WO2023093158A1 - 多孔钠离子电池正极材料磷酸铁钠的制备方法 - Google Patents

多孔钠离子电池正极材料磷酸铁钠的制备方法 Download PDF

Info

Publication number
WO2023093158A1
WO2023093158A1 PCT/CN2022/114920 CN2022114920W WO2023093158A1 WO 2023093158 A1 WO2023093158 A1 WO 2023093158A1 CN 2022114920 W CN2022114920 W CN 2022114920W WO 2023093158 A1 WO2023093158 A1 WO 2023093158A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
preparation
carbonate
silver
ion battery
Prior art date
Application number
PCT/CN2022/114920
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to ES202390073A priority Critical patent/ES2963371A2/es
Priority to US18/260,033 priority patent/US20240067525A1/en
Priority to HU2400063A priority patent/HUP2400063A1/hu
Priority to DE112022000196.8T priority patent/DE112022000196T5/de
Publication of WO2023093158A1 publication Critical patent/WO2023093158A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a preparation method of sodium iron phosphate, a positive electrode material of a porous sodium ion battery.
  • Lithium-ion batteries have gradually attracted scientific research due to their advantages such as no memory effect, high voltage platform, large specific energy, environmental friendliness, small self-discharge, safety and stability, and small specific gravity. The attention of personnel has become the star object in the chemical power supply. With the rapid growth of demand for lithium-ion batteries in various application fields and the rapid improvement of people's expectations for the use of various electrical appliances and equipment, in-depth research and development of lithium-ion battery materials is of great significance to the development of human society and the improvement of people's living standards. Significance.
  • Sodium which is in the same main group as lithium, is the second lightest metal element and has a very high abundance in the earth's crust, reaching 2.3%-2.8%.
  • the half-cell potential of sodium-ion batteries is only 0.3V higher than that of lithium-ion batteries.
  • sodium and lithium have similar electrochemical properties, so sodium ions can be used instead of lithium ions.
  • the development of sodium-ion batteries can alleviate the shortage of lithium resources to a certain extent, and it will give us a greater market competitive advantage. Therefore, the research and development of electrode materials for sodium-ion batteries has gradually become a hot topic in energy storage research.
  • the currently reported sodium storage cathode materials mainly include polyanionic compounds, Prussian blue sodium salts, and transition metal oxides.
  • polyanionic compounds mainly include transition metal (pyro) phosphate, fluorophosphate, etc.
  • polyanionic phosphate materials may become the best cathode materials for sodium-ion batteries due to their stable structure and high operating voltage.
  • iron-based phosphate materials Due to its good safety and low cost, iron-based phosphate materials have great development prospects as battery cathode materials.
  • due to the low electrical conductivity and slow ion diffusion speed of this type of material its industrial application is limited.
  • iron-based phosphate sodium ion battery positive electrode materials phosphorus sources, iron sources, sodium sources and carbon sources are often sintered together, and the pyrolysis effect of carbon sources is used.
  • iron is reduced to Bivalent, on the other hand, carbonizes to form coke and improves the conductivity of the material, which can be said to kill two birds with one stone, and is the most commonly used technical means in the prior art.
  • gases such as carbon monoxide and hydrogen will be produced.
  • ferric ions can be reduced to simple iron, and magnetic foreign matter will be generated; in addition, a small amount of FeP and Fe 2 will also be generated.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a preparation method of sodium iron phosphate, a positive electrode material of a porous sodium ion battery.
  • propose a kind of preparation method of porous sodium ion battery cathode material sodium iron phosphate comprise the following steps:
  • step S1 in the mixed solution, the concentration of the ferrous nitrate is 0.1-2.0mol/L, and the molar ratio of the ferrous nitrate to the silver nitrate is 100: (0.8-4).
  • the reducing agent is one or more of butyl hydroxyanisole, dibutyl hydroxytoluene, propyl gallate, tert-butyl hydroquinone or ascorbic acid species; the concentration of the reducing agent in the mixed solution is 0.001-0.25mol/L.
  • described carbonate solution is at least one in the solution of sodium carbonate, potassium carbonate or ammonium carbonate;
  • concentration of carbonate ion in described carbonate solution is 0.1 -1.0mol/L.
  • step S2 during the dropping process, the concentration of carbonate ions in the reaction solution is controlled to be always ⁇ 0.01 mol/L.
  • step S3 the molar ratio of Fe, P, and I elements in the grinding material is (1.01-1.2):1:(0.01-0.2).
  • step S3 the grinding time is 1-2 hours.
  • step S4 the sintering temperature is 550-800° C., and the heating rate is 2-5° C./min.
  • step S4 the sintering time is 8-12h.
  • the organic solvent is at least one of anhydrous methanol, anhydrous ethanol or acetone.
  • step S4 the soaking time is 0.5-1 h.
  • the present invention firstly prepares a mixture of silver carbonate and ferrous carbonate by co-precipitation method to obtain a co-crystal doped with silver and iron at atomic level, and then co-sinters with sodium dihydrogen phosphate and sodium iodide to prepare sodium ferric phosphate.
  • sodium dihydrogen phosphate provides phosphorus source and sodium source.
  • silver carbonate gradually decomposes into carbon dioxide and silver oxide, and silver oxide decomposes into silver element and oxygen, and silver element has excellent Conductivity can increase the conductivity of the material, and the silver element is an inert metal, which does not cause safety hazards to the battery like other magnetic foreign matter impurities.
  • sodium iodide plays the role of reduction, preventing ferrous iron from being oxidized to ferric iron, and the reducibility of sodium iodide is limited, and it will not reduce ferrous iron to simple iron, resulting in the formation of magnetic foreign matter. It will also not capture the oxygen in the phosphate radical and produce phosphide impurities; and the oxidized sodium iodide will generate iodine element, which will be sublimated into iodine vapor and separated from the material during sintering.
  • Fig. 1 is the SEM image of the sodium iron phosphate porous sodium ion battery cathode material prepared in Example 1 of the present invention.
  • This embodiment has prepared a kind of porous sodium ion battery cathode material sodium iron phosphate, and the specific process is:
  • This embodiment has prepared a kind of porous sodium ion battery cathode material sodium iron phosphate, and the specific process is:
  • This embodiment has prepared a kind of porous sodium ion battery cathode material sodium iron phosphate, and the specific process is:
  • This comparative example prepared a kind of carbon-coated NaFePO Material, the specific process is:
  • the discharge gram capacity of the embodiment is significantly higher than that of the comparative example at a rate of 0.2C, and the content of magnetic foreign matter is much lower than that of the comparative example.
  • the carbon source of the comparative example will produce carbon monoxide and hydrogen during pyrolysis.
  • Such gases can reduce ferric ions to simple iron during calcination, produce magnetic foreign matter, and generate a small amount of impurities.
  • the existence of these impurities will reduce the specific capacity of the material, and the porous structure of the embodiment can also improve the performance of the material. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种多孔钠离子电池正极材料磷酸铁钠的制备方法,包括将硝酸亚铁、硝酸银和还原剂混合配制成混合溶液,将混合溶液滴加到碳酸盐溶液中进行反应,得到沉淀物,将沉淀物与磷酸二氢钠、碘化钠混合后研磨,将研磨物料在隔绝空气的条件下进行烧结,将烧结后物料置于有机溶剂中浸泡,即得多孔钠离子电池正极材料磷酸铁钠。本发明通过共沉淀法制备碳酸银和碳酸亚铁的混合物,得到银铁原子级掺杂的共晶体,再与磷酸二氢钠、碘化钠共烧结,制备得到磷酸铁钠,磷酸二氢钠与碳酸亚铁进行固相混合烧结时,碳酸银分解为二氧化碳和氧化银,氧化银再分解为银单质和氧气,银单质可增加材料的导电性,且不像其它磁性异物杂质一样给电池造成安全隐患。

Description

多孔钠离子电池正极材料磷酸铁钠的制备方法 技术领域
本发明属于钠离子电池技术领域,具体涉及多孔钠离子电池正极材料磷酸铁钠的制备方法。
背景技术
近年来全球逐渐开始采用电化学能源作为动力能源装置,锂离子电池因其具有无记忆效应、电压平台高、比能量大、环境友好、自放电小、安全稳定和比重小等优点逐渐吸引了科研人员的关注,成为化学电源里的明星对象。随着锂离子电池在各类应用领域需求量的快速增长以及人们对各种电器以及设备使用期望的快速提升,深入研究和开发锂离子电池材料,对于人类社会的发展和人民生活水平的改善具有重要意义。
与锂位于同主族的钠,是重量第二轻的金属元素,在地壳中有相当高的丰度,达到了2.3%-2.8%。此外,钠离子电池的半电池电势仅仅只比锂离子电池高出0.3V,同时钠、锂具有相似的电化学性质,因此完全可以用钠离子代替锂离子,随着锂资源的价格日益飙升,资源的日益匮乏,研发储钠技术以及工业化生产,将具有重大的商业价值。
钠离子电池的开发可在一定程度上缓和锂资源短缺的问题,具体更大的市场竞争优势。因此钠离子电池电极材料的研究和开发逐渐成为储能研究的热点课题。目前报道的储钠正极材料主要有聚阴离子型化合物、普鲁士蓝类钠盐和过渡金属氧化物。
其中,聚阴离子型化合物主要有过渡金属(焦)磷酸盐,氟磷酸盐等,其中,聚阴离子型磷酸盐材料由于其结构稳定和较高的工作电压,可能成为最佳的钠离子电池正极材料。铁基磷酸盐材料由于其安全性好、成本低廉等优点,作为电池正极材料是很有发展前景的。然而,由于该类材料的本身电导率较低及离子扩散速度较慢等问题,限制了其工业化应用。
为解决上述难题,在制备铁基磷酸盐钠离子电池正极材料时,多采用将磷源、铁源、钠源以及碳源共同进行烧结,利用碳源热解效应,一方面,将铁还原为二价,另一方面,碳化生成焦炭,提高材料的导电性,可谓是一举两得,是现有技术中最为常用的技术手段。然而,碳源在热解时,会产生一氧化碳和氢气等气体,在500-700℃下可将三价铁离子还原成铁单质,产生磁性异物;除此,还会生成少量的FeP、Fe 2P以及Fe 2P 2O 7等杂质。这些杂质的存在,会降低材料的比容量和能量密度,杂质铁还会在电解液中溶解 发生副反应,从而影响电池的使用寿命和安全性能。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种多孔钠离子电池正极材料磷酸铁钠的制备方法。
根据本发明的一个方面,提出了一种多孔钠离子电池正极材料磷酸铁钠的制备方法,包括以下步骤:
S1:将硝酸亚铁、硝酸银和还原剂混合配制成混合溶液;
S2:在隔绝氧气的条件下,将所述混合溶液滴加到碳酸盐溶液中进行反应,固液分离得到沉淀物;
S3:将所述沉淀物与磷酸二氢钠、碘化钠混合后研磨,得到研磨物料;
S4:将所述研磨物料在隔绝空气的条件下进行烧结,得到烧结后物料,将所述烧结后物料置于有机溶剂中浸泡,固液分离,即得所述多孔钠离子电池正极材料磷酸铁钠。
在本发明的一些实施方式中,步骤S1中,所述混合溶液中,所述硝酸亚铁的浓度为0.1-2.0mol/L,所述硝酸亚铁与所述硝酸银的摩尔比为100:(0.8-4)。
在本发明的一些实施方式中,步骤S1中,所述还原剂为丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、特丁基对苯二酚或抗坏血酸中的一种或几种;所述混合溶液中还原剂的浓度为0.001-0.25mol/L。
在本发明的一些实施方式中,步骤S2中,所述碳酸盐溶液为碳酸钠、碳酸钾或碳酸铵的溶液中的至少一种;所述碳酸盐溶液中碳酸根离子的浓度为0.1-1.0mol/L。
在本发明的一些实施方式中,步骤S2中,所述滴加的过程中,控制反应溶液中碳酸根离子的浓度始终≥0.01mol/L。
在本发明的一些实施方式中,步骤S3中,所述研磨物料中Fe、P、I元素的摩尔比为(1.01-1.2):1:(0.01-0.2)。
在本发明的一些实施方式中,步骤S3中,所述研磨的时间为1-2h。
在本发明的一些实施方式中,步骤S4中,所述烧结的温度为550-800℃,升温速率为2-5℃/min。
在本发明的一些实施方式中,步骤S4中,所述烧结的时间为8-12h。
在本发明的一些实施方式中,步骤S4中,所述有机溶剂为无水甲醇、无水乙醇或丙酮中的至少一种。
在本发明的一些实施方式中,步骤S4中,所述浸泡的时间为0.5-1h。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明首先通过共沉淀法制备碳酸银和碳酸亚铁的混合物,得到银铁原子级掺杂的共晶体,再与磷酸二氢钠、碘化钠共烧结,制备得到磷酸铁钠。其中,磷酸二氢钠提供磷源和钠源,与碳酸亚铁进行固相混合烧结时,碳酸银逐渐分解为二氧化碳和氧化银,氧化银再分解为银单质和氧气,而银单质具有优异的电导率,可增加材料的导电性,且银单质为惰性金属并不像其它磁性异物杂质一样给电池造成安全隐患。
2、烧结过程中,碘化钠起到还原的作用,避免亚铁被氧化为三价铁,且碘化钠的还原性有限,不会将亚铁还原为铁单质,造成磁性异物的生成,也不会夺取磷酸根中的氧,产生磷化物杂质;且被氧化的碘化钠生成碘单质,在烧结时,升华为碘蒸气脱离物料。同时,烧结反应结束后,通过在有机溶剂中浸泡,利用碘化钠易溶于有机溶剂的特性,除去多余的碘化钠和残留的碘单质,从而得到金属银单质修饰的多孔钠离子电池正极材料磷酸铁钠。
3、该材料在烧结制备时,随着反应的进行,气体溢出,材料变成多孔结构,此结构在作为负极材料使用时,更加利于电解液的浸润,利于钠离子的脱嵌,进而提成倍率性能。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的多孔钠离子电池正极材料磷酸铁钠的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种多孔钠离子电池正极材料磷酸铁钠,具体过程为:
(1)配制硝酸亚铁、硝酸银和还原剂的混合溶液,其中,硝酸亚铁的浓度为2.0mol/L,硝酸亚铁与硝酸银的浓度比为100:4,还原剂为抗坏血酸,浓度为0.25mol/L;
(2)配制浓度为0.2mol/L碳酸钠溶液;
(3)在隔绝氧气的条件下,将混合溶液逐滴加入到碳酸钠溶液中进行反应,并保证反应溶液中的碳酸根离子浓度始终≥0.01mol/L;
(4)反应结束后,固液分离,按照Fe、P、I元素摩尔比1.01:1:0.1,将沉淀物与磷酸二氢钠、碘化钠混合均匀后研磨2h,制得研磨物料;
(5)将研磨物料在隔绝空气的条件下以2℃/min的升温速率加热到550℃下保持12小时;
(6)将烧结后的物料,加入到无水乙醇中浸泡0.5h,浸泡结束后,固液分离,干燥固体物料,即得多孔钠离子电池正极材料磷酸铁钠。
实施例2
本实施例制备了一种多孔钠离子电池正极材料磷酸铁钠,具体过程为:
(1)配制硝酸亚铁、硝酸银和还原剂的混合溶液,其中,硝酸亚铁的浓度为1.0mol/L,硝酸亚铁与硝酸银的浓度比为100:2,还原剂为丁基羟基茴香醚,浓度为0.1mol/L;
(2)配制浓度为0.5mol/L碳酸钾溶液;
(3)在隔绝氧气的条件下,将混合溶液逐滴加入到碳酸钾溶液中进行反应,并保证反应溶液中的碳酸根离子浓度始终≥0.01mol/L;
(4)反应结束后,固液分离,按照Fe、P、I元素摩尔比1.1:1:0.15,将沉淀物与磷酸二氢钠、碘化钠混合均匀后研磨1h,制得研磨物料;
(5)将研磨物料在隔绝空气的条件下以3℃/min的升温速率加热到670℃下保持10小时;
(6)将烧结后的物料,加入到丙酮中浸泡1h,浸泡结束后,固液分离,干燥固体物料,即得多孔钠离子电池正极材料磷酸铁钠。
实施例3
本实施例制备了一种多孔钠离子电池正极材料磷酸铁钠,具体过程为:
(1)配制硝酸亚铁、硝酸银和还原剂的混合溶液,其中,硝酸亚铁的浓度为0.1mol/L,硝酸亚铁与硝酸银的浓度比为100:0.8,还原剂为特丁基对苯二酚,浓度为0.001mol/L;
(2)配制浓度为1.0mol/L碳酸铵溶液;
(3)在隔绝氧气的条件下,将混合溶液逐滴加入到碳酸铵溶液中进行反应,并保证反应溶液中的碳酸根离子浓度始终≥0.01mol/L;
(4)反应结束后,固液分离,按照Fe、P、I元素摩尔比1.08:1:0.08,将沉淀物与磷酸二氢钠、碘化钠混合均匀后研磨1.5h,制得研磨物料;
(5)将研磨物料在隔绝空气的条件下以5℃/min的升温速率加热到800℃下保持8小时;
(6)将烧结后的物料,加入到无水甲醇中浸泡0.5h,浸泡结束后,固液分离,干燥固体物料,即得多孔钠离子电池正极材料磷酸铁钠。
对比例
本对比例制备了一种碳包覆的NaFePO 4材料,具体过程为:
将0.1mol Fe(NO 3) 3、0.1mol NaH 2PO 4、5.0g葡萄糖、12.5g柠檬酸放入烧杯中,加入76mL乙二醇作为分散剂,在70℃的水浴温度下,以200r/min的搅拌速度搅拌8h形成凝胶,然后在90℃的烘箱烘干24h,将材料取出后进行研磨,研磨结束后,将材料在600℃氩气中煅烧8h,得到碳包覆的NaFePO 4材料。
试验例
取实施例1-3制得的钠离子电池正极材料和对比例制得的碳包覆的NaFePO 4材料分别制备成钠离子电池正极极片,并以金属钠片作为对电极负极,电解液为1mol/L NaPF 6电解液,分别装配制成CR2032扣式电池;将装配好的扣式电池在25℃下测试倍率性能,按(1C=155mA/g)设置倍率,结果如表1所示。
表1
  0.1C放电克容量mAh/g 0.2C放电克容量mAh/g 磁性异物含量ppb
实施例1 151 93 2
实施例2 146 88 3
实施例3 147 86 2
对比例 143 80 18
由表1可知,实施例在0.2C的倍率下放电克容量明显高于对比例,且磁性异物含量较对比例低很多,这是由于对比例的碳源在热解时,会产生一氧化碳和氢气等气体,在煅烧时可将三价铁离子还原成铁单质,产生磁性异物,还会生成少量杂质,这些杂质的存在,会降低材料的比容量,同时实施例的多孔结构也可提升材料性能。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种多孔钠离子电池正极材料磷酸铁钠的制备方法,其特征在于,包括以下步骤:
    S1:将硝酸亚铁、硝酸银和还原剂混合配制成混合溶液;
    S2:在隔绝氧气的条件下,将所述混合溶液滴加到碳酸盐溶液中进行反应,固液分离得到沉淀物;
    S3:将所述沉淀物与磷酸二氢钠、碘化钠混合后研磨,得到研磨物料;
    S4:将所述研磨物料在隔绝空气的条件下进行烧结,得到烧结后物料,将所述烧结后物料置于有机溶剂中浸泡,固液分离,即得所述多孔钠离子电池正极材料磷酸铁钠。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述混合溶液中,所述硝酸亚铁的浓度为0.1-2.0mol/L,所述硝酸亚铁与所述硝酸银的摩尔比为100:(0.8-4)。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述还原剂为丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、特丁基对苯二酚或抗坏血酸中的一种或几种。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述碳酸盐溶液为碳酸钠、碳酸钾或碳酸铵的溶液中的至少一种。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述滴加的过程中,控制反应溶液中碳酸根离子的浓度始终≥0.01mol/L。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述研磨物料中Fe、P、I元素的摩尔比为(1.01-1.2):1:(0.01-0.2)。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述研磨的时间为1-2h。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述烧结的温度为550-800℃。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述有机溶剂为无水甲醇、无水乙醇或丙酮中的至少一种。
  10. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述浸泡的时间为0.5-1h。
PCT/CN2022/114920 2021-11-26 2022-08-25 多孔钠离子电池正极材料磷酸铁钠的制备方法 WO2023093158A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES202390073A ES2963371A2 (es) 2021-11-26 2022-08-25 Metodo de preparacion de fosfato de hierro y sodio poroso usado como material de catodo de bateria de iones de sodio
US18/260,033 US20240067525A1 (en) 2021-11-26 2022-08-25 Preparation method of porous sodium iron phosphate used as sodium ion battery cathode material
HU2400063A HUP2400063A1 (en) 2021-11-26 2022-08-25 Preparation method for porous sodium ion battery positive electrode material sodium iron phosphate
DE112022000196.8T DE112022000196T5 (de) 2021-11-26 2022-08-25 Herstellungsverfahren von porösem natriumeisenphosphat als kathodenmaterial für natriumionenbatterien

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111421179.4 2021-11-26
CN202111421179.4A CN114249311B (zh) 2021-11-26 2021-11-26 多孔钠离子电池正极材料磷酸铁钠的制备方法

Publications (1)

Publication Number Publication Date
WO2023093158A1 true WO2023093158A1 (zh) 2023-06-01

Family

ID=80791223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114920 WO2023093158A1 (zh) 2021-11-26 2022-08-25 多孔钠离子电池正极材料磷酸铁钠的制备方法

Country Status (6)

Country Link
US (1) US20240067525A1 (zh)
CN (1) CN114249311B (zh)
DE (1) DE112022000196T5 (zh)
ES (1) ES2963371A2 (zh)
HU (1) HUP2400063A1 (zh)
WO (1) WO2023093158A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2616234A (en) * 2021-11-26 2023-08-30 Guangdong Brunp Recycling Technology Co Ltd Preparation method for porous sodium ion battery positive electrode material sodium iron phosphate
CN114249311B (zh) * 2021-11-26 2023-03-07 广东邦普循环科技有限公司 多孔钠离子电池正极材料磷酸铁钠的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821063A (zh) * 2006-02-28 2006-08-23 北大先行科技产业有限公司 一种合成类球形磷酸金属锂盐的方法
CN104752717A (zh) * 2013-12-27 2015-07-01 比亚迪股份有限公司 一种磷酸铁锂及其制备方法和应用
JP6101771B1 (ja) * 2015-11-09 2017-03-22 太平洋セメント株式会社 ナトリウムイオン電池用正極活物質及びその製造方法
CN106629648A (zh) * 2016-10-13 2017-05-10 西南大学 Na3.64Fe2.18(P2O7)2正极材料及制备方法和应用
CN108039491A (zh) * 2017-11-30 2018-05-15 华南理工大学 一种钠离子电池负极材料三磷酸铁钠及其制备方法
CN110957490A (zh) * 2019-07-30 2020-04-03 哈尔滨工业大学 一种中空结构的碳包覆磷酸铁钠电极材料的制备方法
CN111056544A (zh) * 2019-12-16 2020-04-24 合肥国轩高科动力能源有限公司 一种磷酸铁钠复合材料及其制备方法、应用
CN113526483A (zh) * 2021-07-13 2021-10-22 内蒙古大学 一种磷铁钠矿型正极材料及其制备方法和用途
CN114249311A (zh) * 2021-11-26 2022-03-29 广东邦普循环科技有限公司 多孔钠离子电池正极材料磷酸铁钠的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821063A (zh) * 2006-02-28 2006-08-23 北大先行科技产业有限公司 一种合成类球形磷酸金属锂盐的方法
CN104752717A (zh) * 2013-12-27 2015-07-01 比亚迪股份有限公司 一种磷酸铁锂及其制备方法和应用
JP6101771B1 (ja) * 2015-11-09 2017-03-22 太平洋セメント株式会社 ナトリウムイオン電池用正極活物質及びその製造方法
CN106629648A (zh) * 2016-10-13 2017-05-10 西南大学 Na3.64Fe2.18(P2O7)2正极材料及制备方法和应用
CN108039491A (zh) * 2017-11-30 2018-05-15 华南理工大学 一种钠离子电池负极材料三磷酸铁钠及其制备方法
CN110957490A (zh) * 2019-07-30 2020-04-03 哈尔滨工业大学 一种中空结构的碳包覆磷酸铁钠电极材料的制备方法
CN111056544A (zh) * 2019-12-16 2020-04-24 合肥国轩高科动力能源有限公司 一种磷酸铁钠复合材料及其制备方法、应用
CN113526483A (zh) * 2021-07-13 2021-10-22 内蒙古大学 一种磷铁钠矿型正极材料及其制备方法和用途
CN114249311A (zh) * 2021-11-26 2022-03-29 广东邦普循环科技有限公司 多孔钠离子电池正极材料磷酸铁钠的制备方法

Also Published As

Publication number Publication date
ES2963371A2 (es) 2024-03-26
CN114249311A (zh) 2022-03-29
DE112022000196T5 (de) 2023-09-14
CN114249311B (zh) 2023-03-07
HUP2400063A1 (en) 2024-05-28
US20240067525A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2023093158A1 (zh) 多孔钠离子电池正极材料磷酸铁钠的制备方法
EP3021386B1 (en) Layered oxide material containing copper, and preparation method and use thereof
CN103872287A (zh) 一种石墨烯磷酸铁锂电池正极复合材料及其制备方法
CN110611093A (zh) 一种表面包覆改性锂离子电池高镍三元正极材料的制备方法及应用
CN112289994B (zh) 一种包覆型高镍三元材料及其制备方法和应用
CN108598378A (zh) 一种锂/钠离子电池负极材料Fe1-xS/C的制备方法
CN103531776B (zh) 高安全性超长寿命的锂离子电池及其正极材料和化成方法
CN107565099B (zh) 一种正极活性材料及其制备方法和一种锂离子电池
CN110649263A (zh) 镍离子电池磷酸钒锂正极材料及溶胶凝胶制备方法与应用
CN108091835B (zh) 铁酸钴负载硫的锂硫电池复合正极材料及其制备方法
CN110492099B (zh) 一种层状聚阴离子正极材料、制备方法、钾离子电池正极、钾离子电池及应用
CN117525391A (zh) 一种钠离子电池聚阴离子正极材料及其制备方法
CN110563052B (zh) 一种碳和氧化镧共包覆改性镍锰酸锂正极材料的制备方法
CN116845191A (zh) 一种自补锂型三元材料、制备方法及应用
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN111477977A (zh) 一种锂离子电池用水-醚类混合电解液及其制备方法
CN112768756B (zh) 固态电解质材料以及利用该材料制得的复合固态电解质和全固态电池
CN114583147A (zh) 一种包覆改性的三元正极材料及其制备方法
CN114744184A (zh) 一种高性能的三元正极材料及其制备方法
GB2616234A (en) Preparation method for porous sodium ion battery positive electrode material sodium iron phosphate
CN110459737B (zh) 一种核壳结构的碳包覆硼酸亚铁的制备方法及其应用
CN109698325B (zh) 一种锂钴金属氧化物粉末及其制备方法
CN109860573A (zh) 一种石墨烯基的车用锂离子电池正极材料及其制备方法
CN111048778B (zh) 一种掺杂改性锂离子电池钒酸盐负极材料及其制备方法
CN113353991B (zh) 一种脱锂材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112022000196

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 202309481

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220825

WWE Wipo information: entry into national phase

Ref document number: 18260033

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897252

Country of ref document: EP

Kind code of ref document: A1