WO2023089764A1 - Weld inspection method and weld inspection device - Google Patents

Weld inspection method and weld inspection device Download PDF

Info

Publication number
WO2023089764A1
WO2023089764A1 PCT/JP2021/042567 JP2021042567W WO2023089764A1 WO 2023089764 A1 WO2023089764 A1 WO 2023089764A1 JP 2021042567 W JP2021042567 W JP 2021042567W WO 2023089764 A1 WO2023089764 A1 WO 2023089764A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
inspection
dimensional
weld
inspecting
Prior art date
Application number
PCT/JP2021/042567
Other languages
French (fr)
Japanese (ja)
Inventor
聡 北澤
高則 武石
雅己 小方
達記 向井
章哲 河原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/042567 priority Critical patent/WO2023089764A1/en
Priority to JP2022570120A priority patent/JP7332821B1/en
Publication of WO2023089764A1 publication Critical patent/WO2023089764A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material

Definitions

  • the present invention relates to a method and apparatus for inspecting welds.
  • Ultrasonic flaw detection (hereinafter abbreviated as UT) is a typical non-destructive inspection method used to detect defects that exist inside cast steel products and welds. etc., are used for various purposes. UT basically measures the time (propagation time) and the signal intensity at that time are measured, and the position and size of the defect are evaluated based on the measured time and signal intensity.
  • Defect evaluation methods include a method that uses peak signals (echoes) that appear in waveforms called A-scopes, and a method that generates flaw detection images from multiple A-scopes that shift the transmission and reception positions and timings, and identify defects from the images.
  • a phased array (PA) method is a representative method for evaluating defects from images, and has already been used in various industrial fields.
  • FMC full matrix capture
  • an array sensor with multiple built-in elements for transmitting and receiving ultrasonic waves is used.
  • a piezoelectric element that converts a voltage into force or converts an applied force into a voltage using a piezoelectric effect is usually used as the element.
  • the number, size, and arrangement of the elements vary depending on the application. is used.
  • the dimension and pitch of the elements in the arrangement direction are generally 1 mm or less.
  • the FMC method is a technology that obtains high-definition images by individually recording all waveforms corresponding to the combination of transmission and reception of each element of the array sensor and applying waveform synthesis processing corresponding to the position of the transmission and reception elements on the software. .
  • the FMC method is described, for example, in JP-A-2019-158876.
  • the flaw detection surface does not necessarily have to be flat. Even if the flaw detection surface has an arbitrary shape, these techniques can be applied in principle if the coordinates of each element are known. In this case, the PA method is not practical because the phase control is complicated, but the FMC method can easily generate an image by using coordinates for calculation.
  • a flexible array sensor called a flexible array sensor that can follow even a curved flaw detection surface has been put into practical use, and there are an increasing number of cases where it is used together with the FMC method.
  • the sensor can be placed along the surface of a component with a curved surface, such as a pipe, and brought into direct contact with the surface of the component. It is possible.
  • the bogie frame of a railway vehicle generally has a structure in which long tubular members (several meters in length and several tens of centimeters in diameter) called lateral beams and long members called side beams are welded in orthogonal directions. It has a structure in which plate materials called brackets are welded at multiple points to fix the equipment to it. Since these welds play an important role in supporting heavy parts, high soundness is required from the viewpoint of safety, and ultrasonic inspections are often performed before shipment from the factory.
  • the welded part of the cross beam can be inspected by ultrasonic waves from both the inner surface and the outer surface of the cross beam. If they are brought into contact with each other, it becomes possible to easily inspect the cross beam welded portion.
  • an automatic scanning device that can mechanically automatically scan in the direction of the tube axis while keeping the flexible array sensor in contact with the inner surface of the horizontal beam is often used.
  • a liquid couplant is usually interposed between the sensor and the contact surface so that air that suppresses the propagation of ultrasonic waves does not enter. Glycerin paste or water is often used as the contact medium.
  • a manipulator generally has multiple rotation axes, each of which is connected to a servomotor and a reduction gear. By combining these, the position (coordinates) and attitude (angle) of the sensor attached to the tip of the arm in three-dimensional space. is controlled. Since these controls are performed through a computer, if the diameter and length of the horizontal beam pipe and the position of the weld to be inspected are input, the sensor can be automatically pressed and scanned. Since the position of the welded part is usually described in the design drawing, numerical values are entered into the computer by comparing the actual product with the drawing. Numerical input at this time is manually performed by the inspector.
  • the CAD data generally indicates the welding instruction position (position to be welded) along with the structural information of each part, and the parts are welded by an automatic welder or a welding operator based on this information. After welding, the welded portion is inspected for weld defects, such as blowholes and poor penetration, using the above-described ultrasonic device and method.
  • the inspection range often does not simply match the welding instruction range on the drawing.
  • the reason for this is that the actual welding area extends from several millimeters to several tens of millimeters around the groove.
  • defects such as blowholes, poor penetration, cracks, etc., which are subject to inspection, occur in the welded part and the area near the welded part called the heat affected zone.
  • the range is wider than the position.
  • the inspection range is currently determined by the inspector, the accuracy of the inspection is often affected by the skill and experience of the inspector.
  • Patent Literature 1 discloses a method of measuring a weld repaired portion of a reactor pressure vessel before and after repair with a three-dimensional measuring device, converting the obtained point cloud data into CAD data, and comparing the data before and after repair. . According to this technology, it is possible to grasp the actual shape after repair including irregularities due to grinding or welding beads.
  • the determination of the construction range depends on the skill of the operator of the repair device. affected by experience.
  • the inspection method after repair is not disclosed in Patent Document 1. Therefore, when inspection is performed after repair, the determination of the inspection range, like the determination of the construction range, depends on the skill and experience of the operator of the inspection device. affected.
  • the present invention provides a weld inspection method and inspection apparatus capable of determining an inspection range for an actual weld shape in a short time, simply, and accurately without depending on the skill and experience of an inspector. for the purpose.
  • one of the representative weld inspection methods of the present invention is a weld inspection method for inspecting a weld of a tubular component using an inspection apparatus, comprising: a first step of measuring a three-dimensional shape of the tubular part after welding, and acquiring three-dimensional shape data of the tubular part; a second step of acquiring three-dimensional CAD data including three-dimensional position information regarding the design shape of the tubular part and the construction position of the weld; a third step of performing data processing so as to associate the three-dimensional CAD data with the three-dimensional shape data, and determining an inspection range based on three-dimensional position information regarding the welding position; and a fourth step of inspecting the welded portion of the tubular part by the inspecting device based on the determined inspection range and obtaining inspection data.
  • a method and apparatus for inspecting a welded portion that can easily and accurately determine the inspection range for the actual shape of the welded portion in a short period of time without depending on the skill and experience of the inspector. can provide. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is a plan view showing the structure of a railway bogie frame, which is an object to be inspected in an embodiment of the present invention.
  • FIG. 2 is a view of the horizontal beam viewed in the axial direction, and shows a state in which the flexible array sensor is installed along the circumferential direction on the inner surface of the horizontal beam.
  • FIG. 3 is a perspective view of a flexible array sensor.
  • FIG. 4 is a diagram showing a processing flow for inspecting railroad bogie frame lateral beam welds using a flexible array sensor.
  • FIG. 5 is a diagram schematically showing the actual shape point cloud data of the horizontal beam pipe with broken lines.
  • FIG. 6 is a diagram showing the shape based on the extracted three-dimensional CAD data of the horizontal beam.
  • FIG. 1 is a plan view showing the structure of a railway bogie frame, which is an object to be inspected in an embodiment of the present invention.
  • FIG. 2 is a view of the horizontal beam viewed in the axial direction, and shows a state
  • FIG. 7 is a diagram showing visualized three-dimensional CAD data relating to the sensor section of the inspection apparatus.
  • FIG. 8 is a diagram showing a state in which the three-dimensional CAD data of the cross beam, the CAD data of the sensor unit of the inspection device, and the actual shape point cloud data are superimposed on each other in the virtual space.
  • FIG. 9 is a diagram showing an example of a format in which digital data is stored, visualized by a display unit, for example.
  • FIG. 1 is a diagram showing the structure of a railroad bogie frame, which is an object to be inspected in this embodiment.
  • a bogie frame 1 has a structure in which horizontal beams (also called horizontal beam pipes) 2, which are two long tubular members (tubular parts), and two side beams 3, which are also long members, are combined in orthogonal directions as a skeleton. there is The cross beam 2 and the side beam 3 are welded together. Furthermore, a top plate 4 for fixing various fittings and a brake device mounting seat 5 for mounting a brake device are welded to the cross beam 2 . In general, many other members are welded to the bogie frame 1, but they are omitted here.
  • the horizontal beam 2 is a tubular elongated member, generally with a diameter of several tens of centimeters and a length of several meters.
  • flaw detection is performed from the inner surface of the horizontal beam using a flexible array sensor. As described above, since there is no obstacle on the inner surface of the horizontal beam during flaw detection, flaw detection can be performed efficiently.
  • FIG. 2 shows a state in which the flexible array sensor 200 is installed on the inner surface of the horizontal beam 2 along the circumferential direction.
  • FIG. 2 is a diagram of the horizontal beam 2 viewed from the axial direction, and shows an example in which a welded portion 201 between the horizontal beam 2 and the side beam 3 is an object to be inspected.
  • the flexible array sensor 200 incorporates a plurality of piezoelectric elements 202 inside, and ultrasonic waves are transmitted from each piezoelectric element 202 at desired timings. Adjacent element surfaces of the plurality of piezoelectric elements 202 are connected to each other so as to be tiltable, so that the plurality of element surfaces can face the inner surface 204 so as to follow the curvature of the inner surface 204 of the horizontal beam 2.
  • a composite type is preferable as the type of array sensor.
  • Composite-type sensors are made by filling the gaps between multiple piezoelectric materials cut into a lattice shape with epoxy resin and solidifying it into a block. It can be made to remain. Both sides of the block are plated for electrical connections and cut into shapes such as squares, rectangles, or circles to fit the type of sensor to be incorporated.
  • These multiple piezoelectric elements 202 are individually controlled by voltage signals sent from the transmitting/receiving unit 205, and each element deforms and vibrates at a timing corresponding to the voltage signal, and the material in contact with the element is heated. It is possible to vibrate and, as a result, generate and transmit ultrasonic waves.
  • the process is the reverse of the transmitting process.
  • the displacement of the element due to the ultrasonic waves is converted into a voltage signal, and the signal is sent to the transmitting/receiving unit 205, whereby the received waveform is recorded in the recording/signal processing unit 206. It is recorded, subjected to appropriate signal processing, and the result is displayed on the display unit 207 .
  • the transmitted/reception processing is performed for each element of the piezoelectric element 202, the received waveform is also recorded for each element.
  • Appropriate signal processing here means, for example, recording received waveforms corresponding to the combination of all elements using the above-mentioned full matrix capture method, and applying those received waveforms to total focusing method (TFM method), aperture synthesis method, etc. It is the process of visualizing with Through these processes, an ultrasonic flaw detection image corresponding to a tomographic image on a plane parallel to the element arrangement direction of the flexible array sensor 200 is obtained, and the image is displayed on the display unit 207 . If a recent computer is used, these processes are performed in a sufficiently short time, so the image is immediately updated according to the position of the flexible array sensor 200 and displayed on the display unit 207 .
  • the received waveform may be visualized by other visualization methods.
  • it instead of individually recording the received waveform of each element, it may be recorded by a phased array method according to an appropriate delay time pattern, and a visualized image may be displayed.
  • FIG. 3 illustrates an inspection device including a flexible array sensor 200.
  • guide pieces 203a and 203b having the same curvature as that of the lateral beam 2 are provided on both sides in the width direction of the element surface 303, and have an easily attachable/detachable structure. Details of the structure will be described later.
  • the surface of the element surface 303 is provided with a thin protective material made of resin or gel.
  • the flexible array sensor 200 is urged from the back side of the element surface 303 by a pressing mechanism 304 containing a spring or the like, and is installed in close contact with the inner surface 204 (FIG. 2) of the horizontal beam 2.
  • the flexible array sensor 200 is connected to a moving mechanism 305 via a pressing mechanism 304, and the moving mechanism 305 moves an extension arm 306, which also serves as a moving track, according to a control signal from the recording/signal processing unit 206. It is possible to scan the flexible array sensor 200 in the axial direction of the horizontal beam 2 .
  • the flexible array sensor 200, the pressing mechanism 304, the moving mechanism 305, and the extension arm 306 constitute a sensor unit, and the transmitting/receiving unit 205, recording/signal processing unit 206, and display unit 207 constitute a signal control unit.
  • An inspection device is configured by the sensor section and the signal control section.
  • the guide 203 may be an integral type or may be divided into a plurality of parts.
  • the guide 203 includes a pair of guide pieces 203a, 203b.
  • Guide pieces 203a and 203b show cross sections perpendicular to the direction in which the elements 202 are arranged.
  • Grooves 401a are machined in the guide pieces 203a and 203b so as to face each other. are inserted and sandwiched, and the curved shape of the flexible array sensor 200 is maintained.
  • the outer surface of the guide 203 projects slightly outward from the element surface 303, so that when the guide 203 contacts the inner surface 204 of the lateral beam 2, the element
  • the surface 303 has a structure that does not directly contact the inner surface 204 . It is desirable to secure a gap of approximately 1 mm to several mm between the element surface 303 and the inner surface 204 .
  • the guide piece 203a is provided with contact medium supply holes 301a, 301b and 301c for supplying the contact medium to the gap between the element surface 303 and the inner surface 204.
  • the couplant supply holes 301a, 301b and 301c communicate with the couplant supply tube 302 via the internal passage (not shown) of the guide piece 203a.
  • a couplant supplied from the outside through the couplant supply tube 302 using air pressure or the like is supplied from the couplant supply holes 301a, 301b and 301c.
  • the couplant supplied to the gap between the element surface 303 and the inner surface 204 is held from both sides by the guide pieces 203a and 203b in contact with the inner surface 204 and remains there.
  • three couplant supply holes are arranged at representative positions, but the number and positions of the couplant supply holes are applied according to the diameter of the horizontal beam pipe, the dimensions of the flexible array sensor 200, and the like. It is preferable to select .
  • Glycerin paste or water is used as the couplant, and substances generally used for ultrasonic flaw detection can be used.
  • the material of the guide 203 is desirably a flexible resin, and particularly desirably an engineering plastic made of polyoxymethylene, which has excellent abrasion resistance.
  • the material of the guide 203 does not necessarily have to be resin, and the effects of the present embodiment can be similarly obtained by using metal or other materials, so that may be used.
  • the pressing mechanism 304 may be rotatable with respect to the moving mechanism 305 so that the orientation of the flexible array sensor 200 with respect to the extension arm 306 can be freely changed.
  • the arrangement direction of the piezoelectric elements 202 of the flexible array sensor 200 is drawn so as to be orthogonal to the movement track 306.
  • the flexible array Circumferential flaw detection is performed while pressing the sensor 200 against the inner surface of the transverse beam pipe, and inspection is performed while moving the flaw detection position in the axial direction of the transverse beam pipe.
  • the flexible array sensor 200 by rotating the flexible array sensor 200 together with the movement track 306 around the axis of the movement track 306 at an arbitrary position in the axial direction in the horizontal beam pipe, the flexible array sensor 200 performs circumferential flaw detection of the horizontal beam pipe. Furthermore, inspection can be performed while moving the flaw detection position in the circumferential direction of the transverse beam pipe.
  • the rotation around the axis may be performed manually, or the movement track 306 may be connected to a rotating device and rotated electronically.
  • an inspection method for inspecting the welded portion of the railroad bogie frame lateral beam using the inspection device including the flexible array sensor 200 of the present embodiment will be specifically described.
  • An example using a flexible array sensor as an ultrasonic sensor will be described below, but an ultrasonic sensor other than the flexible array sensor may be used.
  • a sensor for non-destructive inspection other than an ultrasonic sensor for example, a sensor for eddy current flaw detection, can be applied in exactly the same manner.
  • the object to be inspected may be a member other than the horizontal beam of the railway bogie frame, and the same method can be applied.
  • FIGS. 4 and 5 the processing flow and processing details when inspecting the railroad bogie frame lateral beam weld using the flexible array sensor 200 as a representative example are shown.
  • the processing of steps 3 to 10 in FIG. 4 is preferably executed autonomously by the recording/signal processing unit 206, but may be executed by an external personal computer or the like connected to the recording/signal processing unit 206.
  • An example executed by the recording/signal processing unit 206 is shown below.
  • Step 1 A flexible array sensor 200 is manually installed at a predetermined position inside the cross beam 2 .
  • the predetermined position varies depending on the product to be inspected and the inspection apparatus, but here it is set at the initial position when the flexible array sensor 200 is moved for scanning.
  • Step 2 Furthermore, using a three-dimensional measuring machine, three-dimensional shape data of the horizontal beam 2 and the flexible array sensor 200 is obtained with the flexible array sensor 200 installed at a predetermined position (measurement position) of the horizontal beam 2, and this is recorded and signaled. Stored in the processing unit 206 .
  • a three-dimensional measuring machine is a device that converts the shape of a three-dimensional object into three-dimensional data. There is a contact type that acquires coordinates while actually touching the object with a sensor, and a non-contact type that acquires the three-dimensional shape without touching the object. There is a contact type.
  • the contact method is a method of pressing a probe against an object, measuring the position of the contact point, and obtaining the coordinates, and generally it takes time to perform the measurement.
  • the non-contact type is a method of acquiring a three-dimensional shape by analyzing the time difference and irradiation angle in which a light beam such as a laser is applied to the object and reflected, and is a light (lattice pattern) projection that measures by projecting a stripe pattern.
  • a light beam such as a laser is applied to the object and reflected
  • a light (lattice pattern) projection that measures by projecting a stripe pattern.
  • There are methods such as a laser beam cutting method that scans an object with a slit laser beam. It is preferable to use a non-contact three-dimensional measuring machine for a large-sized structure such as a railway bogie frame, which is the object of inspection in this embodiment.
  • Step 3 The recording/signal processing unit 206 converts the three-dimensional shape data obtained in step 2 into a point group in three-dimensional space coordinates (having three-dimensional position coordinates for each point). However, when using a three-dimensional measuring machine whose output from the three-dimensional measuring machine in step 2 is a point cloud from the beginning, step 3 is executed at the same time as step 2. Through the above steps, the three-dimensional actual shape point cloud data (three-dimensional shape data of the tubular part) 500 in the state where the inspection device is installed is obtained.
  • FIG. 5 is a diagram schematically showing the actual shape point cloud data 500 of the horizontal beam pipe with broken lines.
  • the point cloud data 501 of the horizontal beam 2 corresponding to the point cloud data of the horizontal beam 2 the point cloud data 502 of the parts welded to the horizontal beam 2 and the point cloud data 504 of the inspection device are also shown.
  • point cloud data 503 of the uneven part is also shown.
  • each point in the point group has only simple coordinate information, and does not have information as to which part the point belongs to.
  • FIG. 5 also shows point cloud data 505 of the extension arm inside the horizontal beam pipe and point cloud data 506 of the sensor attached to the tip thereof. Measurement may not be possible. In that case, the point cloud data of only a part of the main body of an inspection device capable of three-dimensional measurement may be used.
  • Step 4 Second step and third step
  • the recording/signal processing unit 206 acquires the three-dimensional CAD data used for the design of the transverse beam pipe stored in advance, aligns them with the actual shape point cloud data 500, and superimposes them in the virtual space of the computer.
  • Either acquisition of the actual shape point cloud data 500 (first step) or acquisition of the three-dimensional CAD data 601 (second step) may be performed first.
  • FIG. 6 is a diagram showing the shape based on the extracted three-dimensional CAD data of the horizontal beam 2.
  • the three-dimensional CAD data 601 of the horizontal beam 2 includes three-dimensional positional information on the shape of the horizontal beam 2 such as diameter and length, and three-dimensional positional information of a planned welding position 602 with the parts to be welded to the horizontal beam 2. is indicated by the axial length extent and the circumferential angular extent.
  • Alignment (association) between the three-dimensional CAD data 601 and the actual shape point cloud data 500 is performed, for example, by using alignment markers (design data for alignment markers) 603 included in the three-dimensional CAD data 601 and real shape point cloud data. This is performed by performing data processing so that the point cloud data (marker shape data) 507 of the alignment marker included in the data 500 overlaps.
  • the alignment markers actually attached to the cross beams 2 have a unique uneven shape that does not impair the performance of the product. Can be easily extracted.
  • a characteristic shaped portion that can replace the marker such as the end of a horizontal beam, may be used. .
  • Step 5 Furthermore, the recording/signal processing unit 206 aligns the CAD data of the inspection device with the actual shape point cloud data 500 and superimposes them in the virtual space of the computer.
  • FIG. 7 shows three-dimensional CAD data 701 relating to the sensor section of the inspection device, and the three-dimensional CAD data 701 of the inspection device includes three-dimensional position information relating to the shape of the inspection device.
  • FIG. 7A shows three-dimensional CAD data 701a of the inspection device with the extension arm 306 contracted
  • FIG. 7B shows three-dimensional CAD data 701b of the inspection device with the extension arm 306 extended.
  • the 3D CAD data 601 of the cross beam 2 is also aligned and superimposed on the actual shape point cloud data 500 in step 4, at this point, the 3D CAD data 601 of the cross beam 2, the 3D CAD data 701 of the inspection device, and the actual shape point cloud data 500 are superimposed in the virtual space (see FIG. 8).
  • the recording/signal processing unit 206 calculates the difference ⁇ between the three-dimensional CAD data 601 of the horizontal beam 2 and the actual shape point cloud data 500 .
  • a difference ⁇ is obtained for each point of the actual shape point cloud data 500 . Specifically, it is obtained by calculating the distance between each point of the actual shape point cloud data 500 and the closest plane constituting the three-dimensional CAD data 601 of the cross beam 2 . From the obtained difference ⁇ , the distribution of the spatial deformation amount due to the weld bead, welding distortion, etc. can be grasped, and therefore the range in which the difference ⁇ is larger than a predetermined value can be determined as the welding range.
  • the three-dimensional CAD data 601 usually includes shape information such as a plane, a cylindrical surface, and a spherical surface, the distance between these local geometric shapes and the corresponding real shape point cloud data 500 is calculated.
  • the three-dimensional CAD data 601 is first converted into a format called an STL (Stereolithography) format, which expresses a three-dimensional solid shape by a collection of triangles, and each point of the point group and the triangular plane (triangle plane containing the area) may be calculated.
  • the range where the calculated distance is greater than the threshold can be determined as the welding range.
  • the STL format is a general-purpose file format adopted by many CAD software.
  • Step 7 the recording/signal processing unit 206 extracts a region 801 in which the difference ⁇ obtained in step 6 exceeds a predetermined value, and further extracts a three-dimensional welding planned position (welding execution position) 602 attached to the three-dimensional CAD data 601 .
  • the actual inspection range 802 is determined by matching with the position information. This is because if there is a difference ⁇ exceeding a predetermined value in the actual shape point cloud data 500, it can be assumed to be a welded portion.
  • a range in which the difference ⁇ exceeds a predetermined value and is within a specified distance from the welding target position 602 is determined as a welding range, and is set as an inspection range 802 to be inspected.
  • the scanning range RS of the flexible array sensor 200 is determined, and the welding range can be accurately scanned.
  • Step 8 The inspection range 802 obtained in step 7 is stored in the signal control section (recording/signal processing section 206) of the inspection apparatus. However, when the inspection range 802 is determined by an external personal computer or the like, it is input to the recording/signal processing section 206 . The input may be performed manually by the operator, or the data may be automatically transferred on the system. According to the inspection range 802, the recording/signal processing unit 206 calculates the scanning range RS of the sensor unit in the virtual space based on the three-dimensional CAD data 701 of the inspection apparatus with the inspection apparatus as a reference.
  • Step 9 Based on the inspection range (calculated scanning range RS) set in step 8, the sensor unit of the inspection device is moved in the axial direction within the horizontal beam 2 in accordance with the control signal from the recording/signal processing unit 206 for flaw detection inspection. (fourth step), and the inspection data D (received waveform) obtained within the inspection range is recorded in the memory in the recording/signal processing unit 206 as a digital value.
  • the inspection data D received waveform
  • Step 10 The three-dimensional CAD data 601 of the cross beam 2, the three-dimensional CAD data 701 of the inspection device, the actual shape point cloud data 500, and the inspection data D obtained so far are all stored as a set in the recording/signal processing unit 206. , can be visualized via the display unit 207 as needed. By doing this for each weld on each product, the traceability of each product is preserved.
  • FIG. 9 shows an example of the format in which these digital data are stored, visualized by the display unit 207, for example.
  • an image 906 displayed based on the three-dimensional CAD data of the cross beam 2 is displayed together with the welding part 902, and a flaw detection analysis image 907 is displayed.
  • An area 904 surrounding internal defects 903a, 903b, and 903c is shown in a flaw analysis image 907 as an example.
  • Information 905 input in association with the digital data is also displayed on the display screen 901. .
  • These data and information are stored in the recording/signal processing unit 206 while being associated with each other.
  • the processing of the present embodiment makes it possible to determine the inspection range for the actual weld shape easily and accurately in a short time without depending on the skill and experience of the inspector. It is possible to provide the inspection method and inspection apparatus of

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Provided are a weld inspection method and a weld inspection device that enable the determination of an inspection range with respect to the actual shape of a weld, such determination being made quicky, simply, and accurately, without depending on the skill and experience of the inspector. This weld inspection method for inspecting a weld in a tubular part utilizes an inspection device and includes: a first step for measuring a three-dimensional shape of the tubular part after welding to acquire three-dimensional shape data for the tubular part; a second step for acquiring three-dimensional CAD data containing three-dimensional position information regarding the design shape of the tubular part and the position of the weld execution; a third step for carrying out data processing so as to associate the three-dimensional CAD data with the three-dimensional shape data, and at the same time, on the basis of the three-dimensional position information regarding the position of the weld execution, determining an inspection range; and a fourth step for inspecting, on the basis of the determined inspection range, the weld in the tubular part using the inspection device to acquire inspection data.

Description

溶接部の検査方法および検査装置WELD INSPECTION METHOD AND INSPECTION DEVICE
 本発明は、溶接部の検査方法および検査装置に関する。 The present invention relates to a method and apparatus for inspecting welds.
 超音波探傷(以下、UTと略記する)は、鋳鋼品や溶接部の内部に存在する欠陥の検出に用いられる代表的な非破壊検査手法であるが、欠陥検出だけでなく接着や剥離の検査等、様々な用途で使用されている。UTは基本的には、センサ(探触子、プローブ、トランスデューサとも呼ばれる)から発信された超音波が、内部の傷等の欠陥にて反射し、再度、センサに戻ってくるまでの時間(伝播時間)と、その際の信号強度を測定し、測定された時間と信号強度とに基づいて欠陥の位置や大きさを評価するものである。 Ultrasonic flaw detection (hereinafter abbreviated as UT) is a typical non-destructive inspection method used to detect defects that exist inside cast steel products and welds. etc., are used for various purposes. UT basically measures the time (propagation time) and the signal intensity at that time are measured, and the position and size of the defect are evaluated based on the measured time and signal intensity.
 欠陥の評価方法としては、Aスコープと呼ばれる波形に現れるピーク信号(エコー)を用いて評価する方法や、送受信の位置やタイミングをずらした複数のAスコープから探傷画像を生成し、画像から欠陥を評価する方法があり、これらはUTの主力技術となっている。画像から欠陥を評価する方法ではフェーズドアレイ(PA)法が代表的な手法となっており、既に様々な産業分野で用いられている。また、近年はフルマトリクスキャプチャー(Full Matrix Capture: FMC)法と呼ばれる新たな手法も注目されており、適用が広がりつつある。 Defect evaluation methods include a method that uses peak signals (echoes) that appear in waveforms called A-scopes, and a method that generates flaw detection images from multiple A-scopes that shift the transmission and reception positions and timings, and identify defects from the images. There are methods of evaluation, and these have become the workhorses of UT. A phased array (PA) method is a representative method for evaluating defects from images, and has already been used in various industrial fields. Moreover, in recent years, a new method called a full matrix capture (FMC) method has attracted attention, and its application is expanding.
 PA法とFMC法では、超音波を送受信するための素子が複数内蔵されたアレイセンサが用いられる。素子には、電圧を力に変換する、もしくは加えられた力を電圧に変換する圧電効果を利用した圧電素子が通常用いられる。素子の数、寸法、配列方法は用途に応じて様々であるが、例えば、鋼材中の1mm程度の欠陥を検出する目的では、数十から百数十個の素子を一列に配列したリニアアレイセンサが用いられる。配列方向の素子の寸法とピッチは概ね1mm以下である。 In the PA method and FMC method, an array sensor with multiple built-in elements for transmitting and receiving ultrasonic waves is used. A piezoelectric element that converts a voltage into force or converts an applied force into a voltage using a piezoelectric effect is usually used as the element. The number, size, and arrangement of the elements vary depending on the application. is used. The dimension and pitch of the elements in the arrangement direction are generally 1 mm or less.
 PA法は、アレイセンサの各素子から発振される超音波の位相を制御することにより、その合成波である超音波ビームを任意方向に走査したり、焦点の位置を変化させたりすることができる技術である。FMC法はアレイセンサの各素子の送受信の組合せに対応する波形を個別に全て収録し、送受信素子の位置に対応した波形合成処理をソフトウェア上で施すことにより、高精細な画像を得る技術である。FMC法については、例えば特開2019-158876号公報に記載されている。 In the PA method, by controlling the phase of the ultrasonic waves oscillated from each element of the array sensor, it is possible to scan the ultrasonic beam, which is a composite wave, in any direction and to change the focal position. Technology. The FMC method is a technology that obtains high-definition images by individually recording all waveforms corresponding to the combination of transmission and reception of each element of the array sensor and applying waveform synthesis processing corresponding to the position of the transmission and reception elements on the software. . The FMC method is described, for example, in JP-A-2019-158876.
 これらのアレイセンサを用いる検査手法では、探傷面は必ずしも平面である必要はない。探傷面が任意形状であっても各素子の座標が既知であれば、原理的にこれらの手法を適用することは可能である。この場合、PA法では位相制御が複雑になるため現実的ではないが、FMC法の場合は座標を計算に用いることで容易に画像を生成することが可能である。 In the inspection method using these array sensors, the flaw detection surface does not necessarily have to be flat. Even if the flaw detection surface has an arbitrary shape, these techniques can be applied in principle if the coordinates of each element are known. In this case, the PA method is not practical because the phase control is complicated, but the FMC method can easily generate an image by using coordinates for calculation.
 このような理由から、近年はフレキシブルアレイセンサと呼ばれる探傷面が曲面でも追従可能な柔軟性のあるアレイセンサが実用化され、FMC法と共に用いられる事例が増えている。フレキシブルアレイセンサを用いると、例えば、配管のような曲面を有する部品の表面にセンサを沿わせて直接接触させ、部品の母材や溶接部等を探傷して結果を容易に映像化することが可能である。 For this reason, in recent years, a flexible array sensor called a flexible array sensor that can follow even a curved flaw detection surface has been put into practical use, and there are an increasing number of cases where it is used together with the FMC method. By using a flexible array sensor, for example, the sensor can be placed along the surface of a component with a curved surface, such as a pipe, and brought into direct contact with the surface of the component. It is possible.
 ここで、管状部品の代表的な例として、鉄道車両の台車枠の例を挙げる。鉄道車両の台車枠は一般的に、横梁と呼ばれる管状の長尺部材(長さ数メートル、直径数十センチメートル)と、側梁と呼ばれる長尺部材を直交方向に溶接した構造を骨格としており、これに艤装品を固定するブラケットと呼ばれる板材が複数個所に溶接された構造を有している。これらの溶接部は重量部品を支持する重要な役割を担っているため、安全性の観点から高い健全性が求められており、工場出荷時に超音波検査が行われている場合が多い。横梁の溶接部は、横梁内面からも外面からも超音波検査が可能であるが、内面にはセンサを接触させる際の障害物が無いため、前述のフレキシブルアレイセンサを横梁内面に沿わせて直接接触させれば、容易に横梁溶接部の検査が可能となる。 Here, as a representative example of tubular parts, the example of the bogie frame of a railway vehicle is given. The bogie frame of a railway vehicle generally has a structure in which long tubular members (several meters in length and several tens of centimeters in diameter) called lateral beams and long members called side beams are welded in orthogonal directions. It has a structure in which plate materials called brackets are welded at multiple points to fix the equipment to it. Since these welds play an important role in supporting heavy parts, high soundness is required from the viewpoint of safety, and ultrasonic inspections are often performed before shipment from the factory. The welded part of the cross beam can be inspected by ultrasonic waves from both the inner surface and the outer surface of the cross beam. If they are brought into contact with each other, it becomes possible to easily inspect the cross beam welded portion.
 この際、フレキシブルアレイセンサを横梁内面に接触させたまま、管軸方向に機械的に自動走査可能な自動走査装置(マニピュレータ)が用いられることが多い。センサと接触面の間には超音波の伝播を抑制する空気が入り込まないように、通常は液状の接触媒質(カプラント)を介在させる。接触媒質としてはグリセリンペーストや水を用いる場合が多い。 At this time, an automatic scanning device (manipulator) that can mechanically automatically scan in the direction of the tube axis while keeping the flexible array sensor in contact with the inner surface of the horizontal beam is often used. A liquid couplant is usually interposed between the sensor and the contact surface so that air that suppresses the propagation of ultrasonic waves does not enter. Glycerin paste or water is often used as the contact medium.
 マニピュレータは一般的に複数の回転軸があり、それぞれサーボモータと減速機に連結されており、これらの組み合わせによってアーム先端に取り付けられたセンサの三次元空間上の位置(座標)と姿勢(角度)が制御される。これらの制御はコンピュータを通して行われるため、横梁管の径や長さ、検査対象となる溶接部の位置が入力されれば、自動的にセンサの押し付け走査が可能となる。溶接部の位置は通常は設計図面に記載されているため、実物と図面を対比させて、コンピュータへ数値入力がなされる。この際の数値入力は検査者が手動で行う。 A manipulator generally has multiple rotation axes, each of which is connected to a servomotor and a reduction gear. By combining these, the position (coordinates) and attitude (angle) of the sensor attached to the tip of the arm in three-dimensional space. is controlled. Since these controls are performed through a computer, if the diameter and length of the horizontal beam pipe and the position of the weld to be inspected are input, the sensor can be automatically pressed and scanned. Since the position of the welded part is usually described in the design drawing, numerical values are entered into the computer by comparing the actual product with the drawing. Numerical input at this time is manually performed by the inspector.
 ところで、近年は紙図面ではなく、CAD(Computer Aided Design)を用いて鉄道車両の設計を行うことが多い。CADデータには、一般的に各部品の構造情報とともに溶接指示位置(溶接予定位置)が示されており、この情報に基づいて自動溶接機や溶接作業員が各部品を溶接する。溶接施工後には、溶接部にブローホールや溶け込み不良に代表される溶接欠陥が存在しないかを、前述の超音波による装置や手法を用いて検査される。 By the way, in recent years, railway vehicles are often designed using CAD (Computer Aided Design) instead of paper drawings. The CAD data generally indicates the welding instruction position (position to be welded) along with the structural information of each part, and the parts are welded by an automatic welder or a welding operator based on this information. After welding, the welded portion is inspected for weld defects, such as blowholes and poor penetration, using the above-described ultrasonic device and method.
 しかしながら、一般に、実際の溶接部位置は図面上の溶接指示位置とは差異があるため、検査範囲は単純に図面上の溶接指示範囲とは一致しないことが多い。その理由は、実際の溶接領域が、開先を中心として数ミリから数十ミリの広がりを持っているためである。さらに検査の対象となるブローホールや溶け込み不良、割れ等の欠陥も、溶接部や、熱影響部と呼ばれる溶接部近傍域に発生するため、結果的に検査対象となる範囲も図面上の溶接指示位置よりも広い範囲となってしまう。しかしながら、このような検査範囲の決定は現状では検査者が行っているため、検査の精度は、検査者の技量と経験により影響を受けることが多い。 However, in general, the actual weld position differs from the welding instruction position on the drawing, so the inspection range often does not simply match the welding instruction range on the drawing. The reason for this is that the actual welding area extends from several millimeters to several tens of millimeters around the groove. Furthermore, defects such as blowholes, poor penetration, cracks, etc., which are subject to inspection, occur in the welded part and the area near the welded part called the heat affected zone. The range is wider than the position. However, since the inspection range is currently determined by the inspector, the accuracy of the inspection is often affected by the skill and experience of the inspector.
 特許文献1には、原子炉圧力容器の溶接補修箇所を補修前後に三次元測定装置で測定し、得られた点群データをCADデータに変換し、補修前後で比較する方法が開示されている。かかる技術によれば、研削や溶接ビードによる凹凸を含む補修後の実形状を把握することが可能になる。 Patent Literature 1 discloses a method of measuring a weld repaired portion of a reactor pressure vessel before and after repair with a three-dimensional measuring device, converting the obtained point cloud data into CAD data, and comparing the data before and after repair. . According to this technology, it is possible to grasp the actual shape after repair including irregularities due to grinding or welding beads.
特開2013-145202号公報JP 2013-145202 A
 しかしながら、実際に補修を行う時の施工指示範囲および装置動作範囲は、補修作業支援システムによって得られた施工図に従って補修装置に施工指示されるため、施工範囲の決定は補修装置のオペレータの技量と経験に影響される。また、補修後の検査方法については特許文献1には開示されておらず、したがって補修後に検査を行う場合、検査範囲の決定は施工範囲の決定と同様に、検査装置のオペレータの技量と経験に影響される。 However, since the construction instruction range and the device operating range when actually performing repairs are instructed to the repair device according to the construction drawing obtained by the repair work support system, the determination of the construction range depends on the skill of the operator of the repair device. affected by experience. In addition, the inspection method after repair is not disclosed in Patent Document 1. Therefore, when inspection is performed after repair, the determination of the inspection range, like the determination of the construction range, depends on the skill and experience of the operator of the inspection device. affected.
 本発明は、実際の溶接部形状に対する検査範囲の決定を検査者の技量と経験に依らず、短時間で簡易に、かつ正確に行うことが可能な溶接部の検査方法および検査装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention provides a weld inspection method and inspection apparatus capable of determining an inspection range for an actual weld shape in a short time, simply, and accurately without depending on the skill and experience of an inspector. for the purpose.
 上記課題を解決するために、代表的な本発明の溶接部の検査方法の一つは、検査装置を用いて管状部品の溶接部を検査する溶接部の検査方法であって、
 溶接施工後に前記管状部品の3次元形状を計測し、前記管状部品の3次元形状データを取得する第1工程と、
 前記管状部品の設計形状及び前記溶接部の施工位置に関する3次元位置情報を含む3次元CADデータを取得する第2工程と、
 前記3次元CADデータと前記3次元形状データとを対応付けるようにデータ処理を行うとともに、前記溶接部の施工位置に関する3次元位置情報に基づいて、検査範囲を決定する第3工程と、
 前記決定された検査範囲に基づいて、前記検査装置により前記管状部品の溶接部を検査して検査データを取得する第4工程と、を有することにより達成される。
In order to solve the above-mentioned problems, one of the representative weld inspection methods of the present invention is a weld inspection method for inspecting a weld of a tubular component using an inspection apparatus, comprising:
a first step of measuring a three-dimensional shape of the tubular part after welding, and acquiring three-dimensional shape data of the tubular part;
a second step of acquiring three-dimensional CAD data including three-dimensional position information regarding the design shape of the tubular part and the construction position of the weld;
a third step of performing data processing so as to associate the three-dimensional CAD data with the three-dimensional shape data, and determining an inspection range based on three-dimensional position information regarding the welding position;
and a fourth step of inspecting the welded portion of the tubular part by the inspecting device based on the determined inspection range and obtaining inspection data.
 本発明によれば、実際の溶接部形状に対する検査範囲の決定を検査者の技量と経験に依らず、短時間で簡易に、かつ正確に行うことが可能な溶接部の検査方法および検査装置を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, there is provided a method and apparatus for inspecting a welded portion that can easily and accurately determine the inspection range for the actual shape of the welded portion in a short period of time without depending on the skill and experience of the inspector. can provide.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
図1は、本発明の実施形態における検査対象である鉄道台車枠の構造を示した平面図である。FIG. 1 is a plan view showing the structure of a railway bogie frame, which is an object to be inspected in an embodiment of the present invention. 図2は、横梁を軸線方向に見た図であり、横梁の内面にフレキシブルアレイセンサを周方向に沿わせて設置した状態を示している。FIG. 2 is a view of the horizontal beam viewed in the axial direction, and shows a state in which the flexible array sensor is installed along the circumferential direction on the inner surface of the horizontal beam. 図3は、フレキシブルアレイセンサの斜視図である。FIG. 3 is a perspective view of a flexible array sensor. 図4は、フレキシブルアレイセンサを用いて鉄道台車枠横梁溶接部を検査する処理フローを示す図である。FIG. 4 is a diagram showing a processing flow for inspecting railroad bogie frame lateral beam welds using a flexible array sensor. 図5は、横梁管の実形状点群データを、破線で模式的に示した図である。FIG. 5 is a diagram schematically showing the actual shape point cloud data of the horizontal beam pipe with broken lines. 図6は、横梁の3次元CADデータを抽出して、それに基づき形状を表わした図である。FIG. 6 is a diagram showing the shape based on the extracted three-dimensional CAD data of the horizontal beam. 図7は、検査装置のセンサ部に関する3次元CADデータを可視化して示す図である。FIG. 7 is a diagram showing visualized three-dimensional CAD data relating to the sensor section of the inspection apparatus. 図8は、横梁の3次元CADデータ、検査装置のセンサ部のCADデータ、および実形状点群データが仮想空間上で重ねあわされている状態を示す図である。FIG. 8 is a diagram showing a state in which the three-dimensional CAD data of the cross beam, the CAD data of the sensor unit of the inspection device, and the actual shape point cloud data are superimposed on each other in the virtual space. 図9は、デジタルデータの保存されるフォーマットの一例を、例えば表示部により可視化された状態で示す図である。FIG. 9 is a diagram showing an example of a format in which digital data is stored, visualized by a display unit, for example.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 図1は、本実施形態における検査対象である鉄道台車枠の構造を示した図である。台車枠1は、二本の管状長尺部材(管状部品)である横梁(横梁管ともいう)2と、同じく長尺部材である2本の側梁3を直交方向に組み合わせた構造を骨格としている。横梁2と側梁3は溶接で結合されている。さらに、横梁2には様々な艤装品を固定するための上板4や、ブレーキ装置を取り付けるためのブレーキ装置取り付け座5が溶接されている。一般的にはこの他にも多くの部材が台車枠1に溶接されているが、ここでは省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing the structure of a railroad bogie frame, which is an object to be inspected in this embodiment. A bogie frame 1 has a structure in which horizontal beams (also called horizontal beam pipes) 2, which are two long tubular members (tubular parts), and two side beams 3, which are also long members, are combined in orthogonal directions as a skeleton. there is The cross beam 2 and the side beam 3 are welded together. Furthermore, a top plate 4 for fixing various fittings and a brake device mounting seat 5 for mounting a brake device are welded to the cross beam 2 . In general, many other members are welded to the bogie frame 1, but they are omitted here.
 横梁2は管状の長尺部材となっており、一般的に、その直径は数十センチメートルで、長さは数メートルである。本実施形態では、フレキシブルアレイセンサを用いて横梁内面から探傷を行う。前述のように、横梁内面には探傷の際に障害となる物体が存在しないため探傷を効率よく行うことが可能である。 The horizontal beam 2 is a tubular elongated member, generally with a diameter of several tens of centimeters and a length of several meters. In this embodiment, flaw detection is performed from the inner surface of the horizontal beam using a flexible array sensor. As described above, since there is no obstacle on the inner surface of the horizontal beam during flaw detection, flaw detection can be performed efficiently.
 横梁2の内面にフレキシブルアレイセンサ200を周方向に沿わせて設置した状態を、図2に示す。図2は横梁2を軸方向から見た図であり、横梁2と側梁3の溶接部201を検査対象とした例を示している。フレキシブルアレイセンサ200は、内部に複数の圧電素子202を内蔵しており、各圧電素子202から所望のタイミングで超音波が発信される。複数の圧電素子202は、隣接する素子面同士が傾動可能に連結されているため、横梁2の内面204の曲率に倣うようにして複数の素子面を内面204に正対させることができる。 FIG. 2 shows a state in which the flexible array sensor 200 is installed on the inner surface of the horizontal beam 2 along the circumferential direction. FIG. 2 is a diagram of the horizontal beam 2 viewed from the axial direction, and shows an example in which a welded portion 201 between the horizontal beam 2 and the side beam 3 is an object to be inspected. The flexible array sensor 200 incorporates a plurality of piezoelectric elements 202 inside, and ultrasonic waves are transmitted from each piezoelectric element 202 at desired timings. Adjacent element surfaces of the plurality of piezoelectric elements 202 are connected to each other so as to be tiltable, so that the plurality of element surfaces can face the inner surface 204 so as to follow the curvature of the inner surface 204 of the horizontal beam 2.
 アレイセンサの型式としては、コンポジット型が好ましい。コンポジット型のセンサは、格子状にカットされた複数の圧電材料の隙間にエポキシ樹脂を充填してブロック状に固め、その後、ブロックの底面を研磨してエポキシ格子の中に複数の小さな圧電素子が残るようにして作製することができる。ブロックの両面は電気接続用にメッキされ、組み込まれるセンサの型に合わせて正方形、長方形、または円形などの形状に切断される。 A composite type is preferable as the type of array sensor. Composite-type sensors are made by filling the gaps between multiple piezoelectric materials cut into a lattice shape with epoxy resin and solidifying it into a block. It can be made to remain. Both sides of the block are plated for electrical connections and cut into shapes such as squares, rectangles, or circles to fit the type of sensor to be incorporated.
 これらの複数の圧電素子202は、送受信部205から送られる電圧信号で個別に制御されており、電圧信号に対応したタイミングで各素子が変形して振動し、素子に接触している物質を加振し、その結果として超音波を発生して送信することが可能となる。また、受信過程においては、送信と逆の過程であり、超音波による素子の変位が電圧信号に変換され、その信号が送受信部205に送られることにより、受信波形が収録・信号処理部206で収録され、適切な信号処理が施され、その結果が表示部207に表示される。また図2では省略したが、送受信処理は圧電素子202の素子ごとに行われるため、受信波形も素子ごとに収録される。 These multiple piezoelectric elements 202 are individually controlled by voltage signals sent from the transmitting/receiving unit 205, and each element deforms and vibrates at a timing corresponding to the voltage signal, and the material in contact with the element is heated. It is possible to vibrate and, as a result, generate and transmit ultrasonic waves. In the receiving process, the process is the reverse of the transmitting process. The displacement of the element due to the ultrasonic waves is converted into a voltage signal, and the signal is sent to the transmitting/receiving unit 205, whereby the received waveform is recorded in the recording/signal processing unit 206. It is recorded, subjected to appropriate signal processing, and the result is displayed on the display unit 207 . Although omitted in FIG. 2, since the transmission/reception processing is performed for each element of the piezoelectric element 202, the received waveform is also recorded for each element.
 ここで適切な信号処理とは、たとえば、前述のフルマトリクスキャプチャー法で、全素子の組み合わせに対応する受信波形を収録し、それらの受信波形をトータルフォーカシングメソッド法(TFM法)や開口合成法などで映像化する処理のことである。これらの処理により、フレキシブルアレイセンサ200の素子並び方向に平行な平面での断層像に相当する超音波探傷画像が得られ、その画像が表示部207に表示される。近年の計算機を用いれば、これらの処理は十分に短い時間で行われるため、フレキシブルアレイセンサ200の位置に応じて、即時に画像が更新されて表示部207に表示される。 Appropriate signal processing here means, for example, recording received waveforms corresponding to the combination of all elements using the above-mentioned full matrix capture method, and applying those received waveforms to total focusing method (TFM method), aperture synthesis method, etc. It is the process of visualizing with Through these processes, an ultrasonic flaw detection image corresponding to a tomographic image on a plane parallel to the element arrangement direction of the flexible array sensor 200 is obtained, and the image is displayed on the display unit 207 . If a recent computer is used, these processes are performed in a sufficiently short time, so the image is immediately updated according to the position of the flexible array sensor 200 and displayed on the display unit 207 .
 もちろん、これ以外の映像化手法で受信波形を映像化しても構わない。また、各素子の受信波形を個別に収録するのではなく、適切な遅延時間パターンに従いフェーズドアレイ法で収録し、映像化した画像を表示させても構わない。 Of course, the received waveform may be visualized by other visualization methods. Also, instead of individually recording the received waveform of each element, it may be recorded by a phased array method according to an appropriate delay time pattern, and a visualized image may be displayed.
 図3に、フレキシブルアレイセンサ200を含む検査装置を図示する。フレキシブルアレイセンサ200において、素子面303の幅方向両側に横梁2の曲率と同じ曲率を持つガイド片203a、203bが設けられており、容易に脱着可能な構造となっている。構造の詳細については後で述べる。図示はしないが、素子面303の表面には樹脂やゲルで構成される薄い保護材が設けられている。 FIG. 3 illustrates an inspection device including a flexible array sensor 200. FIG. In the flexible array sensor 200, guide pieces 203a and 203b having the same curvature as that of the lateral beam 2 are provided on both sides in the width direction of the element surface 303, and have an easily attachable/detachable structure. Details of the structure will be described later. Although not shown, the surface of the element surface 303 is provided with a thin protective material made of resin or gel.
 フレキシブルアレイセンサ200は、バネ等を内蔵した押付け機構304により素子面303の背面から付勢され、横梁2の内面204(図2)に密着して設置される。フレキシブルアレイセンサ200は、押付け機構304を介して移動機構305に接続されており、移動機構305は、収録・信号処理部206からの制御信号に応じて、移動用軌道も兼ねた延伸アーム306に沿って、フレキシブルアレイセンサ200を横梁2の軸線方向に走査させることが可能となっている。 The flexible array sensor 200 is urged from the back side of the element surface 303 by a pressing mechanism 304 containing a spring or the like, and is installed in close contact with the inner surface 204 (FIG. 2) of the horizontal beam 2. The flexible array sensor 200 is connected to a moving mechanism 305 via a pressing mechanism 304, and the moving mechanism 305 moves an extension arm 306, which also serves as a moving track, according to a control signal from the recording/signal processing unit 206. It is possible to scan the flexible array sensor 200 in the axial direction of the horizontal beam 2 .
 フレキシブルアレイセンサ200と、押付け機構304と、移動機構305と、延伸アーム306とによりセンサ部を構成し、また送受信部205と、収録・信号処理部206と、表示部207とにより信号制御部を構成し、該センサ部と該信号制御部とにより検査装置を構成する。 The flexible array sensor 200, the pressing mechanism 304, the moving mechanism 305, and the extension arm 306 constitute a sensor unit, and the transmitting/receiving unit 205, recording/signal processing unit 206, and display unit 207 constitute a signal control unit. An inspection device is configured by the sensor section and the signal control section.
 ガイド203は一体型でも複数に分かれていても構わない。本実施形態では、ガイド203は、一対のガイド片203a、203bを含んでいる。ガイド片203a、203bは、素子202の並び方向に垂直な断面を示している。ガイド片203a、203bには、それぞれ溝401a(片方の溝のみ図示)が対向して加工されており、これら溝に、ガイド片203a、203bに接続されていないフレキシブルアレイセンサ200の幅方向両縁が挿入されて挟み込まれ、フレキシブルアレイセンサ200の湾曲した形状が保持される構造となっている。 The guide 203 may be an integral type or may be divided into a plurality of parts. In this embodiment, the guide 203 includes a pair of guide pieces 203a, 203b. Guide pieces 203a and 203b show cross sections perpendicular to the direction in which the elements 202 are arranged. Grooves 401a (only one of the grooves is shown) are machined in the guide pieces 203a and 203b so as to face each other. are inserted and sandwiched, and the curved shape of the flexible array sensor 200 is maintained.
 この時、フレキシブルアレイセンサ200を組み付けた状態で、ガイド203の外面は、素子面303よりも僅かに外方に突出しており、それによりガイド203が横梁2の内面204に接触したときに、素子面303は内面204に直接接触しない構造となっている。素子面303と内面204との間には概ね1mmから数mm程度の隙間が確保されることが望ましい。 At this time, with the flexible array sensor 200 assembled, the outer surface of the guide 203 projects slightly outward from the element surface 303, so that when the guide 203 contacts the inner surface 204 of the lateral beam 2, the element The surface 303 has a structure that does not directly contact the inner surface 204 . It is desirable to secure a gap of approximately 1 mm to several mm between the element surface 303 and the inner surface 204 .
 また、図3に示すようにガイド片203aには、接触媒質を素子面303と内面204の隙間に供給する接触媒質供給孔301a、301bおよび301cが設けられている。接触媒質供給孔301a、301bおよび301cは、ガイド片203aの内部通路(不図示)を介して、接触媒質供給チューブ302に連通している。 Further, as shown in FIG. 3, the guide piece 203a is provided with contact medium supply holes 301a, 301b and 301c for supplying the contact medium to the gap between the element surface 303 and the inner surface 204. As shown in FIG. The couplant supply holes 301a, 301b and 301c communicate with the couplant supply tube 302 via the internal passage (not shown) of the guide piece 203a.
 接触媒質供給チューブ302を通じて外部から空気圧等を利用して供給された接触媒質が、接触媒質供給孔301a、301bおよび301cから供給される。素子面303と内面204の隙間に供給された接触媒質は、内面204に当接したガイド片203a、203bにより両側から保持されて残存する。 A couplant supplied from the outside through the couplant supply tube 302 using air pressure or the like is supplied from the couplant supply holes 301a, 301b and 301c. The couplant supplied to the gap between the element surface 303 and the inner surface 204 is held from both sides by the guide pieces 203a and 203b in contact with the inner surface 204 and remains there.
 ここでは接触媒質供給孔は、代表的な位置に3つ配置するものとして示しているが、接触媒質供給孔の数や位置は、横梁管の径やフレキシブルアレイセンサ200の寸法等に応じて適用に選択するのが好ましい。接触媒質としてはグリセリンペーストや水を用いるが、一般的に超音波探傷に用いられている物質を用いることができる。 Here, three couplant supply holes are arranged at representative positions, but the number and positions of the couplant supply holes are applied according to the diameter of the horizontal beam pipe, the dimensions of the flexible array sensor 200, and the like. It is preferable to select . Glycerin paste or water is used as the couplant, and substances generally used for ultrasonic flaw detection can be used.
 ガイド203の素材は、柔軟性を有する樹脂であることが望ましく、特に、耐摩耗性に優れるポリオキシメチレンを材料とするエンジニアリングプラスチックであることが望ましい。ただし、ガイド203の素材は、必ずしも樹脂である必要はなく、金属やその他の材料を用いても本実施形態の効果は同様に得られるため、それでもかまわない。 The material of the guide 203 is desirably a flexible resin, and particularly desirably an engineering plastic made of polyoxymethylene, which has excellent abrasion resistance. However, the material of the guide 203 does not necessarily have to be resin, and the effects of the present embodiment can be similarly obtained by using metal or other materials, so that may be used.
 押付け機構304は、移動機構305に対して回転できるようになっており、延伸アーム306に対するフレキシブルアレイセンサ200の向きを自由に変えることが可能であってもよい。例えば、図3ではフレキシブルアレイセンサ200の圧電素子202の並び方向は移動用軌道306と直交するように描いており、この状態で移動用軌道306を横梁管の軸方向に合わせることにより、フレキシブルアレイセンサ200を横梁管の内面に押し付けながら周方向探傷を行いつつ、横梁管の軸方向に探傷位置を移動させながら検査する。 The pressing mechanism 304 may be rotatable with respect to the moving mechanism 305 so that the orientation of the flexible array sensor 200 with respect to the extension arm 306 can be freely changed. For example, in FIG. 3, the arrangement direction of the piezoelectric elements 202 of the flexible array sensor 200 is drawn so as to be orthogonal to the movement track 306. In this state, by aligning the movement track 306 with the axial direction of the horizontal beam pipe, the flexible array Circumferential flaw detection is performed while pressing the sensor 200 against the inner surface of the transverse beam pipe, and inspection is performed while moving the flaw detection position in the axial direction of the transverse beam pipe.
 これにより、長尺な横梁管の溶接部を効率良く検査することが可能となる。また、横梁管内の軸方向の任意の位置において、フレキシブルアレイセンサ200を移動用軌道306ごと移動用軌道306の軸回りに回転させることで、フレキシブルアレイセンサ200で横梁管の周方向探傷を行いながら、さらに横梁管の周方向に探傷位置を移動させながら検査することが可能である。図には示していないが、軸回りの回転は手動で行ってもよいし、回転装置に移動用軌道306を接続させ、電子制御で回転させても構わない。 This makes it possible to efficiently inspect the welds of long horizontal beam pipes. Further, by rotating the flexible array sensor 200 together with the movement track 306 around the axis of the movement track 306 at an arbitrary position in the axial direction in the horizontal beam pipe, the flexible array sensor 200 performs circumferential flaw detection of the horizontal beam pipe. Furthermore, inspection can be performed while moving the flaw detection position in the circumferential direction of the transverse beam pipe. Although not shown in the figure, the rotation around the axis may be performed manually, or the movement track 306 may be connected to a rotating device and rotated electronically.
 以下に、本実施形態のフレキシブルアレイセンサ200を含む検査装置を用いて、鉄道台車枠横梁の溶接部を検査するための検査方法を、具体的に述べる。なお、超音波センサとしてフレキシブルアレイセンサを用いた例を以下に説明するが、フレキシブルアレイセンサ以外の超音波センサを用いても構わない。さらに、超音波センサ以外の非破壊検査用センサ、たとえば渦電流探傷用のセンサを用いても全く同様な手法で適用できる。また、検査対象も鉄道台車枠横梁以外の部材であってもよく、同様の手法で適用可能である。 Below, an inspection method for inspecting the welded portion of the railroad bogie frame lateral beam using the inspection device including the flexible array sensor 200 of the present embodiment will be specifically described. An example using a flexible array sensor as an ultrasonic sensor will be described below, but an ultrasonic sensor other than the flexible array sensor may be used. Further, a sensor for non-destructive inspection other than an ultrasonic sensor, for example, a sensor for eddy current flaw detection, can be applied in exactly the same manner. Also, the object to be inspected may be a member other than the horizontal beam of the railway bogie frame, and the same method can be applied.
 図4と図5を用いて、代表例としてフレキシブルアレイセンサ200を用いて鉄道台車枠横梁溶接部を検査する場合の処理フロー及び処理内容を示す。図4におけるステップ3~ステップ10の処理は、収録・信号処理部206により自律的に実行されると好ましいが、収録・信号処理部206に接続された外部のパソコン等により実行してもよい。以下、収録・信号処理部206により実行される例を示す。 Using FIGS. 4 and 5, the processing flow and processing details when inspecting the railroad bogie frame lateral beam weld using the flexible array sensor 200 as a representative example are shown. The processing of steps 3 to 10 in FIG. 4 is preferably executed autonomously by the recording/signal processing unit 206, but may be executed by an external personal computer or the like connected to the recording/signal processing unit 206. An example executed by the recording/signal processing unit 206 is shown below.
(ステップ1)
 横梁2の内部における所定の位置に、作業者の手でフレキシブルアレイセンサ200を設置する。所定の位置は、検査する製品や検査装置によって異なるが、ここではフレキシブルアレイセンサ200が走査移動される際の初期位置に設置される。
(Step 1)
A flexible array sensor 200 is manually installed at a predetermined position inside the cross beam 2 . The predetermined position varies depending on the product to be inspected and the inspection apparatus, but here it is set at the initial position when the flexible array sensor 200 is moved for scanning.
(ステップ2:第1工程)
 さらに3次元計測機を用い、横梁2の所定の位置(計測位置)にフレキシブルアレイセンサ200を設置した状態での横梁2及びフレキシブルアレイセンサ200の3次元形状データを得て、これを収録・信号処理部206に記憶する。3次元計測機は、立体物の形状を3次元データ化する装置であり、センサで実際に対象物に触れながら座標を取得する接触式と、対象物に触れずに3次元形状を取得する非接触式がある。接触式はプローブを対象物に押し当てて、その接触点の位置を測定し座標として取得する方式であり、一般に測定には時間がかかる。一方、非接触式はレーザーなどの光線を対象物に当てて反射する時間差や照射角度を解析して3次元形状を取得する方式であり、縞パターンを投影して計測する光(格子パターン)投影法やスリットレーザー光で対象物をスキャンするレーザー光切断方式などの方式がある。本実施形態の検査対象である鉄道台車枠のような大型構造物に対しては、非接触式の3次元計測機を用いるのが好ましい。
(Step 2: First step)
Furthermore, using a three-dimensional measuring machine, three-dimensional shape data of the horizontal beam 2 and the flexible array sensor 200 is obtained with the flexible array sensor 200 installed at a predetermined position (measurement position) of the horizontal beam 2, and this is recorded and signaled. Stored in the processing unit 206 . A three-dimensional measuring machine is a device that converts the shape of a three-dimensional object into three-dimensional data. There is a contact type that acquires coordinates while actually touching the object with a sensor, and a non-contact type that acquires the three-dimensional shape without touching the object. There is a contact type. The contact method is a method of pressing a probe against an object, measuring the position of the contact point, and obtaining the coordinates, and generally it takes time to perform the measurement. On the other hand, the non-contact type is a method of acquiring a three-dimensional shape by analyzing the time difference and irradiation angle in which a light beam such as a laser is applied to the object and reflected, and is a light (lattice pattern) projection that measures by projecting a stripe pattern. There are methods such as a laser beam cutting method that scans an object with a slit laser beam. It is preferable to use a non-contact three-dimensional measuring machine for a large-sized structure such as a railway bogie frame, which is the object of inspection in this embodiment.
(ステップ3)
 収録・信号処理部206は、ステップ2で得られた3次元形状データを、3次元空間座標における点群(点ごとに3次元位置座標を有する)に変換する。ただし、ステップ2の3次元計測機からの出力が最初から点群である3次元計測機を使用する場合は、ステップ3はステップ2と同時に実行される。以上のステップにより、検査装置を設置した状態における3次元の実形状点群データ(管状部品の3次元形状データ)500が得られる。
(Step 3)
The recording/signal processing unit 206 converts the three-dimensional shape data obtained in step 2 into a point group in three-dimensional space coordinates (having three-dimensional position coordinates for each point). However, when using a three-dimensional measuring machine whose output from the three-dimensional measuring machine in step 2 is a point cloud from the beginning, step 3 is executed at the same time as step 2. Through the above steps, the three-dimensional actual shape point cloud data (three-dimensional shape data of the tubular part) 500 in the state where the inspection device is installed is obtained.
 図5は、横梁管の実形状点群データ500を、破線で模式的に示した図である。横梁2の点群データに相当する横梁の点群データ501の他に、横梁2に溶接されている部品の点群データ502や検査装置の点群データ504が示されており、また、溶接ビードによる凹凸部の点群データ503も示されている。ただし、点群の各点は単なる座標情報しか持たず、その点がどの部品に帰属するかの情報は持っていない。 FIG. 5 is a diagram schematically showing the actual shape point cloud data 500 of the horizontal beam pipe with broken lines. In addition to the point cloud data 501 of the horizontal beam 2 corresponding to the point cloud data of the horizontal beam 2, the point cloud data 502 of the parts welded to the horizontal beam 2 and the point cloud data 504 of the inspection device are also shown. Also shown is point cloud data 503 of the uneven part. However, each point in the point group has only simple coordinate information, and does not have information as to which part the point belongs to.
 さらに図5には、横梁管の内部には延伸アームの点群データ505と、その先端に取り付けられているセンサの点群データ506も示されているが、横梁2の内部であるため3次元計測ができない場合もあり得る。その場合は、3次元計測が可能な検査装置の本体等の一部のみの点群データでも構わない。 Furthermore, FIG. 5 also shows point cloud data 505 of the extension arm inside the horizontal beam pipe and point cloud data 506 of the sensor attached to the tip thereof. Measurement may not be possible. In that case, the point cloud data of only a part of the main body of an inspection device capable of three-dimensional measurement may be used.
(ステップ4:第2工程及び第3工程)
 次に、収録・信号処理部206は、予め記憶されていた横梁管の設計に用いた3次元CADデータを取得し、実形状点群データ500に位置合わせしてコンピュータの仮想空間上で重ね合わせる。なお、実形状点群データ500の取得(第1工程)と、3次元CADデータ601の取得(第2工程)は、いずれを先に行ってもよい。
(Step 4: Second step and third step)
Next, the recording/signal processing unit 206 acquires the three-dimensional CAD data used for the design of the transverse beam pipe stored in advance, aligns them with the actual shape point cloud data 500, and superimposes them in the virtual space of the computer. . Either acquisition of the actual shape point cloud data 500 (first step) or acquisition of the three-dimensional CAD data 601 (second step) may be performed first.
 図6は、横梁2の3次元CADデータを抽出して、それに基づき形状を表わした図である。横梁2の3次元CADデータ601には、横梁2の直径や長さなどの形状に関する3次元位置情報が含まれており、さらに横梁2に溶接する部品との溶接予定位置602の3次元位置情報が、軸方向長さ範囲と周方向角度範囲とにより示されている。 FIG. 6 is a diagram showing the shape based on the extracted three-dimensional CAD data of the horizontal beam 2. The three-dimensional CAD data 601 of the horizontal beam 2 includes three-dimensional positional information on the shape of the horizontal beam 2 such as diameter and length, and three-dimensional positional information of a planned welding position 602 with the parts to be welded to the horizontal beam 2. is indicated by the axial length extent and the circumferential angular extent.
 3次元CADデータ601と実形状点群データ500の位置合わせ(対応付け)は、たとえば3次元CADデータ601に含まれる位置合わせ用マーカ(位置合わせ用マーカの設計データ)603と、実形状点群データ500に含まれる位置合わせ用マーカの点群データ(マーカ形状データ)507とが重なるようにデータ処理することで行われる。横梁2に実際に付与されている位置合わせ用マーカには製品の性能を損なわない程度に固有の凹凸形状があり、実形状点群データ500から該凹凸形状を十分認識できるため、マーカ形状データを容易に抽出できる。また、位置合わせには、位置合わせ用マーカ603や位置合わせ用マーカの点群データ507以外に、マーカの代わりとなるような特徴的な形状部、例えば横梁の端部等を用いても構わない。 Alignment (association) between the three-dimensional CAD data 601 and the actual shape point cloud data 500 is performed, for example, by using alignment markers (design data for alignment markers) 603 included in the three-dimensional CAD data 601 and real shape point cloud data. This is performed by performing data processing so that the point cloud data (marker shape data) 507 of the alignment marker included in the data 500 overlaps. The alignment markers actually attached to the cross beams 2 have a unique uneven shape that does not impair the performance of the product. Can be easily extracted. Further, for alignment, in addition to the alignment marker 603 and the point cloud data 507 of the alignment marker, a characteristic shaped portion that can replace the marker, such as the end of a horizontal beam, may be used. .
(ステップ5)
 さらに、収録・信号処理部206は、検査装置のCADデータを実形状点群データ500に位置合わせして、コンピュータの仮想空間上で重ね合わせる。ここで、図7には検査装置のセンサ部に関する3次元CADデータ701が示されており、検査装置の3次元CADデータ701には検査装置の形状に関する3次元位置情報が含まれている。図7(a)は、延伸アーム306が縮んだ状態の検査装置の3次元CADデータ701aを示し、図7(b)は、延伸アーム306が伸びた状態の検査装置の3次元CADデータ701bを示しているが、延伸アーム306以外の部分は共通の形状であるため、位置合わせは延伸アーム306以外の検査装置のCADデータを用いて行う。
(Step 5)
Furthermore, the recording/signal processing unit 206 aligns the CAD data of the inspection device with the actual shape point cloud data 500 and superimposes them in the virtual space of the computer. Here, FIG. 7 shows three-dimensional CAD data 701 relating to the sensor section of the inspection device, and the three-dimensional CAD data 701 of the inspection device includes three-dimensional position information relating to the shape of the inspection device. FIG. 7A shows three-dimensional CAD data 701a of the inspection device with the extension arm 306 contracted, and FIG. 7B shows three-dimensional CAD data 701b of the inspection device with the extension arm 306 extended. Although shown, since the portions other than the extension arm 306 have a common shape, alignment is performed using the CAD data of the inspection device other than the extension arm 306 .
 ステップ4で横梁2の3次元CADデータ601も実形状点群データ500に位置合わせして重ね合わせているため、この時点では横梁2の3次元CADデータ601、検査装置の3次元CADデータ701、および実形状点群データ500が仮想空間上で重ね合わされている状態である(図8参照)。 Since the 3D CAD data 601 of the cross beam 2 is also aligned and superimposed on the actual shape point cloud data 500 in step 4, at this point, the 3D CAD data 601 of the cross beam 2, the 3D CAD data 701 of the inspection device, and the actual shape point cloud data 500 are superimposed in the virtual space (see FIG. 8).
(ステップ6)
 次に、収録・信号処理部206は、横梁2の3次元CADデータ601と実形状点群データ500の差分Δを算出する。差分Δは、実形状点群データ500の各点について求める。具体的には、実形状点群データ500の各点と、横梁2の3次元CADデータ601を構成する最近接平面との距離を算出することで求める。求めた差分Δにより、溶接ビードや溶接ひずみ等による空間的な変形量の分布が把握でき、したがって差分Δが所定値より大きい範囲を、溶接範囲として決定することができる。
(Step 6)
Next, the recording/signal processing unit 206 calculates the difference Δ between the three-dimensional CAD data 601 of the horizontal beam 2 and the actual shape point cloud data 500 . A difference Δ is obtained for each point of the actual shape point cloud data 500 . Specifically, it is obtained by calculating the distance between each point of the actual shape point cloud data 500 and the closest plane constituting the three-dimensional CAD data 601 of the cross beam 2 . From the obtained difference Δ, the distribution of the spatial deformation amount due to the weld bead, welding distortion, etc. can be grasped, and therefore the range in which the difference Δ is larger than a predetermined value can be determined as the welding range.
 3次元CADデータ601には通常、平面や円筒面、球面といった形状情報が含まれているため、それらの局所的な幾何形状と、対応する実形状点群データ500との距離を算出する。または、3次元CADデータ601を一度、STL(Stereolithography)形式と呼ばれる、3次元立体形状を三角形の集合体で表現するフォーマットに変換し、点群の各点と、それらに最近接する三角形平面(三角領域を含む平面)との距離を算出してもよい。算出した距離が閾値より大きい範囲を、溶接範囲として決定することができる。STL形式は多くのCADソフトで採用されている汎用的なファイル形式である。 Since the three-dimensional CAD data 601 usually includes shape information such as a plane, a cylindrical surface, and a spherical surface, the distance between these local geometric shapes and the corresponding real shape point cloud data 500 is calculated. Alternatively, the three-dimensional CAD data 601 is first converted into a format called an STL (Stereolithography) format, which expresses a three-dimensional solid shape by a collection of triangles, and each point of the point group and the triangular plane (triangle plane containing the area) may be calculated. The range where the calculated distance is greater than the threshold can be determined as the welding range. The STL format is a general-purpose file format adopted by many CAD software.
(ステップ7)
 次に、収録・信号処理部206は、ステップ6で求めた差分Δが所定値を上回る領域801を抽出し、さらに3次元CADデータ601に付随する溶接予定位置(溶接施工位置)602の3次元位置情報と照合することにより、実際の検査範囲802を決定する。実形状点群データ500において所定値を上回る差分Δがあれば、それは溶接が行われた部位と推認できるからである。ただし、差分Δが所定値を上回る領域であっても、3次元CADデータ601に付随しており3次元位置情報が既知である溶接予定位置602との距離が、規定距離を超えていれば、当該差分Δは溶接に起因するものではないと判断できるため、検査範囲の候補から除外する。すなわち、当該差分Δが所定値を上回る領域であって且つ溶接予定位置602から規定距離以内である範囲を、溶接範囲として決定し、検査対象とすべき検査範囲802とする。これによりフレキシブルアレイセンサ200の走査範囲RSが決定され、精度よく溶接範囲を走査することができる。
(Step 7)
Next, the recording/signal processing unit 206 extracts a region 801 in which the difference Δ obtained in step 6 exceeds a predetermined value, and further extracts a three-dimensional welding planned position (welding execution position) 602 attached to the three-dimensional CAD data 601 . The actual inspection range 802 is determined by matching with the position information. This is because if there is a difference Δ exceeding a predetermined value in the actual shape point cloud data 500, it can be assumed to be a welded portion. However, even in a region where the difference Δ exceeds a predetermined value, if the distance from the planned welding position 602, which is attached to the three-dimensional CAD data 601 and whose three-dimensional position information is known, exceeds the specified distance, Since it can be determined that the difference Δ is not due to welding, it is excluded from the inspection range candidates. That is, a range in which the difference Δ exceeds a predetermined value and is within a specified distance from the welding target position 602 is determined as a welding range, and is set as an inspection range 802 to be inspected. Thereby, the scanning range RS of the flexible array sensor 200 is determined, and the welding range can be accurately scanned.
(ステップ8)
 ステップ7で求めた検査範囲802を、検査装置の信号制御部(収録・信号処理部206)に記憶する。ただし検査範囲802を外部のパソコン等により求めた場合には、これを収録・信号処理部206に入力する。入力は作業者が手動で行っても構わないし、システム上で自動的にデータが転送されても構わない。検査範囲802に応じて、収録・信号処理部206は、検査装置の3次元CADデータ701に基づき、検査装置を基準として仮想空間上におけるセンサ部の走査範囲RSを算出する。
(Step 8)
The inspection range 802 obtained in step 7 is stored in the signal control section (recording/signal processing section 206) of the inspection apparatus. However, when the inspection range 802 is determined by an external personal computer or the like, it is input to the recording/signal processing section 206 . The input may be performed manually by the operator, or the data may be automatically transferred on the system. According to the inspection range 802, the recording/signal processing unit 206 calculates the scanning range RS of the sensor unit in the virtual space based on the three-dimensional CAD data 701 of the inspection apparatus with the inspection apparatus as a reference.
(ステップ9)
 ステップ8で設定された検査範囲(算出された走査範囲RS)に基づき、収録・信号処理部206の制御信号に応じて、検査装置のセンサ部を横梁2内で軸方向に移動させて探傷検査を行い(第4工程)、検査範囲内で得られた検査データD(受信波形)をデジタル値として、収録・信号処理部206内のメモリに収録する。
(Step 9)
Based on the inspection range (calculated scanning range RS) set in step 8, the sensor unit of the inspection device is moved in the axial direction within the horizontal beam 2 in accordance with the control signal from the recording/signal processing unit 206 for flaw detection inspection. (fourth step), and the inspection data D (received waveform) obtained within the inspection range is recorded in the memory in the recording/signal processing unit 206 as a digital value.
(ステップ10)
 ここまでに得られた、横梁2の3次元CADデータ601、検査装置の3次元CADデータ701、実形状点群データ500、および検査データDをすべてセットとして、収録・信号処理部206に保存し、必要に応じて表示部207を介して可視化することができる。各製品の各溶接部についてこの処理を行うことにより、各製品のトレーサビリティの保存が確保される。
(Step 10)
The three-dimensional CAD data 601 of the cross beam 2, the three-dimensional CAD data 701 of the inspection device, the actual shape point cloud data 500, and the inspection data D obtained so far are all stored as a set in the recording/signal processing unit 206. , can be visualized via the display unit 207 as needed. By doing this for each weld on each product, the traceability of each product is preserved.
 図9には、これらのデジタルデータの保存されるフォーマットの一例を、例えば表示部207により可視化された状態で示す。表示部207の表示画面901には、横梁2の3次元CADデータに基づき表示された画像906が、溶接部位902と共に表示され、また探傷解析画像907が表示される。例として探傷解析画像907中に、内部欠陥903a、903b、903cを囲む領域904が示される。また、デジタルデータに対応づけて入力される検査に関する情報905(検査対象名、検査ロット番号、検査対象溶接部名、検査日、検査員コード、検査結果等)も、表示画面901に表示される。これらのデータおよび情報は、相互に対応付けられた状態で、収録・信号処理部206に保存される。 FIG. 9 shows an example of the format in which these digital data are stored, visualized by the display unit 207, for example. On the display screen 901 of the display unit 207, an image 906 displayed based on the three-dimensional CAD data of the cross beam 2 is displayed together with the welding part 902, and a flaw detection analysis image 907 is displayed. An area 904 surrounding internal defects 903a, 903b, and 903c is shown in a flaw analysis image 907 as an example. Information 905 (inspection object name, inspection lot number, weld part name to be inspected, inspection date, inspector code, inspection result, etc.) input in association with the digital data is also displayed on the display screen 901. . These data and information are stored in the recording/signal processing unit 206 while being associated with each other.
 以上説明したように、本実施形態の処理により、実際の溶接部形状に対する検査範囲の決定を検査者の技量と経験に依らず、短時間で簡易に、かつ正確に行うことが可能な溶接部の検査方法および検査装置を提供することできる。 As described above, the processing of the present embodiment makes it possible to determine the inspection range for the actual weld shape easily and accurately in a short time without depending on the skill and experience of the inspector. It is possible to provide the inspection method and inspection apparatus of
1:台車枠、2:横梁、3:側梁、4:上板、5:ブレーキ装置取り付け座、200:フレキシブルアレイセンサ、201:溶接部、202:圧電素子、203:ガイド、203a、203b:ガイド片、204:横梁内面、205:送受信部、206:収録・信号処理部、207:表示部、301a、301b、301c:接触媒質供給孔、302:接触媒質供給チューブ、303:素子面、304:押付け機構、305:移動機構、306:延伸アーム、500:実形状点群データ、501:横梁の点群データ、502:部品の点群データ、503:溶接ビードによる凹凸部の点群データ、504:検査装置の点群データ、505:延伸アームの点群データ、506:センサの点群データ、507:位置合わせ用マーカの点群データ、601:3次元CADデータ、602:溶接予定位置、603:位置合わせ用マーカ、701、701a、701b:検査装置のCADデータ、801:領域、802:検査範囲 1: bogie frame, 2: lateral beam, 3: side beam, 4: upper plate, 5: brake device mounting seat, 200: flexible array sensor, 201: welding part, 202: piezoelectric element, 203: guide, 203a, 203b: Guide piece 204: Inner surface of horizontal beam 205: Transmission/reception unit 206: Recording/signal processing unit 207: Display unit 301a, 301b, 301c: Contact material supply hole 302: Contact material supply tube 303: Element surface 304 : Pressing mechanism, 305: Moving mechanism, 306: Extension arm, 500: Actual shape point cloud data, 501: Horizontal beam point cloud data, 502: Part point cloud data, 503: Point cloud data of irregularities due to weld beads, 504: point cloud data of inspection device, 505: point cloud data of extension arm, 506: point cloud data of sensor, 507: point cloud data of alignment marker, 601: three-dimensional CAD data, 602: planned welding position, 603: Alignment markers, 701, 701a, 701b: CAD data of inspection device, 801: area, 802: inspection range

Claims (10)

  1.  検査装置を用いて管状部品の溶接部を検査する溶接部の検査方法であって、
     溶接施工後に前記管状部品の3次元形状を計測し、前記管状部品の3次元形状データを取得する第1工程と、
     前記管状部品の設計形状及び前記溶接部の施工位置に関する3次元位置情報を含む3次元CADデータを取得する第2工程と、
     前記3次元CADデータと前記3次元形状データとを対応付けるようにデータ処理を行うとともに、前記溶接部の施工位置に関する3次元位置情報に基づいて、検査範囲を決定する第3工程と、
     前記決定された検査範囲に基づいて、前記検査装置により前記管状部品の溶接部を検査して検査データを取得する第4工程と、を有することを特徴とする溶接部の検査方法。
    A weld inspection method for inspecting a weld of a tubular part using an inspection device, comprising:
    a first step of measuring a three-dimensional shape of the tubular part after welding, and acquiring three-dimensional shape data of the tubular part;
    a second step of acquiring three-dimensional CAD data including three-dimensional position information regarding the design shape of the tubular part and the construction position of the weld;
    a third step of performing data processing so as to associate the three-dimensional CAD data with the three-dimensional shape data, and determining an inspection range based on three-dimensional position information regarding the welding position;
    and a fourth step of inspecting the welded portion of the tubular part by the inspection device based on the determined inspection range to obtain inspection data.
  2.  請求項1に記載の溶接部の検査方法において、
     前記3次元CADデータが、前記管状部品の設計形状における位置合わせ用マーカの設計データを含み、
     前記3次元形状データから、前記管状部品の位置合わせ用マーカに対応するマーカ形状データを抽出し、
     前記第3工程において、前記3次元CADデータの位置合わせ用マーカの設計データと、前記3次元形状データのマーカ形状データとが重なるように、前記3次元CADデータと前記3次元形状データとを対応付けることを特徴とする溶接部の検査方法。
    In the method for inspecting a weld according to claim 1,
    wherein the three-dimensional CAD data includes design data for alignment markers in the design shape of the tubular part;
    extracting marker shape data corresponding to the alignment marker of the tubular part from the three-dimensional shape data;
    In the third step, the three-dimensional CAD data and the three-dimensional shape data are associated so that the design data of the positioning marker of the three-dimensional CAD data and the marker shape data of the three-dimensional shape data overlap. A method for inspecting a weld, characterized by:
  3.  請求項1に記載の溶接部の検査方法において、
     前記3次元形状データが、それぞれ3次元位置情報を含む点群データであることを特徴とする溶接部の検査方法。
    In the method for inspecting a weld according to claim 1,
    A method of inspecting a welded portion, wherein the three-dimensional shape data is point cloud data each including three-dimensional position information.
  4.  請求項3に記載の溶接部の検査方法において、
     前記第3工程において、前記3次元CADデータに基づく形状と、前記点群データに基づく形状とを重ね合わせることによって形状の差分を求め、前記差分が所定値を超える範囲であって且つ前記溶接部の施工位置から規定距離以内である範囲を前記検査範囲として決定する、ことを特徴とする溶接部の検査方法。
    In the method for inspecting a weld according to claim 3,
    In the third step, the shape based on the three-dimensional CAD data and the shape based on the point cloud data are superimposed to obtain a difference in shape, and the difference exceeds a predetermined value and the welded portion A method for inspecting a welded portion, wherein a range within a specified distance from the execution position of is determined as the inspection range.
  5.  請求項3に記載の溶接部の検査方法において、
     前記第3工程において、前記3次元CADデータをSTL形式のデータに変換し、前記点群データを構成する各点と、前記STL形式のデータを構成する各三角領域を含む平面との距離を算出し、前記距離が閾値を超える範囲であって且つ前記溶接部の施工位置から規定距離以内である範囲を前記検査範囲として決定することを特徴とする溶接部の検査方法。
    In the method for inspecting a weld according to claim 3,
    In the third step, the three-dimensional CAD data is converted into STL format data, and the distance between each point forming the point cloud data and a plane including each triangular region forming the STL format data is calculated. and determining, as the inspection range, a range in which the distance exceeds a threshold value and is within a specified distance from a position where the weld is to be performed.
  6.  請求項1に記載の溶接部の検査方法において、
     前記3次元CADデータは、前記検査装置の設計形状に関する3次元位置情報を含み、
     前記3次元形状データは、前記管状部品の計測位置に設置された前記検査装置の形状データを含む、ことを特徴とする溶接部の検査方法。
    In the method for inspecting a weld according to claim 1,
    The three-dimensional CAD data includes three-dimensional position information regarding the design shape of the inspection device,
    A method of inspecting a welded portion, wherein the three-dimensional shape data includes shape data of the inspection device installed at a measurement position of the tubular part.
  7.  請求項1に記載の溶接部の検査方法において、
     前記検査データと、前記3次元CADデータと、前記3次元形状データとを対応付けて保存することを特徴とする溶接部の検査方法。
    In the method for inspecting a weld according to claim 1,
    A method for inspecting a welded portion, wherein the inspection data, the three-dimensional CAD data, and the three-dimensional shape data are stored in association with each other.
  8.  請求項1に記載の溶接部の検査方法において、
     前記管状部品が鉄道車両の台車枠の横梁であることを特徴とする溶接部の検査方法。
    In the method for inspecting a weld according to claim 1,
    A method for inspecting a welded portion, wherein the tubular part is a cross beam of a bogie frame of a railway vehicle.
  9.  請求項1に記載の溶接部の検査方法に用いる溶接部の検査装置において、
     前記第1工程乃至前記第3工程を実行する信号制御部と、
     前記第4工程を実行するセンサ部と、を有することを特徴とする溶接部の検査装置。
    In the welded portion inspection apparatus used in the welded portion inspection method according to claim 1,
    a signal control unit that executes the first to third steps;
    and a sensor unit that performs the fourth step.
  10.  請求項9に記載の溶接部の検査装置において、
     前記センサ部は、非破壊検査用センサと、前記非破壊検査用センサを前記管状部品の内面における前記検査範囲にわたって走査させる移動機構とを有する、ことを特徴とする溶接部の検査装置。
    In the weld inspection device according to claim 9,
    The weld inspection apparatus, wherein the sensor unit includes a nondestructive inspection sensor and a moving mechanism for scanning the nondestructive inspection sensor over the inspection range on the inner surface of the tubular part.
PCT/JP2021/042567 2021-11-19 2021-11-19 Weld inspection method and weld inspection device WO2023089764A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/042567 WO2023089764A1 (en) 2021-11-19 2021-11-19 Weld inspection method and weld inspection device
JP2022570120A JP7332821B1 (en) 2021-11-19 2021-11-19 WELD INSPECTION METHOD AND INSPECTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/042567 WO2023089764A1 (en) 2021-11-19 2021-11-19 Weld inspection method and weld inspection device

Publications (1)

Publication Number Publication Date
WO2023089764A1 true WO2023089764A1 (en) 2023-05-25

Family

ID=86396510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042567 WO2023089764A1 (en) 2021-11-19 2021-11-19 Weld inspection method and weld inspection device

Country Status (2)

Country Link
JP (1) JP7332821B1 (en)
WO (1) WO2023089764A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518904A (en) * 1991-07-09 1993-01-26 Nippon Steel Corp Method for detecting welded part of steel pipe
JP2004130874A (en) * 2002-10-09 2004-04-30 Hitachi Ltd Dimension measuring method for bogie frame for railroad
JP2006088160A (en) * 2004-09-21 2006-04-06 Toyota Auto Body Co Ltd Apparatus and program for inspecting welded position
JP2007152371A (en) * 2005-12-01 2007-06-21 Kanto Auto Works Ltd Inspection system of welding spot position
JP2012103136A (en) * 2010-11-11 2012-05-31 Hitachi-Ge Nuclear Energy Ltd Method and apparatus for inspecting spot welding
WO2013051080A1 (en) * 2011-10-03 2013-04-11 株式会社日立製作所 Site management method and site management device
JP2013213733A (en) * 2012-04-02 2013-10-17 Suzuki Motor Corp Apparatus and method for inspecting object to be inspected
JP2014085322A (en) * 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd Shape analysis system for pipeline weld
JP2015021937A (en) * 2013-07-23 2015-02-02 株式会社日立製作所 Ultrasonic inspection device and ultrasonic inspection method
US20160238564A1 (en) * 2015-02-13 2016-08-18 Fbs, Inc. Medium-range magnetostrictive ultrasonic guided wave scanner systems and methods
JP2020082764A (en) * 2018-11-15 2020-06-04 川崎重工業株式会社 Structure manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578005B2 (en) * 2010-10-08 2014-08-27 トヨタ自動車株式会社 Welding bead inspection device, inspection method, and inspection program
JP2017146228A (en) * 2016-02-18 2017-08-24 トヨタ自動車株式会社 Welding position inspection system
JP2021146437A (en) * 2020-03-18 2021-09-27 株式会社東芝 Control device, inspection system, control method, program, and storage medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518904A (en) * 1991-07-09 1993-01-26 Nippon Steel Corp Method for detecting welded part of steel pipe
JP2004130874A (en) * 2002-10-09 2004-04-30 Hitachi Ltd Dimension measuring method for bogie frame for railroad
JP2006088160A (en) * 2004-09-21 2006-04-06 Toyota Auto Body Co Ltd Apparatus and program for inspecting welded position
JP2007152371A (en) * 2005-12-01 2007-06-21 Kanto Auto Works Ltd Inspection system of welding spot position
JP2012103136A (en) * 2010-11-11 2012-05-31 Hitachi-Ge Nuclear Energy Ltd Method and apparatus for inspecting spot welding
WO2013051080A1 (en) * 2011-10-03 2013-04-11 株式会社日立製作所 Site management method and site management device
JP2013213733A (en) * 2012-04-02 2013-10-17 Suzuki Motor Corp Apparatus and method for inspecting object to be inspected
JP2014085322A (en) * 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd Shape analysis system for pipeline weld
JP2015021937A (en) * 2013-07-23 2015-02-02 株式会社日立製作所 Ultrasonic inspection device and ultrasonic inspection method
US20160238564A1 (en) * 2015-02-13 2016-08-18 Fbs, Inc. Medium-range magnetostrictive ultrasonic guided wave scanner systems and methods
JP2020082764A (en) * 2018-11-15 2020-06-04 川崎重工業株式会社 Structure manufacturing method

Also Published As

Publication number Publication date
JPWO2023089764A1 (en) 2023-05-25
JP7332821B1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
US8365602B2 (en) Weld seam tracking system using phased array ultrasonic devices
US5161413A (en) Apparatus and method for guided inspection of an object
EP2846158B1 (en) A system and method of non-destructive inspection with a visual scanning guide
JP2007187593A (en) Inspection device for piping and inspection method for piping
KR20140033404A (en) Three-dimensional matrix phased array spot weld inspection system
CN108414622A (en) Stainless steel tube butt weld phased array ultrasonic detecting method
US9816964B1 (en) Ultrasonic method and device for volumetric examination of aluminothermic rail welds
US20170370885A1 (en) Micro-resolution ultrasonic nondestructive imaging method
JP4111902B2 (en) Automatic inspection system
US20160178581A1 (en) System for evaluating weld quality using eddy currents
WO2012008144A1 (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
Lin et al. Advanced ultrasonic testing technologies with applications to evaluation of steel bridge welding-an overview
KR100975330B1 (en) Multi Channel Ultrasonic Welding Inspection System and Control Method
Sweeney et al. In-process phased array ultrasonic weld pool monitoring
JP4897420B2 (en) Ultrasonic flaw detector
JP7332821B1 (en) WELD INSPECTION METHOD AND INSPECTION DEVICE
JP5292012B2 (en) Ultrasonic inspection equipment
US9625421B2 (en) Manually operated small envelope scanner system
JP2006138672A (en) Method of and device for ultrasonic inspection
JP5959677B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Jackson et al. Magnetic inspection platform for teleoperated remote inspections of complex geometry
KR20220037769A (en) Welding apparatus with ultrasonic inspection function
Bird et al. Qualification of a Phased Array Inspection of Thin Welds
Richard et al. Advanced software tools for design and implementation of phased array UT inspection techniques on complex components
Sahebi et al. Using Advanced Inspection Method (Three-Dimentional Ultrasonic) In Recognition Of Defects In High Thickness Pipelines

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022570120

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964779

Country of ref document: EP

Kind code of ref document: A1