしてもよい。マークカメラ34は、実装ヘッド32(又はスライダ)の下面側に配設されている。マークカメラ34は、基板Sや部品Pなどを上方から撮像可能な撮像装置であり、実装ヘッド32の移動に伴ってXY方向へ移動する。このマークカメラ34は、下方が撮像領域であり、基板Sに付された基準マークなどを撮像し、その画像を制御装置25へ出力する。 The mounting section 30 is a unit that picks up the component P from the component supply section 22 and places it on the board S fixed to the board processing section 21 . The mounting section 30 includes a head moving section 31 , a mounting head 32 , a suction nozzle 33 , a mark camera 34 and a transfer section 35 . The head moving unit 31 includes a slider that is guided by guide rails and moves in the XY directions, and a motor that drives the slider. The mounting head 32 is detachably attached to the slider, and is moved in the XY directions by the head moving section 31 . The mounting head 32 has one or more suction nozzles 33 (for example, 16, 8, 4, etc.) detachably attached to its lower surface side, and can pick up a plurality of components P at once. The suction nozzle 33 is a picking member that picks up components using negative pressure. Note that the picking member may be a mechanical chuck that grips the part P. FIG. The mark camera 34 is arranged on the lower surface side of the mounting head 32 (or slider). The mark camera 34 is an imaging device capable of imaging the board S, the component P, etc. from above, and moves in the XY directions as the mounting head 32 moves. The mark camera 34 has an image pickup area below, picks up an image of a reference mark or the like attached to the substrate S, and outputs the image to the control device 25 .
 ここで、実装ヘッド32が採取する部品Pについて説明する。実装ヘッド32は、はんだが印刷された基板Sの電極上に部品Pを配置するほか、複数の電極Eを有し各電極Eにはんだが転写された部品Peを基板S上へ配置する。なお、部品Peとして、電極Eの数や形状、位置などが異なる複数種類の部品があり、それぞれ部品Pe1,Pe2,Pe3・・・とする。また、部品Peを転写部品ともいう。図2は、部品Peの下面の一例を示す説明図である。図2では、一例として部品Pe1の下面を示す。図示するように、部品Pe1は、複数の電極Eとして、円形の電極Ea1~Ea12と、矩形の電極Eb1~Eb4と、矩形の電極Ec1~Ec3とを有する。なお、電極Ea1~Ea8を電極Eaと総称し、電極Eb1~Eb4を電極Ebと総称し、電極Ec1~Ec4を電極Ecと総称する。 Here, the component P picked up by the mounting head 32 will be explained. The mounting head 32 places a component P on the electrodes of the substrate S printed with solder, and also places a component Pe having a plurality of electrodes E and having solder transferred to each electrode E on the substrate S. As the parts Pe, there are a plurality of types of parts having different numbers, shapes, positions, etc., of the electrodes E, which are referred to as parts Pe1, Pe2, Pe3, . . . , respectively. The component Pe is also called a transfer component. FIG. 2 is an explanatory diagram showing an example of the lower surface of the component Pe. FIG. 2 shows the lower surface of the component Pe1 as an example. As illustrated, the component Pe1 has, as a plurality of electrodes E, circular electrodes Ea1 to Ea12, rectangular electrodes Eb1 to Eb4, and rectangular electrodes Ec1 to Ec3. The electrodes Ea1 to Ea8 are collectively referred to as the electrode Ea, the electrodes Eb1 to Eb4 are collectively referred to as the electrode Eb, and the electrodes Ec1 to Ec4 are collectively referred to as the electrode Ec.
 転写部35は、部品Peの各電極Eにはんだを転写するユニットである。転写部35は、はんだペーストを収容する皿状のテーブルと、テーブルに対し相対移動するスキージと、はんだペーストをテーブル上へ供給するはんだ供給部とを備える。スキージは、テーブルとの相対移動に伴い、テーブル上のはんだペーストを押し広げて膜上に形成する部材である。なお、転写部35は、移動可能なテーブルと固定されたスキージとを備えてもよいし、固定されたテーブルと移動可能なスキージとを備えてもよい。実装ヘッド32は、部品Peを採取し、転写部35のテーブルまで下降させて各電極Eをはんだペーストに接触させることで部品Peの各電極Eにはんだペーストを転写させる。 The transfer unit 35 is a unit that transfers solder to each electrode E of the component Pe. The transfer unit 35 includes a dish-shaped table that stores solder paste, a squeegee that moves relative to the table, and a solder supply unit that supplies the solder paste onto the table. The squeegee is a member that spreads the solder paste on the table and forms it on the film as it moves relative to the table. Note that the transfer unit 35 may include a movable table and a fixed squeegee, or may include a fixed table and a movable squeegee. The mounting head 32 picks up the component Pe and lowers it to the table of the transfer unit 35 to bring each electrode E into contact with the solder paste, thereby transferring the solder paste to each electrode E of the component Pe.
 制御装置25は、図1に示すように、CPU26を中心とするマイクロプロセッサとして構成されており、各種データや後述する実装条件情報などを記憶する記憶部27などを備える。制御装置25は、実装装置20の全体を制御する機能の他、部品Pや電極Eの有無やその形状が許容範囲内であるかなどの異常検査や、電極Eへのはんだの転写状態が適正であるかなどの転写検査を実行する機能を有する。制御装置25は、基板処理部21や、部品供給部22、パーツカメラ23、実装部30へ制御信号を出力し、基板処理部21や部品供給部22、パーツカメラ23、実装部30からの信号を入力する。 As shown in FIG. 1, the control device 25 is configured as a microprocessor centered on a CPU 26, and includes a storage unit 27 for storing various data, mounting condition information described later, and the like. The control device 25 has a function of controlling the entire mounting device 20, as well as an abnormality inspection such as whether the component P and the electrode E are present or not and whether their shape is within an allowable range, and whether the transfer state of the solder to the electrode E is proper. It has a function to perform a transfer inspection such as whether the The control device 25 outputs control signals to the substrate processing unit 21, the component supply unit 22, the parts camera 23, and the mounting unit 30, and receives signals from the substrate processing unit 21, the component supply unit 22, the parts camera 23, and the mounting unit 30. Enter
 記憶部27には、部品Pに関する部品情報28や、部品Pを基板Sへ実装する実装順や部品Pの配置位置、部品Pを採取可能な吸着ノズル33の種別などを含む実装条件情報などが記憶されている。図3は、記憶部27に記憶された部品情報28の一例の説明図である。例えば部品Peの部品情報28には、部品種(Pe1,Pe2,Pe3,・・・)毎に、部品の形状や、部品本体や各電極Eの領域(座標)、各電極Eに共通の閾値ΔBrefなどの情報が含まれている。閾値ΔBrefは、部品Peが有する各電極Eに、はんだ(はんだペースト)が適切に転写されたか否かの検査で用いられる。閾値ΔBrefの詳細は後述するが、本実施形態では、部品種毎に予め定められた値が登録されている。 The storage unit 27 stores component information 28 about the component P, mounting condition information including the order of mounting the component P on the board S, the arrangement position of the component P, the type of the suction nozzle 33 capable of picking up the component P, and the like. remembered. FIG. 3 is an explanatory diagram of an example of the component information 28 stored in the storage unit 27. As shown in FIG. For example, the component information 28 of the component Pe includes, for each component type (Pe1, Pe2, Pe3, . Information such as ΔBref is included. The threshold value ΔBref is used in an inspection as to whether solder (solder paste) has been properly transferred to each electrode E of the component Pe. Although details of the threshold value ΔBref will be described later, in the present embodiment, a predetermined value is registered for each component type.
 管理装置18は、実装システム10の各装置の情報を管理するコンピュータである。管理装置18は、制御部と、記憶部と、ディスプレイと、入力装置とを備える。制御部は、CPUを中心とするマイクロプロセッサとして構成されている。記憶部には、実装システム10の生産を管理する情報や、実装装置20毎の実装条件情報などが記憶されている。 The management device 18 is a computer that manages information on each device of the mounting system 10 . The management device 18 includes a control section, a storage section, a display, and an input device. The control unit is configured as a microprocessor centering on a CPU. The storage unit stores information for managing production of the mounting system 10, mounting condition information for each mounting apparatus 20, and the like.
 次に、こうして構成された本実施形態の実装システム10における実装装置20の実装処理を説明する。制御装置25のCPU26は、生産対象の基板Sも実装する各部品Pの実装条件情報を記憶部27から読み出し、その実装条件情報に基づいて実装処理を行う。CPU26は、まず、基板処理部21によって基板Sを実装位置まで搬送させて固定させてから、採取対象の部品Pを収容したフィーダから部品Pを実装ヘッド32に採取させてパーツカメラ23の上方へ移動させ、採取した部品Pをパーツカメラ23に撮像させる。次に、CPU26は、撮像された画像に基づいて、採取されている部品Pのサイズや形状などが適正であるか否かを判定し、サイズ不良や形状不良により適正でないと判定するとその部品を廃棄する。一方、CPU26は、部品Pが適正であると判定すると、撮像された画像から部品Pの角度や位置のずれを検出し、検出したずれを補正して部品Pを基板Sへ配置する。 Next, the mounting process of the mounting apparatus 20 in the mounting system 10 of this embodiment configured in this manner will be described. The CPU 26 of the control device 25 reads the mounting condition information of each component P on which the board S to be produced is also mounted from the storage unit 27, and performs mounting processing based on the mounting condition information. First, the CPU 26 causes the substrate processing unit 21 to transport the substrate S to the mounting position and fix it, and then causes the mounting head 32 to pick up the component P from the feeder containing the component P to be picked up and move it above the parts camera 23 . The part camera 23 is caused to take an image of the picked part P by moving. Next, the CPU 26 determines whether or not the size, shape, etc., of the sampled part P is appropriate based on the imaged image, and if it determines that the part P is not appropriate due to a size or shape defect, the part is removed. Discard. On the other hand, when the CPU 26 determines that the component P is appropriate, it detects deviations in the angle and position of the component P from the captured image, corrects the detected deviations, and arranges the component P on the board S.
 また、CPU26は、実装条件情報に基づいて、部品Pが電極Eにはんだを転写する必要のある部品Peであると判定した場合、即ち部品Pe(転写部品)を実装処理する場合、次のように処理を行う。以下、転写部品実装処理について説明する。図4は、転写部品実装処理の一例を示すフローチャートである。 Further, when the CPU 26 determines that the component P is a component Pe that requires solder to be transferred to the electrode E based on the mounting condition information, that is, when the component Pe (transfer component) is to be mounted, the following processing is performed. process. The transfer component mounting process will be described below. FIG. 4 is a flowchart showing an example of transfer component mounting processing.
 この処理では、CPU26は、まず部品供給部22のフィーダなどから実装対象の部品Peを実装ヘッド32に採取(吸着)させる(S100)。次に、CPU26は、実装ヘッド32をパーツカメラ23の上方へ移動させて、部品Peをパーツカメラ23で撮像させて転写前画像G0を画像処理する(S110)。S110の画像処理では、上述したように、採取した部品Peの異常の有無の判定やずれの検出なども行われ、異常があれば廃棄される。なお,S110で撮像される画像は、部品Peにはんだを転写する前の画像であるため、転写前画像G0と称する。 In this process, the CPU 26 first causes the mounting head 32 to pick up (suck) the component Pe to be mounted from the feeder of the component supply unit 22 (S100). Next, the CPU 26 moves the mounting head 32 above the parts camera 23, causes the parts camera 23 to image the part Pe, and processes the pre-transfer image G0 (S110). In the image processing of S110, as described above, the presence/absence of an abnormality in the sampled part Pe is determined and the deviation is detected. Note that the image captured in S110 is an image before the solder is transferred to the component Pe, so it is referred to as a pre-transfer image G0.
 次に、CPU26は、転写前画像G0における各電極Eの領域から各画素の輝度を測定してそれぞれの平均輝度を算出し(S120)、算出した各電極Eの平均輝度を、はんだを転写する前の転写前輝度B0として記憶部27に記憶させる(S130)。 Next, the CPU 26 measures the brightness of each pixel from the area of each electrode E in the pre-transfer image G0, calculates the average brightness of each pixel (S120), and uses the calculated average brightness of each electrode E as the solder to be transferred. The previous pre-transfer luminance B0 is stored in the storage unit 27 (S130).
 続いて、CPU26は、実装ヘッド32を転写部35の上方に移動させて、部品Peにはんだを転写させる(S140)。そして、CPU26は、実装ヘッド32を再度パーツカメラ23の上方へ移動させて、部品Peをパーツカメラ23で撮像させて転写後画像G1を画像処理する(S150)。なお,S150で撮像される画像は、部品Peにはんだを転写した後の画像であるため、転写後画像G1と称する。 Subsequently, the CPU 26 moves the mounting head 32 above the transfer section 35 to transfer the solder to the component Pe (S140). Then, the CPU 26 moves the mounting head 32 again above the parts camera 23 to image the part Pe with the parts camera 23, and processes the post-transfer image G1 (S150). Note that the image captured in S150 is an image after the solder has been transferred to the component Pe, and is therefore referred to as a post-transfer image G1.
 次に、CPU26は、転写後画像G1における各電極Eの領域から各画素の輝度を測定してそれぞれの平均輝度を算出し(S160)、算出した各電極Eの平均輝度を、はんだを転写した後の転写後輝度B1として記憶部27に記憶させる(S170)。 Next, the CPU 26 measures the luminance of each pixel from the area of each electrode E in the post-transfer image G1, calculates the average luminance of each pixel (S160), and uses the calculated average luminance of each electrode E as the solder transferred. This is stored in the storage unit 27 as the post-transfer luminance B1 (S170).
 そして、CPU26は、各電極Eの転写前後の輝度B0,B1の差分を算出することで、各電極Eの輝度変化量ΔB(=B0-B1)をそれぞれ取得し(S180)、各電極Eの輝度変化量ΔBがそれぞれ閾値ΔBref以上であるか否かを判定する(S190)。なお、閾値ΔBrefは、上述したように、部品種毎に予め定められた値として部品情報28に登録されている。 Then, the CPU 26 obtains the luminance change amount ΔB (=B0−B1) of each electrode E by calculating the difference between the luminances B0 and B1 of each electrode E before and after transfer (S180). It is determined whether or not each luminance change amount ΔB is equal to or greater than a threshold value ΔBref (S190). Note that the threshold value ΔBref is registered in the component information 28 as a predetermined value for each component type, as described above.
 CPU26は、S190で各電極Eの輝度変化量ΔBのいずれもが閾値ΔBref以上であると判定すると、部品Peの各電極Eのはんだの転写状態は良好であると判定し(S200)、その部品Peを基板Sに実装して(S210)、転写部品実装処理を終了する。一方、CPU26は、S190で各電極Eの輝度変化量ΔBのいずれかが閾値ΔBref以上でないと判定すると、部品Peの各電極Eのはんだの転写状態は不良であると判定し(S220)、その部品Peを廃棄して(S230)、転写部品実装処理を終了する。なお、CPU26は、転写状態が不良と判定した場合に、S140に戻って、はんだの転写から再度行うようにしてもよい。 When the CPU 26 determines in S190 that the brightness change amount ΔB of each electrode E is equal to or greater than the threshold value ΔBref, it determines that the solder transfer state of each electrode E of the component Pe is good (S200). The Pe is mounted on the substrate S (S210), and the transfer component mounting process ends. On the other hand, if the CPU 26 determines in S190 that any of the luminance change amounts .DELTA.B of each electrode E is not equal to or greater than the threshold .DELTA.Bref, the CPU 26 determines that the solder transfer state of each electrode E of the component Pe is defective (S220). The component Pe is discarded (S230), and the transfer component mounting process ends. In addition, when the CPU 26 determines that the transfer state is defective, the CPU 26 may return to S140 and perform the solder transfer again.
 ここで、図5は、転写前画像G0の一例を示す説明図である。図6は、転写後画像G1の一例を示す説明図であり、各電極Eにはんだが適正に転写された場合を示す。また、図7は、転写前輝度B0と転写後輝度B1と輝度変化量ΔBと閾値ΔBrefの一例を示す説明図である。図7では、図5の転写前画像G0から測定された転写前輝度B0と、図6の転写後画像G1から測定された転写後輝度B1を例示する。一般的に、電極Eは、はんだを転写した後の方が、はんだを転写する前よりも画像に暗く写る(図5,図6参照)。このため、図7に示すように、同じ電極Eで比べた場合、転写後輝度B1が転写前輝度B0よりも低い値となる。また、図7では、円形の電極Eaの転写前輝度B0が値154~170(平均160)、転写後輝度B1が値67~94(平均87)である。これに対し、矩形の電極Ebの転写前輝度B0が値217~223(平均221)、転写後輝度B1が値126~142(平均133)、矩形の電極Ecの転写前輝度B0が値202~208(平均205)、転写後輝度B1が値115~130(平均125)となっている。このように、円形の電極Eaの方が、転写前後のいずれにおいても矩形の電極Eb,Ecよりも輝度が低い傾向を示すなど、電極の形状やサイズによって輝度にバラツキがある。 Here, FIG. 5 is an explanatory diagram showing an example of the pre-transfer image G0. FIG. 6 is an explanatory diagram showing an example of the post-transfer image G1, showing a case where solder is properly transferred to each electrode E. As shown in FIG. FIG. 7 is an explanatory diagram showing an example of the pre-transfer luminance B0, the post-transfer luminance B1, the luminance change amount ΔB, and the threshold ΔBref. FIG. 7 illustrates the pre-transfer luminance B0 measured from the pre-transfer image G0 of FIG. 5 and the post-transfer luminance B1 measured from the post-transfer image G1 of FIG. In general, the electrode E appears darker in the image after the solder is transferred than before the solder is transferred (see FIGS. 5 and 6). Therefore, as shown in FIG. 7, when the same electrode E is compared, the post-transfer luminance B1 is lower than the pre-transfer luminance B0. In FIG. 7, the pre-transfer luminance B0 of the circular electrode Ea is 154 to 170 (average 160), and the post-transfer luminance B1 is 67 to 94 (average 87). On the other hand, the pre-transfer luminance B0 of the rectangular electrode Eb is 217 to 223 (average 221), the post-transfer luminance B1 is 126 to 142 (average 133), and the pre-transfer luminance B0 of the rectangular electrode Ec is 202 to 202. 208 (average 205), and the post-transfer luminance B1 has a value of 115 to 130 (average 125). As described above, the circular electrode Ea tends to have lower luminance than the rectangular electrodes Eb and Ec both before and after transfer, and the luminance varies depending on the shape and size of the electrodes.
 一方で、転写前輝度B0と転写後輝度B1との差分として算出される輝度変化量ΔBは、円形の電極Eaで値62~95(平均67)であるのに対し、矩形の電極Ebで値75~97(平均88)、矩形の電極Ecで値72~93(平均80)となっている。即ち、円形の電極Eaと矩形の電極Eb,Ecとで、転写後輝度B1のバラツキが値40~50程度あるのに対し、輝度変化量ΔBのバラツキは値10~20程度に小さくなっている。このように、輝度変化量ΔBは、電極Eの形状やサイズによる影響を受けにくく、転写後輝度B1よりもバラツキが小さい傾向を示す。このため、本実施形態の転写検査では、電極Eの形状やサイズに拘わらず、部品Peの各電極Eに共通の閾値ΔBrefと、各電極Eの輝度変化量ΔBとを比較することで、各電極Eへのはんだの転写状態が良好であるか否かを判定するのである。はんだが適切に転写されていない場合には転写後輝度B1と転写前輝度B0との差が小さくなるから、転写検査では、輝度変化量ΔBが閾値ΔBref未満となる場合に転写不良と判定することになる。 On the other hand, the luminance change amount ΔB calculated as the difference between the pre-transfer luminance B0 and the post-transfer luminance B1 is 62 to 95 (average 67) for the circular electrode Ea, whereas it is 62 to 95 (average 67) for the rectangular electrode Eb. 75 to 97 (88 on average), and 72 to 93 (80 on average) for the rectangular electrode Ec. That is, in the circular electrode Ea and the rectangular electrodes Eb and Ec, the variation in the post-transfer luminance B1 is about 40 to 50, while the variation in the luminance change amount ΔB is reduced to about 10 to 20. . Thus, the luminance change amount ΔB is less affected by the shape and size of the electrode E, and tends to have less variation than the post-transfer luminance B1. Therefore, in the transfer inspection of the present embodiment, regardless of the shape and size of the electrodes E, by comparing the common threshold value ΔBref for each electrode E of the component Pe with the luminance change amount ΔB of each electrode E, each It is determined whether or not the transfer state of the solder to the electrode E is good. If the solder is not properly transferred, the difference between the post-transfer luminance B1 and the pre-transfer luminance B0 is small. Therefore, in the transfer inspection, if the luminance change amount ΔB is less than the threshold value ΔBref, it is determined that the transfer is defective. become.
 また、閾値ΔBrefは、例えば図7の輝度変化量ΔBの最小値ΔBminに基づいて次のように設定される。図7では、輝度変化量ΔBの最小値ΔBminは電極Ea3の値62であり、この最小値ΔBminからマージンαを減じた値が閾値ΔBrefに設定されている。例えば、マージンαとして、経験的に定めた値10程度(ここでは値12)を最小値ΔBminから減じることで閾値ΔBrefが値50に設定されている。また、本実施形態では、部品種毎に、各電極Eの転写前輝度B0と、はんだが適正に転写された各電極Eの転写後輝度B1とを取得して、輝度変化量ΔBを算出する。そして、その最小値ΔBminに対してマージンαを考慮した閾値ΔBrefを予め設定し、部品種に対応付けた閾値ΔBrefとして部品情報28に登録されている。このため、図3の部品情報28では、部品Pe1用の閾値ΔBrefと、部品Pe2用の閾値ΔBrefと、部品Pe3用の閾値ΔBrefとが部品種に対応付けて登録されている。これにより、部品種によって輝度の傾向に差が生じる場合でも、はんだの転写状態の良否を適切に判定することができる。 Also, the threshold value ΔBref is set as follows based on, for example, the minimum value ΔBmin of the luminance change amount ΔB in FIG. In FIG. 7, the minimum value ΔBmin of the luminance change amount ΔB is the value 62 of the electrode Ea3, and the value obtained by subtracting the margin α from this minimum value ΔBmin is set as the threshold value ΔBref. For example, the threshold value ΔBref is set to a value of 50 by subtracting an empirically determined value of about 10 (value 12 in this case) from the minimum value ΔBmin as the margin α. Further, in this embodiment, the pre-transfer luminance B0 of each electrode E and the post-transfer luminance B1 of each electrode E to which the solder is properly transferred are acquired for each component type, and the luminance change amount ΔB is calculated. . A threshold value ΔBref is set in advance in consideration of the margin α with respect to the minimum value ΔBmin, and registered in the component information 28 as the threshold value ΔBref associated with the component type. Therefore, in the part information 28 of FIG. 3, the threshold ΔBref for the part Pe1, the threshold ΔBref for the part Pe2, and the threshold ΔBref for the part Pe3 are registered in association with the part type. As a result, it is possible to appropriately determine whether the solder transfer state is good or bad even when there is a difference in the tendency of luminance depending on the type of component.
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態の転写部品実装処理のS110~S130,S150~S180を実行する制御装置25のCPU26が画像処理部に相当し、転写部品実装処理のS190,S200,S220を実行する制御装置25のCPU26が検査処理部に相当する。なお、本実施形態では、制御装置25のCPU26の動作を説明することにより本開示の検査方法の一例も明らかにしている。 Here, the correspondence between the components of the present embodiment and the components of the present disclosure will be clarified. The CPU 26 of the control device 25 that executes S110 to S130 and S150 to S180 of the transfer component mounting process of this embodiment corresponds to the image processing section, and the CPU 26 of the control device 25 that executes S190, S200 and S220 of the transfer component mounting process. corresponds to the inspection processing unit. In addition, in this embodiment, an example of the inspection method of the present disclosure is also clarified by explaining the operation of the CPU 26 of the control device 25 .
 以上説明した制御装置25では、転写前画像G0と転写後画像G1とを画像処理して複数の電極E毎に転写前後の輝度変化量ΔBを取得し、各電極Eの輝度変化量ΔBを閾値ΔBrefとそれぞれ比較することにより、はんだの転写状態を検査する。輝度変化量ΔBは比較的バラツキが小さいため、閾値ΔBrefと比較することで転写状態を適切に検査することができる。また、各電極Eに共通の閾値ΔBrefを用いることで、電極E毎に個別の閾値を設定する必要がない。したがって、電極Eの種類に拘わらず、簡易な処理で転写状態を適切に検査することができる。 In the control device 25 described above, the pre-transfer image G0 and the post-transfer image G1 are image-processed to obtain the luminance change amount ΔB before and after transfer for each of the plurality of electrodes E, and the luminance change amount ΔB of each electrode E is used as a threshold value. The transfer state of the solder is inspected by comparing with ΔBref. Since the brightness change amount ΔB has a relatively small variation, the transfer state can be properly inspected by comparing it with the threshold value ΔBref. Further, by using a common threshold value ΔBref for each electrode E, there is no need to set a separate threshold value for each electrode E. FIG. Therefore, regardless of the type of the electrode E, the transfer state can be properly inspected with a simple process.
 また、閾値ΔBrefは、各電極Eの輝度変化量ΔBのうち最小値ΔBminに対してマージンαを設けた値として予め定められたものが部品種毎に記憶部27(部品情報28)に記憶されている。このため、部品種毎の輝度変化量の傾向に応じた閾値ΔBrefを用いて、転写状態をより適切に検査することができる。 Further, the threshold value ΔBref is stored in the storage unit 27 (part information 28) for each part type as a predetermined value obtained by providing a margin α with respect to the minimum value ΔBmin of the luminance variation amount ΔB of each electrode E. ing. Therefore, the transfer state can be inspected more appropriately using the threshold value ΔBref according to the tendency of the luminance change amount for each component type.
 また、CPU26は、複数の電極E毎に、転写前画像G0の電極領域から測定した各画素の輝度の平均値を転写前輝度B0とし、転写後画像G1の電極領域から測定した各画素の輝度の平均値を転写後輝度B1とし、両者の差分を輝度変化量ΔBとして取得する。このため、転写前輝度B0や転写後輝度B1を電極領域から偏り無く取得して輝度変化量ΔBを適切に取得することができるから、転写状態をさらに適切に検査することができる。 Further, the CPU 26 sets the average value of the luminance of each pixel measured from the electrode area of the pre-transfer image G0 to the luminance before transfer B0 for each of the plurality of electrodes E, and the luminance of each pixel measured from the electrode area of the post-transfer image G1. is used as the post-transfer luminance B1, and the difference between the two is obtained as the luminance change amount ΔB. Therefore, the luminance change amount ΔB can be appropriately obtained by obtaining the pre-transfer luminance B0 and the post-transfer luminance B1 from the electrode area without deviation, so that the transfer state can be inspected more appropriately.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the present disclosure is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present disclosure.
 上述した実施形態では、部品種(Pe1,Pe2,Pe3など)毎に予め定められた閾値ΔBrefが登録され、同一部品種の部品Peの各電極Eについては共通の閾値ΔBrefを用いたが、これに限られない。図8は、変形例の部品情報28Bを示す説明図である。図示するように、部品情報28Bでは、部品Pe1の閾値ΔBrefとして、はんだA(第1のはんだ)用の閾値ΔBrefと、はんだB(第2のはんだ)用の閾値ΔBrefとが登録されている。即ち、はんだの種類毎に予め定められた閾値ΔBrefが登録されている。このため、転写されるはんだの種類によって輝度変化量ΔBの傾向が異なる場合でも、その傾向に応じた適切な閾値ΔBrefを用いて転写状態を適切に検査することができる。なお、はんだA用の閾値ΔBrefは、各電極EへのはんだAの転写前後における輝度変化量ΔBを取得し、各電極Eの輝度変化量ΔBの最小値ΔBminに対してマージンαを設けることなどにより定めることができる。はんだB用の閾値ΔBrefも同様である。 In the above-described embodiment, a predetermined threshold value ΔBref is registered for each component type (Pe1, Pe2, Pe3, etc.), and a common threshold value ΔBref is used for each electrode E of the component Pe of the same component type. is not limited to FIG. 8 is an explanatory diagram showing part information 28B of a modification. As illustrated, in the component information 28B, a threshold ΔBref for solder A (first solder) and a threshold ΔBref for solder B (second solder) are registered as the threshold ΔBref for the component Pe1. That is, a predetermined threshold value ΔBref is registered for each type of solder. Therefore, even if the tendency of the luminance change amount ΔB differs depending on the type of solder to be transferred, the transfer state can be appropriately inspected using an appropriate threshold value ΔBref according to the tendency. Note that the threshold value ΔBref for the solder A is obtained by obtaining the luminance change amount ΔB before and after the transfer of the solder A to each electrode E, and providing a margin α to the minimum value ΔBmin of the luminance change amount ΔB of each electrode E. can be determined by The same applies to the threshold value ΔBref for solder B.
 また、図8の部品情報28Bでは、部品Pe2用と部品Pe3用とに共通の閾値ΔBrefが登録されている。このように、異なる部品種であっても共通の閾値ΔBrefを用いてもよい。例えば部品Peのサイズや形状、電極Eのパターンなどが類似の部品種であったり、輝度変化量ΔBの傾向が大きく変わらない部品種について共通の閾値ΔBrefを用いてもよい。あるいは、部品種やはんだの種類に拘わらず、実装対象の全ての部品種の部品Peに対して共通の閾値ΔBrefを用いてもよい。また、通常は基準の閾値ΔBrefを用いて転写状態を検査し、事前に特定の閾値ΔBrefが設定された部品種のみ、その特定の閾値ΔBrefを用いて転写状態を検査してもよい。 Also, in the part information 28B of FIG. 8, a common threshold value ΔBref is registered for the part Pe2 and the part Pe3. In this manner, a common threshold value ΔBref may be used even for different component types. For example, a common threshold value ΔBref may be used for component types with similar sizes and shapes of the components Pe, patterns of the electrodes E, etc., or component types with the same tendency of the amount of luminance change ΔB. Alternatively, a common threshold value ΔBref may be used for components Pe of all types of components to be mounted, regardless of the type of component or the type of solder. Alternatively, the transfer state may be inspected using the reference threshold value ΔBref in general, and the transfer state may be inspected using the specific threshold value ΔBref only for component types for which a specific threshold value ΔBref is set in advance.
 実施形態では、電極E毎に、転写前画像G0の電極領域から測定した各画素の輝度の平均値である転写前輝度B0と、転写後画像G1の電極領域から測定した各画素の輝度の平均値である転写後輝度B1との差分を算出して、輝度変化量ΔBを取得したが、これに限られない。例えば、各画素の輝度の平均値に限られず、中央値や最頻値などの代表値を転写前輝度B0や転写後輝度B1として用いてもよい。あるいは、転写前輝度B0と転写後輝度B1との差分を輝度変化量ΔBとするものに限られず、転写前画像G0と転写後画像G1とを画像処理することにより輝度変化量ΔBを取得するものであればよい。 In the embodiment, for each electrode E, the pre-transfer luminance B0, which is the average value of the luminance of each pixel measured from the electrode area of the pre-transfer image G0, and the average luminance of each pixel measured from the electrode area of the post-transfer image G1. Although the difference from the post-transfer luminance B1, which is a value, is calculated to obtain the luminance change amount ΔB, the present invention is not limited to this. For example, a representative value such as a median value or a mode value may be used as the pre-transfer brightness B0 or the post-transfer brightness B1, instead of being limited to the average value of the brightness of each pixel. Alternatively, the luminance change amount ΔB is not limited to the difference between the pre-transfer luminance B0 and the post-transfer luminance B1, and the luminance change amount ΔB is obtained by performing image processing on the pre-transfer image G0 and the post-transfer image G1. If it is
 実施形態では、閾値ΔBrefは、各電極Eの輝度変化量ΔBのうち最小値ΔBminに対してマージンαを設けた値としたが、これに限られない。例えば、各電極Eの輝度変化量ΔBのうち小さい方から所定数の輝度変化量ΔBの平均値に対してマージンαを設けた値などとしてもよい。あるいは、各電極Eの輝度変化量ΔBの平均値や中央値、最頻値に対してマージンαを設けた値などとしてもよい。このように、閾値ΔBrefは、予め測定された転写前輝度B0と転写後輝度B1との差分として算出された輝度変化量ΔBに基づいて定められればよい。あるいは、転写状態の検査実績や経験などにより閾値ΔBrefが定められてもよい。 In the embodiment, the threshold value ΔBref is a value obtained by providing a margin α to the minimum value ΔBmin of the luminance change amount ΔB of each electrode E, but it is not limited to this. For example, a value obtained by providing a margin α to the average value of a predetermined number of luminance variation amounts ΔB from the smallest among the luminance variation amounts ΔB of each electrode E may be used. Alternatively, the average value, the median value, or the value obtained by providing a margin α to the mode value of the brightness variation amount ΔB of each electrode E may be used. In this manner, the threshold value ΔBref may be determined based on the brightness change amount ΔB calculated as the difference between the pre-transfer brightness B0 and the post-transfer brightness B1 that are measured in advance. Alternatively, the threshold value ΔBref may be determined based on the transfer state inspection results, experience, or the like.
 実施形態では、部品Peに転写される転写材として、はんだを例示したが、これに限られず、導体ペーストやフラックス、接着剤などでもよい。 In the embodiment, the transfer material to be transferred to the component Pe is exemplified by solder, but it is not limited to this, and may be conductive paste, flux, adhesive, or the like.
 実施形態では、本開示の検査装置を実装装置20が備える制御装置25としたが、これに限られず、制御装置25とは別の画像処理装置など、実装装置20が備える他の装置としてもよい。あるいは、検査装置は、実装装置20とは別の装置であって、実装装置20と通信可能に構成された装置などでもよい。例えば、管理装置18を、実装装置20から送信される転写前画像G0や転写後画像G1を画像処理して転写状態を検査する検査装置としてもよい。 In the embodiment, the inspection device of the present disclosure is the control device 25 included in the mounting device 20, but is not limited to this, and may be another device included in the mounting device 20, such as an image processing device separate from the control device 25. . Alternatively, the inspection device may be a device different from the mounting device 20 and configured to communicate with the mounting device 20, or the like. For example, the management device 18 may be an inspection device that processes the pre-transfer image G0 and the post-transfer image G1 transmitted from the mounting device 20 and inspects the transfer state.
 ここで、本開示の検査装置は、以下のようにしてもよい。本開示の検査装置において、前記閾値は、部品種毎に前記転写前画像と前記転写後画像とを画像処理して取得された前記複数の電極毎の前記輝度変化量のうち、最小の輝度変化量に対してマージンを設けた値として、部品種毎に予め定められているものとしてもよい。こうすれば、部品種毎の輝度変化量の傾向に応じた閾値を用いて、転写状態をより適切に検査することができる。 Here, the inspection device of the present disclosure may be configured as follows. In the inspection apparatus of the present disclosure, the threshold is the minimum luminance change among the luminance change amounts for each of the plurality of electrodes obtained by image processing the pre-transfer image and the post-transfer image for each component type. A value that provides a margin for the amount may be determined in advance for each part type. In this way, the transfer state can be inspected more appropriately using a threshold corresponding to the tendency of the amount of change in luminance for each component type.
 本開示の検査装置において、前記画像処理部は、前記複数の電極毎に、前記転写前画像の電極領域から測定した各画素の輝度の平均値と前記転写後画像の電極領域から測定した各画素の輝度の平均値との差分を前記輝度変化量として取得するものとしてもよい。こうすれば、転写前の輝度や転写後の輝度を、電極領域から偏り無く取得して輝度変化量を適切に取得することができるから、転写状態をさらに適切に検査することができる。 In the inspection apparatus of the present disclosure, the image processing unit is configured to, for each of the plurality of electrodes, calculate an average luminance value of each pixel measured from the electrode area of the pre-transfer image and each pixel measured from the electrode area of the post-transfer image. may be obtained as the luminance change amount. In this way, the luminance before transfer and the luminance after transfer can be obtained without deviation from the electrode region, and the luminance change amount can be appropriately obtained, so that the transfer state can be inspected more appropriately.
 本開示の検査装置において、前記閾値は、前記複数の電極に転写される転写材の種類毎に予め定められているものとしてもよい。こうすれば、転写材の種類毎の輝度変化量の傾向に応じた閾値を用いて、転写状態をより一層適切に検査することができる。 In the inspection apparatus of the present disclosure, the threshold may be determined in advance for each type of transfer material to be transferred to the plurality of electrodes. By doing so, the transfer state can be more appropriately inspected using a threshold corresponding to the tendency of the amount of change in brightness for each type of transfer material.
 本開示の検査方法は、
 部品が有する複数の電極に転写された転写材の状態を検査する検査方法であって、
(a)転写材の転写前に前記部品を撮像した転写前画像と、転写材の転写後に前記部品を撮像した転写後画像とを画像処理して、前記複数の電極毎に転写前後の輝度変化量を取得するステップと、
(b)前記複数の電極毎の前記輝度変化量を共通の閾値とそれぞれ比較することにより、前記複数の電極への転写材の転写状態を検査するステップと、
 を含むことを要旨とする。
The inspection method of the present disclosure includes:
An inspection method for inspecting the state of a transfer material transferred to a plurality of electrodes of a component,
(a) performing image processing on a pre-transfer image obtained by imaging the part before transfer of the transfer material and a post-transfer image obtained by imaging the part after transfer of the transfer material, and changing luminance before and after transfer for each of the plurality of electrodes; obtaining a quantity;
(b) inspecting the state of transfer of the transfer material to the plurality of electrodes by comparing the amount of luminance change for each of the plurality of electrodes with a common threshold value;
The gist is to include
 本開示の検査方法は、上述した検査装置と同様に、複数の電極の輝度変化量を共通の閾値とそれぞれ比較することにより、電極の種類に拘わらず、簡易な処理で転写状態を適切に検査することができる。この検査方法において、上述した検査装置の種々の態様を採用してもよいし、上述した検査装置の各機能を実現するようなステップを追加してもよい。 As with the inspection apparatus described above, the inspection method of the present disclosure appropriately inspects the transfer state with a simple process regardless of the type of electrode by comparing the amount of change in luminance of a plurality of electrodes with a common threshold value. can do. In this inspection method, various aspects of the above-described inspection apparatus may be employed, and steps for realizing each function of the above-described inspection apparatus may be added.
 本開示は、部品の実装処理の技術分野などに利用可能である。 The present disclosure can be used in the technical field of component mounting processing.
 10 実装システム、11 印刷装置、12 印刷検査装置、14 実装検査装置、18 管理装置、20 実装装置、21 基板処理部、22 部品供給部、23 パーツカメラ、25 制御装置、26 CPU、27 記憶部、28,28B 部品情報、30 実装部、31 ヘッド移動部、32 実装ヘッド、33 吸着ノズル、34 マークカメラ、35 転写部、E,Ea1~Ea12,Eb1~Eb4,Ec1~Ec3 電極、G0 転写前画像、G1 転写後画像、P,Pe 部品、S 基板。 10 mounting system, 11 printing device, 12 printing inspection device, 14 mounting inspection device, 18 management device, 20 mounting device, 21 substrate processing section, 22 parts supply section, 23 parts camera, 25 control device, 26 CPU, 27 storage section , 28, 28B component information, 30 mounting section, 31 head moving section, 32 mounting head, 33 suction nozzle, 34 mark camera, 35 transfer section, E, Ea1 to Ea12, Eb1 to Eb4, Ec1 to Ec3 electrode, G0 before transfer Image, G1: Image after transfer, P, Pe: Parts, S: Substrate.

Claims (5)

  1.  部品が有する複数の電極に転写された転写材の状態を検査する検査装置であって、
     転写材の転写前に前記部品を撮像した転写前画像と、転写材の転写後に前記部品を撮像した転写後画像とを画像処理して、前記複数の電極毎に転写前後の輝度変化量を取得する画像処理部と、
     前記複数の電極毎の前記輝度変化量を共通の閾値とそれぞれ比較することにより、前記複数の電極への転写材の転写状態を検査する検査処理部と、
     を備える検査装置。
    An inspection device for inspecting the state of a transfer material transferred to a plurality of electrodes of a component,
    Image processing is performed on a pre-transfer image obtained by imaging the component before transfer of the transfer material and a post-transfer image obtained by imaging the component after transfer of the transfer material, and obtaining a luminance change amount before and after transfer for each of the plurality of electrodes. an image processing unit that
    an inspection processing unit that inspects the state of transfer of the transfer material to the plurality of electrodes by comparing the amount of luminance change for each of the plurality of electrodes with a common threshold value;
    inspection device.
  2.  請求項1に記載の検査装置であって、
     前記閾値は、部品種毎に前記転写前画像と前記転写後画像とを画像処理して取得された前記複数の電極毎の前記輝度変化量のうち、最小の輝度変化量に対してマージンを設けた値として、部品種毎に予め定められている
     検査装置。
    The inspection device according to claim 1,
    For the threshold value, a margin is provided for a minimum luminance change amount among the luminance change amounts for each of the plurality of electrodes obtained by performing image processing on the pre-transfer image and the post-transfer image for each component type. inspection equipment that is determined in advance for each part type as a value.
  3.  請求項1または2に記載の検査装置であって、
     前記画像処理部は、前記複数の電極毎に、前記転写前画像の電極領域から測定した各画素の輝度の平均値と前記転写後画像の電極領域から測定した各画素の輝度の平均値との差分を前記輝度変化量として取得する
     検査装置。
    The inspection device according to claim 1 or 2,
    The image processing unit calculates, for each of the plurality of electrodes, an average luminance value of each pixel measured from the electrode area of the pre-transfer image and an average luminance value of each pixel measured from the electrode area of the post-transfer image. An inspection device that acquires the difference as the luminance change amount.
  4.  請求項1ないし3のいずれか1項に記載の検査装置であって、
     前記閾値は、前記複数の電極に転写される転写材の種類毎に予め定められている
     検査装置。
    The inspection device according to any one of claims 1 to 3,
    The inspection device, wherein the threshold value is predetermined for each type of transfer material to be transferred to the plurality of electrodes.
  5.  部品が有する複数の電極に転写された転写材の状態を検査する検査方法であって、
    (a)転写材の転写前に前記部品を撮像した転写前画像と、転写材の転写後に前記部品を撮像した転写後画像とを画像処理して、前記複数の電極毎に転写前後の輝度変化量を取得するステップと、
    (b)前記複数の電極毎の前記輝度変化量を共通の閾値とそれぞれ比較することにより、前記複数の電極への転写材の転写状態を検査するステップと、
     を含む検査方法。
    An inspection method for inspecting the state of a transfer material transferred to a plurality of electrodes of a component,
    (a) performing image processing on a pre-transfer image obtained by imaging the part before transfer of the transfer material and a post-transfer image obtained by imaging the part after transfer of the transfer material, and changing luminance before and after transfer for each of the plurality of electrodes; obtaining a quantity;
    (b) inspecting the state of transfer of the transfer material to the plurality of electrodes by comparing the amount of luminance change for each of the plurality of electrodes with a common threshold value;
    inspection methods including;
PCT/JP2021/043876 2021-11-30 2021-11-30 Inspection device and inspection method WO2023100247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043876 WO2023100247A1 (en) 2021-11-30 2021-11-30 Inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043876 WO2023100247A1 (en) 2021-11-30 2021-11-30 Inspection device and inspection method

Publications (1)

Publication Number Publication Date
WO2023100247A1 true WO2023100247A1 (en) 2023-06-08

Family

ID=86611768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043876 WO2023100247A1 (en) 2021-11-30 2021-11-30 Inspection device and inspection method

Country Status (1)

Country Link
WO (1) WO2023100247A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281024A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Mounting device of electronic component and mounting method
JP2008216140A (en) * 2007-03-06 2008-09-18 Fuji Mach Mfg Co Ltd Transfer material transfer inspection method in electronic component installing device
WO2021144971A1 (en) * 2020-01-17 2021-07-22 株式会社Fuji Inspection device and inspection method
WO2021205578A1 (en) * 2020-04-08 2021-10-14 株式会社Fuji Image processing device, mounting device, and image processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281024A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Mounting device of electronic component and mounting method
JP2008216140A (en) * 2007-03-06 2008-09-18 Fuji Mach Mfg Co Ltd Transfer material transfer inspection method in electronic component installing device
WO2021144971A1 (en) * 2020-01-17 2021-07-22 株式会社Fuji Inspection device and inspection method
WO2021205578A1 (en) * 2020-04-08 2021-10-14 株式会社Fuji Image processing device, mounting device, and image processing method

Similar Documents

Publication Publication Date Title
US20100152877A1 (en) Component mounting method, component mounting apparatus, method for determining mounting conditions, and apparatus and program for determining mounting conditions
US20160203592A1 (en) Board production work method, board imaging conditions determination method, and board production work device
JP2009004754A (en) Method for mounting component, component mounting machine, method and device for determining mounting condition, and program
JP2006287062A (en) Mounting substrate manufacturing apparatus
JP6472873B2 (en) Parts inspection machine and parts placement machine
JP6047760B2 (en) Component mounting system and component mounting method
WO2023100247A1 (en) Inspection device and inspection method
JP7425091B2 (en) Inspection equipment and inspection method
JP2023118927A (en) Substrate handling work system
JP7406571B2 (en) Inspection equipment and inspection method
US20220151120A1 (en) Correction amount calculating device and correction amount calculating method
JP7440606B2 (en) Component mounting machine and component mounting system
JP7261309B2 (en) Mounting machine
JP7301973B2 (en) inspection equipment
WO2024033961A1 (en) Foreign matter detection device and foreign matter detection method
WO2021090395A1 (en) Image processing device, component mounting system, and image processing method
CN114128415A (en) Mounting device and control method of mounting device
WO2023162142A1 (en) Image confirmation device and image confirmation method
WO2024062635A1 (en) Testing device and testing method
WO2023248281A1 (en) Inspection device, mounting device, and inspection method
JP7473735B2 (en) Foreign object detection device and foreign object detection method
JP2023116997A (en) Mounting system, part recognition data update method, test equipment, and test program
WO2024069783A1 (en) Control device, mounting device, management device and information processing method
WO2019030875A1 (en) Image processing system and component mounting machine
CN114026975B (en) Component mounting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564304

Country of ref document: JP

Kind code of ref document: A