WO2023090304A1 - Polymer, elastomer, production method therefor, actuator, and sensor - Google Patents

Polymer, elastomer, production method therefor, actuator, and sensor Download PDF

Info

Publication number
WO2023090304A1
WO2023090304A1 PCT/JP2022/042314 JP2022042314W WO2023090304A1 WO 2023090304 A1 WO2023090304 A1 WO 2023090304A1 JP 2022042314 W JP2022042314 W JP 2022042314W WO 2023090304 A1 WO2023090304 A1 WO 2023090304A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastomer
meth
polymer
group
monomer
Prior art date
Application number
PCT/JP2022/042314
Other languages
French (fr)
Japanese (ja)
Inventor
真 楠
幸樹 椿
Original Assignee
大阪有機化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪有機化学工業株式会社 filed Critical 大阪有機化学工業株式会社
Publication of WO2023090304A1 publication Critical patent/WO2023090304A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to polymers, elastomers, manufacturing methods thereof, actuators, and sensors, and particularly to polymers and elastomers that can be suitably used as dielectric elastomers.
  • dielectric elastomers that can be deformed by voltage application are known as elastomers used for dielectric materials.
  • Dielectric elastomers can be used in applications such as actuators, sensors used in industrial robots and the like, power generation elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, and medical instruments.
  • a technology related to a dielectric elastomer using a copolymer having a polar group has been proposed (see, for example, Patent Document 1 below).
  • Patent Document 1 discloses the use of a monomer in which a polar group is bonded to a polymer main chain via three or more atoms that are linearly connected. groups are exemplified.
  • the polymer according to ⁇ 1> above, wherein the (meth)acrylate monomer having an ether structure is represented by the following formula (1).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents an alkyl group having 1 to 5 carbon atoms which may have a halogen atom.
  • X 1 has a halogen atom.
  • ⁇ 3> The polymer according to ⁇ 1> or ⁇ 2>, wherein the (meth)acrylamide having a cyano group is represented by the following formula (2).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 3 represents a hydrogen atom or a methyl group.
  • X 2 represents an alkylene group having 1 to 10 carbon atoms, which may have a halogen atom. show.
  • ⁇ 4> The polymer according to any one of ⁇ 1> to ⁇ 3>, which has a weight average molecular weight of 200,000 to 4,000,000.
  • ⁇ 5> An elastomer comprising the polymer according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> The method for producing the elastomer according to ⁇ 5>, obtaining a polymer by polymerizing a (meth)acrylate monomer having an ether structure and a (meth)acrylamide having a cyano group;
  • a method of making an elastomer comprising: ⁇ 7>
  • An actuator comprising the elastomer according to ⁇ 5>.
  • ⁇ 9> A sensor comprising the elastomer according to ⁇ 5>.
  • the polymer which has a high dielectric constant and can constitute an elastomer excellent in the displacement amount at the time of voltage application can be provided. Further, according to the present invention, it is possible to provide an elastomer that has high flexibility and dielectric constant and is excellent in the amount of displacement when a voltage is applied, a method for producing the same, and an actuator and a sensor using the elastomer. .
  • FIG. 4 is a schematic plan view showing one embodiment of an actuator
  • FIG. 2 is a schematic cross-sectional view of the actuator shown in FIG. 1 taken along line AA
  • FIG. 4 is a schematic diagram for explaining displacement of an elastomer
  • 4 is a graph for explaining hysteresis loss
  • (meth)acrylate or the like means “acrylate” or “methacrylate”.
  • alkyl group includes linear, branched and alicyclic alkyl groups.
  • the polymer of the present embodiment includes units (A) derived from a (meth)acrylate monomer having an ether structure (hereinafter sometimes simply referred to as “units (A)”) and (meth)acrylamide having a cyano group. and a unit (B) derived from (hereinafter sometimes simply referred to as "unit (B)").
  • the "polymer of the present embodiment” means a polymer containing units (A) and units (B) as structural units, and may be liquid, solid, uncured, or cured. Also includes state.
  • the "elastomer of the present embodiment” is an elastomer (elastic body) containing the polymer of the present embodiment. itself can be referred to as the elastomer of this embodiment.
  • the elastomer of the present embodiment may contain various additives as necessary.
  • the polymer of the present embodiment is a relatively highly polar and flexible unit (A) derived from a (meth)acrylate monomer having an ether structure (hereinafter sometimes simply referred to as "monomer (A)”), (Meth)acrylamide having a cyano group (hereinafter sometimes simply referred to as “monomer (B)”) and a highly polar unit (B) derived from the unit (B), which provides excellent dielectric constant and when voltage is applied It is possible to make both the displacement amount in and the high dimension compatible.
  • the polymer of this embodiment can be used for applications such as actuators, sensors used in industrial robots, power generation elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, and medical instruments.
  • the amount of displacement when a voltage is applied can be increased by achieving both a high dielectric constant and a high flexibility (low Young's modulus) of the polymer or elastomer.
  • the polymer of the present embodiment contains, as a structural unit, a unit (A) derived from a (meth)acrylate monomer having an ether structure (monomer (A)).
  • the monomer (A) is a (meth)acrylate having a (meth)acrylate structure in its structure and containing at least one ether structure (--C--O--C--) other than the structure.
  • the number of ether structures other than the (meth)acrylate structure in the unit (A) is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2, from the viewpoint of the balance between dielectric constant and flexibility. 1 is more preferred.
  • the monomer (A) has a high dissolving power (solubility) with respect to the monomer (B) to be combined.
  • the monomer (A) having the high dissolving power is used, the monomer (B) can be dissolved even when the monomer (B) is a solid substance at room temperature, thereby eliminating the use of a solvent.
  • the polymer of the present embodiment can be synthesized by the bulk polymerization method described below. According to the bulk polymerization method, the polymer of the present embodiment can be increased in molecular weight as desired.
  • the solubility of the monomer (B) in 100 g of the monomer (A) (under 1 atm, liquid temperature 25° C.) is preferably 1% by mass or more, and 10% by mass, from the viewpoint of improving the dielectric constant and improving the amount of displacement when voltage is applied. % or more, more preferably 30 mass % or more, and particularly preferably 40 mass % or more.
  • the solubility is determined, for example, by adding the monomer (B) dropwise to 10 g of the monomer (A), heating and mixing at 50 ° C., and checking the state after cooling.
  • the solubility of the monomer (B) can be used as the upper limit concentration for a solution.
  • a monomer (A) represented by the following formula (1) can be used as the (meth)acrylate monomer having an ether structure.
  • the monomer (A) represented by formula (1) has a relatively high dielectric constant and excellent flexibility.
  • the monomer (A) represented by formula (1) is also advantageous in terms of dissolving power for the monomer (B) represented by formula (2) described below.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents an alkyl group having 1 to 5 carbon atoms which may have a halogen atom.
  • X 1 has a halogen atom. represents an alkylene group having 1 to 10 carbon atoms, and n represents an integer of 1 to 3.
  • R 1 is a hydrogen atom or a methyl group.
  • a hydrogen atom is preferable from the viewpoint of facilitating polymerization and obtaining a polymer having a low Young's modulus.
  • R 2 is an alkyl group having 1 to 5 carbon atoms which may have a halogen atom.
  • the alkyl group may be linear, branched, or cyclic, but from the viewpoint of dielectric constant, it is preferably a linear alkyl group.
  • alkyl groups having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, isoamyl group, and the like.
  • R 2 is preferably a straight-chain alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, from the viewpoint of dielectric constant.
  • the halogen atom that can be contained in the alkyl group includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • the number of halogen atoms contained in the alkyl group varies depending on the number of carbon atoms in the alkyl group, etc., and cannot be determined indiscriminately.
  • alkyl group having 1 to 5 carbon atoms and having a halogen atom examples include trifluoromethyl group, trifluoroethyl group, trifluoro n-propyl group, trifluoroisopropyl group, trifluoro n-butyl group and trifluoroisobutyl group. , a trifluorotert-butyl group, etc., but the present embodiment is not limited to these examples.
  • X 1 is an alkylene group having 1 to 10 carbon atoms which may have a halogen atom.
  • the alkylene group may be linear, branched, or cyclic, but is preferably a linear alkylene group from the viewpoint of dielectric constant.
  • alkylene group having 1 to 10 carbon atoms examples include methylene group, ethylene group, n-prolene group, isopropylene group, n-butylene group, isobrene group, tert-butylene group, sec-butylene group and n-pentylene. group, n-hexylene group, n-heptylene group, and the like.
  • X 1 is preferably a straight-chain alkylene group having 1 to 6 carbon atoms from the viewpoint of dielectric constant, more preferably a straight-chain alkylene group having 1 to 4 carbon atoms, and a methylene group and an ethylene group.
  • the alkylene group represented by X 1 may have the above-described halogen atom as a substituent.
  • n is an integer of 1-3. Although not particularly limited, n is preferably 1 or 2, more preferably 1, from the viewpoint of dielectric constant.
  • Examples of the monomer (A) represented by formula (1) include methoxyethyl (meth)acrylate (MTA), ethoxyethyl (meth)acrylate, methoxymethyl (meth)acrylate, methoxypropyl (meth)acrylate, ethoxymethyl ( meth)acrylates, and (meth)acrylate monomers having alkyl groups containing multiple ether structures (e.g., methoxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, etc.). Ethyl (meth)acrylate (MTA) and methoxypropyl (meth)acrylate are preferred. Each of these monomers (A) may be used alone, or two or more of them may be used in combination.
  • examples of the monomer (A) other than the monomer (A) represented by formula (1) include (meth)acrylate monomers having an alkyl group containing a cyclic ether structure such as tetrahydrofurfuryl acrylate.
  • the polymer of the present embodiment contains, as a structural unit, a unit (B) derived from (meth)acrylamide (monomer (B)) having a cyano group.
  • the monomer (B) is a (meth)acrylamide having a (meth)acrylamide structure in its structure and further containing at least one cyano group (CN--).
  • the number of cyano groups in the unit (B) is not particularly limited, but is preferably 1 to 2, preferably 1, from the viewpoint of dielectric constant.
  • a monomer (B) represented by the following formula (2) can be used as the (meth)acrylamide having a cyano group.
  • the monomer (B) represented by formula (2) has a particularly high dielectric constant.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 3 represents a hydrogen atom or a methyl group.
  • X 2 represents an alkylene group having 1 to 10 carbon atoms, which may have a halogen atom. show.
  • R 1 is a hydrogen atom or a methyl group.
  • a hydrogen atom is preferable from the viewpoint of facilitating polymerization and obtaining a polymer having a low Young's modulus.
  • R3 is a hydrogen atom or a methyl group.
  • a hydrogen atom is preferable from the viewpoint of Young's modulus.
  • X 2 is an alkylene group having 1 to 10 carbon atoms which may have a halogen atom.
  • the alkylene group may be linear, branched, or cyclic, but is preferably a linear alkyl group from the viewpoint of dielectric constant.
  • alkylene group having 1 to 10 carbon atoms examples include methylene group, ethylene group, n-prolene group, isopropylene group, n-butylene group, isobrene group, tert-butylene group, sec-butylene group and n-pentylene. group, n-hexylene group, n-heptylene group, and the like.
  • X 2 is preferably a linear alkylene group having 1 to 5 carbon atoms from the viewpoint of dielectric constant, more preferably a linear alkylene group having 1 to 3 carbon atoms, and a methylene group and an ethylene group. preferable.
  • the alkylene group represented by X2 may have the above-mentioned halogen atom as a substituent.
  • Examples of the monomer (B) represented by the formula (2) include cyanoethylacrylamide (CEAAM), N-(2-cyanoethyl)-N-methylacrylamide, cyanomethylacrylamide, and the like. Cyanoethylacrylamide (CEAAM) is preferred in terms of balance. Each of these monomers (B) may be used alone, or two or more of them may be used in combination.
  • monomer (B) other than the monomer (B) represented by formula (2) include N,N-bis(2-cyanoethyl)acrylamide and N,N-bis(2-cyanomethyl)acrylamide. be done.
  • the polymer of the present embodiment optionally has units (C) derived from a monomer (C) other than the monomers (A) and (B).
  • the monomer (C) include alkyl (meth)acrylate monomers, halogen-substituted alkyl (meth)acrylate monomers, hydroxyalkyl (meth)acrylate monomers, (meth)acryloxyalkyl isocyanate monomers, and carboxyl group containing monomers, aryl group-containing monomers, styrene-based monomers, fatty acid vinyl ester-based monomers, betaine monomers, etc., but the present embodiment is not limited to these examples. These monomers may be used alone, respectively, or two or more of them may be used in combination.
  • alkyl (meth)acrylate monomer examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, Acrylate, tert-butyl (meth)acrylate, sec-butyl (meth)acrylate, n-pentyl (meth)acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, methylpentyl (meth)acrylate, cyclohexyl (meth)acrylate ) acrylates and the like.
  • halogen-substituted alkyl (meth)acrylate monomer examples include 2,2,2-trifluoroethyl acrylate.
  • hydroxyalkyl (meth)acrylate monomers examples include hydroxyethyl acrylate, 4-hydroxybutyl acrylate (4HBA), 1-acryloyloxy-3-hydroxyadamantane, and 1,3-cyclohexanedimethanol monoacrylate.
  • Examples of the (meth)acryloxyalkyl isocyanate monomer include (meth)acryloxyethyl isocyanate, 2-methacryloxyethyl isocyanate ethylene glycol (MOI-EG), 1,1-(bisacryloyloxymethyl)ethyl isocyanate (BEI) and the like.
  • the content of the units (A) in the polymer of the present embodiment is not particularly limited, but from the viewpoint of low Young's modulus, dielectric properties, and solubility in the monomer (B), the total amount of the monomers of the present embodiment is On the other hand, 10 to 99 mol% is preferable, 30 to 95 mol% is more preferable, and 60 to 70 mol% is particularly preferable.
  • the content of the unit (B) in the polymer of the present embodiment is not particularly limited, but from the viewpoint of low Young's modulus and dielectric properties, it is preferably 1 to 90 mol% with respect to the total amount of the monomers of the present embodiment. 5 to 70 mol % is more preferred, and 30 to 40 mol % is particularly preferred.
  • the polymer of the present embodiment can be copolymerized with other units (units (C1) described later), and further units C1 with other units (C2 described later). can be combined.
  • the content of the unit (C1) in the polymer is not particularly limited, but it is preferably 0 in terms of rebound property and low Young's modulus of the resulting elastomer per 100 mol parts of the total amount of the monomers. 0.05 to 10 mol parts, more preferably 0.1 to 5 mol parts, and particularly preferably 0.25 to 2.5 mol parts.
  • the weight average molecular weight (Mw) of the polymer of the present embodiment is preferably 200,000 to 4,000,000 from the viewpoint of film-forming properties and mechanical properties (low Young's modulus, low hysteresis loss). , 500,000 to 3,800,000 are more preferred, and 1,000,000 to 3,500,000 are particularly preferred.
  • the weight average molecular weight of the polymer of the present embodiment was determined by gel permeation chromatography [manufactured by Tosoh Corporation, product number: HLC-8320GPC, column: manufactured by Tosoh Corporation, product number: TSKgel GMHH-R, solvent: tetrahydrofuran, Flow rate: 0.6 mL/min] can be used for measurement in terms of polystyrene.
  • the combination of each structural unit is not particularly limited, but from the viewpoint of achieving both dielectric constant and flexibility at a high level, the following combinations may be mentioned, for example.
  • Examples of the polymer of this embodiment include a polymer having a structure represented by the following formula (3).
  • R 1 , R 2 , R 3 , X 1 and X 2 have the same meanings as those described in Formulas (1) and (2) above. Further, n is 1 to 3 is an integer, m is 150 to 25,000, and l is 150 to 25,000.
  • the elastomer of the present embodiment is an elastomer (elastic body) containing the polymer of the present embodiment.
  • the coalescence itself can be referred to as the elastomer of this embodiment.
  • Shapes such as width, thickness and length of the elastomer of this embodiment are not particularly limited.
  • the Young's modulus of the elastomer of the present embodiment is preferably 1 MPa or less, more preferably 0.5 MPa or less, and particularly preferably 0.2 MPa or less.
  • the elongation rate, Young's modulus, and hysteresis loss of the elastomer of the present embodiment can be measured, for example, using a tensile tester according to the methods described in Examples below.
  • the elongation rate of the elastomer of this embodiment is preferably 200% or more, more preferably 400% or more, and particularly preferably 700% or more.
  • the hysteresis loss is preferably 10% or less, more preferably 5% or less.
  • the dielectric constant of the elastomer of the present embodiment is not particularly limited, it is preferably 6 or more, more preferably 8 or more, and particularly preferably 10 or more for use as a dielectric actuator.
  • the dielectric constant of the elastomer of the embodiment can be measured by the method described in Examples below.
  • the rate of change when a voltage is applied to the elastomer of this embodiment can be measured by the method described in Examples below, and is not particularly limited.
  • the displacement @ 1 kV (%) is preferably 0.1% or more, more preferably 0.3% or more, and particularly preferably 0.5% or more.
  • the maximum change rate (%) of the displacement (Max) is preferably 2% or more, more preferably 5% or more, and particularly preferably 10% or more.
  • the withstand voltage of the elastomer of this embodiment is preferably 10 (v/ ⁇ m) or more, more preferably 20 (v/ ⁇ m) or more, in the case of dielectric actuator applications.
  • the glass transition temperature of the elastomer of the present embodiment is not particularly limited, but from the viewpoint of low Young's modulus, it is preferably 30° C. or lower, more preferably 0° C. or lower, and ⁇ 20° C. or lower. is particularly preferred.
  • the glass transition temperature is measured according to JIS. K6240:2011 can be complied with.
  • the method for producing the polymer and elastomer of the present embodiment is not particularly limited, and synthesis can be performed appropriately by known methods such as bulk polymerization, solution polymerization, emulsion polymerization, and suspension polymerization.
  • the present embodiment is not limited only to such examples.
  • the bulk polymerization method and the emulsion polymerization method are preferred, the bulk polymerization method is more preferred, and the photo-bulk polymerization method is still more preferred, from the viewpoint of increasing the molecular weight.
  • the elastomer of the present embodiment is polymerized by a bulk polymerization method, it is not necessary to use a dispersant, solvent, etc. during synthesis, so it is necessary to remove the dispersant, solvent, etc. from the system in which the polymer is synthesized. and excellent productivity.
  • the elastomer of the present embodiment is produced by, for example, polymerizing a (meth)acrylate monomer having an ether structure (monomer (A)) and a (meth)acrylamide having a cyano group (monomer (B)). It is possible to manufacture the elastomer by a process for producing the elastomer, including the step of obtaining coalescence. Further, in the step of obtaining the above polymer, a (meth)acrylate monomer having an ether structure (monomer (A)) and a (meth)acrylamide having a cyano group (monomer (B)) are polymerized by bulk photopolymerization. be able to.
  • the monomer (A) and the monomer (B) can be polymerized (for example, bulk polymerization by ultraviolet irradiation) using a polymerization initiator as necessary to synthesize a polymer composed of the structural units (A) and (B).
  • the atmosphere in which the polymer or the like of the present embodiment is polymerized is not particularly limited, and may be air or an inert gas such as nitrogen gas or argon gas.
  • the temperature at which the polymer of the present embodiment is polymerized is not particularly limited, and a temperature of about 5 to 100°C is usually preferred.
  • the time required to polymerize the monomer components varies depending on the polymerization conditions and cannot be generally determined.
  • the polymerization reaction can optionally be terminated when the amount of remaining monomer components is 20% by weight or less.
  • the amount of the remaining monomer component can be measured using, for example, gel permeation chromatography.
  • a photopolymerization initiator to be described later may be used.
  • the conditions for bulk polymerization of the polymer of the present embodiment are not particularly limited, but from the viewpoint of obtaining a polymer with the preferred molecular weight range described above and from the viewpoint of low hysteresis loss, an ultraviolet illumination intensity of 10 mW/cm 2 or less is preferable. 1 mW/cm 2 or less is more preferable, and 0.6 mW/cm 2 or less is even more preferable. From the viewpoint of polymerizability, it is preferably 0.01 mW/cm 2 or more.
  • a polymerization initiator (photopolymerization initiator, thermal polymerization initiator), a chain transfer agent, etc. may be used in order to polymerize the above monomer components to synthesize the polymer of the present embodiment.
  • known ones can be appropriately selected and used.
  • a photopolymerization initiator is a compound that is activated by various actinic rays such as ultraviolet rays to initiate a polymerization reaction.
  • photopolymerization initiators include radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators.
  • One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.
  • two or more radical photopolymerization initiators can be used in combination.
  • the photopolymerization initiator it is desirable to appropriately select a compound having absorption at the exposure wavelength when the polymer of the present embodiment is photocured.
  • the content of the photopolymerization initiator in the polymer of the present embodiment varies depending on the type of the photopolymerization initiator, and cannot be generally determined. , about 0.01 to 20 parts by mass.
  • a surfactant may be used in synthesizing the polymer or the like of the present embodiment.
  • the polymer or the like of the present embodiment contains a surfactant, it is possible to form a film or membrane with less unevenness on the surface.
  • the content of the surfactant in the polymer of the present embodiment is not particularly limited, but from the viewpoint of suppressing the occurrence of unevenness on the surface of the coating film during application, the total amount of the polymer of the present embodiment is 0.5. 01 to 1% by mass is preferable, 0.05 to 0.5% by mass is more preferable, and 0.1 to 0.3% by mass is particularly preferable.
  • the surfactant examples include dimethylsiloxane-based surfactants and fluorine-based surfactants, with dimethylsiloxane-based surfactants being preferred.
  • a surfactant having a crosslinkable functional group such as acryloyl group-containing polyether-modified dimethylsiloxane is preferable.
  • the crosslinkable functional group examples include a (meth)acryloyl group and an allyl group.
  • dimethylsiloxane-based surfactants examples include commercial products such as BYK-UV3500, BYK-UV3505, BYK-UV3510, BYK-UV3535, BYK-UV3570, BYK-UV3575, and BYK-UV3576 manufactured by BYK Additives & Instruments. etc. can be used, and among them, BYK-UV3500 is preferable.
  • the polymer of the present embodiment can be used in combination with a chain transfer agent, a thermal polymerization initiator, a photosensitizer, etc., as desired, as long as the effects of the present invention are not impaired.
  • the polymer etc. of the present embodiment uses a monomer (C1) having a substituent such as a hydroxyl group (for example, a hydroxyalkyl (meth)acrylate monomer such as 4HBA).
  • a crosslinked structure can also be imparted to the polymer or the like of the present embodiment.
  • a polymer obtained by polymerizing the monomers (A) to (C1) is dissolved in a solvent to form a solution, and a monomer (C2) (for example, isocyanate
  • a monomer having a group for example, isocyanate
  • the monomer (C2) that serves as a cross-linking agent is bonded to the polymer unit (C1), and the monomer (C2) is polymerized with each other.
  • a polymer having a crosslinked structure can be obtained by forming chains, forming hydrogen bonds between the side chains of each polymer, or intertwining the main chains and side chains of each polymer. It is considered to be done.
  • a monomer (C1) having a substituent such as a hydroxyl group e.g., a hydroxyalkyl (meth)acrylate monomer such as 4HBA
  • a monomer (C2) serving as a cross-linking agent e.g., a monomer having an isocyanate group
  • a polymer having such a crosslinked structure is also included in the polymer or the like of the present embodiment.
  • the polymer or the like of the present embodiment can be dissolved in a solvent to form a resin solution.
  • the solvent is not particularly limited, but for example, benzene-based solvents, ketone-based solvents, ester-based solvents and the like can be used. Specifically, toluene, cyclopentanone, butyl acetate, carbitol acetate and the like can be used. can be mentioned.
  • a catalyst when imparting a crosslinked structure to the polymer or the like of the present embodiment, a catalyst can be used together with the monomer (C2) functioning as a crosslinker.
  • the catalyst is mainly added for the purpose of adding the monomer (C2) such as isocyanate used as a cross-linking agent to the hydroxyl groups of the units (C1) in the polymer and the like of the present embodiment.
  • the catalyst is not particularly limited, for example, a tin catalyst or the like can be used.
  • the monomer (C1) can be appropriately selected from the monomers (C) described above, and for example, hydroxyalkyl (meth)acrylate monomers, carboxyl group-containing monomers, and the like can be used.
  • the monomer (C2) used as a cross-linking agent can be appropriately selected from the monomers (C) described above, and for example, a (meth)acryloxyalkyl isocyanate monomer or the like can be used.
  • the content of the monomer (C2) is set to the monomer (C1 ) is preferably from 25 to 800 mol %, more preferably from 50 to 400 mol %, and particularly preferably from 100 to 200 mol %.
  • the reaction conditions for the reaction between the hydroxyl group of the unit (C1) in the polymer etc. of the present embodiment and the isocyanate etc. of the unit (C2) in the polymer etc. of the present embodiment are not particularly limited.
  • the heating temperature is preferably 40 to 100°C, more preferably 60 to 80°C; the heating time is preferably 0.5 to 12 hours, and 1 to 6 hours. More preferred.
  • the light irradiation conditions are not particularly limited, but ultraviolet light or the like is used.
  • the ultraviolet illuminance is preferably from 10 to 10,000 mW/cm 2 and more preferably from 100 to 1,000 mW/cm 2 from the viewpoints of reliably forming a crosslinked structure and the necessary and sufficient irradiation dose. It is preferable that the cumulative ultraviolet irradiation amount is 100 mJ/cm 2 or more.
  • ⁇ Usage form of elastomer>> The shape and the like of the elastomer of this embodiment can be appropriately designed according to the intended use.
  • the elastomer of the present embodiment can be used, for example, as a sheet-like elastomer or a laminate obtained by laminating elastomers.
  • the thickness of the sheet is not particularly limited. Further, when the elastomer of the present embodiment is used as a laminate, for example, in the case of a dielectric elastomer application, it can be formed by laminating 100 to 300 sheet-like elastomer sheets having a thickness of 10 ⁇ m to 50 ⁇ m.
  • the elastomer of this embodiment may contain an appropriate amount of other polymer according to the desired purpose, such as adjusting its viscosity.
  • Other polymers include, for example, acrylic resins, polyacrylonitrile, poly(meth)acrylamide, polyamide, polyvinyl chloride, polyurethane, polyester, carboxymethylcellulose, etc., but the present embodiment is limited only to these examples. not a thing These other polymers may be used alone or in combination of two or more.
  • the elastomer of this embodiment may contain a neutralizing agent, if necessary.
  • neutralizing agents include inorganic basic compounds such as sodium hydroxide and potassium hydroxide; monoethanolamine, dimethylethanolamine, diethylethanolamine, triethanolamine, morpholine, aminomethylpropanol, aminomethylpropanediol, octyl
  • organic basic compounds such as amine, tributylamine, and aniline, but the present embodiment is not limited to such examples. These neutralizing agents may be used alone or in combination of two or more.
  • the elastomer of the present embodiment may contain additives within a range that does not hinder the purpose of the present embodiment.
  • additives include coloring agents, antioxidants, ultraviolet absorbers, anti-aging agents, thermally conductive fillers, conductive fillers, etc.
  • the present embodiment is not limited only to such examples. do not have.
  • the elastomer of the present embodiment When the elastomer of the present embodiment is made into a sheet, it can be used as it is depending on the application. Stretched is more preferable.
  • the draw ratio of the sheet is preferably 1.2 times or more, more preferably 1.5 times or more, and still more preferably 2 times or more from the viewpoint of imparting toughness. Although it depends on the thickness of the film, From the viewpoint of preventing breakage during stretching, it is preferably 8 times or less, more preferably 6 times or less, and still more preferably 5 times or less.
  • stretching the sheet it may be heated, if necessary.
  • the elastomer of this embodiment can be used as a dielectric elastomer whose thickness and size change according to the applied voltage.
  • the dielectric elastomer of the present embodiment can be used, for example, in electric devices such as actuators, sensors used in industrial robots, power generating elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, and medical instruments. There is expected.
  • the elastomer of this embodiment can be designed to exhibit a large amount of displacement even when the applied voltage is low, so it can be suitably used for an actuator.
  • FIG. 1 is a schematic plan view showing one embodiment of the actuator of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the actuator shown in FIG. 1 taken along line AA.
  • FIG. 3 is a schematic diagram for explaining displacement of an elastomer.
  • the actuator 1 is made up of a film-like elastomer 2 and a pair of electrodes 3A and 3B.
  • the elastomer 2 and the electrodes 3A and 3B can be adhered with, for example, a conductive paste (not shown).
  • conductive pastes include conductive pastes containing conductive fillers such as carbon and silver.
  • the elastomer 2 is preferably uniaxially stretched or biaxially stretched, preferably biaxially stretched.
  • the draw ratio of the elastomer 2 is not particularly limited, but from the viewpoint of imparting toughness, it is preferably 1.2 times or more, more preferably 1.5 times or more, and still more preferably 2 times or more. Although it depends on the thickness of the elastomer, it is preferably 8 times or less, more preferably 6 times or less, and even more preferably 5 times or less from the viewpoint of preventing breakage during stretching.
  • the thickness of the elastomer 2 is preferably 1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, even more preferably 1 to 50 ⁇ m, and even more preferably 1 to 50 ⁇ m, from the viewpoint of allowing the actuator 1 to exhibit a large amount of displacement even when the applied voltage is low. is 1 to 30 ⁇ m.
  • Electrode materials include, for example, indium tin oxide (ito), antimony tin oxide (ato), fluorine-doped tin oxide (fto), fluorine tin oxide (fto), aluminum zinc oxide (azo), gallium zinc oxide ( gzo), tin oxide (nesa), indium zinc oxide (izo), silver oxide, vanadium oxide, molybdenum oxide, gold, silver, platinum, copper, indium, chromium and other metals and metal oxides, polycrystalline silicon, amorphous silicon and carbon materials such as carbon black, graphite, and glassy carbon, but the present invention is not limited to these examples. Each of these electrode materials may be used alone, or two or more of them may be used in combination.
  • the shape, size and thickness of the electrodes 3A and 3B are not particularly limited and can be arbitrarily determined according to the application of the actuator 1. Examples of shapes of the electrodes 3A and 3B include circular, elliptical, triangular, square, and rectangular. As an example of the size of the electrodes 3A and 3B, a circular one having a diameter of 1 to 20 mm can be mentioned. Although the thickness of the electrodes 3A and 3B is not particularly limited, it is usually about 50 to 500 ⁇ m.
  • a terminal 4A is arranged on the diametrical outer peripheral surface of the electrode 3A, and a terminal 4B is arranged on the diametrical outer peripheral surface of the electrode 3B.
  • the terminals 4A and 4B are connected to the power source 6 through the conductors 5A and 5, respectively.
  • the displacement of the actuator 1 when voltage is applied to the electrodes 3A and 3B can be measured by the displacement gauge 8.
  • Example 1 Synthesis of elastomer 21.0 g of methoxyethyl acrylate (MTA; monomer (A)), 223 g of cyanoethylacrylamide (CEAAM; monomer (B)), and 2,4,6-trimethylbenzoyldiphenylphosphine oxide as a polymerization initiator [manufactured by BASF, commercial name: Irgacure TPO] to obtain a monomer component containing a polymerization initiator.
  • MTA methoxyethyl acrylate
  • CEAAM cyanoethylacrylamide
  • Irgacure TPO 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • the resulting monomer component was filled in a SUS molded container (length: 43 cm, width: 43 cm, depth: 2 mm) and covered with transparent glass (length: 43 cm, width: 43 cm, thickness: 2 mm). After that, the monomer component was irradiated with ultraviolet rays from above so that the illuminance was 0.58 mW/cm 2 , and the monomer component was subjected to bulk polymerization for 2 hours to obtain a sheet-like elastomer having the following MTA-CEAAM structure. rice field.
  • Example 2 to 4 Each elastomer (sheet) was produced in the same manner as in Example 1, except that the monomers (A) and (B) and their amounts were changed according to the table below.
  • BA butyl acrylate
  • CNEA cyanoethyl acrylate
  • the thickness of each elastomer sheet was measured using a thickness gauge (manufactured by Nikon Corporation, product name: DIGIMICRO MFC-101A). In addition, the measurement was performed 5 times for an arbitrary portion, and the average value was taken as the thickness of the sheet.
  • a test piece was obtained by punching each elastomer sheet into a dumbbell-shaped No. 7 shape defined in 6.1 of JIS K6251.
  • the obtained test piece was attached to a tensile tester [manufactured by A&D Co., Ltd., product number: Tensilon RTG-1310] so that the distance between chucks was 19 mm, and the test piece was broken at a tensile speed of 100 mm / min.
  • the Young's modulus was measured by applying a tensile load until the tension was reached.
  • a displacement measurement marker was attached to one electrode of the actuator, and a DC voltage (1000 V) was applied between the electrodes with a voltage amplifier [manufactured by Matsusada Precision Co., Ltd., product number: HEOPS-10B2]. At this time, the amount of displacement (mm) of the marker was measured with a displacement meter [manufactured by Keyence Corporation, product number: LK-GD500].
  • An elastomer was obtained by subjecting the obtained monomer component to bulk polymerization for 2 hours in the same manner as in Example 1, except that the obtained monomer component was irradiated with ultraviolet rays from above so that the illuminance was 0.62 mW/cm 2 . .
  • a resin solution was obtained by dissolving 112 g of the obtained elastomer in 1011 g of butyl acetate.
  • 2,4,6-trimethylbenzoyldiphenylphosphine oxide [manufactured by BASF Corporation, trade name : Irgacure TPO] and 1.13 g of a surfactant (manufactured by BYK Additives & Instruments, trade name: BYK-UV3500) were added and stirred to prepare a curable resin composition.
  • Another release film was adhered to the obtained coating film, and pressed with a heated laminator (manufactured by FUJIPLA, used at 90° C.).
  • the resulting film-like coating film was cured in an air atmosphere at an ultraviolet illuminance of 500 mW/cm 2 ⁇ for 2.4 seconds ⁇ 1 pass (accumulated irradiation amount: 1200 mJ/cm 2 ) to form a front side film and a back side film.
  • An elastomer (sheet) sandwiched between was produced, and the same evaluation as in Example 1 was performed.
  • Hysteresis loss was derived as an evaluation index for the resilience of the elastomer sheets obtained in Examples 1 and 5. Specifically, the following measurements were performed using the test piece and tensile tester described above, and the hysteresis loss was calculated using the obtained graph.
  • the measurement is performed by applying a tensile load to the test piece to 100% elongation (an operation to set the distance between chucks to 38 mm) and an operation to return the test piece that has reached 100% to 0% (distance between chucks of 38 mm to 19 mm Return operation) (both 100 mm/min) was performed as one cycle, and two cycles were performed, and the hysteresis loss was calculated from the graph of the measurement results of the second cycle.
  • the data storage interval was 0.1 seconds.
  • FIG. 4 is a graph for explaining hysteresis loss.
  • the horizontal axis represents film elongation and the vertical axis represents normalized stress. Normalized stress is the value obtained by dividing the observed stress at each time by the observed stress at 100% film elongation.
  • the hysteresis loss was calculated by calculating the area of the area surrounded by the dotted line (outward path) and the solid line (return path) in FIG. A smaller hysteresis loss indicates better followability. The area was calculated as follows.
  • ⁇ t be the elongation of the film at a certain time t.
  • Example 1 the combination of MTA/CEAAM using CEAAM with higher polarity (Example 1 ) yielded an elastomer with a higher dielectric constant and higher displacement. For this reason, it was found that copolymerization of acrylamide having a cyano group with MTA resulted in a higher dielectric constant and a higher displacement than acryl having a cyano group. From the comparison of Example 1 and Comparative Example 5, it can be seen that MTA, which is as flexible as BA and has a high polarity, is copolymerized more than Comparative Example 5, which is a copolymer of highly polar CEAAM and butyl acrylate (BA). In Example 1, the dielectric constant and the amount of displacement were larger. Therefore, it was found that the dielectric constant and the displacement amount can be increased by copolymerizing the highly polar CEAAM with the soft and relatively highly polar MTA.
  • BA butyl acrylate
  • Example 5 Furthermore, from a comparison between Example 1 and Example 5, 4HBA as a cross-linking group was introduced in order to improve the reversion property, MOI-EG was added to the hydroxy group, and then a cross-linked structure was imparted by a photo-cross-linking reaction.
  • the elastomer (Example 5) was able to reduce the hysteresis loss compared to Example 1.
  • the elastomer of the present invention is not particularly limited, but is useful as a dielectric elastomer. It is expected to be used for small pumps and medical instruments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a polymer containing: a unit (A) originating from a (meth)acrylate monomer having an ether structure; and a unit (B) originating from (meth)acrylamide having a cyano group.

Description

重合体、エラストマー及びその製造方法、並びに、アクチュエータ、及び、センサPolymer, elastomer, manufacturing method thereof, actuator, and sensor
 本発明は、重合体、エラストマー及びその製造方法、並びに、アクチュエータ、及び、センサに関し、特に誘電エラストマーとして好適に用いることのできる重合体及びエラストマーに関する。 The present invention relates to polymers, elastomers, manufacturing methods thereof, actuators, and sensors, and particularly to polymers and elastomers that can be suitably used as dielectric elastomers.
 近年種々のエラストマーが開発されており、その用途も拡大している。例えば、誘電体材などに用いるエラストマーとしては、電圧の印加によって形状を変位させることが可能な誘電エラストマーが知られている。誘電エラストマーは、アクチュエータ、産業用ロボットなどに使用されるセンサ、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサ、人工筋肉、小型ポンプ、医療用器具などの用途に使用することができる。例えば、比誘電率が大きく、柔軟な誘電エラストマー材料を提供すべく、極性基を有する共重合体を用いた誘電エラストマーに関する技術が提案されている(例えば、下記特許文献1参照)。 Various elastomers have been developed in recent years, and their applications are expanding. For example, dielectric elastomers that can be deformed by voltage application are known as elastomers used for dielectric materials. Dielectric elastomers can be used in applications such as actuators, sensors used in industrial robots and the like, power generation elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, and medical instruments. For example, in order to provide a flexible dielectric elastomer material having a large relative dielectric constant, a technology related to a dielectric elastomer using a copolymer having a polar group has been proposed (see, for example, Patent Document 1 below).
特開2018-59042号公報JP 2018-59042 A
 上述の特許文献1には、極性基が直鎖状に繋がる3つ以上の原子を介してポリマー主鎖に結合されているモノマーを用いることが開示されており、また、極性基の一種としてシアノ基が例示されている。 The above-mentioned Patent Document 1 discloses the use of a monomer in which a polar group is bonded to a polymer main chain via three or more atoms that are linearly connected. groups are exemplified.
 しかし、上述の要件を満たすモノマーを用いた場合であっても、極性基を有するモノマーの種類、及び、当該モノマーと組み合わせるモノマーとの組み合わせの観点で未だ改善の余地があり、さらに高誘電率且つ変位量に優れた重合体の開発が期待されている。 However, even when a monomer that satisfies the above requirements is used, there is still room for improvement in terms of the type of monomer having a polar group and the combination of the monomer to be combined with the monomer. Development of polymers with excellent displacement is expected.
 本発明は、上述の課題を解決すべく、高い誘電率を有し、電圧印加時における変位量に優れたエラストマーを構成できる重合体を提供することを目的とする。
 また、本発明は、高い柔軟性と誘電率とを有し、電圧印加時における変位量に優れたエラストマー及びその製造方法、並びに、当該エラストマーを用いたアクチュエータ及びセンサを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polymer capable of constituting an elastomer having a high dielectric constant and an excellent amount of displacement when a voltage is applied.
Another object of the present invention is to provide an elastomer that has high flexibility and dielectric constant and is excellent in displacement when a voltage is applied, a method for producing the same, and an actuator and a sensor using the elastomer. .
 <1>
 エーテル構造を有する(メタ)アクリレートモノマーに由来する単位(A)と、
 シアノ基を有する(メタ)アクリルアミドに由来する単位(B)と、
を含む、重合体。
 <2>
 前記エーテル構造を有する(メタ)アクリレートモノマーが、下記式(1)で示される、前記<1>に記載の重合体。
Figure JPOXMLDOC01-appb-C000003
 
(式中、Rは水素原子又はメチル基を示す。Rは、ハロゲン原子を有していてもよい、炭素数1~5のアルキル基を示す。Xは、ハロゲン原子を有していてもよい、炭素数1~10のアルキレン基を示す。nは1~3の整数を表す。)
 <3>
 前記シアノ基を有する(メタ)アクリルアミドが、下記式(2)で示される、前記<1>又は前記<2>に記載の重合体。
Figure JPOXMLDOC01-appb-C000004
 
(式中、Rは水素原子又はメチル基を示す。Rは、水素原子、メチル基を示す。Xは、ハロゲン原子を有していてもよい、炭素数1~10のアルキレン基を示す。)
 <4>
 重量平均分子量が、200,000~4,000,000である、前記<1>~前記<3>のいずれかに記載の重合体。
 <5>
 前記<1>~前記<4>のいずれかに記載の重合体を含むエラストマー。
 <6>
 前記<5>に記載のエラストマーの製造方法であって、
 エーテル構造を有する(メタ)アクリレートモノマーとシアノ基を有する(メタ)アクリルアミドとを重合させて重合体を得る工程、
を含むエラストマーの製造方法。
 <7>
 前記エーテル構造を有する(メタ)アクリレートモノマーと前記シアノ基を有する(メタ)アクリルアミドとを光塊状重合によって重合させる、前記<6>に記載のエラストマーの製造方法。
 <8>
 前記<5>に記載のエラストマーを備えた、アクチュエータ。
 <9>
 前記<5>に記載のエラストマーを備えた、センサ。
<1>
A unit (A) derived from a (meth)acrylate monomer having an ether structure;
a unit (B) derived from (meth)acrylamide having a cyano group;
A polymer, including
<2>
The polymer according to <1> above, wherein the (meth)acrylate monomer having an ether structure is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003

(In the formula, R 1 represents a hydrogen atom or a methyl group. R 2 represents an alkyl group having 1 to 5 carbon atoms which may have a halogen atom. X 1 has a halogen atom. represents an alkylene group having 1 to 10 carbon atoms, and n represents an integer of 1 to 3.)
<3>
The polymer according to <1> or <2>, wherein the (meth)acrylamide having a cyano group is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004

(In the formula, R 1 represents a hydrogen atom or a methyl group. R 3 represents a hydrogen atom or a methyl group. X 2 represents an alkylene group having 1 to 10 carbon atoms, which may have a halogen atom. show.)
<4>
The polymer according to any one of <1> to <3>, which has a weight average molecular weight of 200,000 to 4,000,000.
<5>
An elastomer comprising the polymer according to any one of <1> to <4>.
<6>
The method for producing the elastomer according to <5>,
obtaining a polymer by polymerizing a (meth)acrylate monomer having an ether structure and a (meth)acrylamide having a cyano group;
A method of making an elastomer comprising:
<7>
The method for producing an elastomer according to <6> above, wherein the (meth)acrylate monomer having an ether structure and the (meth)acrylamide having a cyano group are polymerized by bulk photopolymerization.
<8>
An actuator comprising the elastomer according to <5>.
<9>
A sensor comprising the elastomer according to <5>.
 本発明によれば、高い誘電率を有し、電圧印加時における変位量に優れたエラストマーを構成できる重合体を提供することができる。
 また、本発明によれば、高い柔軟性と誘電率とを有し、電圧印加時における変位量に優れたエラストマー及びその製造方法、並びに、当該エラストマーを用いたアクチュエータ及びセンサを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the polymer which has a high dielectric constant and can constitute an elastomer excellent in the displacement amount at the time of voltage application can be provided.
Further, according to the present invention, it is possible to provide an elastomer that has high flexibility and dielectric constant and is excellent in the amount of displacement when a voltage is applied, a method for producing the same, and an actuator and a sensor using the elastomer. .
アクチュエータの一実施態様を示す概略平面図である。FIG. 4 is a schematic plan view showing one embodiment of an actuator; 図1に示されるアクチュエータのA-A部における概略断面図である。FIG. 2 is a schematic cross-sectional view of the actuator shown in FIG. 1 taken along line AA; エラストマーの変位を説明するための概略図である。FIG. 4 is a schematic diagram for explaining displacement of an elastomer; ヒステリシスロスを説明するためのグラフである。4 is a graph for explaining hysteresis loss;
 以下、本発明について説明するが、本発明の内容は以下の説明に限定されるものではない。また、本明細書を通じて、「(メタ)アクリレート」等と称した場合には、「アクリレート」又は「メタクリレート」を意味する。また、特に限定がない限り、“アルキル基”と称した場合には、直鎖、分岐及び脂環構造のアルキル基が含まれる。さらに、「~」を用いて数値範囲を示す場合、その両端の数値を含むものとする。 Although the present invention will be described below, the content of the present invention is not limited to the following description. In addition, throughout the present specification, "(meth)acrylate" or the like means "acrylate" or "methacrylate". In addition, unless otherwise specified, the term "alkyl group" includes linear, branched and alicyclic alkyl groups. Furthermore, when a numerical range is indicated using "-", the numerical values at both ends are included.
《本実施形態の重合体》
 本実施形態の重合体は、エーテル構造を有する(メタ)アクリレートモノマーに由来する単位(A)(以下、単に「単位(A)」と称することがある)と、シアノ基を有する(メタ)アクリルアミドに由来する単位(B)(以下、単に「単位(B)」と称することがある)と、を含む。
<<Polymer of the present embodiment>>
The polymer of the present embodiment includes units (A) derived from a (meth)acrylate monomer having an ether structure (hereinafter sometimes simply referred to as "units (A)") and (meth)acrylamide having a cyano group. and a unit (B) derived from (hereinafter sometimes simply referred to as "unit (B)").
 本明細書を通じて「本実施形態の重合体」は構成単位として単位(A)及び単位(B)を含む重合体(ポリマー)を意味し、液状、固体状、未硬化状態及び硬化状態のいずれの状態をも含む。また、「本実施形態のエラストマー」は、本実施形態の重合体を含むエラストマー(弾性体)であり、本実施形態の重合体自体が弾性体として機能する場合には、本実施形態の重合体自体を本実施形態のエラストマーと称することができる。また、本実施形態のエラストマーは、本実施形態の重合体に加えて、その他必要に応じて種々の添加剤を含んでいてもよい。 Throughout this specification, the "polymer of the present embodiment" means a polymer containing units (A) and units (B) as structural units, and may be liquid, solid, uncured, or cured. Also includes state. Further, the "elastomer of the present embodiment" is an elastomer (elastic body) containing the polymer of the present embodiment. itself can be referred to as the elastomer of this embodiment. In addition to the polymer of the present embodiment, the elastomer of the present embodiment may contain various additives as necessary.
 本実施形態の重合体は、エーテル構造を有する(メタ)アクリレートモノマー(以下、単に「モノマー(A)」と称することがある。)に由来し比較的極性が高く柔軟な単位(A)と、シアノ基を有する(メタ)アクリルアミド(以下、単に「モノマー(B)」と称することがある。)に由来し極性が高い単位(B)と、を含むことで、優れた誘電率と電圧印加時における変位量とを高い次元で両立させることができる。本実施形態の重合体は特に、アクチュエータ、産業用ロボットなどに使用されるセンサ、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサ、人工筋肉、小型ポンプ、医療用器具などの用途に使用することができる誘電エラストマーとして好適に用いることができる。なお、重合体又はエラストマーの高い誘電率と高い柔軟性(低ヤング率)とを両立させることで、電圧印加時における変位量を増加させることができる。 The polymer of the present embodiment is a relatively highly polar and flexible unit (A) derived from a (meth)acrylate monomer having an ether structure (hereinafter sometimes simply referred to as "monomer (A)"), (Meth)acrylamide having a cyano group (hereinafter sometimes simply referred to as "monomer (B)") and a highly polar unit (B) derived from the unit (B), which provides excellent dielectric constant and when voltage is applied It is possible to make both the displacement amount in and the high dimension compatible. In particular, the polymer of this embodiment can be used for applications such as actuators, sensors used in industrial robots, power generation elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, and medical instruments. It can be suitably used as a dielectric elastomer. It should be noted that the amount of displacement when a voltage is applied can be increased by achieving both a high dielectric constant and a high flexibility (low Young's modulus) of the polymer or elastomer.
<単位(A)>
 本実施形態の重合体は、構成単位として、エーテル構造を有する(メタ)アクリレートモノマー(モノマー(A))に由来する単位(A)を含む。モノマー(A)は、構造中に(メタ)アクリレート構造を有し、当該構造以外のエーテル構造(-C-O-C-)を少なくとも1つ含む(メタ)アクリレートである。単位(A)中の(メタ)アクリレート構造以外のエーテル構造の数は、特に限定はないが、誘電率と柔軟性とのバランスの観点から、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
<Unit (A)>
The polymer of the present embodiment contains, as a structural unit, a unit (A) derived from a (meth)acrylate monomer having an ether structure (monomer (A)). The monomer (A) is a (meth)acrylate having a (meth)acrylate structure in its structure and containing at least one ether structure (--C--O--C--) other than the structure. The number of ether structures other than the (meth)acrylate structure in the unit (A) is not particularly limited, but is preferably 1 to 3, more preferably 1 or 2, from the viewpoint of the balance between dielectric constant and flexibility. 1 is more preferred.
 モノマー(A)は、組み合わせるモノマー(B)に対する溶解力(溶解度)が高いことが好ましい。当該溶解力が高いモノマー(A)を用いると、モノマー(B)が常温で固体の物質である場合であっても、当該モノマー(B)を溶解することができ、これにより溶媒を使用せず、例えば、後述の塊状重合法により本実施形態の重合体を合成することができる。塊状重合法によれば所望に応じて本実施形態の重合体を高分子量化することができる。 It is preferable that the monomer (A) has a high dissolving power (solubility) with respect to the monomer (B) to be combined. When the monomer (A) having the high dissolving power is used, the monomer (B) can be dissolved even when the monomer (B) is a solid substance at room temperature, thereby eliminating the use of a solvent. For example, the polymer of the present embodiment can be synthesized by the bulk polymerization method described below. According to the bulk polymerization method, the polymer of the present embodiment can be increased in molecular weight as desired.
 モノマー(B)のモノマー(A)100g(1気圧下、液温25℃)に対する溶解度は、誘電率の向上と電圧印加時における変位量の向上等の観点から1質量%以上が好ましく、10質量%以上であることがさらに好ましく、30質量%以上がさらに好ましく、40質量%以上であることが特に好ましい。当該溶解度は、例えば、モノマー(A)10gに対し、モノマー(B)を滴下し、50℃で加熱混合し、冷却後の状態の確認を行い、冷却後不溶物が目視で確認できず、均一溶液となる上限濃度をモノマー(B)の溶解度とすることができる。 The solubility of the monomer (B) in 100 g of the monomer (A) (under 1 atm, liquid temperature 25° C.) is preferably 1% by mass or more, and 10% by mass, from the viewpoint of improving the dielectric constant and improving the amount of displacement when voltage is applied. % or more, more preferably 30 mass % or more, and particularly preferably 40 mass % or more. The solubility is determined, for example, by adding the monomer (B) dropwise to 10 g of the monomer (A), heating and mixing at 50 ° C., and checking the state after cooling. The solubility of the monomer (B) can be used as the upper limit concentration for a solution.
 エーテル構造を有する(メタ)アクリレートモノマーとしては、下記式(1)で示されるモノマー(A)を用いることができる。式(1)で示されるモノマー(A)は、誘電率が比較的高く、柔軟性に優れる。また、式(1)で示されるモノマー(A)は、後述する式(2)で示されるモノマー(B)に対する溶解力の観点でも有利である。 A monomer (A) represented by the following formula (1) can be used as the (meth)acrylate monomer having an ether structure. The monomer (A) represented by formula (1) has a relatively high dielectric constant and excellent flexibility. In addition, the monomer (A) represented by formula (1) is also advantageous in terms of dissolving power for the monomer (B) represented by formula (2) described below.
Figure JPOXMLDOC01-appb-C000005
 
(式中、Rは水素原子又はメチル基を示す。Rは、ハロゲン原子を有していてもよい、炭素数1~5のアルキル基を示す。Xは、ハロゲン原子を有していてもよい、炭素数1~10のアルキレン基を示す。nは1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000005

(In the formula, R 1 represents a hydrogen atom or a methyl group. R 2 represents an alkyl group having 1 to 5 carbon atoms which may have a halogen atom. X 1 has a halogen atom. represents an alkylene group having 1 to 10 carbon atoms, and n represents an integer of 1 to 3.)
 式(1)において、Rは、水素原子又はメチル基である。Rのなかでは、重合のさせやすさやヤング率の低い重合体を得る観点から水素原子が好ましい。 In formula (1), R 1 is a hydrogen atom or a methyl group. Among R 1 , a hydrogen atom is preferable from the viewpoint of facilitating polymerization and obtaining a polymer having a low Young's modulus.
 式(1)において、Rは、ハロゲン原子を有していてもよい炭素数1~5のアルキル基である。当該アルキル基は、直鎖状、分岐状若しくは環状のいずれであってもよいが、誘電率の観点から、直鎖状のアルキル基であることが好ましい。 In formula (1), R 2 is an alkyl group having 1 to 5 carbon atoms which may have a halogen atom. The alkyl group may be linear, branched, or cyclic, but from the viewpoint of dielectric constant, it is preferably a linear alkyl group.
 炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、イソアミル基、などが挙げられる。この中でも、Rとしては、誘電率の観点から炭素数1~4の直鎖状のアルキル基が好ましく、メチル基、エチル基、プロピル基がさらに好ましい。 Examples of alkyl groups having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, isoamyl group, and the like. Among these, R 2 is preferably a straight-chain alkyl group having 1 to 4 carbon atoms, more preferably a methyl group, an ethyl group, or a propyl group, from the viewpoint of dielectric constant.
 アルキル基に含まれうるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。アルキル基に含まれるハロゲン原子の数は、当該アルキル基の炭素数などによって異なるので一概には決定することができないが、本実施形態の目的が阻害されない範囲内で適宜調整することが好ましい。 The halogen atom that can be contained in the alkyl group includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like. The number of halogen atoms contained in the alkyl group varies depending on the number of carbon atoms in the alkyl group, etc., and cannot be determined indiscriminately.
 ハロゲン原子を有する炭素数1~5のアルキル基としては、例えば、トリフルオロメチル基、トリフルオロエチル基、トリフルオロn-プロピル基、トリフルオロイソプロピル基、トリフルオロn-ブチル基、トリフルオロイソブチル基、トリフルオロtert-ブチル基などが挙げられるが、本実施形態はこれら例示のみに限定されるものではない。 Examples of the alkyl group having 1 to 5 carbon atoms and having a halogen atom include trifluoromethyl group, trifluoroethyl group, trifluoro n-propyl group, trifluoroisopropyl group, trifluoro n-butyl group and trifluoroisobutyl group. , a trifluorotert-butyl group, etc., but the present embodiment is not limited to these examples.
 式(1)において、Xは、ハロゲン原子を有していてもよい炭素数1~10のアルキレン基である。当該アルキレン基は、直鎖状、分岐状若しくは環状のいずれであってもよいが、誘電率の観点から、直鎖状のアルキレン基であることが好ましい。 In formula (1), X 1 is an alkylene group having 1 to 10 carbon atoms which may have a halogen atom. The alkylene group may be linear, branched, or cyclic, but is preferably a linear alkylene group from the viewpoint of dielectric constant.
 前記炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロレン基、イソプロピレン基、n-ブチレン基、イソブレン基、tert-ブチレン基、sec-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基などが挙げられる。この中でも、Xとしては、誘電率の観点から炭素数1~6の直鎖状のアルキレン基が好ましく、炭素数1~4の直鎖状のアルキレン基がさらに好ましく、メチレン基、エチレン基が特に好ましい。また、Xで示されるアルキレン基は、上述のハロゲン原子を置換基として有していてもよい。 Examples of the alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, n-prolene group, isopropylene group, n-butylene group, isobrene group, tert-butylene group, sec-butylene group and n-pentylene. group, n-hexylene group, n-heptylene group, and the like. Among these, X 1 is preferably a straight-chain alkylene group having 1 to 6 carbon atoms from the viewpoint of dielectric constant, more preferably a straight-chain alkylene group having 1 to 4 carbon atoms, and a methylene group and an ethylene group. Especially preferred. Moreover, the alkylene group represented by X 1 may have the above-described halogen atom as a substituent.
 式(1)において、nは1~3の整数である。特に限定されるものではないが、誘電率の観点から、nは1又は2であること好ましく、1であることがより好ましい。 In formula (1), n is an integer of 1-3. Although not particularly limited, n is preferably 1 or 2, more preferably 1, from the viewpoint of dielectric constant.
 式(1)で表わされるモノマー(A)としては、例えば、メトキシエチル(メタ)アクリレート(MTA)、エトキシエチル(メタ)アクリレート、メトキシメチル(メタ)アクリレート、メトキシプロピル(メタ)アクリレート、エトキシメチル(メタ)アクリレート、複数のエーテル構造を含むアルキル基を有する(メタ)アクリレートモノマー(例えば、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレートなど)などが挙げられ、誘電率の点でメトキシエチル(メタ)アクリレート(MTA)、メトキシプロピル(メタ)アクリレートが好ましい。
 これらモノマー(A)は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
Examples of the monomer (A) represented by formula (1) include methoxyethyl (meth)acrylate (MTA), ethoxyethyl (meth)acrylate, methoxymethyl (meth)acrylate, methoxypropyl (meth)acrylate, ethoxymethyl ( meth)acrylates, and (meth)acrylate monomers having alkyl groups containing multiple ether structures (e.g., methoxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, etc.). Ethyl (meth)acrylate (MTA) and methoxypropyl (meth)acrylate are preferred.
Each of these monomers (A) may be used alone, or two or more of them may be used in combination.
 その他、式(1)で示されるモノマー(A)以外のモノマー(A)としては、例えば、テトラヒドロフルフリルアクリレートなどの環状エーテル構造を含むアルキル基を有する(メタ)アクリレートモノマーなどが挙げられる。 In addition, examples of the monomer (A) other than the monomer (A) represented by formula (1) include (meth)acrylate monomers having an alkyl group containing a cyclic ether structure such as tetrahydrofurfuryl acrylate.
<単位(B)>
 本実施形態の重合体は、構成単位として、シアノ基を有する(メタ)アクリルアミド(モノマー(B))に由来する単位(B)を含む。モノマー(B)は、構造中に(メタ)アクリルアミド構造を有し、さらにシアノ基(CN-)を少なくとも1つ含む(メタ)アクリルアミドである。単位(B)中のシアノ基の数は、特に限定はないが、誘電率の観点から、1~2が好ましく、1が好ましい。
<Unit (B)>
The polymer of the present embodiment contains, as a structural unit, a unit (B) derived from (meth)acrylamide (monomer (B)) having a cyano group. The monomer (B) is a (meth)acrylamide having a (meth)acrylamide structure in its structure and further containing at least one cyano group (CN--). The number of cyano groups in the unit (B) is not particularly limited, but is preferably 1 to 2, preferably 1, from the viewpoint of dielectric constant.
 シアノ基を有する(メタ)アクリルアミドとしては、下記式(2)で示されるモノマー(B)を用いることができる。式(2)で示されるモノマー(B)は、誘電率が特に高い。 A monomer (B) represented by the following formula (2) can be used as the (meth)acrylamide having a cyano group. The monomer (B) represented by formula (2) has a particularly high dielectric constant.
Figure JPOXMLDOC01-appb-C000006
 
(式中、Rは水素原子又はメチル基を示す。Rは、水素原子、メチル基を示す。Xは、ハロゲン原子を有していてもよい、炭素数1~10のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000006

(In the formula, R 1 represents a hydrogen atom or a methyl group. R 3 represents a hydrogen atom or a methyl group. X 2 represents an alkylene group having 1 to 10 carbon atoms, which may have a halogen atom. show.)
 式(2)において、Rは、水素原子又はメチル基である。Rのなかでは、重合のさせやすさやヤング率の低い重合体を得る観点から水素原子が好ましい。 In formula (2), R 1 is a hydrogen atom or a methyl group. Among R 1 , a hydrogen atom is preferable from the viewpoint of facilitating polymerization and obtaining a polymer having a low Young's modulus.
 式(2)において、Rは、水素原子又はメチル基である。Rのなかでは、ヤング率の観点から水素原子が好ましい。 In formula (2), R3 is a hydrogen atom or a methyl group. Among R 3 , a hydrogen atom is preferable from the viewpoint of Young's modulus.
 式(2)において、Xは、ハロゲン原子を有していてもよい炭素数1~10のアルキレン基である。当該アルキレン基は、直鎖状、分岐状若しくは環状のいずれであってもよいが、誘電率の観点から、直鎖状のアルキル基であることが好ましい。 In formula (2), X 2 is an alkylene group having 1 to 10 carbon atoms which may have a halogen atom. The alkylene group may be linear, branched, or cyclic, but is preferably a linear alkyl group from the viewpoint of dielectric constant.
 前記炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロレン基、イソプロピレン基、n-ブチレン基、イソブレン基、tert-ブチレン基、sec-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基などが挙げられる。この中でも、Xとしては、誘電率の観点から炭素数1~5の直鎖状のアルキレン基が好ましく、炭素数1~3の直鎖状のアルキレン基がさらに好ましく、メチレン基、エチレン基が好ましい。また、Xで示されるアルキレン基は、上述のハロゲン原子を置換基として有していてもよい。 Examples of the alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, n-prolene group, isopropylene group, n-butylene group, isobrene group, tert-butylene group, sec-butylene group and n-pentylene. group, n-hexylene group, n-heptylene group, and the like. Among these, X 2 is preferably a linear alkylene group having 1 to 5 carbon atoms from the viewpoint of dielectric constant, more preferably a linear alkylene group having 1 to 3 carbon atoms, and a methylene group and an ethylene group. preferable. Moreover, the alkylene group represented by X2 may have the above-mentioned halogen atom as a substituent.
 式(2)で表わされるモノマー(B)としては、例えば、シアノエチルアクリルアミド(CEAAM)、N-(2-シアノエチル)-N-メチルアクリルアミド、シアノメチルアクリルアミドなどが挙げられ、誘電率と柔軟性とのバランスの点でシアノエチルアクリルアミド(CEAAM)が好ましい。
 これらモノマー(B)は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
Examples of the monomer (B) represented by the formula (2) include cyanoethylacrylamide (CEAAM), N-(2-cyanoethyl)-N-methylacrylamide, cyanomethylacrylamide, and the like. Cyanoethylacrylamide (CEAAM) is preferred in terms of balance.
Each of these monomers (B) may be used alone, or two or more of them may be used in combination.
 その他、式(2)で示されるモノマー(B)以外のモノマー(B)としては、例えば、N,N-ビス(2-シアノエチル)アクリルアミド、N,N-ビス(2-シアノメチル)アクリルアミドなどが挙げられる。 Other examples of the monomer (B) other than the monomer (B) represented by formula (2) include N,N-bis(2-cyanoethyl)acrylamide and N,N-bis(2-cyanomethyl)acrylamide. be done.
<その他のモノマー(単位C)>
 本実施形態の重合体は、単位(A)及び単位(B)に加えて、必要に応じて、モノマー(A)及びモノマー(B)以外のモノマー(C)に由来する単位(C)を有していてもよい。モノマー(C)としては、例えば、アルキル(メタ)アクリレートモノマー、ハロゲン原子で置換されたアルキル(メタ)アクリレートモノマー、ヒドロキシアルキル(メタ)アクリレートモノマー、(メタ)アクリルオキシアルキルイソシアネートモノマーの他、カルボキシル基含有モノマー、アリール基含有モノマー、スチレン系モノマー、脂肪酸ビニルエステル系モノマー、ベタインモノマーなどが挙げられるが、本実施形態は、かかる例示のみに限定されるものではない。これらのモノマーは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
<Other Monomers (Unit C)>
In addition to the units (A) and units (B), the polymer of the present embodiment optionally has units (C) derived from a monomer (C) other than the monomers (A) and (B). You may have Examples of the monomer (C) include alkyl (meth)acrylate monomers, halogen-substituted alkyl (meth)acrylate monomers, hydroxyalkyl (meth)acrylate monomers, (meth)acryloxyalkyl isocyanate monomers, and carboxyl group containing monomers, aryl group-containing monomers, styrene-based monomers, fatty acid vinyl ester-based monomers, betaine monomers, etc., but the present embodiment is not limited to these examples. These monomers may be used alone, respectively, or two or more of them may be used in combination.
 前記アルキル(メタ)アクリレートモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、メチルペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートなどが挙げられる。
 また、前記ハロゲン原子で置換されたアルキル(メタ)アクリレートモノマーとしては、例えば、2,2,2-トリフルオロエチルアクリレートなどが挙げられる。
Examples of the alkyl (meth)acrylate monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, Acrylate, tert-butyl (meth)acrylate, sec-butyl (meth)acrylate, n-pentyl (meth)acrylate, isoamyl (meth)acrylate, n-hexyl (meth)acrylate, methylpentyl (meth)acrylate, cyclohexyl (meth)acrylate ) acrylates and the like.
Examples of the halogen-substituted alkyl (meth)acrylate monomer include 2,2,2-trifluoroethyl acrylate.
 前記ヒドロキシアルキル(メタ)アクリレートモノマーとしては、例えば、ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート(4HBA)、1-アクリロイルオキシ-3-ヒドロキシアダマンタン、1,3-シクロヘキサンジメタノールモノアクリレート等が挙げられる。 Examples of the hydroxyalkyl (meth)acrylate monomers include hydroxyethyl acrylate, 4-hydroxybutyl acrylate (4HBA), 1-acryloyloxy-3-hydroxyadamantane, and 1,3-cyclohexanedimethanol monoacrylate.
 前記(メタ)アクリルオキシアルキルイソシアネートモノマーとしては、例えば、(メタ)アクリルオキシエチルイソシアナート、2-メタクリルオキシエチルイソシアナートエチレングリーコール(MOI-EG)、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート(BEI)等が挙げられる。 Examples of the (meth)acryloxyalkyl isocyanate monomer include (meth)acryloxyethyl isocyanate, 2-methacryloxyethyl isocyanate ethylene glycol (MOI-EG), 1,1-(bisacryloyloxymethyl)ethyl isocyanate (BEI) and the like.
<重合体>
 本実施形態の重合体中の単位(A)の含有量は、特に限定はないが低ヤング率や誘電性、及び、モノマー(B)に対する溶解性の観点から、本実施形態のモノマーの総量に対して、10~99mol%が好ましく、30~95mol%がさらに好ましく、60~70mol%が特に好ましい。
 本実施形態の重合体中の単位(B)の含有量は、特に限定はないが低ヤング率や誘電性の点で、本実施形態のモノマーの総量に対して、1~90mol%が好ましく、5~70mol%がさらに好ましく、30~40mol%が特に好ましい。
 架橋構造を付与する等の目的のため、本実施形態の重合体は他の単位(後述の単位(C1))を共重合させることができ、さらに単位C1に他の単位(後述のC2)を結合させることができる。この場合、重合体中の単位(C1)の含有量は、特に限定はないが、モノマーの総量100モル部に対して、得られるエラストマーの戻り性や低ヤング率性の点で、好ましくは0.05~10モル部、0.1~5モル部がさらに好ましく、0.25~2.5モル部が特に好ましい。
<Polymer>
The content of the units (A) in the polymer of the present embodiment is not particularly limited, but from the viewpoint of low Young's modulus, dielectric properties, and solubility in the monomer (B), the total amount of the monomers of the present embodiment is On the other hand, 10 to 99 mol% is preferable, 30 to 95 mol% is more preferable, and 60 to 70 mol% is particularly preferable.
The content of the unit (B) in the polymer of the present embodiment is not particularly limited, but from the viewpoint of low Young's modulus and dielectric properties, it is preferably 1 to 90 mol% with respect to the total amount of the monomers of the present embodiment. 5 to 70 mol % is more preferred, and 30 to 40 mol % is particularly preferred.
For the purpose of imparting a crosslinked structure, etc., the polymer of the present embodiment can be copolymerized with other units (units (C1) described later), and further units C1 with other units (C2 described later). can be combined. In this case, the content of the unit (C1) in the polymer is not particularly limited, but it is preferably 0 in terms of rebound property and low Young's modulus of the resulting elastomer per 100 mol parts of the total amount of the monomers. 0.05 to 10 mol parts, more preferably 0.1 to 5 mol parts, and particularly preferably 0.25 to 2.5 mol parts.
 本実施形態の重合体の重量平均分子量(Mw)は、成膜性、並びに、機械物性(低ヤング率、低ヒステリシスロス)の観点から、200,000~4,000,000であることが好ましく、500,000~3,800,000がさらに好ましく、1,000,000~3,500,000が特に好ましい。本実施形態の重合体の重量平均分子量は、ゲルパーミエイションクロマトグラフィー〔東ソー(株)製、品番:HLC-8320GPC、カラム:東ソー(株)製、品番:TSKgel GMHH-R、溶媒:テトラヒドロフラン、流速:0.6mL/min〕を用いてポリスチレン換算で測定することができる。  The weight average molecular weight (Mw) of the polymer of the present embodiment is preferably 200,000 to 4,000,000 from the viewpoint of film-forming properties and mechanical properties (low Young's modulus, low hysteresis loss). , 500,000 to 3,800,000 are more preferred, and 1,000,000 to 3,500,000 are particularly preferred. The weight average molecular weight of the polymer of the present embodiment was determined by gel permeation chromatography [manufactured by Tosoh Corporation, product number: HLC-8320GPC, column: manufactured by Tosoh Corporation, product number: TSKgel GMHH-R, solvent: tetrahydrofuran, Flow rate: 0.6 mL/min] can be used for measurement in terms of polystyrene. 
 本実施形態において各構成単位の組み合わせとしては、特に制限されるものではないが、誘電率と柔軟性とを高い次元で両立させる観点から、例えば、以下の組み合わせが挙げられる。
(A)MTA(単位(A))と、CEAAM(単位(B))と、の組み合わせ
(B)MTA(単位(A))と、CEAAM(単位(B))と、4HBA(単位(C))と、の組み合わせ
(C)MTA(単位(A))と、CEAAM(単位(B))と、4HBA(単位(C1))と、MOI-EG(単位(C2))の組み合わせ
In the present embodiment, the combination of each structural unit is not particularly limited, but from the viewpoint of achieving both dielectric constant and flexibility at a high level, the following combinations may be mentioned, for example.
(A) Combination of MTA (unit (A)) and CEAAM (unit (B)) (B) MTA (unit (A)), CEAAM (unit (B)), and 4HBA (unit (C) ) and (C) a combination of MTA (unit (A)), CEAAM (unit (B)), 4HBA (unit (C1)), and MOI-EG (unit (C2))
 本実施形態の重合体としては、例えば、下記式(3)で示される構造を有する重合体が挙げられる。 Examples of the polymer of this embodiment include a polymer having a structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
 
(式(3)中、R,R,R,X,Xは、上述の式(1)及び式(2)で説明したものと同義である。また、nは1~3の整数であり、mは150~25,000であり、lは150~25,000を示す。)
Figure JPOXMLDOC01-appb-C000007

(In Formula (3), R 1 , R 2 , R 3 , X 1 and X 2 have the same meanings as those described in Formulas (1) and (2) above. Further, n is 1 to 3 is an integer, m is 150 to 25,000, and l is 150 to 25,000.)
《本実施形態のエラストマー》
 上述のように、本実施形態のエラストマーは、本実施形態の重合体を含むエラストマー(弾性体)であり、本実施形態の重合体自体が弾性体として機能する場合には、本実施形態の重合体自体を本実施形態のエラストマーと称することができる。本実施形態のエラストマーの幅や厚み、長さなどの形状は特に限定されるものではない。
<<Elastomer of this embodiment>>
As described above, the elastomer of the present embodiment is an elastomer (elastic body) containing the polymer of the present embodiment. The coalescence itself can be referred to as the elastomer of this embodiment. Shapes such as width, thickness and length of the elastomer of this embodiment are not particularly limited.
 本実施形態のエラストマーのヤング率は、1MPa以下が好ましく、0.5MPa以下がさらに好ましく、0.2MPa以下が特に好ましい。
 本実施形態のエラストマーの伸長率、ヤング率、ヒステリシスロスは、例えば、引張測定器を用い後述する実施例に記載の方法に従って測定することができる。
 本実施形態のエラストマーの伸長率は、200%以上が好ましく、400%以上がさらに好ましく、700%以上が特に好ましい。
 本実施形態のエラストマーをセンサに用いるなど戻り性が求められる場合、そのヒステリシスロスは、10%以下であることが好ましく、5%以下がさらに好ましい。
The Young's modulus of the elastomer of the present embodiment is preferably 1 MPa or less, more preferably 0.5 MPa or less, and particularly preferably 0.2 MPa or less.
The elongation rate, Young's modulus, and hysteresis loss of the elastomer of the present embodiment can be measured, for example, using a tensile tester according to the methods described in Examples below.
The elongation rate of the elastomer of this embodiment is preferably 200% or more, more preferably 400% or more, and particularly preferably 700% or more.
When the elastomer of the present embodiment is used for a sensor or the like and the return property is required, the hysteresis loss is preferably 10% or less, more preferably 5% or less.
 本実施形態のエラストマーの誘電率は、特に限定されるものではないが、誘電アクチュエータ用途の場合、6以上が好ましく、8以上がさらに好ましく、10以上が特に好ましい。実施形態のエラストマーの誘電率は後述の実施例に記載の方法で測定することができる。 Although the dielectric constant of the elastomer of the present embodiment is not particularly limited, it is preferably 6 or more, more preferably 8 or more, and particularly preferably 10 or more for use as a dielectric actuator. The dielectric constant of the elastomer of the embodiment can be measured by the method described in Examples below.
 本実施形態のエラストマーの電圧を印加した際の変化率は後述の実施例に記載の方法で測定することができる特に限定されるものではないが、誘電アクチュエータ用途の場合、1kV印加時の変位量(変位量@1kV(%)は、0.1%以上が好ましく、0.3%以上がさらに好ましく、0.5%以上が特に好ましい。同様に、変位量の最大変化率(%)(Max変位量(%))は、2%以上が好ましく、5%以上がさらに好ましく、10%以上が特に好ましい。 The rate of change when a voltage is applied to the elastomer of this embodiment can be measured by the method described in Examples below, and is not particularly limited. (The displacement @ 1 kV (%) is preferably 0.1% or more, more preferably 0.3% or more, and particularly preferably 0.5% or more. Similarly, the maximum change rate (%) of the displacement (Max The amount of displacement (%) is preferably 2% or more, more preferably 5% or more, and particularly preferably 10% or more.
 本実施形態のエラストマーの耐電圧は、誘電アクチュエータ用途の場合、10(v/μm)以上が好ましく、20(v/μm)以上がさらに好ましい。 The withstand voltage of the elastomer of this embodiment is preferably 10 (v/μm) or more, more preferably 20 (v/μm) or more, in the case of dielectric actuator applications.
 本実施形態のエラストマーのガラス転移温度は、特に限定はないが、低ヤング率の観点から、30℃以下であることが好ましく、0℃以下であることがさらに好ましく、-20℃以下であることが特に好ましい。ガラス転移温度の測定は、JIS.K6240:2011に準拠して行うことができる。 The glass transition temperature of the elastomer of the present embodiment is not particularly limited, but from the viewpoint of low Young's modulus, it is preferably 30° C. or lower, more preferably 0° C. or lower, and −20° C. or lower. is particularly preferred. The glass transition temperature is measured according to JIS. K6240:2011 can be complied with.
《重合体及びエラストマーの合成方法》
 本実施形態の重合体及びエラストマーの製造方法は特に限定はなく、例えば、塊状重合法、溶液重合法、乳化重合法、懸濁重合法など公知の方法で適宜合成が可能である。ただし、本実施形態は、かかる例示のみに限定されるものではない。これらの重合法のなかでは、高分子量化の観点から、塊状重合法及び乳化重合法が好ましく、塊状重合法がより好ましく、光塊状重合法がさらに好ましい。塊状重合法によって本実施形態のエラストマーを重合させた場合には、合成の際に分散剤や溶媒などを用いる必要がないため、重合体を合成した系から分散剤や溶媒などを除去する必要がなく、生産性に優れる。
<<Method for Synthesizing Polymer and Elastomer>>
The method for producing the polymer and elastomer of the present embodiment is not particularly limited, and synthesis can be performed appropriately by known methods such as bulk polymerization, solution polymerization, emulsion polymerization, and suspension polymerization. However, the present embodiment is not limited only to such examples. Among these polymerization methods, the bulk polymerization method and the emulsion polymerization method are preferred, the bulk polymerization method is more preferred, and the photo-bulk polymerization method is still more preferred, from the viewpoint of increasing the molecular weight. When the elastomer of the present embodiment is polymerized by a bulk polymerization method, it is not necessary to use a dispersant, solvent, etc. during synthesis, so it is necessary to remove the dispersant, solvent, etc. from the system in which the polymer is synthesized. and excellent productivity.
 上述のように、本実施形態のエラストマーは、例えば、エーテル構造を有する(メタ)アクリレートモノマー(モノマー(A))とシアノ基を有する(メタ)アクリルアミド(モノマー(B))とを重合させて重合体を得る工程、を含むエラストマーの製造方法に製造することが可能である。また、上述の重合体を得る工程においては、エーテル構造を有する(メタ)アクリレートモノマー(モノマー(A))とシアノ基を有する(メタ)アクリルアミド(モノマー(B))とを光塊状重合によって重合させることができる。 As described above, the elastomer of the present embodiment is produced by, for example, polymerizing a (meth)acrylate monomer having an ether structure (monomer (A)) and a (meth)acrylamide having a cyano group (monomer (B)). It is possible to manufacture the elastomer by a process for producing the elastomer, including the step of obtaining coalescence. Further, in the step of obtaining the above polymer, a (meth)acrylate monomer having an ether structure (monomer (A)) and a (meth)acrylamide having a cyano group (monomer (B)) are polymerized by bulk photopolymerization. be able to.
 本実施形態の重合体又はエラストマー(以下、「本実施形態の重合体等」と称することがある)を光塊状重合反応によって合成する場合、具体的には、モノマー(A)とモノマー(B)とを必要に応じて重合開始剤を用いて重合(例えば、紫外線照射による塊状重合)し、構成単位(A)及び(B)とで構成された重合体を合成することができる。 When synthesizing the polymer or elastomer of the present embodiment (hereinafter sometimes referred to as "the polymer of the present embodiment, etc.") by a photo-bulk polymerization reaction, specifically, the monomer (A) and the monomer (B) can be polymerized (for example, bulk polymerization by ultraviolet irradiation) using a polymerization initiator as necessary to synthesize a polymer composed of the structural units (A) and (B).
 本実施形態の重合体等を重合させる際の雰囲気は、特に限定がなく、大気であってもよく、或いは窒素ガス、アルゴンガスなどの不活性ガスであってもよい。 The atmosphere in which the polymer or the like of the present embodiment is polymerized is not particularly limited, and may be air or an inert gas such as nitrogen gas or argon gas.
 本実施形態の重合体等を重合させる際の温度は、特に限定がなく、通常、5~100℃程度の温度であることが好ましい。モノマー成分を重合させるのに要する時間は、重合条件によって異なるので一概には決定することができないことから任意であるが、通常、10分間~20時間程度である。 The temperature at which the polymer of the present embodiment is polymerized is not particularly limited, and a temperature of about 5 to 100°C is usually preferred. The time required to polymerize the monomer components varies depending on the polymerization conditions and cannot be generally determined.
 重合反応は、残存しているモノマー成分の量が20質量%以下になった時点で、任意に終了することができる。なお、残存しているモノマー成分の量は、例えば、ゲルパーミエイションクロマトグラフィーを用いて測定することができる。この際、モノマー(A)とモノマー(B)とに加えて、後述する光重合開始剤などを用いてもよい。本実施形態の重合体等の塊状重合の条件は、特に限定はないが、上述の好ましい分子量の範囲のものを得る観点、低ヒステリシスロス化の観点から、紫外線照度10mW/cm以下が好ましく、1mW/cm以下がより好ましく、0.6mW/cm以下がさらに好ましい。また、重合性の観点から0.01mW/cm以上が好ましい。 The polymerization reaction can optionally be terminated when the amount of remaining monomer components is 20% by weight or less. In addition, the amount of the remaining monomer component can be measured using, for example, gel permeation chromatography. At this time, in addition to the monomer (A) and the monomer (B), a photopolymerization initiator to be described later may be used. The conditions for bulk polymerization of the polymer of the present embodiment are not particularly limited, but from the viewpoint of obtaining a polymer with the preferred molecular weight range described above and from the viewpoint of low hysteresis loss, an ultraviolet illumination intensity of 10 mW/cm 2 or less is preferable. 1 mW/cm 2 or less is more preferable, and 0.6 mW/cm 2 or less is even more preferable. From the viewpoint of polymerizability, it is preferably 0.01 mW/cm 2 or more.
 上述のモノマー成分を重合させて本実施形態の重合体を合成するためには、重合開始剤(光重合開始剤、熱重合開始剤)、連鎖移動剤などと用いてもよい。これらについては公知のものを適宜選定して用いることができる。 A polymerization initiator (photopolymerization initiator, thermal polymerization initiator), a chain transfer agent, etc. may be used in order to polymerize the above monomer components to synthesize the polymer of the present embodiment. As for these, known ones can be appropriately selected and used.
<光重合開始剤>
 光重合開始剤は、各種の活性光線、例えば紫外線等により活性化され、重合反応を開始させる化合物である。光重合開始剤としては、例えば、ラジカル光重合開始剤、カチオン光重合開始剤、アニオン光重合開始剤が挙げられる。これら光重合開始剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。例えば、ラジカル光重合開始剤を2種以上併用することができる。
<Photoinitiator>
A photopolymerization initiator is a compound that is activated by various actinic rays such as ultraviolet rays to initiate a polymerization reaction. Examples of photopolymerization initiators include radical photopolymerization initiators, cationic photopolymerization initiators, and anionic photopolymerization initiators. One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination. For example, two or more radical photopolymerization initiators can be used in combination.
 光重合開始剤は、本実施形態の重合体を光硬化させる際の露光波長に吸収がある化合物を適宜選定することが望ましいが、例えば、ベンゾインエーテル、ベンゾインα、α-ジメチルベンジルケタール、α,α-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-フェニルアセトン-1、1-ヒドロキシ-シクロヘキシルベンゾフェノン、2-ヒドロキシ-2-メチル-p-ヒドロキシエチルエーテルフェニルアセトン-1、[2-メチル1-(4-カルボキシフェニル)-2-モルホリノン-1]、[2-ベンジル-2-ジメチルアミノ-1-(4-モルホリニルフェニル)ブタノン-1]、ベンゾイルホルメート、2,4,6-トリメチルフェニルアシル-エトキシ-フェニルホスフィンオキシド、2,4,6-トリメチルフェニルアシルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルフェニル)フェニルホスフィンオキシド、及び4-p-トリルヒドラジルベンゾフェノンなどからなる群から選択される1種以上のラジカル光重合開始剤を用いることができる。 As the photopolymerization initiator, it is desirable to appropriately select a compound having absorption at the exposure wavelength when the polymer of the present embodiment is photocured. α-diethoxyacetophenone, 2-hydroxy-2-methyl-phenylacetone-1, 1-hydroxy-cyclohexylbenzophenone, 2-hydroxy-2-methyl-p-hydroxyethyletherphenylacetone-1, [2-methyl 1- (4-carboxyphenyl)-2-morpholinone-1], [2-benzyl-2-dimethylamino-1-(4-morpholinylphenyl)butanone-1], benzoylformate, 2,4,6-trimethyl the group consisting of phenylacyl-ethoxy-phenylphosphine oxide, 2,4,6-trimethylphenylacyldiphenylphosphine oxide, bis(2,4,6-trimethylphenyl)phenylphosphine oxide, 4-p-tolylhydrazylbenzophenone, and the like; One or more radical photoinitiators selected from can be used.
 本実施形態の重合体中の光重合開始剤の含有量は、当該光重合開始剤の種類などによって異なるので一概には決定することができないが、通常、エラストマー形成用組成物100質量部に対し、0.01~20質量部程度であることが好ましい。 The content of the photopolymerization initiator in the polymer of the present embodiment varies depending on the type of the photopolymerization initiator, and cannot be generally determined. , about 0.01 to 20 parts by mass.
(界面活性剤)
 本実施形態の重合体等の合成には、界面活性剤を用いてもよい。本実施形態の重合体等に界面活性剤が含まれていると、表面の凹凸が少ないフィルムや膜を形成することができる。
 本実施形態の重合体中の界面活性剤の含有量は、特に限定はないが、塗布時における塗膜表面の凹凸発生抑制の観点から、本実施形態の重合体の総量に対して、0.01~1質量%が好ましく、0.05~0.5質量%がさらに好ましく、0.1~0.3質量%が特に好ましい。
(Surfactant)
A surfactant may be used in synthesizing the polymer or the like of the present embodiment. When the polymer or the like of the present embodiment contains a surfactant, it is possible to form a film or membrane with less unevenness on the surface.
The content of the surfactant in the polymer of the present embodiment is not particularly limited, but from the viewpoint of suppressing the occurrence of unevenness on the surface of the coating film during application, the total amount of the polymer of the present embodiment is 0.5. 01 to 1% by mass is preferable, 0.05 to 0.5% by mass is more preferable, and 0.1 to 0.3% by mass is particularly preferable.
 前記界面活性剤としては、例えば、ジメチルシロキサン系界面活性剤、フッ素系界面活性剤が挙げられ、ジメチルシロキサン系界面活性剤が好ましい。また、界面活性剤としては、アクリロイル基含有ポリエーテル変性ジメチルシロキサンなど、架橋性官能基を有する界面活性剤が好ましい。当該架橋性官能基としては、(メタ)アクリロイル基、アリル基が挙げられる。 Examples of the surfactant include dimethylsiloxane-based surfactants and fluorine-based surfactants, with dimethylsiloxane-based surfactants being preferred. As the surfactant, a surfactant having a crosslinkable functional group such as acryloyl group-containing polyether-modified dimethylsiloxane is preferable. Examples of the crosslinkable functional group include a (meth)acryloyl group and an allyl group.
 ジメチルシロキサン系界面活性剤としては、市販品として、例えば、BYK Additives & Instruments社製の、BYK-UV3500、BYK-UV3505、BYK-UV3510、BYK-UV3535、BYK-UV3570、BYK-UV3575、BYK-UV3576などを用いることができ、その中でも、BYK-UV3500が好ましい。 Examples of dimethylsiloxane-based surfactants include commercial products such as BYK-UV3500, BYK-UV3505, BYK-UV3510, BYK-UV3535, BYK-UV3570, BYK-UV3575, and BYK-UV3576 manufactured by BYK Additives & Instruments. etc. can be used, and among them, BYK-UV3500 is preferable.
 その他、本実施形態の重合体は、本発明の効果を損なわない範囲で、所望に応じて、連鎖移動剤、熱重合開始剤、光増感剤などを併用することができる。 In addition, the polymer of the present embodiment can be used in combination with a chain transfer agent, a thermal polymerization initiator, a photosensitizer, etc., as desired, as long as the effects of the present invention are not impaired.
(架橋構造の形成)
 本実施形態の重合体等は、単位(A)及び単位(B)に加えて、水酸基等の置換基を有するモノマー(C1)(例えば、4HBA等のヒドロキシアルキル(メタ)アクリレートモノマー)を用いて、本実施形態の重合体等に架橋構造を付与させることもできる。この場合、必要に応じて、モノマー(A)~(C1)を重合させた重合体等を溶媒中に溶解して溶液とし、当該溶液中に、架橋剤となるモノマー(C2)(例えば、イソシアネート基を有するモノマー)をさらに添加(必要に応じて触媒を使用)することで、重合体の単位(C1)に架橋剤となるモノマー(C2)が結合し、モノマー(C2)同士が重合した重合鎖を形成したり、各重合体の側鎖同士が水素結合等を形成したり、各重合体の主鎖や側鎖が相互に絡み合うこと等で、架橋構造を有する重合体等を得ることができていると考えられる。上述のように、水酸基等の置換基を有するモノマー(C1)(例えば、4HBA等のヒドロキシアルキル(メタ)アクリレートモノマー)と架橋剤となるモノマー(C2)(例えば、イソシアネート基を有するモノマー)とを用い、本実施形態の重合体等に架橋構造を付与することで、重合体等の戻り性が向上し、ヒステリシスロスを低減させることができる。すなわち、このような架橋構造を形成したものも、本実施形態の重合体等に含まれる。
(Formation of crosslinked structure)
In addition to the units (A) and units (B), the polymer etc. of the present embodiment uses a monomer (C1) having a substituent such as a hydroxyl group (for example, a hydroxyalkyl (meth)acrylate monomer such as 4HBA). A crosslinked structure can also be imparted to the polymer or the like of the present embodiment. In this case, if necessary, a polymer obtained by polymerizing the monomers (A) to (C1) is dissolved in a solvent to form a solution, and a monomer (C2) (for example, isocyanate By further adding a monomer having a group) (using a catalyst if necessary), the monomer (C2) that serves as a cross-linking agent is bonded to the polymer unit (C1), and the monomer (C2) is polymerized with each other. A polymer having a crosslinked structure can be obtained by forming chains, forming hydrogen bonds between the side chains of each polymer, or intertwining the main chains and side chains of each polymer. It is considered to be done. As described above, a monomer (C1) having a substituent such as a hydroxyl group (e.g., a hydroxyalkyl (meth)acrylate monomer such as 4HBA) and a monomer (C2) serving as a cross-linking agent (e.g., a monomer having an isocyanate group) are By using and imparting a crosslinked structure to the polymer or the like of the present embodiment, the reversion property of the polymer or the like can be improved and the hysteresis loss can be reduced. In other words, a polymer having such a crosslinked structure is also included in the polymer or the like of the present embodiment.
 本実施形態の重合体等に架橋構造を付与させる等種々の目的に応じて、本実施形態の重合体等を溶媒に溶解し樹脂溶液とすることができる。当該溶媒としては、特に限定はないが、例えば、ベンゼン系溶媒、ケトン系溶媒、エステル系溶媒等を用いることができ、具体的には、トルエン、シクロペンタノン、酢酸ブチル、カルビトールアセテート等を挙げることができる。 According to various purposes such as imparting a crosslinked structure to the polymer or the like of the present embodiment, the polymer or the like of the present embodiment can be dissolved in a solvent to form a resin solution. The solvent is not particularly limited, but for example, benzene-based solvents, ketone-based solvents, ester-based solvents and the like can be used. Specifically, toluene, cyclopentanone, butyl acetate, carbitol acetate and the like can be used. can be mentioned.
 また、本実施形態の重合体等に架橋構造を付与させる場合、架橋剤として機能するモノマー(C2)とともに触媒を用いることができる。当該触媒は、主として、本実施形態の重合体等中の単位(C1)の水酸基等に、架橋剤として用いるイソシアネート等のモノマー(C2)を付加させることを目的として添加される。前記触媒としては、特に限定はないが、例えば、錫触媒などを用いることができる。 In addition, when imparting a crosslinked structure to the polymer or the like of the present embodiment, a catalyst can be used together with the monomer (C2) functioning as a crosslinker. The catalyst is mainly added for the purpose of adding the monomer (C2) such as isocyanate used as a cross-linking agent to the hydroxyl groups of the units (C1) in the polymer and the like of the present embodiment. Although the catalyst is not particularly limited, for example, a tin catalyst or the like can be used.
 モノマー(C1)としては、上述のモノマー(C)から適宜選択が可能であり、例えば、ヒドロキシアルキル(メタ)アクリレートモノマー、カルボキシル基含有モノマー等を用いることができる。
 架橋剤として用いられるモノマー(C2)としては、上述のモノマー(C)から適宜選択が可能であり、例えば、(メタ)アクリルオキシアルキルイソシアネートモノマー等を用いることができる。
 モノマー(C1)及びモノマー(C2)を用いて本実施形態の重合体等に架橋構造を付与する場合、モノマー(C2)の含有量は、重合体等の戻り性等の観点から、モノマー(C1)の総量に対して、25~800mol%が好ましく、50~400mol%がさらに好ましく、100~200mol%が特に好ましい。
The monomer (C1) can be appropriately selected from the monomers (C) described above, and for example, hydroxyalkyl (meth)acrylate monomers, carboxyl group-containing monomers, and the like can be used.
The monomer (C2) used as a cross-linking agent can be appropriately selected from the monomers (C) described above, and for example, a (meth)acryloxyalkyl isocyanate monomer or the like can be used.
When the monomer (C1) and the monomer (C2) are used to impart a crosslinked structure to the polymer or the like of the present embodiment, the content of the monomer (C2) is set to the monomer (C1 ) is preferably from 25 to 800 mol %, more preferably from 50 to 400 mol %, and particularly preferably from 100 to 200 mol %.
 本実施形態の重合体等中の単位(C1)の水酸基等と本実施形態の重合体等中の単位(C2)のイソシアネート等との反応における反応条件は特に限定はないが、架橋剤として用いるイソシアネート等のモノマー(C2)同士の反応を防ぐ観点から、加熱温度は40~100℃が好ましく、60~80℃がさらに好ましく;加熱時間は0.5~12時間が好ましく、1~6時間がさらに好ましい。
 また、光重合開始剤を用いて光照射によって、重合体等中の単位(C)の(メタ)アクリロイル基等同士を反応させる場合、光照射条件は、特に限定はないが、紫外線などを用いることができる。紫外線照度は、架橋構造を確実に形成する観点と必要十分な照射量の観点から、10~10,000mW/cmであることが好ましく、100~1,000mW/cmがさらに好ましい。紫外線積算照射量は100mJ/cm以上であることが好ましい。
The reaction conditions for the reaction between the hydroxyl group of the unit (C1) in the polymer etc. of the present embodiment and the isocyanate etc. of the unit (C2) in the polymer etc. of the present embodiment are not particularly limited. From the viewpoint of preventing the reaction between monomers (C2) such as isocyanate, the heating temperature is preferably 40 to 100°C, more preferably 60 to 80°C; the heating time is preferably 0.5 to 12 hours, and 1 to 6 hours. More preferred.
When the (meth)acryloyl groups of the unit (C) in the polymer or the like are allowed to react with each other by light irradiation using a photopolymerization initiator, the light irradiation conditions are not particularly limited, but ultraviolet light or the like is used. be able to. The ultraviolet illuminance is preferably from 10 to 10,000 mW/cm 2 and more preferably from 100 to 1,000 mW/cm 2 from the viewpoints of reliably forming a crosslinked structure and the necessary and sufficient irradiation dose. It is preferable that the cumulative ultraviolet irradiation amount is 100 mJ/cm 2 or more.
《エラストマーの使用形態》
 本実施形態のエラストマーは、使用用途に応じて形状などを適宜設計することができる。本実施形態のエラストマーは、例えば、シート状のエラストマーや、エラストマーを積層した積層体として用いることができる。
<<Usage form of elastomer>>
The shape and the like of the elastomer of this embodiment can be appropriately designed according to the intended use. The elastomer of the present embodiment can be used, for example, as a sheet-like elastomer or a laminate obtained by laminating elastomers.
 本実施形態のエラストマーをシート状にした場合、シート厚さは、特に限定されるものではないが、例えば、誘電エラストマー用途の場合、10μm~300μmが好ましい。
 また、本実施形態のエラストマーを積層体とする場合、例えば、誘電エラストマー用途の場合には、厚さ10μm~50μmのシート状のエラストマーを100~300枚積層することで形成することができる。
When the elastomer of the present embodiment is formed into a sheet, the thickness of the sheet is not particularly limited.
Further, when the elastomer of the present embodiment is used as a laminate, for example, in the case of a dielectric elastomer application, it can be formed by laminating 100 to 300 sheet-like elastomer sheets having a thickness of 10 μm to 50 μm.
 本実施形態のエラストマーには、その粘度を調整するためなど、所望の目的に応じて、他のポリマーを適量含有していてもよい。他のポリマーとしては、例えば、アクリル樹脂、ポリアクリロニトリル、ポリ(メタ)アクリルアミド、ポリアミド、ポリ塩化ビニル、ポリウレタン、ポリエステル、カルボキシメチルセルロースなどが挙げられるが、本実施形態は、これら例示のみに限定されるものではない。これらの他のポリマーは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 The elastomer of this embodiment may contain an appropriate amount of other polymer according to the desired purpose, such as adjusting its viscosity. Other polymers include, for example, acrylic resins, polyacrylonitrile, poly(meth)acrylamide, polyamide, polyvinyl chloride, polyurethane, polyester, carboxymethylcellulose, etc., but the present embodiment is limited only to these examples. not a thing These other polymers may be used alone or in combination of two or more.
 本実施形態のエラストマーには、必要により、中和剤が含まれていてもよい。中和剤としては、例えば、水酸化ナトリウム、水酸化カリウムなどの無機塩基性化合物;モノエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、トリエタノールアミン、モルホリン、アミノメチルプロパノール、アミノメチルプロパンジオール、オクチルアミン、トリブチルアミン、アニリンなどの有機塩基性化合物などが挙げられるが、本実施形態は、かかる例示のみに限定されるものではない。これらの中和剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 The elastomer of this embodiment may contain a neutralizing agent, if necessary. Examples of neutralizing agents include inorganic basic compounds such as sodium hydroxide and potassium hydroxide; monoethanolamine, dimethylethanolamine, diethylethanolamine, triethanolamine, morpholine, aminomethylpropanol, aminomethylpropanediol, octyl Examples include organic basic compounds such as amine, tributylamine, and aniline, but the present embodiment is not limited to such examples. These neutralizing agents may be used alone or in combination of two or more.
 本実施形態のエラストマーには、本実施形態の目的が阻害されない範囲内で、添加剤が含まれていてもよい。添加剤としては、例えば、着色剤、酸化防止剤、紫外線吸収剤、老化防止剤、熱伝導性フィラー、導電性フィラーなどが挙げられるが、本実施形態は、かかる例示のみに限定されるものではない。 The elastomer of the present embodiment may contain additives within a range that does not hinder the purpose of the present embodiment. Examples of additives include coloring agents, antioxidants, ultraviolet absorbers, anti-aging agents, thermally conductive fillers, conductive fillers, etc. However, the present embodiment is not limited only to such examples. do not have.
《エラストマーの用途》
 本実施形態のエラストマーはシート状とした際に、用途によっては、そのままの状態で用いることができるが、強靭性を付与する観点から、一軸延伸又は二軸延伸されていることが好ましく、二軸延伸されていることがより好ましい。前記シートの延伸倍率は、強靭性を付与する観点から、好ましくは1.2倍以上、より好ましくは1.5倍以上、さらに好ましくは2倍以上であり、当該フィルムの厚さにもよるが、延伸時の破断を防止する観点から、好ましくは8倍以下、より好ましくは6倍以下、さらに好ましくは5倍以下である。なお、シートを延伸させる際には、必要により、加熱してもよい。
《Uses of Elastomers》
When the elastomer of the present embodiment is made into a sheet, it can be used as it is depending on the application. Stretched is more preferable. The draw ratio of the sheet is preferably 1.2 times or more, more preferably 1.5 times or more, and still more preferably 2 times or more from the viewpoint of imparting toughness. Although it depends on the thickness of the film, From the viewpoint of preventing breakage during stretching, it is preferably 8 times or less, more preferably 6 times or less, and still more preferably 5 times or less. When stretching the sheet, it may be heated, if necessary.
 本実施形態のエラストマーは、印加電圧に応じて厚みやサイズが変位する誘電エラストマーとして用いることができる。本実施形態の誘電エラストマーは、例えば、アクチュエータ、産業用ロボットなどに使用されるセンサ、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサ、人工筋肉、小型ポンプ、医療用器具などの電機デバイスに使用することが期待される。これらのなかでも、本実施形態のエラストマーは、印加電圧が低くても大きな変位量を示すように設計できるため、アクチュエータに好適に使用することができる。 The elastomer of this embodiment can be used as a dielectric elastomer whose thickness and size change according to the applied voltage. The dielectric elastomer of the present embodiment can be used, for example, in electric devices such as actuators, sensors used in industrial robots, power generating elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, and medical instruments. There is expected. Among these, the elastomer of this embodiment can be designed to exhibit a large amount of displacement even when the applied voltage is low, so it can be suitably used for an actuator.
 以下に、本実施形態のエラストマーを用いた電機デバイスの一例として、アクチュエータについて説明する。なお、本発明は、以下の説明に示される実施形態のみに限定されるものではない。 An actuator will be described below as an example of an electrical device using the elastomer of this embodiment. It should be noted that the present invention is not limited only to the embodiments shown in the following description.
 図1は、本発明のアクチュエータの一実施態様を示す概略平面図である。図2は、図1に示されるアクチュエータのA-A部における概略断面図である。図3は、エラストマーの変位を説明するための概略図である。 FIG. 1 is a schematic plan view showing one embodiment of the actuator of the present invention. FIG. 2 is a schematic cross-sectional view of the actuator shown in FIG. 1 taken along line AA. FIG. 3 is a schematic diagram for explaining displacement of an elastomer.
 図1及び図2に示されるように、アクチュエータ1は、フィルム状のエラストマー2と一対の電極3A,電極3Bとから形成されている。エラストマー2と電極3A,電極3Bとは、例えば、導電性ペースト(図示せず)などで接着させることができる。導電性ペーストとしては、例えば、カーボン、銀などの導電性フィラーを含有する導電性ペーストなどが挙げられる。 As shown in FIGS. 1 and 2, the actuator 1 is made up of a film-like elastomer 2 and a pair of electrodes 3A and 3B. The elastomer 2 and the electrodes 3A and 3B can be adhered with, for example, a conductive paste (not shown). Examples of conductive pastes include conductive pastes containing conductive fillers such as carbon and silver.
 エラストマー2は、一軸延伸又は二軸延伸、好ましくは二軸延伸されていることが好ましい。エラストマー2の延伸倍率は、特に限定されないが、強靭性を付与する観点から、好ましくは1.2倍以上、より好ましくは1.5倍以上、さらに好ましくは2倍以上である。また、エラストマーの厚さにもよるが、延伸時の破断を防止する観点から、好ましくは8倍以下、より好ましくは6倍以下、さらに好ましくは5倍以下である。 The elastomer 2 is preferably uniaxially stretched or biaxially stretched, preferably biaxially stretched. The draw ratio of the elastomer 2 is not particularly limited, but from the viewpoint of imparting toughness, it is preferably 1.2 times or more, more preferably 1.5 times or more, and still more preferably 2 times or more. Although it depends on the thickness of the elastomer, it is preferably 8 times or less, more preferably 6 times or less, and even more preferably 5 times or less from the viewpoint of preventing breakage during stretching.
 エラストマー2の厚さは、印加電圧が低くてもアクチュエータ1が大きな変位量を呈するようにする観点から、好ましくは1~100μm、より好ましくは1~80μm、さらに好ましくは1~50μm、さらに一層好ましくは1~30μmである。 The thickness of the elastomer 2 is preferably 1 to 100 μm, more preferably 1 to 80 μm, even more preferably 1 to 50 μm, and even more preferably 1 to 50 μm, from the viewpoint of allowing the actuator 1 to exhibit a large amount of displacement even when the applied voltage is low. is 1 to 30 μm.
 図2に示されるように、電極3A,電極3Bは、エラストマー2の両面にそれぞれ対向するよう配置されている。また、各電極は、電極材料で形成されている。電極材料としては、例えば、酸化インジウムスズ(ito)、アンチモン酸化スズ(ato)、フッ素がドープされた酸化スズ(fto)、フッ素酸化スズ(fto)、アルミニウム酸化亜鉛(azo)、ガリウム酸化亜鉛(gzo)、酸化スズ(nesa)、酸化インジウム亜鉛(izo)、酸化銀、酸化バナジウム、酸化モリブデン、金、銀、白金、銅、インジウム、クロムなどの金属や金属酸化物、多結晶シリコン、アモルファスシリコンなどのシリコン系材料、カーボンブラック、グラファイト、グラッシーカーボンなどの炭素材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの電極材料は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 As shown in FIG. 2, the electrodes 3A and 3B are arranged on both sides of the elastomer 2 so as to face each other. Each electrode is made of an electrode material. Electrode materials include, for example, indium tin oxide (ito), antimony tin oxide (ato), fluorine-doped tin oxide (fto), fluorine tin oxide (fto), aluminum zinc oxide (azo), gallium zinc oxide ( gzo), tin oxide (nesa), indium zinc oxide (izo), silver oxide, vanadium oxide, molybdenum oxide, gold, silver, platinum, copper, indium, chromium and other metals and metal oxides, polycrystalline silicon, amorphous silicon and carbon materials such as carbon black, graphite, and glassy carbon, but the present invention is not limited to these examples. Each of these electrode materials may be used alone, or two or more of them may be used in combination.
 電極3A,電極3Bの形状、大きさ及び厚さは、特に限定されず、アクチュエータ1の用途に応じて任意に決定することができる。電極3A,電極3Bの形状としては、例えば、円形、楕円形、三角形、正方形、長方形などが挙げられる。電極3A,電極3Bの大きさの一例として、直径が1~20mmである円形のものなどを挙げることができる。電極3A,電極3Bの厚さは、特に限定されないが、通常、50~500μm程度である。 The shape, size and thickness of the electrodes 3A and 3B are not particularly limited and can be arbitrarily determined according to the application of the actuator 1. Examples of shapes of the electrodes 3A and 3B include circular, elliptical, triangular, square, and rectangular. As an example of the size of the electrodes 3A and 3B, a circular one having a diameter of 1 to 20 mm can be mentioned. Although the thickness of the electrodes 3A and 3B is not particularly limited, it is usually about 50 to 500 μm.
 電極3Aの直径方向の外周面には端子4Aが配設されており、電極3Bの直径方向の外周面には端子4Bが配設されている。端子4A,端子4Bは、それぞれ導線5A,導線5を介して電源6と接続されている。 A terminal 4A is arranged on the diametrical outer peripheral surface of the electrode 3A, and a terminal 4B is arranged on the diametrical outer peripheral surface of the electrode 3B. The terminals 4A and 4B are connected to the power source 6 through the conductors 5A and 5, respectively.
 電源6によって、電極3A,電極3Bに電圧を印加した際、各電極間に静電引力が生じ、図3に示されるように、エラストマー2が図3中の太矢印で示される方向に圧縮されることから、エラストマー2の厚さ(図2におけるW)が小さくなり、エラストマー2は、幅方向(図3における細矢印で示される方向)に延伸される。このとき、電極3A,電極3Bは、エラストマー2とともに幅方向に延伸される。 When a voltage is applied to the electrodes 3A and 3B by the power supply 6, an electrostatic attractive force is generated between the electrodes, and as shown in FIG. 3, the elastomer 2 is compressed in the direction indicated by the thick arrow in FIG. Therefore, the thickness (W in FIG. 2) of the elastomer 2 is reduced, and the elastomer 2 is stretched in the width direction (the direction indicated by the thin arrow in FIG. 3). At this time, the electrodes 3A and 3B are stretched in the width direction together with the elastomer 2. As shown in FIG.
 電極3Aにマーカー7を装着させておくことにより、電極3A,3Bに電圧を印加したときのアクチュエータ1の変位量を変位計8で測定することができる。 By attaching the marker 7 to the electrode 3A, the displacement of the actuator 1 when voltage is applied to the electrodes 3A and 3B can be measured by the displacement gauge 8.
 以下、本発明について実施例を用いて具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described using examples. However, the present invention is not limited to the following examples.
[実施例1]
(エラストマーの合成)
 メトキシエチルアクリレート(MTA;モノマー(A))21.0g、シアノエチルアクリルアミド(CEAAM;モノマー(B))223g、及び重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド〔BASF社製、商品名:IrgacureTPO〕0.118gを混合することにより、重合開始剤を含有するモノマー成分を得た。
[Example 1]
(Synthesis of elastomer)
21.0 g of methoxyethyl acrylate (MTA; monomer (A)), 223 g of cyanoethylacrylamide (CEAAM; monomer (B)), and 2,4,6-trimethylbenzoyldiphenylphosphine oxide as a polymerization initiator [manufactured by BASF, commercial name: Irgacure TPO] to obtain a monomer component containing a polymerization initiator.
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
 得られたモノマー成分を、SUS製の成型容器(縦:43cm、横:43cm、深さ:2mm)に満たし、上から透明ガラス(縦:43cm、横:43cm、厚さ:2mm)でふたをした後、当該モノマー成分に照度が0.58mW/cmとなるように紫外線を上から照射し、モノマー成分を2時間塊状重合させることによって、下記MTA-CEAAM構造を含むシート状のエラストマーを得た。 The resulting monomer component was filled in a SUS molded container (length: 43 cm, width: 43 cm, depth: 2 mm) and covered with transparent glass (length: 43 cm, width: 43 cm, thickness: 2 mm). After that, the monomer component was irradiated with ultraviolet rays from above so that the illuminance was 0.58 mW/cm 2 , and the monomer component was subjected to bulk polymerization for 2 hours to obtain a sheet-like elastomer having the following MTA-CEAAM structure. rice field.
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
[実施例2~4,比較例1~5]
 実施例1において、モノマー(A)及びモノマー(B)並びにその使用量を各々下記表に従って変更した以外は実施例1と同様にして、各エラストマー(シート)を作製した。なお、下記表中におけるBA(ブチルアクリレート)、CNEA(シアノエチルアクリレート)を以下に示す。
[Examples 2 to 4, Comparative Examples 1 to 5]
Each elastomer (sheet) was produced in the same manner as in Example 1, except that the monomers (A) and (B) and their amounts were changed according to the table below. BA (butyl acrylate) and CNEA (cyanoethyl acrylate) in the table below are shown below.
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
《評価》
 以下に示す方法に従って、実施例及び比較例のシートの各物性を測定した。結果を下記表に示す。
"evaluation"
The physical properties of the sheets of Examples and Comparative Examples were measured according to the methods described below. The results are shown in the table below.
[重量平均分子量]
 ゲルパーミエイションクロマトグラフィー〔東ソー(株)製、品番:HLC-8320GPC、カラム:東ソー(株)製、品番:TSKgel GMHH-R、溶媒:テトラヒドロフラン、流速:0.6mL/min〕を用いてポリスチレン換算で各エラストマーシートの重量平均分子量(Mw)を測定した。
[Weight average molecular weight]
Gel permeation chromatography [manufactured by Tosoh Corporation, product number: HLC-8320GPC, column: manufactured by Tosoh Corporation, product number: TSKgel GMHH-R, solvent: tetrahydrofuran, flow rate: 0.6 mL / min] using polystyrene The weight average molecular weight (Mw) of each elastomer sheet was measured in terms of conversion.
[膜厚]
 各エラストマーシートにつき、厚さ計((株)Nikon社製、製品名 DIGIMICRO MFC-101A)を用いて、シート厚を測定した。なお、測定は任意の部位について5回おこない、平均値をそのシートの厚みとした。
[Thickness]
The thickness of each elastomer sheet was measured using a thickness gauge (manufactured by Nikon Corporation, product name: DIGIMICRO MFC-101A). In addition, the measurement was performed 5 times for an arbitrary portion, and the average value was taken as the thickness of the sheet.
[エラストマーのガラス転移温度(Tg)]
 本実施形態におけるエラストマーのガラス転移温度の測定は、JIS K6240:2011に準拠して行った。
[Elastomer glass transition temperature (Tg)]
The glass transition temperature of the elastomer in this embodiment was measured according to JIS K6240:2011.
[ヤング率の測定]
 各エラストマーシートをJIS K6251の6.1に規定するダンベル状7号形に打ち抜くことにより、試験片を得た。得られた試験片を引張り試験機〔(株)エー・アンド・デイ製、品番:Tensilon RTG-1310〕のチャック間距離が19mmとなるように取り付け、100mm/minの引張り速度で試験片が破断するまで引張り荷重を加える操作を行ない、ヤング率を測定した。
 なお、上述で得られたフィルムの伸びは、式:〔フィルムの伸び(%)〕=〔破断時の試験片の長さ(mm)-試験片の元の長さ(mm)〕÷〔試験片の元の長さ(mm)〕×100に基づいて求めた。なお、データの保存間隔は0.1秒で記録した。
[Measurement of Young's modulus]
A test piece was obtained by punching each elastomer sheet into a dumbbell-shaped No. 7 shape defined in 6.1 of JIS K6251. The obtained test piece was attached to a tensile tester [manufactured by A&D Co., Ltd., product number: Tensilon RTG-1310] so that the distance between chucks was 19 mm, and the test piece was broken at a tensile speed of 100 mm / min. The Young's modulus was measured by applying a tensile load until the tension was reached.
The elongation of the film obtained above is expressed by the formula: [film elongation (%)] = [length of test piece at break (mm) - original length of test piece (mm)] ÷ [test Original length of piece (mm)]×100. The data storage interval was 0.1 seconds.
[誘電率の測定]
 各エラストマーシートの誘電率をインピーダンスアナライザ(アメテック 社製、品番:1260A)で測定した。
[Measurement of permittivity]
The dielectric constant of each elastomer sheet was measured with an impedance analyzer (manufactured by Ametech, product number: 1260A).
[アクチュエータ評価(フィルムの変化率(%))の測定]
(変位量@1kV(%)の測定)
 各エラストマーシートの両面の中央部にカーボンブラックを塗布することによって、電極(直径:2.5mm、厚さ:5μm)を形成し、アクチュエータを作製した。
 得られたアクチュエータの電極に電圧を印加し、電圧を上昇させたときのアクチュエータの変位量及びその変化率を以下の方法に従って算出した。
[Measurement of actuator evaluation (film change rate (%))]
(Measurement of displacement @ 1 kV (%))
An electrode (diameter: 2.5 mm, thickness: 5 μm) was formed by applying carbon black to the central portion of both sides of each elastomer sheet, and an actuator was produced.
A voltage was applied to the electrodes of the obtained actuator, and the amount of displacement of the actuator when the voltage was increased and the rate of change thereof were calculated according to the following method.
 まず、アクチュエータの一方の電極に変位量測定用マーカーを取り付け、電極間に電圧アンプ〔松定プレシジョン(株)製、品番:HEOPS-10B2〕で直流電圧(1000V)を印加した。この際、マーカーの変位量(mm)を変位計〔(株)キーエンス製、品番:LK-GD500〕で測定した。 First, a displacement measurement marker was attached to one electrode of the actuator, and a DC voltage (1000 V) was applied between the electrodes with a voltage amplifier [manufactured by Matsusada Precision Co., Ltd., product number: HEOPS-10B2]. At this time, the amount of displacement (mm) of the marker was measured with a displacement meter [manufactured by Keyence Corporation, product number: LK-GD500].
 その後、下記式に基づいて変位量の変化率(変位量@1kV(%))を求めた。
[変位量の変化率(%)]=[(変位量(mm)÷電圧の印加前の電極の半径(mm))]×100
After that, the rate of change in displacement (displacement @ 1 kV (%)) was obtained based on the following formula.
[Change rate of displacement (%)] = [(Displacement (mm) ÷ Radius of electrode before voltage application (mm))] × 100
(MAX変位量(%)の測定)
 電極間に印加する直流電圧を変動し、変位量の最大変化率(%)、及び、その際の印加電圧を測定した。
(Measurement of MAX displacement amount (%))
The DC voltage applied between the electrodes was changed, and the maximum rate of change (%) of the amount of displacement and the applied voltage at that time were measured.
[実施例5]
(エラストマーの合成)
 メトキシエチルアクリレート(MTA;モノマー(A))220g、シアノエチルアクリルアミド(CEAAM;モノマー(B))21.2g、4-ヒドロキシブチルアクリレート(4HBA)5.48g、及び重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド〔BASF社製、商品名:IrgacureTPO〕0.412gを混合することにより、重合開始剤を含有するモノマー成分を得た。
[Example 5]
(Synthesis of elastomer)
Methoxyethyl acrylate (MTA; monomer (A)) 220 g, cyanoethyl acrylamide (CEAAM; monomer (B)) 21.2 g, 4-hydroxybutyl acrylate (4HBA) 5.48 g, and 2,4,6- as a polymerization initiator By mixing 0.412 g of trimethylbenzoyldiphenylphosphine oxide [manufactured by BASF, trade name: Irgacure TPO], a monomer component containing a polymerization initiator was obtained.
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
 得られたモノマー成分に対し、照度が0.62mW/cmとなるように紫外線を上から照射した以外は、実施例1と同様にしてモノマー成分2時間塊状重合させることによって、エラストマーを得た。得られたエラストマー112gを酢酸ブチル1011gに溶解させることによって、樹脂溶液を得た。 An elastomer was obtained by subjecting the obtained monomer component to bulk polymerization for 2 hours in the same manner as in Example 1, except that the obtained monomer component was irradiated with ultraviolet rays from above so that the illuminance was 0.62 mW/cm 2 . . A resin solution was obtained by dissolving 112 g of the obtained elastomer in 1011 g of butyl acetate.
 得られた樹脂溶液にMOIEG(2-メタクリルオキシエチルイソシアナートエチレングリーコール)6.88g及び錫触媒〔日東化成(株)製、製品名:ネオスタンU-100〕0.22gを添加し、これを80℃の温度で2時間よく撹拌しMTA-CEAAM-4HBA-MOIEG構造を含む樹脂溶液を得た。 6.88 g of MOIEG (2-methacryloxyethyl isocyanate ethylene glycol) and 0.22 g of a tin catalyst [manufactured by Nitto Kasei Co., Ltd., product name: Neostan U-100] were added to the resulting resin solution. The mixture was thoroughly stirred at a temperature of 80° C. for 2 hours to obtain a resin solution containing the MTA-CEAAM-4HBA-MOIEG structure.
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
 得られた樹脂溶液(11質量%溶液)1130g(MTA-CEAAM-4HBA-MOIEGの含有量119g)に、重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド〔BASF社製、商品名:IrgacureTPO〕1.19g、界面活性剤(BYK Additives & Instruments社製、商品名:BYK-UV3500)1.13gを加えて撹拌し硬化性樹脂組成物を調製した。 2,4,6-trimethylbenzoyldiphenylphosphine oxide [manufactured by BASF Corporation, trade name : Irgacure TPO] and 1.13 g of a surfactant (manufactured by BYK Additives & Instruments, trade name: BYK-UV3500) were added and stirred to prepare a curable resin composition.
(シート状エラストマーの形成)
 離形フィルム(パナック(株)製(商品名:SP-PET 100-O1-BU)を2枚用意した。一方の離形フィルム上に、上述から得られた硬化性樹脂組成物を塗布し塗膜を形成した。
 その後、塗膜を120℃の温度で30分間加熱し、溶媒を除去してフィルム状の塗膜を得た。
(Formation of sheet-like elastomer)
Two release films (manufactured by Panac Co., Ltd. (trade name: SP-PET 100-O1-BU) were prepared.On one of the release films, the curable resin composition obtained above was applied and coated. A film was formed.
Thereafter, the coating film was heated at a temperature of 120° C. for 30 minutes to remove the solvent and obtain a film-like coating film.
 得られた塗膜上にもう一方の離形フィルムを貼り付け、加熱したラミネーター(FUJIPLA社製、90℃で使用)にて押圧処理を施した。得られたフィルム状の塗膜を空気雰囲気下で、紫外線照度500mW/cm×を2.4秒×1パス(積算照射量:1200mJ/cm)で硬化させ、表面側フィルムと裏面側フィルムとで挟持されたエラストマー(シート)を作製し、実施例1と同様の評価を行った。 Another release film was adhered to the obtained coating film, and pressed with a heated laminator (manufactured by FUJIPLA, used at 90° C.). The resulting film-like coating film was cured in an air atmosphere at an ultraviolet illuminance of 500 mW/cm 2 × for 2.4 seconds × 1 pass (accumulated irradiation amount: 1200 mJ/cm 2 ) to form a front side film and a back side film. An elastomer (sheet) sandwiched between was produced, and the same evaluation as in Example 1 was performed.
[ヒステリシスロスの測定]
 実施例1及び5で得られたエラストマーシートの戻り性について、その評価指標となるヒステリシスロスを導きだした。詳細には、上述の試験片及び引張試験機を用い、下記測定を行い、得られたグラフを用いて、ヒステリシスロスを算出した。
 測定は、試験片に対し、100%伸びまで引張り荷重を加える操作(チャック間距離を38mmにする操作)と100%に達した試験片を0%まで戻す操作(38mmのチャック間距離を19mmまで戻す操作)(いずれも100mm/min)を1サイクルとして2サイクル行い、2サイクル目の測定結果のグラフからヒステリシスロスを算出した。なお、データの保存間隔は0.1秒で記録した。
[Measurement of hysteresis loss]
Hysteresis loss was derived as an evaluation index for the resilience of the elastomer sheets obtained in Examples 1 and 5. Specifically, the following measurements were performed using the test piece and tensile tester described above, and the hysteresis loss was calculated using the obtained graph.
The measurement is performed by applying a tensile load to the test piece to 100% elongation (an operation to set the distance between chucks to 38 mm) and an operation to return the test piece that has reached 100% to 0% (distance between chucks of 38 mm to 19 mm Return operation) (both 100 mm/min) was performed as one cycle, and two cycles were performed, and the hysteresis loss was calculated from the graph of the measurement results of the second cycle. The data storage interval was 0.1 seconds.
 図4を用いてヒステリシスロスの算出方法を詳細に説明する。図4はヒステリシスロスを説明するためのグラフである。横軸はフィルム伸びを表し、縦軸は標準化応力を表している。標準化応力は各時間における応力の観測値をフィルム伸びが100%の時の応力の観測値で除した値である。ヒステリシスロスは図4において点線(往路)と実線(復路)とに囲まれる領域についてその面積を算出した。ヒステリシスロスが小さいほど追従性がよいことを示す。
 面積は次のように算出した。まず、ひずみ1(フィルムの伸び 100%)時における応力をσとして、時間tにおける標準化応力Zを次の式(1)に基づいて求めた。
 式(1):[時間tにおける標準化応力Z]=[時間tにおける応力σ(MPa)]÷[ひずみ1における応力σ(MPa)]
 また、ある時間tにおけるフィルムの伸びをεとする。ある時間t-1から次の時間(0.1秒後)tに変化するときに、SS曲線、直線Z=0、直線ε=εt-1,直線ε=εに囲まれた面積を、台形の面積に近似して以下の式(2)で求めた。
 式(2):[時間t-1からtに変化したときの台形の面積S]=(Zt-1+Z)×(ε-εt-1)÷2
 最後に、2サイクル目の開始から終了までに得られるSの総和を求め、これをヒステリシスロスとした。
A method for calculating the hysteresis loss will be described in detail with reference to FIG. FIG. 4 is a graph for explaining hysteresis loss. The horizontal axis represents film elongation and the vertical axis represents normalized stress. Normalized stress is the value obtained by dividing the observed stress at each time by the observed stress at 100% film elongation. The hysteresis loss was calculated by calculating the area of the area surrounded by the dotted line (outward path) and the solid line (return path) in FIG. A smaller hysteresis loss indicates better followability.
The area was calculated as follows. First, the stress at strain 1 (100% elongation of the film) was defined as σ A , and the standardized stress Z t at time t was determined based on the following equation (1).
Equation (1): [normalized stress Z t at time t ] = [stress σ t (MPa) at time t] ÷ [stress σ A (MPa) at strain 1]
Let εt be the elongation of the film at a certain time t. The area surrounded by the SS curve, straight line Z=0, straight line ε=ε t−1 , and straight line ε=ε t when changing from a certain time t−1 to the next time (after 0.1 second) t is , was obtained by the following formula (2) by approximating the area of a trapezoid.
Formula (2): [Trapezoidal area S t when changing from time t−1 to t]=(Z t−1 +Z t )×(ε t −ε t−1 )÷2
Finally, the sum of St obtained from the start to the end of the second cycle was obtained and taken as the hysteresis loss.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 表中の結果からわかるように実施例のエラストマーはいずれも比較例のエラストマーとヤング率が同程度以上でありながら、誘電率が高く、電圧印加時における変位量が大きいものであった。
 詳細には、実施例1及び比較例1の比較から、メトキシエチルアクリレート(MTA;モノマー(A))にシアノエチルアクリルアミド(CEAAM;モノマー(B))を共重合させると、MTAのみを用いた場合に比して誘電率が上がり、変位量が大きくなったことがわかる。このため、高極性のCEAAMを加えることで、エラストマーの誘電率が向上し、且つ、変位量をさらに増加させることができることがわかった。
 また、実施例1及び比較例2の比較から、シアノエチルアクリレート(CNEA;シアノ基を有するアクリル)を用いた場合に比して、さらに高極性のCEAAMを用いたMTA/CEAAMの組み合わせ(実施例1)の方が、高誘電率・高変位なエラストマーが得られた。このため、シアノ基を有するアクリルよりも、シアノ基を有するアクリルアミドをMTAに共重合させた方が高誘電率・高変位になることがわかった。
 実施例1及び比較例5の比較から、高極性のCEAAMとブチルアクリレート(BA)とを共重合させた比較例5よりも、BAと同程度に柔軟でありかつ極性の高いMTAを共重合させた実施例1の方が誘電率と変位量とが大きくなった。したがって、高極性のCEAAMに柔らかくて比較的極性の高いMTAを共重合させることで、誘電率と変位量とを大きくすることができることがわかった。
As can be seen from the results in the table, all of the elastomers of Examples had a Young's modulus equal to or higher than that of the elastomers of Comparative Examples, but had a high dielectric constant and a large amount of displacement when a voltage was applied.
Specifically, from a comparison of Example 1 and Comparative Example 1, when methoxyethyl acrylate (MTA; monomer (A)) is copolymerized with cyanoethylacrylamide (CEAAM; monomer (B)), when only MTA is used, It can be seen that the dielectric constant increased and the amount of displacement increased. Therefore, it was found that the dielectric constant of the elastomer can be improved and the displacement can be further increased by adding highly polar CEAAM.
Also, from a comparison of Example 1 and Comparative Example 2, the combination of MTA/CEAAM using CEAAM with higher polarity (Example 1 ) yielded an elastomer with a higher dielectric constant and higher displacement. For this reason, it was found that copolymerization of acrylamide having a cyano group with MTA resulted in a higher dielectric constant and a higher displacement than acryl having a cyano group.
From the comparison of Example 1 and Comparative Example 5, it can be seen that MTA, which is as flexible as BA and has a high polarity, is copolymerized more than Comparative Example 5, which is a copolymer of highly polar CEAAM and butyl acrylate (BA). In Example 1, the dielectric constant and the amount of displacement were larger. Therefore, it was found that the dielectric constant and the displacement amount can be increased by copolymerizing the highly polar CEAAM with the soft and relatively highly polar MTA.
 実施例3及び4と比較例4との比較から、実施例3(MTA/CEAAM(モル比)=70/30),実施例4(MTA/CEAAM(モル比)=60/40)は特開2018-59042号公報の実施例に開示されている共重合体(BA/CNEA(モル比)=30/70)を用いた比較例4に比して、エラストマーの変位量が大きかった。
 また、実施例1~実施例4との比較から、MTA/CEAAMの組み合わせにおいて、MTAに対するCEAAMの比率が高い方が得られるエラストマーが高誘電率・高変位となった。
 さらに、実施例1と実施例5との比較から、戻り性を向上させるために架橋基の4HBAを導入し、ヒドロキシ基にMOI-EG付加を行い、その後に光架橋反応によって架橋構造を付与したエラストマー(実施例5)は、実施例1に比して、ヒステリシスロスを低減させることができた。
From the comparison between Examples 3 and 4 and Comparative Example 4, Example 3 (MTA/CEAAM (molar ratio) = 70/30) and Example 4 (MTA/CEAAM (molar ratio) = 60/40) Compared to Comparative Example 4 using the copolymer (BA/CNEA (molar ratio) = 30/70) disclosed in the example of JP-A-2018-59042, the amount of displacement of the elastomer was large.
Further, from a comparison with Examples 1 to 4, in the combination of MTA/CEAAM, the higher the ratio of CEAAM to MTA, the higher the dielectric constant and the higher the displacement of the resulting elastomer.
Furthermore, from a comparison between Example 1 and Example 5, 4HBA as a cross-linking group was introduced in order to improve the reversion property, MOI-EG was added to the hydroxy group, and then a cross-linked structure was imparted by a photo-cross-linking reaction. The elastomer (Example 5) was able to reduce the hysteresis loss compared to Example 1.
 本発明のエラストマーは、特に限定されるものではないが、誘電エラストマーとして有用であり、例えば、アクチュエータ、産業用ロボットなどに使用されるセンサ、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサ、人工筋肉、小型ポンプ、医療用器具などに使用することが期待される。 The elastomer of the present invention is not particularly limited, but is useful as a dielectric elastomer. It is expected to be used for small pumps and medical instruments.
 2021年11月16日に出願された日本国特許出願2021-186160号の開示は、その全体が参照により本明細書に取り込まれる。
 また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2021-186160 filed on November 16, 2021 is incorporated herein by reference in its entirety.
In addition, all publications, patent applications and technical standards mentioned in the specification shall be referred to to the same extent as if each individual publication, patent application or technical standard were specifically and individually noted to be incorporated by reference. , incorporated herein by reference.
1:アクチュエータ、2:エラストマー、3A,3B:電極、4A,4B:端子、5A,5B:導線、6:電源、7:マーカー、8:変位計
 
1: Actuator, 2: Elastomer, 3A, 3B: Electrode, 4A, 4B: Terminal, 5A, 5B: Conductor, 6: Power supply, 7: Marker, 8: Displacement gauge

Claims (9)

  1.  エーテル構造を有する(メタ)アクリレートモノマーに由来する単位(A)と、
     シアノ基を有する(メタ)アクリルアミドに由来する単位(B)と、
    を含む、重合体。
    A unit (A) derived from a (meth)acrylate monomer having an ether structure;
    a unit (B) derived from (meth)acrylamide having a cyano group;
    A polymer, including
  2.  前記エーテル構造を有する(メタ)アクリレートモノマーが、下記式(1)で示される、請求項1に記載の重合体。
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、Rは水素原子又はメチル基を示す。Rは、ハロゲン原子を有していてもよい、炭素数1~5のアルキル基を示す。Xは、ハロゲン原子を有していてもよい、炭素数1~10のアルキレン基を示す。nは1~3の整数を表す。)
    2. The polymer according to claim 1, wherein the (meth)acrylate monomer having an ether structure is represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, R 1 represents a hydrogen atom or a methyl group. R 2 represents an alkyl group having 1 to 5 carbon atoms which may have a halogen atom. X 1 has a halogen atom. represents an alkylene group having 1 to 10 carbon atoms, and n represents an integer of 1 to 3.)
  3.  前記シアノ基を有する(メタ)アクリルアミドが、下記式(2)で示される、請求項1に記載の重合体。
    Figure JPOXMLDOC01-appb-C000002
     
    (式中、Rは水素原子又はメチル基を示す。Rは、水素原子、メチル基を示す。Xは、ハロゲン原子を有していてもよい、炭素数1~10のアルキレン基を示す。)
    The polymer according to claim 1, wherein the (meth)acrylamide having a cyano group is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002

    (In the formula, R 1 represents a hydrogen atom or a methyl group. R 3 represents a hydrogen atom or a methyl group. X 2 represents an alkylene group having 1 to 10 carbon atoms, which may have a halogen atom. show.)
  4.  重量平均分子量が、200,000~4,000,000である、請求項1に記載の重合体。 The polymer according to claim 1, which has a weight average molecular weight of 200,000 to 4,000,000.
  5.  請求項1~請求項4のいずれか一項に記載の重合体を含むエラストマー。 An elastomer containing the polymer according to any one of claims 1 to 4.
  6.  請求項5に記載のエラストマーの製造方法であって、
     エーテル構造を有する(メタ)アクリレートモノマーとシアノ基を有する(メタ)アクリルアミドとを重合させて重合体を得る工程、
    を含むエラストマーの製造方法。
    A method for producing the elastomer according to claim 5,
    obtaining a polymer by polymerizing a (meth)acrylate monomer having an ether structure and a (meth)acrylamide having a cyano group;
    A method of making an elastomer comprising:
  7.  前記エーテル構造を有する(メタ)アクリレートモノマーと前記シアノ基を有する(メタ)アクリルアミドとを光塊状重合によって重合させる、請求項6に記載のエラストマーの製造方法。 The method for producing an elastomer according to claim 6, wherein the (meth)acrylate monomer having an ether structure and the (meth)acrylamide having a cyano group are polymerized by bulk photopolymerization.
  8.  請求項5に記載のエラストマーを備えた、アクチュエータ。 An actuator comprising the elastomer according to claim 5.
  9.  請求項5に記載のエラストマーを備えた、センサ。
     
     
    A sensor comprising the elastomer of claim 5 .

PCT/JP2022/042314 2021-11-16 2022-11-15 Polymer, elastomer, production method therefor, actuator, and sensor WO2023090304A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021186160 2021-11-16
JP2021-186160 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023090304A1 true WO2023090304A1 (en) 2023-05-25

Family

ID=86397030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042314 WO2023090304A1 (en) 2021-11-16 2022-11-15 Polymer, elastomer, production method therefor, actuator, and sensor

Country Status (2)

Country Link
TW (1) TW202328238A (en)
WO (1) WO2023090304A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203930A (en) * 1991-08-15 1993-08-13 Nippon Kasei Chem Co Ltd Production of liquid crystal device
JP2008239670A (en) * 2007-03-26 2008-10-09 Tokai Rubber Ind Ltd Acrylic rubber for electrostrictive actuator and electrostrictive actuator using the same
WO2009025187A1 (en) * 2007-08-17 2009-02-26 Kuraray Co., Ltd. Dielectric material for polymeric actuator, and polymeric actuator using the same
JP2011213782A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Method for producing polymer solution and method for purifying polymer
JP2015113392A (en) * 2013-12-11 2015-06-22 東洋インキScホールディングス株式会社 Reactive monomer and polymerizable composition using the same
JP2015151458A (en) * 2014-02-14 2015-08-24 東洋インキScホールディングス株式会社 Reactive monomer and polymerizable composition using the same
JP2018168480A (en) * 2017-03-29 2018-11-01 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber and method for producing carbon fiber bundle
WO2020111106A1 (en) * 2018-11-28 2020-06-04 大阪有機化学工業株式会社 Piezoelectric material and composition for piezoelectric material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203930A (en) * 1991-08-15 1993-08-13 Nippon Kasei Chem Co Ltd Production of liquid crystal device
JP2008239670A (en) * 2007-03-26 2008-10-09 Tokai Rubber Ind Ltd Acrylic rubber for electrostrictive actuator and electrostrictive actuator using the same
WO2009025187A1 (en) * 2007-08-17 2009-02-26 Kuraray Co., Ltd. Dielectric material for polymeric actuator, and polymeric actuator using the same
JP2011213782A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Method for producing polymer solution and method for purifying polymer
JP2015113392A (en) * 2013-12-11 2015-06-22 東洋インキScホールディングス株式会社 Reactive monomer and polymerizable composition using the same
JP2015151458A (en) * 2014-02-14 2015-08-24 東洋インキScホールディングス株式会社 Reactive monomer and polymerizable composition using the same
JP2018168480A (en) * 2017-03-29 2018-11-01 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber and method for producing carbon fiber bundle
WO2020111106A1 (en) * 2018-11-28 2020-06-04 大阪有機化学工業株式会社 Piezoelectric material and composition for piezoelectric material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAUDIS STEFAN, HELLER CHRISTIAN, LISKA ROBERT, STAMPFL JUERGEN, BERGMEISTER HELGA, WEIGEL GUENTER: "(Meth)acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts ", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 47, no. 10, 15 May 2009 (2009-05-15), US , pages 2664 - 2676, XP093067406, ISSN: 0887-624X, DOI: 10.1002/pola.23352 *

Also Published As

Publication number Publication date
TW202328238A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
KR102325707B1 (en) (meth)acrylic conductive material
KR101991996B1 (en) Adhesive composition, adhesive film, optical member, adhesive sheet and image display apparatus
JPWO2011115224A1 (en) Optical member pressure-sensitive adhesive composition and optical member pressure-sensitive adhesive tape
WO2022114101A1 (en) Elasatomer-forming composition, elastomer, laminate, armature device, actuator, sensor, and method for manufacturing elasatomer-forming composition
KR102063208B1 (en) Composition for window film, flexible window film prepared using the same and flexible display apparatus comprising the same
JP6896822B2 (en) Adhesive layer and adhesive film
JP2015183047A (en) Method of producing adhesive film, adhesive composition and adhesive film
WO2023090304A1 (en) Polymer, elastomer, production method therefor, actuator, and sensor
JP6357012B2 (en) Pattern electrode sheet
TWI812767B (en) Curable resin composition, polymer, (meth)acrylic elastomer, and sheet
JP6163962B2 (en) Transparent adhesive film, flat panel display and solar cell module
WO2021020499A1 (en) Curable resin composition, elastomer and sheet
WO2018225166A1 (en) Self-healing material
JP6910755B2 (en) (Meta) Acrylic dielectric material
KR20240053629A (en) Composition for forming conductive elastomer, conductive elastomer, and polymer
JP2022144735A (en) Polymeric piezoelectric material and piezoelectric element including the same
JP2012188527A (en) Pseudo-cross-linked curable resin composition, and its copolymer and molded product
JP2023034055A (en) Thermosetting resin composition for elastomer, elastomer and method for producing the same, and sheet
JP6622096B2 (en) (Meth) acrylic dielectric material
CN118119658A (en) Composition for forming conductive elastomer, and polymer
JP2019065300A (en) Adhesive layer and adhesive film
JP2022053215A (en) Adhesive composition, adhesive and adhesive sheet
JP2021113315A (en) Adhesive tape
JP2018199811A (en) Pattern electrode sheet
JP2021175805A (en) Adhesive composition, adhesive and adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895585

Country of ref document: EP

Kind code of ref document: A1