WO2023092782A1 - 一种充电桩降温的方法 - Google Patents

一种充电桩降温的方法 Download PDF

Info

Publication number
WO2023092782A1
WO2023092782A1 PCT/CN2021/140610 CN2021140610W WO2023092782A1 WO 2023092782 A1 WO2023092782 A1 WO 2023092782A1 CN 2021140610 W CN2021140610 W CN 2021140610W WO 2023092782 A1 WO2023092782 A1 WO 2023092782A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
charging pile
power
charging
module
Prior art date
Application number
PCT/CN2021/140610
Other languages
English (en)
French (fr)
Inventor
张金磊
朱建国
刘涛
刘友恒
马道停
Original Assignee
深圳市永联科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市永联科技股份有限公司 filed Critical 深圳市永联科技股份有限公司
Publication of WO2023092782A1 publication Critical patent/WO2023092782A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to the energy field, in particular to a method for cooling a charging pile.
  • the embodiment of the present application provides a method for cooling a charging pile, which can intelligently adjust the operating speed of the charging pile fan according to time, and reduce noise pollution to the surrounding environment.
  • an embodiment of the present application provides a method for cooling a charging pile, including the following steps:
  • the first speed of the charging pile fan is determined according to the first preset noise value, and the first speed is the maximum operating speed that the charging pile fan can reach when the noise produced by the charging pile fan does not cause the first preset noise value.
  • determining the first preset noise value according to the first preset period includes the following steps:
  • a first preset noise value is determined according to the current time node.
  • the size of the first preset noise value is related to the current time node.
  • the operating power of the charging module is controlled not to exceed the first power.
  • the method in the embodiment of the present application may further include the following steps:
  • the second power is the actual operating power of the charging module
  • the second speed is determined according to the second power, and the second speed is the operating speed of the charging pile fan when the charging module can be operated at the second power.
  • the third speed is the actual operating speed of the charging pile fan
  • a control speed is generated according to the second speed and the third speed, and the control speed is obtained by linear combination of the proportion and the integral of the difference between the second speed and the third speed.
  • the embodiment of the present application provides a charging pile, including the following parts: a computing module;
  • the calculating module is used for determining the first preset noise value according to the first preset cycle, and is used for determining the first speed of the charging pile fan according to the first preset noise value.
  • the charging pile further includes: a collection module
  • the collection module is used to collect the current time node every first preset period
  • the calculation module is also used to determine the first preset noise value according to the current time node.
  • the charging pile further includes: a charging module and a charging pile fan;
  • the calculation module is also used to calculate the first power of the charging module of the charging pile according to the first speed, and the first power is the maximum power that the charging module can achieve when the charging pile fan is running at the first speed.
  • the charging pile further includes:
  • the collection module is also used to obtain the second power of the charging module according to the second preset cycle, and the second power is the actual operating power of the charging module;
  • the calculation module is also used to determine the second speed according to the second power, and the second speed is the operating speed of the charging pile fan when the charging module can be operated at the second power.
  • the charging pile further includes:
  • the acquisition module is also used to obtain the third speed of the charging pile fan according to the third preset cycle, and the third speed is the actual pre-rotation speed of the charging pile fan;
  • the calculation module is also used to generate a control speed according to the second speed and the third speed, and the control speed is obtained by linear combination of the proportion and integral of the difference between the second speed and the third speed;
  • the charging pile fan is used to run at a controlled speed.
  • the embodiment of the present application provides another charging pile, including the following parts: a processor, a memory, and a bus;
  • the processor and the memory are connected through a bus, wherein the memory is used to store a set of program codes, and the processor is used to call the program codes stored in the memory to execute the method as described in the first aspect.
  • the embodiment of the present application provides a computer storage medium, including:
  • Instructions are stored in the computer-readable storage medium, and when the instructions are run on the computer, the method as described in the first aspect is implemented.
  • the charging pile can determine the operating speed of the charging pile fan according to the time node.
  • a reasonable charging pile operating speed can reduce the noise pollution of the charging pile to the surrounding environment, and can also improve the user experience.
  • FIG. 1 is a schematic flowchart of a method for cooling a charging pile provided in an embodiment of the present application
  • Fig. 2 is a schematic flowchart of another method for cooling a charging pile provided in an embodiment of the present application
  • Fig. 3 is a schematic composition diagram of a charging pile provided in an embodiment of the present application.
  • Fig. 4 is a schematic composition diagram of another charging pile provided by the embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for cooling a charging pile provided in an embodiment of the present application, which may include the following steps:
  • the first preset noise value is determined according to the current time node, and the magnitude of the first preset noise value is related to the current time node.
  • the acquisition module of the charging pile will obtain and confirm the current time node every minute, and the calculation module will determine the first preset noise value according to the current time node.
  • the selection of the above-mentioned first preset period is only for illustrating the method of the embodiment of the present application, and shall not limit the present application, and the specific value of the first preset period shall be set by the technician according to the actual situation.
  • the first preset noise value there is a certain correlation between the first preset noise value and time.
  • Technicians can obtain the tolerance level of people to noise at different time nodes (or different seasons) through experiments, and obtain the first preset noise value based on this.
  • the technician can make the relationship between the first preset noise value and the time node into a look-up table or fit it into a correlation function, and store it in the charging pile. In this way, the charging pile can quickly determine the first preset noise value at the current time node, no matter by means of table lookup or calculation.
  • decibels are the weakest sound that people can just hear, that is, the lower limit of hearing, and 10 decibels is equivalent to the rustling of leaves blown by a breeze.
  • 30-40 decibels is an ideal quiet environment. More than 50 decibels will affect sleep and rest. Above 70 decibels will interfere with conversation and affect work efficiency. Living in a noise environment above 90 decibels for a long time will seriously affect hearing and cause diseases such as neurasthenia, headache, and elevated blood pressure. If suddenly exposed to a noise environment as high as 150 decibels, the auditory organs will be severely traumatized, causing rupture and bleeding of the tympanic membrane, and complete loss of hearing in both ears. In order to protect hearing, the noise should not exceed 90 decibels; in order to ensure work and study, the noise should not exceed 70 decibels; in order to ensure rest and sleep, the noise should not exceed 50 decibels.
  • the noise is divided into three levels within the range of 0-120 decibels: (1) Level I (30-59 decibels): It can be tolerated, but there is already a sense of discomfort, and it starts to disturb sleep when it reaches 40 decibels. (2) Grade II (60-89 decibels): Increased interference to the autonomic nervous system, difficulty listening, 85 decibels is the general requirement for hearing protection. (3) Grade III (90-120 decibels): Significant damage to the nervous system, causing irreversible auditory organ damage.
  • the first preset noise value can be set to 45 decibels; during working hours (such as 9:00-12:00, 14:30-18:00), the first preset noise value can be set to 70 decibels.
  • the first preset noise value of the charging pile at 12:00 is 50 decibels. Then in winter or summer, the first preset noise value can be adjusted to 70 decibels. It should be emphasized that the above examples are all for the purpose of describing the embodiment of the present application in detail, and should not limit the present application.
  • the specific first preset noise value is set by the technician according to the actual situation.
  • the first speed is the maximum operating speed that the charging pile fan can reach when the noise produced by the charging pile fan exceeds the first preset noise value.
  • the technician will obtain the corresponding noise value according to the different operating speeds of the charging pile fan, so as to determine the relationship between the operating speed of the charging pile fan and the noise value.
  • the operating speed of the charging pile fan is positively related to the noise value of the charging pile, that is, the higher the operating speed of the charging pile fan, the greater the noise emitted by the charging pile fan. Therefore, the maximum operating speed of the charging pile fan can be determined according to the first preset noise value.
  • the first power of the charging module of the charging pile is determined according to the first speed. And the operating power of the charging module is controlled not to exceed the first power.
  • technicians can measure and record the maximum operating power that the charging module can achieve at different charging pile fan speeds to determine the power between the charging pile fan speed and the maximum operating power of the charging module.
  • the greater the operating speed of the charging pile fan the greater the maximum operating power that the charging module can achieve. This is because the operating power of the charging module is related to the working environment temperature, and an excessively high working environment temperature will inhibit the working efficiency of the charging module.
  • the greater the operating speed of the charging pile fan the more obvious the cooling effect on the working environment of the charging module will be, so the maximum operating power that the charging module can achieve will increase.
  • the embodiment of the present application can determine the maximum operating speed of the charging pile fan according to the current time node of the charging pile, reduce noise pollution to the surrounding environment, and obtain the maximum operating power of the charging module.
  • the operating power of the charging module is controlled not to exceed the maximum operating power, so as to avoid failure of the charging module due to overload work.
  • FIG. 2 is a schematic flowchart of another method for cooling a charging pile provided in the embodiment of the present application, which may include the following steps:
  • the third speed is the actual running speed of the charging pile fan.
  • the acquisition module of the charging pile acquires the actual rotational speed (ie, the third speed) of the charging pile fan every 30 seconds.
  • Obtaining the actual operating speed of the charging pile fan with a smaller third preset period is conducive to more accurately regulating the operating speed of the charging pile fan, and is convenient for creating a more stable working environment for the charging module.
  • the above-mentioned example of the third preset period is only for describing the method of the embodiment of the present application in more detail, and shall not limit the present application, and the specific data of the third preset period shall be set by technicians according to the actual situation.
  • the second power of the charging module is also acquired at the second preset period.
  • the second power is the actual operating power of the charging module.
  • the acquisition module of the charging pile will acquire the operating power of the charging module every 30 seconds. If the operating power of the charging module obtained for the first time is 1000 watts, and the operating power of the charging module obtained for the second time is 800 watts, it can be used to instruct to reduce the operating speed of the charging pile fan. Periodically obtaining the operating power of the charging module is conducive to timely adjusting the operating speed of the charging pile fan, avoiding excessive consumption of the charging pile fan and energy waste.
  • the actual operating power of the charging module is limited by the first power (that is, the maximum power that the charging module can achieve when the charging pile fan is running at the first speed).
  • the charging pile (the first power is 1000 watts) provides charging service for vehicle A. If the current required by vehicle A requires the charging pile to work at a power of 800 watts, the charging pile will use 800 watts as the operating power. work; if the current required by vehicle A requires the charging pile to work at a power of 1200 watts, the charging pile will only work at 1000 watts as the operating power, because the current working power of the charging pile cannot exceed the first power.
  • the second speed is determined according to the second power.
  • the second speed is the operating speed of the charging pile fan when the charging module can be operated at the second power.
  • the control speed is obtained by linear combination of the proportion and integral of the difference between the second speed and the third speed.
  • the PI regulator dynamically adjusts the control speed according to the actual operating speed (ie, the third speed) and the target speed (ie, the second speed) of the charging pile fan, so that the charging pile fan can work at a stable operating speed.
  • PI regulator is a kind of linear controller, which forms the control deviation according to the given value and the actual output value, and forms the control quantity through linear combination of the proportion and integral of the deviation, and controls the controlled object.
  • the function of proportional adjustment is to respond to the deviation of the system in proportion. Once there is a deviation in the system, the proportional adjustment will immediately produce an adjustment effect to reduce the deviation.
  • integral adjustment is to eliminate the steady-state error of the system and improve the error-free degree. Because there is an error, the integral adjustment is carried out until there is no difference, the integral adjustment stops, and the integral adjustment outputs a constant value.
  • the strength of the integral action depends on the integral time constant Ti, the smaller the Ti, the stronger the integral action. Conversely, the larger Ti is, the weaker the integral action is, adding integral adjustment can reduce the system stability and slow down the dynamic response. Integral action is often combined with the other two regulation laws to form a PI regulator or a PID regulator.
  • control speed will gradually approach the second speed.
  • the embodiment of the present application can adjust the operating speed of the charging pile fan according to the actual operating power of the charging module, which is conducive to saving the energy of the charging pile fan and avoiding unnecessary waste of resources.
  • the operating speed of the charging pile fan is regulated through the PI regulator, so that the operating speed of the charging pile fan fluctuates slightly around the target speed, which is conducive to the stable operation of the charging pile fan and can provide a good working environment for the charging module.
  • Figure 3 is a schematic diagram of the composition of a charging pile provided by the embodiment of the present application, which may include:
  • Calculation module 310 acquisition module 320, charging module 330 and charging pile fan 340;
  • the calculation module 310 may be used to determine a first preset noise value in a first preset cycle, and may be used to determine a first speed of the charging pile fan 340 according to the first preset noise value.
  • the calculation module 310 may also be configured to determine the first preset noise value according to the current time node.
  • the calculation module 310 may also be used to calculate the first power of the charging module 330 of the charging pile according to the first speed.
  • the first power is the maximum power that the charging module 330 can achieve when the charging pile fan 340 is running at the first speed.
  • the calculation module 310 may also be used to determine the second speed according to the second power.
  • the second power is the actual operating power of the charging module 330
  • the second speed is the operating speed of the charging pile fan 340 when the charging module 330 can operate at the second power.
  • the calculation module 310 may also be configured to generate a control speed according to the second speed and the third speed.
  • the third speed is the actual operating speed of the charging pile fan 340
  • the control speed is obtained by linear combination of the proportion and integral of the difference between the second speed and the third speed.
  • the acquisition module 320 may be configured to acquire the current time node every first preset period.
  • the acquisition module 320 may also be configured to acquire the second power of the charging module 330 according to a second preset period.
  • the acquisition module 320 may also be configured to acquire the third speed of the charging pile fan 340 in a third preset period.
  • the charging station fan 340 can be used to run at a controlled speed.
  • the charging pile may include:
  • Processor 410 memory 420 and I/O interface 430 .
  • the processor 410, the memory 420, and the I/O interface 430 can be communicatively connected, the memory 420 is used to store instructions, and the processor 410 is used to execute the instructions stored in the memory 420, so as to realize the corresponding method steps.
  • the processor 410 is configured to execute the instructions stored in the memory 420 to control the I/O interface 430 to receive and send signals, and complete the steps in the above methods.
  • the memory 420 may be integrated in the processor 410 , or may be set separately from the processor 410 .
  • the memory 420 may also include a storage system 421 , a cache 422 and a RAM 423 .
  • the high-speed cache 422 is a first-level memory that exists between the RAM 423 and the CPU, and is made up of a static memory chip (SRAM).
  • SRAM static memory chip
  • the capacity is relatively small but the speed is much higher than that of the main memory, and is close to the speed of the CPU;
  • the internal memory of data can be read and written at any time (except when refreshing), and the speed is very fast. It is usually used as a temporary data storage medium for operating systems or other running programs.
  • the combination of the three implements the function of the memory 420 .
  • the function of the I/O interface 430 may be realized by a transceiver circuit or a dedicated transceiver chip.
  • the processor 410 may be considered to be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer to implement the apparatus provided in the embodiment of the present application.
  • the program codes to implement the functions of the processor 410 and the I/O interface 430 are stored in the memory 420 , and the general processor implements the functions of the processor 410 and the I/O interface 430 by executing the codes in the memory 420 .
  • a computer-readable storage medium on which instructions are stored, and when the instructions are executed, the methods in the foregoing method embodiments are executed.
  • a computer program product including instructions is provided, and when the instructions are executed, the methods in the foregoing method embodiments are executed.
  • FIG. 4 A storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may be a central processing unit (Central Processing Unit, referred to as CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processing, referred to as DSP), Application Specific Integrated Circuit (ASIC for short), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA off-the-shelf programmable gate array
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, referred to as ROM), programmable read-only memory (Programmable ROM, referred to as PROM), erasable programmable read-only memory (Erasable PROM, referred to as EPROM) , Electrically Erasable Programmable Read-Only Memory (Electrically Erasable EPROM, referred to as EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static Random Access Memory
  • Dynamic RAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • the bus may also include a power bus, a control bus, and a status signal bus.
  • a power bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are labeled as buses in the figures.
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, rather than the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state hard disk), etc.
  • the embodiment of the present application also provides a computer storage medium, the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement part of any account management method as described in the above method embodiments or all steps.
  • the embodiment of the present application also provides a computer program product, the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to enable the computer to execute the method described in the above method embodiments Some or all steps of any account management method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供了一种充电桩降温的方法。该方法包括:按第一预设周期确定第一预设噪音值;根据第一预设噪音值确定充电桩风机的第一速度。本申请实施例方法可以实现在保持对充电桩高效降温的同时,降低充电桩风机运转时对周围环境造成的噪音污染。

Description

一种充电桩降温的方法
本申请要求于2021年11月26日提交中国专利局、申请号为202111417484.6、申请名称为“一种充电桩降温的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及能源领域,尤其涉及一种充电桩降温的方法本。
背景技术
随着电动汽车产业的不断发展,充电桩的应用也越来越广泛。其中,大功率充电以及超级快速充电技术愈发受到人们的重视。但是随着充电桩功率的提升,充电桩内部会因为高强度的工作而变得温度过高,这给充电桩的安全性以及可靠性造成了威胁。因此,温度成为了限制充电桩功率提升的首要原因。
现有技术选用转速较高的风机来对充电桩内部进行降温处理,但是当风机高速运转时,会造成很大的噪音污染,给居民的生活带来了不便。因此,如何在高效降温的基础上降低噪音对周围环境的污染,是本领域技术人员急需解决的问题。
发明内容
本申请实施例提供了一种充电桩降温的方法,可以实现根据时间智能调节充电桩风机的运转速度,减少对周围环境的噪音污染。
第一方面,本申请实施例提供了一种充电桩降温的方法,包括以下步骤:
按第一预设周期确定第一预设噪音值;
根据第一预设噪音值确定充电桩风机的第一速度,第一速度为充电桩风机制造的噪音不造成第一预设噪音值时充电桩风机能达到的最大运转速度。
在一种可能的实施方式中,按第一预设周期确定第一预设噪音值,包括以下步骤:
每隔第一预设周期,根据当前时间节点确定第一预设噪音值。其中,第一预设噪音值的大小与当前时间节点相关。
在另一种可能的实施方式中,在根据第一预设噪音值确定充电桩风机的第一速度之后,还包括以下步骤:
根据第一速度确定充电桩的充电模块的第一功率;
控制充电模块的运行功率不超过第一功率。
在另一种可能的实施方式中,本申请实施例方法还可以包括以下步骤:
按第二预设周期获取充电模块的第二功率,该第二功率为充电模块的实际运行功率;
根据第二功率确定第二速度,该第二速度为保证充电模块能以第二功率运行时充电桩风机的运转速度。
在另一种可能的实施方式中,在根据第二功率确定第二速度之后,还包括以下步骤:
按第三预设周期获取充电桩风机的第三速度,该第三速度为充电桩风机的实际运转速度;
根据第二速度以及第三速度生成控制速度,该控制速度由第二速度以及第三速度之间的差值的比例和积分通过线性组合得到。
第二方面,本申请实施例提供了一种充电桩,包括以下部分:计算模块;
计算模块用于按第一预设周期确定第一预设噪音值,用于根据第一预设噪音值确定充电桩风机的第一速度。
在一种可能的实施方式中,充电桩还包括:采集模块;
采集模块用于每隔第一预设周期采集当前时间节点;
计算模块还用于根据当前时间节点确定第一预设噪音值。
在另一种可能的实施方式中,充电桩还包括:充电模块以及充电桩风机;
计算模块还用于根据第一速度计算得出充电桩的充电模块的第一功率,该第一功率为充电模块在充电桩风机按第一速度运行时能达到的最大功率。
在另一种可能的实施方式中,充电桩还包括:
采集模块还用于按第二预设周期获取充电模块的第二功率,该第二功率为充电模块的实际运行功率;
计算模块还用于根据第二功率确定第二速度,该第二速度为保证充电模块能以第二功率运行时充电桩风机的运转速度。
在另一种可能的实施方式中,充电桩还包括:
采集模块还用于按第三预设周期获取充电桩风机的第三速度,该第三速度为充电桩风机的实际预转速度;
计算模块还用于根据第二速度以及第三速度生成控制速度,该控制速度由第二速度以及第三速度之间的差值的比例和积分通过线性组合得到;
充电桩风机用于按控制速度运转。
第三方面,本申请实施例提供了另一种充电桩,包括以下部分:处理器、存储器和总线;
处理器和存储器通过总线连接,其中,存储器用于存储一组程序代码,处理器用于调用存储器中存储的程序代码,执行如第一方面所述的方法。
第四方面,本申请实施例提供了一种计算机存储介质,包括:
计算机可读存储介质中存储有指令,当其在计算机上运行时,实现如第一方面所述的方法。
通过实施本申请实施例,可以实现充电桩根据时间节点确定充电桩风机的运转速度。合理的充电桩运转速度能够降低充电桩对周围环境的噪音污染,也能提升用户的使用体验。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种充电桩降温的方法的流程示意图;
图2是本申请实施例提供的另一种充电桩降温的方法的流程示意图;
图3是本申请实施例提供的一种充电桩的组成示意图;
图4是本申请实施例提供的另一种充电桩的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属 于本申请保护的范围。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结果或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了更好地理解本申请实施例的技术方案,下面,结合图1和图2中的步骤对本申请实施例提供的一种充电桩降温的方法进行详细说明。
请参见图1,为本申请实施例提供的一种充电桩降温的方法的流程示意图,可包括以下步骤:
S101,按第一预设周期确定第一预设噪音值。
在一种可能的实施方式中,每隔第一预设周期,根据当前时间节点确定第一预设噪音值,该第一预设噪音值的大小与当前时间节点相关。
示例性的,若第一预设周期为1分钟,则充电桩的采集模块就会每间隔一分钟获取确认当前时间节点,而计算模块则会根据当前时间节点确定第一预设噪音值。其中,上述第一预设周期的选定只是为了举例说明本申请实施例方法,不应对本申请构成限定,具体的第一预设周期数值由技术人员根据实际情况进行设定。
需要说明的是,在本申请实施例中,第一预设噪音值与时间存在着一定的相关性。技术人员可以通过实验得出在不同时间节点下(或者不同的季节),人们对于噪音的容忍程度,并以此得到第一预设噪音值。技术人员可以将第一预设噪音值与时间节点的关系制作成可查询表格或者拟合成相关函数,并存储于充电桩中。这样,不管是用查表的方式还是用计算的方式,充电桩都能快速地确定当前时间节点的第一预设噪音值。
其中,人们用分贝来划分声音的等级。0分贝是人们刚刚能听到的最弱声,即听觉下限,10分贝相当于微风吹落树叶的沙沙声。30~40分贝是较理想的安静环境。超过50分贝就会影响睡眠和休息。70分贝以上会干扰谈话,影响工作效率。长期生活在90分贝以上的噪声环境,会严重影响听力和引起神经衰弱、头疼、血压升高等疾病。如果突然暴露在高达150分贝的噪声环境中,听觉器官会发生急剧外伤,引起鼓膜破裂出血,双耳完全失去听力。为了保护听力,应控制噪声不超过90分贝;为了保证工作和学习,应控制噪声不超过70分贝为了保证休息和睡眠,应控制噪声不超过50分贝。
噪声在0~120分贝的范围内分为三级:(1)Ⅰ级(30~59分贝):可以忍受,但已有不舒适感,达到40分贝时开始困扰睡眠。(2)Ⅱ级(60~89分贝):对******的干扰增加,听话困难,85分贝是保护听力的一般要求。(3)Ⅲ级(90~120分贝):显著损害神经***,造成不可逆的听觉器官损伤。
示例性的,根据噪音等级的划分,在休息时段(如21:00~7:00,13:00~14:30),人们需要比较安静的休息环境,可以将第一预设噪音值设置为45分贝;在工作时段(如9:00~12:00,14:30~18:00),可以将第一预设噪音值设置为70分贝。
更多地,不同的季节与第一预设噪音值之间的对应关系也可能会存在差异。比如在冬季 和夏季这种会时常出现极端天气的季节里,人们在户外的时间减少,充电桩的噪音对人们的生活影响也会变小,所以第一预设噪音值可以相应地提高。
示例性的,在春季或者秋季时,充电桩在12:00的第一预设噪音值为50分贝。那么在冬季或者夏季时,可以将第一预设噪音值调整至70分贝。需要强调的是,上述举例均是为了对本申请实施例进行详细说明,不应对本申请构成限定,具体的第一预设噪音值由技术人员根据实际情况进行设定。
S102,根据所述第一预设噪音值确定充电桩风机的第一速度。
需要说明的是,第一速度为在充电桩风机制造的噪音超过第一预设噪音值时,该充电桩风机能达到的最大运转速度。其中,技术人员会根据充电桩风机不同的运转速度得到对应的噪音值,以此确定充电桩风机的运转速度与噪音值之间的关系。充电桩风机的运转速度与充电桩的噪音值呈正向关系,即充电桩风机的运转速度越大,充电桩风机发出的噪音也就越大。因此,能够根据第一预设噪音值确定充电桩风机的最大运转速度。
在一种可能的实施方式中,根据第一速度确定充电桩的充电模块的第一功率。并且控制充电模块的运行功率不超过第一功率。
其中,技术人员可以测量记录在不同的充电桩风机转速下充电模块能达到的最大运行功率,来确定充电桩风机转速与充电模块的最大运行功率之间的功率。充电桩风机的运转速度与充电模块的最大运行功率之间也呈正向关系,充电桩风机的运转速度越大,充电模块能达到的最大运行功率也就越大。这是由于充电模块的运行功率与工作环境温度有关,过高的工作环境温度会抑制充电模块的工作效率。而充电桩风机的运转速度越大,对充电模块工作环境的降温效果就会越明显,因此充电模块能够达到的运行功率最大值就会增加。
可以看出,本申请实施例能够根据充电桩工作的当前时间节点确定充电桩风机的最大运转速度,降低对周围环境的噪音污染,并得出充电模块的最大运行功率。控制充电模块的运行功率不超过该最大运行功率,避免充电模块因超负荷工作而造成故障。
请参见图2,为本申请实施例提供的另一种充电桩降温的方法的流程示意图,可包括以下步骤:
S201,按第三预设周期获取所述充电桩风机的第三速度。
需要说明的是,第三速度为充电桩风机的实际运转速度。
示例性的,若第三预设周期为30秒,则充电桩的采集模块便每隔30秒获取充电桩风机的实际转速(即第三速度)。以较小的第三预设周期获取充电桩风机的实际运转速度有利于更加精准地对充电桩风机运转速度进行调控,便于为充电模块营造更稳定的工作环境。其中,上述对第三预设周期的举例只是为了更加详细地描述本申请实施例方法,不应对本申请构成限定,具体的第三预设周期的数据由技术人员根据实际情况进行设定。
在一种可能的实施方式中,在按第三预设周期获取充电桩风机的第三速度之前,还会按第二预设周期获取充电模块的第二功率。其中,该第二功率为充电模块的实际运行功率。
示例性的,若第二周期为30秒,则充电桩的采集模块便会每隔30秒获取充电模块的运行功率。若第一次获取到的充电模块的运行功率为1000瓦,第二次获取到的充电模块的运行功率为800瓦,则可以用于指示降低充电桩风机的运转速度。周期性地获取充电模块的运行功率有利于及时对充电桩风机的运转速度进行调节,避免了对充电桩风机的过度消耗以及能源浪费。
其中,充电模块的实际运行功率会受到第一功率(即充电桩风机以第一速度运转时,充电模块能达到的最大功率)的限制。示例性的,充电桩(第一功率为1000瓦)为车辆A提 供充电服务,若车辆A所需的电流大小需要充电桩以800瓦的功率工作,则充电桩会以800瓦作为运行功率进行工作;若车辆A所需的电流大小需要充电桩以1200瓦的功率工作,则充电桩只会以1000瓦作为运行功率工作,因为目前充电桩的工作功率无法超过第一功率。
更多地,根据第二功率确定第二速度。其中,该第二速度为保证充电模块能以第二功率运行时充电桩风机的运转速度。
S202,根据所述第二速度以及所述第三速度生成控制速度。
其中,控制速度由第二速度以及第三速度之间的差值的比例和积分通过线性组合得到。其中,PI调节器根据充电桩风机的实际运行速度(即第三速度)和目标速度(即第二速度),动态地调和出控制速度,使得充电桩风机能够以稳定的运转速度工作。PI调节器是一种线性控制器,它根据给定值与实际输出值构成控制偏差,将偏差的比例和积分通过线性组合构成控制量,对被控对象进行控制。比例调节作用为:按比例反应***的偏差,***一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使***的稳定性下降,甚至造成***的不稳定。积分调节作用为:使***消除稳态误差,提高无误差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决于积分时间常数Ti,Ti越小,积分作用就越强。反之Ti越大,则积分作用越弱,加入积分调节可使***稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
在本申请实施例中,控制速度会慢慢趋近于第二速度。
S203,根据所述控制速度对充电桩的转速进行调整。
可以看出,本申请实施例能够根据充电模块的实际运行功率对充电桩风机的运转速度进行调整,有利于节约充电桩风机能源,避免不必要的资源浪费。而且通过PI调节器对充电桩风机的运转速度进行调控,让充电桩风机的运转速度围绕目标速度小幅度波动,有利于充电桩风机稳定运行,能为充电模块提供良好的工作环境。
下面结合附图介绍本申请实施例涉及的装置。
请参见图3,为本申请实施例提供的一种充电桩的组成示意图,可包括:
计算模块310、采集模块320、充电模块330以及充电桩风机340;
计算模块310可以用于按第一预设周期确定第一预设噪音值,可以用于根据第一预设噪音值确定充电桩风机340的第一速度。
在一种可能的实施方式中,计算模块310还可以用于根据当前时间节点确定第一预设噪音值。
在另一种可能的实施方式中,计算模块310还可以用于根据第一速度计算得出充电桩的充电模块330的第一功率。其中,该第一功率为充电模块330在充电桩风机340按第一速度运行时能达到的最大功率。
在另一种可能的实施方式中,计算模块310还可以用于根据第二功率确定第二速度。其中,该第二功率为充电模块330的实际运行功率,该第二速度为保证充电模块330能以第二功率运行时充电桩风机340的运转速度。
在另一种可能的实施方式中,计算模块310还可以用于根据第二速度以及第三速度生成控制速度。其中,该第三速度为充电桩风机340的实际运转速度,该控制速度由第二速度以及第三速度之间的差值的比例和积分通过线性组合得到。
采集模块320可以用于每隔第一预设周期采集当前时间节点。
在一种可能的实施方式中,采集模块320还可以用于根据第二预设周期获取充电模块330的第二功率。
在另一种可能的实施方式中,采集模块320还可以用于按第三预设周期获取充电桩风机340的第三速度。
充电桩风机340可以用于按控制速度运转。
请参见图4,为本申请实施例提供的一种充电桩的组成示意图,充电桩可包括:
处理器410、存储器420和I/O接口430。处理器410、存储器420和I/O接口430间可实现通信地连接,该存储器420用于存储指令,该处理器410用于执行该存储器420存储的指令,以实现如上图1至图2对应的方法步骤。
处理器410用于执行该存储器420存储的指令,以控制I/O接口430接收和发送信号,完成上述方法中的步骤。其中,所述存储器420可以集成在所述处理器410中,也可以与所述处理器410分开设置。
存储器420中还可以包括存储***421、高速缓存422和RAM423。其中高速缓存422是存在于RAM423与CPU之间的一级存储器,由静态存储芯片(SRAM)组成,容量比较小但速度比主存高得多,接近于CPU的速度;RAM423是与CPU直接交换数据的内部存储器,可以随时读写(刷新时除外),而且速度很快,通常作为操作***或其他正在运行中的程序的临时数据存储介质。三者结合实现存储器420功能。
作为一种实现方式,I/O接口430的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器410可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的装置。即将实现处理器410,I/O接口430功能的程序代码存储在存储器420中,通用处理器通过执行存储器420中的代码来实现处理器410,I/O接口430的功能。
该装置所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于装置执行的方法步骤的内容的描述,此处不做赘述。
作为本实施例的另一种实现方式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
作为本实施例的另一种实现方式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本领域技术人员可以理解,为了便于说明,图4中仅示出了一个存储器和处理器。在实际的终端或服务器中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现成可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access  Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block,简称ILB)和步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
本申请实施例还提供一种计算机存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现如上述方法实施例中记载的任何一种账号管理方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种账号管理方法的部分或全部步骤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种充电桩降温的方法,其特征在于,所述方法包括以下步骤:
    按第一预设周期确定第一预设噪音值;
    根据所述第一预设噪音值确定充电桩风机的第一速度,所述第一速度为在所述充电桩风机制造的噪音不超过所述第一预设噪音值时所述充电桩风机能达到的最大运转速度。
  2. 根据权利要求1所述的方法,其特征在于,所述按第一预设周期确定第一预设噪音值,包括以下步骤:
    每隔所述第一预设周期,根据当前时间节点确定所述第一预设噪音值,所述第一预设噪音值的大小与所述当前时间节点相关。
  3. 根据权利要求2所述的方法,其特征在于,在根据所述第一预设噪音值确定所述充电桩风机的第一速度之后,还包括以下步骤:
    根据所述第一速度确定所述充电桩的充电模块的第一功率;
    控制所述充电模块的运行功率不超过所述第一功率。
  4. 根据权利要求3所述的方法,其特征在于,还包括以下步骤:
    按第二预设周期获取所述充电模块的第二功率,所述第二功率为所述充电模块的实际运行功率;
    根据所述第二功率确定第二速度,所述第二速度为保证所述充电模块能以第二功率运行时所述充电桩风机的运转速度。
  5. 根据权利要求4所述的方法,其特征在于,在所述根据所述第二功率确定第二速度之后,还包括以下步骤:
    按第三预设周期获取所述充电桩风机的第三速度,所述第三速度为所述充电桩风机的实际运转速度;
    根据所述第二速度以及所述第三速度生成控制速度,所述控制速度由所述第二速度以及所述第三速度之间的差值的比例和积分通过线性组合得到;
    根据所述控制速度对所述充电桩风机的转速进行调节。
  6. 一种充电桩,其特征在于,所述充电桩包括以下部分:计算模块;
    所述计算模块用于按第一预设周期确定第一预设噪音值,用于根据所述第一预设噪音值确定充电桩风机的第一速度。
  7. 根据权利要求6所述的充电桩,其特征在于,所述充电桩还包括:采集模块;
    所述采集模块用于每隔所述第一预设周期采集当前时间节点;
    所述计算模块还用于根据所述当前时间节点确定所述第一预设噪音值。
  8. 根据权利要求7所述的充电桩,其特征在于,所述充电桩还包括:充电模块以及充电桩风机;
    所述计算模块还用于根据所述第一速度计算得出所述充电桩的充电模块的第一功率,所述第一功率为所述充电模块在所述充电桩风机按所述第一速度运行时能达到的最大功率。
  9. 根据权利要求8所述的充电桩,其特征在于,所述充电桩还包括:
    所述采集模块还用于按第二预设周期获取所述充电模块的第二功率,所述第二功率为所述充电模块的实际运行功率;
    所述计算模块还用于根据所述第二功率确定第二速度,所述第二速度为保证所述充电模块能以第二功率运行时所述充电桩风机的运转速度。
  10. 根据权利要求9所述的充电桩,其特征在于,所述充电桩还包括:
    所述采集模块还用于按第三预设周期获取所述充电桩风机的第三速度,所述第三速度为所述充电桩风机的实际运转速度;
    所述计算模块还用于根据所述第二速度以及所述第三速度生成控制速度,所述控制速度由所述第二速度以及所述第三速度之间的差值的比例和积分通过线性组合得到;
    所述充电桩风机用于按所述控制速度运转。
  11. 一种充电桩,其特征在于,所述充电桩包括:处理器、存储器和总线;
    所述处理器和所述存储器通过所述总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的所述程序代码,执行如权利要求1至5任一项所述的方法。
  12. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现如权利要求1至5任一项所述的方法。
PCT/CN2021/140610 2021-11-26 2021-12-22 一种充电桩降温的方法 WO2023092782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111417484.6 2021-11-26
CN202111417484.6A CN113829915B (zh) 2021-11-26 2021-11-26 一种充电桩降温的方法

Publications (1)

Publication Number Publication Date
WO2023092782A1 true WO2023092782A1 (zh) 2023-06-01

Family

ID=78971532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140610 WO2023092782A1 (zh) 2021-11-26 2021-12-22 一种充电桩降温的方法

Country Status (2)

Country Link
CN (1) CN113829915B (zh)
WO (1) WO2023092782A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116533796A (zh) * 2023-06-27 2023-08-04 南京金维鸟智能***股份有限公司 一种充电桩温控风冷散热控制***
CN117301930A (zh) * 2023-11-14 2023-12-29 镇江领驭立方智能装备有限公司 一种基于物联网的新能源充电桩

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734847B (zh) * 2022-05-17 2023-07-18 永联智慧能源科技(常熟)有限公司 风机调速控制方法及相关装置
CN115573937B (zh) * 2022-12-08 2023-03-10 永联智慧能源科技(常熟)有限公司 一种基于电流预判的充电桩风机控制方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093083A (ja) * 2014-11-11 2016-05-23 アスモ株式会社 車両用ファンモータ制御装置
CN209552979U (zh) * 2018-09-11 2019-10-29 深圳市润诚达电力科技有限公司 一种直流充电桩智能控制散热***
CN110758148A (zh) * 2019-09-27 2020-02-07 山东电工电气集团新能科技有限公司 一种大功率直流充电桩散热控制装置及控制方法
CN111907365A (zh) * 2020-08-25 2020-11-10 深圳市科华恒盛科技有限公司 电动汽车充电桩充电控制方法、装置及终端设备
CN111987761A (zh) * 2020-07-31 2020-11-24 Oppo广东移动通信有限公司 充电装置、充电设备的控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093083A (ja) * 2014-11-11 2016-05-23 アスモ株式会社 車両用ファンモータ制御装置
CN209552979U (zh) * 2018-09-11 2019-10-29 深圳市润诚达电力科技有限公司 一种直流充电桩智能控制散热***
CN110758148A (zh) * 2019-09-27 2020-02-07 山东电工电气集团新能科技有限公司 一种大功率直流充电桩散热控制装置及控制方法
CN111987761A (zh) * 2020-07-31 2020-11-24 Oppo广东移动通信有限公司 充电装置、充电设备的控制方法及装置
CN111907365A (zh) * 2020-08-25 2020-11-10 深圳市科华恒盛科技有限公司 电动汽车充电桩充电控制方法、装置及终端设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116533796A (zh) * 2023-06-27 2023-08-04 南京金维鸟智能***股份有限公司 一种充电桩温控风冷散热控制***
CN116533796B (zh) * 2023-06-27 2023-11-07 南京金维鸟智能***股份有限公司 一种充电桩温控风冷散热控制***
CN117301930A (zh) * 2023-11-14 2023-12-29 镇江领驭立方智能装备有限公司 一种基于物联网的新能源充电桩
CN117301930B (zh) * 2023-11-14 2024-05-28 深圳中威科技投资有限公司 一种基于物联网的新能源充电桩

Also Published As

Publication number Publication date
CN113829915B (zh) 2022-02-22
CN113829915A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2023092782A1 (zh) 一种充电桩降温的方法
US20110320061A1 (en) Temperature control system and method for computing device
TWI431462B (zh) 至少部份基於積體電路電力狀態之供應電壓控制技術
CN111696534B (zh) 语音交互设备和***、设备控制方法、计算设备以及介质
TW201114286A (en) Allocating transmit power among multiple air interfaces
EP2586115A2 (en) Hierarchical power smoothing
US9510280B2 (en) Transmitting beacon frames over a wireless data link
WO2021115076A1 (zh) 一种电机功能安全控制方法及装置
WO2023179226A1 (zh) 用于空调器语音控制的方法及装置、空调器、存储介质
CN111562835A (zh) 一种控制方法及电子设备
WO2023045359A1 (zh) 机房空调的控制方法、***、电子设备和存储介质
US20210332792A1 (en) Method and apparatus for controlling noise of wind turbine
CN114110919A (zh) 外风机控制方法、装置、计算机可读存储介质和空调器
CN112987893B (zh) 一种风扇调速方法、装置、存储介质及电子设备
US20220229483A1 (en) System and method for closed-loop memory power capping
WO2023216995A1 (zh) 设备控制方法、装置、电子设备及存储介质
US11566602B2 (en) Method and apparatus for controlling noise of multiple wind turbines
WO2023197456A1 (zh) 一种调节功耗的***、方法、装置、设备及介质
TW201946478A (zh) 一種智能音響電池供電的優化方法及裝置
GB2544646A (en) Power supply with variable configurable current limit
CN113809793A (zh) 充电控制方法、装置、设备及存储介质
CN109559732A (zh) 一种低噪声电源降噪***及方法
CN105451317A (zh) 一种功率控制方法及用户设备ue
JP2015510361A (ja) 信号送信方法及び装置
CN107708036B (zh) 音频设备输出功率的调试方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965501

Country of ref document: EP

Kind code of ref document: A1