WO2023093422A1 - 信令传输方法、vrrp组网***、第一网络实体设备及存储介质 - Google Patents

信令传输方法、vrrp组网***、第一网络实体设备及存储介质 Download PDF

Info

Publication number
WO2023093422A1
WO2023093422A1 PCT/CN2022/127263 CN2022127263W WO2023093422A1 WO 2023093422 A1 WO2023093422 A1 WO 2023093422A1 CN 2022127263 W CN2022127263 W CN 2022127263W WO 2023093422 A1 WO2023093422 A1 WO 2023093422A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
network
network entity
path
priority
Prior art date
Application number
PCT/CN2022/127263
Other languages
English (en)
French (fr)
Inventor
魏正刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023093422A1 publication Critical patent/WO2023093422A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/60Router architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel

Definitions

  • the present disclosure relates to the technical field of communications, and in particular, to a signaling transmission method, a VRRP networking system, a first network entity device, and a storage medium.
  • VoLTE Voice over LTE
  • VoNR Voice over NR
  • Embodiments of the present disclosure provide a signaling transmission method, a VRRP networking system, and a first network entity device.
  • the embodiment of the present disclosure provides a signaling transmission method, which is applied to a VRRP networking system, and the VRRP networking system includes a first network entity device, a first user network edge router CE device, and a second CE device ;
  • the first network entity device includes at least one set of main network ports and backup network ports, the main network port is connected to the first CE device, and the backup network port is connected to the second CE device; in the first CE Configure at least two virtual routing redundancy protocol VRRP gateways between the device and the second CE device;
  • the method includes: the first network entity device sends a path selection to the first CE device through the main network port Instruction: the first CE device receives the path selection instruction, selects the first IP address as the IP address of the service flow through the first VRRP gateway, and obtains the first communication path matching the first IP address for message signaling transmission, the priority of the first IP address on the first CE device is higher than the priority of the second IP address on the first CE device; when the first network entity device detects that the When the state of the first
  • an embodiment of the present disclosure provides a signaling transmission method, which is applied to a first network entity device, and the first network entity device includes at least one set of primary network ports and backup network ports, and the primary network port and The first user network edge route CE device is connected, and the backup network port is connected to the second CE device; at least two virtual routing redundancy protocol VRRP gateways are configured between the first CE device and the second CE device;
  • the method includes: sending a path selection instruction to the first CE device through the main network port to instruct the first CE device to select the first IP address as the IP address of the service flow through the first VRRP gateway, and obtain the The first communication path matched by the first IP address performs message signaling transmission, and the priority of the first IP address on the first CE device is higher than that of the second IP address on the first CE device and when detecting that the state of the first communication path is abnormal, send a path switching instruction to the second CE device to instruct the second CE device to select the second communication path through the second VRRP gateway.
  • the IP address is used as the IP address of the service flow, and is switched to the second communication path matching the second IP address for message signaling transmission, and the priority of the second IP address on the second CE device is higher than that of the second CE device. Priority of the first IP address on the second CE device.
  • an embodiment of the present disclosure further provides a VRRP networking system, where the VRRP networking system includes a first network entity device, a first user network edge router CE device, a second CE device, and a second network entity device;
  • the first network entity device includes at least one set of main network ports and backup network ports, the main network port is connected to the first CE device, and the backup network port is connected to the second user network edge router CE device;
  • At least two virtual routing redundancy protocol VRRP gateways are configured between the first CE device and the second CE device;
  • the first network entity device is configured to send path selection to the first CE device through the main network port instruction, and in the case of detecting that the state of the first communication path is abnormal, send a path switching instruction to the second CE device;
  • the first CE device is used to receive the path selection instruction, through the first VRRP
  • the gateway selects the first IP address as the IP address of the service flow, obtains the first communication path matching the first IP address for message signaling transmission, and the priority of the first IP address on the first CE
  • an embodiment of the present disclosure further provides a first network entity device, the first network entity device includes at least one set of primary network ports and backup network ports, the primary network port is connected to the first CE device, and the The backup network port is connected to the second CE device; at least two virtual routing redundancy protocol VRRP gateways are configured between the first CE device and the second CE device; the first network entity device is used to pass through the The main network port sends a path selection instruction to the first CE device to instruct the first CE device to select the first IP address as the IP address of the service flow through the first VRRP gateway, and obtain the IP address matching the first IP address.
  • the priority of the first IP address on the first CE device is higher than the priority of the second IP address on the first CE device; and the The first network entity device is further configured to send a path switching instruction to the second CE device to instruct the second CE device to pass through the second VRRP gateway when the state of the first communication path is detected to be abnormal. Selecting the second IP address as the IP address of the service flow, switching to the second communication path matching the second IP address for message signaling transmission, and the priority of the second IP address on the second CE device A priority higher than that of the first IP address on the second CE device.
  • the embodiments of the present disclosure also provide a first network entity device, the first network entity device includes at least one set of primary network ports and backup network ports, and the primary network port and the first user network edge route first
  • the CE device is connected, and the backup network port is connected to the second CE device; at least two virtual routing redundancy protocol VRRP gateways are configured between the first CE device and the second CE device; the first network entity shown
  • the device further includes a processor and a memory, the memory is used to store a computer program; and the processor is used to execute the computer program and implement the signaling transmission method as described in the second aspect above when executing the computer program A step of.
  • the embodiments of the present disclosure further provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned second aspect.
  • the steps of the signaling transmission method are not limited to:
  • FIG. 1 is a schematic diagram of communication of relevant network entity devices based on a VRRP gateway
  • FIG. 2 is a schematic diagram of SCTP-based signaling interaction in related IMS
  • FIG. 3 is an implementation flowchart of a signaling transmission method provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a VRRP networking system provided by an embodiment of the present disclosure.
  • FIG. 5 is an interactive schematic diagram of the application of the signaling transmission method provided by the present disclosure in IMS
  • FIG. 6 is a flowchart of a signaling transmission method provided by another embodiment of the present disclosure.
  • Fig. 7 is a schematic block diagram of a structure of a first network entity device provided by an embodiment of the present disclosure.
  • the static route configuration of the device is to specify one or more default gateways (Default Gateway) for the network entity equipment.
  • Default Gateway default gateways
  • This method can simplify the complexity of network management and reduce the communication overhead of the network entity equipment, if the default gateway If the router is damaged, all communications using the default gateway as the next-hop host will be interrupted. Even if multiple default gateways are configured, if the network entity device is not restarted, it cannot be freely switched to other gateways. Therefore, there is a problem of poor communication path reliability between network entities of the relevant core network.
  • IP Multimedia Subsystem is designed to carry the voice service on the Internet Protocol IP network, that is, the long-term evolution voice bearer (Voice over LTE, VoLTE). All 4G networks are "IP-based”.
  • the IP multimedia service subsystem is proposed by the 3rd Generation Partnership Project (3GPP).
  • 3GPP 3rd Generation Partnership Project
  • the purpose of IMS is to establish a converged core network that has nothing to do with access and can be shared by mobile networks and fixed networks.
  • IMS is An open, access-independent, multimedia service-supporting, standardized session control architecture.
  • 5G New Radio (NR) voice solution design also continues the 4G way of carrying voice services through IP networks, that is, carrying voice services through 5G networks and IMS systems .
  • FIG. 1 is a schematic diagram of communication of related network entity devices based on a VRRP gateway. It can be seen from FIG. 1 that in the related art, only one VRRP gateway 13 will be set up on the switch between the main network port 11 and the backup network port 12 of the network entity device (not shown in FIG. 1 ), and between the network entity device and the backup network port 12. During the communication process of the peer network entity device, switch between the active and standby communication paths.
  • the priority (for example, 200) of the IP1 address of the main network port 11 by the VRRP gateway is higher than that of the IP1 address of the standby network port 12
  • the priority of the value for example, 100
  • the value range of the IP priority set on the VRRP gateway is from 0 to 255, and a larger value indicates a higher priority.
  • the CE devices connected to the active and standby network ports can perform normal active/standby switchover through the VRRP gateway.
  • the bit error rate between the CE device connected to the active and standby network ports and its uplink access routing device AR is high, signaling transmission will be interrupted, resulting in traffic interruption.
  • FIG. 2 is a schematic diagram of SCTP-based signaling interaction in the related IMS.
  • SCTP Stream Control Transmission Protocol
  • the main path of the first SCTP the first IP address, the first port ⁇ -->CE1 ⁇ -->AR1 ⁇ - ->network ⁇ -->Peer network entity IP3, first port;
  • first SCTP backup path second IP address, second port ⁇ -->CE1 ⁇ -->AR1 ⁇ -->network ⁇ -- >Peer network entity IP4, second port; wherein, the priority of the primary path of the first SCTP is higher than the priority of the backup path of the first SCTP, and if the primary path of the first SCTP is interrupted, it will switch to the backup path of the first SCTP path.
  • the priority of the primary path of the second SCTP is also higher than that of The priority of the secondary SCTP backup path.
  • the main path of the second SCTP is interrupted, it can be switched to the backup path of the second SCTP.
  • This kind of networking can also be switched normally during normal use or when the network is interrupted, but there is the following problem: if the bit error rate between the first CE device 14 and the first AR23 is high, although the routing in the networking is not interrupted at this time, However, the SCTP between the first CE device 14 and the first AR 23 will be interrupted, resulting in traffic interruption.
  • the phenomenon of service interruption caused by a high bit error rate between the first CE device 14 and the first AR23 is often referred to as the "fake death" phenomenon. Due to the limitation of the SCTP path, the SCTP link may be affected, which in turn affects the services of the live network. .
  • the embodiment of the present disclosure proposes a signaling transmission method, which can enable multiple IMS network entity devices without adding hardware. path, clever use of the characteristics of SCTP multi-path, a good solution to the hidden problems of the existing network.
  • FIG. 3 is an implementation flowchart of a signaling transmission method provided by an embodiment of the present disclosure. It should be noted that the signaling transmission method provided in this embodiment is applied to a VRRP networking system.
  • FIG. 4 is a schematic structural diagram of a VRRP networking system provided by an embodiment of the present disclosure. Controlled by FIG. 4, the VRRP networking system 40 includes a first network entity device (not shown in FIG.
  • the first network entity device 20 includes at least one Group the main network port 11 and the backup network port 12, the main network port 11 is connected to the first CE device 14, and the backup network port 12 is connected to the second CE device 15; between the first CE device 14 and the At least two VRRP gateways 16 are configured between the second CE devices 15 .
  • the method includes the following steps S301 to S304.
  • the first network entity device sends a path selection instruction to the first CE device through the main network port.
  • the first network entity equipment includes but not limited to IMS functional entity equipment, such as I-CSCF (Call Session Control Function), S-CSCF, P-CSCF and other network elements.
  • IMS functional entity equipment such as I-CSCF (Call Session Control Function), S-CSCF, P-CSCF and other network elements.
  • the first CE device receives the path selection instruction, selects the first IP address as the IP address of the service flow through the first VRRP gateway, obtains the first communication path matching the first IP address, and performs message signaling transmission, the priority of the first IP address on the first CE device is higher than the priority of the second IP address on the first CE device.
  • the second CE device receives the path switching instruction, selects the second IP address as the IP address of the service flow through the second VRRP gateway, and switches to the second communication path matching the second IP address for message communication. command transmission, the priority of the second IP address on the second CE device is higher than the priority of the first IP address on the second CE device.
  • multiple VRRP gateways are set up between the same pair of active and standby network interface boards, wherein the number of VRRP gateways depends on the number of user edge network router CE devices in the live network.
  • the CE device is taken as an example, and in some other optional implementation manners, more than two CE devices may be included.
  • the message signaling flow can be transmitted through different CE devices and the uplink access routing device AR, so as to realize the function of signaling path load sharing.
  • Multiple VRRP gateways are enabled between the main network port and the backup network port of the first network entity device through the first CE device and the second CE device, and the multi-homing address in the SCTP coupling with the second network entity device, the first network entity
  • the devices send messages to multiple VRRP gateways respectively, so that the first communication path matching the first IP address is preferentially taken on the first CE device, and the second communication path matching the second IP address is preferentially taken on the second CE device , realizing the function of signaling path load sharing.
  • the CE device can use the open shortest route priority OSPF dynamic routing protocol for the uplink AR, and the first CE device
  • the IP address of the first network entity device is distinguished to ensure that the first IP address of the first network entity device is preferentially paired with the first CE device, and the second IP address of the first network entity device side is preferentially paired with the second CE device.
  • the first network entity device After the first network entity device detects that the state of the first communication path is abnormal, it further includes:
  • the second CE device sends the information of the second communication path to the second access routing device AR based on the open shortest route priority protocol, so that the second AR routing device sends the information of the second communication path to the second network entity device
  • the second communication path returns indication information in response to signaling, and the second AR is an uplink routing device of the second CE device.
  • the first communication path and the second communication path are communication paths established according to SCTP association information.
  • the SCTP association information includes: the source address of the first network entity device, the destination address of the second network entity device, and the routing device between the first network entity device and the second network entity device information and connection network information.
  • the routing device information between the first network entity device and the second network entity device includes: user edge network routing device information and access routing device information; the user edge network routing device is A routing device connected to the first network entity device, where the access routing device is an uplink routing device of the user network edge routing device.
  • the method further includes: the first network entity determining the source address of the first network entity and the corresponding relationship between the destination address of the second network entity; according to the corresponding relationship, respectively configure the SCTP association information between the first network entity and the second network entity; establish according to the SCTP association information The first communication path and the second communication path.
  • At least one SCTP coupling path is included between the first network entity and the second network entity, and at least two communication paths are configured under each of the SCTP coupling paths, and the first communication path and the The second communication path belongs to the same SCTP coupling path.
  • the signaling transmission method provided by the embodiment of the present disclosure configures at least two virtual routing redundancy protocol VRRP gateways between the active and standby network ports of the first network entity device through the user edge routing device, and respectively Different user edge routing devices are configured with different priorities corresponding to the IP addresses of the first network entity device, so as to ensure that the first network entity device can freely switch to other gateways during the switching process of the active and standby network ports, so as to realize the network without adding hardware. Under the premise, the reliability of communication between network entities can be effectively improved, thereby ensuring the stability of communication between network entities.
  • FIG. 5 is a schematic diagram of the interaction of the signaling transmission method provided by the present disclosure applied to the IMS.
  • SCTP Stream Control Transmission Protocol
  • the main path of the first SCTP is: the first IP address, the first port ⁇ -->The first CE device ⁇ -->The first AR ⁇ -->network ⁇ -->The third IP address, the first port;
  • the backup path of the first SCTP is: the second IP address, the second port ⁇ -->The second CE device ⁇ -->The second AR ⁇ -->network ⁇ -->The fourth IP address, the second port, where the priority of the primary path of the first SCTP is higher than that of the backup of the first SCTP
  • the priority of the path can be switched to the backup path of the first SCTP after the main path of the first SCTP is interrupted.
  • two paths are also configured, which are the corresponding primary and backup paths.
  • the priority of the primary path of the second SCTP is also higher than that of the secondary path of the second SCTP. class.
  • the main path of the second SCTP is interrupted, it can be switched to the backup path of the second SCTP.
  • the first SCTP The primary path of the SCTP and the primary path of the second SCTP are their corresponding primary links, wherein the first CE device and the second CE device are allocated with the first VRRP gateway and the second VRRP gateway, and the first VRRP gateway
  • the main use is on the first CE device
  • the main use of the second VRRP gateway is on the second CE device.
  • first port, the second port, the third port and the fourth port may be configured with different port numbers, for example, 4001, 4002, 4003 and 4004 respectively.
  • the signaling sent to the fourth IP address may still take the path from the first AR to the first CE device when returning the response signaling , leading to the interruption of SCTP coupling, in order to prevent the transmission of this phenomenon, the dynamic routing protocol of Open Shortest Path First (Open Shortest Path First, OSPF) is adopted between the access router AR of the CE device and the uplink, and the CE device
  • OSPF Open Shortest Path First
  • a response signaling corresponding to the second IP address on the side of the network entity device preferentially follows the second SCTP main path paired with the second CE device.
  • the SCTP coupling link is not interrupted.
  • FIG. 6 is a flowchart of a signaling transmission method provided by another embodiment of the present disclosure.
  • the signaling transmission method is applied to the first network entity device, and the first network entity device includes at least one set of primary network ports and backup network ports, and the primary network port and the first The CE devices are connected, and the backup network port is connected to the second CE device; at least two virtual routing redundancy protocol VRRP gateways are configured between the first CE device and the second CE device; the method includes the following steps S601 and S602.
  • a first communication path matching an IP address performs message signaling transmission, and the priority of the first IP address on the first CE device is higher than the priority of the second IP address on the first CE device class;
  • the embodiments provided in the present disclosure provide a signaling transmission method, by configuring at least two virtual routing redundancy protocol VRRP gateways between the active and standby network ports of the first network entity device through the user edge routing device, and respectively Configure different priorities corresponding to the IP addresses of the first network entity device on different user edge routing devices to ensure that the first network entity device can freely switch to other gateways during the switchover process of the active and standby network ports, without adding hardware Under the premise of effectively improving the reliability of communication between network entities, and then ensuring the stability of communication between network entities.
  • FIG. 7 is a schematic block diagram of a structure of a first network entity device provided by an embodiment of the present disclosure.
  • the first network entity device 20 includes a processor 701 and a memory 702, and the processor 701 and the memory 702 are connected through a bus 703, such as an I2C (Inter-integrated Circuit) bus.
  • a bus 703 such as an I2C (Inter-integrated Circuit) bus.
  • the first network entity device 20 also includes at least one set of main network ports and backup network ports, the main network port is connected to the first CE device, and the backup network port is connected to the second CE device; Configure at least two virtual routing redundancy protocol VRRP gateways between the first CE device and the second CE device; wherein, the main network port and the backup network port are connected to the main network port and the backup network port respectively.
  • the first CE device and the second CE device are not shown in FIG. 7 , and can be referred to the previous illustrations.
  • the processor 701 is used to provide calculation and control capabilities, and support the operation of the entire first network entity device.
  • the processor 701 can be a central processing unit (Central Processing Unit, CPU), and the processor 701 can also be other general processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC) ), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 702 can be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the structure shown in Figure 7 is only a block diagram of a partial structure related to the solution of the embodiment of the present disclosure, and does not constitute a reference to the first network entity device to which the solution of the embodiment of the present disclosure is applied.
  • the server may include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • the processor is configured to run a computer program stored in the memory, and implement the signaling transmission method provided in the embodiment of FIG. 6 of the present disclosure when the computer program is executed.
  • the processor is configured to run a computer program stored in a memory, and implement the following steps when executing the computer program:
  • the first communication path with the matching address performs message signaling transmission, and the priority of the first IP address on the first CE device is higher than the priority of the second IP address on the first CE device;
  • an embodiment of the present disclosure also provides a storage medium for computer-readable storage, the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to The steps of the signaling transmission method as provided in FIG. 6 of the embodiment of the present disclosure are implemented.
  • the storage medium may be an internal storage unit of the first network entity device described in the foregoing embodiments, for example, a hard disk or a memory of the first network entity device.
  • the storage medium may also be an external storage device of the first network entity device, such as a plug-in hard disk equipped on the first network entity device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and an appropriate combination thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供一种信令传输方法、VRRP组网***、第一网络实体设备及存储介质,属于通信技术领域。该方法包括:第一网络实体设备通过主网口向第一CE设备发送路径选择指令;第一CE设备接收路径选择指令,通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与第一IP地址匹配的第一通信路径进行消息信令传输;在第一网络实体设备检测到第一通信路径的状态异常的情况下,向第二CE设备发送路径切换指令;以及第二CE设备接收所述路径切换指令,通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输。

Description

信令传输方法、VRRP组网***、第一网络实体设备及存储介质
相关申请的交叉引用
本公开要求享有2021年11月26日提交的名称为“信令传输方法、VRRP组网***、第一网络实体设备及存储介质”的中国专利申请CN202111424499.5的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种信令传输方法、VRRP组网***、第一网络实体设备及存储介质。
背景技术
随着网络技术的不断发展,由网络提供的增值业务需要承载在IP网络中,构成核心网。如需要通过IP多媒体子***(IP Multimedia Subsystem,IMS)将语音业务承载在IP网络中,常见的有VoLTE(Voice over LTE)方式或者VoNR(Voice over NR)方式等。
发明内容
本公开实施例提供一种信令传输方法、VRRP组网***及第一网络实体设备。
第一方面,本公开实施例提供了一种信令传输方法,应用于VRRP组网***,所述VRRP组网***包括第一网络实体设备、第一用户网络边缘路由CE设备和第二CE设备;所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所述方法包括:所述第一网络实体设备通过所述主网口向所述第一CE设备发送路径选择指令;所述第一CE设备接收所述路径选择指令,通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;在所述第一网络实体设备检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备发送路径切换指令;以及所述第二CE设备接收所述路径切换指令,通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
第二方面,本公开实施例提供了一种信令传输方法,应用于第一网络实体设备,所述 第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一用户网络边缘路由CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所述方法包括:通过所述主网口向所述第一CE设备发送路径选择指令,以指示所述第一CE设备通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;以及在检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备发送路径切换指令,以指示所述第二CE设备通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
第三方面,本公开实施例还提供一种VRRP组网***,所述VRRP组网***包括第一网络实体设备、第一用户网络边缘路由CE设备、第二CE设备和第二网络实体设备;所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一CE设备相连,所述备网口与第二用户网络边缘路由CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所述第一网络实体设备用于通过所述主网口向所述第一CE设备发送路径选择指令,并在检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备发送路径切换指令;所述第一CE设备用于接收所述路径选择指令,通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;以及所述第二CE设备用于接收所述路径切换指令,通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
第四方面,本公开实施例还提供一种第一网络实体设备,所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所述第一网络实体设备用于通过所述主网口向所述第一CE设备发送路径选择指令,以指示所述第一CE设备通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;以及所述第一网络实体设备还用于在检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备 发送路径切换指令,以指示所述第二CE设备通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
第五方面本公开实施例还提供一种第一网络实体设备,所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一用户网络边缘路由第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所示第一网络实体设备还包括处理器和存储器,所述存储器用于存储计算机程序;以及所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如上第二方面所述的信令传输方法的步骤。
第六方面本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上第二方面所述的信令传输方法的步骤。
附图说明
为了更清楚地说明本公开实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关网络实体设备基于VRRP网关的通信示意图;
图2是相关IMS中基于SCTP的信令交互示意图;
图3是本公开实施例提供的一种信令传输方法的实现流程图;
图4是本公开实施例提供的VRRP组网***的结构示意图;
图5是本公开提供的信令传输方法应用于IMS中的交互示意图;
图6是本公开另一实施例提供的一种信令传输方法的流程图;以及
图7是本公开实施例提供的一种第一网络实体设备的结构示意性框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必 须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
目前,在核心网的组网中,由于较多网络实体都不支持动态路由协议,即使支持也受到管理开销、收敛度、安全性等许多问题的限制,因此普遍采用对核心网中的网络实体设备进行静态路由配置,其是给网络实体设备指定一个或者多个默认网关(Default Gateway),这种方法虽然可以简化网络管理的复杂度和减轻网络实体设备的通信开销,但是如果作为默认网关的路由器损坏,则会导致所有使用该默认网关为下一跳主机的通信中断,即便是配置了多个默认网关,如不重新启动网络实体设备,也不能自由切换到其它的网关。因此,相关核心网的网络实体之间存在通信路径可靠性差的问题。
需要说明的是,从***移动通信技术4G开始,语音实现方案就不再仅仅是通过电路域网络提供的如语音业务和其他增值业务。而是设计通过IP多媒体子***(IP Multimedia Subsystem,IMS)实现将语音业务承载在网际互联协议IP网络,也即长期演进语音承载(Voice over LTE,VoLTE)的方式,实现将电路域所有业务在4G网络全部“IP化”。
其中,IP多媒体业务子***是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出的,IMS的目的是建立与接入无关、能被移动网络与固定网络共用的融合核心网,IMS是一个开放的、接入独立的、支持多媒体业务的、标准化的会话控制架构。目前随着第五代移动通信技术5G的高速发展,5G新空口(New Radio,NR)语音方案设计,也延续了4G通过IP网络承载语音业务的方式,即通过5G网络和IMS***承载语音业务。
然而,相关的IMS现网组网中,较多网络实体设备都不支持动态路由协议,即使支持也受到管理开销、收敛度、安全性等许多问题的限制。因此普遍采用对网络实体设备进行静态路由配置,一般是给网络实体设备指定一个或者多个默认网关(Default Gateway)。静态路由的方法简化了网络管理的复杂度和减轻了网络实体设备的通信开销,但是它仍然有一个缺点:如果作为默认网关的路由器损坏,所有使用该网关为下一跳主机的通信必然要中断。
即便配置了多个默认的静态路由网关,如不重新启动网络实体设备,也不能切换到新的网关。采用虚拟路由冗余协议(Virtual Router Redundancy Protocol,VRRP)虽然可以很好的避免静态指定网关的缺陷。但是,在相关技术中,示例性地,如图1所示,图1是相关网络实体设备基于VRRP网关的通信示意图。由图1可知,相关技术中,通过对网络实体设备(图1中未示出)的主网口11和备网口12之间在交换机上只会起一个VRRP网关13, 在网络实体设备与对端网络实体设备通讯过程中,进行主备通信路径的切换。,由于VRRP网关对主备网口的IP地址的优先级不同,如图1所示,VRRP网关对主网口11的IP1地址优先级(例如,200)高于对备网口12的IP1地址的优先级(例如,100)。
需要说明的是,VRRP网关上设置IP优先级的取值范围为0到255,其中数值越大表明优先级越高。
在正常消息传输过程中,与主备网口相连的CE设备可通过VRRP网关进行正常的主备切换。但是若与主备网口相连的CE设备和其上联的接入路由设备AR之间误码率高时,则会引起信令传输的中断,从而导致话务中断。
示例性地,以IMS中使用广泛的流控制协议(Stream Control Transmission Protocol,SCTP)举例对相关技术中的IMS信令交互过程进行说明。如图2所示,图2是相关IMS中基于SCTP的信令交互示意图。在本实施例中,假设IMS核心网21与第二网络实体设备22之间存在两条SCTP偶联路径,分别配置如下表1所示。
Figure PCTCN2022127263-appb-000001
表1
其中,对于单个偶联第一SCTP而言,配置两条路径,如表1所示,第一SCTP的主路径:第一IP地址,第一端口<-->CE1<-->AR1<-->network<-->对端网络实体IP3,第一端 口;第一SCTP的备路径:第二IP地址,第二端口<-->CE1<-->AR1<-->network<-->对端网络实体IP4,第二端口;其中,第一SCTP的主路径的优先级高于第一SCTP的备路径的优先级,第一SCTP的主路径中断,则切换到第一SCTP的备路径。
对于单个偶联第二SCTP而言,统一配置两条路径,如表1所示,对第二SCTP配置的主备路径,在第二SCTP中,第二SCTP的主路径的优先级同样高于第二SCTP的备路径的优先级。当第二SCTP的主路径中断后,可切换到第二SCTP的备路径。
由表2可看出,由于第一SCTP的主路径和第二SCTP的主路径在用户边缘网络设备与上联的接入路由之间配置有相同的路由。日常使用过程中,由于VRRP网关在第一CE设备14上的优先选择第一IP地址对应的第一SCTP的主路径进行信令传输,故正常信令传输均通过第一CE设备14进行,若第一CE设备14故障或中断,则VRRP网关切换至第二CE设备15,以保证路由的不中断。这种组网在正常使用或者网络中断的时候也能够正常进行切换,但存在如下问题:若第一CE设备14和第一AR23之间误码率高,此时虽然组网内路由未中断,但是会引起第一CE设备14和第一AR23之间的SCTP中断,从而导致话务中断。这是由于第一CE设备14和第一AR23之间出现译码率高时,第一网络实体20到第二网络实体22的业务地址的路由配置仍为VRRP网关选择的地址,而此时VRRP网关选择的主用仍然在第一CE设备14上,即使SCTP多路径发生偶联切换至备用链路,由于第二网络实体22的下一跳路由第一AR23传输信令至第一网络实体20对应仍然为第一CE设备14,故SCTP偶联还是会中断,进而影响业务。
常将第一CE设备14和第一AR23之间误码率高导致的业务中断的现象称为“假死”现象,受到SCTP路径限制,SCTP链路可能会受影响,进而对现网业务发生影响。
针对相关技术中由于路由设备之间的译码率高影响业务的问题,本公开实施例提出了一种信令传输方法,能够在不增加硬件的前提下,IMS网络实体设备之间启用多条路径,巧妙地利用SCTP多路径的特性,很好地解决了现网的隐患问题。
请参阅图3所示,图3是本公开实施例提供的一种信令传输方法的实现流程图。需要说明的是,本实施例提供的信令传输方法应用于VRRP组网***。示例性地,如图4所示,图4是本公开实施例提供的VRRP组网***的结构示意图。由图4控制,所述VRRP组网***40包括第一网络实体设备(图4中未示出)、第一CE设备14和第二CE设备15;所述第一网络实体设备20包括至少一组主网口11和备网口12,所述主网口11与第一CE设备14相连,所述备网口12与第二CE设备15相连;在所述第一CE设备14和所述第二CE设备15之间配置至少两个虚拟路由冗余协议VRRP网关16。
请参阅图3所示,所述方法包括如下步骤S301至S304。
S301,所述第一网络实体设备通过所述主网口向所述第一CE设备发送路径选择指令。
其中,所述第一网络实体设备包括但不限于IMS的功能实体设备,如I-CSCF(Call Session Control Function)、S-CSCF、P-CSCF等网元。
S302,所述第一CE设备接收所述路径选择指令,通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级。
S303,当所述第一网络实体设备检测到所述第一通信路径的状态异常时,向所述第二CE设备发送路径切换指令。
S304,所述第二CE设备接收所述路径切换指令,通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
应理解,本实施例通过在同一对主备网络接口板之间起多个VRRP网关,其中,VRRP网关的数量取决于现网中用户边缘网络路由CE设备的数目,本实施例中以两个CE设备为例,在其它一些可选的实现方式中,可以包括两个以上的CE设备。并结合一些差异化的路由策略,使消息信令流能够经过不同的CE设备与上联的接入路由设备AR进行传输,从而实现信令路径负荷分担的功能。
第一网络实体设备的主网口和备网口之间通过第一CE设备和第二CE设备启用多VRRP网关,与第二网络实体设备基于SCTP偶联里面的多归属地址,第一网络实体设备分别发送消息至多个VRRP网关,以实现在第一CE设备上优先走与第一IP地址匹配的第一通信路径,在第二CE设备上优先走与第二IP地址匹配的第二通信路径,实现信令路径负荷分担的功能。
应理解,CE设备与上联的接入路由设备AR之间存在误码率高的情况下,可以通过CE设备对上联的AR通过开放式最短路由优先OSPF动态路由协议,第一CE设备对于第一网络实体设备的IP地址进行区分,确保到第一网络实体设备的第一IP地址优先配对第一CE设备、到第一网络实体设备侧的第二IP地址优先配对第二CE设备。
在当所述第一网络实体设备检测到所述第一通信路径的状态异常之后,还包括:
所述第二CE设备基于开放式最短路由优先协议向第二接入路由设备AR发送所述第二通信路径的信息,以使所述第二AR路由设备向所述第二网络实体设备发送通过所述第二通信路径返回响应信令的指示信息,所述第二AR为所述第二CE设备的上联路由设备。
在一些实施例中,所述第一通信路径和所述第二通信路径为根据流控制传输协议SCTP偶联信息建立的通信路径。
其中,所述SCTP偶联信息包括:所述第一网络实体设备的源地址、所述第二网络实体设备的目的地址、所述第一网络实体设备和第二网络实体设备之间的路由设备信息以及连接网络信息。
在一些实施例中,所述第一网络实体设备和第二网络实体设备之间的路由设备信息包括:用户边缘网络路由设备的信息和接入路由设备的信息;所述用户边缘网络路由设备为与所述第一网络实体设备相连的路由设备,所述接入路由设备为所述用户网络边缘路由设备的上联路由设备。
可选地,在所述第一网络实体设备通过所述主网口向所述第一CE设备发送路径选择指令之前,还包括:所述第一网络实体确定所述第一网络实体的源地址和第二网络实体的目的地址之间的对应关系;根据所述对应关系分别配置所述第一网络实体和所述第二网络实体之间的SCTP偶联信息;根据所述SCTP偶联信息建立所述第一通信路径和所述第二通信路径。
其中,所述第一网络实体和所述第二网络实体之间包括至少一个SCTP偶联路径,在每个所述SCTP偶联路径下配置有至少两条通信路径,所述第一通信路径和所述第二通信路径属于同一SCTP偶联路径。
通过上述分析可知,本公开实施例提供的信令传输方法,通过在第一网络实体设备的主备网口之间通过用户边缘路由设备配置至少两个虚拟路由冗余协议VRRP网关,并分别在不同用户边缘路由设备上配置第一网络实体设备对应IP地址的不同优先级,以保证第一网络实体设备在主备网口切换过程中,能够自由切换到其它的网关,实现在不增加硬件的前提下有效提高网络实体之间通信的可靠性,进而保证网络实体之间通信的稳定性。
下面结合图5对本公开实施例提供信令传输方法进行示例性地说明。请参阅图5所示,本实施例示例性地以IMS中使用广泛的流控制协议(Stream Control Transmission Protocol,SCTP)举例对公开提供的信令传输方法进行说明。如图5所示,图5是本公开提供的信令传输方法应用于IMS中的交互示意图。在本实施例中,假设IMS核心网21与第二网络实体设备22之间存在两条SCTP偶联路径,分别配置如下表2所示。
Figure PCTCN2022127263-appb-000002
Figure PCTCN2022127263-appb-000003
表2
由表2可知,在本实施例中,对于单个偶联第一SCTP而言,配置两条路径,分别为主备路径,例如:第一SCTP的主路径为:第一IP地址,第一端口<-->第一CE设备<-->第一AR<-->network<-->第三IP地址,第一端口;第一SCTP的备路径为:第二IP地址,第二端口<-->第二CE设备<-->第二AR<-->network<-->第四IP地址,第二端口,其中,第一SCTP的主路径的优先级高于第一SCTP的备路径的优先级,在第一SCTP的主路径中断后,可切换到第一SCTP的备路径。
对于单个偶联第二SCTP而言,同样配置两条路径,分别为对应的主备路径,在第二SCTP中,第二SCTP的主路径的优先级同样高于第二SCTP的备路径的优先级。当第二SCTP的主路径中断后,可切换到第二SCTP的备路径。
由表2可看出,由于第一SCTP的主路径和第二SCTP的主路径在用户边缘网络设备与上联的接入路由之间配置有不同的路由,而在使用过程中,第一SCTP的主路径和第二SCTP的主路径分别为各自对应的主用链路,其中,第一CE设备、第二CE设备分配配置有第一VRRP网关和第二VRRP网关,且第一VRRP网关的主用在第一CE设备上,第二VRRP网关的主用在第二CE设备上,在发往第三IP地址时通过第一VRRP网关在第一CE设备上选择第一SCTP的主路径,发往第四IP地址时通过第二VRRP在第二CE设备上选择第二SCTP的主路径。可以实现在不增加硬件的条件下做到IMS网络输出信令的负荷分担。
其中,第一端口、第二端口、第三端口和第四端口可以分别配置有不同的端口号,例如,分别为4001、4002、4003和4004等。
应理解,如在第一CE设备与第一AR之间存在译码率过高,则发往第四IP地址的信令在返回响应信令时仍然可能走第一AR至第一CE设备路径,导致SCTP偶联中断,为了防止该现象的发送,在CE设备上对上联的接入路由设备AR之间采用开放式最短路径优先 (Open Shortest Path First,OSPF)的动态路由协议,CE设备对于第一网络实体设备侧的IP地址重新分配区分,确保传输至第一网络实体设备侧对应的第一IP地址的响应信令优先走配对第一CE设备的第一SCTP主路径,传输至第一网络实体设备侧对应的第二IP地址的响应信令优先走配对第二CE设备的第二SCTP主路径。以确保解决第一CE设备与第一AR设备译码率高引起的信令返回时导致的传输问题,确保SCTP偶联链路不中断。通过上述分析可知,本实施提供的信令传输方法可以有效地消除因AR与CE设备之间误码率过高导致业务受阻的问题,有效地提高了***的可靠性。
请参阅图6,图6是本公开另一实施例提供的一种信令传输方法的流程图。需要说明的是,在本实施例中,信令传输方法应用于第一网络实体设备,所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所述方法包括如下步骤S601与S602。
S601,通过所述主网口向所述第一CE设备发送路径选择指令,以指示所述第一CE设备通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;
S602,当检测到所述第一通信路径的状态异常时,向所述第二CE设备发送路径切换指令,以指示所述第二CE设备通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
需要说明的是,本实施例对应各步骤的实现过程可参见图3实施例所示各步骤的实现过程,在此不再赘述。
通过上述分析可知,本公开提供的实施例提供信令传输方法,通过在第一网络实体设备的主备网口之间通过用户边缘路由设备配置至少两个虚拟路由冗余协议VRRP网关,并分别在不同用户边缘路由设备上配置第一网络实体设备对应IP地址的不同优先级,以保证第一网络实体设备在主备网口切换过程中,能够自由切换到其它的网关,实现在不增加硬件的前提下有效提高网络实体之间通信的可靠性,进而保证网络实体之间通信的稳定性。
请参阅图7所示,图7是本公开实施例提供的一种第一网络实体设备的结构示意性框图。
如图7所示,第一网络实体设备20包括处理器701和存储器702,处理器701和存储器702通过总线703连接,该总线比如为I2C(Inter-integrated Circuit)总线。
需要说明的是,所述第一网络实体设备20还包括至少一组主网口和备网口,所述主网 口与第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;其中,所述主网口和备网口以及与主网口和备网口分别相连的第一CE设备和第二CE设备在图7中未示出,可以参见前面图示所示。
处理器701用于提供计算和控制能力,支撑整个第一网络实体设备的运行。处理器701可以是中央处理单元(Central Processing Unit,CPU),该处理器701还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器702可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本公开实施例方案相关的部分结构的框图,并不构成对本公开实施例方案所应用于其上的第一网络实体设备的限定,服务器可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现本公开图6实施例提供的信令传输方法。
在一实施例中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
通过所述主网口向所述第一CE设备发送路径选择指令,以指示所述第一CE设备通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;
当检测到所述第一通信路径的状态异常时,向所述第二CE设备发送路径切换指令,以指示所述第二CE设备通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的第一网络实体设备的工作过程,可以参考前述信令传输方法实施例中的对应过程,在此不再赘述。
此外,本公开实施例还提供一种存储介质,用于计算机可读存储,所述存储介质存储 有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如本公开实施例图6提供的信令传输方法的步骤。
其中,所述存储介质可以是前述实施例所述的第一网络实体设备的内部存储单元,例如所述第一网络实体设备的硬盘或内存。所述存储介质也可以是所述第一网络实体设备的外部存储设备,例如所述第一网络实体设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者***中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种信令传输方法,应用于VRRP组网***,所述VRRP组网***包括第一网络实体设备、第一用户网络边缘路由CE设备和第二CE设备;所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所述方法包括:
    所述第一网络实体设备通过所述主网口向所述第一CE设备发送路径选择指令;
    所述第一CE设备接收所述路径选择指令,通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;
    在所述第一网络实体设备检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备发送路径切换指令;以及
    所述第二CE设备接收所述路径切换指令,通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
  2. 根据权利要求1所述的方法,其中,在当所述第一网络实体设备检测到所述第一通信路径的状态异常之后,还包括:
    所述第二CE设备基于开放式最短路由优先协议向第二接入路由设备AR发送所述第二通信路径的信息,以使所述第二AR路由设备向所述第二网络实体设备发送通过所述第二通信路径返回响应信令的指示信息,所述第二AR为所述第二CE设备的上联路由设备。
  3. 根据权利要求1所述的方法,其中,所述第一通信路径和所述第二通信路径为根据流控制传输协议SCTP偶联信息建立的通信路径。
  4. 根据权利要求3所述的方法,其中,所述SCTP偶联信息包括:所述第一网络实体设备的源地址、所述第二网络实体设备的目的地址、所述第一网络实体设备和第二网络实体设备之间的路由设备信息以及连接网络信息。
  5. 根据权利要求4所述的方法,其中,所述第一网络实体设备和第二网络实体设备之间的路由设备信息包括:用户边缘网络路由设备的信息和接入路由设备的信息;所述用户边缘网络路由设备为与所述第一网络实体设备相连的路由设备,所述接入路由设备为所述用户网络边缘路由设备的上联路由设备。
  6. 根据权利要求3所述的方法,其中,在所述第一网络实体设备通过所述主网口向所述第一CE设备发送路径选择指令之前,还包括:
    所述第一网络实体确定所述第一网络实体的源地址和第二网络实体的目的地址之间的对应关系;
    根据所述对应关系分别配置所述第一网络实体和所述第二网络实体之间的SCTP偶联信息;以及
    根据所述SCTP偶联信息建立所述第一通信路径和所述第二通信路径。
  7. 根据权利要求6所述的方法,其中,所述第一网络实体和所述第二网络实体之间包括至少一个SCTP偶联路径,在每个所述SCTP偶联路径下配置有至少两条通信路径,所述第一通信路径和所述第二通信路径属于同一SCTP偶联路径。
  8. 一种信令传输方法,应用于第一网络实体设备,所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;所述方法包括:
    通过所述主网口向所述第一CE设备发送路径选择指令,以指示所述第一CE设备通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;以及
    在检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备发送路径切换指令,以指示所述第二CE设备通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
  9. 一种VRRP组网***,包括第一网络实体设备、第一用户网络边缘路由CE设备、第二CE设备和第二网络实体设备,其中,
    所述第一网络实体设备包括至少一组主网口和备网口,所述主网口与第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;
    所述第一网络实体设备用于通过所述主网口向所述第一CE设备发送路径选择指令,并在检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备发送路径切换指令;
    所述第一CE设备用于接收所述路径选择指令,通过第一VRRP网关选择第一IP 地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;以及
    所述第二CE设备用于接收所述路径切换指令,通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
  10. 一种第一网络实体设备,包括至少一组主网口和备网口,其中,
    所述主网口与第一用户网络边缘路由CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;
    所述第一网络实体设备用于通过所述主网口向所述第一CE设备发送路径选择指令,以指示所述第一CE设备通过第一VRRP网关选择第一IP地址作为业务流的IP地址,获取与所述第一IP地址匹配的第一通信路径进行消息信令传输,所述第一IP地址在所述第一CE设备上的优先级高于所述第二IP地址在所述第一CE设备上的优先级;以及
    所述第一网络实体设备还用于在检测到所述第一通信路径的状态异常的情况下,向所述第二CE设备发送路径切换指令,以指示所述第二CE设备通过第二VRRP网关选择第二IP地址作为业务流的IP地址,切换至与所述第二IP地址匹配的第二通信路径进行消息信令传输,所述第二IP地址在所述第二CE设备上的优先级高于所述第一IP地址在所述第二CE设备上的优先级。
  11. 一种第一网络实体设备,包括至少一组主网口和备网口,其中,
    所述主网口与第一用户网络边缘路由第一CE设备相连,所述备网口与第二CE设备相连;在所述第一CE设备和所述第二CE设备之间配置至少两个虚拟路由冗余协议VRRP网关;
    所示第一网络实体设备还包括处理器和存储器,其中,
    所述存储器用于存储计算机程序;以及
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如权利要求8所述的信令传输方法的步骤。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求8所述的信令传输方法的步骤。
PCT/CN2022/127263 2021-11-26 2022-10-25 信令传输方法、vrrp组网***、第一网络实体设备及存储介质 WO2023093422A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111424499.5 2021-11-26
CN202111424499.5A CN116193385A (zh) 2021-11-26 2021-11-26 信令传输方法、vrrp组网***、第一网络实体设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023093422A1 true WO2023093422A1 (zh) 2023-06-01

Family

ID=86440827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127263 WO2023093422A1 (zh) 2021-11-26 2022-10-25 信令传输方法、vrrp组网***、第一网络实体设备及存储介质

Country Status (2)

Country Link
CN (1) CN116193385A (zh)
WO (1) WO2023093422A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238092A (zh) * 2011-08-02 2011-11-09 杭州华三通信技术有限公司 在编码器上进行负载分担的方法及编码器
US20150207677A1 (en) * 2012-12-18 2015-07-23 Juniper Networks, Inc. Subscriber management and network service integration for software-defined networks having centralized control
CN105847143A (zh) * 2016-06-06 2016-08-10 北京博维亚讯技术有限公司 基于vrrp的负载均衡方法及***
CN107769984A (zh) * 2017-12-04 2018-03-06 阳光凯讯(北京)科技有限公司 一种基于网关的低成本主备热切换***及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238092A (zh) * 2011-08-02 2011-11-09 杭州华三通信技术有限公司 在编码器上进行负载分担的方法及编码器
US20150207677A1 (en) * 2012-12-18 2015-07-23 Juniper Networks, Inc. Subscriber management and network service integration for software-defined networks having centralized control
CN105847143A (zh) * 2016-06-06 2016-08-10 北京博维亚讯技术有限公司 基于vrrp的负载均衡方法及***
CN107769984A (zh) * 2017-12-04 2018-03-06 阳光凯讯(北京)科技有限公司 一种基于网关的低成本主备热切换***及方法

Also Published As

Publication number Publication date
CN116193385A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US10855574B2 (en) Method and network device for computing forwarding path
US10432514B2 (en) Multiprotocol label switching traffic engineering tunnel establishing method and device
US9736278B1 (en) Method and apparatus for connecting a gateway router to a set of scalable virtual IP network appliances in overlay networks
US9705735B2 (en) System and method using RSVP hello suppression for graceful restart capable neighbors
US9191271B2 (en) Fast traffic recovery in VRRP based routers
US20220007251A1 (en) Using location indentifier separation protocol to implement a distributed user plane function architecture for 5g mobility
US10716045B2 (en) Lossless handover for mobility with location identifier separation protocol in 3rd generation partnership project networks
US9013986B2 (en) Device-level redundancy protection method and system based on link aggregation control protocol
US9258183B2 (en) Method, device, and system for realizing disaster tolerance backup
US8817593B2 (en) Method and apparatus providing failover for a point to point tunnel for wireless local area network split-plane environments
US11129061B1 (en) Local identifier locator network protocol (ILNP) breakout
US20160301571A1 (en) Method and Device for Monitoring OAM Performance
US10575366B2 (en) Last resource disaster routing in a telecommunications network
WO2018219300A1 (zh) Sdn中的报文交互方法及装置
WO2020135339A1 (zh) 一种网络路径收敛的方法以及相关设备
CN112187633A (zh) 一种链路故障收敛方法、装置、电子设备及存储介质
US9203731B2 (en) Mechanism to implement a layer 2 gateway
CN112564983B (zh) 数据传输方法、装置、计算机***和介质
WO2021109997A1 (zh) 分段路由隧道的防断纤方法、装置,入口节点及存储介质
WO2023093422A1 (zh) 信令传输方法、vrrp组网***、第一网络实体设备及存储介质
US9426186B2 (en) Methods and systems for load balancing call sessions over a dual ring internet protocol (IP) network
US20240039829A1 (en) Route refresh method, apparatus, and system
EP3163812A1 (en) Method and apparatus for cross-layer path establishment
CN116668352A (zh) 状态指示方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897505

Country of ref document: EP

Kind code of ref document: A1