WO2023092713A1 - 一种智能眼镜及其瞳距调节方法 - Google Patents

一种智能眼镜及其瞳距调节方法 Download PDF

Info

Publication number
WO2023092713A1
WO2023092713A1 PCT/CN2021/137652 CN2021137652W WO2023092713A1 WO 2023092713 A1 WO2023092713 A1 WO 2023092713A1 CN 2021137652 W CN2021137652 W CN 2021137652W WO 2023092713 A1 WO2023092713 A1 WO 2023092713A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
distance
smart glasses
image source
screen
Prior art date
Application number
PCT/CN2021/137652
Other languages
English (en)
French (fr)
Inventor
李传龙
刘娟
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023092713A1 publication Critical patent/WO2023092713A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present application relates to the technical field of smart devices, in particular to smart glasses and a method for adjusting interpupillary distance thereof.
  • the purpose of the present application is to provide smart glasses and a method for adjusting the interpupillary distance thereof, so as to realize automatic and high-precision interpupillary distance adjustment of the smart glasses according to the interpupillary distances of different wearers.
  • the first aspect of the present application provides a kind of smart glasses, including:
  • Binocular display module binocular module bracket, interpupillary distance detection module, interpupillary distance adjustment module, image source module and display control module; wherein,
  • the binocular display module is arranged on the binocular module bracket, and constitutes the display system of the smart glasses with the image source module;
  • the interpupillary distance detection module is used to detect the interpupillary distance of the user wearing the smart glasses, and send the user interpupillary distance to the display control module;
  • the display control module is configured to acquire the system pupil distance of the display system, calculate the pupil distance difference between the user pupil distance and the system pupil distance, and control the pupil distance difference according to the pupil distance difference.
  • the interpupillary distance adjustment module adjusts the distance between the left screen and the right screen in the image source module until the interpupillary distance difference is within a preset range.
  • the interpupillary distance adjustment module includes:
  • Micro-displacement mechanism displacement sensor and guide rail; wherein,
  • micro-displacement mechanism and the displacement sensor are arranged on the guide rail, and the left screen and the right screen in the image source module are respectively arranged at both ends of the micro-displacement mechanism;
  • the micro-displacement mechanism is used to convert the interpupillary distance difference into the target displacement distance between the left screen and the right screen in the image source module according to the magnification of the display system, and control the The left screen and the right screen approach each other horizontally along the guide rail or move away from the target displacement distance;
  • the displacement sensor is used to detect the displacement between the left screen and the right screen in the image source module.
  • the micro-displacement mechanism includes a micro-actuator and a transmission mechanism
  • the micro-actuator is used to drive the transmission mechanism, so as to drive the left screen and the right screen in the image source module to approach or move away from each other horizontally along the guide rail through the transmission mechanism.
  • the transmission mechanism adopts a flexible hinge.
  • the driving stroke of the microactuator is greater than or equal to 0.2 mm.
  • the displacement sensor is a grating scale displacement sensor or a magnetic grating displacement sensor.
  • the resolution of the displacement sensor is greater than or equal to 0.005 mm.
  • the interpupillary distance detection module uses an infrared eye-tracking component.
  • the binocular display module is a free-form surface binocular display module.
  • the second aspect of the present application provides a method for adjusting the interpupillary distance based on the smart glasses in the first aspect, including:
  • the interpupillary distance adjustment module is controlled to adjust the distance between the left screen and the right screen in the image source module until the interpupillary distance difference is within a preset range.
  • the pupil distance adjustment module is controlled to adjust the pupil distance adjustment module in the image source module according to the pupil distance difference.
  • the distance between the left and right screens including:
  • the smart glasses provided by this application include a binocular display module, a binocular module bracket, a pupil distance detection module, a pupil distance adjustment module, an image source module and a display control module;
  • the binocular display module is arranged on the binocular On the bracket of the eye module, and the image source module constitute the display system of the smart glasses;
  • the pupil distance detection module is used to detect the pupil distance of the user wearing the smart glasses, and send the user pupil distance to the Display control module;
  • the display control module is used to obtain the system pupil distance of the display system, and calculate the pupil distance difference between the user pupil distance and the system pupil distance, and according to the pupil distance difference Controlling the pupil distance adjustment module to adjust the distance between the left screen and the right screen in the image source module until the pupil distance difference is within a preset range.
  • the smart glasses of the present application can realize automatic and high-precision interpupillary distance adjustment according to the interpupillary distances of different wearers.
  • Fig. 1 shows a schematic diagram of a structure development of smart glasses provided by some embodiments of the present application
  • Fig. 2 shows a schematic diagram of the interpupillary distance adjustment process of the smart glasses in Fig. 1 .
  • the smart glasses based on the free-form surface binocular display solution cannot be compatible with the range of the interpupillary distance of all people (the interpupillary distance range of human eyes: 57-76mm) due to the small eyebox.
  • the eyebox of the smart glasses display system In order to be compatible with the range of interpupillary distance of different groups of people, ensure the eyebox of the smart glasses display system, and improve the accuracy of depth information, it is necessary to provide a method of interpupillary distance detection and adjustment control for the free-form surface display scheme.
  • the right eyebox obviously it must be at least the same size as a human pupil.
  • the human eye needs to view the image by moving on the optical module, so the size of the eyebox must be extended at least a few millimeters in each direction.
  • the eyebox in order to support a more accurate interpupillary distance adjustment function, the eyebox also needs to be larger.
  • the methods of adjusting the interpupillary distance can be divided into mechanical and physical methods or optical adjustment methods.
  • the former must be realized by moving optical components, but the moving components are bulky and easily damaged, which is not suitable for wearable devices such as smart glasses, while the latter requires Increase the width of the eyebox by 10mm to 20mm.
  • increasing the size of the eyebox also faces some other challenges. For example, the larger the eyebox, the larger the size of the optical module, and even more light output is required to maintain the perceived brightness.
  • Interpupillary distance the distance between the pupils of the eyes.
  • Microactuator A tiny actuator that converts some form of energy into mechanical energy.
  • Grating ruler displacement sensor When two gratings with equal grating pitch are installed in parallel, and there is a small angle between their notches, there will be several light and dark stripes on the grating, which are called moiré. Stripes, which are aligned almost perpendicular to the grating stripes. Moiré fringes have the following three characteristics: 1. The displacement of Moiré fringes is proportional to the displacement of the grating; 2. Moiré fringes have a displacement amplification effect; 3. Moiré fringes have the effect of averaging the grating error. The photoelectric element can convert the light intensity change of the Moiré fringe moving into an electrical signal. This signal can be used to display the displacement in digital form. The displacement is equal to the product of the pulse and the grating pitch, and the measurement resolution is equal to the grating pitch.
  • Magnetic grid displacement sensor a displacement sensor that uses the magnetic interaction between the magnetic grid and the magnetic head to measure.
  • FIG 1 shows a schematic diagram of the structure of smart glasses provided by some embodiments of the present application, please refer to Figure 1, the smart glasses include: binocular display module 100, binocular module bracket 200, interpupillary distance detection module 300, pupil distance adjustment module 400, image source module 500 and display control module (not shown).
  • the binocular display module 100 is arranged on the binocular module bracket 200, and constitutes a display system of the smart glasses together with the image source module 500, and the display system can also be called an optical system.
  • the image source module 500 includes a left screen 510 and a right screen 520, the left screen 510 is used to display the image source image for the left eye, the right screen 520 is used for displaying the image source image for the right eye, and the image source image of the left screen 510 and the right screen 520 After passing through the optical module in the binocular display module 100, it enters the eyes of the user.
  • the binocular display module 100 is a free-form surface binocular display module, including a left/right-eye display module, and the free-form surface optical module has better optical display effect.
  • the pupil distance detection module 300 is used to detect the pupil distance of the user wearing the smart glasses, and sends the user pupil distance to the display control module, and the display control module is used to control the pupil distance adjustment module 400 .
  • the pupil distance detection module 300 may use an infrared eye-tracking component.
  • the infrared eye-tracking component can automatically track the pupils of the user's eyes, Then, the interpupillary distance of the user's eyes is automatically measured.
  • the infrared eye tracking component includes a left eye tracking component and a right eye tracking component, both of which are composed of an infrared camera and an infrared LED fill light. As shown in FIG. 1 , the detection scanning range of the left/right eye tracking component is S.
  • the interpupillary distance adjustment module 400 is used to adjust the distance between the left screen 510 and the right screen 520 in the image source module 500 to adjust the system interpupillary distance of the display system.
  • the system interpupillary distance matches the user interpupillary distance, the user sees The stereoscopic image and the real scene can be superimposed and displayed normally.
  • the display control module is used to obtain the system pupil distance of the display system in the smart glasses, calculate the pupil distance difference between the user pupil distance and the system pupil distance, and control the pupil distance adjustment module 400 according to the pupil distance difference Adjust the distance between the left screen 510 and the right screen 520 in the image source module 500 until the difference between the user's pupillary distance and the system's pupillary distance is within a preset range, which can be set according to actual conditions , for example, can be set to 0, that is, the user IPD needs to be the same as the system IPD, or can be set to a smaller error range, which is not limited in this application.
  • the interpupillary distance adjustment module 400 may include: a micro-displacement mechanism 410 , a displacement sensor 420 and a guide rail 430 .
  • micro-displacement mechanism 410 and the displacement sensor 420 are arranged on the guide rail 430 , and the left screen 510 and the right screen 520 in the image source module 500 are respectively arranged at two ends of the micro-displacement mechanism 410 .
  • the micro-displacement mechanism 410 is used to convert the pupil distance difference between the user pupil distance and the system pupil distance into the target displacement distance between the left screen 510 and the right screen 520 in the imaging source module according to the magnification of the display system in the above-mentioned smart glasses,
  • the left screen 510 and the right screen 520 in the image source module are controlled to approach each other or move away from the target displacement distance in the horizontal direction along the guide rail 430 .
  • the target displacement distance refers to the distance that needs to be moved based on the current distance between the left screen 510 and the right screen 520. After adjustment, the distance between the left screen 510 and the right screen 520 is the current distance plus or minus the target displacement distance.
  • the system IPD is the same as the user IPD, no IPD adjustment is required; if the system IPD is smaller than the user IPD, then the left screen 510 and the right screen 520 in the image source module are controlled to move away from the target along the guide rail 430 in the horizontal direction. Displacement distance to increase the system IPD; if the system IPD is greater than the user IPD, then control the left screen 510 and right screen 520 in the image source module to move closer to each other in the horizontal direction along the guide rail 430 to reduce the system IPD .
  • the display system in the smart glasses is used to enlarge the target displacement distance, thereby enlarging the distance between the left/right display screens in the display system to accommodate the user
  • the interpupillary distance therefore, the smart glasses provided by this application can adjust the position of the content displayed on the source screens on both sides according to the interpupillary distance of different wearers, so as to realize the precise control of the depth information of the stereoscopic image.
  • the displacement sensor 420 is used to detect the displacement between the left screen 510 and the right screen 520 in the image source module. Specifically, when the displacement sensor 420 detects that the displacement between the left screen 510 and the right screen 520 in the image source module does not reach the target displacement distance, the display control module continues to control the micro-displacement mechanism 410 to adjust the interpupillary distance until the displacement sensor 420 detects that the displacement of the left screen 510 and the right screen 520 in the image source module approaching or moving away from each other reaches the target displacement distance. It can be seen that the smart glasses provided by this application can read the displacement data of the image source screens on both sides through the displacement sensor. High-precision pupil distance adjustment.
  • the interpupillary distance is the baseline for human binocular vision to capture the depth information of the stereoscopic image. Since the interpupillary distance adjustment in this application realizes closed-loop control, the adjustment accuracy is high, and the accurate stereoscopic image depth can be calculated according to the accurate interpupillary distance information, so that high-precision interaction can be achieved.
  • the displacement sensor 420 may adopt a grating ruler displacement sensor or a magnetic grating displacement sensor, and the resolution is greater than or equal to 0.005 mm.
  • the larger resolution ensures the detection accuracy of the displacement sensor, thereby To ensure the high precision of pupil distance adjustment.
  • the micro-displacement mechanism 410 includes a micro-actuator 411 and a transmission mechanism 412; specifically, the transmission mechanism 412 can adopt a flexible hinge, and the driving stroke of the micro-actuator 411 is greater than or equal to 0.2 mm, type can be: piezoelectric, electromagnetic or excitation type.
  • the micro-actuator 411 is used to drive the transmission mechanism 412 to drive the left screen 510 and the right screen 520 in the image source module along the guide rail 430 to approach or move away from each other in the horizontal direction through the transmission mechanism 412 .
  • the microactuator 411 Due to the magnification effect of the display system in smart glasses, it is only necessary for the microactuator 411 to drive the left screen 510 and the right screen 520 in the image source module to approach or move away from each other by a small distance in the horizontal direction along the guide rail 430 through the transmission mechanism 412. Larger pupillary distance is adjusted, and the pupillary distance adjustment mechanism takes up little space.
  • the micro-displacement mechanism 410 and the displacement sensor 420 may also be integrated on the glass substrate of the image source screen, so as to further reduce the occupied space.
  • the infrared eye tracking component is used to detect the interpupillary distance information
  • the displacement sensor is used to perform closed-loop detection of the displacement of the image source screen, so that the user interpupillary distance can be consistent with the benchmark of the binocular display screen, thereby achieving high-precision enhancement.
  • Reality display and interaction is used to detect the interpupillary distance information
  • the displacement sensor is used to perform closed-loop detection of the displacement of the image source screen, so that the user interpupillary distance can be consistent with the benchmark of the binocular display screen, thereby achieving high-precision enhancement.
  • this application also provides the adjustment process of the pupil distance of the smart glasses after the user wears the smart glasses provided by this application in practical applications, as shown in Figure 2:
  • the pupil distance detection module detects the user pupil distance, and sends the user pupil distance to the display control module;
  • the display control module obtains the system pupillary distance of the display system, and calculates the pupillary distance difference between the user pupillary distance and the system pupillary distance, and converts the pupillary distance difference into the left screen and right screen in the imaging source module.
  • the target displacement distance between the screens, the target displacement distance is the adjustment amount of the interpupillary distance;
  • the display control module controls the micro-actuator to start adjusting the distance between the left screen and the right screen in the image source module according to the interpupillary distance adjustment amount;
  • the display control module controls the displacement sensor to detect the displacement of the left screen and the right screen in the image source module;
  • the display control module judges whether the system IPD matches the user IPD; if yes, end the IPD adjustment; if not, jump to step S102 to continue the IPD adjustment.
  • This application uses the principle that the optical system can enlarge the image, through a closed-loop control system composed of a pupil distance detection module, a micro-actuator, a transmission mechanism, and a displacement sensor, the movement displacement between the image source screens is enlarged through the optical system, Realize the function of closed-loop control binocular display pupil distance.
  • the embodiment of the present application also provides a method for adjusting the interpupillary distance of smart glasses, the method is based on the smart glasses provided in the above embodiments, and the method includes:
  • the interpupillary distance adjustment module is controlled to adjust the distance between the left screen and the right screen in the image source module until the interpupillary distance difference is within a preset range.
  • the pupil distance adjustment module is controlled to adjust the distance between the left screen and the right screen in the image source module according to the pupil distance difference ,include:
  • the interpupillary distance adjustment method of smart glasses provided by the present application can realize automatic and high-precision interpupillary distance adjustment according to the interpupillary distances of different wearers.
  • modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment.
  • Modules or units or components in the embodiments may be combined into one module or unit or component, and furthermore may be divided into a plurality of sub-modules or sub-units or sub-assemblies.
  • All features disclosed in this specification including accompanying claims, abstract and drawings) and any method or method so disclosed may be used in any combination, except that at least some of such features and/or processes or units are mutually exclusive. All processes or units of equipment are combined.
  • Each feature disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
  • the various component embodiments of the present application may be realized in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the device for creating a virtual machine according to the embodiment of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as an apparatus or apparatus program (eg, computer program and computer program product) for performing a part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eye Examination Apparatus (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种智能眼镜及其瞳距调节方法,智能眼镜包括:双目显示模组(100)、双目模组支架(200)、瞳距检测模块(300)、瞳距调节模块(400)、像源模块(500)和显示控制模块;双目显示模组(100)设置于双目模组支架(200)上,与像源模块(500)构成智能眼镜的显示***;瞳距检测模块(300)用于检测佩戴智能眼镜的用户的瞳距,并将用户瞳距发送至显示控制模块;显示控制模块用于获取显示***的***瞳距,并计算用户瞳距与***瞳距之间的瞳距差值,并根据瞳距差值控制瞳距调节模块(400)调节像源模块(500)中左屏幕(510)和右屏幕(520)之间的距离,直至瞳距差值处于预设范围内。智能眼镜能够根据不同佩戴者的瞳距实现自动且高精度的瞳距调节。

Description

一种智能眼镜及其瞳距调节方法
本申请要求于2021年11月24日提交中国专利局、申请号为202111406506.9、发明名称为“一种智能眼镜及其瞳距调节方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能设备技术领域,具体涉及一种智能眼镜及其瞳距调节方法。
背景技术
随着AR技术日渐成熟,双目立体显示逐渐成为主流的显示技术。其中自由曲面光学方案由于其较好的光学显示效果而受到欢迎。
但是,由于自由曲面技术eyebox(即适眼区)小,难以兼容不同人群的瞳距范围,基于自由曲面技术的AR眼镜的瞳距调节难以实现。
发明内容
本申请的目的是提供一种智能眼镜及其瞳距调节方法,以根据不同佩戴者的瞳距实现智能眼镜自动且高精度的瞳距调节。
本申请第一方面提供一种智能眼镜,包括:
双目显示模组、双目模组支架、瞳距检测模块、瞳距调节模块、像源模块和显示控制模块;其中,
所述双目显示模组,设置于所述双目模组支架上,与所述像源模块构成所述智能眼镜的显示***;
所述瞳距检测模块,用于检测佩戴所述智能眼镜的用户的瞳距,并将用户瞳距发送至所述显示控制模块;
所述显示控制模块,用于获取所述显示***的***瞳距,并计算所述用户瞳距与所述***瞳距之间的瞳距差值,并根据所述瞳距差值控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,直至所述瞳距差值处于预设范围内。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述瞳距调节模块包括:
微位移机构、位移传感器和导轨;其中,
所述微位移机构和所述位移传感器设置于所述导轨上,所述像源模块中左屏幕和右屏幕分别设置于所述微位移机构的两端;
所述微位移机构,用于根据所述显示***的放大倍数将所述瞳距差值换算成所述像源模块中左屏幕和右屏幕之间的目标位移距离,控制所述像源模块中左屏幕和右屏幕沿所述导轨在水平方向上相互靠近或远离所述目标位移距离;
所述位移传感器,用于检测所述像源模块中左屏幕和右屏幕之间的位移。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述微位移机构包括微致动器和传动机构;
所述微致动器,用于驱动所述传动机构,以通过所述传动机构驱动所述像源模块中左屏幕和右屏幕沿所述导轨在水平方向上相互靠近或远离。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述传动机构采用柔性铰链。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述微致动器的驱动行程大于等于0.2mm。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述位移传感器采用光栅尺位移传感器或磁栅位移传感器。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述位移传感器的分辨率大于等于0.005mm。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述瞳距检测模块采用红外线眼动追踪组件。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜中,所述双目显示模组为自由曲面双目显示模组。
本申请第二方面提供一种基于第一方面中智能眼镜的瞳距调节方法,包括:
获取用户瞳距和所述显示***的***瞳距;
计算所述用户瞳距与所述***瞳距之间的瞳距差值;
根据所述瞳距差值,控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,直至所述瞳距差值处于预设范围内。
在一种可能的实现方式中,在本申请实施例提供的上述智能眼镜的瞳距调节方法中,所述根据所述瞳距差值,控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,包括:
根据所述显示***的放大倍数将所述瞳距差值换算成所述像源模块中左屏幕和右屏幕之间的目标位移距离;
控制所述像源模块中左屏幕和右屏幕沿所述导轨在水平方向上相互靠近或远离所述目标位移距离。
本申请提供的智能眼镜,包括双目显示模组、双目模组支架、瞳距检测模块、瞳距调节模块、像源模块和显示控制模块;所述双目显示模组设置于所述双目模组支架上,与所述像源模块构成所述智能眼镜的显示***;所述瞳距检测模块用于检测佩戴所述智能眼镜的用户的瞳距,并将用户瞳距发送至所述显示控制模块;所述显示控制模块用于获取所述显示***的***瞳距,并计算所述用户瞳距与所述***瞳距之间的瞳距差值,并根据所述瞳距差值控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,直至所述瞳距差值处于预设范围内。相较于现有技术,本申请的智能眼镜能够根据不同佩戴者的瞳距实现自动且高精度的瞳距调节。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1示出了本申请的一些实施方式所提供的一种智能眼镜的结构展开示意图;
图2示出了图1中智能眼镜的瞳距调节过程的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实 施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本申请所属领域技术人员所理解的通常意义。
目前,基于自由曲面双目显示方案的智能眼镜,由于eyebox小,不能兼容所有人群瞳距范围(人眼瞳距范围:57-76mm)。为兼容不同人群瞳距范围,保证智能眼镜显示***的eyebox,提高深度信息精度,需要针对自由曲面显示方案提供一种瞳距检测与调节控制方法。
关于eyebox多大尺寸才合适的问题,显然它至少也要和人的瞳孔一样。尤其是在智能眼镜(如AR、VR眼镜)中,人眼需要通过在光学模组上移动,来查看图像,因此eyebox的尺寸至少要向每个方向延长几毫米。
此外,为了支持更准确的瞳距调节功能,eyebox也需要更大。通常调节瞳距的方法可分为机械物理法或光学调整法,前者须通过移动光学元件来实现,不过移动的元件体积大且容易损坏,并不适合智能眼镜这种穿戴设备,而后者则需要将eyebox的宽度提高10mm到20mm。另外,提高eyebox大小也面临一些其它挑战,比如:eyebox越大,光学模组的尺寸也就更大,甚至还需要更多光输出,才能维持感知亮度。
本申请实施例相关技术术语如下:
瞳距:双眼瞳孔之间的距离。
微致动器:将某种形式的能量转换成机械能的微型驱动器。
光栅尺位移传感器:把两块栅距相等的光栅平行安装,且让它们的刻痕之间有较小的夹角时,光栅上会出现若干条明暗相间的条纹,这种条纹称为莫尔条纹,它们沿着与光栅条纹几乎垂直的方向排列。莫尔条纹有以下三个特点:1、莫尔条纹的位移与光栅的位移成比例;2、莫尔条纹具有位移放大作用;3、莫尔条纹具有平均光栅误差的作用。通过光电元件可以将莫尔条纹 移动时光强变化转换成电信号,此信号可用数字形式显示出位移量,位移量等于脉冲与栅距的乘积,测量分辨率等于栅距。
磁栅位移传感器:利用磁栅与磁头的磁作用进行测量的位移传感器。
图1示出了本申请的一些实施方式所提供的一种智能眼镜的结构展开示意图,请参考图1,该智能眼镜包括:双目显示模组100、双目模组支架200、瞳距检测模块300、瞳距调节模块400、像源模块500和显示控制模块(未示出)。
双目显示模组100设置于所述双目模组支架200上,与像源模块500构成所述智能眼镜的显示***,该显示***也可以称为光学***。其中,像源模块500包括左屏幕510和右屏幕520,左屏幕510用于显示左眼像源画面,右屏幕520用于显示右眼像源画面,左屏幕510和右屏幕520的像源画面通过双目显示模组100中的光学模组后进入用户眼中。
在本申请实施例中,所述双目显示模组100为自由曲面双目显示模组,包括左/右眼显示模组,自由曲面光学模组具有较好的光学显示效果。
瞳距检测模块300用于检测佩戴所述智能眼镜的用户的瞳距,并将用户瞳距发送至所述显示控制模块,所述显示控制模块用于控制瞳距调节模块400。
具体的,在本申请实施例提供的上述智能眼镜中,所述瞳距检测模块300可以采用红外线眼动追踪组件,当用户佩戴智能眼镜后,红外线眼动追踪组件可以自动追踪用户眼球的瞳孔,进而自动测量得到用户双眼瞳距。
具体的,该红外线眼动追踪组件包括左眼追踪组件和右眼追踪组件,左眼追踪组件和右眼追踪组件均是由一个红外相机与一个红外LED补光灯组成。如图1所示,左/右眼追踪组件的检测扫描范围为S。
瞳距调节模块400用于调节所述像源模块500中左屏幕510和右屏幕520之间的距离,以调节显示***的***瞳距,当***瞳距与用户瞳距匹配时,用户看到的立体图像与真实场景才能正常叠加显示。
所述显示控制模块用于获取上述智能眼镜中显示***的***瞳距,并计算用户瞳距与***瞳距之间的瞳距差值,并根据所述瞳距差值控制瞳距调节模块400调节像源模块500中左屏幕510和右屏幕520之间的距离,直至用户瞳距与***瞳距之间的瞳距差值处于预设范围内,该预设范围可以根据实 际情况进行设定,例如可以设定为0,也就是需要用户瞳距与***瞳距相同,也可以设定为一个较小的误差范围,本申请不做限定。
具体的,在本申请实施例提供的上述智能眼镜中,如图1所示,瞳距调节模块400可以包括:微位移机构410、位移传感器420和导轨430。
其中,微位移机构410和位移传感器420设置于导轨430上,像源模块500中左屏幕510和右屏幕520分别设置于微位移机构410的两端。
微位移机构410用于根据上述智能眼镜中显示***的放大倍数将用户瞳距和***瞳距之间的瞳距差值换算成像源模块中左屏幕510和右屏幕520之间的目标位移距离,控制像源模块中左屏幕510和右屏幕520沿导轨430在水平方向上相互靠近或远离该目标位移距离。该目标位移距离是指在左屏幕510和右屏幕520之间当前距离的基础上需要移动的距离,调节后左屏幕510和右屏幕520之间的距离为当前距离加上或者减去该目标位移距离。
例如,***瞳距与用户瞳距相同,则不需要进行瞳距调节;***瞳距小于用户瞳距,则控制像源模块中左屏幕510和右屏幕520沿导轨430在水平方向上相互远离目标位移距离,以增大***瞳距;***瞳距大于用户瞳距,则控制像源模块中左屏幕510和右屏幕520沿导轨430在水平方向上相互靠近目标位移距离,以减小***瞳距。
可见,本申请中通过调节左屏幕510和右屏幕520之间的目标位移距离,利用智能眼镜中显示***放大目标位移距离,从而放大显示***中左/右显示画面之间的距离,以适应用户瞳距,因此本申请提供的智能眼镜可以依据不同佩戴者的瞳距,调节两侧像源屏幕显示内容的位置,从而实现立体图像深度信息的精确控制。
位移传感器420用于检测像源模块中左屏幕510和右屏幕520之间的位移。具体的,当位移传感器420检测到像源模块中左屏幕510和右屏幕520相互靠近或远离的位移未达到目标位移距离,则显示控制模块持续控制微位移机构410进行瞳距调节,直至位移传感器420检测到像源模块中左屏幕510和右屏幕520相互靠近或远离的位移达到了目标位移距离为止,可见,本申请提供的智能眼镜可以通过位移传感器读取两侧像源屏幕的位移数据进行高精度瞳距调节。
依据人眼成像原理,瞳距是人双眼视觉捕捉立体图像深度信息的基线, 由于本申请中瞳距调节实现了闭环控制,因此调节精度高,根据精确的瞳距可以计算得到精确的立体图像深度信息,从而可以实现高精度交互。
在本申请实施例提供的上述智能眼镜中,所述位移传感器420可以采用光栅尺位移传感器或磁栅位移传感器,分辨率大于等于0.005mm,较大的分辨率确保了位移传感器检测的精度,从而确保了瞳距调节的高精度。
在本申请实施例提供的上述智能眼镜中,微位移机构410包括微致动器411和传动机构412;具体的,该传动机构412可以采用柔性铰链,微致动器411的驱动行程大于等于0.2mm,类型可以为:压电、电磁或励磁型。
微致动器411用于驱动传动机构412,以通过传动机构412驱动像源模块中左屏幕510和右屏幕520沿导轨430在水平方向上相互靠近或远离。
由于智能眼镜中显示***的放大作用,只需要微致动器411通过传动机构412驱动像源模块中左屏幕510和右屏幕520沿导轨430在水平方向上相互靠近或远离微小的距离,就可以调节较大的瞳距,瞳距调节机构空间占用小。
本申请的上述智能眼镜中,在调节瞳距时仅需要调节像源屏幕位置,而非整个显示***,使用重量较轻的微致动器和柔性铰链结合控制像源屏幕水平方向移动,并且无需太大的驱动行程,因此占用空间小,从而使智能眼镜达到了重量轻、体积小的技术效果。根据本申请的另一些实施方式中,还可以将上述微位移机构410和位移传感器420集成在像源屏幕的玻璃基板上,以进一步减小占用空间。
本申请的上述智能眼镜中,利用红外线眼动追踪组件检测瞳距信息,利用位移传感器进行像源屏幕位移闭环检测,可以实现用户瞳距与双目显示屏幕的基准达到一致,从而实现高精度增强现实显示与交互。
在实际组装时,可以先将双目显示模组、双目模组支架、导轨、微致动器与柔性铰链固定,然后使用光学AA装调工艺,将像源屏幕调节到最佳位置后点胶固定在柔性铰链的框上。
为了便于理解,本申请还提供了实际应用中用户佩戴本申请提供的智能眼镜后,智能眼镜的瞳距调节过程,如图2所示:
S101、用户瞳距检测:瞳距检测模块对用户进行瞳距检测,并将用户瞳距发送至显示控制模块;
S102、确定瞳距调节量:显示控制模块获取显示***的***瞳距,并计算用户瞳距与***瞳距之间的瞳距差值,将瞳距差值换算成像源模块中左屏幕和右屏幕之间的目标位移距离,该目标位移距离为瞳距调节量;
S103、启动瞳距调节:显示控制模块控制微致动器按照瞳距调节量开始调节像源模块中左屏幕和右屏幕之间距离;
S104、启动位移检测:显示控制模块控制位移传感器对像源模块中左屏幕和右屏幕的位移进行检测;
S105、显示控制模块判断***瞳距与用户瞳距是否匹配;若是,结束瞳距调节;若否,跳转步骤S102继续瞳距调节。
本申请利用光学***可以将图像放大的原理,通过一个由瞳距检测模块、微致动器、传动机构、位移传感器组成的闭环控制***,经过光学***将像源屏幕之间的移动位移放大,实现闭环控制双目显示瞳距的功能。
本申请提供的智能眼镜可以达到如下技术效果:
1、通过水平方向调节像源屏幕位置,解决自由曲面显示方案eyebox小,无法兼容人类全部瞳距范围的问题,使产品具备兼容所有人瞳距范围的功能。
2、通过对双目显示屏幕基准进行控制,解决了由于不同用户的瞳距值,影响双目显示立体图像视差角,从而影响用户与增强现实图像交互时的深度信息的功能,实现高精度交互;
3、通过对显示模组显示图像进行控制并与现实场景三维建图功能相结合,解决了由于不同用户的瞳距值,影响双目显示立体图像视差角,导致立体图像与真实场景不能完全重合的问题,实现虚拟图像与真实场景的高精度叠加。
本申请实施例还提供了一种智能眼镜的瞳距调节方法,该方法基于上述实施例提供的智能眼镜,该方法包括:
获取用户瞳距和所述显示***的***瞳距;
计算所述用户瞳距与所述***瞳距之间的瞳距差值;
根据所述瞳距差值,控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,直至所述瞳距差值处于预设范围内。
在本申请实施例提供的上述智能眼镜的瞳距调节方法中,所述根据所述 瞳距差值,控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,包括:
根据所述显示***的放大倍数将所述瞳距差值换算成所述像源模块中左屏幕和右屏幕之间的目标位移距离;
控制所述像源模块中左屏幕和右屏幕沿所述导轨在水平方向上相互靠近或远离所述目标位移距离。
本申请提供的智能眼镜的瞳距调节方法,相较于现有技术,能够根据不同佩戴者的瞳距实现自动且高精度的瞳距调节。
需要说明的是:
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在上面对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其 它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的虚拟机的创建装置中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (11)

  1. 一种智能眼镜,其特征在于,包括:
    双目显示模组、双目模组支架、瞳距检测模块、瞳距调节模块、像源模块和显示控制模块;其中,
    所述双目显示模组,设置于所述双目模组支架上,与所述像源模块构成所述智能眼镜的显示***;
    所述瞳距检测模块,用于检测佩戴所述智能眼镜的用户的瞳距,并将用户瞳距发送至所述显示控制模块;
    所述显示控制模块,用于获取所述显示***的***瞳距,并计算所述用户瞳距与所述***瞳距之间的瞳距差值,并根据所述瞳距差值控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,直至所述瞳距差值处于预设范围内。
  2. 根据权利要求1所述的智能眼镜,其特征在于,所述瞳距调节模块包括:
    微位移机构、位移传感器和导轨;其中,
    所述微位移机构和所述位移传感器设置于所述导轨上,所述像源模块中左屏幕和右屏幕分别设置于所述微位移机构的两端;
    所述微位移机构,用于根据所述显示***的放大倍数将所述瞳距差值换算成所述像源模块中左屏幕和右屏幕之间的目标位移距离,控制所述像源模块中左屏幕和右屏幕沿所述导轨在水平方向上相互靠近或远离所述目标位移距离;
    所述位移传感器,用于检测所述像源模块中左屏幕和右屏幕之间的位移。
  3. 根据权利要求2所述的智能眼镜,其特征在于,所述微位移机构包括微致动器和传动机构;
    所述微致动器,用于驱动所述传动机构,以通过所述传动机构驱动所述像源模块中左屏幕和右屏幕沿所述导轨在水平方向上相互靠近或远离。
  4. 根据权利要求3所述的智能眼镜,其特征在于,所述传动机构采用柔性铰链。
  5. 根据权利要求3所述的智能眼镜,其特征在于,所述微致动器的驱动行程大于等于O.2mm。
  6. 根据权利要求2所述的智能眼镜,其特征在于,所述位移传感器采用光栅尺位移传感器或磁栅位移传感器。
  7. 根据权利要求6所述的智能眼镜,其特征在于,所述位移传感器的分辨率大于等于O.005mm。
  8. 根据权利要求1所述的智能眼镜,其特征在于,所述瞳距检测模块采用红外线眼动追踪组件。
  9. 根据权利要求1所述的智能眼镜,其特征在于,所述双目显示模组为自由曲面双目显示模组。
  10. 一种基于权利要求3至9中任一项所述智能眼镜的瞳距调节方法,其特征在于,包括:
    获取用户瞳距和所述显示***的***瞳距;
    计算所述用户瞳距与所述***瞳距之间的瞳距差值;
    根据所述瞳距差值,控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,直至所述瞳距差值处于预设范围内。
  11. 根据权利要求10所述的智能眼镜,其特征在于,所述根据所述瞳距差值,控制所述瞳距调节模块调节所述像源模块中左屏幕和右屏幕之间的距离,包括:
    根据所述显示***的放大倍数将所述瞳距差值换算成所述像源模块中左屏幕和右屏幕之间的目标位移距离;
    控制所述像源模块中左屏幕和右屏幕沿所述导轨在水平方向上相互靠近或远离所述目标位移距离。
PCT/CN2021/137652 2021-11-24 2021-12-14 一种智能眼镜及其瞳距调节方法 WO2023092713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111406506.9 2021-11-24
CN202111406506.9A CN114280779A (zh) 2021-11-24 2021-11-24 一种智能眼镜及其瞳距调节方法

Publications (1)

Publication Number Publication Date
WO2023092713A1 true WO2023092713A1 (zh) 2023-06-01

Family

ID=80870073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137652 WO2023092713A1 (zh) 2021-11-24 2021-12-14 一种智能眼镜及其瞳距调节方法

Country Status (2)

Country Link
CN (1) CN114280779A (zh)
WO (1) WO2023092713A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117706791A (zh) * 2024-02-06 2024-03-15 玩出梦想(上海)科技有限公司 头戴式显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114859561B (zh) * 2022-07-11 2022-10-28 泽景(西安)汽车电子有限责任公司 一种可穿戴显示设备及其控制方法、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019600A (zh) * 2016-08-03 2016-10-12 深圳酷酷科技有限公司 光学模组及头戴式显示设备
CN106291933A (zh) * 2016-09-06 2017-01-04 深圳酷酷科技有限公司 智能眼镜佩戴调节方法及装置
CN107506036A (zh) * 2017-08-23 2017-12-22 歌尔股份有限公司 Vr瞳距调节方法和装置
CN206906702U (zh) * 2017-05-15 2018-01-19 潍坊歌尔电子有限公司 一种头戴显示器
CN108170283A (zh) * 2018-01-30 2018-06-15 小派科技(上海)有限责任公司 虚拟现实显示设备的瞳距调节方法和装置
CN110879469A (zh) * 2019-10-31 2020-03-13 华为技术有限公司 一种头戴式显示设备
CN113419344A (zh) * 2021-05-20 2021-09-21 歌尔股份有限公司 虚拟现实装置的瞳距调节方法、虚拟现实装置及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202591A (zh) * 2014-09-01 2014-12-10 北京行云时空科技有限公司 一种3d图像显示***及方法
CN105974588A (zh) * 2016-06-14 2016-09-28 深圳市金立通信设备有限公司 一种调节vr眼镜的瞳距的方法以及vr眼镜
CN106990847A (zh) * 2017-04-06 2017-07-28 小派科技(上海)有限责任公司 一种虚拟现实头盔以及调节虚拟现实头盔瞳距的方法
CN109874002B (zh) * 2017-12-04 2024-03-22 深圳市冠旭电子股份有限公司 Vr智能头戴设备和vr图像显示***
CN111781856B (zh) * 2020-06-03 2024-05-24 Oppo广东移动通信有限公司 眼镜及其控制方法、存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019600A (zh) * 2016-08-03 2016-10-12 深圳酷酷科技有限公司 光学模组及头戴式显示设备
US20190154952A1 (en) * 2016-08-03 2019-05-23 Shenzhen Kuku Technology Co., Ltd. Optical module and head-mounted display apparatus
CN106291933A (zh) * 2016-09-06 2017-01-04 深圳酷酷科技有限公司 智能眼镜佩戴调节方法及装置
CN206906702U (zh) * 2017-05-15 2018-01-19 潍坊歌尔电子有限公司 一种头戴显示器
CN107506036A (zh) * 2017-08-23 2017-12-22 歌尔股份有限公司 Vr瞳距调节方法和装置
CN108170283A (zh) * 2018-01-30 2018-06-15 小派科技(上海)有限责任公司 虚拟现实显示设备的瞳距调节方法和装置
CN110879469A (zh) * 2019-10-31 2020-03-13 华为技术有限公司 一种头戴式显示设备
CN113419344A (zh) * 2021-05-20 2021-09-21 歌尔股份有限公司 虚拟现实装置的瞳距调节方法、虚拟现实装置及介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117706791A (zh) * 2024-02-06 2024-03-15 玩出梦想(上海)科技有限公司 头戴式显示装置
CN117706791B (zh) * 2024-02-06 2024-05-14 玩出梦想(上海)科技有限公司 头戴式显示装置

Also Published As

Publication number Publication date
CN114280779A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2023092713A1 (zh) 一种智能眼镜及其瞳距调节方法
CN102944935B (zh) 双眼式头戴显示装置及其图像间距调整方法
US11607607B1 (en) Actuation for a focus adjusting head mounted display
CN102937745B (zh) 开放式头戴显示装置及其显示方法
CN209858860U (zh) 一种头戴显示设备
KR20180062946A (ko) 디스플레이 장치 및 초점 디스플레이와 컨텍스트 디스플레이를 이용하여 디스플레이하는 방법
EP3580604A1 (en) Methods, devices and systems for focus adjustment of displays
US10871627B1 (en) Head-mounted display device with direct-current (DC) motors for moving displays
CN114326128A (zh) 聚焦调整多平面头戴式显示器
TW201812385A (zh) 可調整顯示模組之可調式虛擬實境裝置
KR20170118754A (ko) 알바레즈 렌즈를 사용하여 초점면들을 생성하기 위한 방법들 및 시스템
KR20160022380A (ko) 근안 디스플레이를 위한 동적 양안 정렬
WO2021082798A1 (zh) 一种头戴式显示设备
KR20160022924A (ko) Hmd의 최적의 눈 맞춤을 위한 시스템
US11454779B1 (en) Head-mounted display device with stepper motors for moving displays
US11009713B1 (en) Head-mounted display device with voice coil motors for moving displays
CN103698884A (zh) 开放式头戴显示装置及其显示方法
CN111868605B (zh) 针对具体使用者校准能够佩戴在使用者的头部上的显示装置以用于增强显示的方法
CN111929893B (zh) 一种增强现实显示装置及其设备
CN104216126A (zh) 一种变焦3d显示技术
US20230084541A1 (en) Compact imaging optics using spatially located, free form optical components for distortion compensation and image clarity enhancement
WO2023092712A1 (zh) 一种智能眼镜及其像距调节方法
TW202334702A (zh) 具有用於像差感測偵測器的收集光學件的顯示系統
KR20180062953A (ko) 디스플레이 장치 및 컨텍스트 디스플레이와 프로젝터를 이용하여 디스플레이하는 방법
KR20210038316A (ko) 헤드 마운티드 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965435

Country of ref document: EP

Kind code of ref document: A1