WO2023090034A1 - Laser cutting device, laser cutting method, and method for manufacturing display - Google Patents

Laser cutting device, laser cutting method, and method for manufacturing display Download PDF

Info

Publication number
WO2023090034A1
WO2023090034A1 PCT/JP2022/038937 JP2022038937W WO2023090034A1 WO 2023090034 A1 WO2023090034 A1 WO 2023090034A1 JP 2022038937 W JP2022038937 W JP 2022038937W WO 2023090034 A1 WO2023090034 A1 WO 2023090034A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
workpiece
stage
laser cutting
laser
Prior art date
Application number
PCT/JP2022/038937
Other languages
French (fr)
Japanese (ja)
Inventor
保 小田嶋
輝昭 下地
大介 伊藤
直之 小林
Original Assignee
Jswアクティナシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jswアクティナシステム株式会社 filed Critical Jswアクティナシステム株式会社
Publication of WO2023090034A1 publication Critical patent/WO2023090034A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock

Definitions

  • the present invention relates to a laser cutting device, a laser cutting method, and a display manufacturing method.
  • Patent Document 1 discloses a laser cutting device.
  • the laser cutting device of Patent Document 1 includes an ultraviolet laser oscillator and an infrared laser oscillator.
  • a glass substrate mounted on a stage is irradiated with an infrared laser and an ultraviolet laser. The relative positions of the infrared laser and the ultraviolet laser with respect to the substrate are moved.
  • a laser cutting apparatus includes a stage for sucking and holding a work, an optical system for guiding a laser beam for cutting the work to the work, and the optical system in a first direction when viewed from above.
  • a guide mechanism for movably holding a system; a first drive mechanism for moving the optical system along the guide mechanism; and a second drive mechanism for moving.
  • a laser cutting method is a laser cutting method for cutting a work using a laser cutting device, wherein the laser cutting device guides a laser beam for cutting the work to the work.
  • an optical system a guide mechanism that holds the optical system movably in a first direction when viewed from above; a first drive mechanism that moves the optical system along the guide mechanism; a second drive mechanism for moving the guide mechanism in a second direction different from the first direction, wherein the laser cutting method comprises: a step of attracting and holding the work by a stage; and moving the optical system to change the irradiation position.
  • the manufacturing method is a display manufacturing method for cutting a work to be a display panel by a laser cutting device, wherein the laser cutting device cuts the work by cutting the work with a laser beam.
  • the manufacturing method comprises: a step of attracting and holding the work by a stage; and moving the optical system to change the irradiation position of the.
  • the laser cutting apparatus includes a fixed stage for attracting and holding an eighth generation or higher glass substrate, and an optical system for guiding a laser beam for cutting the glass substrate to the glass substrate. , a guide mechanism for movably holding the optical system, and a drive mechanism for moving the optical system along the guide mechanism.
  • the work can be cut efficiently.
  • FIG. 1 is a perspective view schematically showing a laser cutting device according to an embodiment
  • FIG. 1 is a top view schematically showing a laser cutting device according to an embodiment
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows typically the laser cutting apparatus concerning embodiment.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows typically the laser cutting apparatus concerning embodiment.
  • It is a side view which shows typically a laser cutting device and its transfer system.
  • FIG. 4 is a side view schematically showing a state in which the transfer mechanism is above the stage
  • FIG. 11 is a side view schematically showing a state in which the suction plate is lowered
  • a laser cutting device is, for example, a film laser cutting device (FLC device) that cuts the film of a flexible display. Specifically, the flexible film is irradiated with laser light while the flexible film is held by suction on a suction stage. Then, the film can be cut by moving the relative position of the laser beam with respect to the flexible film.
  • FLC device film laser cutting device
  • a flexible film also simply called a film
  • a laser cutting device cuts the work according to the panel size of the display. Then, one or a plurality of display panels are cut out from one piece of work. In other words, the workpiece is a mother board with multiple surfaces.
  • a laser cutting apparatus, a laser cutting method, and a display manufacturing method according to the present embodiment will be described below with reference to the drawings.
  • FIG. 1 is a perspective view schematically showing the configuration of a laser cutting device 1.
  • FIG. 2 is a top view schematically showing the configuration of the laser cutting device 1.
  • FIG. 3 is a YZ plan view schematically showing the configuration of the laser cutting device 1.
  • FIG. 4 is an XZ plan view schematically showing the configuration of the laser cutting device 1. As shown in FIG.
  • the diagrams shown below show an XYZ three-dimensional orthogonal coordinate system as appropriate for simplification of explanation.
  • the Z direction is a vertical up-down direction and is a direction perpendicular to the main surface of the work W.
  • the X direction and the Y direction are directions parallel to the edges of the rectangular workpiece W when viewed from above. It is assumed that the cutting line of the work W is parallel to the X direction or the Y direction.
  • the laser cutting device 1 includes a pedestal 10, a stage 20, an optical system 30, an optical system 31, a gantry stage 40, and a gantry stage 41.
  • the pedestal 10 is a table that holds the stage 20 and the like.
  • the stage 20 is fixed on the pedestal 10 .
  • the stage 20 is a suction stage that holds the workpiece W by suction.
  • the stage 20 is a chuck stage for vacuum chucking.
  • the upper surface of the stage 20 serves as a suction surface.
  • the attraction surface is a plane parallel to the XY plane.
  • the stage 20 is connected to exhaust means such as a vacuum pump (not shown). Then, the stage 20 can adsorb and hold the work W by sucking gas from the adsorption surface of the stage 20 .
  • the stage 20 sucks the work W while the work W is placed on the stage 20 . This can prevent the film from wrinkling or warping.
  • the stage 20 has a porous body.
  • the stage 20 is made of ceramic material such as porous alumina or porous SiC.
  • the workpiece W can be reliably held by suction.
  • the stage 20 may be made of a metal material such as aluminum or stainless steel. That is, the stage 20 may be a metal stage having a plurality of suction ports formed by metal working. Further, grooves may be provided on the stage 20 where the cutting lines are to be formed. By doing so, it is possible to suppress damage to the stage 20 due to laser irradiation.
  • a measuring device 15 is provided on the upper surface of the pedestal 10.
  • the measuring device 15 has a camera or the like for capturing an image of the workpiece W. As shown in FIG.
  • the measuring device 15 is arranged near the corners of the rectangular stage 20 when viewed from above.
  • the measuring device 15 images the workpiece W on the stage 20 .
  • the work W may be aligned using an image of the work W captured.
  • an optical system 30 and an optical system 31 for irradiating the workpiece W with laser light are provided on the mount 10 .
  • the optical system 30 and the optical system 31 are provided so as to be movable in the X direction and the Y direction.
  • the optical system 30 and the optical system 31 can irradiate an arbitrary position of the workpiece W with laser light by moving in the X direction and the Y direction. Specifically, by moving the optical system 30 and the optical system 31 along the cutting line, the laser light is irradiated along the cutting line.
  • the cutting line is preset according to the panel size and the number of panels in the workpiece W. As shown in FIG.
  • the optical system 30 and the optical system 31 are arranged above the stage 20 .
  • the optical system 30 and the optical system 31 irradiate the workpiece W with laser light from above.
  • An optical system 30 and an optical system 31 are supported by gantry stages 40 and 41, respectively. Accordingly, the optical systems 30 and 31 move in the XY directions, respectively. XY driving of the optical systems 30 and 31 by the gantry stages 40 and 41 will be described below.
  • An X guide groove 11 is provided on the top surface of the mount 10 .
  • the X guide groove 11 is formed parallel to the X direction.
  • X guide grooves 11 are formed on both sides of the stage 20 in the Y direction. That is, the mount 10 has the X guide groove 11 arranged on the +Y side of the stage 20 and the X guide groove 11 arranged on the -Y side.
  • the pedestal 10 having the X guide groove 11 serves as an X guide mechanism that holds the gantry stages 40 and 41 movably in the X direction.
  • the X guide groove 11 may be formed directly on the base 10 or may be formed separately from the base 10 .
  • a guide rail attached to the frame 10 may serve as an X guide mechanism.
  • the gantry stage 40 and the gantry stage 41 are guided by the X guide grooves 11 and move on the pedestal 10 .
  • the X guide groove 11 is common between the gantry stage 40 and the gantry stage 41 .
  • the gantry stage 41 has the same configuration as the gantry stage 40 .
  • the gantry stage 40 and the gantry stage 41 are spaced apart in the X direction.
  • the gantry stage 41 is arranged on the -Y side of the gantry stage 40 .
  • the gantry stage 40 and the gantry stage 41 move along the X guide groove 11.
  • the gantry stage 40 has an X drive mechanism 401 and a gantry shaft 402 .
  • the X drive mechanism 401 supports the gantry shaft 402 so as to be movable in the X direction. In the Y direction, the X drive mechanism 401 is arranged at both ends of the gantry shaft 402 .
  • the X drive mechanism 401 has an actuator for moving the gantry shaft 402 in the X direction. For example, the gantry shaft 402 moves in the X direction by operating the motor of the X drive mechanism 401 or the like.
  • the gantry axis 402 extends along the Y direction. Specifically, one end of the gantry shaft 402 is arranged on the +Y side of the stage 20 in the Y direction, and the other end of the gantry shaft 402 is arranged on the -Y side of the stage 20 . A space higher than the stage 20 is formed directly below the gantry axis 402 . A gantry axis 402 moves along the X direction above the stage 20 . That is, the gantry shaft 402 moves above the stage 20 .
  • a Y guide groove 403 is formed in the gantry shaft 402 .
  • the Y guide groove 403 is formed parallel to the Y direction.
  • Gantry shaft 402 holds optical system 30 via Y guide groove 403 . Therefore, the gantry shaft 402 holds the optical system 30 movably in the Y direction.
  • the Y driving mechanism 303 drives the optical system 30 to move the optical system 30 along the Y guide groove 403 .
  • a gantry shaft 402 having a Y guide groove 403 serves as a Y guide mechanism that guides the optical system 30 in the Y direction.
  • the optical system 30 moves in the X and Y directions. That is, the optical system 30 moves in the space above the workpiece W. As shown in FIG. As a result, an arbitrary position on the workpiece W can be irradiated with the laser beam.
  • the gantry stage 41 moves independently of the gantry stage 40.
  • the gantry stage 41 has a configuration similar to that of the gantry stage 40 .
  • the gantry stage 41 includes an X drive mechanism 411 and a gantry shaft 412 .
  • the X drive mechanism 411 supports the gantry shaft 412 so as to be movable in the X direction.
  • the X drive mechanism 411 is arranged at both ends of the gantry shaft 412 in the Y direction.
  • the X drive mechanism 411 has an actuator for moving the gantry shaft 412 in the X direction.
  • the gantry shaft 412 moves in the X direction by operating the motor of the X drive mechanism 411 or the like.
  • the gantry axis 412 extends along the Y direction. Specifically, one end of the gantry shaft 412 is arranged on the +Y side of the stage 20 in the Y direction, and the other end of the gantry shaft 412 is arranged on the -Y side of the stage 20 . A space higher than the stage 20 is formed directly below the gantry axis 412 . A gantry axis 412 moves along the X direction above the stage 20 . That is, the gantry shaft 412 moves above the stage 20 .
  • a Y guide groove 413 is formed in the gantry shaft 412 .
  • the Y guide groove 413 is formed parallel to the Y direction.
  • a gantry shaft 412 holds the optical system 31 via a Y guide groove 413 . Therefore, the gantry shaft 412 holds the optical system 31 movably in the Y direction.
  • the Y driving mechanism 313 drives the optical system 31 to move the optical system 31 along the Y guide groove 413 .
  • a gantry shaft 412 having a Y guide groove 413 serves as a Y guide mechanism that guides the optical system 31 in the Y direction.
  • the optical system 31 moves in the X and Y directions. That is, the optical system 31 moves in the space above the workpiece W. FIG. As a result, an arbitrary position on the workpiece W can be irradiated with the laser beam.
  • the optical system 30 is provided with a laser light source 304 , a mirror 305 and a lens 306 .
  • Laser light source 304 is positioned above gantry axis 402 .
  • a laser light source 304 generates a laser beam L1.
  • the laser light L1 from the laser light source 304 travels along the X direction. That is, the optical axis of the laser light source 304 is parallel to the X direction.
  • a laser beam L1 from the laser light source 304 is incident on the mirror 305 .
  • the mirror 305 is arranged on the -X side of the laser light source 304 and the gantry axis 402 .
  • Mirror 305 reflects laser light L1 downward.
  • the mirror 305 is arranged at an angle of 45° with respect to the X-axis.
  • the laser beam L1 reflected by the mirror 305 travels in the -Z direction.
  • Laser light L1 reflected by mirror 305 enters lens 306 .
  • a lens 306 converges the laser light onto the workpiece W. As shown in FIG. That is, the lens 306 converges the laser beam L1 so that a condensed spot is formed on the workpiece W.
  • the optical system 30 can guide the laser beam L1 to the workpiece W.
  • the workpiece W is irradiated with the laser beam L1 from above.
  • the laser light source 304, mirror 305, and lens 306 are fixed to a housing or the like. Therefore, the laser light source 304, the mirror 305, and the lens 306 move together in the X and Y directions.
  • the X driving mechanism 401 drives the gantry stage 40 in the X direction. This causes the optical system 30 on the gantry stage 40 to move in the X direction. Therefore, in the workpiece W, the laser irradiation position moves in the X direction.
  • the Y drive mechanism 303 drives the optical system 30 in the Y direction. This causes the optical system 30 to move in the Y direction. Therefore, in the workpiece W, the laser irradiation position moves in the Y direction. Thus, it becomes possible to cut the workpiece W along the cutting line in the X direction or the Y direction.
  • the configuration of the optical system 31 is similar to that of the optical system 30.
  • the optical system 31 is moved in the Y direction by the Y driving mechanism 313 . That is, the optical system 31 moves along the Y guide groove 413 on the gantry stage 41 .
  • the X drive mechanism 411 moves the gantry shaft 412 in the X direction. Thereby, the optical system 31 moves in the X direction and the Y direction.
  • the optical system 31 is provided with a laser light source 314 , a mirror 315 and a lens 316 .
  • a laser beam L2 from a laser light source 314 is guided to a workpiece W by a mirror 315 and a lens 316. As shown in FIG.
  • the X drive mechanism 411 drives the gantry stage 41 in the X direction. This causes the optical system 31 on the gantry stage 41 to move in the X direction. Therefore, in the workpiece W, the laser irradiation position moves in the X direction.
  • the Y drive mechanism 313 drives the optical system 31 in the Y direction. This causes the optical system 31 to move in the Y direction. Therefore, in the workpiece W, the laser irradiation position moves in the Y direction. Thus, it becomes possible to cut the workpiece W along the cutting line in the X direction or the Y direction.
  • the laser light sources 304 and 314 are mounted on the optical systems 30 and 31 in the above description, the laser light sources 304 and 314 may not be mounted on the optical systems 30 and 31 . In other words, the laser light sources 304 and 314 may be mounted outside the optical systems 30 and 31 . In this case, the laser beams L1 and L2 can be guided to the optical systems 30 and 31 using optical fibers or the like. Therefore, the optical systems 30 and 31 may be equipped with an optical element for guiding the laser light to the work W.
  • the optical systems 30 and 31 may be equipped with lenses 306 and 316, mirrors 305 and 315, and the like.
  • the work W held by suction on the stage 20 is irradiated with laser light.
  • the film, which is the work W can be held in a flat state.
  • the workpiece W can be prevented from being warped or wrinkled.
  • the focal position of the laser beam can be matched with the workpiece W. Therefore, the workpiece W can be cut appropriately.
  • the optical systems 30 and 31 are moved without moving the stage 20 . That is, the optical systems 30 and 31, which are smaller and lighter than the stage 20, are moved. Therefore, the size of the driving mechanism and the like can be reduced. Furthermore, since the optical systems 30 and 31 can be moved at high speed, high-speed processing becomes possible.
  • the footprint of the laser cutting device 1 can be reduced. That is, the laser irradiation position on the work W is changed by moving the optical systems 30 and 31 . By doing so, the footprint of the laser cutting device 1 can be reduced because there is no need to move the large workpiece W.
  • the laser cutting device 1 also has two gantry stages 40 and 41 .
  • An optical system 30 and an optical system 31 are attached to the gantry stage 40 and the gantry stage 41, respectively.
  • the workpiece W can be efficiently cut.
  • two or more locations on the workpiece W can be irradiated with laser light at the same time. Therefore, the tact time of the cutting process can be shortened.
  • the number of gantry stages held by the gantry 10 may be one, or may be three or more.
  • one gantry stage 40 is provided with two optical systems 30 .
  • one gantry stage 41 is provided with two optical systems 31 .
  • the workpiece W can be cut efficiently.
  • two or more locations on the workpiece W can be irradiated with laser light at the same time. Therefore, the tact time of the cutting process can be shortened.
  • the number of optical systems 30, 31 held by one gantry stage 40, 41 may be one, or three or more.
  • the optical system 30 and the optical system 31 may be provided with an optical scanner for scanning laser light.
  • mirrors 305 and 315 can each be galvo mirrors.
  • a biaxial optical scanner capable of scanning in the X and Y directions is used as the galvanomirror.
  • An optical scanner scans a laser beam along the cutting line. That is, as the optical systems 30 and 31 move, the optical scanner reciprocates and scans the laser light. By doing so, the irradiation position of the laser light can be changed at high speed. Therefore, the amount of soot generated by laser irradiation can be reduced.
  • the gantry stage 40 or the gantry stage 41 may be provided with a camera for alignment.
  • alignments are formed in advance near the cutting line. For example, it is formed so that the alignment mark and the cutting line are included within the angle of view of the camera.
  • a camera provided in the optical system 30 takes an image of the alignment mark of the work W. FIG. Then, the optical system 30 moves based on the captured XY positions. By doing so, the accuracy of the cutting position can be improved.
  • Embodiment 2 the laser cutting device 1 uses laser light sources of different wavelengths. Then, the laser wavelength is switched according to the process. That is, different wavelengths of laser light are applied according to the laser cutting process. Since the basic configuration of the laser cutting apparatus 1 is the same as that of the first embodiment, the description is omitted.
  • At least one of the two laser light sources 304 and the two laser light sources 314 is an infrared laser light source such as a CO2 laser, and the other is an ultraviolet laser light source.
  • the laser beam L1 can be an infrared laser and the laser beam L2 can be an ultraviolet laser. By doing so, it is possible to irradiate laser light having an appropriate wavelength according to the cutting process.
  • the laser wavelength may be switched and used according to the configuration of the laminated films on the film at the cutting point.
  • short circuits between terminals can be prevented by performing a cutting process with an ultraviolet laser for the mounting terminals.
  • a cutting process can be performed with an infrared laser for portions other than the mounting terminal portion.
  • FIG. 5 is a top view schematically showing the laser cutting device 1 and its transfer system 2.
  • FIG. 6 is a YZ plan view schematically showing the laser cutting device 1 and its transfer system 2.
  • FIG. 7 is an XZ plan view schematically showing the laser cutting device 1 and its transfer system 2.
  • the laser cutting device 1 may have a configuration different from that of the first embodiment.
  • the transfer system 2 includes a movable frame 3 , a guide frame 4 , a transfer mechanism 7 and a transfer mechanism 8 .
  • the guide frame 4 is provided along the Y direction.
  • a guide frame 4 is suspended above the laser cutting device 1 .
  • the guide frame 4 movably holds the movable frame 3.
  • the movable frame 3 moves along the guide frame 4 in the Y direction.
  • the movable frame 3 has an actuator such as a motor, and moves in the Y direction together with the transfer mechanism 7 or the transfer mechanism 8 .
  • the guide frame 4 guides the movement of the transfer mechanism 7 and the transfer mechanism 8 in the Y direction.
  • two movable frames 3 are attached to the guide frame 4 as shown in FIG.
  • One movable frame 3 is arranged on the -Y side of the laser cutting device 1
  • the other movable frame 3 is arranged on the +Y side of the laser cutting device 1 .
  • One movable frame 3 holds a transfer mechanism 7 and the other movable frame holds a transfer mechanism 8 . Therefore, the movement of one movable frame 3 causes the transfer mechanism 7 to move.
  • the movement of the other movable frame 3 causes the transfer mechanism 8 to move.
  • the Y-direction position of the transfer mechanism 7 or the transfer mechanism 8 changes.
  • the position of the transfer mechanism 7 in the Y direction when the transfer mechanism 7 is directly above the transfer stage 70 is defined as the retracted position.
  • the position of the transfer mechanism 8 in the Y direction when the transfer mechanism 8 is directly above the transfer stage 80 is defined as the retracted position.
  • 5 and 6 show the transfer mechanism 7 and the transfer mechanism 8 in the retracted position.
  • the Y-direction position when the transfer mechanism 7 or the transfer mechanism 8 is directly above the stage 20 is defined as the loading/unloading position.
  • FIG. 9 is a side cross-sectional view schematically showing a state in which the transfer mechanism 7 is at the loading/unloading position.
  • the work W before the cutting process is placed on the transfer stage 70 .
  • the transfer mechanism 7 loads the workpiece W on the transfer stage 70 to the laser cutting device 1 .
  • the transfer mechanism 8 unloads the workpiece W onto the transfer stage 80 .
  • the cut workpiece W is transferred to the transfer stage 80 . That is, the workpiece W cut into panel sizes is transferred to the transfer stage 80 .
  • the transfer mechanism 7 is a loader that loads the work W into the laser cutting device 1, and the transfer mechanism 8 is an unloader that unloads the work W from the laser cutting device 1.
  • the transfer mechanism 7 may be an unloader, and the transfer mechanism 8 may be a loader.
  • at least one of the transfer mechanism 7 and the transfer mechanism 8 may be a transfer machine (loader/unloader) for loading and unloading the workpiece W. For example, after the transfer mechanism 7 carries the work W into the laser cutting device 1 , the transfer mechanism 7 may unload the work W from the laser cutting device 1 .
  • the transfer mechanism 7 includes a holder 712 , a suction plate 713 and an elevating mechanism 715 .
  • the suction plate 713 is a suction portion that suctions the workpiece W. As shown in FIG. Specifically, the lower surface of the suction plate 713 serves as a suction surface, and the suction plate 713 suctions the workpiece W from above.
  • the suction plate 713 can vacuum-suck the workpiece W similarly to the stage 20 .
  • the suction plate 713 may have a suction pad or the like.
  • the holder 712 is fixed to the movable frame 3.
  • a lifting mechanism 715 is attached to the holder 712 .
  • a suction plate 713 is attached to the lifting mechanism 715 . That is, the suction plate 713 is attached to the holder 712 via the lifting mechanism 715 .
  • the holder 712 holds the suction plate 713 movably in the Z direction.
  • the lifting mechanism 715 includes actuators such as motors and cylinders, and lifts and lowers the suction plate 713 . That is, the lifting mechanism 715 can change the height of the suction plate 713 .
  • FIG. 9 is a side sectional view schematically showing a state in which the lifting mechanism 715 lowers the suction plate 713 at the loading/unloading position.
  • the configuration of the transfer mechanism 8 is similar to that of the transfer mechanism 7.
  • the transfer mechanism 8 includes a holder 812 , a suction plate 813 and an elevating mechanism 815 .
  • a holder 812 is fixed to the movable frame 3 .
  • the transfer mechanism 8 moves in the Y direction. That is, the transfer mechanism 8 moves from the retracted position shown in FIGS. 5 and 7 to the loading/unloading position on the stage 20 .
  • the lifting mechanism 815 lifts and lowers the suction plate 813 . Since the holder 812, the suction plate 813, and the lifting mechanism 815 are the same as the holder 712, the suction plate 713, and the lifting mechanism 715 of the transfer mechanism 7, detailed description thereof will be omitted.
  • the lifting mechanism 715 lowers the suction plate 713 from the height shown in FIG. As a result, the configuration shown in FIG. 9 is obtained. The lifting mechanism 715 lowers the suction plate 713 until the suction plate 713 contacts the upper surface of the workpiece W. As shown in FIG.
  • the lifting mechanism 715 stops the lifting operation. Then, the suction plate 713 holds the workpiece W by suction. That is, the suction plate 713 holds the workpiece W from above. A lifting mechanism 715 lifts the suction plate 713 . As a result, the work W on the transfer stage 70 is transferred to the transfer mechanism 7 .
  • the movable frame 3 moves the transfer mechanism 7 in the +Y direction.
  • the movable frame 3 moves the transfer mechanism 7 to right above the stage 20 .
  • the lifting mechanism 715 lowers the suction plate 713 .
  • the configuration shown in FIG. 8 is obtained.
  • the lifting mechanism 715 stops operating. In other words, the suction plate 713 descends to the transferable height.
  • the adsorption operation of the adsorption plate 713 is stopped, and the stage 20 adsorbs the workpiece W.
  • the suction of the suction plate 713 is released, and the stage 20 can hold the workpiece W by suction.
  • the lifting mechanism 715 lifts the adsorption plate 713, and the movable frame 3 moves the transfer mechanism 7 in the -Y direction. As a result, the transfer mechanism 7 returns to the retracted position. By doing so, the workpiece W can be transferred from the transfer mechanism 7 onto the stage 20 . Then, the cutting process by the laser cutting device 1 is executed.
  • the transfer mechanism 8 By moving the movable frame 3 in the -Y direction, the transfer mechanism 8 moves to the loading/unloading position. At the loading/unloading position, the lifting mechanism 815 lowers the suction plate 813 . The lifting mechanism 815 lowers the suction plate 813 until the suction plate 813 contacts the upper surface of the workpiece W. As shown in FIG. When the suction plate 813 contacts the workpiece W, the lifting mechanism 715 stops the lifting operation. Then, the stage 20 releases the adsorption of the workpiece W, and the adsorption plate 813 adsorbs the workpiece W.
  • the suction plate 813 sucks and holds the workpiece W from above. Then, the lifting mechanism 815 lifts the suction plate 813 . Thereby, the work W on the stage 20 is delivered to the transfer mechanism 8 .
  • the movable frame 3 moves the transfer mechanism 8 in the +Y direction.
  • the movable frame 3 moves the transfer mechanism 7 to right above the transfer stage 80 .
  • the lifting mechanism 815 lowers the suction plate 813 .
  • the lifting mechanism 815 stops operating. Then, the suction operation of the suction plate 813 is stopped. As a result, the suction of the suction plate 813 is released, and the processed work W is unloaded onto the transfer stage 80 .
  • the suction plate 713 or the suction plate 813 sucks and holds the workpiece W from above.
  • the transfer mechanism 7 and the transfer mechanism 8 are moved to the loading/unloading position directly above the stage 20 .
  • the transfer mechanism 7 and the transfer mechanism 8 transfer the work W from above the stage 20 . By doing so, it is possible to prevent wrinkles from being formed in the film that will be the work W.
  • FIG. 1
  • Transfer mechanisms 7 and 8 are provided on both sides of the laser cutting device 1 in the Y direction. That is, the transfer mechanism 7 is provided on the -Y side of the laser cutting device 1, and the transfer mechanism 8 is provided on the +Y side. By doing so, the work W can be carried in and out efficiently.
  • the transfer mechanism 7 can start the loading process of the work W while the transfer mechanism 8 is unloading the work W. That is, at least part of the unloading process and the loading process can be performed simultaneously. Therefore, the tact time can be shortened.
  • the movable frame 3 moves the transfer mechanism 7 or the transfer mechanism 8 in the Y direction. By doing so, it is possible to prevent the transfer mechanism 7 and the transfer mechanism 8 from interfering with the gantry stage 40 and the gantry stage 41 .
  • the transfer mechanism 7 and the transfer mechanism 8 transfer the workpiece W while the gantry stage 40 and the gantry stage 41 are retracted to the outside of the stage 20 . Therefore, the workpiece W can be transferred easily.
  • FIG. 10 is a top view showing the laser cutting device 1 and its transfer system 2. As shown in FIG. In Modification 1, the transfer system 2 has one transfer mechanism 7 . In other words, the configuration is such that the transfer mechanism 8 shown in FIGS. 5 to 9 is not provided.
  • the transfer mechanism 7 has the same configuration as the transfer mechanism 7 shown in FIGS.
  • the transfer mechanism 7 is a loader/unloader for loading and unloading the work W. As shown in FIG. With this configuration, the number of transfer mechanisms can be reduced to one, so that the device cost can be reduced. Furthermore, the footprint of the laser cutting device 1 can be reduced.
  • the laser cutting method by the laser cutting apparatus shown in Embodiments 1 to 3 includes a step of attracting and holding the workpiece W by the stage 20, and a step of moving the optical system 30 or 31 to change the irradiation position of the laser light. It has The laser cutting method may further include a step of transferring the workpiece W onto the stage 20 by the transfer mechanism 7 provided movably in the Y direction. The laser cutting method may further include a step of transferring the workpiece W from the stage 20 by the transfer mechanism 8 provided movably in the Y direction.
  • the laser cutting method using the laser cutting apparatus shown in Embodiments 1 to 3 can be applied to the display manufacturing method. That is, the laser cutting method can be used in the cutting process in the display manufacturing method. Specifically, as the workpiece W, a film or a substrate that becomes a display panel can be used. In other words, the laser cutting device 1 cuts the workpiece W that will become the display panel. As a result, a display panel having a predetermined size is cut out from the workpiece W. FIG. That is, the work W can be divided into a plurality of display panels. By applying the above laser cutting method to a method for manufacturing a flexible display, productivity can be improved. Of course, the work W is not limited to a flexible film, and may be a glass substrate or the like.
  • the above laser cutting device is suitable for cutting 8th generation or higher glass substrates.
  • the substrate size of the 8th generation is 2160 mm ⁇ 2460 mm.
  • a laser cutting apparatus can efficiently cut a glass substrate having a size of 2160 mm ⁇ 2460 mm or more.
  • the substrate size of the sixth generation is 1500 mm ⁇ 1850 mm.
  • the substrate size of the 8.5th generation is 2250 mm ⁇ 2500 mm.
  • the 10th generation is 2950mm x 3400mm.
  • the laser cutting apparatus can be applied to cutting glass substrates of the above sizes or larger.
  • the laser cutting apparatus includes a fixed stage for attracting and holding an eighth generation or higher glass substrate, and an optical system for guiding a laser beam for cutting the glass substrate to the glass substrate. , a guide mechanism for movably holding the optical system, and a drive mechanism for moving the optical system along the guide mechanism.
  • the area of the glass substrate is increasing with each generation.
  • the adsorption stage is configured to move, the problem of increasing the size of the apparatus and increasing the installation area becomes conspicuous.
  • the suction stage is fixed as in this embodiment, it is possible to suppress an increase in the installation area.
  • Embodiments 1 to 3 can be used in combination as appropriate.
  • Reference Signs List 1 laser cutting device 3 movable frame 4 guide frame 7 transfer mechanism 8 transfer mechanism 10 mount 11 X guide groove 15 measuring device 20 stage 30 optical system 303 Y drive mechanism 304 laser light source 305 mirror 306 lens 31 optical system 313 Y drive mechanism 314 laser light source 315 mirror 316 lens 40 gantry stage 401 X drive mechanism 402 gantry axis 403 Y guide groove 41 gantry stage 411 X drive mechanism 412 gantry axis 413 Y guide groove 70 transfer stage 80 transfer stage 712 holder 713 suction plate 715 elevation Mechanism 812 Holder 813 Suction plate 815 Lifting mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A laser cutting device (1) according to the present embodiment comprises a stage (20) for chucking and holding a workpiece W by suction, an optical system (30) for guiding laser light for cutting the workpiece W to the workpiece W, a guide mechanism for holding the optical system (30) so as to enable movement in a first direction in a top view, a first drive mechanism for moving the optical system along the guide mechanism, and a second drive mechanism for moving the guide mechanism in a second direction different from the first direction in the top view.

Description

レーザ切断装置、レーザ切断方法、及びディスプレイの製造方法LASER CUTTING APPARATUS, LASER CUTTING METHOD, AND DISPLAY MANUFACTURING METHOD
 本発明はレーザ切断装置、レーザ切断方法、及びディスプレイの製造方法に関する。 The present invention relates to a laser cutting device, a laser cutting method, and a display manufacturing method.
 特許文献1には、レーザ切断装置が開示されている。特許文献1のレーザ切断装置は、紫外線レーザ発振装置と赤外線レーザ発振装置とを備えている。ステージに載置されたガラス基板に赤外線レーザと紫外線レーザとが照射されている。基板に対する赤外線レーザと紫外線レーザとの相対位置を移動させている。 Patent Document 1 discloses a laser cutting device. The laser cutting device of Patent Document 1 includes an ultraviolet laser oscillator and an infrared laser oscillator. A glass substrate mounted on a stage is irradiated with an infrared laser and an ultraviolet laser. The relative positions of the infrared laser and the ultraviolet laser with respect to the substrate are moved.
特開2006-175487号公報JP 2006-175487 A
 このようなレーザ切断装置では、より効率的にワークを切断することが望まれる。特に、ディスプレイ用の基板の大型化に伴い、より効率的にプロセスを行うことが望まれる。 With such a laser cutting device, it is desirable to cut the workpiece more efficiently. In particular, as display substrates become larger, more efficient processes are desired.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and novel features will become apparent from the description and accompanying drawings of this specification.
 一実施の形態によれば、レーザ切断装置は、ワークを吸着保持するステージと、前記ワークを切断するためのレーザ光を前記ワークに導く光学系と、上面視において、第1の方向に前記光学系を移動可能に保持するガイド機構と、前記ガイド機構に沿って前記光学系を移動させる第1駆動機構と、前記上面視において、前記ガイド機構を前記第1の方向と異なる第2の方向に移動させる第2駆動機構と、を備えている。 According to one embodiment, a laser cutting apparatus includes a stage for sucking and holding a work, an optical system for guiding a laser beam for cutting the work to the work, and the optical system in a first direction when viewed from above. a guide mechanism for movably holding a system; a first drive mechanism for moving the optical system along the guide mechanism; and a second drive mechanism for moving.
 一実施の形態によれば、レーザ切断方法は、レーザ切断装置を用いてワークを切断するレーザ切断方法であって、前記レーザ切断装置は、前記ワークを切断するためのレーザ光を前記ワークに導く光学系と、上面視において、第1の方向に前記光学系を移動可能に保持するガイド機構と、前記ガイド機構に沿って前記光学系を移動させる第1駆動機構と、前記上面視において、前記ガイド機構を前記第1の方向と異なる第2の方向に移動させる第2駆動機構と、を備え、前記レーザ切断方法は、ステージが前記ワークを吸着保持するステップと、前記ワークにおける前記レーザ光の照射位置を変えるために、前記光学系を移動させるステップと、備えている。 According to one embodiment, a laser cutting method is a laser cutting method for cutting a work using a laser cutting device, wherein the laser cutting device guides a laser beam for cutting the work to the work. an optical system; a guide mechanism that holds the optical system movably in a first direction when viewed from above; a first drive mechanism that moves the optical system along the guide mechanism; a second drive mechanism for moving the guide mechanism in a second direction different from the first direction, wherein the laser cutting method comprises: a step of attracting and holding the work by a stage; and moving the optical system to change the irradiation position.
 一実施の形態によれば、製造方法は、表示パネルとなるワークをレーザ切断装置で切断するディスプレイの製造方法であって、前記レーザ切断装置は、前記ワークを切断するためのレーザ光を前記ワークに導く光学系と、上面視において、第1の方向に前記光学系を移動可能に保持するガイド機構と、前記ガイド機構に沿って前記光学系を移動させる第1駆動機構と、前記上面視において、前記ガイド機構を前記第1の方向と異なる第2の方向に移動させる第2駆動機構と、を備え、前記製造方法は、ステージが前記ワークを吸着保持するステップと、前記ワークにおける前記レーザ光の照射位置を変えるために、前記光学系を移動させるステップと、備えている。 According to one embodiment, the manufacturing method is a display manufacturing method for cutting a work to be a display panel by a laser cutting device, wherein the laser cutting device cuts the work by cutting the work with a laser beam. an optical system leading to, a guide mechanism for movably holding the optical system in a first direction in a top view, a first drive mechanism for moving the optical system along the guide mechanism, and a top view in the and a second drive mechanism for moving the guide mechanism in a second direction different from the first direction, wherein the manufacturing method comprises: a step of attracting and holding the work by a stage; and moving the optical system to change the irradiation position of the.
 本実施の形態にかかるレーザ切断装置は、第8世代以上のガラス基板を吸着保持するための、固定されたステージと、前記ガラス基板を切断するためのレーザ光を該ガラス基板に導く光学系と、前記光学系を移動可能に保持するガイド機構と、前記ガイド機構に沿って前記光学系を移動させる駆動機構と、を備えている。
The laser cutting apparatus according to the present embodiment includes a fixed stage for attracting and holding an eighth generation or higher glass substrate, and an optical system for guiding a laser beam for cutting the glass substrate to the glass substrate. , a guide mechanism for movably holding the optical system, and a drive mechanism for moving the optical system along the guide mechanism.
 前記一実施の形態によれば、効率良くワークを切断することができる。 According to the embodiment, the work can be cut efficiently.
施の形態にかかるレーザ切断装置を模式的に示す斜視図である。1 is a perspective view schematically showing a laser cutting device according to an embodiment; FIG. 実施の形態にかかるレーザ切断装置を模式的に示す上面図である。1 is a top view schematically showing a laser cutting device according to an embodiment; FIG. 実施の形態にかかるレーザ切断装置を模式的に示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows typically the laser cutting apparatus concerning embodiment. 実施の形態にかかるレーザ切断装置を模式的に示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows typically the laser cutting apparatus concerning embodiment. レーザ切断装置とその移載システムを模式的に示す上面図である。It is a top view which shows typically a laser cutting device and its transfer system. レーザ切断装置とその移載システムを模式的に示す側面図である。It is a side view which shows typically a laser cutting device and its transfer system. レーザ切断装置とその移載システムを模式的に示す側面図である。It is a side view which shows typically a laser cutting device and its transfer system. 移載機構がステージの上方にある状態を模式的に示す側面図である。FIG. 4 is a side view schematically showing a state in which the transfer mechanism is above the stage; 吸着プレートが下降した状態を模式的に示す側面図である。FIG. 11 is a side view schematically showing a state in which the suction plate is lowered; 変形例にかかる移載システムを示す上面図である。It is a top view which shows the transfer system concerning a modification.
 本実施の形態にかかるレーザ切断装置は、例えば、フレキシブルディスプレイのフィルムを切断するフィルムレーザカッティング装置(FLC装置)である。具体的には、フレキシブルフィルムを吸着ステージで吸着保持した状態で、レーザ光をフレキシブルフィルムに照射する。そして、フレキシブルフィルムに対するレーザ光の相対的な位置を移動させることで、フィルムを切断することができる。 A laser cutting device according to the present embodiment is, for example, a film laser cutting device (FLC device) that cuts the film of a flexible display. Specifically, the flexible film is irradiated with laser light while the flexible film is held by suction on a suction stage. Then, the film can be cut by moving the relative position of the laser beam with respect to the flexible film.
 従って、本実施の形態では、ワークとしてはフレキシブルフィルム(単にフィルムともいう)が用いられている。レーザ切断装置がディスプレイのパネルサイズに合わせて、ワークを切断する。そして、1枚のワークから1つ又は複数の表示パネルが切り出される。つまり、ワークは多面取りのマザー基板になっている。以下、図面を参照して本実施の形態にかかる、レーザ切断装置、レーザ切断方法、及びディスプレイの製造方法について説明する。 Therefore, in this embodiment, a flexible film (also simply called a film) is used as the work. A laser cutting device cuts the work according to the panel size of the display. Then, one or a plurality of display panels are cut out from one piece of work. In other words, the workpiece is a mother board with multiple surfaces. A laser cutting apparatus, a laser cutting method, and a display manufacturing method according to the present embodiment will be described below with reference to the drawings.
実施の形態1.
 図1~図4を用いて、本実施の形態にかかるレーザ切断装置の構成について説明する。図1は、レーザ切断装置1の構成を模式的に示す斜視図ある。図2は、レーザ切断装置1の構成を模式的に示す上面図である。図3は、レーザ切断装置1の構成を模式的に示すYZ平面図である。図4は、レーザ切断装置1の構成を模式的に示すXZ平面図である。
Embodiment 1.
The configuration of the laser cutting apparatus according to this embodiment will be described with reference to FIGS. 1 to 4. FIG. FIG. 1 is a perspective view schematically showing the configuration of a laser cutting device 1. FIG. FIG. 2 is a top view schematically showing the configuration of the laser cutting device 1. As shown in FIG. FIG. 3 is a YZ plan view schematically showing the configuration of the laser cutting device 1. As shown in FIG. FIG. 4 is an XZ plan view schematically showing the configuration of the laser cutting device 1. As shown in FIG.
 なお、以下に示す図では、説明の簡略化のため、適宜、XYZ3次元直交座標系を示している。Z方向は鉛直上下方向であり、ワークWの主面に直交する方向である。X方向及びY方向は、上面視において矩形状のワークWの端辺と平行な方向である。なお、ワークWの切断線はX方向又はY方向と平行な方向であるとする。 It should be noted that the diagrams shown below show an XYZ three-dimensional orthogonal coordinate system as appropriate for simplification of explanation. The Z direction is a vertical up-down direction and is a direction perpendicular to the main surface of the work W. As shown in FIG. The X direction and the Y direction are directions parallel to the edges of the rectangular workpiece W when viewed from above. It is assumed that the cutting line of the work W is parallel to the X direction or the Y direction.
 レーザ切断装置1は、架台10,ステージ20、光学系30、光学系31、ガントリーステージ40、ガントリーステージ41を備えている。架台10は、ステージ20等を保持するテーブルである。ステージ20は、架台10の上に固定されている。 The laser cutting device 1 includes a pedestal 10, a stage 20, an optical system 30, an optical system 31, a gantry stage 40, and a gantry stage 41. The pedestal 10 is a table that holds the stage 20 and the like. The stage 20 is fixed on the pedestal 10 .
 ステージ20は、ワークWを吸着保持する吸着ステージである。つまり、ステージ20は、バキュームチャックを行うためのチャックステージとなっている。ステージ20の上面が吸着面となっている。吸着面はXY平面と平行な平面になっている。例えば、ステージ20は図示しない真空ポンプなどの排気手段に接続されている。そして、ステージ20の吸着面から気体を吸引することで、ステージ20がワークWを吸着保持することができる。ワークWがステージ20の上に載せられた状態で、ステージ20がワークWを吸着する。これにより、フィルムのしわや反りが発生するのを防ぐことができる。 The stage 20 is a suction stage that holds the workpiece W by suction. In other words, the stage 20 is a chuck stage for vacuum chucking. The upper surface of the stage 20 serves as a suction surface. The attraction surface is a plane parallel to the XY plane. For example, the stage 20 is connected to exhaust means such as a vacuum pump (not shown). Then, the stage 20 can adsorb and hold the work W by sucking gas from the adsorption surface of the stage 20 . The stage 20 sucks the work W while the work W is placed on the stage 20 . This can prevent the film from wrinkling or warping.
 具体的には、ステージ20は、多孔質体を有している。例えば、ステージ20は、多孔質アルミナや多孔質SiC等のセラミック材料で形成されている。ステージ20をポーラス材料で形成することで、ワークWを確実に吸着保持することができる。なお、ステージ20は、アルミニウムやステンレスなどの金属材料などで形成されていてもよい。つまり、ステージ20は、金属加工により複数の吸引口が形成されたメタルステージであってもよい。また、ステージ20において、切断線となる箇所には、溝が設けられていても良い。このようにすることで、レーザ照射によるステージ20に対するダメージを抑制することができる。 Specifically, the stage 20 has a porous body. For example, the stage 20 is made of ceramic material such as porous alumina or porous SiC. By forming the stage 20 from a porous material, the workpiece W can be reliably held by suction. Note that the stage 20 may be made of a metal material such as aluminum or stainless steel. That is, the stage 20 may be a metal stage having a plurality of suction ports formed by metal working. Further, grooves may be provided on the stage 20 where the cutting lines are to be formed. By doing so, it is possible to suppress damage to the stage 20 due to laser irradiation.
 さらに、架台10の上面には、測定器15が設けられている。測定器15は、ワークWを撮像するカメラ等を有している。測定器15は、上面視において、矩形状のステージ20の角部近傍に配置されている。測定器15は、ステージ20上のワークWを撮像する。ワークWを撮像した画像により、ワークWが位置合わせされてもよい。 Furthermore, a measuring device 15 is provided on the upper surface of the pedestal 10. The measuring device 15 has a camera or the like for capturing an image of the workpiece W. As shown in FIG. The measuring device 15 is arranged near the corners of the rectangular stage 20 when viewed from above. The measuring device 15 images the workpiece W on the stage 20 . The work W may be aligned using an image of the work W captured.
 さらに、架台10の上には、レーザ光をワークWに照射するための光学系30,及び光学系31が設けられている。光学系30、及び光学系31は、X方向及びY方向に移動可能に設けられている。光学系30、及び光学系31は、X方向及びY方向に移動することで、ワークWの任意の位置にレーザ光を照射することができる。具体的には、光学系30,及び光学系31を切断線に沿って移動することで、レーザ光が切断線に沿って照射される。切断線は、ワークWにおけるパネルサイズ及びパネル数により予め設定されている。 Furthermore, an optical system 30 and an optical system 31 for irradiating the workpiece W with laser light are provided on the mount 10 . The optical system 30 and the optical system 31 are provided so as to be movable in the X direction and the Y direction. The optical system 30 and the optical system 31 can irradiate an arbitrary position of the workpiece W with laser light by moving in the X direction and the Y direction. Specifically, by moving the optical system 30 and the optical system 31 along the cutting line, the laser light is irradiated along the cutting line. The cutting line is preset according to the panel size and the number of panels in the workpiece W. As shown in FIG.
 光学系30、及び光学系31はステージ20よりも上方に配置されている。光学系30、及び光学系31は、上側からワークWにレーザ光を照射する。光学系30、及び光学系31がそれぞれガントリーステージ40、41に支持されている。よって、光学系30,31がそれぞれXY方向に移動する。以下、ガントリーステージ40,41による光学系30,31のXY駆動について説明する。 The optical system 30 and the optical system 31 are arranged above the stage 20 . The optical system 30 and the optical system 31 irradiate the workpiece W with laser light from above. An optical system 30 and an optical system 31 are supported by gantry stages 40 and 41, respectively. Accordingly, the optical systems 30 and 31 move in the XY directions, respectively. XY driving of the optical systems 30 and 31 by the gantry stages 40 and 41 will be described below.
 架台10の上面には、Xガイド溝11が設けられている。Xガイド溝11は、X方向と平行に形成されている。図2に示すように、Y方向におけるステージ20の両側にそれぞれ、Xガイド溝11が形成されている。つまり、架台10は、ステージ20の+Y側に配置されたXガイド溝11と-Y側に配置されたXガイド溝11とを有している。 An X guide groove 11 is provided on the top surface of the mount 10 . The X guide groove 11 is formed parallel to the X direction. As shown in FIG. 2, X guide grooves 11 are formed on both sides of the stage 20 in the Y direction. That is, the mount 10 has the X guide groove 11 arranged on the +Y side of the stage 20 and the X guide groove 11 arranged on the -Y side.
 Xガイド溝11を有する架台10は、ガントリーステージ40、41をX方向に移動可能に保持するXガイド機構となる。なお、Xガイド溝11は架台10に直接形成されていてもよく、架台10と別体として形成されていても良い。例えば、架台10に取り付けられたガイドレールが、Xガイド機構となっていてもよい。 The pedestal 10 having the X guide groove 11 serves as an X guide mechanism that holds the gantry stages 40 and 41 movably in the X direction. Note that the X guide groove 11 may be formed directly on the base 10 or may be formed separately from the base 10 . For example, a guide rail attached to the frame 10 may serve as an X guide mechanism.
 このように、ガントリーステージ40とガントリーステージ41とは、Xガイド溝11にガイドされて、架台10の上を移動する。Xガイド溝11は、ガントリーステージ40とガントリーステージ41とで共通となっている。ガントリーステージ41ガントリーステージ40とは同様の構成となっている。ガントリーステージ40とガントリーステージ41とは、X方向に離間して配置されている。具体的には、ガントリーステージ41は、ガントリーステージ40の-Y側に配置される。 Thus, the gantry stage 40 and the gantry stage 41 are guided by the X guide grooves 11 and move on the pedestal 10 . The X guide groove 11 is common between the gantry stage 40 and the gantry stage 41 . The gantry stage 41 has the same configuration as the gantry stage 40 . The gantry stage 40 and the gantry stage 41 are spaced apart in the X direction. Specifically, the gantry stage 41 is arranged on the -Y side of the gantry stage 40 .
 ガントリーステージ40、及びガントリーステージ41は、Xガイド溝11に沿って移動する。具体的には、ガントリーステージ40は、X駆動機構401と、ガントリー軸402とを備えている。X駆動機構401は、ガントリー軸402をX方向に移動可能に支持している。Y方向において、X駆動機構401は、ガントリー軸402の両端に配置されている。X駆動機構401は、ガントリー軸402をX方向に移動するためのアクチュエータを有している。例えば、X駆動機構401のモータなどが動作することで、ガントリー軸402がX方向に移動する。 The gantry stage 40 and the gantry stage 41 move along the X guide groove 11. Specifically, the gantry stage 40 has an X drive mechanism 401 and a gantry shaft 402 . The X drive mechanism 401 supports the gantry shaft 402 so as to be movable in the X direction. In the Y direction, the X drive mechanism 401 is arranged at both ends of the gantry shaft 402 . The X drive mechanism 401 has an actuator for moving the gantry shaft 402 in the X direction. For example, the gantry shaft 402 moves in the X direction by operating the motor of the X drive mechanism 401 or the like.
 ガントリー軸402はY方向に沿って延在している。具体的には、Y方向において、ガントリー軸402の一端はステージ20よりも+Y側に配置され、ガントリー軸402の他端はステージ20よりも-Y側に配置されている。ガントリー軸402の直下には、ステージ20よりも高い空間が形成されている。ガントリー軸402は、ステージ20の上方で、X方向に沿って移動する。つまり、ガントリー軸402は、ステージ20の上方を移動する。 The gantry axis 402 extends along the Y direction. Specifically, one end of the gantry shaft 402 is arranged on the +Y side of the stage 20 in the Y direction, and the other end of the gantry shaft 402 is arranged on the -Y side of the stage 20 . A space higher than the stage 20 is formed directly below the gantry axis 402 . A gantry axis 402 moves along the X direction above the stage 20 . That is, the gantry shaft 402 moves above the stage 20 .
 ガントリー軸402にはYガイド溝403が形成されている。Yガイド溝403はY方向と平行に形成されている。ガントリー軸402は、Yガイド溝403を介して、光学系30を保持している。したがって、ガントリー軸402は光学系30をY方向に移動可能に保持している。Y駆動機構303が光学系30を駆動することで、光学系30がYガイド溝403に沿って移動する。Yガイド溝403を有するガントリー軸402は、光学系30をY方向にガイドするYガイド機構となる。 A Y guide groove 403 is formed in the gantry shaft 402 . The Y guide groove 403 is formed parallel to the Y direction. Gantry shaft 402 holds optical system 30 via Y guide groove 403 . Therefore, the gantry shaft 402 holds the optical system 30 movably in the Y direction. The Y driving mechanism 303 drives the optical system 30 to move the optical system 30 along the Y guide groove 403 . A gantry shaft 402 having a Y guide groove 403 serves as a Y guide mechanism that guides the optical system 30 in the Y direction.
 したがって、光学系30がX方向及びY方向に移動する。つまり、ワークWの上方の空間において、光学系30が移動する。これにより、ワークWにおける任意の位置にレーザ光を照射することができる。 Therefore, the optical system 30 moves in the X and Y directions. That is, the optical system 30 moves in the space above the workpiece W. As shown in FIG. As a result, an arbitrary position on the workpiece W can be irradiated with the laser beam.
 ガントリーステージ41は、ガントリーステージ40と独立して移動する。ガントリーステージ41は、ガントリーステージ40と同様の構成となっている。具体的には、ガントリーステージ41は、X駆動機構411と、ガントリー軸412とを備えている。X駆動機構411は、ガントリー軸412をX方向に移動可能に支持している。Y方向において、X駆動機構411は、ガントリー軸412の両端に配置されている。X駆動機構411は、ガントリー軸412をX方向に移動するためのアクチュエータを有している。例えば、X駆動機構411のモータなどが動作することで、ガントリー軸412がX方向に移動する。 The gantry stage 41 moves independently of the gantry stage 40. The gantry stage 41 has a configuration similar to that of the gantry stage 40 . Specifically, the gantry stage 41 includes an X drive mechanism 411 and a gantry shaft 412 . The X drive mechanism 411 supports the gantry shaft 412 so as to be movable in the X direction. The X drive mechanism 411 is arranged at both ends of the gantry shaft 412 in the Y direction. The X drive mechanism 411 has an actuator for moving the gantry shaft 412 in the X direction. For example, the gantry shaft 412 moves in the X direction by operating the motor of the X drive mechanism 411 or the like.
 ガントリー軸412はY方向に沿って延在している。具体的には、Y方向において、ガントリー軸412の一端はステージ20よりも+Y側に配置され、ガントリー軸412の他端はステージ20よりも-Y側に配置されている。ガントリー軸412の直下には、ステージ20よりも高い空間が形成されている。ガントリー軸412は、ステージ20の上方で、X方向に沿って移動する。つまり、ガントリー軸412は、ステージ20の上方を移動する。 The gantry axis 412 extends along the Y direction. Specifically, one end of the gantry shaft 412 is arranged on the +Y side of the stage 20 in the Y direction, and the other end of the gantry shaft 412 is arranged on the -Y side of the stage 20 . A space higher than the stage 20 is formed directly below the gantry axis 412 . A gantry axis 412 moves along the X direction above the stage 20 . That is, the gantry shaft 412 moves above the stage 20 .
 ガントリー軸412にはYガイド溝413が形成されている。Yガイド溝413はY方向と平行に形成されている。ガントリー軸412は、Yガイド溝413を介して、光学系31を保持している。したがって、ガントリー軸412は光学系31をY方向に移動可能に保持している。Y駆動機構313が光学系31を駆動することで、光学系31がYガイド溝413に沿って移動する。Yガイド溝413を有するガントリー軸412は、光学系31をY方向にガイドするYガイド機構となる。 A Y guide groove 413 is formed in the gantry shaft 412 . The Y guide groove 413 is formed parallel to the Y direction. A gantry shaft 412 holds the optical system 31 via a Y guide groove 413 . Therefore, the gantry shaft 412 holds the optical system 31 movably in the Y direction. The Y driving mechanism 313 drives the optical system 31 to move the optical system 31 along the Y guide groove 413 . A gantry shaft 412 having a Y guide groove 413 serves as a Y guide mechanism that guides the optical system 31 in the Y direction.
 したがって、光学系31がX方向及びY方向に移動する。つまり、ワークWの上方の空間において、光学系31が移動する。これにより、ワークWにおける任意の位置にレーザ光を照射することができる。 Therefore, the optical system 31 moves in the X and Y directions. That is, the optical system 31 moves in the space above the workpiece W. FIG. As a result, an arbitrary position on the workpiece W can be irradiated with the laser beam.
 次に、図2、及び図4を参照して、光学系30の構成について説明する。光学系30には、レーザ光源304、ミラー305、及びレンズ306が設けられている。レーザ光源304は、ガントリー軸402の上側に配置されている。レーザ光源304は、レーザ光L1を発生する。ここでは、レーザ光源304からのレーザ光L1はX方向に沿って進んでいる。つまり、レーザ光源304の光軸はX方向と平行になっている。 Next, the configuration of the optical system 30 will be described with reference to FIGS. 2 and 4. FIG. The optical system 30 is provided with a laser light source 304 , a mirror 305 and a lens 306 . Laser light source 304 is positioned above gantry axis 402 . A laser light source 304 generates a laser beam L1. Here, the laser light L1 from the laser light source 304 travels along the X direction. That is, the optical axis of the laser light source 304 is parallel to the X direction.
 レーザ光源304からレーザ光L1は、ミラー305に入射する。ミラー305はレーザ光源304,及びガントリー軸402よりも-X側に配置されている。ミラー305は、レーザ光L1を下方に反射する。ミラー305は、X軸に対して45°傾いて配置されている。ミラー305で反射したレーザ光L1は-Z方向に進んでいく。ミラー305で反射したレーザ光L1は、レンズ306に入射する。レンズ306はレーザ光をワークWに集光する。つまり、レンズ306は、ワークWに集光スポットが形成されるようにレーザ光L1を集光する。 A laser beam L1 from the laser light source 304 is incident on the mirror 305 . The mirror 305 is arranged on the -X side of the laser light source 304 and the gantry axis 402 . Mirror 305 reflects laser light L1 downward. The mirror 305 is arranged at an angle of 45° with respect to the X-axis. The laser beam L1 reflected by the mirror 305 travels in the -Z direction. Laser light L1 reflected by mirror 305 enters lens 306 . A lens 306 converges the laser light onto the workpiece W. As shown in FIG. That is, the lens 306 converges the laser beam L1 so that a condensed spot is formed on the workpiece W. FIG.
 このように光学系30は、レーザ光L1をワークWに導くことができる。レーザ光L1が上側からワークWに照射される。レーザ光源304,ミラー305、及びレンズ306は筐体などに固定されている。よって、レーザ光源304、ミラー305、及びレンズ306が一体となって、X方向及びY方向に移動する。 Thus, the optical system 30 can guide the laser beam L1 to the workpiece W. The workpiece W is irradiated with the laser beam L1 from above. The laser light source 304, mirror 305, and lens 306 are fixed to a housing or the like. Therefore, the laser light source 304, the mirror 305, and the lens 306 move together in the X and Y directions.
 X方向に沿ってワークWを切断する場合、X駆動機構401がX方向にガントリーステージ40を駆動する。これにより、ガントリーステージ40上の光学系30がX方向に移動する。よって、ワークWにおいて、レーザ照射位置がX方向に移動する。 When cutting the workpiece W along the X direction, the X driving mechanism 401 drives the gantry stage 40 in the X direction. This causes the optical system 30 on the gantry stage 40 to move in the X direction. Therefore, in the workpiece W, the laser irradiation position moves in the X direction.
 Y方向に沿ってワークWを切断する場合、Y駆動機構303がY方向に光学系30を駆動する。これにより、光学系30がY方向に移動する。よって、ワークWにおいて、レーザ照射位置がY方向に移動する。このように、X方向又はY方向の切断線に沿ってワークWを切断することが可能になる。 When cutting the workpiece W along the Y direction, the Y drive mechanism 303 drives the optical system 30 in the Y direction. This causes the optical system 30 to move in the Y direction. Therefore, in the workpiece W, the laser irradiation position moves in the Y direction. Thus, it becomes possible to cut the workpiece W along the cutting line in the X direction or the Y direction.
 なお、光学系31の構成は、光学系30と同様になっている。光学系31は、Y駆動機構313によって、Y方向に移動する。つまり、光学系31は、ガントリーステージ41上をYガイド溝413に沿って移動する。さらに、X駆動機構411がガントリー軸412をX方向に移動する。これにより、光学系31は、X方向及びY方向に移動する。 The configuration of the optical system 31 is similar to that of the optical system 30. The optical system 31 is moved in the Y direction by the Y driving mechanism 313 . That is, the optical system 31 moves along the Y guide groove 413 on the gantry stage 41 . Furthermore, the X drive mechanism 411 moves the gantry shaft 412 in the X direction. Thereby, the optical system 31 moves in the X direction and the Y direction.
 光学系31は、レーザ光源314、ミラー315、及びレンズ316が設けられている。レーザ光源314からのレーザ光L2がミラー315、レンズ316によりワークWに導かれる。光学系31がワークWの上方において、X方向及びY方向に移動することで、ワークWの任意の位置にレーザ光L2を照射することができる。 The optical system 31 is provided with a laser light source 314 , a mirror 315 and a lens 316 . A laser beam L2 from a laser light source 314 is guided to a workpiece W by a mirror 315 and a lens 316. As shown in FIG. By moving the optical system 31 above the workpiece W in the X and Y directions, an arbitrary position on the workpiece W can be irradiated with the laser beam L2.
 X方向に沿ってワークWを切断する場合、X駆動機構411がX方向にガントリーステージ41を駆動する。これにより、ガントリーステージ41上の光学系31がX方向に移動する。よって、ワークWにおいて、レーザ照射位置がX方向に移動する。 When cutting the workpiece W along the X direction, the X drive mechanism 411 drives the gantry stage 41 in the X direction. This causes the optical system 31 on the gantry stage 41 to move in the X direction. Therefore, in the workpiece W, the laser irradiation position moves in the X direction.
 Y方向に沿ってワークWを切断する場合、Y駆動機構313がY方向に光学系31を駆動する。これにより、光学系31がY方向に移動する。よって、ワークWにおいて、レーザ照射位置がY方向に移動する。このように、X方向又はY方向の切断線に沿ってワークWを切断することが可能になる。 When cutting the workpiece W along the Y direction, the Y drive mechanism 313 drives the optical system 31 in the Y direction. This causes the optical system 31 to move in the Y direction. Therefore, in the workpiece W, the laser irradiation position moves in the Y direction. Thus, it becomes possible to cut the workpiece W along the cutting line in the X direction or the Y direction.
 なお、上記の説明では、光学系30,31にレーザ光源304,314が搭載されていたが、レーザ光源304、314は光学系30,31に搭載されていなくてもよい。つまり、レーザ光源304、314は光学系30,31の外側に搭載されていてもよい。この場合、光ファイバなどを用いて、レーザ光L1、L2を光学系30,光学系31に導くことができる。従って、光学系30,31は、レーザ光をワークWに導くための光学素子が搭載されていればよい。例えば、光学系30,31には、レンズ306、316やミラー305,315等が搭載されていればよい。 Although the laser light sources 304 and 314 are mounted on the optical systems 30 and 31 in the above description, the laser light sources 304 and 314 may not be mounted on the optical systems 30 and 31 . In other words, the laser light sources 304 and 314 may be mounted outside the optical systems 30 and 31 . In this case, the laser beams L1 and L2 can be guided to the optical systems 30 and 31 using optical fibers or the like. Therefore, the optical systems 30 and 31 may be equipped with an optical element for guiding the laser light to the work W. FIG. For example, the optical systems 30 and 31 may be equipped with lenses 306 and 316, mirrors 305 and 315, and the like.
 本実施の形態では、ステージ20に吸着保持されているワークWにレーザ光が照射されている。ステージ20を吸着ステージとすることで、ワークWであるフィルムを平坦な状態で保持することができる。例えば、ワークWの反りやしわが発生するのを防ぐことができる。レーザ光の焦点位置をワークWに一致させることができる。よって、適切にワークWを切断することができる。 In the present embodiment, the work W held by suction on the stage 20 is irradiated with laser light. By using the stage 20 as a suction stage, the film, which is the work W, can be held in a flat state. For example, the workpiece W can be prevented from being warped or wrinkled. The focal position of the laser beam can be matched with the workpiece W. Therefore, the workpiece W can be cut appropriately.
 さらに、ステージ20を移動させずに、光学系30、31を移動させている。つまり、ステージ20よりも小型で軽量な光学系30,31を移動させている。よって、駆動機構などを小型化することができる。さらに、光学系30,31を高速に移動させることができるため、高速なプロセスが可能となる。 Furthermore, the optical systems 30 and 31 are moved without moving the stage 20 . That is, the optical systems 30 and 31, which are smaller and lighter than the stage 20, are moved. Therefore, the size of the driving mechanism and the like can be reduced. Furthermore, since the optical systems 30 and 31 can be moved at high speed, high-speed processing becomes possible.
 また、ステージ20が固定されているため、レーザ切断装置1のフットプリントを小さくすることができる。つまり、光学系30、31を移動させることで、ワークWにおけるレーザ照射位置が変化している。このようにすることで、大型のワークWを移動させる必要がなくなるため、レーザ切断装置1のフットプリントを小さくことができる。 Also, since the stage 20 is fixed, the footprint of the laser cutting device 1 can be reduced. That is, the laser irradiation position on the work W is changed by moving the optical systems 30 and 31 . By doing so, the footprint of the laser cutting device 1 can be reduced because there is no need to move the large workpiece W.
 また、レーザ切断装置1は2つのガントリーステージ40,41を備えている。そして、ガントリーステージ40、ガントリーステージ41のそれぞれに光学系30、光学系31が取り付けられている。このようにすることで、このようにすることで、効率良くワークWを切断することができる。例えば、ワークWの2箇所以上に同時にレーザ光を照射することができる。よって、切断プロセスのタクトタイムを短縮することができる。もちろん、架台10に保持されているガントリーステージの数は1つでもよく、3つ以上であってもよい。 The laser cutting device 1 also has two gantry stages 40 and 41 . An optical system 30 and an optical system 31 are attached to the gantry stage 40 and the gantry stage 41, respectively. By doing so, the workpiece W can be efficiently cut. For example, two or more locations on the workpiece W can be irradiated with laser light at the same time. Therefore, the tact time of the cutting process can be shortened. Of course, the number of gantry stages held by the gantry 10 may be one, or may be three or more.
 さらに、本実施の形態では、1つのガントリーステージ40に2つの光学系30が設けられている。同様に、1つのガントリーステージ41に2つの光学系31が設けられている。このようにすることで、効率良くワークWを切断することができる。例えば、ワークWの2箇所以上に同時にレーザ光を照射することができる。よって、切断プロセスのタクトタイムを短縮することができる。もちろん、1つのガントリーステージ40、41に保持されている光学系30、31の数は1つでもよく、3つ以上であってもよい。 Furthermore, in this embodiment, one gantry stage 40 is provided with two optical systems 30 . Similarly, one gantry stage 41 is provided with two optical systems 31 . By doing so, the workpiece W can be cut efficiently. For example, two or more locations on the workpiece W can be irradiated with laser light at the same time. Therefore, the tact time of the cutting process can be shortened. Of course, the number of optical systems 30, 31 held by one gantry stage 40, 41 may be one, or three or more.
 また、光学系30,及び光学系31には、レーザ光をスキャンする光スキャナが設けられていても良い。例えば、ミラー305、315をそれぞれガルバノミラーにすることができる。ガルバノミラーをX方向及びY方向に走査可能な2軸の光スキャナとする。光スキャナがレーザ光を切断線に沿ってスキャンする。つまり、光学系30,31の移動とともに、光スキャナがレーザ光を往復スキャンする。このようにすることで、レーザ光の照射位置を高速に変化させることができる。よって、レーザ照射による発生する煤の量を低減することができる。 Further, the optical system 30 and the optical system 31 may be provided with an optical scanner for scanning laser light. For example, mirrors 305 and 315 can each be galvo mirrors. A biaxial optical scanner capable of scanning in the X and Y directions is used as the galvanomirror. An optical scanner scans a laser beam along the cutting line. That is, as the optical systems 30 and 31 move, the optical scanner reciprocates and scans the laser light. By doing so, the irradiation position of the laser light can be changed at high speed. Therefore, the amount of soot generated by laser irradiation can be reduced.
 また、ガントリーステージ40又はガントリーステージ41には、位置合わせ用のカメラが設けられていても良い。ワークWにおいて、切断線の近傍にアライメントを予め形成しておく。例えば、カメラの画角内に、アライメントマーク及び切断線が含まれるように形成する。光学系30に設けられたカメラが、ワークWのアライメントマークを撮像する。そして、撮像したXY位置に基づいて、光学系30が移動する。このようにすることで、切断位置の精度を向上することができる。 Also, the gantry stage 40 or the gantry stage 41 may be provided with a camera for alignment. In the workpiece W, alignments are formed in advance near the cutting line. For example, it is formed so that the alignment mark and the cutting line are included within the angle of view of the camera. A camera provided in the optical system 30 takes an image of the alignment mark of the work W. FIG. Then, the optical system 30 moves based on the captured XY positions. By doing so, the accuracy of the cutting position can be improved.
実施の形態2.
 実施の形態2では、レーザ切断装置1は、異なる波長のレーザ光源を用いている。そして、プロセスに応じて、レーザ波長を切り替えている。つまり、レーザ切断プロセスに応じて、異なる波長のレーザ光を照射する。なお、レーザ切断装置1の基本的な構成については実施の形態1と同様であるため説明を省略する。
Embodiment 2.
In Embodiment 2, the laser cutting device 1 uses laser light sources of different wavelengths. Then, the laser wavelength is switched according to the process. That is, different wavelengths of laser light are applied according to the laser cutting process. Since the basic configuration of the laser cutting apparatus 1 is the same as that of the first embodiment, the description is omitted.
 2つのレーザ光源304,及び2つのレーザ光源314のうち、一つ以上を、COレーザ等の赤外線レーザ光源とし、他を紫外線レーザ光源とする。例えば、レーザ光L1を赤外線レーザとし、レーザ光L2を紫外線レーザとすることができる。このようにすることで、切断プロセスに応じて適切な波長のレーザ光を照射することができる。例えば、切断箇所においてフィルム上の積層された膜の構成等に応じて、レーザ波長を切替えて使用すればよい。 At least one of the two laser light sources 304 and the two laser light sources 314 is an infrared laser light source such as a CO2 laser, and the other is an ultraviolet laser light source. For example, the laser beam L1 can be an infrared laser and the laser beam L2 can be an ultraviolet laser. By doing so, it is possible to irradiate laser light having an appropriate wavelength according to the cutting process. For example, the laser wavelength may be switched and used according to the configuration of the laminated films on the film at the cutting point.
 例えば、実装端子部については紫外線レーザで切断プロセスを行うことで、端子間の短絡を防ぐことができる。実装端子部以外の部分については赤外線レーザで切断プロセスを行うことができる。 For example, short circuits between terminals can be prevented by performing a cutting process with an ultraviolet laser for the mounting terminals. A cutting process can be performed with an infrared laser for portions other than the mounting terminal portion.
実施の形態3.
 次に、レーザ切断装置1に対するワークWの移載システムについて図5、図6、及び図7を用いて説明する。図5は、レーザ切断装置1と、その移載システム2を模式的に示す上面図である。図6は、レーザ切断装置1と、その移載システム2を模式的に示すYZ平面図である。図7は、レーザ切断装置1と、その移載システム2を模式的に示すXZ平面図である。レーザ切断装置1の基本的な構成は、図1~図4で示した構成と同様であるため詳細な説明を省略する。もちろん、レーザ切断装置1は、実施の形態1と異なる構成であってもよい。
Embodiment 3.
Next, a system for transferring the work W to the laser cutting device 1 will be described with reference to FIGS. 5, 6, and 7. FIG. FIG. 5 is a top view schematically showing the laser cutting device 1 and its transfer system 2. As shown in FIG. FIG. 6 is a YZ plan view schematically showing the laser cutting device 1 and its transfer system 2. As shown in FIG. FIG. 7 is an XZ plan view schematically showing the laser cutting device 1 and its transfer system 2. As shown in FIG. Since the basic configuration of the laser cutting device 1 is the same as the configuration shown in FIGS. 1 to 4, detailed description thereof will be omitted. Of course, the laser cutting device 1 may have a configuration different from that of the first embodiment.
 移載システム2は、可動フレーム3と、ガイドフレーム4と、移載機構7と、移載機構8とを備えている。ガイドフレーム4はY方向に沿って設けられている。ガイドフレーム4は、レーザ切断装置1の上方に吊されている。 The transfer system 2 includes a movable frame 3 , a guide frame 4 , a transfer mechanism 7 and a transfer mechanism 8 . The guide frame 4 is provided along the Y direction. A guide frame 4 is suspended above the laser cutting device 1 .
 ガイドフレーム4は、可動フレーム3を移動可能に保持している。可動フレーム3は、ガイドフレーム4に沿ってY方向に移動する。可動フレーム3はモータなどのアクチュエータを有しており、移載機構7、又は移載機構8とともに、Y方向に移動する。ガイドフレーム4は、移載機構7、及び移載機構8のY方向の移動をガイドする。 The guide frame 4 movably holds the movable frame 3. The movable frame 3 moves along the guide frame 4 in the Y direction. The movable frame 3 has an actuator such as a motor, and moves in the Y direction together with the transfer mechanism 7 or the transfer mechanism 8 . The guide frame 4 guides the movement of the transfer mechanism 7 and the transfer mechanism 8 in the Y direction.
 ここでは、図5に示すように、2つの可動フレーム3がガイドフレーム4に取付けられている。一方の可動フレーム3は、レーザ切断装置1の-Y側に配置され、他方の可動フレーム3はレーザ切断装置1の+Y側に配置されている。一方の可動フレーム3は移載機構7を保持しており、他方の可動フレームは移載機構8を保持している。よって、一方の可動フレーム3の移動により、移載機構7が移動する。他方の可動フレーム3の移動により、移載機構8が移動する。 Here, two movable frames 3 are attached to the guide frame 4 as shown in FIG. One movable frame 3 is arranged on the -Y side of the laser cutting device 1 , and the other movable frame 3 is arranged on the +Y side of the laser cutting device 1 . One movable frame 3 holds a transfer mechanism 7 and the other movable frame holds a transfer mechanism 8 . Therefore, the movement of one movable frame 3 causes the transfer mechanism 7 to move. The movement of the other movable frame 3 causes the transfer mechanism 8 to move.
 可動フレーム3のモータが動作することで、移載機構7、又は移載機構8のY方向位置が変化する。移載機構7が移載ステージ70の真上にある時の移載機構7のY方向位置を退避位置とする。移載機構8が移載ステージ80の真上にある時の移載機構8のY方向位置を退避位置とする。図5,図6は移載機構7、移載機構8が退避位置にある状態を示している。移載機構7又は移載機構8がステージ20の真上にある時のY方向位置を搬入搬出位置とする。図9は、移載機構7が搬入搬出位置にある状態を模式的に示す側面断面図である。 By operating the motor of the movable frame 3, the Y-direction position of the transfer mechanism 7 or the transfer mechanism 8 changes. The position of the transfer mechanism 7 in the Y direction when the transfer mechanism 7 is directly above the transfer stage 70 is defined as the retracted position. The position of the transfer mechanism 8 in the Y direction when the transfer mechanism 8 is directly above the transfer stage 80 is defined as the retracted position. 5 and 6 show the transfer mechanism 7 and the transfer mechanism 8 in the retracted position. The Y-direction position when the transfer mechanism 7 or the transfer mechanism 8 is directly above the stage 20 is defined as the loading/unloading position. FIG. 9 is a side cross-sectional view schematically showing a state in which the transfer mechanism 7 is at the loading/unloading position.
 図6に示されるように、移載ステージ70には、切断プロセス前のワークWが載せられている。移載機構7は、移載ステージ70上のワークWをレーザ切断装置1にロードする。切断プロセスが終了すると、移載機構8は、ワークWを移載ステージ80にアンロードする。これにより、切断処理済みのワークWが移載ステージ80に移載される。つまり、パネルサイズに切り分けられたワークWが移載ステージ80に移載される。 As shown in FIG. 6, the work W before the cutting process is placed on the transfer stage 70 . The transfer mechanism 7 loads the workpiece W on the transfer stage 70 to the laser cutting device 1 . After the cutting process is finished, the transfer mechanism 8 unloads the workpiece W onto the transfer stage 80 . Thereby, the cut workpiece W is transferred to the transfer stage 80 . That is, the workpiece W cut into panel sizes is transferred to the transfer stage 80 .
 移載機構7がワークWをレーザ切断装置1に搬入するローダであり、移載機構8がレーザ切断装置1からワークWを搬出するアンローダとして説明する。もちろん、移載機構7がアンローダ、移載機構8がローダとなっていても良い。さらには、移載機構7及び移載機構8の少なくとも一方がワークWの搬入及び搬出を行う移載機(ローダ/アンローダ)であっても良い。例えば、移載機構7がワークWをレーザ切断装置1に搬入した後、移載機構7がレーザ切断装置1からワークWを搬出しても良い。 The transfer mechanism 7 is a loader that loads the work W into the laser cutting device 1, and the transfer mechanism 8 is an unloader that unloads the work W from the laser cutting device 1. Of course, the transfer mechanism 7 may be an unloader, and the transfer mechanism 8 may be a loader. Furthermore, at least one of the transfer mechanism 7 and the transfer mechanism 8 may be a transfer machine (loader/unloader) for loading and unloading the workpiece W. For example, after the transfer mechanism 7 carries the work W into the laser cutting device 1 , the transfer mechanism 7 may unload the work W from the laser cutting device 1 .
 移載機構7の構成について説明する。移載機構7は、ホルダ712、吸着プレート713、昇降機構715を備えている。吸着プレート713は、ワークWを吸着する吸着部である。具体的には、吸着プレート713の下面が吸着面となっており、吸着プレート713は、上側からワークWを吸着する。吸着プレート713はステージ20と同様にワークWを真空吸着することができる。あるいは、吸着プレート713は吸着パッドなどを有していてもよい。 The configuration of the transfer mechanism 7 will be explained. The transfer mechanism 7 includes a holder 712 , a suction plate 713 and an elevating mechanism 715 . The suction plate 713 is a suction portion that suctions the workpiece W. As shown in FIG. Specifically, the lower surface of the suction plate 713 serves as a suction surface, and the suction plate 713 suctions the workpiece W from above. The suction plate 713 can vacuum-suck the workpiece W similarly to the stage 20 . Alternatively, the suction plate 713 may have a suction pad or the like.
 ホルダ712は可動フレーム3に固定されている。ホルダ712には、昇降機構715が取付けられている。昇降機構715には、吸着プレート713が取り付けられている。つまり、吸着プレート713は、昇降機構715を介して、ホルダ712に取り付けられている。 The holder 712 is fixed to the movable frame 3. A lifting mechanism 715 is attached to the holder 712 . A suction plate 713 is attached to the lifting mechanism 715 . That is, the suction plate 713 is attached to the holder 712 via the lifting mechanism 715 .
 ホルダ712は、吸着プレート713をZ方向に移動可能に保持している。具体的には、昇降機構715はモータやシリンダなどのアクチュエータを備えており、吸着プレート713を昇降させる。すなわち、昇降機構715が吸着プレート713の高さを変えることができる。図9は、搬入搬出位置において、昇降機構715が吸着プレート713を下降させた状態を模式的に示す側面断面図である。 The holder 712 holds the suction plate 713 movably in the Z direction. Specifically, the lifting mechanism 715 includes actuators such as motors and cylinders, and lifts and lowers the suction plate 713 . That is, the lifting mechanism 715 can change the height of the suction plate 713 . FIG. 9 is a side sectional view schematically showing a state in which the lifting mechanism 715 lowers the suction plate 713 at the loading/unloading position.
 移載機構8の構成は、移載機構7と同様になっている。移載機構8は、ホルダ812、吸着プレート813、昇降機構815を備えている。ホルダ812は、可動フレーム3に固定されている。可動フレーム3のモータが動作することで、移載機構8がY方向に移動する。つまり、移載機構8は、図5,図7に示す退避位置からステージ20上の搬入搬出位置まで移動する。 The configuration of the transfer mechanism 8 is similar to that of the transfer mechanism 7. The transfer mechanism 8 includes a holder 812 , a suction plate 813 and an elevating mechanism 815 . A holder 812 is fixed to the movable frame 3 . As the motor of the movable frame 3 operates, the transfer mechanism 8 moves in the Y direction. That is, the transfer mechanism 8 moves from the retracted position shown in FIGS. 5 and 7 to the loading/unloading position on the stage 20 .
 昇降機構815が吸着プレート813を昇降させる。ホルダ812、吸着プレート813、昇降機構815は、移載機構7のホルダ712、吸着プレート713、昇降機構715と同様であるため、詳細な説明については省略する。 The lifting mechanism 815 lifts and lowers the suction plate 813 . Since the holder 812, the suction plate 813, and the lifting mechanism 815 are the same as the holder 712, the suction plate 713, and the lifting mechanism 715 of the transfer mechanism 7, detailed description thereof will be omitted.
 移載機構7が、移載ステージ70にあるワークWをレーザ切断装置1に搬入する動作について説明する。退避位置において、昇降機構715が図7に示す高さから吸着プレート713を下降させる。これにより、図9に示す構成となる。吸着プレート713がワークWの上面に接触するまで、昇降機構715が吸着プレート713を下降させる。 The operation of the transfer mechanism 7 to carry the workpiece W on the transfer stage 70 into the laser cutting device 1 will be described. At the retracted position, the lifting mechanism 715 lowers the suction plate 713 from the height shown in FIG. As a result, the configuration shown in FIG. 9 is obtained. The lifting mechanism 715 lowers the suction plate 713 until the suction plate 713 contacts the upper surface of the workpiece W. As shown in FIG.
 吸着プレート713がワークWに接触したら、昇降機構715が昇降動作を停止させる。そして、吸着プレート713がワークWを吸着保持する。すなわち、吸着プレート713が上側からワークWを保持する。昇降機構715が吸着プレート713を上昇させる。これにより、移載ステージ70上にあったワークWが移載機構7に受け渡される。 When the suction plate 713 contacts the workpiece W, the lifting mechanism 715 stops the lifting operation. Then, the suction plate 713 holds the workpiece W by suction. That is, the suction plate 713 holds the workpiece W from above. A lifting mechanism 715 lifts the suction plate 713 . As a result, the work W on the transfer stage 70 is transferred to the transfer mechanism 7 .
 可動フレーム3が移載機構7を+Y方向に移動させる。可動フレーム3が移載機構7をステージ20の真上まで移動させる。可動フレーム3が搬入搬出位置に到達したら、Y方向の移動が停止する。次に、昇降機構715が吸着プレート713を下降させる。これにより、図8に示す構成となる。ワークWがステージ20の上面に接触したら、昇降機構715が動作を停止する。つまり、吸着プレート713が受け渡し可能高さまで下降する。そして、吸着プレート713の吸着動作を停止するとともに、ステージ20がワークWを吸着する。これにより、吸着プレート713の吸着が開放され、ステージ20がワークWを吸着保持することができる。 The movable frame 3 moves the transfer mechanism 7 in the +Y direction. The movable frame 3 moves the transfer mechanism 7 to right above the stage 20 . When the movable frame 3 reaches the loading/unloading position, it stops moving in the Y direction. Next, the lifting mechanism 715 lowers the suction plate 713 . As a result, the configuration shown in FIG. 8 is obtained. When the work W contacts the upper surface of the stage 20, the lifting mechanism 715 stops operating. In other words, the suction plate 713 descends to the transferable height. Then, the adsorption operation of the adsorption plate 713 is stopped, and the stage 20 adsorbs the workpiece W. As a result, the suction of the suction plate 713 is released, and the stage 20 can hold the workpiece W by suction.
 そして、昇降機構715が吸着プレート713を上昇させるとともに、可動フレーム3が-Y方向に移載機構7を移動させる。これにより、移載機構7が、退避位置に戻る。このようにすることで、移載機構7からステージ20上にワークWを移載することができる。そして、レーザ切断装置1による切断プロセスが実行される。 Then, the lifting mechanism 715 lifts the adsorption plate 713, and the movable frame 3 moves the transfer mechanism 7 in the -Y direction. As a result, the transfer mechanism 7 returns to the retracted position. By doing so, the workpiece W can be transferred from the transfer mechanism 7 onto the stage 20 . Then, the cutting process by the laser cutting device 1 is executed.
 次に、移載機構8が、ステージ20にあるワークWを移載ステージ80に搬出する動作について説明する。可動フレーム3が-Y方向に移動することで、移載機構8が搬入搬出位置まで移動する。搬入搬出位置において、昇降機構815が吸着プレート813を下降させる。吸着プレート813がワークWの上面に接触するまで、昇降機構815が吸着プレート813を下降させる。吸着プレート813がワークWに接触したら、昇降機構715が昇降動作を停止させる。そして、ステージ20がワークWの吸着を解除するとともに、吸着プレート813がワークWを吸着する。 Next, the operation of the transfer mechanism 8 to carry out the workpiece W on the stage 20 to the transfer stage 80 will be described. By moving the movable frame 3 in the -Y direction, the transfer mechanism 8 moves to the loading/unloading position. At the loading/unloading position, the lifting mechanism 815 lowers the suction plate 813 . The lifting mechanism 815 lowers the suction plate 813 until the suction plate 813 contacts the upper surface of the workpiece W. As shown in FIG. When the suction plate 813 contacts the workpiece W, the lifting mechanism 715 stops the lifting operation. Then, the stage 20 releases the adsorption of the workpiece W, and the adsorption plate 813 adsorbs the workpiece W.
 吸着プレート813が上側からワークWを吸着保持する。そして、昇降機構815が吸着プレート813を上昇させる。これにより、ステージ20上のワークWが移載機構8に受け渡される。可動フレーム3が移載機構8を+Y方向に移動させる。 The suction plate 813 sucks and holds the workpiece W from above. Then, the lifting mechanism 815 lifts the suction plate 813 . Thereby, the work W on the stage 20 is delivered to the transfer mechanism 8 . The movable frame 3 moves the transfer mechanism 8 in the +Y direction.
 可動フレーム3が移載機構7を移載ステージ80の真上まで移動させる。可動フレーム3が退避位置で停止したら、昇降機構815が吸着プレート813を下降させる。ワークWが移載ステージ80の上面に接触したら、昇降機構815が動作を停止する。そして、吸着プレート813の吸着動作を停止する。これにより、吸着プレート813の吸着が解除され、移載ステージ80上に処理済みのワークWが搬出される。 The movable frame 3 moves the transfer mechanism 7 to right above the transfer stage 80 . When the movable frame 3 stops at the retracted position, the lifting mechanism 815 lowers the suction plate 813 . When the work W contacts the upper surface of the transfer stage 80, the lifting mechanism 815 stops operating. Then, the suction operation of the suction plate 813 is stopped. As a result, the suction of the suction plate 813 is released, and the processed work W is unloaded onto the transfer stage 80 .
 このように、吸着プレート713又は吸着プレート813が上側からワークWを吸着保持している。移載機構7、及び移載機構8は、ステージ20の真上の搬入搬出位置まで移動している。そして、ステージ20の上側から移載機構7、及び移載機構8がワークWの受け渡しを行っている。このようにすることで、ワークWとなるフィルムにしわが形成されることを防ぐことができる。 In this way, the suction plate 713 or the suction plate 813 sucks and holds the workpiece W from above. The transfer mechanism 7 and the transfer mechanism 8 are moved to the loading/unloading position directly above the stage 20 . The transfer mechanism 7 and the transfer mechanism 8 transfer the work W from above the stage 20 . By doing so, it is possible to prevent wrinkles from being formed in the film that will be the work W. FIG.
 Y方向において、レーザ切断装置1の両側に移載機構7、8が設けられている。つまり、レーザ切断装置1の-Y側に移載機構7が設けられ、+Y側に移載機構8が設けられている。このようにすることで、ワークWの搬入、搬出を効率的に行うことができる。例えば、移載機構8がワークWを搬出している間に、移載機構7がワークWの搬入プロセスを開始することができる。つまり、搬出プロセスと搬入プロセスの少なくとも一部を同時に実行することができる。よって、タクトタイムを短縮することができる。 Transfer mechanisms 7 and 8 are provided on both sides of the laser cutting device 1 in the Y direction. That is, the transfer mechanism 7 is provided on the -Y side of the laser cutting device 1, and the transfer mechanism 8 is provided on the +Y side. By doing so, the work W can be carried in and out efficiently. For example, the transfer mechanism 7 can start the loading process of the work W while the transfer mechanism 8 is unloading the work W. That is, at least part of the unloading process and the loading process can be performed simultaneously. Therefore, the tact time can be shortened.
 さらに、可動フレーム3が移載機構7、又は移載機構8をY方向に移動させている。このようにすることで、移載機構7、移載機構8がガントリーステージ40、及びガントリーステージ41と干渉することを防ぐことができる。例えば上面視において、ガントリーステージ40とガントリーステージ41とをステージ20の外側に退避させた状態で、移載機構7及び移載機構8がワークWを移載する。よって、簡便にワークWを移載することができる。 Further, the movable frame 3 moves the transfer mechanism 7 or the transfer mechanism 8 in the Y direction. By doing so, it is possible to prevent the transfer mechanism 7 and the transfer mechanism 8 from interfering with the gantry stage 40 and the gantry stage 41 . For example, in a top view, the transfer mechanism 7 and the transfer mechanism 8 transfer the workpiece W while the gantry stage 40 and the gantry stage 41 are retracted to the outside of the stage 20 . Therefore, the workpiece W can be transferred easily.
変形例1.
 変形例1にかかる移載システム2について、図10を用いて説明する。図10は、レーザ切断装置1とその移載システム2を示す上面図である。変形例1では、移載システム2が1つの移載機構7を有している。換言すると、図5~図9で示された移載機構8が設けられていない構成となっている。
Modification 1.
A transfer system 2 according to Modification 1 will be described with reference to FIG. FIG. 10 is a top view showing the laser cutting device 1 and its transfer system 2. As shown in FIG. In Modification 1, the transfer system 2 has one transfer mechanism 7 . In other words, the configuration is such that the transfer mechanism 8 shown in FIGS. 5 to 9 is not provided.
 移載機構7は、図5~図9で示した移載機構7と同様の構成となっている。そして、移載機構7は、ワークWの搬入及び搬出を行うローダ/アンローダとなっている。この構成により、移載機構の数を1つとすることができるため、装置コストを削減することができる。さらに、レーザ切断装置1のフットプリントを小さくすることができる。 The transfer mechanism 7 has the same configuration as the transfer mechanism 7 shown in FIGS. The transfer mechanism 7 is a loader/unloader for loading and unloading the work W. As shown in FIG. With this configuration, the number of transfer mechanisms can be reduced to one, so that the device cost can be reduced. Furthermore, the footprint of the laser cutting device 1 can be reduced.
 実施の形態1~3で示したレーザ切断装置によるレーザ切断方法は、ステージ20がワークWを吸着保持するステップと、レーザ光の照射位置を変えるために光学系30又は光学系31を移動するステップを備えている。また、レーザ切断方法は、Y方向に移動可能に設けられた移載機構7が、ワークWをステージ20に移載するステップをさらに備えていてもよい。レーザ切断方法は、Y方向に移動可能に設けられた移載機構8が、ステージ20からワークWを移載するステップをさらに備えていてもよい。 The laser cutting method by the laser cutting apparatus shown in Embodiments 1 to 3 includes a step of attracting and holding the workpiece W by the stage 20, and a step of moving the optical system 30 or 31 to change the irradiation position of the laser light. It has The laser cutting method may further include a step of transferring the workpiece W onto the stage 20 by the transfer mechanism 7 provided movably in the Y direction. The laser cutting method may further include a step of transferring the workpiece W from the stage 20 by the transfer mechanism 8 provided movably in the Y direction.
 実施の形態1~3で示したレーザ切断装置によるレーザ切断方法は、ディスプレイの製造方法に適用可能である。つまり、レーザ切断方法をディスプレイの製造方法における切断工程に用いることができる。具体的には、ワークWとして表示パネルとなるフィルムや基板を用いることができる。つまり、レーザ切断装置1は、表示パネルとなるワークWを切断する。これにより、ワークWから所定のサイズの表示パネルが切り出される。つまり、ワークWを複数の表示パネルに分割することができる。上記のレーザ切断方法を、フレキシブルディスプレイの製造方法に適用することで、生産性を向上することができる。もちろん、ワークWはフレキシブルフィルムに限らず、ガラス基板などであってもよい。 The laser cutting method using the laser cutting apparatus shown in Embodiments 1 to 3 can be applied to the display manufacturing method. That is, the laser cutting method can be used in the cutting process in the display manufacturing method. Specifically, as the workpiece W, a film or a substrate that becomes a display panel can be used. In other words, the laser cutting device 1 cuts the workpiece W that will become the display panel. As a result, a display panel having a predetermined size is cut out from the workpiece W. FIG. That is, the work W can be divided into a plurality of display panels. By applying the above laser cutting method to a method for manufacturing a flexible display, productivity can be improved. Of course, the work W is not limited to a flexible film, and may be a glass substrate or the like.
 上記のレーザ切断装置は、第8世代以上のガラス基板の切断に好適である。ここで、第8世代の基板サイズは、2160mm×2460mmである。レーザ切断装置は、2160mm×2460mm以上のサイズのガラス基板を効率良く切断することができる。なお、第6世代の基板サイズは、1500mm×1850mmである。第8.5世代の基板サイズは、2250mm×2500mmである。第10世代は、2950mm×3400mmである。レーザ切断装置は、上記のサイズ以上のガラス基板の切断に適用することができる。 The above laser cutting device is suitable for cutting 8th generation or higher glass substrates. Here, the substrate size of the 8th generation is 2160 mm×2460 mm. A laser cutting apparatus can efficiently cut a glass substrate having a size of 2160 mm×2460 mm or more. The substrate size of the sixth generation is 1500 mm×1850 mm. The substrate size of the 8.5th generation is 2250 mm×2500 mm. The 10th generation is 2950mm x 3400mm. The laser cutting apparatus can be applied to cutting glass substrates of the above sizes or larger.
 本実施の形態にかかるレーザ切断装置は、第8世代以上のガラス基板を吸着保持するための、固定されたステージと、前記ガラス基板を切断するためのレーザ光を該ガラス基板に導く光学系と、前記光学系を移動可能に保持するガイド機構と、前記ガイド機構に沿って前記光学系を移動させる駆動機構と、を備えている。 The laser cutting apparatus according to the present embodiment includes a fixed stage for attracting and holding an eighth generation or higher glass substrate, and an optical system for guiding a laser beam for cutting the glass substrate to the glass substrate. , a guide mechanism for movably holding the optical system, and a drive mechanism for moving the optical system along the guide mechanism.
 ガラス基板の面積はその世代とともに増大している。特に第8世代以上の大型基板を扱う場合に吸着ステージを移動させる構成とすると、装置が大型化し設置面積が増大するという問題が顕著になる。これに対し、本実施例のように吸着ステージを固定した構成とすることで設置面積の増大を抑制することができる。 The area of the glass substrate is increasing with each generation. In particular, when a large-sized substrate of the eighth generation or more is handled, if the adsorption stage is configured to move, the problem of increasing the size of the apparatus and increasing the installation area becomes conspicuous. In contrast, by adopting a structure in which the suction stage is fixed as in this embodiment, it is possible to suppress an increase in the installation area.
 実施の形態1~3の一部又は全部は適宜組み合わせて使用することができる。 A part or all of Embodiments 1 to 3 can be used in combination as appropriate.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 It should be noted that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the scope of the invention.
 この出願は、2021年11月17日に出願された日本出願特願2021-186715を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-186715 filed on November 17, 2021, and the entire disclosure thereof is incorporated herein.
 1 レーザ切断装置
 3 可動フレーム
 4 ガイドフレーム
 7 移載機構
 8 移載機構
 10 架台
 11 Xガイド溝
 15 測定器
 20 ステージ
 30 光学系
 303 Y駆動機構
 304 レーザ光源
 305 ミラー
 306 レンズ
 31 光学系
 313 Y駆動機構
 314 レーザ光源
 315 ミラー
 316 レンズ
 40 ガントリーステージ
 401 X駆動機構
 402 ガントリー軸
 403 Yガイド溝
 41 ガントリーステージ
 411 X駆動機構
 412 ガントリー軸
 413 Yガイド溝
 70 移載ステージ
 80 移載ステージ
 712 ホルダ
 713 吸着プレート
 715 昇降機構
 812 ホルダ
 813 吸着プレート
 815 昇降機構
Reference Signs List 1 laser cutting device 3 movable frame 4 guide frame 7 transfer mechanism 8 transfer mechanism 10 mount 11 X guide groove 15 measuring device 20 stage 30 optical system 303 Y drive mechanism 304 laser light source 305 mirror 306 lens 31 optical system 313 Y drive mechanism 314 laser light source 315 mirror 316 lens 40 gantry stage 401 X drive mechanism 402 gantry axis 403 Y guide groove 41 gantry stage 411 X drive mechanism 412 gantry axis 413 Y guide groove 70 transfer stage 80 transfer stage 712 holder 713 suction plate 715 elevation Mechanism 812 Holder 813 Suction plate 815 Lifting mechanism

Claims (22)

  1.  ワークを吸着保持するステージと、
     前記ワークを切断するためのレーザ光を前記ワークに導く光学系と、
     上面視において、第1の方向に前記光学系を移動可能に保持するガイド機構と、
     前記ガイド機構に沿って前記光学系を移動させる第1駆動機構と、
     前記上面視において、前記ガイド機構を前記第1の方向と異なる第2の方向に移動させる第2駆動機構と、を備えたレーザ切断装置。
    a stage that adsorbs and holds a workpiece;
    an optical system for guiding a laser beam for cutting the work to the work;
    a guide mechanism that movably holds the optical system in a first direction when viewed from above;
    a first drive mechanism that moves the optical system along the guide mechanism;
    and a second drive mechanism that moves the guide mechanism in a second direction different from the first direction in the top view.
  2.  前記ガイド機構が複数設けられ、
     それぞれの前記ガイド機構が1つ以上の前記光学系を保持している請求項1に記載のレーザ切断装置。
    A plurality of the guide mechanisms are provided,
    2. The laser cutting device according to claim 1, wherein each said guide mechanism holds one or more said optical systems.
  3.  前記ガイド機構が複数の前記光学系を保持している請求項1、又は2に記載のレーザ切断装置。 The laser cutting device according to claim 1 or 2, wherein the guide mechanism holds a plurality of the optical systems.
  4.  前記光学系が、
     第1の波長のレーザ光をワークに導く第1光学系と、
     前記第1光学系と独立して設けられ、前記第1の波長とは異なる第2の波長のレーザ光を前記ワークに導く第2光学系とを備えている請求項1~3のいずれか1項に記載のレーザ切断装置。
    The optical system is
    a first optical system for guiding a laser beam of a first wavelength to a workpiece;
    4. The apparatus according to any one of claims 1 to 3, further comprising a second optical system provided independently of said first optical system and guiding a laser beam of a second wavelength different from said first wavelength to said workpiece. A laser cutting device according to any one of the preceding paragraphs.
  5.  前記第1の方向に移動可能に設けられた移載機構をさらに備え、
     前記移載機構が前記ワークを前記ステージに移載する、又は前記ステージから前記ワークを移載する請求項1~4のいずれか1項に記載のレーザ切断装置。
    further comprising a transfer mechanism provided movably in the first direction,
    The laser cutting apparatus according to any one of claims 1 to 4, wherein the transfer mechanism transfers the workpiece to the stage or transfers the workpiece from the stage.
  6.  前記移載機構が、前記ワークを上側から吸着する吸着部と、
     前記吸着部を上下方向に移動させる昇降機構と、を備えている請求項5に記載のレーザ切断装置。
    a suction unit in which the transfer mechanism sucks the workpiece from above;
    6. The laser cutting device according to claim 5, further comprising an elevating mechanism that vertically moves the suction portion.
  7.  前記第1の方向において、前記ステージの両端にそれぞれ前記移載機構が配置されている請求項5、又は6に記載のレーザ切断装置。 The laser cutting apparatus according to claim 5 or 6, wherein the transfer mechanism is arranged at each end of the stage in the first direction.
  8.  レーザ切断装置を用いてワークを切断するレーザ切断方法であって、
     前記レーザ切断装置は、
     前記ワークを切断するためのレーザ光を前記ワークに導く光学系と、
     上面視において、第1の方向に前記光学系を移動可能に保持するガイド機構と、
     前記ガイド機構に沿って前記光学系を移動させる第1駆動機構と、
     前記上面視において、前記ガイド機構を前記第1の方向と異なる第2の方向に移動させる第2駆動機構と、を備え、
     前記レーザ切断方法は、
     ステージが前記ワークを吸着保持するステップと、
     前記ワークにおける前記レーザ光の照射位置を変えるために、前記光学系を移動させるステップと、備えたレーザ切断方法。
    A laser cutting method for cutting a workpiece using a laser cutting device,
    The laser cutting device is
    an optical system for guiding a laser beam for cutting the work to the work;
    a guide mechanism that movably holds the optical system in a first direction when viewed from above;
    a first drive mechanism that moves the optical system along the guide mechanism;
    a second drive mechanism that moves the guide mechanism in a second direction different from the first direction in the top view,
    The laser cutting method includes:
    a stage sucking and holding the workpiece;
    A laser cutting method comprising: moving the optical system in order to change the irradiation position of the laser beam on the workpiece.
  9.  前記レーザ切断装置には、前記ガイド機構が複数設けられ、
     それぞれの前記ガイド機構が1つ以上の前記光学系を保持している請求項8に記載のレーザ切断方法。
    The laser cutting device is provided with a plurality of the guide mechanisms,
    9. The laser cutting method according to claim 8, wherein each said guide mechanism holds one or more said optical systems.
  10.  前記ガイド機構が複数の前記光学系を保持している請求項8、又は9に記載のレーザ切断方法。 The laser cutting method according to claim 8 or 9, wherein the guide mechanism holds a plurality of the optical systems.
  11.  前記光学系が、
     第1の波長のレーザ光をワークに導く第1光学系と、
     前記第1光学系と独立して設けられ、前記第1の波長とは異なる第2の波長のレーザ光を前記ワークに導く第2光学系とを備えている請求項8~10のいずれか1項に記載のレーザ切断方法。
    The optical system is
    a first optical system for guiding a laser beam of a first wavelength to a workpiece;
    11. A second optical system provided independently of said first optical system for guiding a laser beam of a second wavelength different from said first wavelength to said workpiece. The laser cutting method according to the paragraph.
  12.  前記第1の方向に移動可能に設けられた移載機構が、前記ワークを前記ステージに移載するステップをさらに備えた請求項8~11のいずれか1項に記載のレーザ切断方法。 The laser cutting method according to any one of claims 8 to 11, further comprising a step of transferring the workpiece to the stage by the transfer mechanism provided movably in the first direction.
  13.  前記移載機構が、前記ワークを上側から吸着する吸着部と、
     前記吸着部を上下方向に移動させる昇降機構と、を備えている請求項12に記載のレーザ切断方法。
    a suction unit in which the transfer mechanism sucks the workpiece from above;
    13. The laser cutting method according to claim 12, further comprising an elevating mechanism that vertically moves the suction portion.
  14.  前記第1の方向において、前記移載機構が前記ステージの両端にそれぞれ配置され、
     前記第1の方向に移動可能に設けられた移載機構が、前記ステージから前記ワークを移載するステップをさらに備えた請求項12、又は13に記載のレーザ切断方法。
    The transfer mechanisms are arranged at both ends of the stage in the first direction,
    14. The laser cutting method according to claim 12 or 13, further comprising a step of transferring the workpiece from the stage by a transfer mechanism provided movably in the first direction.
  15.  表示パネルとなるワークをレーザ切断装置で切断するディスプレイの製造方法であって、
     前記レーザ切断装置は、
     前記ワークを切断するためのレーザ光を前記ワークに導く光学系と、
     上面視において、第1の方向に前記光学系を移動可能に保持するガイド機構と、
     前記ガイド機構に沿って前記光学系を移動させる第1駆動機構と、
     前記上面視において、前記ガイド機構を前記第1の方向と異なる第2の方向に移動させる第2駆動機構と、を備え、
     前記製造方法は、
     ステージが前記ワークを吸着保持するステップと、
     前記ワークにおける前記レーザ光の照射位置を変えるために、前記光学系を移動させるステップと、備えたディスプレイの製造方法。
    A display manufacturing method for cutting a work to be a display panel with a laser cutting device,
    The laser cutting device is
    an optical system for guiding a laser beam for cutting the work to the work;
    a guide mechanism that movably holds the optical system in a first direction when viewed from above;
    a first drive mechanism that moves the optical system along the guide mechanism;
    a second drive mechanism that moves the guide mechanism in a second direction different from the first direction in the top view,
    The manufacturing method is
    a stage sucking and holding the workpiece;
    A method of manufacturing a display comprising a step of moving the optical system in order to change the irradiation position of the laser beam on the work.
  16.  前記レーザ切断装置には、前記ガイド機構が複数設けられ、
     それぞれの前記ガイド機構が1つ以上の前記光学系を保持している請求項15に記載のディスプレイの製造方法。
    The laser cutting device is provided with a plurality of the guide mechanisms,
    16. The method of manufacturing a display according to claim 15, wherein each said guide mechanism holds one or more said optical systems.
  17.  前記ガイド機構が複数の前記光学系を保持している請求項15、又は16に記載のディスプレイの製造方法。 The display manufacturing method according to claim 15 or 16, wherein the guide mechanism holds a plurality of the optical systems.
  18.  前記光学系が、
     第1の波長のレーザ光をワークに導く第1光学系と、
     前記第1光学系と独立して設けられ、前記第1の波長とは異なる第2の波長のレーザ光を前記ワークに導く第2光学系とを備えている請求項15~17のいずれか1項に記載のディスプレイの製造方法。
    The optical system is
    a first optical system for guiding a laser beam of a first wavelength to a workpiece;
    18. A second optical system provided independently of said first optical system for guiding a laser beam of a second wavelength different from said first wavelength to said workpiece. A method for manufacturing the display according to the above item.
  19.  前記第1の方向に移動可能に設けられた移載機構が、前記ワークを前記ステージに移載するステップをさらに備えた請求項15~18のいずれか1項に記載のディスプレイの製造方法。 The display manufacturing method according to any one of claims 15 to 18, further comprising a step of transferring the workpiece to the stage by the transfer mechanism provided movably in the first direction.
  20.  前記移載機構が、前記ワークを上側から吸着する吸着部と、
     前記吸着部を上下方向に移動させる昇降機構と、を備えている請求項19に記載のディスプレイの製造方法。
    a suction unit in which the transfer mechanism sucks the workpiece from above;
    20. The method of manufacturing a display according to claim 19, further comprising an elevating mechanism for vertically moving the suction unit.
  21.  前記第1の方向において、前記移載機構が前記ステージの両端にそれぞれ配置され、
     前記第1の方向に移動可能に設けられた移載機構が、前記ステージから前記ワークを移載するステップをさらに備えた請求項19、又は20に記載のディスプレイの製造方法。
    The transfer mechanisms are arranged at both ends of the stage in the first direction,
    21. The display manufacturing method according to claim 19 or 20, further comprising a step of transferring the workpiece from the stage by the transfer mechanism provided movably in the first direction.
  22.  第8世代以上のガラス基板を吸着保持するための、固定されたステージと、
     前記ガラス基板を切断するためのレーザ光を該ガラス基板に導く光学系と、
     前記光学系を移動可能に保持するガイド機構と、
     前記ガイド機構に沿って前記光学系を移動させる駆動機構と、
     を備えたレーザ切断装置。
    a fixed stage for attracting and holding an eighth generation or higher glass substrate;
    an optical system for guiding a laser beam for cutting the glass substrate to the glass substrate;
    a guide mechanism that movably holds the optical system;
    a drive mechanism for moving the optical system along the guide mechanism;
    Laser cutting equipment with.
PCT/JP2022/038937 2021-11-17 2022-10-19 Laser cutting device, laser cutting method, and method for manufacturing display WO2023090034A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186715 2021-11-17
JP2021186715A JP2023074021A (en) 2021-11-17 2021-11-17 Laser cutting device, laser cutting method, and display manufacturing method

Publications (1)

Publication Number Publication Date
WO2023090034A1 true WO2023090034A1 (en) 2023-05-25

Family

ID=86396694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038937 WO2023090034A1 (en) 2021-11-17 2022-10-19 Laser cutting device, laser cutting method, and method for manufacturing display

Country Status (2)

Country Link
JP (1) JP2023074021A (en)
WO (1) WO2023090034A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381285U (en) * 1989-11-30 1991-08-20
JPH0760467A (en) * 1993-08-30 1995-03-07 Honda Motor Co Ltd Method for cutting work
JP2000167681A (en) * 1998-12-04 2000-06-20 Samsung Electronics Co Ltd Laser cutting substrate, liquid crystal display panel and manufacture of the panel
JP2009126779A (en) * 2007-11-23 2009-06-11 Samsung Corning Precision Glass Co Ltd Apparatus for laser cutting of glass substrate
JP2009269814A (en) * 2008-05-06 2009-11-19 Semes Co Ltd Scribing apparatus, and apparatus and method for cutting substrate using the same
WO2011002089A1 (en) * 2009-07-03 2011-01-06 旭硝子株式会社 Cutting method and cutting device for brittle material substrate, and vehicle window glass obtained by the cutting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381285U (en) * 1989-11-30 1991-08-20
JPH0760467A (en) * 1993-08-30 1995-03-07 Honda Motor Co Ltd Method for cutting work
JP2000167681A (en) * 1998-12-04 2000-06-20 Samsung Electronics Co Ltd Laser cutting substrate, liquid crystal display panel and manufacture of the panel
JP2009126779A (en) * 2007-11-23 2009-06-11 Samsung Corning Precision Glass Co Ltd Apparatus for laser cutting of glass substrate
JP2009269814A (en) * 2008-05-06 2009-11-19 Semes Co Ltd Scribing apparatus, and apparatus and method for cutting substrate using the same
WO2011002089A1 (en) * 2009-07-03 2011-01-06 旭硝子株式会社 Cutting method and cutting device for brittle material substrate, and vehicle window glass obtained by the cutting method

Also Published As

Publication number Publication date
JP2023074021A (en) 2023-05-29

Similar Documents

Publication Publication Date Title
JP4215677B2 (en) Laser processing machine and laser processing method
CN106956370B (en) Conveying mechanism of processing device
JP2002099095A (en) Automatic both-side exposing device and method of using the same
KR102383298B1 (en) Bonding apparatus, bonding system, bonding method and computer storage medium
TW201718159A (en) Laser processing apparatus
JP5370622B1 (en) Laser processing apparatus and laser processing method
TW201718150A (en) Laser processing apparatus
KR102216809B1 (en) Object-swapping method, object-swapping system, exposure apparatus, method for manufacturing flat-panel display, and method for manufacturing device
TWI581887B (en) Laser processing device
JP5432804B2 (en) Repair device
JP2008085275A (en) Method and device for alignment
WO2023090034A1 (en) Laser cutting device, laser cutting method, and method for manufacturing display
JP5691004B2 (en) Laser processing apparatus and laser processing method
WO2023090035A1 (en) Laser cutting apparatus, laser cutting method, and display production method
JP4276573B2 (en) Laser processing method and laser processing machine
JP5872799B2 (en) Laser processing equipment
KR102353206B1 (en) Scribing apparatus
JP6653562B2 (en) Processing equipment
JP4942611B2 (en) Component mounting equipment
KR102353207B1 (en) Scribing apparatus
JP2002341550A (en) Laser exposure device
CN118119471A (en) Laser cutting device, laser cutting method and manufacturing method of display
KR102523159B1 (en) Apparatus For Inspecting Micro Via Hole
KR20180052537A (en) Conveying apparatus, processing apparatus and conveying method
JP7283851B2 (en) Laser processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895320

Country of ref document: EP

Kind code of ref document: A1