WO2023098749A1 - 储液装置以及具有其的电解除氧***和冰箱 - Google Patents

储液装置以及具有其的电解除氧***和冰箱 Download PDF

Info

Publication number
WO2023098749A1
WO2023098749A1 PCT/CN2022/135570 CN2022135570W WO2023098749A1 WO 2023098749 A1 WO2023098749 A1 WO 2023098749A1 CN 2022135570 W CN2022135570 W CN 2022135570W WO 2023098749 A1 WO2023098749 A1 WO 2023098749A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid storage
storage space
gas
electrolytic
Prior art date
Application number
PCT/CN2022/135570
Other languages
English (en)
French (fr)
Inventor
黄璐璐
费斌
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111467792.XA external-priority patent/CN116212603A/zh
Priority claimed from CN202111468134.2A external-priority patent/CN116222118A/zh
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023098749A1 publication Critical patent/WO2023098749A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove

Definitions

  • the invention relates to fresh-keeping equipment, in particular to a liquid storage device, an electrolytic deoxygenation system and a refrigerator having the same.
  • reaction devices such as the electrochemical reaction device used to reduce the oxygen inside the refrigerator through electrochemical reaction
  • the process of electrochemical reaction requires the participation of electrolyte, and the reaction process will generate gas, which needs to be released to the external environment emission.
  • the electrolyte During the reaction process, due to the generation of a large amount of heat, the electrolyte will be heated and evaporated, which may cause a small amount of electrolyte vapor to be carried in the gas discharged from the reaction vessel. Most electrolytes are acidic or alkaline solutions, which are corrosive. If the gas generated by the reaction device is directly discharged to the air without treatment, it may cause air pollution and endanger life and health.
  • an electrolytic deoxygenation device can be installed on the refrigerator.
  • the electrolytic deoxygenation device can use electrochemical reaction to consume oxygen in the storage space. Since the electrochemical reaction is usually carried out in the electrolyte and consumes the components of the electrolyte, it is necessary to fill the electrolytic deoxygenation device with liquid in a timely manner to maintain the normal progress of the electrochemical reaction.
  • the electrolyte is generally an acidic liquid or an alkaline liquid, which is corrosive. If the electrolyte is filled manually, there will inevitably be safety risks. In addition, if liquid is supplied to the electrolytic deoxygenation device from the outside, it is inevitable that the electrolytic deoxygenation device and its surrounding components need to be disassembled, which will make the operation process complicated and increase the risk of damage to the device.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide a liquid storage device, an electrolytic deoxygenation system and a refrigerator having the same.
  • a further object of one aspect of the present invention is to provide a liquid storage device with the function of filtration and recovery, so that the specific substance components in the gas can be separated and recycled, thereby reducing or avoiding the pollution caused by gas discharge, and at the same time Improve resource utilization efficiency.
  • Yet a further object of an aspect of the present invention is to make the recovery process of the liquid storage device simple and efficient.
  • Another further object of one aspect of the present invention is to enable the liquid storage device to obtain a better filtration and purification effect with a compact and simple structure.
  • a further object of one aspect of the present invention is to solve problems such as difficulty in replenishing liquid and loss of electrolyte in the deoxygenation process of the refrigerator.
  • a further object of another aspect of the present invention is to provide an electrolytic deoxygenation system integrated with deoxygenation and fluid replenishment functions, which reduces the difficulty of fluid replenishment for the electrolytic deoxidizer and improves the deoxygenation effect.
  • Another further object of another aspect of the present invention is to make the liquid replenishment process of the electrolytic oxygen removal system automatically rely on the mechanical structure, reduce the cost of electric control, and improve the degree of automation.
  • Another further object of another aspect of the present invention is to reduce the corrosiveness of the gas discharged from the electrolytic oxygen removal device, and reduce the adverse impact of the oxygen removal process on the environment.
  • Another further object of another aspect of the present invention is to recycle and reuse specific material components in the gas discharged from the electrolytic deoxygenation device, so as to reduce resource consumption in the deoxygenation process.
  • a liquid storage device with the function of filtration and recovery, comprising: a liquid storage container with a first liquid storage space formed inside; The second liquid storage space communicated with the first liquid storage space, the filter part is arranged in the second liquid storage space, and is used to dissolve the specific substance components in the gas from the external environment in the second liquid storage space, so as to enter the first liquid storage space
  • the liquid space is used for recycling.
  • the casing is inserted into the first liquid storage space, and a liquid outlet hole for communicating with the first liquid storage space is opened at the bottom of the casing, so as to allow the liquid in the second liquid storage space to flow back into the first liquid storage space.
  • the casing is also provided with an air inlet for inputting gas from the external environment; and the filter part is an air duct, which is inserted into the second liquid storage space from the air inlet and extends to the bottom of the second liquid storage space section, so as to guide the gas of the external environment to the bottom section of the second liquid storage space, so that the specific material components in the gas of the external environment dissolve in the second liquid storage space during the rising process of the gas.
  • the air guide tube is a straight tube; or the air guide tube is a vertical hook-shaped tube, and it has a straight tube section extending to the bottom section of the second liquid storage space and a bend extending upward from the end of the straight tube section.
  • Pipe section; the end of the curved pipe section is slightly higher than the end of the straight pipe section, and is used to direct the gas flowing through it upward.
  • an air outlet is provided on the casing, which is located at the top of the casing, and is used to discharge the gas that flows through the air duct and the second liquid storage space and is separated into specific material components.
  • the casing includes a first compartment body with a top opening and a first compartment cover closing the top opening of the first compartment body, and the air inlet hole and the air outlet hole are located on the first compartment cover at intervals from each other.
  • the liquid storage container includes a second compartment body with a top opening and a second compartment cover closing the top opening of the second compartment body; and the second compartment cover is provided with an installation opening; the hole wall of the installation opening extends upward to form a
  • the first warehouse cover has a closed cover plate located above the first warehouse body and an annular internal thread interface extending downward from the outer peripheral edge of the closed cover plate. The threaded interface is screwed so that the first compartment cover is detachably connected to the second compartment cover; and the first compartment body extends downward from the lower surface of the closed cover plate, and is inserted into the first liquid storage space after passing through the external threaded interface .
  • a liquid filling port is also opened on the second compartment cover, and its mouth wall extends downward to form a liquid filling tank; a part of the tank wall of the liquid filling tank extends downwards obliquely, so that the bottom of the liquid filling tank forms a tapered Open your mouth.
  • the bottom section of the liquid storage container is provided with a liquid supply port for outputting liquid to the external environment.
  • an electrolytic deoxygenation system for a refrigerator comprising:
  • An electrolytic deoxygenation device which has a reaction vessel, and the interior of the reaction vessel forms a reaction place for performing an electrochemical reaction to consume oxygen; and the reaction vessel is provided with a liquid replenishment port; and
  • the liquid storage container of the liquid storage device is provided with a liquid supply port for communicating with the liquid replenishment port for replenishing liquid to the reaction container.
  • the liquid supply port is located at the bottom section of the liquid storage container, and the liquid replenishment port is located at the top section of the reaction container;
  • the liquid supply port is higher than the liquid refill port.
  • the electrolysis oxygen system also includes:
  • the infusion tube one end of which is connected to the liquid supply port, and the other end is connected to the liquid replacement port, is used to guide the liquid from the liquid supply port to the liquid replacement port.
  • an exhaust port is also provided on the reaction vessel for allowing the gas generated in the reaction vessel to be discharged to the inner space of the housing of the filter mechanism;
  • the filter part is used for dissolving specific substance components in the gas from the exhaust port in the inner space of the housing so as to enter the first liquid storage space for recycling.
  • the casing is provided with an air inlet for communicating the exhaust port with the inner space of the casing;
  • the electrolysis oxygen system also includes a gas delivery pipe, one end of which communicates with the exhaust port and the other end communicates with the air intake, and is used to guide the gas from the exhaust port to the air intake.
  • the filter part is an air duct, which is inserted into the inner space of the housing from the air inlet, and extends to the bottom section in the housing, so as to guide the gas from the exhaust port to the bottom section in the housing, so that Specific constituents of the gas from the exhaust dissolve in the interior space of the shell during ascent; and
  • an air outlet hole on the casing which is located on the top of the casing at a distance from the air inlet hole, and is used to discharge the gas that flows through the air duct and the inner space of the casing and is separated into specific material components.
  • the casing is inserted into the liquid storage space, and a liquid outlet hole for communicating with the first liquid storage space is opened at the bottom of the casing, so as to allow the liquid in the casing to flow back into the liquid storage container.
  • the electrolysis oxygen system also includes:
  • the liquid level switch is arranged in the reaction container, and it has a switch body, which is used to open and close the liquid replenishment port according to the movement of the liquid level in the reaction container, so as to allow or prevent the electrolyte in the liquid storage container from flowing through the liquid supply port and The liquid replenishment port enters the reaction vessel.
  • the liquid level switch also includes a float, which is fixedly connected with the switch body or is integral with the switch body, and is rotatably arranged around an axis, and is used to float or sink by rotating around the axis in the reaction vessel, thereby driving The switch body moves.
  • a float which is fixedly connected with the switch body or is integral with the switch body, and is rotatably arranged around an axis, and is used to float or sink by rotating around the axis in the reaction vessel, thereby driving The switch body moves.
  • a refrigerator comprising:
  • electro-deoxygenation system according to any one of the above, wherein the electro-deoxygenation device is in airflow communication with the storage space of the refrigerator, so that the electro-deoxygenation device uses electrochemical reaction to consume oxygen in the storage space of the refrigerator.
  • the present invention provides a filter recovery function
  • the liquid storage device can separate the specific material components in the gas and recycle them, thereby reducing or avoiding the pollution caused by gas emissions, and at the same time improving resource utilization efficiency.
  • the shell since the shell is inserted into the first liquid storage space and communicates with the first liquid storage space through the liquid outlet hole at the bottom of the shell, The liquid in the second liquid storage space can pass down through the liquid outlet hole and flow back to the first liquid storage space by its own gravity, which makes the recovery process of the liquid storage device simple and effective.
  • the filter part is an air duct, it is inserted into the second liquid storage space from the air inlet hole of the casing, and extends to the second liquid storage space to guide the external air to the bottom section of the second liquid storage space, the gas flowing out of the air duct can fully contact the liquid in the second liquid storage space during the ascent process, so that the specific substance composition in the gas Dissolved in the second liquid storage space, which enables the liquid storage device to obtain better filtration and purification effect with a delicate and simple structure.
  • the liquid storage device with the function of filtration and recovery and the refrigerator with it of the present invention since the liquid storage device has the function of filtration and recovery, and can use the liquid supply port to output liquid to the external environment, when the liquid storage device is combined with When it is sent to the electrochemical deoxygenation device of the refrigerator, the gas discharged from the electrochemical deoxygenation device can be guided to the second liquid storage space, and the specific material components in the gas can be separated and recycled.
  • the electrochemical deoxygenation device When the electrolyte solution in the refrigerator is insufficient, the liquid in the first liquid storage space can be used for replenishment. Therefore, the liquid storage device of the present invention can solve the problems of difficulty in replenishing liquid and loss of electrolyte in the process of deoxygenating the refrigerator.
  • the electrolytic deoxygenation system for a refrigerator and the refrigerator with it of the present invention since the electrolytic deoxygenation system has a liquid storage device for replenishing liquid to the reaction vessel of the electrolytic deoxygenation device, this makes the electrolytic deoxygenation system of the present invention simultaneously It is integrated with deoxygenation function and liquid replenishment function, and can use its own liquid storage device to replenish liquid to the reaction vessel, which is beneficial to reduce the difficulty of liquid replenishment of the electrolytic deoxygenation device. Guarantee the oxygen removal effect of the electrolytic oxygen removal device.
  • the liquid supply port of the liquid storage container is higher than the liquid replenishment port of the reaction container, the liquid from the liquid storage container can enter the reaction container by its own gravity , which enables the liquid replenishment process of the electrolytic oxygen removal system to be carried out automatically by relying on the mechanical structure, which is conducive to reducing the cost of electronic control and improving the degree of automation.
  • the filter mechanism can dissolve the specific substance components in the gas discharged from the electrolysis oxygen device in the inner space of the housing, so that the gas to be discharged It is filtered, which is beneficial to reduce the corrosiveness of the gas discharged from the electrolytic oxygen removal device, and reduce the adverse impact of the oxygen removal process on the environment.
  • the housing of the filter mechanism communicates with the liquid storage space, specific material components dissolved in the housing can enter the liquid storage space, therefore, The specific material components in the gas discharged from the electrolytic oxygen removal device can be recycled and reused, which is beneficial to reduce the resource consumption in the oxygen removal process.
  • Fig. 1 is a schematic structural diagram of a liquid storage device with a filtration recovery function according to an embodiment of the present invention
  • Fig. 2 is a schematic perspective view of the liquid storage device shown in Fig. 1;
  • Fig. 3 is a schematic exploded view of the liquid storage device shown in Fig. 1;
  • Fig. 4 is a schematic structural diagram of the filter mechanism of the liquid storage device shown in Fig. 1;
  • Fig. 5 is a schematic exploded view of the filter mechanism of the liquid storage device shown in Fig. 4;
  • Fig. 6 is a schematic structural view of the second compartment cover of the liquid storage container of the liquid storage device shown in Fig. 3;
  • Fig. 7 is a schematic diagram of the filtration recovery process of the liquid storage device shown in Fig. 1;
  • Fig. 8 is a schematic block diagram of a refrigerator according to an embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of a reaction system according to an embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of a liquid level switch of a reaction system according to an embodiment of the present invention.
  • Fig. 11 is a schematic structural diagram of an electrolytic deoxygenation system for a refrigerator according to an embodiment of the present invention.
  • Fig. 12 is a schematic structural diagram of an electrolysis device for an electrolysis system of a refrigerator according to an embodiment of the present invention.
  • Fig. 13 is a schematic exploded view of the electrolytic oxygen removal device used in the electrolytic oxygen removal system shown in Fig. 12;
  • FIG. 14 is a schematic block diagram of a refrigerator according to another embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a liquid storage device 20 with a filtration recovery function according to an embodiment of the present invention.
  • the liquid storage device 20 in this embodiment has the function of filtration and recovery, which can separate and recover specific components in the gas for utilization.
  • FIG. 2 is a schematic perspective view of the liquid storage device 20 shown in FIG. 1 .
  • FIG. 3 is a schematic exploded view of the liquid storage device 20 shown in FIG. 1 .
  • the liquid storage device 20 may generally include a liquid storage container 200 and a filtering mechanism 400 .
  • a first liquid storage space 210 is formed inside the liquid storage container 200 .
  • the first liquid storage space 210 is used to store liquid, such as electrolyte or water containing specific components, but not limited thereto.
  • the filter mechanism 400 has a housing 420 and a filter part 440.
  • the second liquid storage space 421 communicated with the first liquid storage space 210 is formed in the housing 420.
  • the filter part 440 is arranged in the second liquid storage space 421 and is used for filtering from the outside. Specific material components in the ambient gas are dissolved in the second liquid storage space 421 so as to enter the first liquid storage space 210 for recycling.
  • the second liquid storage space 421 can also be used to store liquid, such as electrolyte or water containing specific components. Dissolving the specific substance in the gas of the external environment in the second liquid storage space 421 refers to dissolving in the liquid stored in the second liquid storage space 421 .
  • the above-mentioned specific material components are water-soluble substances.
  • the liquid components stored in the first liquid storage space 210 and the second liquid storage space 421 can be adjusted according to the physical and chemical properties of the specific material components to be separated.
  • the second liquid storage space 421 communicates with the first liquid storage space 210 , certain components in the gas from the external environment dissolved in the second liquid storage space 421 can enter the first liquid storage space 210 for recycling.
  • the liquid storage device 20 of this embodiment has a filter mechanism 400, a second liquid storage space 421 communicating with the first liquid storage space 210 of the liquid storage container 200 is formed in the housing 420 of the filter mechanism 400, and the filter mechanism
  • the filter part 440 of 400 is used to dissolve the specific substance components in the gas of the external environment in the second liquid storage space 421, so as to enter the first storage space for recycling. Therefore, the present invention provides a filter and recovery function
  • the liquid storage device 20 enables specific components in the gas to be separated and recycled, thereby reducing or avoiding pollution caused by gas discharge, while improving resource utilization efficiency.
  • the casing 420 is inserted into the first liquid storage space 210 .
  • the liquid storage container 200 may be substantially in the shape of a cuboid, and the casing 420 may be inserted into the first liquid storage space 210 as an inner sleeve.
  • the examples of the shapes of the liquid storage container 200 and the housing 420 are only schematic, and those skilled in the art should easily expand them, so they will not be listed one by one here.
  • FIG. 4 is a schematic structural diagram of a filter mechanism 400 of the liquid storage device 20 shown in FIG. 1 .
  • FIG. 5 is a schematic exploded view of the filter mechanism 400 of the liquid storage device 20 shown in FIG. 4 .
  • the bottom of the casing 420 is provided with a liquid outlet hole 422 for communicating with the first liquid storage space 210 to allow the liquid in the second liquid storage space 421 to flow back to the first liquid storage space 210 .
  • the liquid outlet hole 422 can be used as a "window" for material exchange between the two liquid storage spaces.
  • the liquid outlet hole 422 can keep the liquid level of the first liquid storage space 210 consistent with that of the second liquid storage space 421 , and make the liquid in the second liquid storage space 421 easily spread to the first liquid storage space 210 .
  • the housing 420 Since the housing 420 is arranged in the first liquid storage space 210 and communicates with the first liquid storage space 210 through the liquid outlet hole 422 at the bottom of the housing 420, the liquid in the second liquid storage space 421 can rely on its own gravity to The liquid flows down through the liquid outlet hole 422 and returns to the first liquid storage space 210 , which makes the recovery process of the liquid storage device 20 simple and effective.
  • an air inlet 423 for inputting gas from the external environment is also opened on the housing 420 .
  • the air inlet 423 can be opened on the top of the housing 420 , for example, can be located on the cover of the housing 420 , which can prevent the liquid stored in the second liquid storage space 421 from leaking.
  • the air inlet 423 may also be opened on the side wall of the casing 420 and be higher than the normal liquid level of the second liquid storage space 421 .
  • the filter part 440 is an air duct, which is inserted into the second liquid storage space 421 from the air inlet 423 and extends to the bottom section of the second liquid storage space 421 to guide external air to the bottom area of the second liquid storage space 421 section, so that the specific substance components in the gas in the external environment dissolve in the second liquid storage space 421 during the rising process of the gas. Extending the gas guide tube to the bottom section of the second liquid storage space 421 allows the gas guide tube to transport the gas from the external environment to the depth of the liquid stored in the second liquid storage space 421, thereby extending the gas flow in the second liquid storage space. The flow path within the space 421 .
  • the filter part 440 is an air duct, it is inserted into the second liquid storage space 421 from the air inlet 423 of the casing 420, and extends to the bottom section of the second liquid storage space 421 to guide the gas of the external environment to the second liquid storage space 421.
  • the gas flowing out of the air duct can fully contact with the liquid in the second liquid storage space 421 during the ascent process, so that specific material components in the gas are dissolved in the second liquid storage space 421, which This enables the liquid storage device 20 to obtain a better filtration and purification effect with a delicate and simple structure.
  • the air guiding tube of this embodiment can be a straight tube with openings at both ends to facilitate the inflow or outflow of gas.
  • the structure is simple and has a better air guiding effect.
  • the shape of the air duct can be transformed into a vertically curved hook-shaped tube, and it has a straight tube section extending to the bottom section of the second liquid storage space 421 and a bend extending upward from the end of the straight tube section. formed pipe bends. The ends of the bent sections are slightly higher than the ends of the straight sections to direct the gas flowing through them upwards.
  • the air duct in this embodiment can be in the shape of a vertical hook
  • the straight tube section is similar to an umbrella shaft
  • the curved tube section is similar to an umbrella handle connected to the end of the umbrella shaft.
  • the curved pipe end is bent and extended upward from the end of the straight pipe section, which can guide the gas flowing out of the airway to flow upward, so that the direction of movement of the gas is more definite.
  • the fact that the end of the curved pipe section is slightly higher than the end of the straight pipe section means that the end of the curved pipe section is still in the bottom section of the second liquid storage space 421 , which will not significantly shorten the flow path of the gas during the dissolution process.
  • the casing 420 is further provided with an air outlet 424 for discharging the gas that flows through the air duct and the second liquid storage space 421 and is separated into specific material components.
  • the air outlet 424 is located on the top of the housing 420 , for example, it may be located on the cover of the housing 420 .
  • the air outlet 424 is used to discharge the filtered gas to the external environment, for example, it can be discharged to the air of the external environment.
  • the air inlet hole 423 and the air outlet hole 424 may be circular openings respectively.
  • the air inlet hole 423 and the air outlet hole 424 in this embodiment may be tubular through holes respectively.
  • the tube hole wall of the air inlet hole 423 extends downward continuously and extends into the second liquid storage space 421 , serving as an air guide tube.
  • an air outlet conduit may be connected to the air outlet hole 424 for guiding air.
  • the housing 420 may be integrally formed. In other optional embodiments, the housing 420 may be formed by connecting multiple different parts.
  • the casing 420 may include a first compartment body 426 with a top opening and a first compartment cover 428 closing the top opening of the first compartment body 426 .
  • the air inlet hole 423 and the air outlet hole 424 are located on the first cover 428 at intervals from each other.
  • the first chamber body 426 may be in the shape of a straight tube with a diameter larger than that of the airway.
  • the top end of the first compartment body 426 is open and sealed with the first compartment cover 428 .
  • the bottom end of the first chamber body 426 is closed, and the above-mentioned liquid outlet hole 422 is opened thereon.
  • the air inlet hole 423 together with the air guide tube and the air outlet hole 424 are covered by the first chamber body 426 to form a sleeve structure.
  • the bottom end of the air guide tube is higher than the bottom end of the first compartment body 426 , preventing the gas flowing out of the air guide tube from escaping the first compartment body 426 .
  • the air inlet hole 423 and the air outlet hole 424 are provided on the cover of the housing 420, which can reduce the difficulty of opening the hole, simplify the manufacturing process, and improve the gas discharge efficiency.
  • the liquid storage container 200 can be integrally formed, which is beneficial to improve the sealing effect of the liquid storage container 200 and prevent liquid leakage.
  • the liquid storage container 200 may be formed by connecting multiple different components.
  • the liquid storage container 200 may include a second compartment body 260 with a top opening and a second compartment cover 280 closing the top opening of the second compartment body 260 .
  • the second bin body 260 may be in the shape of a cuboid tank without a cover, and its volume is larger than that of the first bin body 426 .
  • Fig. 6 is a schematic structural view of the second compartment cover 280 of the liquid storage container 200 of the liquid storage device 20 shown in Fig. 3, wherein Fig. 6(a) is a perspective view, Fig. 6(b) is a front view, Fig. 6 (c) is a top view.
  • An installation opening 282 is defined on the second cover 280 .
  • the hole wall of the installation port 282 extends upward to form a hollow cylindrical external thread interface 288 . Since the externally threaded interface 288 extends upward from the hole wall of the installation port 282 , the upper edge of the externally threaded interface 288 is higher than the upper surface of the second compartment cover 280 and higher than the upper edge of the liquid filling tank 286 described later. This can control the maximum liquid level of the liquid filling process below the upper edge of the externally threaded interface 288 .
  • the first compartment cover 428 has a closing cover plate 428a located above the first compartment body 426 and an annular internal thread interface 428b extending downward from the outer peripheral edge of the closing cover plate 428a.
  • the closing cover plate 428a is used to cover the top opening of the first warehouse body 426 .
  • the ring-shaped internal thread interface 428 b is screwed to the external thread interface 288 , so that the first compartment cover 428 is detachably connected to the second compartment cover 280 . That is, the annular internal thread interface 428b is used to connect the first compartment cover 428 to the second compartment cover 280 .
  • the first chamber body 426 extends downward from the lower surface of the closed cover plate 428a, and is inserted into the first liquid storage space 210 after passing through the external threaded interface 288 .
  • the installation port 282 can be closed by screwing the first compartment cover 428 and the second compartment cover 280, which can simplify the installation and fixing process of the filter mechanism 400, realize one-step installation, and at the same time make the first compartment body 426 function as a "air trap”. effect.
  • FIG. 7 is a schematic diagram of the filtration recovery process of the liquid storage device 20 shown in FIG. 1 , and the direction of the arrow in the figure shows the flow direction of the gas or the flow direction of the liquid. Due to the restriction of the "air trap", the gas flowing out of the air duct can only rise in the form of bubbles inside the first compartment body 426 until it reaches the air outlet hole 424 of the first compartment cover 428 above the first compartment body 426 and is absorbed. discharge, thus completing the filtration process.
  • the above screw fastening installation method can also be changed to an interference fit or sealing connection with a sealing ring, as long as the sealing is guaranteed to be watertight and airtight.
  • the first chamber body 426 can be used as a liquid replenishment chamber, and the liquid inside it can be transported to the place where the reaction occurs again in the form of liquid replenishment, so as to realize reuse.
  • a liquid filling opening 284 may be opened on the second compartment cover 280 , and the opening wall thereof extends downward to form a liquid filling groove 286 . Since the liquid filling tank 286 extends downward from the upper surface of the second warehouse cover 280, and the external threaded interface 288 extends upward from the upper surface of the second warehouse cover 280, therefore, when the liquid filling port 284 is extended to the second warehouse body 260 When adding liquid, even if the liquid adding process causes the second chamber body 260 to overflow, the liquid level during overflow will not exceed the external threaded interface 288 .
  • a part of the tank wall of the liquid adding tank 286 extends downwards obliquely, so that a tapered opening is formed at the bottom of the liquid adding tank 286 . That is to say, the water filling tank is an inclined through hole with a certain depth, which is convenient for the user to observe the liquid level when adding liquid.
  • There is a liquid level mark on the tank wall extending downwards to indicate the liquid level during the liquid filling process.
  • the liquid level mark can be designed as a "maximum liquid level scale line", which is used to remind the user that the liquid has been filled.
  • the bottom section of the liquid storage container 200 is provided with a liquid supply port 262 for outputting liquid to the external environment.
  • the liquid supply port 262 can be opened at the bottom section of the second chamber body 260 . That is to say, while storing liquid, the liquid storage container 200 can also use the liquid supply port 262 to deliver liquid to the external environment for utilization, which is beneficial to optimize the production process and improve production efficiency.
  • the liquid supply port 262 can be connected to an electrochemical deoxygenation device for electrochemical reaction through a pipeline, and replenish liquid, such as electrolyte or water, to the electrochemical deoxygenation device.
  • a liquid supply port 262 is provided at the bottom section of the second chamber body 260 to allow the liquid in the second chamber body 260 to flow out automatically by gravity, which is beneficial to improve the automation of the liquid supply process.
  • the edge of the second compartment cover 280 has a protrusion 287 protruding outward for applying force.
  • the user can apply force to the second compartment cover 280 by grabbing or other actions, so as to realize the disassembly process between the second compartment cover 280 and the second compartment body 260 .
  • the periphery of the closing place between the second warehouse cover 280 and the second warehouse body 260 can be provided with an elastic sealing ring, which is convenient to realize sealing by pressing between the second warehouse cover 280 and the second warehouse body 260, so as to prevent the second Storehouse body 260 leaks.
  • Fig. 8 is a schematic block diagram of a refrigerator 1 according to an embodiment of the present invention.
  • the refrigerator 1 has a reaction device 10 .
  • the refrigerator 1 may generally include the liquid storage device 20 as in any of the above embodiments.
  • the reaction device 10 may be an electrochemical deoxygenation device, which is used to consume the oxygen inside the refrigerator 1 through an electrochemical reaction to reduce oxygen.
  • the reaction device 10 can be replaced with other devices according to actual needs, such as the reaction device 10 for deodorization.
  • the electrochemical deoxygenation device may include a reaction vessel 500, inside which forms a place for performing electrochemical reactions.
  • the reaction container 500 may be provided with electrochemical reaction elements (anode plate, cathode plate, etc.), and electrolyte solution, such as sodium hydroxide solution, etc., may also be stored.
  • electrochemical reaction elements anode plate, cathode plate, etc.
  • electrolyte solution such as sodium hydroxide solution, etc.
  • the cathode plate is in airflow communication with the inner space of the storage compartment of the refrigerator 1 . And in the case of electrification, the cathode plate is used to consume the oxygen in the storage compartment through an electrochemical reaction. For example, oxygen in the air can undergo a reduction reaction at the cathode plate, namely: O 2 +2H 2 O+4e - ⁇ 4OH - .
  • the anode plate and the cathode plate are disposed in the reaction vessel 500 at intervals. And when energized, the anode plate is used to provide reactants (eg, electrons) to the cathode through an electrochemical reaction and generate oxygen.
  • the OH - produced by the cathode plate can undergo oxidation reaction at the anode plate and generate oxygen, namely: 4OH - ⁇ O 2 +2H 2 O + 4e - .
  • Oxygen can be exhausted through the exhaust port 510 on the reaction vessel 500 .
  • the filter part 440 is used for dissolving specific substance components in the gas from the electrochemical deoxygenation device of the refrigerator 1 in the second liquid storage space 421 .
  • the exhaust port 510 of the reaction vessel 500 communicates with the air inlet 423 of the casing 420, so that the oxygen generated in the reaction vessel 500 enters the air duct and is filtered, so that the electrolyte carried in the oxygen stays in the first Two liquid storage spaces 421 .
  • the first liquid storage space 210 is used to deliver liquid to the electrochemical oxygen removal device of the refrigerator 1 .
  • a liquid replenishment port 520 may be provided on the reaction vessel 500, and the liquid supply port 262 of the second chamber body 260 communicates with the liquid replenishment port 520 of the reaction vessel 500, so that the liquid in the first liquid storage space 210 flows through the liquid supply port sequentially. 262 and replenishment port 520 into the reaction vessel 500.
  • a liquid level switch 600 may be provided in the reaction vessel 500 for automatically opening and closing the liquid replenishment port 520 according to the liquid level in the reaction vessel 500 .
  • the liquid in the first liquid storage space 210 may be directly water, or may be converted into electrolyte. Since the electrolyte in the electrolyte carried by the oxygen is soluble in water, the liquid in the second liquid storage space 421 can also be water directly, or can be converted into an electrolyte.
  • the electrochemical oxygen removal device can be automatically replenished with water, and at the same time, the acidic or alkaline components in the exhaust gas generated by the electrochemical oxygen removal device can be removed, recovered and repeated. Utilizing the originally lost electrolyte, the whole process does not require professionals to operate, nor does it need to use electronic components.
  • the whole system has the advantages of integration, modularization and low cost.
  • the liquid storage device 20 Since the liquid storage device 20 has the function of filtration and recovery, and can use the liquid supply port 262 to output liquid to the external environment, when the liquid storage device 20 is combined with the electrochemical deoxygenation device of the refrigerator 1, the discharge of the electrochemical deoxygenation device The gas can be guided to the second liquid storage space 421, and the specific material components in the gas can be separated and recycled.
  • the electrolyte in the electrochemical deoxygenation device is insufficient, the first liquid storage space 210 can be used Therefore, the refrigerator 1 of this embodiment can solve problems such as difficulty in replenishing liquid and loss of electrolyte in the process of deoxygenation.
  • the liquid storage device 20 can also cooperate with other reaction devices 10, and is not limited to the electrochemical oxygen removal device in the above embodiments.
  • the liquid storage device 20 is independent of the reaction device 10 , which can avoid the risk caused by directly adding liquid to the reaction device 10 .
  • the cooperation between the air guide tube and the housing 420 realizes gas filtration by using water, avoids the use of consumable filter materials, and does not need to replace the filter materials, which is beneficial to save costs.
  • the design capacity of the liquid storage container 200 can meet the liquid replenishment requirement of the reaction device 10 within a set period of time.
  • Fig. 9 is a schematic structural diagram of a reaction system according to an embodiment of the present invention.
  • the reaction system may generally include a reaction device 10 and a liquid storage device 20 as in any of the above-mentioned embodiments.
  • the reaction system of this embodiment can realize the waste gas filtration and recycling of the chemical reaction process.
  • the liquid supply port 262 of the liquid storage container 200 is connected with the liquid replenishment port 520 of the reaction container 500 through a catheter, so that the first liquid storage space 210, the liquid supply port 262, the liquid replenishment port 520 and the reaction
  • the inner space of the container 500 forms an infusion channel.
  • the liquid replenishment port 520 is lower than the liquid supply port 262 of the liquid storage container 200 , so that the liquid in the first liquid storage space 210 can flow down to the liquid replenishment port 520 by its own gravity.
  • the liquid replenishment port 520 is located on the top of the reaction vessel 500, which can prevent the reaction vessel 500 from leaking.
  • the top of the reaction vessel 500 is also provided with an exhaust port 510 , which communicates with the second liquid storage space 421 through a gas pipe.
  • One end of the air pipe is connected to the exhaust port 510 , and the other end is connected to the air inlet 423 of the casing 420 .
  • Fig. 10 is a schematic structural diagram of a liquid level switch 600 of a reaction system according to an embodiment of the present invention.
  • the reaction system may further include a liquid level switch 600, which has a switch body 620, is disposed in the reaction vessel 500, and is used to move according to the liquid level in the reaction vessel 500, so as to open and close the liquid replenishment
  • the port 520 is used to allow or prevent the liquid in the first liquid storage space 210 from entering the reaction vessel 500 through the liquid replenishing port 520 . That is to say, the liquid level switch 600 is used to control the opening and closing of the liquid replenishing port 520 . That is, the liquid level switch 600 acts as a gate of the above-mentioned infusion channel, and plays a role of opening and closing the infusion channel.
  • the switch body 620 of the liquid level switch 600 moves according to the liquid level of the reaction vessel 500 to close or open the liquid replenishment port 520 , and the opening and closing process of the liquid replenishment port 520 does not require electronic control.
  • the reaction system of this embodiment has the function of automatic liquid replenishment, and there is no need to supply the liquid to the reaction vessel 500 from the external environment. Add liquid.
  • the switch body 620 is movably arranged below the liquid replenishment port 520, and when the liquid level in the reaction vessel 500 rises, it rises to press against the lower periphery of the liquid replenishment port 520 to close the liquid replenishment port 520.
  • the liquid replenishment port 520 is opened by descending the lower peripheral edge deviated from the liquid replenishment port 520 .
  • the switch body 620 can rise and abut against the lower peripheral edge of the liquid replenishment port 520 to close the liquid replenishment port 520, so that the liquid in the first liquid storage space 210 cannot pass through.
  • the liquid replenishment port 520 can also descend when the liquid level in the reaction vessel 500 drops to deviate and open the liquid replenishment port 520 , so that the liquid in the first liquid storage space 210 can flow down into the reaction vessel 500 by gravity.
  • the liquid level switch 600 also includes a float 610 , which is fixedly connected with the switch body 620 or integrated with the switch body 620 , and is used to drive the switch body 620 to move by floating or sinking in the reaction vessel 500 . That is to say, the switch body 620 is “driven” by the float 610 , and the power required for the movement of the float 610 is determined by the buoyancy it experiences in the reaction vessel 500 .
  • a part of the float 610 is immersed in the liquid, so that the float 610 is buoyed by the liquid.
  • the buoyancy force on the float 610 will also change, so that the resultant force of the buoyancy force on the float 610 and the gravity will change.
  • the buoyancy force on the float 610 will decrease. If the resultant force of the buoyancy force on the float 610 and gravity is downward, the float 610 will move downward. On the contrary, it will cause the float 610 to move upward.
  • the float 610 may rise or fall in a vertical direction, or may rise or fall in a curve.
  • the float 610 is rotatably arranged around an axis. That is, the float 610 of this embodiment does not move up and down in a straight line, but rises or falls in a manner of rotating around an axis. With such a design, it is only necessary to pivotally connect the float 610 to a certain fixed shaft, and there is no need to The installation of guide components with high dimensional accuracy has the advantages of compact structure, simple assembly process and good device reliability.
  • the movement trajectory is clear and definite, which makes the float 610 and the switch body 620 of this embodiment easy to move along a clear and definite movement trajectory, thereby improving the reliability of the liquid level switch 600 and reducing or avoiding the Due to the free movement of the float 610, problems such as poor sealing are caused.
  • the liquid level switch 600 may further include a rotating shaft 630 and a connecting piece 640 .
  • the rotating shaft 630 is fixed to the reaction container 500 .
  • the rotating shaft 630 may be fixed in the inner space of the reaction vessel 500 and fixedly connected with the inner wall of the reaction vessel 500 .
  • the rotating shaft 630 can also be detachably fixed to the reaction container 500, which can adjust the height of the rotating shaft 630 according to actual needs, so as to adjust the liquid level in the container at which the liquid replenishment starts.
  • the connecting member 640 is fixedly connected with the float 610 or integrally formed with the float 610 , and has a shaft hole formed therein for the rotating shaft 630 to be inserted into and rotatably matched to realize the rotatable connection. That is to say, the connecting member 640 assembles the rotating shaft 630 and the float 610 into an organic whole, so that the float 610 can rotate around the rotating shaft 630 .
  • the float 610 By opening a shaft hole on the connecting piece 640 and rotatably fitting the rotation shaft 630 with the shaft hole, the float 610 can be rotatably assembled to the rotation shaft 630 .
  • the structure is extraordinar and the process is simple.
  • the switch body 620 is rod-shaped.
  • An assembly opening is also formed on the connecting member 640 for a part of the switch body 620 to be inserted thereinto achieve fixed assembly. That is to say, a part of the switch body 620 is indirectly fixedly connected to the float 610 by being fixedly assembled with the connecting piece 640 .
  • a part of the above-mentioned switch body 620 can be assembled with the assembly opening of the connecting piece 640 through an interference fit.
  • the rotating shaft 630 and the switch body 620 are respectively assembled to the connecting piece 640 fixedly connected with the float 610 or integrated with the float 610 to form the liquid level switch 600 with strong structural integrity.
  • the liquid storage device 20 with the function of filtration and recovery and the refrigerator 1 having the same of the present invention since the liquid storage device 20 has a filter mechanism 400, a first liquid storage container 200 is formed in the housing 420 of the filter mechanism 400.
  • the space 210 communicates with the second liquid storage space 421, and the filter part 440 of the filter mechanism 400 is used to dissolve the specific substance components in the gas of the external environment in the second liquid storage space 421, so as to enter the first liquid storage space for recycling Therefore, the present invention provides a liquid storage device 20 with the function of filtration and recovery.
  • the liquid storage device 20 can separate specific substances in the gas and be recycled, thereby reducing or avoiding pollution caused by gas discharge. At the same time improve resource utilization efficiency.
  • the reaction device 10 may be an electrolytic oxygen removal device, so the reaction system formed by the electrolytic oxygen removal device and the liquid storage device 20 is an electrolytic oxygen removal system.
  • the invention also provides an electrolytic deoxygenation system for a refrigerator.
  • Fig. 11 is a schematic structural diagram of an electrolytic deoxygenation system 2 for a refrigerator 1 according to an embodiment of the present invention.
  • the electrolytic deoxygenation system 2 may generally include an electrolytic deoxygenation device 10 and a liquid storage device 20 .
  • the electrolytic oxygen removal device 10 is organically combined with the liquid storage device 20 to form the electrolytic oxygen removal system 2, which can solve problems such as difficulty in rehydration, high safety risks, exhaust gas pollution, and electrolyte loss in the oxygen removal process. , to a certain extent, it can ensure the continuous deoxygenation process, which is beneficial to promote the popularization and application of the electrolytic deoxygenation device 10 in the refrigerator 1 field, and improve the freshness preservation performance of the refrigerator 1 .
  • the electrolytic deoxygenation device 10 has a reaction vessel 110 , and the interior of the reaction vessel 110 of the electrolytic deoxygenation device 10 forms a reaction place where an electrochemical reaction is performed to consume oxygen.
  • the electrochemical reaction uses oxygen as a reactant, and is carried out inside the reaction container 110 of the electrolytic deoxygenation device 10 .
  • the reaction container 110 of the electrolytic deoxygenation device 10 may contain an electrolytic solution, and the electrochemical components of the electrolytic deoxygenation device 10 may be immersed in the electrolytic solution to perform an electrochemical reaction.
  • a liquid replenishment port 116 is opened on the reaction container 110 , and the liquid replenishment port 116 forms an opening communicating with the inner and outer spaces of the reaction container 110 .
  • the liquid storage device 20 has a liquid storage container 200, the interior of the liquid storage container 200 forms a liquid storage space (also referred to as the first liquid storage space) 210, and the liquid storage container 200 is provided with a liquid supply port for communicating with the liquid replenishment port 116 262 , used to replenish liquid to the reaction vessel 110 . That is to say, the liquid storage container 200 is used as a replenishment chamber of the reaction container 110 , and liquid can be added to the reaction container 110 .
  • the electrolytic oxygen removal system 2 has a liquid storage device 20 for replenishing liquid to the reaction vessel 110 of the electrolytic oxygen removal device 10, this makes the electrolytic oxygen removal system 2 of this embodiment integrate the oxygen removal function and the liquid replenishment function at the same time, and can utilize Its own liquid storage device 20 replenishes liquid to the reaction vessel 110, which is beneficial to reduce the difficulty of replenishing liquid in the electrolytic deoxygenation device 10.
  • the liquid replenishment process of the electrolytic deoxygenation device 10 is safer, more effective and timely, and can further ensure the deoxygenation effect of the electrolytic deoxygenation device 10.
  • the liquid supply port 262 is located at the bottom section of the liquid storage container 200 .
  • the replenishment port 116 is located at the top section of the reaction vessel 110 .
  • the liquid supply port 262 is higher than the liquid replenishment port 116 .
  • the liquid supply port 262 of the liquid storage container 200 is higher than the liquid replenishment port 116 of the reaction container 110, the liquid from the liquid storage container 200 can enter the reaction container 110 by its own gravity, which makes the liquid replenishment process of the electrolytic oxygen removal system 2 rely on mechanical
  • the structure is automatic, which is beneficial to reduce the cost of electric control and improve the degree of automation.
  • the electro-deoxygenation system 2 may further include a liquid infusion tube 30 , one end of which communicates with the liquid supply port 262 and the other end communicates with the liquid replenishment port 116 , for guiding the liquid from the liquid supply port 262 to the liquid replenishment port 116 .
  • the infusion tube 30 to connect the liquid supply port 262 and the liquid rehydration port 116, which can ensure the smooth progress of the liquid infusion process, and allow the distance between the liquid storage device 20 and the electrolytic deoxygenation device 10 to be appropriately extended.
  • the liquid storage device can be 20 is set at a position that is easily accessible by personnel, so that users or engineers can perform maintenance or add liquid to the liquid storage container 200 .
  • the liquid in the liquid storage container 200 can be directly water, or can be converted into electrolyte. Since the electrolyte in the electrolyte carried by oxygen is soluble in water, the liquid in the housing 420 described below can also be directly water, or can be converted into an electrolyte.
  • FIG. 12 is a schematic structural diagram of the electro-deoxygenation device 10 used in the electro-de-oxygenation system 2 of the refrigerator 1 according to an embodiment of the present invention.
  • FIG. 13 is a schematic exploded view of the electrolytic deoxygenation device 10 used in the electrolytic deoxygenation system 2 shown in FIG. 12 .
  • the electrolytic deoxygenation device 10 may generally include the above-mentioned reaction vessel 110 and an anode plate 140 and a cathode plate 120 .
  • This embodiment is only an example for the structure of the electrolytic deoxygenation device 10 , but it should not be considered that the structure of the electrolytic deoxygenation device 10 is limited thereto.
  • the reaction container 110 may be in the shape of a box.
  • a side opening 114 may be opened on the reaction vessel 110 .
  • the cathode plate 120 is disposed at the side opening 114 to define together with the reaction vessel 110 a liquid storage chamber for containing the electrolyte, and is configured to consume oxygen in the storage space 210 of the refrigerator 1 through an electrochemical reaction.
  • the side opening 114 can communicate with the storage space of the refrigerator 1, which allows the cathode plate 120 to communicate with the storage space in air flow. Oxygen in the air can undergo a reduction reaction at the cathode plate 120 , namely: O 2 +2H 2 O+4e ⁇ ⁇ 4OH ⁇ .
  • one of the walls of the reaction vessel 110 may be opened to form the side opening 114 .
  • the cathode plate 120 in this embodiment can directly serve as a lateral wall of the reaction vessel 110 for sealing the liquid storage chamber.
  • the liquid storage chamber of the electrolytic deoxygenation device 10 can contain an alkaline electrolyte, such as 1 mol/L NaOH, and its concentration can be adjusted according to actual needs.
  • the anode plate 140 is disposed in the liquid storage chamber and is configured to provide reactants to the cathode plate 120 through an electrochemical reaction and generate oxygen.
  • the OH ⁇ produced by the cathode plate 120 can undergo an oxidation reaction at the anode plate 140 to generate oxygen, namely: 4OH ⁇ ⁇ O 2 +2H 2 O+4e ⁇ .
  • An anode power supply terminal 142 is formed on the anode plate 140 . to connect to an external power supply.
  • the reaction vessel 110 is also provided with an exhaust port 112 for allowing the gas generated in the reaction vessel 110 to be discharged to the inner space of the casing described below.
  • the anode plate 140 in this embodiment generates oxygen when performing an electrochemical reaction, and the exhaust port is used to allow the oxygen generated by the anode plate 140 to discharge.
  • the exhaust port 112 can be disposed close to the top of the reaction vessel 110, which can reduce or avoid electrolyte leakage.
  • an exhaust pipe 160 may be connected to the exhaust port 112 , and the exhaust pipe may communicate with the air delivery pipe 40 .
  • the electrolytic deoxygenation device 10 may further include a partition 130 and a fixing component 150 .
  • the separator 130 is disposed in the liquid storage chamber and between the cathode plate 120 and the anode plate 140 for separating the cathode plate 120 and the anode plate 140 to prevent the electrolytic deoxidizer 10 from short circuiting.
  • a plurality of protrusions 132 are formed on the side of the separator 130 facing the anode plate 140, the protrusions 132 are in contact with the anode plate 140, and the cathode plate 120 is attached to a side of the separator 130 away from the protrusions 132. side, so as to form a preset gap between the cathode plate 120 and the anode plate 140 , thereby separating the cathode plate 120 from the anode plate 140 .
  • the fixing assembly 150 can be disposed on the outside of the cathode plate 120 and configured to fix the cathode plate 120 at the side opening 114 of the reaction vessel 110 .
  • the fixing assembly 150 may further include a metal frame 152 and a support 154 .
  • the metal frame 152 is attached to the outside of the cathode plate 120 .
  • the metal frame 152 is in direct contact with the cathode plate 120 and can play a role of pressing the cathode plate 120, and the cathode power supply terminal 152b of the cathode plate 120 can also be provided on the metal frame 152 to connect with an external power supply.
  • the supporting member 154 is formed with an insertion slot.
  • the metal frame 152 When the surrounding portion 152 a of the metal frame 152 enters the insertion slot of the support member 154 , the metal frame 152 can be fixed and positioned by the support member 154 , so that the metal frame 152 presses the cathode plate 120 .
  • the electrolysis oxygen removal system 2 further includes a filter mechanism 400 having a housing 420 and a filter part 440 .
  • the structure of the filter mechanism 400 is shown in FIG. 4 and FIG. 5 , the inner space (also called the second liquid storage space) 421 of the housing 420 communicates with the liquid storage space 210 , and the filter part 440 is arranged inside the housing 420
  • the space 421 is used to dissolve the specific substance components in the gas from the exhaust port 112 in the inner space 421 of the casing 420 so as to enter the liquid storage space 210 for recycling.
  • the gas discharged from the exhaust port 112 can be filtered under the function of the filter part 440 to separate specific material components and make the specific material components stay in the inner space 421 of the casing 420 .
  • a space for containing liquid is formed in the casing 420 , for example, an electrolyte or water containing a specific component may be contained.
  • the specific substance components in the gas discharged from the reaction vessel 110 can be dissolved in the inner space 421 of the housing 420 means dissolved in the liquid contained in the reaction vessel 110 .
  • the filter mechanism 400 can dissolve the specific substance components in the gas discharged from the electrolytic oxygen removal device 10 in the inner space 421 of the housing 420, so that the gas to be discharged can be filtered, which is beneficial to reduce the concentration of the gas discharged from the electrolytic oxygen removal device 10. Corrosive, reducing the adverse impact of the oxygen removal process on the environment.
  • the housing 420 of the filter mechanism 400 is in communication with the liquid storage space 210, the specific substance components dissolved in the housing 420 can enter the liquid storage space 210, therefore, the specific substances in the gas discharged by the electrolytic deoxygenation device 10 Components can be recycled and reused, which helps to reduce resource consumption in the oxygen removal process.
  • the specific material components mentioned above are water-soluble substances.
  • the liquid components stored in the housing 420 and the liquid storage container 200 can be adjusted according to the physical and chemical properties of the specific material components to be separated.
  • the housing 420 is inserted into the liquid storage space 210 , and the bottom of the housing 420 is opened for communication.
  • the liquid outlet hole of the liquid storage space 210 allows the liquid in the casing 420 to flow back into the liquid storage container 200 .
  • the liquid storage container 200 may be substantially in the shape of a cuboid, and the casing 420 may be inserted into the liquid storage container 200 as an inner sleeve.
  • the examples of the shapes of the liquid storage container 200 and the housing 420 are only schematic, and those skilled in the art should easily expand them, so they will not be listed one by one here.
  • the liquid outlet hole 422 can be used as a "window" for material exchange between the inner space 421 of the housing 420 and the inner space of the liquid storage container 200 (ie, the liquid storage space 210 ).
  • the liquid outlet hole 422 can keep the inner space 421 of the housing 420 consistent with the liquid level in the inner space of the liquid storage container 200 , and make the liquid in the housing 420 easily diffuse into the liquid storage container 200 .
  • the housing 420 Since the housing 420 is disposed in the inner space of the liquid storage container 200 and communicates with the liquid storage container 200 through the liquid outlet hole 422 at the bottom of the housing 420, the liquid in the housing 420 can pass through the liquid outlet hole downwards by its own gravity. 422 and return to the liquid storage container 200, which makes the recovery process simple and effective.
  • the casing 420 defines an air inlet 423 for communicating with the exhaust port 112 and the inner space 421 of the casing 420 .
  • the electrolytic deoxygenation system 2 may further include a gas delivery pipe 40 , one end of which communicates with the exhaust port 112 and the other end communicates with the air inlet 423 for guiding the gas from the exhaust port 112 to the air inlet 423 .
  • Using the gas delivery pipe 40 to connect the exhaust port 112 and the intake hole 423 can simplify the connection structure of the gas delivery pipeline between the exhaust port 112 and the intake hole 423 and improve the flexibility of the assembly process.
  • the filter part 440 is an air duct, which is inserted into the inner space 421 of the casing 420 from the air inlet 423 and extends to the bottom section in the casing 420, so that the air from the exhaust port 112 The gas is guided to the bottom section inside the housing 420 so that certain substance components in the gas from the exhaust port 112 dissolve in the inner space 421 of the housing 420 during the ascent.
  • the air guiding tube of this embodiment can be a straight tube with openings at both ends to facilitate the inflow or outflow of gas. The structure is simple and has a better air guiding effect.
  • Extending the air duct to the bottom section of the housing 420 allows the air duct to transport the gas to the depth of the liquid in the housing 420, thereby prolonging the flow path of the gas in the housing 420, and the gas flowing out of the air duct is rising During the process, it can fully contact with the liquid in the shell 420, so that specific substances in the gas can be dissolved in the shell 420, which enables the electrolytic oxygen deoxygenation system 2 to obtain better filtration, purification and recovery effects with a compact and simple structure.
  • the shape of the air duct can be transformed into a vertically curved hook-shaped tube, and it has a straight tube section extending to the bottom section of the housing 420 and a curved section extending upward from the end of the straight tube section.
  • the ends of the bent sections are slightly higher than the ends of the straight sections to direct the gas flowing through them upwards.
  • the straight section resembles an umbrella shaft, and the bent section resembles an umbrella handle attached to the end of the umbrella shaft.
  • the curved pipe section is bent and extended upward from the end of the straight pipe section, which can guide the gas flowing out of the airway to flow upward, so that the direction of movement of the gas is more definite.
  • the fact that the end of the curved pipe section is slightly higher than the end of the straight pipe section means that the end of the curved pipe section is still in the bottom section of the housing 420 , which does not significantly shorten the flow path of the gas during the dissolution process.
  • the housing 420 is also provided with an air outlet 424 , which is spaced apart from the air inlet 423 on the top of the housing 420 , and is used to discharge the gas that flows through the air duct and the inner space of the housing 420 and is separated into specific material components.
  • the air outlet 424 is used to discharge the filtered gas to the external environment, for example, it can be discharged to the air of the external environment.
  • the air inlet hole 423 and the air outlet hole 424 may be respectively located on the top cover of the casing 420 (ie, the first compartment cover 428 described below).
  • the air inlet hole 423 and the air outlet hole 424 may be circular openings respectively.
  • the air inlet hole 423 and the air outlet hole 424 in this embodiment may be tubular through holes respectively.
  • the air guide tube and the air inlet 423 may be in one piece.
  • the tube hole wall of the air inlet 423 can continuously extend downwards and protrude into the casing, serving as an air guide tube.
  • an air outlet conduit may be connected to the air outlet hole 424 for guiding air.
  • the housing 420 may be integrally formed. In other optional embodiments, the housing 420 may be formed by connecting multiple different parts.
  • the casing 420 may include a first compartment body 426 with a top opening and a first compartment cover 428 closing the top opening of the first compartment body 426 .
  • the air inlet hole 423 and the air outlet hole 424 are located on the first cover 428 at intervals from each other.
  • the first chamber body 426 may be in the shape of a straight tube with a diameter greater than that of the airway.
  • the top end of the first compartment body 426 is open and is in sealing connection with the first compartment cover 428 .
  • the bottom end of the first chamber body 426 is closed, and the above-mentioned liquid outlet hole 422 is opened thereon.
  • the air inlet hole 423 together with the air guide tube and the air outlet hole 424 are covered by the first chamber body 426 to form a sleeve structure.
  • the bottom end of the air guide tube is higher than the bottom end of the first compartment body 426 , preventing the gas flowing out of the air guide tube from escaping the first compartment body 426 .
  • the liquid storage container 200 can be integrally formed, which is beneficial to improve the sealing effect of the liquid storage container 200 and prevent liquid leakage.
  • the liquid storage container 200 may be formed by connecting multiple different components.
  • the liquid storage container 200 may include a second compartment body 260 with a top opening and a second compartment cover 280 closing the top opening of the second compartment body 260 .
  • the second bin body 260 may be in the shape of a cuboid tank without a cover, and its volume is larger than that of the first bin body 426 .
  • an installation opening 282 is opened on the second cover 280 .
  • the hole wall of the installation port 282 extends upward to form a hollow cylindrical external thread interface 288 . Since the externally threaded interface 288 extends upward from the hole wall of the installation port 282 , the upper edge of the externally threaded interface 288 is higher than the upper surface of the second compartment cover 280 and higher than the upper edge of the liquid filling tank 286 described later. This can control the maximum liquid level of the liquid filling process below the upper edge of the externally threaded interface 288 .
  • the first compartment cover 428 has a closing cover plate 428a located above the first compartment body 426 and an annular internal thread interface 428b extending downward from the outer peripheral edge of the closing cover plate 428a.
  • the closing cover plate 428a is used to cover the top opening of the first warehouse body 426 .
  • the ring-shaped internal thread interface 428 b is screwed to the external thread interface 288 , so that the first compartment cover 428 is detachably connected to the second compartment cover 280 . That is, the annular internal thread interface 428b is used to connect the first compartment cover 428 to the second compartment cover 280 .
  • the first chamber body 426 extends downward from the lower surface of the closing cover plate 428a, and is inserted into the liquid storage container 200 after passing through the external threaded interface 288 .
  • the installation port 282 can be closed by screwing the first compartment cover 428 and the second compartment cover 280, which can simplify the installation and fixing process of the filter mechanism 400, realize one-step installation, and at the same time make the first compartment body 426 function as a "air trap”. effect.
  • the filtration and recovery process of the electrolytic deoxygenation system 2 used in the refrigerator 1 in this embodiment is similar to the filtration and recovery process of the liquid storage device 20 , as shown in FIG. 7 .
  • the direction of the arrow in the figure shows the flow direction of the gas, or the flow direction of the liquid. Due to the limitation of the "air trap" of the casing 420, the gas flowing out of the air duct can only rise in the form of bubbles inside the first warehouse body 426 until it reaches the top of the first warehouse cover 428 above the first warehouse body 426.
  • the air outlet hole 424 is exhausted, thereby completing the filtering process.
  • the above screw fastening installation method can also be changed to an interference fit or sealing connection with a sealing ring, as long as the sealing is guaranteed to be watertight and airtight.
  • the gas discharged from the exhaust port 112 contains soluble acidic substances or alkaline substances, these specific substance components are filtered and left in the first chamber body 426, and gradually pass through the liquid outlet hole at the bottom of the first chamber body 426 422, so as to diffuse into the liquid in the second chamber body 260.
  • the first chamber body 426 can be used as a replenishment chamber, and the liquid inside it can be sent to the reaction container 110 again in the form of replenishment, so as to achieve reuse.
  • a liquid filling opening 284 may be opened on the second compartment cover 280 , and the opening wall thereof extends downward to form a liquid filling groove 286 . Since the liquid filling tank 286 extends downward from the upper surface of the second warehouse cover 280, and the external threaded interface 288 extends upward from the upper surface of the second warehouse cover 280, therefore, when the liquid filling port 284 is extended to the second warehouse body 260 When adding liquid, even if the liquid adding process causes the second chamber body 260 to overflow, the liquid level during overflow will not exceed the external threaded interface 288 .
  • a part of the tank wall of the liquid adding tank 286 extends downwards obliquely, so that a tapered opening is formed at the bottom of the liquid adding tank 286 . That is to say, the water filling tank is an inclined through hole with a certain depth, which is convenient for the user to observe the liquid level when adding liquid.
  • There is a liquid level mark on the tank wall extending downwards to indicate the liquid level during the liquid filling process.
  • the liquid level mark can be designed as a "maximum liquid level scale line", which is used to remind the user that the liquid has been filled.
  • a liquid supply port 262 is provided at the bottom section of the second chamber body 260 to allow the liquid in the second chamber body 260 to flow out automatically by gravity, which is beneficial to improve the automation of the liquid supply process.
  • the edge of the second compartment cover 280 has a protrusion 287 protruding outward for applying force.
  • the user can apply force to the second compartment cover 280 by grabbing or other actions, so as to realize the disassembly process between the second compartment cover 280 and the second compartment body 260 .
  • the periphery of the closing place between the second warehouse cover 280 and the second warehouse body 260 can be provided with an elastic sealing ring, which is convenient to realize sealing by pressing between the second warehouse cover 280 and the second warehouse body 260, so as to prevent the second Storehouse body 260 leaks.
  • Fig. 14 is a schematic block diagram of a refrigerator 1 according to another embodiment of the present invention.
  • the refrigerator 1 may include the electrolytic deoxygenation system 2 as in any of the above embodiments, and may further include a box.
  • the inside of the box body forms a storage space.
  • the electro-deoxygenation device 10 is in airflow communication with the storage space, so that the electro-deoxygenation device 10 uses electrochemical reaction to consume oxygen in the storage space.
  • the cathode plate 120 of the electrolytic deoxygenation device 10 is in airflow communication with the storage space.
  • the cathode plate may be arranged facing the storage space, or the cathode plate may be connected to the storage space through a connecting pipeline.
  • water can be automatically replenished to the electrolytic deoxygenation device 10, and at the same time, the acidic or alkaline components in the waste gas generated by the electrolytic deoxygenation device 10 can be removed, recovered and repeated. Utilizing the originally lost electrolyte, the whole process does not require professionals to operate, nor does it need to use electronic components.
  • the whole system has the advantages of integration, modularization and low cost.
  • the liquid storage device 20 is independent of the electrolytic deoxygenation device 10 , which can avoid the risk caused by directly adding liquid to the electrolytic deoxygenation device 10 .
  • the design capacity of the liquid storage container 200 can meet the liquid replenishment demand of the electrolytic deoxygenation device 10 within a set period of time.
  • the cooperation between the air guide tube and the housing 420 realizes gas filtration by using water, avoids the use of consumable filter materials, and does not need to replace the filter materials, which is beneficial to save costs.
  • the electrolysis oxygen removal system 2 may further include a liquid level switch 600, as shown in FIG. 10 . It is arranged in the reaction container 110, and has a switch body 620, and is used to move according to the liquid level in the reaction container 110, so as to open and close the liquid replenishment port 116, so as to allow or prevent the liquid in the liquid storage container 200 from flowing through the liquid supply port 262 and replenishment port 116 into the reaction vessel 110 . That is to say, the liquid level switch 600 is used to control the opening and closing of the liquid replenishing port 116 . That is, the liquid level switch 600 acts as a gate of the infusion channel, and plays a role of opening and closing the infusion channel. The switch body 620 of the liquid level switch 600 moves according to the liquid level of the reaction vessel 110 to close or open the liquid replenishment port 116 , and the opening and closing process of the liquid replenishment port 116 does not require electronic control.
  • a liquid level switch 600 is arranged in the reaction container 110, and has a switch body 620, and is
  • the electrolytic deoxygenation system 2 of this embodiment has the function of automatic liquid replenishment, and there is no need to send water from the external environment.
  • the reaction vessel 110 is filled with liquid.
  • the switch body 620 is movably arranged below the liquid replenishment port 116, and when the liquid level in the reaction vessel 110 rises, it rises to press against the lower peripheral edge of the liquid replenishment port 116 to close the liquid replenishment port 116, and in the reaction container When the liquid level in 110 is lowered, the liquid replenishment port 116 is opened by descending the lower peripheral edge deviated from the liquid replenishment port 116 .
  • the switch body 620 can rise when the liquid level in the reaction container 110 rises and abut against the lower peripheral edge of the liquid replenishment port 116 to close the liquid replenishment port 116, so that the liquid in the liquid storage container cannot pass through the liquid replenishment port 116 , can also descend when the liquid level in the reaction vessel 110 drops to deviate and open the liquid replenishment port 116 , so that the liquid in the liquid storage vessel can flow down into the reaction vessel 110 by gravity.
  • the liquid level switch 600 also includes a float 610, which is fixedly connected with the switch body 620 or is integral with the switch body 620, and is rotatably arranged around an axis, and is used for floating or sinking in the reaction vessel 110 by rotating around the axis, thereby Drive the switch body 620 to move. That is to say, the switch body 620 is “driven” by the float 610 , and the power required for the movement of the float 610 is determined by the buoyancy it experiences in the reaction vessel 110 .
  • a part of the float 610 is immersed in the liquid, so that the float 610 is buoyed by the liquid.
  • the buoyancy force on the float 610 will also change, so that the resultant force of the buoyancy force and gravity on the float 610 will change.
  • the buoyancy force on the float 610 will decrease, and if the resultant force of the buoyancy force on the float 610 and gravity is downward, the float 610 will move downward. On the contrary, it will cause the float 610 to move upward.
  • the float 610 of this embodiment does not move up and down in a straight line, but rises or falls by rotating around an axis. With this design, it is only necessary to pivotally connect the float 610 to a fixed shaft, and no installation size is required.
  • High-precision guide components have the advantages of compact structure, simple assembly process, and high device reliability.
  • the movement trajectory is clear and definite, which makes the float 610 and the switch body 620 of this embodiment easy to move along a clear and definite movement trajectory, thereby improving the reliability of the liquid level switch 600 and reducing or avoiding the Due to the free movement of the float 610, problems such as poor sealing are caused.
  • the liquid level switch 600 may further include a rotating shaft 630 and a connecting piece 640 .
  • the rotating shaft 630 is fixed to the reaction vessel 110 .
  • the rotating shaft 630 may be fixed in the inner space of the reaction vessel 110 and fixedly connected with the inner wall of the reaction vessel 110 .
  • the rotating shaft 630 can also be detachably fixed to the reaction container 110, which can adjust the height of the rotating shaft 630 according to actual needs, so as to adjust the liquid level in the container at which the liquid replenishment starts.
  • the connecting member 640 is fixedly connected with the float 610 or integrally formed with the float 610 , and has a shaft hole formed therein for the rotating shaft 630 to be inserted into and rotatably matched to realize the rotatable connection. That is to say, the connecting member 640 assembles the rotating shaft 630 and the float 610 into an organic whole, so that the float 610 can rotate around the rotating shaft 630 .
  • the float 610 By opening a shaft hole on the connecting piece 640 and rotatably fitting the rotating shaft 630 with the shaft hole, the float 610 can be rotatably assembled to the rotating shaft 630.
  • the structure is extraordinar and the process is simple.
  • the switch body 620 is rod-shaped.
  • An assembly opening is also formed on the connecting member 640 for a part of the switch body 620 to be inserted thereinto achieve fixed assembly. That is to say, a part of the switch body 620 is indirectly fixedly connected to the float 610 by being fixedly assembled with the connecting piece 640 .
  • a part of the above-mentioned switch body 620 can be assembled with the assembly opening of the connecting piece 640 through an interference fit.
  • the rotating shaft 630 and the switch body 620 are respectively assembled to the connecting piece 640 fixedly connected with the float 610 or integrated with the float 610 to form the liquid level switch 600 with strong structural integrity.
  • the electrolytic deoxygenation system 2 used in the refrigerator 1 and the refrigerator 1 having it in this embodiment because the electrolytic deoxygenation system 2 has a liquid storage device 20 for replenishing liquid to the reaction vessel 110 of the electrolytic deoxygenation device 10, which makes The electrolytic deoxygenation system 2 of the present invention is integrated with a deoxygenation function and a liquid replenishment function at the same time, and can use its own liquid storage device 20 to replenish liquid to the reaction vessel 110, which is beneficial to reduce the difficulty of liquid replenishment of the electrolytic oxygen deoxidizer 10, and the electrolytic deoxygenator 10
  • the fluid replenishment process is safer, more effective, more timely, and more intelligent, and can further ensure the deoxygenation effect of the electrolytic deoxygenation device 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种储液装置以及具有其的电解除氧***和冰箱。储液装置包括:储液容器,其内部形成第一储液空间;和过滤机构,其具有壳体以及过滤部,壳体内形成与第一储液空间相通的第二储液空间,过滤部设置于第二储液空间,并用于使来自外部环境的气体中的特定物质成分溶解于第二储液空间,以便进入第一储液空间供回收使用。该储液装置具备过滤回收功能,可使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。

Description

储液装置以及具有其的电解除氧***和冰箱 技术领域
本发明涉及保鲜设备,特别是涉及一种储液装置以及具有其的电解除氧***和冰箱。
背景技术
对于部分反应装置而言,例如用于通过电化学反应降低冰箱内部氧气的电化学反应装置,发生电化学反应的过程需要电解液参与,且反应过程会产生气体,需要将产生的气体向外部环境排放。
在反应过程中,由于伴随着大量热量的产生,电解液会受热蒸发,这导致反应容器所排放的气体中可能会携带有微量的电解液蒸汽。大部分电解液为酸性溶液或者碱性溶液,具有腐蚀性。若不经处理直接将反应装置所产生的气体向空气排放,则可能会导致空气污染,危害生命健康。
此外,当反应装置所产生的气体携带有电解液蒸汽时,电解液会缓慢流失,这会导致资源浪费,提高生产成本。
对于一部分物品而言,例如果蔬,为延长保存期限,保证较高的新鲜度,一般应当保存在低氧低温的环境中。
为营造低氧低温的保鲜气氛,可在冰箱上安装电解除氧装置。电解除氧装置可以利用电化学反应消耗储物空间内的氧气。由于电化学反应通常在电解液中进行,且会消耗电解液的成分,因此,需要适时地向电解除氧装置加注液体,以维持电化学反应的正常进行。
电解液一般为酸性液体或者碱性液体,具备腐蚀性。若采用人工方式加注电解液,难免会存在安全风险。此外,若从外界向电解除氧装置补充液体,难免需要针对电解除氧装置及其周围的部件进行拆装,这会导致操作过程复杂,且会提高装置的损坏风险。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种储液装置以及具有其的电解除氧***和冰箱。
本发明的一方面的一个进一步的目的是要提供一种具备过滤回收功能的储液装置,使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。
本发明的一方面的又一个进一步的目的是要使储液装置的回收过程简易有效。
本发明的一方面的另一个进一步的目的是要使储液装置以精巧简单的结构获得较优的过滤净化效果。
本发明的一方面的再一个进一步的目的是要解决冰箱除氧过程中所存在的补液困难、电解液流失等问题。
本发明的另一方面的一个进一步的目的是要提供一种集成有除氧功能和补液功能的电解除氧***,降低电解除氧装置的补液难度,提高除氧效果。
本发明的另一方面的另一个进一步的目的是使电解除氧***的补液过程依靠机械结构自动进行,降低电控成本,提高自动化程度。
本发明的另一方面的再一个进一步的目的是要降低电解除氧装置所排放的气体的腐蚀性,降低除氧过程对环境产生的不良影响。
本发明的另一方面的又一个进一步的目的是要使电解除氧装置所排放的气体中的特 定物质成分得到回收再利用,降低除氧过程的资源消耗。
根据本发明的一方面,提供了一种具备过滤回收功能的储液装置,包括:储液容器,其内部形成第一储液空间;和过滤机构,其具有壳体以及过滤部,壳体内形成与第一储液空间相通的第二储液空间,过滤部设置于第二储液空间,并用于使来自外部环境的气体中的特定物质成分溶解于第二储液空间,以便进入第一储液空间供回收使用。
可选地,壳体***第一储液空间内,且其底部开设有用于连通第一储液空间的出液孔,以允许第二储液空间内的液体回流至第一储液空间。
可选地,壳体上还开设有用于输入来自外部环境的气体的进气孔;且过滤部为导气管,从进气孔***第二储液空间,并延伸至第二储液空间的底部区段,以将外部环境的气体导引至第二储液空间的底部区段,使得外部环境的气体中的特定物质成分在气体上升过程中溶解于第二储液空间。
可选地,导气管为直管;或者导气管为竖弯钩状管,且其具有延伸至第二储液空间的底部区段的直管段以及自直管段的末端弯折向上延伸形成的弯管段;弯管段的末端略高于直管段的末端,用于将流经其的气体向上导引。
可选地,壳体上还开设有出气孔,位于壳体的顶部,用于排放流经导气管以及第二储液空间且被分离出特定物质成分的气体。
可选地,壳体包括具有顶部开口的第一仓体以及封闭第一仓体的顶部开口的第一仓盖,且进气孔和出气孔相互间隔地位于第一仓盖上。
可选地,储液容器包括具有顶部开口的第二仓体以及封闭第二仓体的顶部开口的第二仓盖;且第二仓盖上开设有安装口;安装口的孔壁向上延伸形成有中空筒状的外螺纹接口;第一仓盖具有位于第一仓体上方的封闭盖板以及从封闭盖板的外周缘向下延伸形成的环状内螺纹接口,环状内螺纹接口与外螺纹接口进行螺接,使得第一仓盖与第二仓盖可拆卸地连接;且第一仓体自封闭盖板的下表面向下延伸,穿过外螺纹接口之后***第一储液空间内。
可选地,第二仓盖上还开设有加液口,其口壁向下延伸形成加液槽;加液槽的一部分槽壁倾斜向下延伸设置,使加液槽的底部形成渐缩的开口。
可选地,储液容器的底部区段开设有供液口,用于向外部环境输出液体。
根据本发明的另一方面,还提供了一种用于冰箱的电解除氧***,包括:
电解除氧装置,其具有反应容器,反应容器的内部形成进行电化学反应以消耗氧气的反应场所;且反应容器上开设有补液口;和
如上所述的储液装置,储液装置的储液容器上开设有用于连通补液口的供液口,用于向反应容器补充液体。
可选地,供液口位于储液容器的底部区段,补液口位于反应容器的顶部区段;且
供液口高于补液口。
可选地,该电解除氧***还包括:
输液管,其一端连通供液口,另一端连通补液口,用于将来自供液口的液体导引至补液口。
可选地,反应容器上还开设有排气口,用于允许反应容器内产生的气体排出至过滤机构的壳体的内部空间;且
过滤部用于使来自排气口的气体中的特定物质成分溶解于壳体的内部空间,以便进入第一储液空间供回收使用。
可选地,壳体上开设有用于连通排气口与壳体的内部空间的进气孔;且
电解除氧***还包括输气管,其一端连通排气口,另一端连通进气孔,用于将来自排气口的气体导引至进气孔。
可选地,过滤部为导气管,自进气孔***壳体的内部空间,并延伸至壳体内的底部区段,以将来自排气口的气体导引至壳体内的底部区段,使得来自排气口的气体中的特 定物质成分在上升过程中溶解于壳体的内部空间;且
壳体上还开设有出气孔,与进气孔相互间隔地位于壳体的顶部,用于排放流经导气管以及壳体的内部空间且被分离出特定物质成分的气体。
可选地,壳体***储液空间,且其底部开设有用于连通第一储液空间的出液孔,以允许壳体内的液体回流至储液容器内。
可选地,该电解除氧***还包括:
液位开关,设置于反应容器内,且其具有开关本体,用于根据反应容器内的液位移动从而开闭补液口,以允许或制止储液容器内的电解液依次流经供液口和补液口进入反应容器内。
可选地,液位开关还包括浮子,与开关本体固定连接或与开关本体为一体件,且可绕轴转动地设置,用于在反应容器内通过绕轴转动实现上浮或下沉,从而带动开关本体移动。
根据本发明的又一方面,还提供了一种冰箱,包括:
如以上任一项的电解除氧***,其中,电解除氧装置与冰箱的储物空间气流连通,使得电解除氧装置利用电化学反应消耗冰箱的储物空间内的氧气。
本发明的具备过滤回收功能的储液装置以及具有其的冰箱,由于储液装置具有过滤机构,该过滤机构的壳体内形成有与储液容器的第一储液空间相通的第二储液空间,且过滤机构的过滤部用于使外部环境的气体中的特定物质成分溶解于第二储液空间,以便进入第一储液空间供回收使用,因此,本发明提供了一种具备过滤回收功能的储液装置,该储液装置可使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。
进一步地,本发明的具备过滤回收功能的储液装置以及具有其的冰箱,由于壳体***第一储液空间内,且通过位于壳体底部的出液孔与第一储液空间相连通,第二储液空间内的液体能够依靠自身重力向下通过出液孔并回流至第一储液空间,这使得储液装置的回收过程简易有效。
进一步地,本发明的具备过滤回收功能的储液装置以及具有其的冰箱,由于过滤部为导气管,且从壳体的进气孔***第二储液空间,并延伸至第二储液空间的底部区段,以将外部气体导引至第二储液空间的底部区段,流出导气管的气体在上升过程中能够与第二储液空间的液体充分接触,使得气体中的特定物质成分溶解于第二储液空间内,这使得储液装置能以精巧简单的结构获得较优的过滤净化效果。
更进一步地,本发明的具备过滤回收功能的储液装置以及具有其的冰箱,由于储液装置具备过滤回收功能,且可利用供液口向外部环境输出液体,因此,当将储液装置结合至冰箱的电化学除氧装置时,电化学除氧装置所排出的气体可被导引至第二储液空间,气体中的特定物质成分可以得到分离并被回收使用,当电化学除氧装置内的电解液不充足时,可利用第一储液空间内的液体进行补液,因此,本发明的储液装置能够解决冰箱除氧过程中所存在的补液困难、电解液流失等问题。
本发明的用于冰箱的电解除氧***以及具有其的冰箱,由于电解除氧***具有用于向电解除氧装置的反应容器补充液体的储液装置,这使得本发明的电解除氧***同时集成有除氧功能和补液功能,能够利用自身的储液装置向反应容器补液,有利于降低电解除氧装置的补液难度,电解除氧装置的补液过程更加安全、有效、及时、智能,可进一步保证电解除氧装置的除氧效果。
进一步地,本发明的用于冰箱的电解除氧***以及具有其的冰箱,由于储液容器的供液口高于反应容器的补液口,来自储液容器的液体可以依靠自身重力进入反应容器内,这使得电解除氧***的补液过程能够依靠机械结构自动进行,有利于降低电控成本,提高自动化程度。
进一步地,本发明的用于冰箱的电解除氧***以及具有其的冰箱,由于过滤机构可 使电解除氧装置排出的气体中的特定物质成分溶解于壳体的内部空间,从而使待排放气体得到过滤,这有利于降低电解除氧装置所排放气体的腐蚀性,降低除氧过程对环境产生的不良影响。
更进一步地,本发明的用于冰箱的电解除氧***以及具有其的冰箱,由于过滤机构的壳体与储液空间相连通,溶解于壳体内的特定物质成分可以进入储液空间,因此,电解除氧装置所排放的气体中的特定物质成分能够得到回收再利用,这有利于降低除氧过程的资源消耗。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的具备过滤回收功能的储液装置的示意性结构图;
图2是图1所示的储液装置的示意性透视图;
图3是图1所示的储液装置的示意性分解图;
图4是图1所示的储液装置的过滤机构的示意性结构图;
图5是图4所示的储液装置的过滤机构的示意性分解图;
图6是图3所示的储液装置的储液容器的第二仓盖的示意性结构图;
图7是图1所示的储液装置的过滤回收过程的示意图;
图8是根据本发明一个实施例的冰箱的示意性框图;
图9是根据本发明一个实施例的反应***的示意性结构图;
图10是根据本发明一个实施例的反应***的液位开关的示意性结构图;
图11是根据本发明一个实施例的用于冰箱的电解除氧***的示意性结构图;
图12是根据本发明一个实施例的用于冰箱的电解除氧***的电解除氧装置的示意性结构图;
图13是图12所示的用于电解除氧***的电解除氧装置的示意性分解图;
图14是根据本发明另一个实施例的冰箱的示意性框图。
具体实施方式
图1是根据本发明一个实施例的具备过滤回收功能的储液装置20的示意性结构图。本实施例的储液装置20具备过滤回收功能,可将气体中的特定物质成分分离并加以回收,以供利用。
图2是图1所示的储液装置20的示意性透视图。图3是图1所示的储液装置20的示意性分解图。储液装置20一般性地可包括储液容器200和过滤机构400。
其中,储液容器200内部形成第一储液空间210。该第一储液空间210内用于存放液体,例如含有特定成分的电解液或者水等,但不限于此。
过滤机构400具有壳体420以及过滤部440,壳体420内形成与第一储液空间210相通的第二储液空间421,过滤部440设置于第二储液空间421,并用于使来自外部环境的气体中的特定物质成分溶解于第二储液空间421,以便进入第一储液空间210供回收使用。第二储液空间421内也可以用于存放液体,例如含有特定成分的电解液或者水等。外部环境的气体中的特定物质成分溶解于第二储液空间421是指溶解于第二储液空间421所存放的液体中。
本实施例中,上述特定物质成分为可溶于水的物质。在一些可选的实施例中,可根据待分离的特定物质成分的物理化学性质调整第一储液空间210和第二储液空间421所 存放的液体成分。
由于第二储液空间421与第一储液空间210相通,因此,溶解于第二储液空间421的来自外部环境的气体中的特定物质成分可进入第一储液空间210供回收使用。
本实施例的储液装置20,由于具有过滤机构400,该过滤机构400的壳体420内形成有与储液容器200的第一储液空间210相通的第二储液空间421,且过滤机构400的过滤部440用于使外部环境的气体中的特定物质成分溶解于第二储液空间421,以便进入第一储物空间供回收使用,因此,本发明提供了一种具备过滤回收功能的储液装置20,使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。
在一些可选的实施例中,壳体420***第一储液空间210内。例如,储液容器200可以大致呈长方体状,壳体420可以作为内套管***第一储液空间210内。关于储液容器200和壳体420的形状举例,仅仅是示意性的,本领域技术人员应当易于拓展,此处不再一一枚举。
图4是图1所示的储液装置20的过滤机构400的示意性结构图。图5是图4所示的储液装置20的过滤机构400的示意性分解图。
壳体420的底部开设有用于连通第一储液空间210的出液孔422,以允许第二储液空间421内的液体回流至第一储液空间210。该出液孔422可作为两个储液空间之间进行物质交换的“窗口”。该出液孔422可使第一储液空间210的液面与第二储液空间421的液面保持一致,且使第二储液空间421内的液体易于扩散至第一储液空间210。
由于壳体420设置于第一储液空间210内,且通过位于壳体420底部的出液孔422与第一储液空间210相连通,第二储液空间421内的液体能够依靠自身重力向下通过出液孔422并回流至第一储液空间210,这使得储液装置20的回收过程简易有效。
在一些可选的实施例中,壳体420上还开设有用于输入来自外部环境的气体的进气孔423。该进气孔423可以开设于壳体420的顶部,例如可以位于壳体420的仓盖上,这可以避免第二储液空间421内所存放的液体泄漏。在一些可选的实施例中,进气孔423也可以开设于壳体420的侧壁上,并且高于第二储液空间421的常规液位。
过滤部440为导气管,从进气孔423***第二储液空间421,并延伸至第二储液空间421的底部区段,以将外部气体导引至第二储液空间421的底部区段,使得外部环境的气体中的特定物质成分在气体上升过程中溶解于第二储液空间421。使导气管延伸至第二储液空间421的底部区段,可使导气管将来自外部环境的气体输送至第二储液空间421内所存放液体的深处,从而延长气体在第二储液空间421内的流动路径。
由于过滤部440为导气管,且从壳体420的进气孔423***第二储液空间421,并延伸至第二储液空间421的底部区段,以将外部环境的气体导引至第二储液空间421的底部区段,流出导气管的气体在上升过程中能够与第二储液空间421的液体充分接触,使得气体中的特定物质成分溶解于第二储液空间421内,这使得储液装置20能以精巧简单的结构获得较优的过滤净化效果。
本实施例的导气管可为直管,其两端均为开口,以便于通入或流出气体,结构简单,具备较优的导气效果。
在一些可选的实施例中,导气管的形状可以变换为竖弯钩状管,且其具有延伸至第二储液空间421的底部区段的直管段以及自直管段的末端弯折向上延伸形成的弯管段。弯管段的末端略高于直管段的末端,用于将流经其的气体向上导引。
也就是说,本实施例的导气管可以呈竖弯钩形状,直管段类似于伞杆,弯管段类似于连接至伞杆末端的伞柄。使弯管端从直管段的末端弯折向上延伸,这可使流出导气管的气体被导引着向上流动,从而使得气体的运动方向更加明确。弯管段的末端略高于直管段的末端是指,弯管段的末端仍然处在第二储液空间421的底部区段中,这不会明显缩短气体在溶解过程的流动路径。
在一些可选的实施例中,壳体420上还开设有出气孔424,用于排放流经导气管以及第二储液空间421且被分离出特定物质成分的气体。且出气孔424位于壳体420的顶部,例如可以位于壳体420的仓盖上。该出气孔424用于将过滤后的气体排至外部环境,例如可以排放至外部环境的空气中。在一些实施例中,进气孔423和出气孔424可以分别为圆形开口。本实施例的进气孔423和出气孔424可以分别为管状通孔。其中,进气孔423的管孔孔壁向下连贯地延伸并伸入第二储液空间421内,作为导气管。在一些实施例中,出气孔424处可以连接有出气导管,用于导引气体。
在一些可选的实施例中,壳体420可为一体成型。在另一些可选的实施例中,壳体420可由多个不同的部件连接而成。例如壳体420可包括具有顶部开口的第一仓体426以及封闭第一仓体426的顶部开口的第一仓盖428。且进气孔423和出气孔424相互间隔地位于第一仓盖428上。第一仓体426可以为直管状,其管径大于导气管的管径。第一仓体426的顶端为开口状,且与第一仓盖428之间密封连接。第一仓体426的底端为闭合状,且其上开设有上述出液孔422。出液孔422可以为至少一个。
进气孔423连同导气管、以及出气孔424,被第一仓体426所包覆,形成套管结构。导气管的底端高于第一仓体426的底端,防止流出导气管的气体逃逸出第一仓体426。
在壳体420的仓盖上设置进气孔423和出气孔424,可以降低开孔难度,简化制造工艺,还能提高气体的排放效率。
在一些可选的实施例中,储液容器200可为一体成型,这有利于提高储液容器200的密封效果,防止漏液。在另一些可选的实施例中,储液容器200可由多个不同的部件连接而成。例如储液容器200可包括具有顶部开口的第二仓体260以及封闭第二仓体260的顶部开口的第二仓盖280。第二仓体260可以为无盖的长方体水槽状,其容积大于第一仓体426的容积。
图6是图3所示的储液装置20的储液容器200的第二仓盖280的示意性结构图,其中,图6(a)为立体图,图6(b)为主视图,图6(c)为俯视图。
第二仓盖280上开设有安装口282。安装口282的孔壁向上延伸形成有中空筒状的外螺纹接口288。由于该外螺纹接口288从安装口282的孔壁向上延伸形成,因此,外螺纹接口288的上边缘高于第二仓盖280的上表面,同时高于下述加液槽286的上边缘。这可将加液过程的最高液位控制在外螺纹接口288的上边缘以下。
第一仓盖428具有位于第一仓体426上方的封闭盖板428a以及从封闭盖板428a的外周缘向下延伸形成的环状内螺纹接口428b。其中,封闭盖板428a用于遮蔽第一仓体426的顶部开口。环状内螺纹接口428b与外螺纹接口288进行螺接,使得第一仓盖428与第二仓盖280可拆卸地连接。即,环状内螺纹接口428b用于将第一仓盖428连接至第二仓盖280。
第一仓体426自封闭盖板428a的下表面向下延伸,穿过外螺纹接口288之后***第一储液空间210内。
利用第一仓盖428与第二仓盖280进行螺接以封闭安装口282,可以简化过滤机构400的安装固定过程,实现一步安装到位,同时还可使第一仓体426发挥“隔气管”作用。
图7是图1所示的储液装置20的过滤回收过程的示意图,图中箭头方向示出气体流动方向,或者液体的流动方向。由于“隔气管”的限制,流出导气管的气体只能以气泡的形式在第一仓体426的内部上升,直至到达位于第一仓体426上方的第一仓盖428的出气孔424并被排出,从而完成过滤过程。在一些可选的实施例中,上述螺接紧固的安装方式也可以变换为过盈配合或者采用密封圈进行密封连接等方式,只要保证密封不漏水不透气即可。
当来自外部环境的气体含有可溶性的酸性物质或碱性物质时,这些特定物质成分被过滤留在了第一仓体426中,并逐渐通过第一仓体426底部的出液孔422,从而扩散到第二仓体260内的液体中。第一仓体426可作为补液仓,其内部的液体可以通过补液的形 式再次输送至发生反应的场所,从而实现再利用。
在一些可选的实施例中,第二仓盖280上可以开设有加液口284,其口壁向下延伸形成加液槽286。由于该加液槽286自第二仓盖280的上表面向下延伸,而外螺纹接口288自第二仓盖280的上表面向上延伸,因此,当从加液口284向第二仓体260添加液体时,即使加液过程导致第二仓体260溢液,溢液时的液面不会超过外螺纹接口288。
加液槽286的一部分槽壁倾斜向下延伸设置,使加液槽286的底部形成渐缩的开口。也就是说,加水槽为具有一定深度的倾斜通孔,这便于用户在加液时观察液位情况。倾斜向下延伸的槽壁上具有液位标识,以提示加液过程的液位。例如,该液位标识可被设计为“最高液位刻度线”,用于提示用户液体已注满。
储液容器200的底部区段开设有供液口262,用于向外部环境输出液体。供液口262可开设于第二仓体260的底部区段。也就是说,储液容器200在存放液体的同时,还可以利用供液口262向外部环境输送液体,以供利用,这有利于优化生产工艺,提高生产效率。例如,该供液口262可通过管路连接至进行电化学反应的电化学除氧装置,并向电化学除氧装置补充液体,例如电解液或水等。
在第二仓体260的底部区段开设供液口262,可使第二仓体260内的液体依靠重力自动流出,这有利于提高供液过程的自动化程度。
在一些可选的实施例中,第二仓盖280的边缘具有向外凸出以供施力的突起287。用户可通过抓取等动作向第二仓盖280施力,从而实现第二仓盖280与第二仓体260之间的拆装过程。
第二仓盖280与第二仓体260之间的闭合处的周缘可设置有弹性密封圈,便于通过第二仓盖280与第二仓体260之间的压合实现密封,以防第二仓体260漏水。
图8是根据本发明一个实施例的冰箱1的示意性框图。冰箱1具有反应装置10。冰箱1一般性地可包括如以上任一实施例的储液装置20。反应装置10可以为电化学除氧装置,用于通过电化学反应消耗冰箱1内部的氧气,起到降氧作用。在一些可选的实施例中,反应装置10可以根据实际需要替换为其他装置,例如用于除臭的反应装置10等。
电化学除氧装置可包括反应容器500,其内部形成进行电化学反应的场所。反应容器500内可以设置有电化学反应元件(阳极板、阴极板等),还存放有电解液,例如氢氧化钠溶液等。阳极板、阴极板分别浸于电解液中。
阴极板与冰箱1的储物间室的内部空间气流连通。且在通电情况下,阴极板用于通过电化学反应消耗储物间室内的氧气。例如,空气中的氧气可以在阴极板处发生还原反应,即:O 2+2H 2O+4e -→4OH -
阳极板与阴极板相互间隔地设置于反应容器500内。且在通电情况下,阳极板用于通过电化学反应向阴极提供反应物(例如,电子)且生成氧气。阴极板产生的OH -可以在阳极板处可以发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -。氧气可以通过反应容器500上的排气口510排出。
过滤部440用于使来自冰箱1的电化学除氧装置的气体中的特定物质成分溶解于第二储液空间421。例如,反应容器500的排气口510与壳体420的进气孔423相连通,使得反应容器500内所生成的氧气进入导气管,并被过滤,使得氧气中所携带的电解液滞留在第二储液空间421。
第一储液空间210用于向冰箱1的电化学除氧装置输送液体。例如,反应容器500上可开设有补液口520,第二仓体260的供液口262与反应容器500的补液口520相连通,使得第一储液空间210内的液体依次流经供液口262和补液口520从而进入反应容器500。反应容器500内可以设置有液位开关600,用于根据反应容器500内的液位自动地开闭补液口520。
本实施例中,由于电化学除氧装置的电化学反应会消耗水,因此,第一储液空间210内的液体可以直接为水,或者可以变换为电解液。由于氧气所携带的电解液中的电解质 溶于水,因此,第二储液空间421内的液体也可以直接为水,或者可以变换为电解液。
利用储液装置20和电化学除氧装置进行有机配合,可以自动地向电化学除氧装置补水,同时可以去除电化学除氧装置所产生的废气中的酸性成分或者碱性成分,回收并重复利用原本流失掉的电解质,整个过程无需专业人员进行操作,也无需使用电子元件,整个***具有集成化、模块化、低成本的优点。
由于储液装置20具备过滤回收功能,且可利用供液口262向外部环境输出液体,因此,当将储液装置20结合至冰箱1的电化学除氧装置时,电化学除氧装置所排出的气体可被导引至第二储液空间421,气体中的特定物质成分可以得到分离并被回收使用,当电化学除氧装置内的电解液不充足时,可利用第一储液空间210内的液体进行补液,因此,本实施例的冰箱1能够解决除氧过程中所存在的补液困难、电解液流失等问题。
在一些可选的实施例中,储液装置20还可以与其他反应装置10进行配合,并不限于以上实施例的电化学除氧装置。
储液装置20独立于反应装置10,可避免因直接对反应装置10加液所带来的风险。
采用导气管和壳体420相互配合,实现利用水进行气体过滤,可避免使用损耗性滤材,且无需更换滤材,有利于节约成本。
储液容器200的设计容量,可以满足设定时间段内反应装置10的补液需求。
图9是根据本发明一个实施例的反应***的示意性结构图。该反应***一般性地可包括反应装置10以及如上述任一实施例的储液装置20。本实施例的反应***可以实现化学反应过程的废气过滤和回收再利用。
如图9所示,储液容器200的供液口262与反应容器500的补液口520之间通过导液管相连通,使得第一储液空间210、供液口262、补液口520以及反应容器500的内部空间形成输液通道。
补液口520低于储液容器200的供液口262,这使得第一储液空间210内的液体可以依靠自身重力向下流至补液口520。补液口520位于反应容器500的顶部,这可以避免反应容器500漏液。
反应容器500的顶部还开设排气口510,通过一气管与第二储液空间421相连通。气管的一端连接至排气口510,另一端连接至壳体420的进气孔423。
图10是根据本发明一个实施例的反应***的液位开关600的示意性结构图。
在一些可选的实施例中,反应***还可以进一步地包括液位开关600,其具有开关本体620,设置于反应容器500内,并用于根据反应容器500内的液位移动,从而开闭补液口520,以允许或制止第一储液空间210的液体经由补液口520进入反应容器500。也就是说,液位开关600用于控制补液口520的开闭。即,液位开关600作为上述输液通道的闸门,起到通断输液通道的作用。液位开关600的开关本体620根据反应容器500的液位高低而进行移动,以此来封闭或打开补液口520,补液口520的开闭过程无需电控。
由于液位开关600可以根据反应容器500的液位自动地移动,以开闭补液口520,从而通断输液通道,因此本实施例的反应***具备自动补液功能,无需从外部环境向反应容器500添加液体。
开关本体620可移动地设置于补液口520的下方,并且在反应容器500内的液位升高的情况下通过上升至与补液口520的下周缘相抵压以封闭补液口520,且在反应容器500内的液位降低的情况下通过下降偏离补液口520的下周缘从而打开补液口520。
也就是说,开关本体620可在反应容器500内的液位升高的情况下上升并抵靠在补液口520的下周缘从而封闭补液口520,使得第一储液空间210内的液体无法通过补液口520,还可在反应容器500内的液位降低的情况下下降从而偏离并打开补液口520,使得第一储液空间210内的液体可以依靠重力向下流至反应容器500内。
液位开关600还包括浮子610,与开关本体620固定连接或与开关本体620为一体件,用于在反应容器500内通过上浮或下沉运动带动开关本体620移动。也就是说,开关本 体620由浮子610进行“驱动”,浮子610进行移动所需的动力由其在反应容器500内所受的浮力决定。
例如,浮子610的一部分通过浸于液体,从而使浮子610受到液体的浮力。当容器的内部空间的液位发生变化时,浮子610所受的浮力也会发生变化,从而使得浮子610所受的浮力与重力的合力发生变化。例如,当反应容器500内的液位降低时,浮子610所受的浮力会减小,若浮子610所受的浮力与重力的合力方向向下,则会导致浮子610向下运动。反之,则会导致浮子610向上运动。浮子610可以沿竖直方向上升或下降,或者可以沿曲线上升或下降。
在一些可选的实施例中,浮子610可绕轴转动地设置。即,本实施例的浮子610并非沿直线做升降运动,而是以绕轴转动的方式上升或下降,如此设计,仅需要使浮子610与某一固定轴进行可枢转地连接即可,无需安装尺寸精度较高的导向部件,具备结构精巧、装配过程简单、装置可靠性好的优点。
由于浮子610可绕轴转动地设置,运动轨迹清晰明确,这使得本实施例的浮子610和开关本体620易于沿清晰明确的运动轨迹移动,从而提高液位开关600的可靠性,减少或避免了因浮子610***而带来密封不严等问题。
液位开关600还可以进一步地包括旋转轴630和连接件640。
其中,旋转轴630固定于反应容器500。例如,旋转轴630可以固定于反应容器500的内部空间,且与反应容器500的容器内壁固定连接。
在一些可选的实施例中,旋转轴630还可以可拆卸地固定于反应容器500,这可以根据实际需要调节旋转轴630的高度,从而调节开始启动补液的容器内的液位高度。
连接件640与浮子610固定连接或与浮子610为一体件,其上形成有轴孔,以供旋转轴630***其中且可转动地配合从而实现可转动地连接。也就是说,连接件640将旋转轴630与浮子610装配成一个有机的整体,使得浮子610可绕旋转轴630转动。
通过在连接件640上开设轴孔,并使旋转轴630与轴孔可转动地配合,即可将浮子610可绕轴转动地装配至旋转轴630,结构精妙,工序简单。
开关本体620呈杆状。连接件640上还形成有装配口,以供开关本体620的一部分***其中从而实现固定装配。也就是说,开关本体620的一部分通过与连接件640固定装配,从而间接地与浮子610实现固定连接。例如,上述开关本体620的一部分可与连接件640的装配口通过过盈配合的方式进行装配。
分别将旋转轴630与开关本体620装配至与浮子610固定连接或与浮子610为一体件的连接件640,从而形成液位开关600,结构整体性强。
本发明的具备过滤回收功能的储液装置20以及具有其的冰箱1,由于储液装置20具有过滤机构400,该过滤机构400的壳体420内形成有与储液容器200的第一储液空间210相通的第二储液空间421,且过滤机构400的过滤部440用于使外部环境的气体中的特定物质成分溶解于第二储液空间421,以便进入第一储液空间供回收使用,因此,本发明提供了一种具备过滤回收功能的储液装置20,该储液装置20可使得气体中的特定物质成分得到分离并被回收使用,从而减少或避免气体排放所导致的污染,同时提高资源利用效率。
在一些实施例中,反应装置10可以是电解除氧装置,从而电解除氧装置与储液装置20构成的反应***为电解除氧***。
本发明还提供了一种用于冰箱的电解除氧***。图11是根据本发明一个实施例的用于冰箱1的电解除氧***2的示意性结构图。电解除氧***2一般性地可包括电解除氧装置10和储液装置20。
本实施例的方案,将电解除氧装置10与储液装置20进行有机结合,形成电解除氧***2,可解决除氧过程所存在的补液困难、安全风险高、废气污染、电解质流失等问题,在一定程度上可保证除氧过程连续进行,有利于促进电解除氧装置10在冰箱1领域的推 广应用,提高冰箱1的保鲜性能。
电解除氧装置10具有反应容器110,电解除氧装置10的反应容器110的内部形成进行电化学反应以消耗氧气的反应场所。电化学反应以氧气作为反应物,且在电解除氧装置10的反应容器110的内部进行。例如,电解除氧装置10的反应容器110的内部可盛放电解液,电解除氧装置10的电化学元件可以浸于电解液,从而进行电化学反应。反应容器110上开设有补液口116,该补液口116形成连通反应容器110的内外空间的开口。
储液装置20具有储液容器200,储液容器200的内部形成储液空间(也可称为第一储液空间)210,且储液容器200上开设有用于连通补液口116的供液口262,用于向反应容器110补充液体。也就是说,储液容器200作为反应容器110的补液仓,可以向反应容器110加注液体。
由于电解除氧***2具有用于向电解除氧装置10的反应容器110补充液体的储液装置20,这使得本实施例的电解除氧***2同时集成有除氧功能和补液功能,能够利用自身的储液装置20向反应容器110补液,有利于降低电解除氧装置10的补液难度,电解除氧装置10的补液过程更加安全有效及时,可进一步保证电解除氧装置10的除氧效果。
在一些可选的实施例中,供液口262位于储液容器200的底部区段。补液口116位于反应容器110的顶部区段。供液口262高于补液口116。当供液口262和补液口116分别处于打开状态时,可在储液容器200与反应容器110之间形成输液通道,储液容器200内的液体可以依次流经供液口262和补液口116进入反应容器110内,从而完成补液过程。
由于储液容器200的供液口262高于反应容器110的补液口116,来自储液容器200的液体可以依靠自身重力进入反应容器110内,这使得电解除氧***2的补液过程能够依靠机械结构自动进行,有利于降低电控成本,提高自动化程度。
电解除氧***2还可以进一步地包括输液管30,其一端连通供液口262,另一端连通补液口116,用于将来自供液口262的液体导引至补液口116。
利用输液管30连接供液口262和补液口116,既可以保证补液过程顺利进行,又可以允许储液装置20与电解除氧装置10之间的距离适当地延长,例如,可将储液装置20设置在人员方便触及的位置,以便于用户或工程师进行检修或者对储液容器200进行加液。
本实施例中,由于电解除氧装置10的电化学反应会消耗水,因此,储液容器200内的液体可以直接为水,或者可以变换为电解液。由于氧气所携带的电解液中的电解质溶于水,因此,下述壳体420内的液体也可以直接为水,或者可以变换为电解液。
图12是根据本发明一个实施例的用于冰箱1的电解除氧***2的电解除氧装置10的示意性结构图。图13是图12所示的用于电解除氧***2的电解除氧装置10的示意性分解图。电解除氧装置10一般性地可包括上述反应容器110以及阳极板140和阴极板120。本实施例仅是针对电解除氧装置10的结构进行举例,但不应视为电解除氧装置10的结构仅限于此。
反应容器110可为盒体状。反应容器110上可以开设有侧向开口114。
阴极板120设置于侧向开口114处,以与反应容器110共同限定出用于盛装电解液的储液腔,并配置成通过电化学反应消耗冰箱1的储物空间210内的氧气。侧向开口114可以连通冰箱1的储物空间,这使得阴极板120可与储物空间气流连通。空气中的氧气可以在阴极板120处发生还原反应,即:O 2+2H 2O+4e -→4OH -
例如,反应容器110的其中一个壁面可以打开,以形成侧向开口114。本实施例的阴极板120可以直接作为反应容器110的侧向壁面,用于密封储液腔。电解除氧装置10的储液腔内可以盛装碱性电解液,例如1mol/L的NaOH,其浓度可以根据实际需要进行调整。
阳极板140设置于储液腔内,并配置成通过电化学反应向阴极板120提供反应物, 且生成氧气。例如,阴极板120产生的OH -可以在阳极板140处可以发生氧化反应,并生成氧气,即:4OH -→O 2+2H 2O+4e -。阳极板140上形成有阳极供电端子142。以与外部电源相连。
反应容器110上还开设有排气口112,用于允许反应容器110内产生的气体排出至下述壳体的内部空间。本实施例的阳极板140在进行电化学反应时生成氧气,上述排气口用于允许阳极板140生成的氧气排出。排气口112可以靠近反应容器110的顶部设置,这可以减少或避免电解液泄露。在一些实施例中,排气口112处可以连接有排气管160,该排气管可以连通输气管40。
在一些实施例中,电解除氧装置10还可以进一步地包括分隔件130和固定组件150。其中,分隔件130设置于储液腔内,并位于阴极板120与阳极板140之间,用于分隔阴极板120与阳极板140,防止电解除氧装置10短路。具体地,分隔件130上朝向阳极板140的一侧形成有多个凸起部132,凸起部132抵触于阳极板140上,阴极板120贴靠于分隔件130背离凸起部132的一侧,以在阴极板120与阳极板140形成预设间隙,进而将阴极板120与阳极板140分隔开。
固定组件150可以设置于阴极板120的外侧,配置成将阴极板120固定于反应容器110的侧向开口114处。具体地,该固定组件150还可以包括金属边框152和支撑件154。金属边框152贴靠于阴极板120的外侧。金属边框152与阴极板120直接接触,可以起到压紧阴极板120的作用,并且金属边框152上还可以设置有阴极板120的阴极供电端子152b,以与外部电源相连。支撑件154形成有插接槽。当金属边框152的围立部152a进支撑件154的插接槽时,金属边框152可以由支撑件154固定和定位,进而使得金属边框152压紧阴极板120。
在一些实施例中,电解除氧***2还包括过滤机构400,其具有壳体420和过滤部440。过滤机构400的结构参见图4和图5所示,壳体420的内部空间(也可称为第二储液空间)421与储液空间210相连通,过滤部440设置于壳体420的内部空间421,并用于使来自排气口112的气体中的特定物质成分溶解于壳体420的内部空间421,以便进入储液空间210供回收使用。也就是说,从排气口112排出的气体可以在过滤部440的作用下实现过滤,以分离出特定物质成分,并使特定物质成分滞留在壳体420的内部空间421。壳体420内形成用于盛装液体的空间,例如可以盛装含有特定成分的电解液或者水等。反应容器110所排出的气体中的特定物质成分可以溶解于壳体420的内部空间421是指溶解于反应容器110所盛装的液体中。
由于过滤机构400可使电解除氧装置10排出的气体中的特定物质成分溶解于壳体420的内部空间421,从而使待排放气体得到过滤,这有利于降低电解除氧装置10所排放气体的腐蚀性,降低除氧过程对环境产生的不良影响。
此外,由于过滤机构400的壳体420与储液空间210相连通,溶解于壳体420内的特定物质成分可以进入储液空间210,因此,电解除氧装置10所排放的气体中的特定物质成分能够得到回收再利用,这有利于降低除氧过程的资源消耗。
上述特定物质成分为可溶于水的物质。在一些可选的实施例中,可根据待分离的特定物质成分的物理化学性质调整壳体420内和储液容器200内所存放的液体成分。
参见图1至图3,对于壳体420与储液空间210之间的连通方式,在一些可选的实施例中,壳体420***储液空间210,且壳体420的底部开设有用于连通储液空间210的出液孔,以允许壳体420内的液体回流至储液容器200内。例如,储液容器200可以大致呈长方体状,壳体420可以作为内套管***储液容器200内。关于储液容器200和壳体420的形状举例,仅仅是示意性的,本领域技术人员应当易于拓展,此处不再一一枚举。
出液孔422可作为壳体420的内部空间421与储液容器200的内部空间(即,储液空间210)之间进行物质交换的“窗口”。该出液孔422可使壳体420的内部空间421与储液容器200的内部空间的液面保持一致,且使壳体420内的液体易于扩散至储液容 器200内。
由于壳体420设置于储液容器200的内部空间,且通过位于壳体420底部的出液孔422与储液容器200相连通,壳体420内的液体能够依靠自身重力向下通过出液孔422并回流至储液容器200内,这使得回收过程简易有效。
壳体420上开设有用于连通排气口112与壳体420的内部空间421的进气孔423。电解除氧***2还可以进一步地包括输气管40,其一端连通排气口112,另一端连通进气孔423,用于将来自排气口112的气体导引至进气孔423。
利用输气管40连接排气口112与进气孔423,可以简化排气口112与进气孔423之间的输气管路的连接结构,提高装配过程的灵活性。
在一些可选的实施例中,过滤部440为导气管,自进气孔423***壳体420的内部空间421,并延伸至壳体420内的底部区段,以将来自排气口112的气体导引至壳体420内的底部区段,使得来自排气口112的气体中的特定物质成分在上升过程中溶解于壳体420的内部空间421。本实施例的导气管可为直管,其两端均为开口,以便于通入或流出气体,结构简单,具备较优的导气效果。
使导气管延伸至壳体420内的底部区段,可使导气管将气体输送至壳体420内的液体深处,从而延长气体在壳体420内的流动路径,流出导气管的气体在上升过程中能够与壳体420内的液体充分接触,使得气体中的特定物质成分溶解于壳体420内,这使得电解除氧***2能以精巧简单的结构获得较优的过滤净化以及回收效果。
在一些可选的实施例中,导气管的形状可以变换为竖弯钩状管,且其具有延伸至壳体420的底部区段的直管段以及自直管段的末端弯折向上延伸形成的弯管段。弯管段的末端略高于直管段的末端,用于将流经其的气体向上导引。直管段类似于伞杆,弯管段类似于连接至伞杆末端的伞柄。使弯管段从直管段的末端弯折向上延伸,这可使流出导气管的气体被导引着向上流动,从而使得气体的运动方向更加明确。弯管段的末端略高于直管段的末端是指,弯管段的末端仍然处在壳体420的底部区段中,这不会明显缩短气体在溶解过程的流动路径。
壳体420上还开设有出气孔424,与进气孔423相互间隔地位于壳体420的顶部,用于排放流经导气管以及壳体420的内部空间且被分离出特定物质成分的气体。该出气孔424用于将过滤后的气体排至外部环境,例如可以排放至外部环境的空气中。
在一些实施例中,进气孔423和出气孔424可以分别位于壳体420的顶盖(即,下述第一仓盖428)上。进气孔423和出气孔424可以分别为圆形开口。本实施例的进气孔423和出气孔424可以分别为管状通孔。导气管和进气孔423可以为一体件。进气孔423的管孔孔壁可以向下连贯地延伸并伸入壳体内,作为导气管。在一些实施例中,出气孔424处可以连接有出气导管,用于导引气体。
在一些可选的实施例中,壳体420可为一体成型。在另一些可选的实施例中,壳体420可由多个不同的部件连接而成。例如壳体420可包括具有顶部开口的第一仓体426以及封闭第一仓体426的顶部开口的第一仓盖428。且进气孔423和出气孔424相互间隔地位于第一仓盖428上。第一仓体426可以为直管状,其管径大于导气管的管径。第一仓体426的顶端为开口状,且与第一仓盖428之间密封连接。第一仓体426的底端为闭合状,且其上开设有上述出液孔422。出液孔422可以为至少一个。
进气孔423连同导气管、以及出气孔424,被第一仓体426所包覆,形成套管结构。导气管的底端高于第一仓体426的底端,防止流出导气管的气体逃逸出第一仓体426。
在一些可选的实施例中,储液容器200可为一体成型,这有利于提高储液容器200的密封效果,防止漏液。在另一些可选的实施例中,储液容器200可由多个不同的部件连接而成。例如储液容器200可包括具有顶部开口的第二仓体260以及封闭第二仓体260的顶部开口的第二仓盖280。第二仓体260可以为无盖的长方体水槽状,其容积大于第一仓体426的容积。
参见图6,第二仓盖280上开设有安装口282。安装口282的孔壁向上延伸形成有中空筒状的外螺纹接口288。由于该外螺纹接口288从安装口282的孔壁向上延伸形成,因此,外螺纹接口288的上边缘高于第二仓盖280的上表面,同时高于下述加液槽286的上边缘。这可将加液过程的最高液位控制在外螺纹接口288的上边缘以下。
第一仓盖428具有位于第一仓体426上方的封闭盖板428a以及从封闭盖板428a的外周缘向下延伸形成的环状内螺纹接口428b。其中,封闭盖板428a用于遮蔽第一仓体426的顶部开口。环状内螺纹接口428b与外螺纹接口288进行螺接,使得第一仓盖428与第二仓盖280可拆卸地连接。即,环状内螺纹接口428b用于将第一仓盖428连接至第二仓盖280。
第一仓体426自封闭盖板428a的下表面向下延伸,穿过外螺纹接口288之后***储液容器200内。
利用第一仓盖428与第二仓盖280进行螺接以封闭安装口282,可以简化过滤机构400的安装固定过程,实现一步安装到位,同时还可使第一仓体426发挥“隔气管”作用。
本实施例的用于冰箱1的电解除氧***2的过滤回收过程与储液装置20的过滤回收过程类似,如图7所示。图中箭头方向示出气体流动方向,或者液体的流动方向。由于壳体420这一“隔气管”的限制,流出导气管的气体只能以气泡的形式在第一仓体426的内部上升,直至到达位于第一仓体426上方的第一仓盖428的出气孔424并被排出,从而完成过滤过程。在一些可选的实施例中,上述螺接紧固的安装方式也可以变换为过盈配合或者采用密封圈进行密封连接等方式,只要保证密封不漏水不透气即可。
当来自从排气口112排放的气体含有可溶性的酸性物质或碱性物质时,这些特定物质成分被过滤留在了第一仓体426中,并逐渐通过第一仓体426底部的出液孔422,从而扩散到第二仓体260内的液体中。第一仓体426可作为补液仓,其内部的液体可以通过补液的形式再次输送至反应容器110,从而实现再利用。
在一些可选的实施例中,第二仓盖280上可以开设有加液口284,其口壁向下延伸形成加液槽286。由于该加液槽286自第二仓盖280的上表面向下延伸,而外螺纹接口288自第二仓盖280的上表面向上延伸,因此,当从加液口284向第二仓体260添加液体时,即使加液过程导致第二仓体260溢液,溢液时的液面不会超过外螺纹接口288。
加液槽286的一部分槽壁倾斜向下延伸设置,使加液槽286的底部形成渐缩的开口。也就是说,加水槽为具有一定深度的倾斜通孔,这便于用户在加液时观察液位情况。倾斜向下延伸的槽壁上具有液位标识,以提示加液过程的液位。例如,该液位标识可被设计为“最高液位刻度线”,用于提示用户液体已注满。
在第二仓体260的底部区段开设供液口262,可使第二仓体260内的液体依靠重力自动流出,这有利于提高供液过程的自动化程度。
在一些可选的实施例中,第二仓盖280的边缘具有向外凸出以供施力的突起287。用户可通过抓取等动作向第二仓盖280施力,从而实现第二仓盖280与第二仓体260之间的拆装过程。
第二仓盖280与第二仓体260之间的闭合处的周缘可设置有弹性密封圈,便于通过第二仓盖280与第二仓体260之间的压合实现密封,以防第二仓体260漏水。
图14是根据本发明另一个实施例的冰箱1的示意性框图。冰箱1一般性地可包括如以上任一实施例的电解除氧***2,还可以进一步地包括箱体。箱体的内部形成储物空间。电解除氧装置10与储物空间气流连通,使得电解除氧装置10利用电化学反应消耗储物空间内的氧气。电解除氧装置10的阴极板120与储物空间气流连通,例如,阴极板可以面朝储物空间设置,或者可以通过连接管路连通阴极板与储物空间。
利用储液装置20和电解除氧装置10进行有机配合,可以自动地向电解除氧装置10补水,同时可以去除电解除氧装置10所产生的废气中的酸性成分或者碱性成分,回收并重复利用原本流失掉的电解质,整个过程无需专业人员进行操作,也无需使用电子元件, 整个***具有集成化、模块化、低成本的优点。
储液装置20独立于电解除氧装置10,可避免因直接对电解除氧装置10加液所带来的风险。储液容器200的设计容量,可以满足设定时间段内电解除氧装置10的补液需求。采用导气管和壳体420相互配合,实现利用水进行气体过滤,可避免使用损耗性滤材,且无需更换滤材,有利于节约成本。
在一些可选的实施例中,电解除氧***2还可以进一步地包括液位开关600,如图10所示。设置于反应容器110内,且其具有开关本体620,并用于根据反应容器110内的液位移动,从而开闭补液口116,以允许或制止储液容器200内的液体流经供液口262和补液口116进入反应容器110内。也就是说,液位开关600用于控制补液口116的开闭。即,液位开关600作为输液通道的闸门,起到通断输液通道的作用。液位开关600的开关本体620根据反应容器110的液位高低而进行移动,以此来封闭或打开补液口116,补液口116的开闭过程无需电控。
由于液位开关600可以根据反应容器110的液位自动地移动,以开闭补液口116,从而通断输液通道,因此本实施例的电解除氧***2具备自动补液功能,无需从外部环境向反应容器110添加液体。
开关本体620可移动地设置于补液口116的下方,并且在反应容器110内的液位升高的情况下通过上升至与补液口116的下周缘相抵压以封闭补液口116,且在反应容器110内的液位降低的情况下通过下降偏离补液口116的下周缘从而打开补液口116。
也就是说,开关本体620可在反应容器110内的液位升高的情况下上升并抵靠在补液口116的下周缘从而封闭补液口116,使得储液容器内的液体无法通过补液口116,还可在反应容器110内的液位降低的情况下下降从而偏离并打开补液口116,使得储液容器内的液体可以依靠重力向下流至反应容器110内。
液位开关600还包括浮子610,与开关本体620固定连接或与开关本体620为一体件,且可绕轴转动地设置,用于在反应容器110内通过绕轴转动实现上浮或下沉,从而带动开关本体620移动。也就是说,开关本体620由浮子610进行“驱动”,浮子610进行移动所需的动力由其在反应容器110内所受的浮力决定。
例如,浮子610的一部分通过浸于液体,从而使浮子610受到液体的浮力。当反应容器110的内部空间的液位发生变化时,浮子610所受的浮力也会发生变化,从而使得浮子610所受的浮力与重力的合力发生变化。例如,当反应容器110内的液位降低时,浮子610所受的浮力会减小,若浮子610所受的浮力与重力的合力方向向下,则会导致浮子610向下运动。反之,则会导致浮子610向上运动。
本实施例的浮子610并非沿直线做升降运动,而是以绕轴转动的方式上升或下降,如此设计,仅需要使浮子610与某一固定轴进行可枢转地连接即可,无需安装尺寸精度较高的导向部件,具备结构精巧、装配过程简单、装置可靠性好的优点。
由于浮子610可绕轴转动地设置,运动轨迹清晰明确,这使得本实施例的浮子610和开关本体620易于沿清晰明确的运动轨迹移动,从而提高液位开关600的可靠性,减少或避免了因浮子610***而带来密封不严等问题。
液位开关600还可以进一步地包括旋转轴630和连接件640。
其中,旋转轴630固定于反应容器110。例如,旋转轴630可以固定于反应容器110的内部空间,且与反应容器110的容器内壁固定连接。
在一些可选的实施例中,旋转轴630还可以可拆卸地固定于反应容器110,这可以根据实际需要调节旋转轴630的高度,从而调节开始启动补液的容器内的液位高度。
连接件640与浮子610固定连接或与浮子610为一体件,其上形成有轴孔,以供旋转轴630***其中且可转动地配合从而实现可转动地连接。也就是说,连接件640将旋转轴630与浮子610装配成一个有机的整体,使得浮子610可绕旋转轴630转动。
通过在连接件640上开设轴孔,并使旋转轴630与轴孔可转动地配合,即可将浮子 610可绕轴转动地装配至旋转轴630,结构精妙,工序简单。
开关本体620呈杆状。连接件640上还形成有装配口,以供开关本体620的一部分***其中从而实现固定装配。也就是说,开关本体620的一部分通过与连接件640固定装配,从而间接地与浮子610实现固定连接。例如,上述开关本体620的一部分可与连接件640的装配口通过过盈配合的方式进行装配。
分别将旋转轴630与开关本体620装配至与浮子610固定连接或与浮子610为一体件的连接件640,从而形成液位开关600,结构整体性强。
本实施例的用于冰箱1的电解除氧***2以及具有其的冰箱1,由于电解除氧***2具有用于向电解除氧装置10的反应容器110补充液体的储液装置20,这使得本发明的电解除氧***2同时集成有除氧功能和补液功能,能够利用自身的储液装置20向反应容器110补液,有利于降低电解除氧装置10的补液难度,电解除氧装置10的补液过程更加安全、有效、及时、智能,可进一步保证电解除氧装置10的除氧效果。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (19)

  1. 一种具备过滤回收功能的储液装置,包括:
    储液容器,其内部形成第一储液空间;和
    过滤机构,其具有壳体以及过滤部,所述壳体内形成与所述第一储液空间相通的第二储液空间,所述过滤部设置于所述第二储液空间,并用于使来自外部环境的气体中的特定物质成分溶解于所述第二储液空间,以便进入所述第一储液空间供回收使用。
  2. 根据权利要求1所述的储液装置,其中,
    所述壳体***所述第一储液空间内,且其底部开设有用于连通所述第一储液空间的出液孔,以允许所述第二储液空间内的液体回流至所述第一储液空间。
  3. 根据权利要求1或2所述的储液装置,其中,
    所述壳体上还开设有用于输入来自所述外部环境的气体的进气孔;且
    所述过滤部为导气管,从所述进气孔***所述第二储液空间,并延伸至所述第二储液空间的底部区段,以将所述外部环境的气体导引至所述第二储液空间的底部区段,使得所述外部环境的气体中的特定物质成分在气体上升过程中溶解于所述第二储液空间。
  4. 根据权利要求3所述的储液装置,其中,
    所述导气管为直管;或者
    所述导气管为竖弯钩状管,且其具有延伸至所述第二储液空间的底部区段的直管段以及自所述直管段的末端弯折向上延伸形成的弯管段;所述弯管段的末端略高于所述直管段的末端,用于将流经其的气体向上导引。
  5. 根据权利要求3所述的储液装置,其中,
    所述壳体上还开设有出气孔,位于所述壳体的顶部,用于排放流经所述导气管以及所述第二储液空间且被分离出所述特定物质成分的气体。
  6. 根据权利要求5所述的储液装置,其中,
    所述壳体包括具有顶部开口的第一仓体以及封闭所述第一仓体的顶部开口的第一仓盖,且所述进气孔和所述出气孔相互间隔地位于所述第一仓盖上。
  7. 根据权利要求6所述的储液装置,其中,
    所述储液容器包括具有顶部开口的第二仓体以及封闭所述第二仓体的顶部开口的第二仓盖;且所述第二仓盖上开设有安装口;所述安装口的孔壁向上延伸形成有中空筒状的外螺纹接口;
    所述第一仓盖具有位于所述第一仓体上方的封闭盖板以及从所述封闭盖板的外周缘向下延伸形成的环状内螺纹接口,所述环状内螺纹接口与所述外螺纹接口进行螺接,使得所述第一仓盖与所述第二仓盖可拆卸地连接;且
    所述第一仓体自所述封闭盖板的下表面向下延伸,穿过所述外螺纹接口之后***所述第一储液空间内。
  8. 根据权利要求7所述的储液装置,其中,
    所述第二仓盖上还开设有加液口,其口壁向下延伸形成加液槽;所述加液槽的一部分槽壁倾斜向下延伸设置,使所述加液槽的底部形成渐缩的开口。
  9. 根据权利要求1或2所述的储液装置,其中,
    所述储液容器的底部区段开设有供液口,用于向外部环境输出液体。
  10. 一种用于冰箱的电解除氧***,包括:
    电解除氧装置,其具有反应容器,所述反应容器的内部形成进行电化学反应以消耗氧气的反应场所;且所述反应容器上开设有补液口;和
    如权利要求1-9中任一项所述的储液装置,所述储液装置的储液容器上开设有用于连通所述补液口的供液口,用于向所述反应容器补充液体。
  11. 根据权利要求10所述的电解除氧***,其中,
    所述供液口位于所述储液容器的底部区段,所述补液口位于所述反应容器的顶部区段;且
    所述供液口高于所述补液口。
  12. 根据权利要求10所述的电解除氧***,还包括:
    输液管,其一端连通所述供液口,另一端连通所述补液口,用于将来自所述供液口的液体导引至所述补液口。
  13. 根据权利要求10所述的电解除氧***,其中,
    所述反应容器上还开设有排气口,用于允许所述反应容器内产生的气体排出至所述过滤机构的所述壳体的内部空间;且
    所述过滤部用于使来自所述排气口的气体中的特定物质成分溶解于所述壳体的内部空间,以便进入所述第一储液空间供回收使用。
  14. 根据权利要求13所述的电解除氧***,其中,
    所述壳体上开设有用于连通所述排气口与所述壳体的内部空间的进气孔;且
    所述电解除氧***还包括输气管,其一端连通所述排气口,另一端连通所述进气孔,用于将来自所述排气口的气体导引至所述进气孔。
  15. 根据权利要求14所述的电解除氧***,其中,
    所述过滤部为导气管,自所述进气孔***所述壳体的内部空间,并延伸至所述壳体内的底部区段,以将来自所述排气口的气体导引至所述壳体内的底部区段,使得来自所述排气口的气体中的特定物质成分在上升过程中溶解于所述壳体的内部空间;且
    所述壳体上还开设有出气孔,与所述进气孔相互间隔地位于所述壳体的顶部,用于排放流经所述导气管以及所述壳体的内部空间且被分离出所述特定物质成分的气体。
  16. 根据权利要求13所述的电解除氧***,其中,
    所述壳体***所述储液空间,且其底部开设有用于连通所述第一储液空间的出液孔,以允许所述壳体内的液体回流至所述储液容器内。
  17. 根据权利要求10所述的电解除氧***,还包括:
    液位开关,设置于所述反应容器内,且其具有开关本体,用于根据所述反应容器内的液位移动从而开闭所述补液口,以允许或制止所述储液容器内的电解液依次流经所述供液口和所述补液口进入所述反应容器内。
  18. 根据权利要求17所述的电解除氧***,其中,
    所述液位开关还包括浮子,与所述开关本体固定连接或与所述开关本体为一体件,且可绕轴转动地设置,用于在所述反应容器内通过绕轴转动实现上浮或下沉,从而带动所述开关本体移动。
  19. 一种冰箱,包括:
    如权利要求10-18中任一项所述的电解除氧***,其中,所述电解除氧装置与所述冰箱的储物空间气流连通,使得所述电解除氧装置利用电化学反应消耗所述冰箱的储物空间内的氧气。
PCT/CN2022/135570 2021-12-03 2022-11-30 储液装置以及具有其的电解除氧***和冰箱 WO2023098749A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111467792.XA CN116212603A (zh) 2021-12-03 2021-12-03 用于冰箱的电解除氧***以及具有其的冰箱
CN202111468134.2 2021-12-03
CN202111468134.2A CN116222118A (zh) 2021-12-03 2021-12-03 具备过滤回收功能的储液装置以及具有其的冰箱
CN202111467792.X 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023098749A1 true WO2023098749A1 (zh) 2023-06-08

Family

ID=86611507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135570 WO2023098749A1 (zh) 2021-12-03 2022-11-30 储液装置以及具有其的电解除氧***和冰箱

Country Status (1)

Country Link
WO (1) WO2023098749A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057152A1 (en) * 2001-09-26 2003-03-27 Ajit Haridas Device for treatment of wastewater
JP2015205225A (ja) * 2014-04-17 2015-11-19 株式会社テックコーポレーション 還元水製造装置及び還元水
CN105910365A (zh) * 2016-04-19 2016-08-31 青岛海尔股份有限公司 冰箱及用于冰箱的储液装置
CN208430233U (zh) * 2018-04-23 2019-01-25 常州大业能源科技有限公司 一种水电解槽的水路结构
WO2021083431A1 (zh) * 2019-10-31 2021-05-06 青岛海尔电冰箱有限公司 用于冰箱的储物装置以及具有其的冰箱
CN113446789A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446797A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446796A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN217686164U (zh) * 2021-12-03 2022-10-28 青岛海尔电冰箱有限公司 具备过滤回收功能的储液装置以及具有其的冰箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057152A1 (en) * 2001-09-26 2003-03-27 Ajit Haridas Device for treatment of wastewater
JP2015205225A (ja) * 2014-04-17 2015-11-19 株式会社テックコーポレーション 還元水製造装置及び還元水
CN105910365A (zh) * 2016-04-19 2016-08-31 青岛海尔股份有限公司 冰箱及用于冰箱的储液装置
CN208430233U (zh) * 2018-04-23 2019-01-25 常州大业能源科技有限公司 一种水电解槽的水路结构
WO2021083431A1 (zh) * 2019-10-31 2021-05-06 青岛海尔电冰箱有限公司 用于冰箱的储物装置以及具有其的冰箱
CN113446789A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446797A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN113446796A (zh) * 2020-03-24 2021-09-28 合肥华凌股份有限公司 除氧组件、储物装置及冰箱
CN217686164U (zh) * 2021-12-03 2022-10-28 青岛海尔电冰箱有限公司 具备过滤回收功能的储液装置以及具有其的冰箱

Similar Documents

Publication Publication Date Title
CN210175579U (zh) 一种带除氧装置的储物箱
CN217686164U (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
CN217654171U (zh) 电解除氧装置以及具有其的冰箱
CN217465119U (zh) 氧气处理装置和具有其的冰箱
CN113975911B (zh) 除氧模组、保鲜装置及冰箱
WO2023098749A1 (zh) 储液装置以及具有其的电解除氧***和冰箱
WO2024017203A1 (zh) 氧气处理***以及冰箱
CN104362411B (zh) 铝合金空气电池***
WO2023098387A1 (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
CN217876737U (zh) 液位开关以及具有其的储液装置和冰箱
KR100918309B1 (ko) 안정한 구조의 직접 메탄올 연료전지용 물 조절기 시스템
WO2023098377A1 (zh) 电解除氧装置以及具有其的冰箱
WO2023098486A1 (zh) 冰箱及其控制方法
CN116222118A (zh) 具备过滤回收功能的储液装置以及具有其的冰箱
CN116212603A (zh) 用于冰箱的电解除氧***以及具有其的冰箱
WO2023098474A1 (zh) 电解除氧装置以及具有其的冰箱
WO2023098388A1 (zh) 电解除氧***及其控制方法以及冰箱
JP4237776B2 (ja) ピッチャーおよびそれを用いる電解水生成装置
CN218972992U (zh) 气调装置及冷藏冷冻装置
WO2023098735A1 (zh) 氧气处理装置和具有其的冰箱
CN219342309U (zh) 电化学调氧装置及具有其的冰箱
CN215856363U (zh) 消毒液制备装置
CN219342310U (zh) 电化学调氧装置及具有其的冰箱
CN219199665U (zh) 气调装置及冷藏冷冻装置
CN219526808U (zh) 电化学反应装置及具有该电化学反应装置的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900553

Country of ref document: EP

Kind code of ref document: A1