WO2023098110A1 - 射频***及通信设备 - Google Patents

射频***及通信设备 Download PDF

Info

Publication number
WO2023098110A1
WO2023098110A1 PCT/CN2022/107880 CN2022107880W WO2023098110A1 WO 2023098110 A1 WO2023098110 A1 WO 2023098110A1 CN 2022107880 W CN2022107880 W CN 2022107880W WO 2023098110 A1 WO2023098110 A1 WO 2023098110A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
port
radio frequency
antenna port
low
Prior art date
Application number
PCT/CN2022/107880
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023098110A1 publication Critical patent/WO2023098110A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of antennas, in particular to a radio frequency system and communication equipment.
  • 5G mobile communication technology is gradually applied to communication devices, such as mobile phones.
  • 5G mobile communication technology has gradually begun to be applied to electronic devices.
  • the communication frequency of 5G mobile communication technology is higher than that of 4G mobile communication technology.
  • the traditional radio frequency system is in areas with poor signals such as the edge of the cell, deep in the building or elevators, the reception performance of the 5G low-frequency signal (for example, the N28 frequency band signal) is poor.
  • a radio frequency system and a communication device are provided, which can improve the performance of receiving low frequency signals.
  • a radio frequency system comprising:
  • a radio frequency transceiver module connected to the radio frequency transceiver, is configured with a first antenna port and a second antenna port, and the radio frequency transceiver module is used to support the main set reception of low frequency signals through the first antenna port, and supporting MIMO reception of the low frequency signal via the second antenna port;
  • a radio frequency receiving module connected to the radio frequency transceiver, is configured with a third antenna port and a fourth antenna port, and the radio frequency receiving module is used to support diversity reception of the low frequency signal through the third antenna port , and support MIMO reception of the low-frequency signal through the fourth antenna port;
  • At least two of the first antenna port, the second antenna port, the third antenna port, and the fourth antenna port are configured to be switchably connected to at least two antennas of the antenna group, And the antennas connected to different ports are different; the at least two ports include the first antenna port.
  • a communication device comprising a radio frequency system as described above.
  • Fig. 1 is one of the schematic structural diagrams of the radio frequency system in an embodiment
  • Fig. 2 is a schematic diagram of the position of the antenna in one embodiment
  • Fig. 3 is one of the schematic structural diagrams of the radio frequency transceiver module in an embodiment
  • Fig. 4 is the second structural diagram of the radio frequency transceiver module in an embodiment
  • Fig. 5 is one of the specific structural diagrams of the radio frequency transceiver module in an embodiment
  • Fig. 6 is the third structural diagram of the radio frequency transceiver module in an embodiment
  • Fig. 7 is the fourth structural diagram of the radio frequency transceiver module in an embodiment
  • Fig. 8 is the second schematic diagram of the specific structure of the radio frequency transceiver module in an embodiment
  • Fig. 9 is a schematic structural diagram of a radio frequency receiving module in an embodiment
  • Fig. 10 is one of the specific structural diagrams of the radio frequency receiving module in an embodiment
  • Fig. 11 is the second schematic diagram of the specific structure of the radio frequency receiving module in one embodiment
  • Fig. 12 is a second schematic structural diagram of a radio frequency system in an embodiment
  • Fig. 13 is a third structural schematic diagram of a radio frequency system in an embodiment
  • FIG. 14 is a fourth schematic structural diagram of a radio frequency system in an embodiment
  • Fig. 15 is a fifth schematic structural diagram of a radio frequency system in an embodiment
  • Fig. 16 is one of the specific structural schematic diagrams of the radio frequency system in an embodiment
  • Fig. 17 is a sixth schematic structural diagram of a radio frequency system in an embodiment
  • Fig. 18 is a seventh schematic structural diagram of a radio frequency system in an embodiment
  • Fig. 19 is a second schematic structural diagram of the radio frequency system in an embodiment
  • Fig. 20 is the eighth schematic structural diagram of the radio frequency system in an embodiment
  • Fig. 21 is a ninth schematic structural diagram of a radio frequency system in an embodiment
  • Fig. 22 is the third schematic diagram of the specific structure of the radio frequency system in an embodiment
  • Fig. 23 is a schematic structural diagram of a communication device in an embodiment.
  • first, second and the like used in this application may be used to describe various elements herein, but these elements are not limited by these terms. These terms are only used to distinguish one element from another element.
  • a first client could be termed a second client, and, similarly, a second client could be termed a first client, without departing from the scope of the present application.
  • Both the first client and the second client are clients, but they are not the same client.
  • the radio frequency system involved in the embodiments of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, and various forms of A user equipment (User Equipment, UE) (for example, a mobile phone), a mobile station (Mobile Station, MS) and so on.
  • UE User Equipment
  • MS Mobile Station
  • the radio frequency system includes: a radio frequency transceiver 10, a radio frequency transceiver module 20, a radio frequency receiving module 30; Including the first antenna ANT1, the second antenna ANT2, the third antenna ANT3 and the fourth antenna ANT4, the structure in which the radio frequency transceiver module 20 is connected to the first antenna ANT1, and the radio frequency receiving module 30 is connected to the second antenna ANT2 is shown, only For illustration, not limitation).
  • the first antenna ANT1 , the second antenna ANT2 , the third antenna ANT3 and the fourth antenna ANT4 are capable of supporting the transceiving of radio frequency signals in multiple frequency bands of NR low frequency.
  • the antennas may be formed using any suitable type of antenna.
  • each antenna may include an antenna with a resonating element formed from the following antenna structures: array antenna structure, loop antenna structure, patch antenna structure, slot antenna structure, helical antenna structure, strip antenna, monopole antenna, dipole antenna structure, At least one of the pole antennas, etc.
  • Different types of antennas can be used for different frequency bands and combinations of frequency bands.
  • the types of the first antenna ANT1 , the second antenna ANT2 , the third antenna ANT3 and the fourth antenna ANT4 are not further limited.
  • the low-frequency signal may include a radio frequency signal of one low-frequency band, or may include radio frequency signals of multiple low-frequency bands.
  • the radio frequency signal may include at least one of a 4G LTE low frequency signal and a 5G NR low frequency signal.
  • the frequency band division of the low-frequency signal is shown in Table 1.
  • Table 1 is the frequency band division table for low-frequency signals
  • the 5G network will continue to use the frequency band used by 4G, only the identification before the serial number will be changed, and the multiple low-frequency frequency bands of low-frequency signals are not limited to the above examples.
  • the low-frequency signals include N5, N8, N20, N28, and N71 frequency band signals
  • the radio frequency system can support 4*4 MIMO receiving functions for N5, N8, N20, N28, and N71 frequency band signals.
  • MIMO Multiple Input Multiple Output
  • the channel capacity of the system can be doubled.
  • the radio frequency transceiver 10 can be configured with multiple ports to realize the connection with the radio frequency transceiving module 20 and the radio frequency receiving module 30 .
  • the radio frequency transceiver 10 includes a transmitter and a receiver, wherein the transmitter is used to transmit radio frequency signals to the radio frequency transceiver module 20 , and the receiver is used to receive radio frequency signals output by the radio frequency transceiver module 20 and the radio frequency receiver module 30 .
  • the radio frequency transceiver module 20 is connected to the radio frequency transceiver 10, and is configured with a first antenna port LB ANT1 and a second antenna port LB ANT2, and the radio frequency transceiver module 20 is used to support through the first antenna port LB ANT1 Main set reception of low frequency signals, and support MIMO reception of low frequency signals through the second antenna port LB ANT2.
  • the radio frequency transceiver module 20 is used to support the transmission and main set reception of multiple low frequency signals through the first antenna port LB ANT1, and support the main set MIMO reception of multiple low frequency signals through the second antenna port LB ANT2.
  • the radio frequency transceiver module 20 is also configured with an input port PA IN and an output port LNA OUT, the input port PA IN of the radio frequency transceiver module 20 is connected with the radio frequency transceiver 10, and the output port LNA OUT of the radio frequency transceiver module 20 is connected with the radio frequency transceiver module 20.
  • the transceiver 10 is connected, the transmission path between the input port PA IN and the first antenna port LB ANT1, the reception path between the output port LNA OUT and the first antenna port LB ANT1 are configured to connect the same antenna.
  • the RF transceiver module 20 is used to filter and amplify the low-frequency signal sent by the RF transceiver 10, output it to the first antenna port LB ANT1, and transmit it through the antenna of the antenna group connected to the first antenna port LB ANT1, so as to achieve Transmission control of low-frequency signals; it is also used to receive low-frequency signals through the first antenna port LB ANT1, filter and amplify the low-frequency signals, and output them to the radio frequency transceiver 10 through the output port LNA OUT to realize the reception of low-frequency signals control.
  • the radio frequency transceiver module 20 can be understood as a low frequency power amplifier module (LB L-PA Mid, Low Band Power Amplifier Modules including Duplexers) with a built-in low noise amplifier.
  • the radio frequency transceiver module 20 is also used to realize switching control of receiving, switching of transmitting, and switching between transmitting and receiving multiple low-frequency signals. Specifically, through the first antenna port LB ANT1, one of multiple low-frequency signals can be selected for transmission and main set reception, and through the second antenna port LB ANT2, one of multiple low-frequency signals can be selected for main set MIMO reception.
  • the radio frequency transceiver module 20 can simultaneously transmit and receive the low-frequency signals of more than two frequency bands through the first antenna port LB ANT1 , and perform the main function of the low-frequency signals of more than two frequency bands through the second antenna port LB ANT2 . Set MIMO reception.
  • the radio frequency receiving module 30 is connected with the radio frequency transceiver 10, and is configured with a third antenna port LB ANT3 and a fourth antenna port LB ANT4, and the radio frequency receiving module 30 is used to support through the third antenna port LB ANT3 Diversity reception of low-frequency signals, and support for MIMO reception of low-frequency signals through the fourth antenna port LB ANT4.
  • the radio frequency receiving module 30 is used to support diversity reception of multiple low-frequency signals through the third antenna port LB ANT3, and support diversity MIMO reception of multiple low-frequency signals through the fourth antenna port LB ANT4.
  • the radio frequency receiving module 30 is also configured with an output port LNA OUT, the output port LNA OUT of the radio frequency receiving module 30 is connected with the radio frequency transceiver 10, and the radio frequency receiving module 30 receives the signal from the antenna group through the third antenna port LB ANT3
  • the low-frequency signal received by the antenna after the low-frequency signal is filtered and amplified, is output to the radio frequency transceiver 10 through the output port LNA OUT of the radio frequency receiving module 30, so as to realize the reception control of the low frequency signal.
  • the radio frequency receiving module 30 can be understood as a low noise amplifier module (LFEM, Low Noise AmPlifier FrontEnd Modules), which can specifically include a low noise amplifier and multiple filters, etc., and can be used to support the receiving and processing of low frequency signals.
  • LFEM Low Noise AmPlifier FrontEnd Modules
  • the radio frequency receiving module 30 can select one of multiple low-frequency signals for diversity reception through the third antenna port LB ANT3, and select one of multiple low-frequency signals for diversity MIMO reception through the fourth antenna port LB ANT4.
  • the radio frequency receiving module 30 can simultaneously perform diversity reception on low-frequency signals of more than two frequency bands through the third antenna port LB ANT3, and perform diversity MIMO reception on low-frequency signals of more than two frequency bands through the fourth antenna port LB ANT4.
  • At least two of the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3 and the fourth antenna port LB ANT4 are configured to be switchably connected to at least Two antennas, and the antennas connected to different ports are different; at least two ports include the first antenna port LB ANT1.
  • the first antenna port LB ANT1 and the third antenna port LB ANT3 are configured to be switchably connected to the first antenna ANT1 and the second antenna ANT2, and the second antenna port LB ANT2 is configured to be connected to the third antenna ANT3 , the fourth antenna port LB ANT4 is configured to connect to the fourth antenna ANT4.
  • the first antenna port LB ANT1 and the third antenna port LB ANT3 are configured to switchably connect the first antenna ANT1 and the second antenna ANT2, so that the antenna switching function is supported between the first antenna ANT1 and the second antenna ANT2, both It can support low-frequency signal transmission, main set reception and diversity reception.
  • the antenna efficiencies of the first antenna ANT1 and the second antenna ANT2 are higher than those of the third antenna ANT3 and the fourth antenna ANT4, and the target antenna is any one of the first antenna ANT1 and the second antenna ANT2, which can be Distributing the uplink signal to the first antenna ANT1 or the second antenna ANT2 with better antenna efficiency can ensure the reliability of the uplink signal and improve the communication performance of the radio frequency system.
  • the target antenna is any one of the first antenna ANT1 and the second antenna ANT2, which can be Distributing the uplink signal to the first antenna ANT1 or the second antenna ANT2 with better antenna efficiency can ensure the reliability of the uplink signal and improve the communication performance of the radio frequency system.
  • the first antenna ANT1 and the second antenna ANT2 are respectively arranged on the top frame 101 and the bottom frame 103 of the communication device, and the third antenna ANT3 and the fourth antenna ANT4 are arranged on two sides of the communication device
  • the frame 102, 104 therefore, the efficiencies of the first antenna ANT1 and the second antenna ANT2 are higher than those of the third antenna ANT3 and the fourth antenna ANT4.
  • the radio frequency transceiver 10 is configured to configure the target antenna connected to the main set of the first antenna port LB ANT1 to receive according to the network information of the low-frequency signal received by the first antenna port LB ANT1 and the third antenna port LB ANT3, and the target antenna It is one of the first antenna ANT1 and the second antenna ANT2.
  • the network information may include raw and processed information associated with radio performance metrics of received low frequency signals, such as signal strength, received power, Reference Signal Received Power (Reference Signal Receiving Power, RSRP), received signal strength ( Received Signal Strength Indicator, RSSI), Signal to Noise Ratio (Signal to Noise Ratio, SNR), Rank of MIMO channel matrix (Rank), Carrier to Interference plus Noise Ratio (Carrier to Interference plus Noise Ratio, RS-CINR), Frame Error Rate , bit error rate, reference signal reception quality (Reference signal reception quality, RSRQ), etc.
  • the radio frequency transceiver 10 may pre-store configuration information of the first antenna port LB ANT1 and the third antenna port LB ANT3.
  • the configuration information may include the identification information of the antenna, the identification information of the first antenna port LB ANT1 and the third antenna port LB ANT3, and the first antenna port LB ANT1 and the third antenna port LB ANT3 are respectively connected with the first antenna ANT1 and the third antenna port ANT1.
  • the first antenna ANT1 is configured as the default target antenna for low-frequency signal transmission and main set reception. If the first signal strength of the low-frequency signal received by the first antenna ANT1 is the same as the second The difference of the second signal strength of the low-frequency signal received by ANT2 is greater than or equal to a preset threshold within a preset time period, and then the second antenna ANT2 is configured as the target antenna.
  • the radio frequency transceiver 10 receives signals from the first antenna ANT1 and the third antenna port LB ANT3 respectively through the first antenna port LB ANT1 and the third antenna port LB ANT3.
  • the second antenna ANT2 receives the low-frequency signal, and controls antenna switching according to the first signal strength of the low-frequency signal received by the first antenna ANT1 and the second signal strength of the low-frequency signal received by the second antenna ANT2. More specifically, if the difference between the second received signal strength minus the first received signal strength is greater than or equal to a preset threshold within a preset time, the second antenna ANT2 is used as the target antenna.
  • the radio frequency transceiver 10 can control the relevant logic switch of the radio frequency system to turn on the path between the second antenna and the main receiving path of the radio frequency transceiver module 20, and turn on the first antenna ANT1 and the radio frequency receiving module 30 paths between the diversity receiving paths, so that the second antenna ANT2 is used to realize the transmission of low frequency signals and the main set reception, so as to improve the communication quality of low frequency signals. If the difference is smaller than the preset threshold, continue to use the first antenna ANT1 as the target antenna and maintain the current working state.
  • the preset thresholds are all values greater than zero, and the size of the preset thresholds can be set as required. By setting the determination condition of the preset threshold, it is possible to prevent frequent switching between antennas due to the fact that the signal receiving strength of the antenna may be changing all the time, thereby reducing the influence of the transmission efficiency of the antenna.
  • the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3 and the fourth antenna port LB ANT4 are configured to switchably connect the first antenna ANT1, the second antenna ANT2, The third antenna ANT3 and the fourth antenna ANT4, so that the first antenna ANT1, the second antenna ANT2, the third antenna ANT3 and the fourth antenna ANT4 support the antenna switching function, all of which can support the transmission of low-frequency signals, the main receiver, Diversity reception, main set MIMO reception, diversity MIMO reception.
  • the target antenna is any one of the first antenna ANT1, the second antenna ANT2, the third antenna ANT3, and the fourth antenna ANT4, and the uplink signal can be distributed on the antenna with better antenna efficiency to ensure that the uplink signal reliability to improve the communication performance of radio frequency system work.
  • the radio frequency transceiver 10 is configured to connect to the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3 and the network information of the low-frequency signal received by the fourth antenna port LB ANT4 to configure the connection to the first antenna port LB ANT4.
  • the first antenna ANT1 is configured as the default target antenna for low-frequency signal transmission and main set reception, if the second signal strength of the low-frequency signal received by the second antenna ANT2 is the same If the third signal strength difference of the low-frequency signal received by any one of the four antennas ANT4 is greater than or equal to a preset threshold within a preset time period, the second antenna ANT2 is configured as the target antenna.
  • the preset threshold refer to the foregoing embodiments, and details are not repeated here.
  • the radio frequency system provided in this embodiment includes a radio frequency transceiver 10 , a radio frequency transceiving module 20 and a radio frequency receiving module 30 , and the radio frequency transceiver 10 is connected to the radio frequency transceiving module 20 and the radio frequency receiving module 30 respectively.
  • the radio frequency transceiver module 20 is configured with a first antenna port LB ANT1 and a second antenna port LB ANT2, the radio frequency transceiver module 20 is used to support the main set reception of low frequency signals through the first antenna port LB ANT1, and through the second antenna port LB ANT1 Port LB ANT2 supports MIMO reception of low-frequency signals; the radio frequency receiving module 30 is configured with a third antenna port LB ANT3 and a fourth antenna port LB ANT4, and the radio frequency receiving module 30 is used to support low-frequency signals through the third antenna port LB ANT3 Diversity reception of signals, and support for MIMO reception of low-frequency signals through the fourth antenna port.
  • At least two of the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3, and the fourth antenna port LB ANT4 are configured to be switchably connected to at least two antennas of the antenna group, and different
  • the antennas connected to the ports are different; at least two ports include the first antenna port LB ANT1, so that the uplink signal can be distributed on the antenna with better antenna efficiency, and the communication performance of the radio frequency system can be further improved.
  • the radio frequency system can support 4*4 MIMO reception of low-frequency radio frequency signals, which can double the throughput of low-frequency signals; when the radio frequency system is applied to communication equipment, it can increase the download rate to improve user experience.
  • the communication device When the communication device is located in a weak signal environment such as the edge of a cell, deep in a building, or an elevator, it can receive through 4*4 MIMO, which has higher diversity gain, larger coverage, and better receiving performance.
  • the radio frequency transceiver module 20 is also configured with an input port PA IN and an output port LNA OUT; wherein: the transmission path between the input port PA IN and the first antenna port LB ANT1, the output port LNA OUT and the The receiving paths between the first antenna ports LB ANT1 are configured to connect the same antenna.
  • the radio frequency system also includes:
  • the first filter module, the two first ends of the first filter module are respectively connected to the input port PA IN and the output port LNA OUT one by one, and the second end of the first filter module is connected to the first antenna port LB ANT for filtering out Spurious waves other than low frequency signals.
  • the first filter module can be arranged outside the radio frequency transceiver module 20, and can also be integrated in the radio frequency transceiver module 20, for the input port PA IN of the radio frequency transceiver module 20 and the first antenna port LB ANT1
  • the low-frequency signal of the transmission path is filtered to filter out the stray waves other than the low-frequency signal; it is also used to filter the low-frequency signal of the receiving path between the output port LNA OUT of the radio frequency transceiver module 20 and the first antenna port LB ANT1 Filter processing to filter out spurious waves other than low frequency signals.
  • the first filter module is also used to isolate the signal of the transmission path between the input port PA IN and the first antenna port LB ANT1 and the signal of the reception path between the output port LNA OUT and the first antenna port LB ANT1.
  • the first filtering module can be a duplexer or a filter.
  • the low-frequency signal is a radio frequency signal of a single low-frequency band, such as a signal in the N28 frequency band
  • the first filtering module can filter spurious waves other than the N28 frequency band. , only output the N28 frequency band signal to the first antenna ANT1 or the main receiving circuit 30; when the low frequency signal is a radio frequency signal of multiple low frequency bands, multiple first filter modules or the first filter module can be set to include multiple duplexers or filter to filter each low frequency signal separately.
  • the first filter module when the first filter module includes a duplexer, the two first ends of the duplexer are respectively connected to the input port PA IN and the output port LNA OUT one by one, and the second end of the duplexer is connected to the first antenna port LB ANT1;
  • the first filter module when the first filter module includes a filter, the first filter module may include two filters and a switch device, the first ends of the two filters are respectively connected to the two first ends of the switch device, and the two filters The second end of the switching device is respectively connected to the input port PA IN and the output port LNA OUT one by one, and the second end of the switch device is connected to the first antenna port LB ANT1.
  • the first filtering module 200 is integrated inside the radio frequency transceiver module 20 , and the radio frequency transceiver module 20 includes: a transmitting unit 210 , a gating unit 220 and a receiving unit 230 .
  • the two first ends of the first filtering module 200 are respectively connected to the transmitting unit 210 and the receiving unit 230 in one-to-one correspondence, and the second end of the first filtering module 200 is connected to the gating unit 220, and the first filtering module 200 uses Filtering is performed on the low-frequency signal transmitted by the transmitting unit 210 and the low-frequency signal received by the receiving unit 230 .
  • the first filtering module 200 is integrated in the radio frequency transceiver module 20, which can reduce the main board area occupied by the radio frequency system, improve the integration degree of the device, facilitate the miniaturization of the device, and reduce the cost; at the same time, it can also reduce the cost of the transceiver link.
  • the insertion loss increases the output power of the radio frequency transceiver module 20 for low frequency signals, improves the sensitivity performance of low frequency signals, and further improves the communication performance of the radio frequency system.
  • the low-frequency signal includes a plurality of radio-frequency signals in low-frequency bands; wherein: there are multiple first filtering modules 200, and the two first ends of each first filtering module 200 are respectively connected to the transmitting unit 210, The receiving unit 230, the second end of each first filtering module 200 is connected to the gating unit 220; the frequency bands of the low-frequency signals output by each first filtering module 200 are different.
  • the low-frequency signals are signals in five different frequency bands of N5, N8, N20, N28, and N71, and five first filtering modules 200 can be set correspondingly to realize the filtering processing of these four low-frequency signals.
  • the low-frequency signals of the five frequency bands N5, N8, N20, N28, and N71 can be correspondingly output to the transmitting unit 210 or the receiving unit 230 .
  • the transmitting unit 210 is connected to the input port PA IN of the radio frequency transceiver module 20, and is used to amplify the low frequency signal received by the input port PA IN of the radio frequency transceiver module 20, so as to amplify the low frequency signal after processing Output to the first antenna port LB ANT1.
  • the gating unit 220 is connected to the transmitting unit 210, the receiving unit 230, and the first antenna port LB ANT1 respectively, and is used to select and connect the connection between the transmitting unit 210, the receiving unit 230 and the first antenna port LB ANT1 respectively.
  • RF path wherein, the gating unit 220 can be aimed at the transmission path and the receiving path of a plurality of low-frequency signals, and the insertion loss of the radio frequency transceiver module 20 can be reduced by the gating unit 220, and then the multiple low-frequency signals at the first antenna port LB ANT1 can be improved.
  • Output power and the output power at the output port LNA OUT are examples of the output port LNA OUT.
  • the receiving unit 230 is respectively connected to the output port (for example, there are two output ports, namely the output port LNA OUT1 and the output port LNA OUT2), the first antenna port LB ANT1, and the second antenna port LB ANT2. It is used to amplify the received low-frequency signal to output the amplified low-frequency signal to the output port LNA OUT of the radio frequency transceiver module 20.
  • the radio frequency transceiver module 20 also includes:
  • the coupling unit 240 is connected to the gating unit 220 and the first antenna port LB ANT1 respectively, and is used for coupling the low-frequency signal in the radio frequency path between the gating unit 220 and the first antenna port LB ANT1.
  • the radio frequency transceiver module 20 is also configured with a coupling output port CPLOUT
  • the coupling unit 240 is connected to the gating unit 220, the first antenna port LB ANT1, and the coupling output port CPLOUT respectively
  • the coupling gating unit 220 is connected to the first antenna port LB
  • the low-frequency signal in the radio frequency path between ANT1 can output the coupling signal through the coupling output port CPLOUT.
  • the coupling unit 240 includes an input terminal, an output terminal and a coupling terminal.
  • the input end of the coupling unit 240 is coupled to the gating unit 220, the output end of the coupling unit 240 is coupled to the first antenna port LB ANT1, and the coupling end is coupled to the coupling output port CPLOUT.
  • the coupling signal includes a forward coupling signal and a reverse coupling signal. Based on the forward coupling signal output by the coupling end, the forward power information of the low-frequency signal can be detected; based on the reverse coupling signal output by the coupling end, it can be detected correspondingly.
  • the reverse power information of the low-frequency signal, and the detection mode is defined as a reverse power detection mode.
  • the radio frequency transceiver module 20 can also be configured with an input port GSM LB IN, an input port GSM HB IN and a high-frequency output port GSM HB OUT.
  • the radio frequency transceiver module 20 also includes a 2G low frequency transmitting unit 250 and a 2G high frequency transmitting unit 260 . Through the 2G low-frequency transmitting unit 250 and the 2G high-frequency transmitting unit 260, the amplification processing of the 2G low-frequency signal and the 2G high-frequency signal can be realized respectively.
  • the transmitting unit 210 includes: a power amplifier LB PA, the input terminal of the power amplifier LB PA1 is connected to the input port PA IN; a multi-channel selection switch SP8T1, a first end of the multi-channel selection switch SP8T1 It is connected with the output end of the power amplifier LB PA1, and a plurality of second ends of the multi-channel selection switch SP8T1 are respectively connected to the first ends of a plurality of first filter modules 200 in one-to-one correspondence (for example, two second ends of the multi-channel selection switch SP8T1 The terminals are respectively connected to the first terminals of the two first filtering modules 200 in one-to-one correspondence).
  • the power amplifier LB PA1 and a first filter module 200 can support the relevant processing of the frequency band signal, so as to output the low-frequency signal without clutter correspondingly; when the low-frequency signal
  • a plurality of second ends of the multi-channel selection switch SP8T1 are respectively connected to the first ends of a plurality of first filter modules 200 one by one, so that the power amplifier LB PA1 and the first filter module 200 can also Supports correlation processing of low-frequency signals in multiple different frequency bands, so as to output low-frequency signals in each frequency band without clutter.
  • the input port PA IN of the radio frequency transceiver module 20, the power amplifier LB PA1, the multi-channel selection switch SP8T1 and the plurality of first filter modules 200 form the filter paths in the multiple transmission paths, and the multiple filter paths interact with each other. Independent, do not overlap with each other. It should be noted that when the transmitting unit 210 only needs to transmit low-frequency signals in one frequency band, the number of the second terminal of the multi-channel selection switch SP8T1 can be only one, and the number of the first filter module 200 corresponds to one.
  • the receiving unit 230 includes:
  • Low noise amplifier LNA1 the output end of low noise amplifier LNA1 is connected with the output port LNA OUT of radio frequency transceiver module 20;
  • Multi-channel selection switch SP4T1 the first end of multi-channel selection switch SP4T1 is connected with the input end of low noise amplifier LNA1, multiple Part of the second end of the channel selection switch SP4T1 is connected to the second end of the first filter module 200, and is connected with the first antenna port LB ANT1 by the first filter module 200 to receive the low-frequency signal input by the first antenna port LB ANT1; multi-channel selection Part of the second end of the switch SP4T1 is connected to the second antenna port LB ANT2 to receive the low frequency signal input from the second antenna port LB ANT2.
  • the low-noise amplifier LNA1 and the multi-channel selection switch SP4T1 are integrated in the radio frequency transceiver module 20, and the radio frequency path between the low-noise amplifier LNA1 and the first antenna port LB ANT1 can be selectively turned on through the multi-channel selection switch SP4T1, and can also be selected to conduct Through the radio frequency channel between the low noise amplifier LNA1 and the second antenna port LB ANT2, the 5G radio frequency signals of different frequency bands can be selected for low noise amplification processing, which saves the number of low noise amplifiers LNA1 and reduces the area occupied by the device on the motherboard. It should be noted that when it is necessary to perform low-noise amplification processing on low-frequency signals in multiple frequency bands, multiple low-noise amplifiers (for example, two low-noise amplifiers LNA1 and LNA2 ) can be provided.
  • the receiving unit 230 also includes:
  • the double-pole double-throw switch DPDT1 the multiple first ends of the double-pole double-throw switch DPDT1 are respectively connected to two output ports (output port LNA OUT1, output port LNA OUT2) in one-to-one correspondence, each first end of the double-pole double throw switch DPDT1
  • the two terminals are respectively connected to the output terminals of the low noise amplifier LNA1 and the low noise amplifier LNA2 in a one-to-one correspondence.
  • the double-pole double-throw switch DPDT1 is used to selectively conduct the paths between the two output ports (output port LNA OUT1, output port LNA OUT2) and multiple low-noise amplifiers LNA1, so as to realize the output paths of low-frequency signals in different frequency bands.
  • the gating unit 220 is a multi-channel selection switch SP8T2, and the multiple first terminals of the multi-channel selection switch SP8T2 correspond to the second terminals of the multiple first filter modules 200 respectively. Connection; the second end of the multi-channel selection switch SP8T2 is connected with the first antenna port LB ANT1.
  • the 2G low-frequency transmitting unit 250 includes a power amplifier 2G LB PA and a filter F1; the 2G high-frequency transmitting unit 260 includes a power amplifier 2G HB PA and a filter F2.
  • the input terminal of the power amplifier 2G LB PA is connected with the input port GSM LB IN
  • the output terminal of the power amplifier 2G LB PA is connected with the first end of the second gating unit 230 through the filter F1
  • the input terminal of the power amplifier 2G HB PA The end is connected to the input port GSM HB IN
  • the output end of the power amplifier 2G HB PA is connected to the high frequency output port GSM HB OUT through the filter F2.
  • Power amplifier 2G LB PA and power amplifier 2G HB PA are used to amplify 2G low frequency signal and 2G high frequency signal respectively
  • filter F1 and filter F2 are used to filter 2G low frequency signal and 2G high frequency signal respectively.
  • the signal transceiving process of the radio frequency transceiver module 20 in this embodiment will be described by taking the low frequency signal as an N28 frequency band signal as an example:
  • the radio frequency transceiver 10 outputs the N28 transmission signal through the input port PA IN and enters the radio frequency transceiver module 20, and the signal is amplified through the power amplifier LB PA of the transmission unit 210, through the multi-channel selection switch SP8T1, the first filter After the module 200 performs filter processing, it outputs to the first antenna port LB ANT1 through the gating unit 220 and the coupling unit 240, and finally reaches the antenna of the antenna group.
  • the main receiving process of the N28 low-frequency signal the antenna of the antenna group receives the N28 low-frequency signal from the space, and the N28 low-frequency signal enters the radio frequency transceiver module 20 through the first antenna port LB ANT1, and enters the first radio frequency transceiver module 20 through the coupling unit 240 and the gate unit 220.
  • a filtering module 200 performs filtering processing, enters the low noise amplifier LNA1 through the multi-channel selection switch SP4T1 for amplification processing, and then reaches the output port LNA OUT through the third switch to output to the radio frequency transceiver 10.
  • Main set MIMO receiving process of N28 low-frequency signal the antenna of the antenna group receives the N28 low-frequency signal from the space, the N28 low-frequency signal enters the radio frequency transceiver module 20 through the second antenna port LB ANT2, and enters the low-noise amplifier through the multi-channel selection switch SP4T1
  • the LNA1 performs amplification processing, and then reaches the output port LNA OUT1 through the double-pole double-throw switch DPDT1 to be output to the radio frequency transceiver 10 .
  • the radio frequency transceiver module 20 is also configured with an auxiliary input port LB TXOU, an auxiliary output port LNA_AUX, and an auxiliary transceiver port LB_TRX; wherein: the two first filtering modules 40 The terminals are respectively connected to the auxiliary input port LBTXOU and the auxiliary output port LNA_AUX in one-to-one correspondence, and the second end of the first filter module 40 is connected to the auxiliary transceiver port.
  • the external first filtering module 40 can filter the low-frequency signals transmitted and received by the radio frequency transceiver module 20 , and at the same time improve the isolation effect of the first filtering module 40 on low-frequency signals. It should be noted that, in other embodiments, a plurality of first filtering modules 40 may also be installed externally to implement filtering processing on a plurality of low-frequency signals in different frequency bands.
  • the radio frequency transceiver module 20 includes: a transmitting unit 210 , a gating unit 220 , and a receiving unit 230 .
  • the transmitting unit 210 is respectively connected to the input port PA IN and the auxiliary input port LB TXOU, and is used to amplify the low-frequency signal received by the input port PA IN.
  • the receiving unit 230 is respectively connected to the output port LNA OUT, the auxiliary output port LNA_AUX, and the second antenna port LB ANT2, and is used to amplify the received low-frequency signal.
  • the gating unit 220 is connected with the transmitting unit 210, the receiving unit 230, the auxiliary transceiver port LB_TRX, and the first antenna port LB ANT1 respectively, and is used to selectively conduct between the transmitting unit 210, the receiving unit 230 and the first antenna port LB ANT1 respectively radio frequency channel.
  • the radio frequency transceiver module 20 also includes: a coupling unit 240, which is respectively connected to the gating unit 220 and the first antenna port LB ANT1 for coupling the gating unit 220 and the first antenna port LB ANT1 low frequency signals in the RF path between them.
  • a coupling unit 240 which is respectively connected to the gating unit 220 and the first antenna port LB ANT1 for coupling the gating unit 220 and the first antenna port LB ANT1 low frequency signals in the RF path between them.
  • the transmitting unit 210 the receiving unit 230 , the gating unit 220 , and the coupling unit 240 , refer to the related descriptions of the foregoing embodiments, and details are not repeated here.
  • the low-frequency signal includes a plurality of radio-frequency signals of low-frequency bands; the radio frequency transceiver module 20 also includes:
  • Filtering unit 270 the two first ends of filtering unit 270 are respectively connected to transmitting unit 210 and receiving unit 230 in one-to-one correspondence, and the second end of filtering unit 270 is connected to gating unit 220 for filtering out spurious waves other than low-frequency signals .
  • the frequency band of the low-frequency signal filtered by the filtering unit 270 is different from the frequency band of the low-frequency signal filtered by the first filtering module 40 .
  • a first filtering module 40 and one or more filtering units 270 may be provided.
  • the first filtering module 40 is used to filter low-frequency signals of the main frequency band
  • the filtering unit 270 is used to filter low-frequency signals of other secondary frequency bands.
  • a first filter module 40 and two filter units 270 can be set to realize the first filter module 40 pair Filter processing of low-frequency signals in three frequency bands.
  • the filtering unit 270 may be a duplexer or a filter.
  • the radio frequency transceiver module 20 can also be configured with an input port GSM LB IN, an input port GSM HB IN and a high-frequency output port GSM HB OUT.
  • the radio frequency transceiver module 20 also includes a 2G low frequency transmitting unit and a 2G high frequency transmitting unit.
  • 2G low-frequency transmitting unit and the 2G high-frequency transmitting unit refer to the above-mentioned embodiments, and details are not repeated here.
  • FIG. 8 it is a specific circuit structure diagram of this embodiment.
  • the signal transceiving process of the radio frequency transceiver module 20 in this embodiment will be described by taking the low frequency signal as an N28 frequency band signal as an example:
  • the transmission process of the N28 low-frequency signal the radio frequency transceiver 10 outputs the N28 transmission signal through the input port PA IN and enters the radio frequency transceiver module 20, the signal is amplified by the power amplifier LB PA1 of the transmission unit 210, and output to the auxiliary input through the multi-channel selection switch SP8T1
  • the port LB TXOU reaches the first filtering module 40, and the first filtering module 40 performs filtering processing, and outputs to the first antenna port LB ANT1 through the auxiliary transceiver port and the gating unit 220, and finally reaches the antenna of the antenna group.
  • the main receiving process of the N28 low-frequency signal the antenna of the antenna group receives the N28 low-frequency signal from the space, and the N28 low-frequency signal enters the radio frequency transceiver module 20 through the first antenna port LB ANT1, and passes through the coupling unit 240, the gating unit 220, the auxiliary The transceiver port enters the first filtering module 40 for filtering processing, enters the low noise amplifier LNA1 through the auxiliary output port LNA_AUX and the multi-channel selection switch SP4T1 for amplification processing, and then reaches the output port LNA OUT through the third switch to output to the radio frequency transceiver 10.
  • Main set MIMO receiving process of N28 low-frequency signal the antenna of the antenna group receives the N28 low-frequency signal from the space, the N28 low-frequency signal enters the RF transceiver module 20 through the second antenna port LB ANT2, and then enters the low-noise signal through the multi-channel selection switch SP4T1
  • the amplifier LNA1 performs amplification processing, and then reaches the output port LNA OUT through the double-pole double-throw switch DPDT1 to output to the radio frequency transceiver 10 .
  • the radio frequency receiving module 30 includes a first receiving module 310 and a second receiving module 320, wherein the first receiving module 310 is respectively connected to the output port of the radio frequency receiving module 30, the second The three-antenna port LB ANT3 is used to support diversity reception of low-frequency signals; the second receiving module 320 is respectively connected to the output end of the radio frequency receiving module 30 and the fourth antenna port LB ANT4 to support diversity MIMO reception of low-frequency signals.
  • the radio frequency receiving module 30 also includes a first gating module 330, the first gating module 330 is respectively connected to the first receiving module 310, the second receiving module 320 and the third antenna port LB ANT3 for selectively conducting The radio frequency path between the first receiving module 310, the second receiving module 320 and the third antenna port LB ANT3 respectively.
  • the first receiving module 310 can also be connected to the fourth antenna port LB ANT5 to connect the antennas of the antenna group.
  • the first gating module 330 may be a multi-channel selection switch SP8T3.
  • the radio frequency receiving module 30 also includes a second gating module 340, the second gating module 340 is respectively connected to the two output ports of the radio frequency receiving module 30, the first receiving module 310, and the second receiving module 320, for The radio frequency paths between the two output ports of the radio frequency receiving module 30 and the first receiving module 310 and the second receiving module 320 are selectively turned on.
  • the second gating module 340 may be a double pole double throw switch DPDT2.
  • the first receiving module 310 includes a low-noise amplifier LAN3, a multi-channel selection switch SP4T3, a filter F3, and a filter F4, and the input end of the low-noise amplifier LAN3 is connected to the first multi-channel selection switch SP4T1.
  • One end, the output end of the low noise amplifier LAN3 is connected to the second gating module 340, the first end of the multi-channel selection switch SP4T1 is connected to the first end of the filter F3 and the filter F4, the second end of the filter F3 and the filter F4
  • the terminal is connected to the first gating module 330.
  • the second receiving module 320 includes a low-noise amplifier LAN4, a multi-channel selection switch SP4T4, and a filter F6.
  • the input end of the low-noise amplifier LAN4 is connected to the first end of the multi-channel selection switch SP4T4, and the output end of the low-noise amplifier LAN4 is connected to the second selection switch.
  • the first end of the multi-channel selection switch SP4T4 is connected to the first end of the filter F6
  • the second end of the filter F6 is connected to the first selection module 330 .
  • the number of filters F in the first receiving module 310 and the number of filters F in the second receiving module 320 can be one or more.
  • the filter in the first receiving module 310 and the filter in the second receiving module 320 can also be arranged on the side of the radio frequency receiving module 30 that is close to the antenna.
  • the radio frequency receiving module 30 is also configured with a medium-high frequency antenna port MHB ANT, and the high-frequency antenna port MHB ANT is used to connect other antennas of the antenna group to support the detection of intermediate frequency signals and high frequency signals. Receive to expand the frequency range of the radio frequency signal received by the radio frequency receiving module 30, so as to improve the frequency range of the radio frequency system.
  • the radio frequency receiving module 30 also includes a third receiving module 350, the third receiving module 350 is used to connect with the medium and high frequency antenna port MHB ANT, the third receiving module 350 may include a multi-knife multi-throw switch nPnT, a low noise amplifier, Multi-channel selection switch, filter F and multi-channel selection switch.
  • the signal receiving process of the radio frequency receiving module 30 in this embodiment will be described by taking the low frequency signal as an N28 frequency band signal as an example:
  • the antenna of the antenna group receives N28 low-frequency signal from the space, N28 low-frequency signal enters the radio frequency receiving module 30 through the third antenna port LB ANT3, and enters the first receiving module through the first gating module 330
  • the filtering process is performed in the filter at 310, and then enters the low-noise amplifier LAN through the multi-channel selection switch SP4T3 for amplification processing, and then reaches the output port LNA OUT through the second gating module 340 to be output to the radio frequency transceiver 10.
  • the MIMO receiving process of the N28 low-frequency signal the antenna of the antenna group receives the N28 low-frequency signal from the space, and the N28 low-frequency signal enters the radio frequency receiving module 30 through the fourth antenna port LB ANT4, and then passes through the multi-channel selection switch of the second receiving module 320 SP4T1 enters the low-noise amplifier LAN4 for amplification processing, and then reaches the output port LNA OUT through the second gating module 340 to be output to the radio frequency transceiver 10 .
  • the radio frequency system also includes:
  • the second filtering module 50 is respectively connected to the second antenna port LB ANT2 and an antenna in the antenna group, and is used for filtering the received low-frequency signal.
  • the second filter module 50 is used to filter the received low-frequency signal and select and output the 5G low-frequency signal of at least one frequency band to the second antenna port LB ANT2, and the radio frequency transceiver module 20 pairs the received low-frequency signal through the second antenna port LB ANT2
  • the frequency signal is output to the radio frequency transceiver 10 after low noise amplification processing.
  • the second filtering module 50 is a filter, the input end of the filter is connected to the antenna, and the output end of the filter is connected to the third antenna port LB ANT3.
  • the radio frequency system further includes:
  • the third filtering module 60 is respectively connected to the fourth antenna port LB ANT4 and an antenna in the antenna group, and is used for filtering the received low-frequency signal.
  • the third filter module 60 is used to filter the received low-frequency signal and select and output the 5G low-frequency signal of at least one frequency band to the fourth antenna port LB ANT4, and the radio frequency receiving module 30 pairs the received low-frequency signal through the fourth antenna port LB ANT4
  • the frequency signal is output to the radio frequency transceiver 10 after low noise amplification processing.
  • the third filtering module 60 is a filter, the input end of the filter is connected to the antenna, and the output end of the filter is connected to the fourth antenna port LB ANT4.
  • the second antenna port LB The antenna efficiency of the antenna connected to ANT2 is lower than the antenna efficiency of the antenna connected to the first antenna port LB ANT1, and the radio frequency system also includes:
  • the first low-noise amplification module 70 the output end of the first low-noise amplification module 70 is connected with the second antenna port LB ANT2, and the input end of the first low-noise amplification module 70 is connected with the second filtering module 50 for filtering processing
  • the final low-frequency signal is amplified.
  • the first low-noise amplifier module 70 By arranging the first low-noise amplifier module 70 near the antenna side outside the radio frequency transceiver module 20, the receiving performance of the second antenna port LB ANT2 of the radio frequency transceiver module 20 can be improved, and the inefficiency caused by environmental problems, the The problem of large insertion loss caused by the internal noise amplifier circuit of the radio frequency transceiver module 20 .
  • the first low-noise amplifier module 70 is a low-noise amplifier, the input end of the low-noise amplifier is connected to the second filtering module 50, and the output end of the low-noise amplifier is connected to the second antenna port LB ANT2.
  • the radio frequency system also includes:
  • the processed low-frequency signal is amplified.
  • the second low-noise amplifier module 80 By arranging the second low-noise amplifier module 80 at a position close to the antenna side outside the radio frequency receiving module 30, the receiving performance of the fourth antenna port LB ANT4 of the radio frequency transceiver module 20 can be improved, and the low efficiency caused by environmental problems, the The problem of large insertion loss caused by the internal noise amplifier circuit of the radio frequency receiving module 30 .
  • the second low-noise amplifier module 80 is a low-noise amplifier, the input end of the low-noise amplifier is connected to the third filtering module 60, and the output end of the low-noise amplifier is connected to the fourth antenna port LB ANT4.
  • the radio frequency system further includes:
  • the first switching module 90 is respectively connected with the first antenna port LB ANT1, the third antenna port LB ANT3, the first antenna ANT1 and the second antenna ANT2, and is used to connect the first antenna port LB ANT1 and the third antenna port LB ANT3 to The first antenna ANT1 and the second antenna ANT2 are switchably connected.
  • the first antenna port LB ANT1 and the third antenna port LB ANT3 can be selected to be switchably connected to the first antenna ANT1 and the second antenna ANT2, from the first antenna ANT1 and the second antenna ANT2 Determine the target antenna, and control the first switching module 90 so that the target antenna can perform transmission and main set reception, so that the uplink signal can be distributed on the first antenna ANT1 or the second antenna ANT2 with better antenna efficiency, and the uplink signal can be guaranteed Reliability to improve the communication performance of radio frequency system work.
  • the first switching module 90 can be a double pole double throw switch DPDT3, the first switching module The two first ends of 90 are respectively connected to the first antenna port LB ANT1 and the third antenna port LB ANT3 in one-to-one correspondence, and the two second ends of the first switching module 90 are respectively connected to the first antenna ANT1 and the second antenna ANT2 One-to-one connection.
  • the first antenna port LB ANT1 and the third antenna port LB ANT3 are configured to switchably connect the first antenna ANT1 and the second antenna ANT2, and the first antenna port LB ANT1 includes the first switching port ANT101, The second switching port ANT102, the first switching port ANT101, and the second switching port ANT102 are configured to connect to the first antenna ANT1 and the second antenna ANT2 in one-to-one correspondence respectively;
  • the radio frequency transceiver module 20 is also configured with a connection port CAX, a connection port CAX is connected with the third antenna port LB ANT3; as shown in Figure 17, the radio frequency transceiver module 20 also includes:
  • the transceiver module 201 is connected with the second antenna port LB ANT2, and is used to support the low-frequency signal received; the second switching module 202 is connected with the transceiver module 201, the first switching port ANT101, the second switching port ANT102 and the The port CAX connection is used to switchably connect the transceiver module 201 and the connection port CAX to the first antenna ANT1 and the second antenna ANT2, and connect the connection port CAX to the third antenna port LB ANT3.
  • the first antenna port LB ANT1 and the third antenna port LB ANT3 can be selected to be switchably connected to the first antenna ANT1 and the second antenna ANT2, from the first antenna ANT1 and the second antenna ANT2 Determine the target antenna, and control the second switching module 202 to enable the target antenna to perform transmission and main set reception, so that the uplink signal can be distributed on the first antenna ANT1 or the second antenna ANT2 with better antenna efficiency, and the uplink signal can be guaranteed Reliability to improve the communication performance of radio frequency system work.
  • the second switching module 202 is a double-pole double-throw switch DPDT4, wherein the second switching The two first ends of the module 202 are respectively connected to the first switching port ANT101 and the second switching port ANT102 in a one-to-one correspondence, and the two second ends of the second switching module 202 are respectively connected to the transceiver module 201 and the connection port CAX in a one-to-one correspondence .
  • the transceiver module 201 may include at least some units such as the transmitting unit 210, the receiving unit 230, the gating unit 220, the coupling unit 240, the filtering unit 270 and their corresponding optional devices as shown in the above-mentioned embodiments.
  • the transmitting unit 210 the receiving unit 230, the gating unit 220, the coupling unit 240, the filtering unit 270 and their corresponding optional devices as shown in the above-mentioned embodiments.
  • the transceiver module 201 may include at least some units such as the transmitting unit 210, the receiving unit 230, the gating unit 220, the coupling unit 240, the filtering unit 270 and their corresponding optional devices as shown in the above-mentioned embodiments.
  • the transmitting unit 210 the receiving unit 230, the gating unit 220, the coupling unit 240, the filtering unit 270 and their corresponding optional devices as shown in the above-mentioned embodiments.
  • the radio frequency system also includes:
  • the third switching module 100 is respectively connected with the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3 and the fourth antenna port LB ANT4, the first antenna ANT1, the second antenna ANT2, and the third antenna ANT3 and the fourth antenna ANT4, for configuring the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3 and the fourth antenna port LB ANT4 to be switchably connected to the first antenna ANT1, the The second antenna ANT2, the third antenna ANT3 and the fourth antenna ANT4.
  • the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3 and the fourth antenna port LB ANT4 can be selected to be switchably connected to the first antenna ANT1,
  • the second antenna ANT2, the third antenna ANT3 and the fourth antenna ANT4 determine the target antenna from the first antenna ANT1, the second antenna ANT2, the third antenna ANT3 and the fourth antenna ANT4, and control the third switching module 100 so that the target antenna
  • the antenna can transmit and receive mainly, so that the uplink signal can be distributed on the antenna with better antenna efficiency, and the reliability of the uplink signal can be guaranteed to improve the communication performance of the radio frequency system.
  • the third switching module 100 can be a four pole four throw switch 4P4T, the third switching module The four first ends of 100 are respectively connected to the first antenna port LB ANT1, the second antenna port LB ANT2, the third antenna port LB ANT3 and the fourth antenna port LB ANT4 in one-to-one correspondence, and the four first terminals of the third switching module 100 The two ends are respectively connected to the first antenna ANT1 , the second antenna ANT2 , the third antenna ANT3 and the fourth antenna ANT4 in a one-to-one correspondence.
  • An embodiment of the present application further provides a communication device, where the radio frequency system in any one of the foregoing embodiments is set on the communication device.
  • the radio frequency system By setting the radio frequency system on the communication device, 4*4 MIMO reception can be realized, and the throughput of low-frequency signals can be doubled without increasing spectrum resources and antenna transmission power; the download rate can be increased to improve user experience , at the same time, when the communication equipment is located in a weak signal environment such as the edge of a cell, deep in a building, or an elevator, it can receive through 4*4 MIMO, which has higher diversity gain and greater coverage distance; and the device is highly integrated, reducing radio frequency Each device in the system occupies the area of the substrate, and at the same time, layout and wiring can be simplified to save costs.
  • the communication device is a mobile phone 11 as an example for illustration, specifically, as shown in Figure 23, the mobile phone 11 may include a memory 21 (which optionally includes one or more computer-readable storage media), processor 22, peripheral device interface 23, radio frequency system 24, input/output (I/O) subsystem 26. These components optionally communicate via one or more communication buses or signal lines 29 .
  • the mobile phone 11 shown in FIG. 23 does not constitute a limitation to the mobile phone, and may include more or less components than those shown in the illustration, or combine some components, or arrange different components.
  • the various components shown in FIG. 20 are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • Memory 21 optionally includes high-speed random access memory, and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211 , a communication module (or an instruction set) 212 , a global positioning system (GPS) module (or an instruction set) 213 and the like.
  • GPS global positioning system
  • Processor 22 and other control circuits, such as control circuits in radio frequency system 24 may be used to control the operation of handset 11 .
  • the processor 22 may be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application specific integrated circuits, and the like.
  • Processor 22 may be configured to implement a control algorithm that controls the use of antennas in handset 11 .
  • the processor 22 may also issue control commands and the like for controlling switches in the radio frequency system 24 .
  • I/O subsystem 26 couples input/output peripherals on handset 11 such as a keypad and other input control devices to peripherals interface 23 .
  • I/O subsystem 26 optionally includes a touch screen, keys, tone generator, accelerometer (motion sensor), ambient light sensor and other sensors, light emitting diodes and other status indicators, data ports, and the like.
  • a user may control the operation of handset 11 by supplying commands via I/O subsystem 26 and may use the output resources of I/O subsystem 26 to receive status information and other output from handset 11 .
  • the user can turn on or turn off the mobile phone by pressing the button 261 .
  • the radio frequency system 24 may be the radio frequency system in any of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请涉及一种射频***和通信设备,射频***包括射频收发器(10);射频收发模组(20),与射频收发器(10)连接,被配置有第一天线端口和第二天线端口,用于通过第一天线端口、第二天线端口支持对低频信号的接收;射频接收模组(30),与射频收发器(10)连接,被配置有第三天线端口和第四天线端口,用于通过第三天线端口、第四天线端口支持对低频信号的接收;第一天线端口、第二天线端口、第三天线端口及第四天线端口中的至少两个端口被配置为可切换地连接天线组的至少两支天线,且至少两个端口包括第一天线端口。射频***能够实现低频信号的4*4MIMO接收,在应用于通信设备时,可以提升下载速率以提高用户的体验,当通信设备位于小区边缘、楼宇深处、电梯等弱信号环境时通过4*4MIMO接收,具有更好的接收性能。

Description

射频***及通信设备
相关申请的交叉引用
本申请要求于2021年11月30日提交中国专利局、申请号为2021114473481、发明名称为“射频***及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种射频***及通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着技术的发展和进步,移动通信技术逐渐开始应用于通信设备,例如手机等。随着技术的发展和进步,5G移动通信技术逐渐开始应用于电子设备。5G移动通信技术通信频率相比于4G移动通信技术的频率更高。传统的射频***在小区边缘、楼宇深处或电梯等信号较差的区域时,对5G低频信号的接收(例如,N28频段信号)的接收性能较差。
发明内容
根据本申请的各种实施例,提供了一种射频***及通信设备,可以提高对低频信号的接收性能。
一种射频***,包括:
射频收发器;
射频收发模组,与所述射频收发器连接,被配置有第一天线端口和第二天线端口,所述射频收发模组用于通过所述第一天线端口支持对低频信号的主集接收,及通过所述第二天线端口支持对所述低频信号的MIMO接收;
射频接收模组,与所述射频收发器连接,被配置有第三天线端口和第四天线端口,所述射频接收模组用于通过所述第三天线端口支持对所述低频信号的分集接收,及通过所述第四天线端口支持对所述低频信号的MIMO接收;
其中,所述第一天线端口、所述第二天线端口、所述第三天线端口及所述第四天线端口中的至少两个端口被配置为可切换地连接天线组的至少两支天线,且不同端口连接的所述天线不同;所述至少两个端口包括所述第一天线端口。
一种通信设备,包括如上所述的射频***。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中射频***的结构示意图之一;
图2为一个实施例中天线的位置示意图;
图3为一个实施例中射频收发模组的结构示意图之一;
图4为一个实施例中射频收发模组的结构示意图之二;
图5为一个实施例中射频收发模组的具体结构示意图之一;
图6为一个实施例中射频收发模组的结构示意图之三;
图7为一个实施例中射频收发模组的结构示意图之四;
图8为一个实施例中射频收发模组的具体结构示意图之二;
图9为一个实施例中射频接收模组的结构示意图;
图10为一个实施例中射频接收模组的具体结构示意图之一;
图11为一个实施例中射频接收模组的具体结构示意图之二;
图12为一个实施例中射频***的结构示意图之二;
图13为一个实施例中射频***的结构示意图之三;
图14为一个实施例中射频***的结构示意图之四;
图15为一个实施例中射频***的结构示意图之五;
图16为一个实施例中射频***的具体结构示意图之一;
图17为一个实施例中射频***的结构示意图之六;
图18为一个实施例中射频***的结构示意图之七;
图19为一个实施例中射频***的具体结构示意图之二;
图20为一个实施例中射频***的结构示意图之八;
图21为一个实施例中射频***的结构示意图之九;
图22为一个实施例中射频***的具体结构示意图之三;
图23为一个实施例中通信设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一客户端称为第二客户端,且类似地,可将第二客户端称为第一客户端。第一客户端和第二客户端两者都是客户端,但其不是同一客户端。
本申请实施例涉及的射频***可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
如图1所示,在其中一个实施例中,本申请实施例提供的射频***包括:射频收发器10、射频收发模组20、射频接收模组30;还包括天线组(图1以天线组包括第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4,射频收发模组20与第一天线ANT1连接、射频接收模组30与第二天线ANT2连接的结构进行示意,仅为示意,不做限定)。
在本实施例中,第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4均为能够支持NR低频多个频段的射频信号的收发。各支天线可以使用任何合适类型的天线形成。例如,各支天线可以包括由以下天线结构形成的具有谐振元件的天线:阵列天线结构、环形天线结构、贴片天线结构、缝隙天线结构、螺旋形天线结构、带状天线、单极天线、偶极天线中的至少一种等。不同类型的天线可以用于不同的频段和频段组合。在本申请实施例中,对第一天线ANT1、第二天线ANT2、第三天线ANT3和第四天线ANT4的类型不做进一步的限定。
可选地,低频信号可包括一个低频频段的射频信号,也可以包括多个低频频段的射频 信号。该射频信号可以包括4G LTE低频信号和5G NR低频信号中的至少一个。其中,低频信号的频段划分如表1所示。
表1为低频信号的频段划分表
Figure PCTCN2022107880-appb-000001
需要说明的是,5G网络中沿用4G所使用的频段,仅更改序号之前的标识,低频信号的多个低频频段不限于上述举例说明。
可选地,低频信号包括N5、N8、N20、N28和N71频段信号,射频***可支持N5、N8、N20、N28和N71频段信号的4*4MIMO接收功能。
其中,MIMO(Multiple Input Multiple Output,多发多收)技术是指在发射端口和接收端口分别使用多个发射天线和接收天线,充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高***的信道容量。
在本实施例中,射频收发器10可被配置有多个端口,以实现与射频收发模组20及射频接收模组30的连接。可选地,射频收发器10包括发射器和接收器,其中发射器用于向射频收发模组20发射射频信号,接收器用于接收射频收发模组20及射频接收模组30输出的射频信号。
在本实施例中,射频收发模组20与射频收发器10连接,被配置有第一天线端口LB ANT1和第二天线端口LB ANT2,射频收发模组20用于通过第一天线端口LB ANT1支持对低频信号的主集接收,及通过第二天线端口LB ANT2支持对低频信号的MIMO接收。
其中,射频收发模组20用于通过第一天线端口LB ANT1支持对多个低频信号的发射和主集接收,及通过第二天线端口LB ANT2支持对多个低频信号的主集MIMO接收。
其中,射频收发模组20还被配置有输入端口PA IN和输出端口LNA OUT,射频收发模组20的输入端口PA IN与射频收发器10连接,射频收发模组20的输出端口LNA OUT与射频收发器10连接,输入端口PA IN与第一天线端口LB ANT1之间的发射通路、输出端口LNA OUT与第一天线端口LB ANT1之间的接收通路被配置为连接同一天线。射频收发模组20用于对射频收发器10发出的低频信号进行滤波放大处理,输出至第一天线端口LB ANT1,经与第一天线端口LB ANT1连接的天线组的天线发射出去,以实现对低频信号的发射控制;还用于通过第一天线端口LB ANT1接收接收的低频信号,对低频信号进行滤波放大处理后,经输出端口LNA OUT输出至射频收发器10,以实现对低频信号的接收控制。可选地,射频收发模组20可以理解为内置低噪声放大器的低频的功率放大器模块(LB L-PA Mid,Low Band Power Amplifier Modules including Duplexers)。
可选地,射频收发模组20还用于实现对多个低频信号间的接收切换控制、发射切换控制以及发射与接收之间的切换控制。具体地,通过第一天线端口LB ANT1可以在多个低频信号中选择一个进行发射和主集接收,及通过第二天线端口LB ANT2在多个低频信号中选择一个进行主集MIMO接收。可选地,射频收发模组20通过第一天线端口LB ANT1可以同时对两个以上频段的低频信号进行发射和主集接收,通过第二天线端口LB ANT2对两个以上频段的低频信号进行主集MIMO接收。
在本实施例中,射频接收模组30与射频收发器10连接,被配置有第三天线端口LB ANT3和第四天线端口LB ANT4,射频接收模组30用于通过第三天线端口LB ANT3支持对低频信号的分集接收,及通过第四天线端口LB ANT4支持对低频信号的MIMO接收。
其中,射频接收模组30用于通过第三天线端口LB ANT3支持对多个低频信号的分集接收,及通过第四天线端口LB ANT4支持对多个低频信号的分集MIMO接收。具体地,射频接收模组30还被配置有输出端口LNA OUT,射频接收模组30的输出端口LNA OUT 与射频收发器10连接,射频接收模组30通过第三天线端口LB ANT3接收由天线组的天线接收的低频信号,对低频信号进行滤波放大处理后,经射频接收模组30的输出端口LNA OUT输出至射频收发器10,以实现对低频信号的接收控制。可选地,射频接收模组30可以理解为低噪声放大器模块(LFEM,Low Noise AmPlifier FrontEnd Modules),其具体可包括低噪声放大器和多个滤波器等,可用于支持对低频信号的接收处理。
可选地,射频接收模组30通过第三天线端口LB ANT3可以在多个低频信号中选择一个进行分集接收,及通过第四天线端口LB ANT4在多个低频信号中选择一个进行分集MIMO接收。可选地,射频接收模组30通过第三天线端口LB ANT3可以同时对两个以上频段的低频信号进行分集接收,通过第四天线端口LB ANT4对两个以上频段的低频信号进行分集MIMO接收。
在本实施例中,第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4中的至少两个端口被配置为可切换地连接天线组的至少两支天线,且不同端口连接的天线不同;至少两个端口包括第一天线端口LB ANT1。通过配置至少两个端口与至少两支天线间的可切换连接,且确保至少两个端口中的一个为第一天线端口LB ANT1,可以确保至少两支天线既可以实现发射、主集接收功能,还可以实现主集MIMO接收、分集MIMO接收及分集接收功能中的至少一种功能。
在一实施例中,第一天线端口LB ANT1、第三天线端口LB ANT3被配置为可切换地连接第一天线ANT1和第二天线ANT2,第二天线端口LB ANT2被配置为连接第三天线ANT3,第四天线端口LB ANT4被配置为连接第四天线ANT4。
其中,第一天线端口LB ANT1、第三天线端口LB ANT3被配置为可切换地连接第一天线ANT1和第二天线ANT2,从而第一天线ANT1和第二天线ANT2之间支持天线切换功能,都能够支持对低频信号的发射、主集接收和分集接收。
可选地,第一天线ANT1、第二天线ANT2的天线效率均高于第三天线ANT3、第四天线ANT4的效率,目标天线为第一天线ANT1、第二天线ANT2中的任一支,可以将上行信号分布在天线效率更好的第一天线ANT1或第二天线ANT2上,可以保证上行信号的可靠性以提高射频***工作的通信性能。可选地,如图2所示,第一天线ANT1、第二天线ANT2分别设置在通信设备的顶边框101和底边框103,第三天线ANT3和第四天线ANT4设置在通信设备的两个侧边框102、104,因此,第一天线ANT1、第二天线ANT2的效率均高于第三天线ANT3和第四天线ANT4的效率。
可选地,射频收发器10用于根据第一天线端口LB ANT1和第三天线端口LB ANT3接收的低频信号的网络信息,配置连接至第一天线端口LB ANT1主集接收的目标天线,目标天线为第一天线ANT1和第二天线ANT2之一。其中,网络信息可以包括与所接收的低频信号的无线性能度量相关联的原始和处理后的信息,诸如信号强度、接收功率、参考信号接收功率(Reference Signal Receiving Power,RSRP)、接收信号强度(Received Signal Strength Indicator,RSSI)、信噪比(Signal to Noise Ratio,SNR)、MIMO信道矩阵的秩(Rank)、载波干扰噪声比(Carrier to Interference plus Noise Ratio,RS-CINR)、帧误码率、比特误码率、参考信号接收质量(Reference signal reception quality,RSRQ)等。进一步可选地,射频收发器10可以预先存储上述第一天线端口LB ANT1、第三天线端口LB ANT3的配置信息。其中,该配置信息可以包括天线的标识信息,第一天线端口LB ANT1、第三天线端口LB ANT3的标识信息及第一天线端口LB ANT1、第三天线端口LB ANT3分别与第一天线ANT1、第二天线ANT2之间的射频通路上各开关的控制逻辑信息等。
以网络信息为接收信号强度为例进行说明,第一天线ANT1被配置为低频信号的发射和主集接收的默认目标天线,若第一天线ANT1接收的低频信号的第一信号强度与第二天线ANT2接收的低频信号的第二信号强度的差值在预设时间段内均大于或等于预设阈值,则配置第二天线ANT2为目标天线。
具体地,当第一天线ANT1被配置为低频信号的发射和主集接收的目标天线时,射频收发器10分别通过第一天线端口LB ANT1、第三天线端口LB ANT3接收由第一天线ANT1和第二天线ANT2接收的低频信号,并根据第一天线ANT1接收的低频信号的第一信号强度和第二天线ANT2接收的低频信号的第二信号强度控制天线的切换。更具体地,第二接收信号强度减去第一接收信号强度的差值在预设时间内大于或等于预设阈值,则将第二天线ANT2作为目标天线。在确定目标天线后,射频收发器10可控制射频***的相关逻辑开关导通第二天线与射频收发模组20主集接收通路之间的通路,并导通第一天线ANT1与射频接收模组30分集接收通路之间的通路,从而利用第二天线ANT2来实现低频信号的发射和主集接收,以提升低频信号的通信质量。若该差值小于预设阈值,则继续将第一天线ANT1作为目标天线,维持当前的工作状态。
其中,预设阈值均大于零的数值,预设阈值的大小可以根据需要设置。通过设置预设阈值的判定条件,可以防止因为天线的信号接收强度可能一直处于变化中而导致的天线之间频繁切换,进而可以减小天线的传输效率的影响。
在一实施例中,第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4被配置为可切换地连接第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4,从而第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4之间支持天线切换功能,都能够支持对低频信号的发射、主集接收、分集接收、主集MIMO接收、分集MIMO接收。
可选地,目标天线为第一天线ANT1、第二天线ANT2、第三天线ANT3、第四天线ANT4中的任一支,可以将上行信号分布在天线效率更好的天线上,以保证上行信号的可靠性以提高射频***工作的通信性能。
可选地,射频收发器10用于根据第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4接收的低频信号的网络信息,配置连接至第一天线端口LB ANT1的目标天线,目标天线为第一天线ANT1、第二天线ANT2、第三天线ANT3、第四天线ANT4之一。具体的配置情况可以参见上述实施例中的相关描述,在此不再赘述。
可选地,第一天线ANT1被配置为低频信号的发射和主集接收的默认目标天线,若第二天线ANT2接收的低频信号的第二信号强度与第一天线ANT1、第三天线ANT3及第四天线ANT4中的任一支天线接收的低频信号的第三信号强度的差值在预设时间段内均大于或等于预设阈值,则配置第二天线ANT2为目标天线。其中,预设阈值的相关描述参见上述实施例,在此不再赘述。
本实施例提供的射频***,包括射频收发器10、射频收发模组20及射频接收模组30,射频收发器10分别与射频收发模组20、射频接收模组30连接。射频收发模组20被配置有第一天线端口LB ANT1和第二天线端口LB ANT2,射频收发模组20用于通过第一天线端口LB ANT1支持对低频信号的主集接收,及通过第二天线端口LB ANT2支持对低频信号的MIMO接收;射频接收模组30被配置有第三天线端口LB ANT3和第四天线端口LB ANT4,射频接收模组30用于通过第三天线端口LB ANT3支持对低频信号的分集接收,及通过第四天线端口支持对低频信号的MIMO接收。第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4中的至少两个端口被配置为可切换地连接天线组的至少两支天线,且不同端口连接的天线不同;至少两个端口包括第一天线端口LB ANT1,从而可以将上行信号分布在天线效率更好的天线上,进一步提高射频***工作的通信性能。其中,射频***能够对支持对低频段射频信号实现4*4MIMO接收,可以成倍提高对于低频信号的吞吐量;在射频***应用于通信设备时,可以提升下载速率以提高用户的体验,同时,当通信设备位于小区边缘、楼宇深处、电梯等弱信号环境时通过4*4MIMO接收,具有更高的分集增益及更大的覆盖范围,具有更好 的接收性能。
在其中一个实施例中,射频收发模组20还被配置有输入端口PA IN和输出端口LNA OUT;其中:输入端口PA IN与第一天线端口LB ANT1之间的发射通路、输出端口LNA OUT与第一天线端口LB ANT1之间的接收通路被配置为连接同一天线。
在其中一个实施例中,射频***还包括:
第一滤波模块,第一滤波模块的两个第一端分别一一对应连接输入端口PA IN、输出端口LNA OUT,第一滤波模块的第二端连接第一天线端口LB ANT,用于滤除低频信号以外的杂散波。
其中,第一滤波模块可以设置在射频收发模组20外,也可以集成在射频收发模组20内部,用于对射频收发模组20的输入端口PA IN与第一天线端口LB ANT1之间的发射通路的低频信号进行滤波处理,以滤除低频信号以外的杂散波;还用于对射频收发模组20的输出端口LNA OUT与第一天线端口LB ANT1之间的接收通路的低频信号进行滤波处理,以滤除低频信号以外的杂散波。同时,第一滤波模块还用于隔离输入端口PA IN与第一天线端口LB ANT1之间的发射通路和输出端口LNA OUT与第一天线端口LB ANT1之间的接收通路的信号。
其中,第一滤波模块可以是双工器或者滤波器,当低频信号为单低频频段的射频信号时,例如为N28频段信号,则第一滤波模块可以对N28频段以外的杂散波进行滤波处理,仅输出N28频段信号至第一天线ANT1或主集接收电路30;当低频信号为多个低频频段的射频信号时,可以设置多个第一滤波模块或者第一滤波模块包括多个双工器或者滤波器,以分别对每个低频信号进行滤波处理。其中,当第一滤波模块包括双工器时,双工器的两个第一端分别一一对应连接输入端口PA IN、输出端口LNA OUT,双工器的第二端连接第一天线端口LB ANT1;当第一滤波模块包括滤波器时,第一滤波模块可以包括两个滤波器和一个开关器件,两个滤波器的第一端分别连接开关器件的两个第一端,两个滤波器的第二端分别一一对应连接输入端口PA IN、输出端口LNA OUT,开关器件的第二端连接第一天线端口LB ANT1。
如图3所示,在其中一个实施例中,第一滤波模块200集成在射频收发模组20内部,射频收发模组20包括:发射单元210、选通单元220及接收单元230。
本实施例中,第一滤波模块200的两个第一端分别一一对应连接发射单元210、接收单元230,第一滤波模块200的第二端连接选通单元220,第一滤波模块200用于对发射单元210发射的低频信号、接收单元230接收的低频信号进行滤波处理。其中,将第一滤波模块200集成在射频收发模组20内部,能够减少射频***占用的主板面积,提高器件的集成度,有利于器件的小型化,降低成本;同时还可以降低收发链路的插损,提高射频收发模组20对低频信号的输出功率,提升低频信号的灵敏度性能,进而可提升射频***的通信性能。
可选地,低频信号包括多个低频频段的射频信号;其中:第一滤波模块200的数量为多个,每个第一滤波模块200的两个第一端分别一一对应连接发射单元210、接收单元230,每个第一滤波模块200的第二端连接选通单元220;每个第一滤波模块200输出的低频信号的频段不同。例如,低频信号为N5、N8、N20、N28、N71五个不同频段的信号,可对应设置五个第一滤波模块200,以实现对这四个低频信号的滤波处理,经过这五个第一滤波模块200的滤波处理后,可以对应输出N5、N8、N20、N28、N71五个频段的低频信号至发射单元210或接收单元230。
本实施例中,发射单元210与射频收发模组20的输入端口PA IN连接,用于对射频收发模组20的输入端口PA IN接收的低频信号进行放大处理,以将放大处理后的低频信号输出至第一天线端口LB ANT1。
本实施例中,选通单元220分别与发射单元210、接收单元230、第一天线端口LB ANT1 连接,用于选择导通发射单元210、接收单元230分别与第一天线端口LB ANT1之间的射频通路。其中,选通单元220可以针对多个低频信号的发射通路和接收通路,通过选通单元220可以降低射频收发模组20的***损耗,进而可以提升多个低频信号在第一天线端口LB ANT1的输出功率及在输出端口LNA OUT的输出功率。
本实施例中,接收单元230分别与输出端口(例如,输出端口为两个,分别为输出端口LNA OUT1、输出端口LNA OUT2)、第一天线端口LB ANT1、第二天线端口LB ANT2连接,用于对接收的低频信号进行放大处理,以输出放大处理后的低频信号至射频收发模组20的输出端口LNA OUT。
可选地,如图3所示,射频收发模组20还包括:
耦合单元240,分别连接选通单元220、第一天线端口LB ANT1,用于耦合选通单元220与第一天线端口LB ANT1之间的射频通路中的低频信号。
具体地,射频收发模组20还配置有耦合输出端口CPLOUT,耦合单元240分别与选通单元220、第一天线端口LB ANT1、耦合输出端口CPLOUT连接,耦合选通单元220与第一天线端口LB ANT1之间的射频通路中的低频信号,以经耦合输出端口CPLOUT输出耦合信号。更具体地,耦合单元240包括输入端、输出端和耦合端。耦合单元240的输入端与选通单元220耦接,耦合单元240的输出端与第一天线端口LB ANT1耦接,耦合端与耦合输出端口CPLOUT耦接。其中,耦合信号包括前向耦合信号和反向耦合信号,基于耦合端输出的前向耦合信号,可以检测该低频段信号的前向功率信息;基于耦合端输出的反向耦合信号,可以对应检测该低频段信号的反向功率信息,并将该检测模式定义为反向功率检测模式。
可选地,如图4所示,射频收发模组20还可以被配置有输入端口GSM LB IN、输入端口GSM HB IN及高频输出端口GSM HB OUT。射频收发模组20还包括2G低频发射单元250和2G高频发射单元260。通过2G低频发射单元250和2G高频发射单元260可以分别实现对2G低频信号、2G高频信号的放大处理。
进一步可选地,如图5所示,发射单元210包括:功率放大器LB PA,功率放大器LB PA1的输入端与输入端口PA IN连接;多通道选择开关SP8T1,多通道选择开关SP8T1的第一端与功率放大器LB PA1的输出端连接,多通道选择开关SP8T1的多个第二端分别一一对应连接多个第一滤波模块200的第一端(例如,多通道选择开关SP8T1的两个第二端分别一一对应连接两个第一滤波模块200的第一端)。具体地,当低频信号的频段为一预设频段时,功率放大器LB PA1、一个第一滤波模块200可支持对该频段信号的相关处理,以对应输出无杂波的低频信号;当低频信号的频段为多个预设频段时,多通道选择开关SP8T1的多个第二端分别一一对应连接多个第一滤波模块200的第一端,从而功率放大器LB PA1、第一滤波模块200还可支持对多个不同频段的低频信号的相关处理,以对应输出无杂波的各个频段的低频信号。可以理解的是,射频收发模组20的输入端口PA IN、功率放大器LB PA1、多通道选择开关SP8T1及多个第一滤波模块200形成了多个发射通路中的滤波通路,多个滤波通路相互独立,彼此不重合。需要说明的是,当发射单元210仅需要实现一个频段低频信号的发射时,多通道选择开关SP8T1的第二端的数量可以仅为一个,同时第一滤波模块200的数量对应为一个。
进一步可选地,如图5所示,接收单元230包括:
低噪声放大器LNA1,低噪声放大器LNA1的输出端与射频收发模组20的输出端口LNA OUT连接;多通道选择开关SP4T1,多通道选择开关SP4T1的第一端连接低噪声放大器LNA1的输入端,多通道选择开关SP4T1的部分第二端连接第一滤波模块200的第二端,通过第一滤波模块200与第一天线端口LB ANT1连接以接收第一天线端口LB ANT1输入的低频信号;多通道选择开关SP4T1的部分第二端连接第二天线端口LB ANT2连接以接收第二天线端口LB ANT2输入的低频信号。
将低噪声放大器LNA1、多通道选择开关SP4T1集成于射频收发模组20内,通过多通道选择开关SP4T1选择导通低噪声放大器LNA1与第一天线端口LB ANT1之间的射频通路,还可以选择导通低噪声放大器LNA1与第二天线端口LB ANT2之间的射频通路,从而选择对不同频段的5G射频信号进行低噪声放大处理,节省了低噪声放大器LNA1的数量,缩小器件占用主板的面积。需要说明的是,当需要对多个频段的低频信号进行低噪声放大处理时,可以设置多个低噪声放大器(例如两个,分别为低噪声放大器LNA1、低噪声放大器LNA2)。
进一步可选地,如图5所示,射频收发模组20的输出端口LNA OUT的数量为多个,及低噪声放大器LNA1的数量为多个;接收单元230还包括:
双刀双掷开关DPDT1,双刀双掷开关DPDT1的多个第一端分别与两个输出端口(输出端口LNA OUT1、输出端口LNA OUT2)一一对应连接,双刀双掷开关DPDT1的各第二端分别与低噪声放大器LNA1、低噪声放大器LNA2的输出端一一对应连接。双刀双掷开关DPDT1用于选择导通两个输出端口(输出端口LNA OUT1、输出端口LNA OUT2)与多个低噪声放大器LNA1之间的通路,以实现不同频段的低频信号的输出通路。
进一步可选地,如图5所示,选通单元220为多通道选择开关SP8T2,多通道选择开关SP8T2的多个第一端分别对应与多个第一滤波模块200的第二端一一对应连接;多通道选择开关SP8T2的第二端与第一天线端口LB ANT1连接。
进一步可选地,如图5所示,2G低频发射单元250包括功率放大器2G LB PA及滤波器F1;2G高频发射单元260包括功率放大器2G HB PA及滤波器F2。其中,功率放大器2G LB PA的输入端与输入端口GSM LB IN连接,功率放大器2G LB PA的输出端经滤波器F1与第二选通单元230的第一端连接,功率放大器2G HB PA的输入端与输入端口GSM HB IN连接,功率放大器2G HB PA的输出端经滤波器F2与高频输出端口GSM HB OUT连接。功率放大器2G LB PA和功率放大器2G HB PA分别用于对2G低频信号、2G高频信号进行放大处理,滤波器F1和滤波器F2分别用于对2G低频信号、2G高频信号进行滤波处理。
为了便于说明,以低频信号为N28频段信号为例对本实施例中的射频收发模组20的信号收发过程进行说明:
N28低频信号的发射过程:射频收发器10通过输入端口PA IN输出N28发射信号进入射频收发模组20,经过发射单元210的功率放大器LB PA进行信号放大,通过多通道选择开关SP8T1、第一滤波模块200进行滤波处理后经选通单元220、耦合单元240输出至第一天线端口LB ANT1,最终到达天线组的天线。
N28低频信号的主集接收过程:天线组的天线接收来自空间中的N28低频信号,N28低频信号经第一天线端口LB ANT1进入射频收发模组20,经耦合单元240、选通单元220进入第一滤波模块200进行滤波处理,经多通道选择开关SP4T1进入低噪声放大器LNA1进行放大处理,再经第三开关到达输出端口LNA OUT输出至射频收发器10。
N28低频信号的主集MIMO接收过程:天线组的天线接收来自空间中的N28低频信号,N28低频信号经第二天线端口LB ANT2进入射频收发模组20,经多通道选择开关SP4T1进入低噪声放大器LNA1进行放大处理,再经双刀双掷开关DPDT1到达输出端口LNA OUT1输出至射频收发器10。
如图6所示,在其中一个实施例中,射频收发模组20还被配置有辅助输入端口LB TXOU、辅助输出端口LNA_AUX、辅助收发端口LB_TRX;其中:第一滤波模块40的两个第一端分别一一对应连接辅助输入端口LB TXOU、辅助输出端口LNA_AUX,第一滤波模块40的第二端连接辅助收发端口。通过外挂的第一滤波模块40,可以对射频收发模组20收发的低频信号进行滤波处理,同时提高第一滤波模块40对低频信号的隔离作用。需要说明的是,在其他实施例中,也可以外置多个第一滤波模块40,实现对多个不同频 段的低频信号进行滤波处理。
可选地,如图6所示,射频收发模组20包括:发射单元210、选通单元220、接收单元230。
发射单元210,分别与输入端口PA IN、辅助输入端口LB TXOU连接,用于对输入端口PA IN接收的低频信号进行放大处理。
接收单元230,分别与输出端口LNA OUT、辅助输出端口LNA_AUX、第二天线端口LB ANT2连接,用于对接收的低频信号进行放大处理。
选通单元220,分别与发射单元210、接收单元230、辅助收发端口LB_TRX、第一天线端口LB ANT1连接,用于选择导通发射单元210、接收单元230分别与第一天线端口LB ANT1之间的射频通路。
可选地,如图6所示,射频收发模组20还包括:耦合单元240,分别连接选通单元220、第一天线端口LB ANT1,用于耦合选通单元220与第一天线端口LB ANT1之间的射频通路中的低频信号。
其中,发射单元210、接收单元230、选通单元220、耦合单元240参见上述实施例的相关描述,在此不再赘述。
可选地,如图7所示,低频信号包括多个低频频段的射频信号;射频收发模组20还包括:
滤波单元270,滤波单元270的两个第一端分别一一对应连接发射单元210、接收单元230,滤波单元270的第二端连接选通单元220,用于滤除低频信号以外的杂散波。
其中,滤波单元270进行滤波处理的低频信号的频段与第一滤波模块40进行滤波处理的低频信号的频段不同。具体地,可以设置一个第一滤波模块40和一个或多个滤波单元270,第一滤波模块40用于滤除主频段的低频信号,滤波单元270用于滤除其他次要频段的低频信号。以射频收发模组20能够收发的低频信号为三个不同频段的信号为例,如图7所示,可以设置一个第一滤波模块40和两个滤波单元270,以实现第一滤波模块40对三个频段低频信号的滤波处理。可选地,滤波单元270可以是双工器或滤波器。
可选地,射频收发模组20还可以被配置有输入端口GSM LB IN、输入端口GSM HB IN及高频输出端口GSM HB OUT。射频收发模组20还包括2G低频发射单元和2G高频发射单元。通过2G低频发射单元和2G高频发射单元的相关描述参见上述实施例,在此不再赘述。
可选地,如图8所示,为本实施例的具体电路结构图,电路结构图的相关描述参见上述实施例,在此不再赘述。为了便于说明,以低频信号为N28频段信号为例对本实施例中的射频收发模组20的信号收发过程进行说明:
N28低频信号的发射过程:射频收发器10通过输入端口PA IN输出N28发射信号进入射频收发模组20,经过发射单元210的功率放大器LB PA1进行信号放大,通过多通道选择开关SP8T1输出至辅助输入端口LB TXOU到达第一滤波模块40,第一滤波模块40进行滤波处理后经辅助收发端口、选通单元220输出至第一天线端口LB ANT1,最终到达天线组的天线。
N28低频信号的主集接收过程:天线组的天线接收来自空间中的N28低频信号,N28低频信号经第一天线端口LB ANT1进入射频收发模组20,经耦合单元240、选通单元220、辅助收发端口进入第一滤波模块40进行滤波处理,经辅助输出端口LNA_AUX、多通道选择开关SP4T1进入低噪声放大器LNA1进行放大处理,再经第三开关到达输出端口LNA OUT输出至射频收发器10。
N28低频信号的主集MIMO接收过程:天线组的天线接收来自空间中的N28低频信号,N28低频信号经第二天线端口LB ANT2进入射频收发模组20,再经多通道选择开关SP4T1进入低噪声放大器LNA1进行放大处理,再经双刀双掷开关DPDT1到达输出端口 LNA OUT输出至射频收发器10。
如图9所示,在其中一个实施例中,射频接收模组30包括第一接收模块310和第二接收模块320,其中,第一接收模块310分别连接射频接收模组30的输出端口、第三天线端口LB ANT3,用于支持对低频信号的分集接收;第二接收模块320分别连接射频接收模组30的输出端、第四天线端口LB ANT4,用于支持对低频信号的分集MIMO接收。
可选地,射频接收模组30还包括第一选通模块330,第一选通模块330分别连接第一接收模块310、第二接收模块320及第三天线端口LB ANT3,用于选择导通第一接收模块310、第二接收模块320分别与第三天线端口LB ANT3之间的射频通路。第一接收模块310还可以连接第四天线端口LB ANT5以连接天线组的天线。进一步可选地,第一选通模块330可以为多通道选择开关SP8T3。
可选地,射频接收模组30还包括第二选通模块340,第二选通模块340分别连接射频接收模组30的两个输出端口、第一接收模块310、第二接收模块320,用于选择导通射频接收模组30的两个输出端口分别与第一接收模块310、第二接收模块320之间的射频通路。进一步可选地,第二选通模块340可以为双刀双掷开关DPDT2。
可选地,如图10所示,第一接收模块310包括低噪声放大器LAN3、多通道选择开关SP4T3及滤波器F3、滤波器F4,低噪声放大器LAN3的输入端连接多通道选择开关SP4T1的第一端,低噪声放大器LAN3的输出端连接第二选通模块340,多通道选择开关SP4T1的第一端连接滤波器F3、滤波器F4的第一端,滤波器F3、滤波器F4的第二端连接第一选通模块330。第二接收模块320包括低噪声放大器LAN4、多通道选择开关SP4T4及滤波器F6,低噪声放大器LAN4的输入端连接多通道选择开关SP4T4的第一端,低噪声放大器LAN4的输出端连接第二选通模块340,多通道选择开关SP4T4的第一端连接滤波器F6的第一端,滤波器F6的第二端连接第一选通模块330。其中,第一接收模块310中的滤波器F和第二接收模块320中的滤波器F的数量均可以为一个或多个。在其他实施例中,第一接收模块310中的滤波器和第二接收模块320中的滤波器还可以设置在射频接收模组30外部靠近天线的一侧中。
可选地,如图11所示,射频接收模组30还被配置有中高频天线端口MHB ANT,高频天线端口MHB ANT用于连接天线组的其他天线以支持对中频信号、高频信号的接收,以拓展其射频接收模组30接收射频信号的频率范围,以提高射频***的接收频率范围。具体地,射频接收模组30还包括第三接收模块350,第三接收模块350用于与中高频天线端口MHB ANT连接,第三接收模块350可以包括多刀多掷开关nPnT、低噪声放大器、多通道选择开关、滤波器F及多通道选择开关。
为了便于说明,以低频信号为N28频段信号为例对本实施例中的射频接收模组30的信号接收过程进行说明:
N28低频信号的分集接收过程:天线组的天线接收来自空间中的N28低频信号,N28低频信号经第三天线端口LB ANT3进入射频接收模组30,经第一选通模块330进入第一接收模块310的滤波器中进行滤波处理,经多通道选择开关SP4T3进入低噪声放大器LAN进行放大处理,再经第二选通模块340到达输出端口LNA OUT输出至射频收发器10。
N28低频信号的MIMO接收过程:天线组的天线接收来自空间中的N28低频信号,N28低频信号经第四天线端口LB ANT4进入射频接收模组30,再经第二接收模块320的多通道选择开关SP4T1进入低噪声放大器LAN4进行放大处理,再经第二选通模块340到达输出端口LNA OUT输出至射频收发器10。
如图12所示(图12以射频收发模组20与第一天线ANT1连接、射频接收模组30与第二天线ANT2连接的结构进行示意),在其中一个实施例中,射频***还包括:
第二滤波模块50,分别与第二天线端口LB ANT2、天线组中的一天线连接,用于对接收的低频信号进行滤波处理。
第二滤波模块50用于对接收的低频信号进行滤波处理并选择输出至少一个频段的5G低频信号至第二天线端口LB ANT2,射频收发模组20通过第二天线端口LB ANT2对接收到的低频频信号进行低噪声放大处理后输出至射频收发器10。可选地,第二滤波模块50为滤波器,滤波器的输入端与天线连接,滤波器的输出端与第三天线端口LB ANT3连接。
如图12所示,在其中一个实施例中,射频***还包括:
第三滤波模块60,分别与第四天线端口LB ANT4、天线组中的一天线连接,用于对接收的低频信号进行滤波处理。
第三滤波模块60用于对接收的低频信号进行滤波处理并选择输出至少一个频段的5G低频信号至第四天线端口LB ANT4,射频接收模组30通过第四天线端口LB ANT4对接收到的低频频信号进行低噪声放大处理后输出至射频收发器10。可选地,第三滤波模块60为滤波器,滤波器的输入端与天线连接,滤波器的输出端与第四天线端口LB ANT4连接。
如图13所示(图13以射频收发模组20与第一天线ANT1连接、射频接收模组30与第二天线ANT2连接的结构进行示意),在其中一个实施例中,第二天线端口LB ANT2连接的天线的天线效率低于第一天线端口LB ANT1连接的天线的天线效率,射频***还包括:
第一低噪声放大模块70,第一低噪声放大模块70的输出端与第二天线端口LB ANT2连接,第一低噪声放大模块70的输入端与第二滤波模块50连接,用于对滤波处理后的低频信号进行放大处理。
通过在射频收发模组20外靠近天线侧的位置设置第一低噪声放大模块70,可以提高射频收发模组20第二天线端口LB ANT2的接收性能,避免由于环境问题引起的效率低、由于远离射频收发模组20内部噪声放大电路引起的插损大的问题。可选地,第一低噪声放大模块70为低噪声放大器,低噪声放大器的输入端与第二滤波模块50连接,低噪声放大器的输出端与第二天线端口LB ANT2连接。
如图13所示,在其中一个实施例中,第四天线端口LB ANT4的天线效率低于第三天线端口LB ANT3连接的天线的天线效率,射频***还包括:
第二低噪声放大模块80,第二低噪声放大模块80的输出端与第四天线端口LB ANT4连接,第二低噪声放大模块80的输入端端口与第三滤波模块60连接,用于对滤波处理后的低频信号进行放大处理。
通过在射频接收模组30外靠近天线侧的位置设置第二低噪声放大模块80,可以提高射频收发模组20第四天线端口LB ANT4的接收性能,避免由于环境问题引起的效率低、由于远离射频接收模组30内部噪声放大电路引起的插损大的问题。可选地,第二低噪声放大模块80为低噪声放大器,低噪声放大器的输入端与第三滤波模块60连接,低噪声放大器的输出端与第四天线端口LB ANT4连接。
在其中一个实施例中,第一天线端口LB ANT1、第三天线端口LB ANT3被配置为可切换地连接第一天线ANT1和第二天线ANT2,如图14所示,射频***还包括:
第一切换模块90,分别与第一天线端口LB ANT1、第三天线端口LB ANT3、第一天线ANT1及第二天线ANT2连接,用于将第一天线端口LB ANT1、第三天线端口LB ANT3可切换地连接第一天线ANT1和第二天线ANT2。
通过设置第一切换模块90,可以选择将第一天线端口LB ANT1、第三天线端口LB ANT3可切换地连接第一天线ANT1和第二天线ANT2,从第一天线ANT1和第二天线ANT2中来确定目标天线,并控制第一切换模块90使得目标天线能够进行发射和主集接收,从而可以将上行信号分布在天线效率更好的第一天线ANT1或第二天线ANT2上,可以保证上行信号的可靠性以提高射频***工作的通信性能。
可选地,如图15和图16所示(其中图16以图8、图10及图12的实施例为例),第一切换模块90可以为双刀双掷开关DPDT3,第一切换模块90的两个第一端分别与第一天线端口LB ANT1、第三天线端口LB ANT3一一对应连接,第一切换模块90的两个第二端分别与第一天线ANT1、第二天线ANT2一一对应连接。
在其中一个实施例中,第一天线端口LB ANT1、第三天线端口LB ANT3被配置为可切换地连接第一天线ANT1和第二天线ANT2,第一天线端口LB ANT1包括第一切换端口ANT101、第二切换端口ANT102,第一切换端口ANT101、第二切换端口ANT102被配置为分别一一对应连接第一天线ANT1、第二天线ANT2;射频收发模组20还被配置有连接端口CAX,连接端口CAX与第三天线端口LB ANT3连接;如图17所示,射频收发模组20还包括:
收发模块201,与第二天线端口LB ANT2连接,用于支持对接收的低频信号进行放大处理;第二切换模块202,分别与收发模块201、第一切换端口ANT101、第二切换端口ANT102及连接端口CAX连接,用于将收发模块201、连接端口CAX可切换地连接第一天线ANT1和第二天线ANT2,连接端口CAX连接第三天线端口LB ANT3。
通过设置第二切换模块202,可以选择将第一天线端口LB ANT1、第三天线端口LB ANT3可切换地连接第一天线ANT1和第二天线ANT2,从第一天线ANT1和第二天线ANT2中来确定目标天线,并控制第二切换模块202使得目标天线能够进行发射和主集接收,从而可以将上行信号分布在天线效率更好的第一天线ANT1或第二天线ANT2上,可以保证上行信号的可靠性以提高射频***工作的通信性能。
可选地,如图18和图19所示(其中图19以图8、图10及图12的实施例为例),第二切换模块202为双刀双掷开关DPDT4,其中,第二切换模块202的两个第一端分别与第一切换端口ANT101、第二切换端口ANT102一一对应连接,第二切换模块202的两个第二端分别与收发模块201、连接端口CAX一一对应连接。
可选地,收发模块201可以包括如上述实施例中所示的发射单元210、接收单元230、选通单元220、耦合单元240、滤波单元270等至少部分单元及其对应的可选器件,相关描述参见上述实施例,在此不再赘述。
在其中一个实施例中,第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4被配置为可切换地连接第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4,如图20所示,射频***还包括:
第三切换模块100,分别与第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4、第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4连接,用于将第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4被配置为可切换地连接第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4。
通过设置第三切换模块100,可以选择将第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4被配置为可切换地连接第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4,从第一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4中来确定目标天线,并控制第三切换模块100使得目标天线能够进行发射和主集接收,从而可以将上行信号分布在天线效率更好的天线上,可以保证上行信号的可靠性以提高射频***工作的通信性能。
可选地,如图21和图22所示(其中图22以图8、图10及图12的实施例为例),第三切换模块100可以为四刀四掷开关4P4T,第三切换模块100的四个第一端分别与第一天线端口LB ANT1、第二天线端口LB ANT2、第三天线端口LB ANT3及第四天线端口LB ANT4一一对应连接,第三切换模块100的四个第二端分别与一天线ANT1、第二天线ANT2、第三天线ANT3及第四天线ANT4一一对应连接。
本申请实施例还提供一种通信设备,该通信设备上设置有上述任一实施例中的射频***。
通过在通信设备上设置该射频***,能够实现4*4MIMO接收,在不增加频谱资源和天线发射功率的情况下,可以成倍提高对于低频信号的吞吐量;可以提升下载速率以提高用户的体验,同时,当通信设备位于小区边缘、楼宇深处、电梯等弱信号环境时通过4*4MIMO接收,具有更高的分集增益及更大的覆盖距离;并且器件具有高集成度,减小了射频***中各器件占用基板的面积,同时还可以简化布局布线,节约成本。
如图23所示,进一步的,以通信设备为手机11为例进行说明,具体的,如图23所示,该手机11可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理器22、***设备接口23、射频***24、输入/输出(I/O)子***26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图23所示的手机11并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图20中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作***211、通信模块(或指令集)212、全球定位***(GPS)模块(或指令集)213等。
处理器22和其他控制电路(诸如射频***24中的控制电路)可以用于控制手机11的操作。该处理器22可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理器22可以被配置为实现控制手机11中的天线的使用的控制算法。处理器22还可以发出用于控制射频***24中各开关的控制命令等。
I/O子***26将手机11上的输入/输出***设备诸如键区和其他输入控制设备耦接到***设备接口23。I/O子***26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由I/O子***26供给命令来控制手机11的操作,并且可以使用I/O子***26的输出资源来从手机11接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
射频***24可以为前述任一实施例中的射频***。
在本说明书的描述中,参考术语“其中一个实施例”、“可选地”等的描述意指结合该实施例或示例描述的具体特征、结构或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种射频***,包括:
    射频收发器;
    射频收发模组,与所述射频收发器连接,被配置有第一天线端口和第二天线端口,所述射频收发模组用于通过所述第一天线端口支持对低频信号的主集接收,及通过所述第二天线端口支持对所述低频信号的MIMO接收;
    射频接收模组,与所述射频收发器连接,被配置有第三天线端口和第四天线端口,所述射频接收模组用于通过所述第三天线端口支持对所述低频信号的分集接收,及通过所述第四天线端口支持对所述低频信号的MIMO接收;
    其中,所述第一天线端口、所述第二天线端口、所述第三天线端口及所述第四天线端口中的至少两个端口被配置为可切换地连接天线组的至少两支天线,且不同端口连接的所述天线不同;所述至少两个端口包括所述第一天线端口。
  2. 根据权利要求1所述的射频***,其中所述天线组包括第一天线、第二天线、第三天线及第四天线,其中:
    所述第一天线端口、所述第三天线端口被配置为可切换地连接所述第一天线和所述第二天线,所述第二天线端口被配置为连接所述第三天线,所述第四天线端口被配置为连接所述第四天线;或者
    所述第一天线端口、所述第二天线端口、所述第三天线端口及所述第四天线端口被配置为可切换地连接所述第一天线、所述第二天线、所述第三天线及所述第四天线。
  3. 根据权利要求2所述的射频***,其中所述第一天线端口、所述第三天线端口被配置为可切换地连接所述第一天线和所述第二天线,其中:
    所述第一天线、第二天线的天线效率均高于所述第三天线、所述第四天线的天线效率,其中,所述射频收发器用于根据所述第一天线端口和所述第三天线端口接收的所述低频信号的网络信息,配置连接至所述第一天线端口的目标天线,所述目标天线为所述第一天线和所述第二天线之一。
  4. 根据权利要求3所述的射频***,其中所述第一天线被配置为所述低频信号的发射和主集接收的默认目标天线,若所述第二天线接收的所述低频信号的第二信号强度与所述第一天线接收的所述低频信号的第一信号强度的差值在预设时间段内均大于或等于预设阈值,则配置所述第二天线为所述目标天线。
  5. 根据权利要求2所述的射频***,其中所述第一天线端口、所述第三天线端口被配置为可切换地连接所述第一天线和所述第二天线,所述射频***还包括:
    第一切换模块,分别与所述第一天线端口、所述第三天线端口、所述第一天线及所述第二天线连接,用于将所述第一天线端口、所述第三天线端口可切换地连接所述第一天线和所述第二天线。
  6. 根据权利要求2所述的射频***,其中所述第一天线端口、所述第三天线端口被配置为可切换地连接所述第一天线和所述第二天线,所述第一天线端口包括第一切换端口、第二切换端口,所述第一切换端口、所述第二切换端口被配置为分别一一对应连接所述第一天线、所述第二天线;所述射频收发模组还被配置有连接端口,所述连接端口与所述第三天线端口连接;所述射频收发模组还包括:
    收发模块,与所述第二天线端口连接,用于支持对接收的所述低频信号进行放大处理;
    第二切换模块,分别与所述收发模块、所述第一切换端口、所述第二切换端口及所述连接端口连接,用于将所述收发模块、所述连接端口可切换地连接所述第一天线和所述第二天线。
  7. 根据权利要求2所述的射频***,其中所述第一天线端口、所述第二天线端口、所述第三天线端口及所述第四天线端口被配置为可切换地连接所述第一天线、所述第二天 线、所述第三天线及所述第四天线,其中:
    所述射频收发器用于根据所述第一天线端口、所述第二天线端口、所述第三天线端口及所述第四天线端口接收的所述低频信号的网络信息,配置连接至所述第一天线端口的目标天线,所述目标天线为所述第一天线、所述第二天线、所述第三天线和所述第四天线之一。
  8. 根据权利要求7所述的射频***,其中所述第一天线被配置为所述低频信号的发射和主集接收的默认目标天线,若所述第二天线接收的所述低频信号的第二信号强度与所述第一天线、所述第三天线及所述第四天线中的任一支天线接收的所述低频信号的第三信号强度的差值在预设时间段内均大于或等于预设阈值,则配置所述第二天线为所述目标天线。
  9. 根据权利要求2所述的射频***,其中所述第一天线端口、所述第二天线端口、所述第三天线端口及所述第四天线端口被配置为可切换地连接所述第一天线、所述第二天线、所述第三天线及所述第四天线,所述射频***还包括:
    第三切换模块,分别与所述第一天线端口、所述第二天线端口、所述第三天线端口、所述第四天线端口、所述第一天线、所述第二天线、所述第三天线及所述第四天线连接,用于将所述第一天线端口、所述第二天线端口、所述第三天线端口及所述第四天线端口被配置为可切换地连接所述第一天线、所述第二天线、所述第三天线及所述第四天线。
  10. 根据权利要求1所述的射频***,其中所述射频收发模组还被配置有输入端口及输出端口;所述射频***还包括:
    第一滤波模块,所述第一滤波模块的两个第一端分别一一对应连接所述输入端口、所述输出端口,所述第一滤波模块的第二端连接所述第一天线端口,用于滤除所述射频收发模组收发的所述低频信号以外的杂散波。
  11. 根据权利要求10所述的射频***,其中所述射频收发模组还被配置有辅助输入端口、辅助输出端口、辅助收发端口;其中:
    所述第一滤波模块的两个第一端为分别一一对应连接所述辅助输入端口、所述辅助输出端口,所述第一滤波模块的第二端连接所述辅助收发端口。
  12. 根据权利要求11所述的射频***,其中所述射频收发模组包括:
    发射单元,分别与所述输入端口、所述辅助输入端口连接,用于对所述输入端口接收的所述低频信号进行放大处理;
    接收单元,分别与所述输出端口、所述辅助输出端口、所述第二天线端口连接,用于对接收的所述低频信号进行放大处理;
    选通单元,分别与所述发射单元、所述接收单元、所述辅助收发端口、所述第一天线端口连接,用于选择导通所述发射单元、所述接收单元分别与所述第一天线端口之间的射频通路。
  13. 根据权利要求12所述的射频***,其中所述低频信号包括多个低频频段的射频信号;所述射频收发模组还包括:
    滤波单元,所述滤波单元的两个第一端分别一一对应连接所述发射单元、所述接收单元,所述滤波单元的第二端连接所述选通单元,用于滤除所述低频信号以外的杂散波;
    其中,所述滤波单元进行滤波处理的低频信号的频段与所述第一滤波模块进行滤波处理的低频信号的频段不同。
  14. 根据权利要求10所述的射频***,其中所述第一滤波模块集成在所述射频收发模组内部,所述射频收发模组还包括:
    发射单元,与所述输入端口连接,用于对所述输入端口接收的所述低频信号进行放大处理;
    接收单元,分别与所述输出端口、所述第一天线端口、所述第二天线端口连接,用于 对接收的所述低频信号进行放大处理;
    选通单元,分别与所述发射单元、所述接收单元、所述第一天线端口连接,用于选择导通所述发射单元、所述接收单元分别与所述第一天线端口之间的射频通路;
    其中,所述第一滤波模块的两个第一端分别一一对应连接所述发射单元、所述接收单元,所述第一滤波模块的第二端连接所述选通单元。
  15. 根据权利要求14所述的射频***,其中所述低频信号包括多个低频频段的射频信号;其中:
    所述第一滤波模块的数量为多个,每个所述第一滤波模块的两个第一端分别一一对应连接所述发射单元、所述接收单元,每个所述第一滤波模块的第二端连接所述选通单元,每个所述第一滤波模块输出的所述低频信号的频段不同。
  16. 根据权利要求1所述的射频***,其中还包括:
    第二滤波模块,分别与所述第二天线端口、所述天线组中的一天线连接,用于对接收的所述低频信号进行滤波处理。
  17. 根据权利要求16所述的射频***,其中所述第二天线端口连接的天线的天线效率低于所述第一天线端口连接的天线的天线效率,所述射频***还包括:
    第一低噪声放大模块,所述第一低噪声放大模块的输出端与所述第二天线端口连接,所述第一低噪声放大模块的输入端与所述第二滤波模块连接,用于对滤波处理后的所述低频信号进行放大处理。
  18. 根据权利要求1所述的射频***,其中还包括:
    第三滤波模块,分别与所述第四天线端口、所述天线组中的一天线连接,用于对接收的所述低频信号进行滤波处理。
  19. 根据权利要求18所述的射频***,其中所述第四天线端口连接的天线的天线效率低于所述第三天线端口连接的天线的天线效率,所述射频***还包括:
    第二低噪声放大模块,所述第二低噪声放大模块的输出端与所述第四天线端口连接,所述第二低噪声放大模块的输入端端口与所述第三滤波模块连接,用于对滤波处理后的所述低频信号进行放大处理。
  20. 一种通信设备,包括如权利要求1所述的射频***。
PCT/CN2022/107880 2021-11-30 2022-07-26 射频***及通信设备 WO2023098110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111447348.1 2021-11-30
CN202111447348.1A CN114124145B (zh) 2021-11-30 2021-11-30 射频***及通信设备

Publications (1)

Publication Number Publication Date
WO2023098110A1 true WO2023098110A1 (zh) 2023-06-08

Family

ID=80369138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107880 WO2023098110A1 (zh) 2021-11-30 2022-07-26 射频***及通信设备

Country Status (2)

Country Link
CN (1) CN114124145B (zh)
WO (1) WO2023098110A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124138A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频***和通信设备
CN114124145B (zh) * 2021-11-30 2023-05-05 Oppo广东移动通信有限公司 射频***及通信设备
CN115001525B (zh) * 2022-08-02 2022-12-23 荣耀终端有限公司 射频模组、主集收发模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277278A (zh) * 2020-01-19 2020-06-12 Oppo广东移动通信有限公司 射频***及电子设备
CN111654316A (zh) * 2020-05-22 2020-09-11 Oppo广东移动通信有限公司 天线切换方法、装置、存储介质及电子设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频***、天线切换方法和通信设备
CN113300736A (zh) * 2021-05-19 2021-08-24 深圳市锐尔觅移动通信有限公司 射频收发***及通信设备
CN114095048A (zh) * 2021-11-30 2022-02-25 Oppo广东移动通信有限公司 射频***及通信设备
CN114124137A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频***及通信设备
CN114124145A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频***及通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI729112B (zh) * 2016-04-09 2021-06-01 美商天工方案公司 具有可切換雙工器的前端架構
US10581467B2 (en) * 2017-03-24 2020-03-03 Skyworks Solutions, Inc. Apparatus and methods for radio frequency front end systems
CN112636780A (zh) * 2019-12-31 2021-04-09 Oppo广东移动通信有限公司 射频模组及电子设备
CN111342859B (zh) * 2020-03-03 2021-10-01 Oppo广东移动通信有限公司 射频***及电子设备
CN213754503U (zh) * 2021-01-19 2021-07-20 维沃移动通信有限公司 射频电路和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277278A (zh) * 2020-01-19 2020-06-12 Oppo广东移动通信有限公司 射频***及电子设备
CN111654316A (zh) * 2020-05-22 2020-09-11 Oppo广东移动通信有限公司 天线切换方法、装置、存储介质及电子设备
CN113300736A (zh) * 2021-05-19 2021-08-24 深圳市锐尔觅移动通信有限公司 射频收发***及通信设备
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频***、天线切换方法和通信设备
CN114095048A (zh) * 2021-11-30 2022-02-25 Oppo广东移动通信有限公司 射频***及通信设备
CN114124137A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频***及通信设备
CN114124145A (zh) * 2021-11-30 2022-03-01 Oppo广东移动通信有限公司 射频***及通信设备

Also Published As

Publication number Publication date
CN114124145B (zh) 2023-05-05
CN114124145A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022247510A1 (zh) 射频***、天线切换方法和通信设备
WO2023098110A1 (zh) 射频***及通信设备
US10103425B2 (en) Mobile device
WO2023098111A1 (zh) 射频***及通信设备
CN216490477U (zh) 射频***和通信设备
WO2023016204A1 (zh) 放大器模组、射频***及通信设备
CN114124137B (zh) 射频***及通信设备
CN216721325U (zh) 射频模组和通信设备
CN114095048B (zh) 射频***及通信设备
WO2023016200A1 (zh) 放大器模组、射频***及通信设备
CN113949402B (zh) 射频***及通信设备
CN114142886B (zh) 射频***及通信设备
CN114124139A (zh) 射频***及通信设备
WO2023098245A1 (zh) 射频***和通信设备
CN114124136B (zh) 射频***及通信设备
CN113949401B (zh) 射频***及通信设备
CN114614838B (zh) 射频***及通信设备
CN115801039B (zh) 射频前端模块、天线装置及射频前端模块的控制方法
CN113949400B (zh) 射频***及通信设备
CN115208416A (zh) 射频***和通信设备
CN218679066U (zh) 射频***及通信设备
CN218679064U (zh) 射频前端模组及通信设备
CN114124141B (zh) 射频***和通信设备
CN218734301U (zh) 射频***及通信设备
CN218734302U (zh) 射频前端模组及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899930

Country of ref document: EP

Kind code of ref document: A1