WO2023088017A1 - 确定网络切片可用资源的方法、电子设备和存储介质 - Google Patents

确定网络切片可用资源的方法、电子设备和存储介质 Download PDF

Info

Publication number
WO2023088017A1
WO2023088017A1 PCT/CN2022/126008 CN2022126008W WO2023088017A1 WO 2023088017 A1 WO2023088017 A1 WO 2023088017A1 CN 2022126008 W CN2022126008 W CN 2022126008W WO 2023088017 A1 WO2023088017 A1 WO 2023088017A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
terminal
target
block error
network slicing
Prior art date
Application number
PCT/CN2022/126008
Other languages
English (en)
French (fr)
Inventor
林佩
景晓玺
阮玉峰
白玉
王云中
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023088017A1 publication Critical patent/WO2023088017A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the embodiment of the present application relates to the field of wireless communication technologies, and in particular to a method for determining available resources of a network slice, an electronic device, and a storage medium.
  • 5G technology is expected to become an important infrastructure supporting industrial applications due to its unique advantages such as mobility, high bandwidth, low latency, high reliability, and wide connection.
  • the vertical industries serving enterprise users (To Business, ToB) are very different, and the requirements for communication networks are also diverse. In terms of delay, reliability, speed, self-service capabilities, etc., they are different from traditional mobile terminal users (To Customer) , ToC) are quite different, and the challenges brought to 5G networks are mainly reflected in the following aspects:
  • Some high-end businesses in the industry require network end-to-end delay ⁇ 12ms, reliability ⁇ 99.999%, such as differential protection of smart grid, real-time control of industry, etc.
  • the data transmission of industrial applications mainly uses the uplink of the network, such as machine vision in the industrial field and remote quayside crane applications in ports, which mainly transmit picture streams and video streams, and propose a single-user uplink rate of 100Mbps or even higher.
  • Carrier networks are logically divided through network slicing, and a physical network is virtualized into multiple logical virtual networks.
  • Each slice can be configured with different resource ratios. As shown in Figure 1, each slice group is assigned a different proportion of dedicated resources.
  • Different levels of business data can be transmitted on network slices at different logical levels, so as to meet the differentiated requirements of different business scenarios on the data transmission rate, security, and reliability of the network.
  • network planning and network optimization engineers need to configure relevant network management parameters for physical resource block (Physical Resource Block, PRB) resource allocation of the slice according to the business requirements (bandwidth, reliability) of the slice; at the same time, industry Users also need to estimate rental resources based on business application requirements.
  • PRB Physical Resource Block
  • one method mainly considers resource estimation at the cell level.
  • the typical processing method is to simulate the spectrum efficiency of a single cell through system simulation, and calculate the single cell according to the carrier bandwidth. throughput capability.
  • Another method is to estimate the Modulation and Coding Scheme (MCS) of a certain grid through network planning simulation. It is necessary to accurately estimate each link from the transmitter to the receiver, involving The links include: site engineering parameters, electronic maps, propagation models, and precise modeling based on Massive MIMO service channel shaping. Due to many limitations, it is difficult to guarantee the accuracy of the estimation results.
  • MCS Modulation and Coding Scheme
  • the main purpose of the embodiments of the present application is to provide a method, electronic device, and storage medium for determining available resources of a network slice, which can perform resource estimation at the terminal level, and the randomness of evaluation factors is low, thereby improving the accuracy of estimation.
  • an embodiment of the present application provides a method for determining available resources for network slicing, including: obtaining a preset modulation and coding strategy MCS of a terminal; where the preset MCS means that the terminal is under a reference block error rate Obtainable MCS: According to the preset MCS mapping relationship under different block error rates, obtain the MCS corresponding to the preset MCS under the target block error rate of the network slicing service as the target MCS; according to the target MCS and the preset The obtained transmission block size required by the network slicing service determines the number of PRBs that the terminal needs to consume to access the network slicing service.
  • an embodiment of the present application further provides an electronic device, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be used by the at least one processor Instructions executed by a processor, the instructions are executed by the at least one processor, so that the at least one processor can execute the above-mentioned method for determining available resources of a network slice.
  • an embodiment of the present application further provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above method for determining available resources of a network slice is implemented.
  • the method for determining available resources for network slicing proposed in this application is to obtain the preset MCS of the terminal, wherein the preset MCS is the MCS that the terminal can obtain under the reference block error rate, that is, it can be obtained under the block error rate of ordinary mobile terminals MCS, and according to the preset MCS mapping relationship under different block error rates, obtain the MCS corresponding to the preset MCS under the target block error rate of the network slicing service, and use it as the target MCS, that is, obtain the block error rate of the slicing terminal Download the available MCS, and then according to the obtained target MCS and the pre-acquired transport block size required by the network slicing service, the number of PRBs that the terminal needs to consume for accessing the network slicing service can be determined, that is, the terminal-level PRB resource estimation can be obtained As a result, the actual needs of the ToB slicing business are met.
  • the MCS of a certain grid that is, the MCS of a certain terminal through traditional network planning simulation
  • the links involved include: site engineering parameters, electronic maps, propagation models, and accurate modeling based on Massive MIMO service channel shaping.
  • the MCS and the preset MCS mapping relationship under different block error rates are used to obtain the MCS of the slice terminal without simulation calculations. Therefore, the preconditions that this application depends on are greatly reduced, the randomness of evaluation factors is reduced, and resource estimation is greatly improved. accuracy.
  • FIG. 1 is a schematic diagram of slice resource division in the prior art
  • FIG. 2 is a flow chart of a method for determining available resources of a network slice according to an embodiment of the present application
  • Fig. 3 is a flow chart of determining the total number of terminals that a cell supports accessing network slicing services according to another embodiment of the present application;
  • FIG. 4 is a flow chart of determining the number of terminals allowed to access network slicing services at the same time according to another embodiment of the present application;
  • Fig. 5 is a schematic diagram of an electronic device provided according to an embodiment of the present application.
  • An embodiment of the present application relates to a method for determining available resources of a network slice, which is applied to a server.
  • the specific flow chart of this embodiment is shown in FIG. 2 , which specifically includes:
  • Step 201 acquire a preset MCS of the terminal; wherein, the preset MCS refers to an MCS that the terminal can acquire under a reference block error rate.
  • Step 202 according to the preset MCS mapping relationship under different block error rates, obtain the MCS corresponding to the preset MCS under the target block error rate of the network slicing service as the target MCS.
  • Step 203 according to the target MCS and the pre-acquired transport block size required by the network slicing service, determine the number of PRBs that the terminal needs to consume to access the network slicing service.
  • the preset MCS is the MCS that the terminal can obtain under the reference block error rate, that is, the MCS that can be obtained under the block error rate of an ordinary mobile terminal, and according to the preset The MCS mapping relationship under different block error rates, obtain the MCS corresponding to the preset MCS under the target block error rate of the network slicing service, and use it as the target MCS, that is, obtain the MCS that can be obtained under the block error rate of the slicing terminal, and then According to the obtained target MCS and the pre-acquired transmission block size required by the network slicing service, the number of PRBs that the terminal needs to consume to access the network slicing service can be determined, that is, the terminal-level PRB resource estimation result can be obtained, which satisfies the ToB slicing service actual needs.
  • the links involved include: There are too many prerequisites for site engineering parameters, electronic maps, propagation models, and precise modeling of service channel shaping based on Massive MIMO.
  • the embodiments of this application are only based on preset MCS and preset different error blocks.
  • the MCS mapping relationship at the lower rate is used to obtain the MCS of the slice terminal without simulation calculations. Therefore, the preconditions that this application depends on are greatly reduced, the randomness of evaluation factors is reduced, and the accuracy of resource estimation is greatly improved.
  • the method for determining available resources for network slicing in this embodiment is applied to the ToB network slicing business, according to the business model (service bandwidth and reliability) applied in the ToB industry, typical system parameter configuration (carrier bandwidth, duplex system, frame structure) etc.), the network management of the wireless environment ToC network where the terminal is located, and the MCS statistical data of the measurement report (Measurement Report, MR), the available MCS of the terminal in the ToB network slicing service can be obtained, and then combined with the transmission block in the 3GPP protocol standard According to the calculation principle of Transport Block Size (TBS), PRB resource estimation for single service or multi-service integration can be performed.
  • TBS Transport Block Size
  • the server acquires the preset MCS of the ToC grid of the live network, that is, the terminal's MCS, wherein the preset MCS is the MCS that the terminal can obtain under the reference Block Error Rate (BLER).
  • BLER Block Error Rate
  • the MCS is uniquely represented by an MCS index value.
  • block error rate 1-reliability
  • the MCS that the terminal can obtain is different.
  • the service reliability requirement of the terminal in the ToC network is 90%, that is, the MCS index value is the one that the terminal can obtain when the reference block error rate is equal to 10%. MCS.
  • the index value of the preset MCS can be manually input or automatically obtained through big data. If it is manually input, the MCS index value needs to be input on the interactive interface. If it is automatically obtained from big data, it can be Obtain the MCS index value of each terminal in the live network.
  • step 202 the reliability requirements of different network slicing services in the ToB network are different.
  • the terminal accesses the network slicing service, for the sake of illustration, the terminal accessing the network If the block error rates of the slice terminals are different, it is necessary to obtain the target MCS corresponding to the MCS index value of the slice terminal under the target block error rate according to the preset MCS mapping relationship of the slice terminals under different block error rates.
  • the reference block error rate is the block error rate of ordinary consumer mobile terminals, for example, the reference block error rate is 10%;
  • the target block error rate is the block error rate of the slicing terminal, that is, the block error rate after the terminal accesses the network slicing service rate, the target block error rate can be 0.1%, 0.001%.
  • the MCS mapping relationship includes: a plurality of reference MCSs, an MCS corresponding to each reference MCS under an alternative block error rate, wherein the signal-to-interference-plus-noise ratio corresponding to each MCS corresponding to a different block error rate (Signal to Interference plus Noise Ratio, SINR) match.
  • SINR Signal to Interference plus Noise Ratio
  • the different block error rates include a reference block error rate and an alternative block error rate.
  • the reference block error rate may be 10%
  • the alternative block error rates may be 0.1% or 0.001%.
  • the MCS mapping relationship can be obtained in the following way:
  • the simulation results of reference MCS, SINR, and BLER can be obtained based on link simulation, and then according to the corresponding relationship between different candidate block error rates and reference MCS under the reference block error rate, and the relationship between different MCS values and The corresponding relationship of SINR is used to establish the MCS mapping relationship table.
  • the target MCS corresponding to the reference MCS under the target block error rate of the slice terminal can be obtained. That is, the MCS index value based on 90% reliability of the terminal in the live network ToC is mapped to the target MCS based on 99.9% and 99.999% high reliability.
  • step 203 if the terminal is an ordinary mobile terminal, the acquired terminal has at least two preset MCSs, and the acquired target MCS has the same number as the preset MCSs and is in one-to-one correspondence. If the terminal is a fixed terminal, such as a desktop computer, the acquired preset MCS of the terminal is one. Wherein, for each target MCS, it is necessary to determine the number of PRBs that the terminal needs to consume to access the network slice service based on the target MCS according to the target MCS and the size of the transport block.
  • TBS Transport Block Size
  • PSDCH redundancy version and transport block size determination
  • PUSCH redundancy version and transport block size determination
  • the terminal before determining the number of PRBs that the terminal needs to consume to access the network slicing service according to the target MCS and the pre-acquired transmission block size TBS required by the network slicing service, it is also necessary to calculate the network slice according to the business model of the network slicing service The transmission block size required by the service.
  • TBS can be calculated according to the following formula:
  • the service bandwidth can be calculated by the following formula:
  • the unit of service bandwidth is bps
  • the scheduling period 0.5*10 -3 s
  • the scheduling period 1*10 -3 s
  • Frequency Division Duplexing Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the uplink and downlink symbol ratios of 2.5ms single cycle, 2.5ms double cycle, and 5ms single cycle are shown in Table 4:
  • the number of PRBs that the terminal needs to consume for accessing the network slicing service is also determined.
  • the number of PRBs and the number of PRBs allocated by the cell for the network slicing service are calculated, and the total number of terminals that the cell supports accessing the network slicing service is calculated.
  • Figure 3 specifically includes:
  • Step 301 acquire a preset MCS of the terminal; wherein, the preset MCS refers to an MCS that the terminal can acquire under a reference block error rate.
  • Step 302 according to the preset MCS mapping relationship under different block error rates, obtain the MCS corresponding to the preset MCS under the target block error rate of the network slicing service as the target MCS.
  • Step 303 according to the target MCS and the pre-acquired transport block size required by the network slicing service, determine the number of PRBs that the terminal needs to consume to access the network slicing service.
  • Step 301 to Step 303 are substantially the same as Step 201 to Step 203, and will not be repeated here.
  • Step 304 Calculate the total number of terminals in the cell supporting access to the network slicing service according to the number of PRBs consumed by the terminal to access the network slicing service and the number of PRBs allocated by the cell for the network slicing service.
  • step 304 firstly, according to the proportion of each MCS that the terminal can obtain under the reference block error rate, determine the proportion of each target MCS that the terminal can obtain, and according to the number of PRBs that the terminal needs to consume to access the network slice service based on each target MCS and the proportion of each target MCS, the average number of PRBs that the terminal needs to consume for accessing the network slicing service can be calculated, and finally, according to the average number of PRBs consumed and the number of PRBs allocated by the cell for the network slicing service, the access network supported by the cell can be calculated The total number of terminals for the slicing service.
  • the MCS proportion corresponding to each reference MCS corresponding to each target MCS can be used as the proportion of each target MCS, wherein the reference MCS refers to Refer to MCS under block error rate.
  • mapping relationship the mapping relationship between the reference MCS and the proportion of the MCS are integrated in the same mapping relationship table, as shown in Table 5:
  • the terminal may obtain the proportion of each MCS obtainable under the reference block error rate in advance, specifically It is: obtain the proportion of each MCS that the terminal can obtain under the reference block error rate according to the measurement report of the terminal, or obtain the proportion of each MCS that the terminal can obtain under the reference block error rate through the network management of the terminal.
  • the terminals in each cell can obtain the proportion of MCS.
  • the proportion of MCS 0 is Y 0 %
  • the proportion of MCS 1 is Y 1 %; combined with Table 3, it can be mapped to obtain the proportion of MCS obtained by slice terminals based on different target BLERs.
  • the following formula can be used to calculate the average number of PRBs that the terminal needs to consume for accessing the network slicing service:
  • Z is the average number of PRBs that the terminal needs to consume when accessing the network slicing service
  • k is the target MCS
  • X i % is the number of PRBs that the target MCS needs to consume when accessing the network slicing service
  • Y i % is the proportion of the MCS.
  • the following formula is used to calculate the total number of terminals in the cell that support access to the network slicing service:
  • W is the total number of terminals that support access to the network slicing service in the cell
  • V is the number of PRBs allocated by the cell for the network slicing service
  • Z is the average number of PRBs that the terminal needs to consume to access the network slicing service.
  • the terminal in step 201 is an ordinary mobile terminal, that is, the acquired terminal has at least two preset MCSs, and the acquired target MCS has the same number of preset MCSs and corresponds one-to-one.
  • PRB resources for the power grid differential protection service are estimated below.
  • the number of PRBs to be consumed by the service is calculated according to the pre-acquired TBS and each target MCS.
  • the pre-acquired TBS can be calculated according to Table 6:
  • the total carrier bandwidth is 100M
  • 273 PRBs that is, the maximum allocation ratio of uplink PRBs is 80%
  • the cell supports
  • the total number of terminals that the cell supports to access the terminal service is 6.
  • the number of terminals calculated in step 304 refers to the The number of supported terminals that are allowed to access the network slicing service at the same time in the geographical area where the fixed location is located.
  • the specific implementation process of this embodiment is shown in Figure 4, including:
  • Step 401 acquire the preset MCS of the terminal; wherein, the preset MCS refers to the MCS that the terminal can acquire under the reference block error rate.
  • Step 402 Obtain the MCS corresponding to the preset MCS under the target block error rate of the network slicing service as the target MCS according to the preset MCS mapping relationship under different block error rates.
  • Step 403 according to the target MCS and the pre-acquired transport block size required by the network slicing service, determine the number of PRBs that the terminal needs to consume to access the network slicing service.
  • Step 401 to Step 403 are substantially the same as Step 301 to Step 303, and will not be repeated here.
  • Step 404 Calculate the number of terminals in the area where the terminal is allowed to access the network slicing service at the same time according to the number of PRBs that the terminal needs to consume to access the network slicing service and the number of PRBs allocated in the area where the terminal is located.
  • the PRB resource of a single camera is estimated.
  • the pre-acquired TBS can be calculated according to Table 10:
  • the relationship table of uplink TBS, MCS, and PRB is obtained, as shown in Table 11.
  • Table 11 shows the relationship between some uplink TBS, MCS and PRB:
  • the number of terminals allowed to access the network slicing service at the same time in the area where the terminal is located is calculated.
  • the total carrier bandwidth is 100M
  • 273 PRBs that is, the maximum allocation ratio of uplink PRBs is 80%
  • the terminal is calculated
  • the number of terminals allowed to access the network slicing service at the same time in the area where the terminal is located is 27.
  • the implementation process of this embodiment is roughly the same as that of the second embodiment.
  • the difference is that there is only one preset MCS to be obtained. Therefore, the number of terminals that are finally determined to access the network slice service is the number of terminals that are allowed to access at the same time in the area where the terminal is located. The number of terminals for the network slicing service.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • FIG. 5 Another embodiment of the present application relates to an electronic device, as shown in FIG. 5 , including: at least one processor 501; and a memory 502 communicatively connected to the at least one processor 501; wherein, the memory 502 stores Instructions that can be executed by the at least one processor 501, where the instructions are executed by the at least one processor 501, so that the at least one processor 501 can execute the methods for determining available network slice resources in the above-mentioned embodiments .
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • Another embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种确定网络切片可用资源的方法、电子设备和存储介质,其中,确定网络切片可用资源的方法包括:获取终端的预置调制与编码策略MCS(201);其中,预置MCS是指所述终端在参考误块率下可获取的MCS;根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与所述预置MCS对应的MCS,作为目标MCS(202);根据所述目标MCS和预获取的所述网络切片业务所需的传输块大小,确定所述终端接入所述网络切片业务需要消耗的物理资源块PRB数量(203)。

Description

确定网络切片可用资源的方法、电子设备和存储介质
相关申请
本申请要求于2021年11月17日申请的、申请号为202111361540.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术领域,特别涉及一种确定网络切片可用资源的方法、电子设备和存储介质。
背景技术
当前,行业数字化席卷全球,能源、工业制造、港口、交通等不同行业都在积极探索数字化转型。在数据传输环节,5G技术以其特有的移动性、高带宽、低时延高可靠、广连接等优势,有望成为支撑行业应用的重要基础设施。服务于企业用户(To Business,ToB)的垂直行业千差万别,对通信网络的需求也多种多样,在时延、可靠性、速率、自服务能力等方面与传统服务于普通移动终端用户(To Customer,ToC)的领域有较大的差异,对5G网络带来的挑战主要体现在如下方面:
(1)时延和可靠性
行业的一些高精尖业务要求网络端到端时延<12ms,可靠性≥99.999%,例如智能电网的差动保护,工业的实时控制等。
(2)速率
行业应用的数据传输主要使用网络的上行链路,例如工业领域的机器视觉和港口的远程岸桥类应用,主要传输图片流和视频流,提出了单用户上行速率100Mbps,甚至更高的要求。
通过网络切片将运营商网络进行逻辑划分,把一个物理网络虚化出多个逻辑上的虚拟网络,每个切片可配置不同的资源比例,如图1所示,为每个切片组分配了不同比例的专用资源。不同等级的业务数据可以在不同逻辑层面的网络切片上传输,从而可以满足不同业务场景对网络的数据传输速率、安全性、可靠性等多方面的差异化需求。当采用切片的建网方式时,网规网优工程师需根据切片的业务需求(带宽、可靠性),进行切片物理资源块(Physical Resource Block,PRB)资源分配的相关网管参数配置;同时,行业用户也需要根据业务应用需求,进行租赁资源估算。
目前的运营商网络在PRB资源估算方面,一种方式,主要考虑的是小区级的资源估算,典型的处理方法是通过***仿真的方式进行单小区频谱效率的仿真,根据载波带宽计算单小区的吞吐率能力。然而,采用这种方式进行资源估算时,未考虑到终端级的资源消耗需求,以及业务可靠性的需求,无法满足ToB切片业务的实际需求。另一种方式,是通过网规仿真的方式估算某个栅格的调制与编码策略(Modulation and Coding Scheme,MCS),需要对发射端到接收端的每个环节上都进行准确的预估,涉及的环节包括:站点工程参数、电子地图、传播模型,以及基于Massive MIMO业务信道赋形的精准建模,前提 条件过多;这种方式虽然考虑了终端的资源消耗需求,但在实际应用中存在诸多限制,也很难保障估算结果的准确度。
发明内容
本申请实施例的主要目的在于提出一种确定网络切片可用资源的方法、电子设备和存储介质,能够进行终端级的资源估算,并且评估因素的随机性较低,提高了估算的准确度。
为实现上述目的,本申请实施例提供了一种确定网络切片可用资源的方法,包括:获取终端的预置调制与编码策略MCS;其中,预置MCS是指所述终端在参考误块率下可获取的MCS;根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与所述预置MCS对应的MCS,作为目标MCS;根据所述目标MCS和预获取的所述网络切片业务所需的传输块大小,确定所述终端接入所述网络切片业务需要消耗的物理资源块PRB数量。
为实现上述目的,本申请实施例还提供了一种电子设备,包括:至少一处理器;以及与所述至少一处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一处理器执行的指令,所述指令被所述至少一处理器执行,以使所述至少一处理器能够执行上述的确定网络切片可用资源的方法。
为实现上述目的,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的确定网络切片可用资源的方法。
本申请提出的确定网络切片可用资源的方法,通过获取终端的预置MCS,其中,预置MCS是终端在参考误块率下可获取的MCS,即在普通移动终端的误块率下可获取的MCS,并根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与预置MCS对应的MCS,将其作为目标MCS,即获取切片终端的误块率下可获取的MCS,然后根据获取到的目标MCS与预获取的网络切片业务所需的传输块大小,能够确定终端接入网络切片业务需要消耗的PRB数量,即可以得到终端级的PRB资源估算结果,满足了ToB切片业务的实际需求。由于传统的通过网规仿真的方式得到某个栅格的MCS,也就是某个终端的MCS时,需要对发射端到接收端的每个环节上都进行准确的评估,才能保证最终预测结果的准确度,涉及到的环节包括:站点工程参数、电子地图、传播模型,以及基于大规模天线(Massive MIMO)业务信道赋形的精准建模,前提条件过多,而本申请实施例只依据预置MCS与预设的不同误块率下的MCS映射关系,来获取切片终端的MCS,无需仿真计算,因此,本申请依赖的前提条件大幅减少,评估因素的随机性降低,极大提高了资源估算的准确性。
附图说明
图1是现有技术中的一种切片资源划分示意图;
图2是根据本申请一个实施例提供的一种确定网络切片可用资源的方法的流程图;
图3是根据本申请另一个实施例提供的确定小区支持接入网络切片业务的 终端总数量的流程图;
图4是根据本申请另一个实施例提供的确定允许同一时间接入网络切片业务的终端数量的流程图;
图5是根据本申请一个实施例提供的一种电子设备的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的一个实施例涉及一种确定网络切片可用资源的方法,应用于服务器,本实施例的具体流程图如图2所示,具体包括:
步骤201,获取终端的预置MCS;其中,预置MCS是指终端在参考误块率下可获取的MCS。
步骤202,根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与预置MCS对应的MCS,作为目标MCS。
步骤203,根据目标MCS和预获取的网络切片业务所需的传输块大小,确定终端接入网络切片业务需要消耗的PRB数量。
本实施例中,通过获取终端的预置MCS,其中,预置MCS是终端在参考误块率下可获取的MCS,即在普通移动终端的误块率下可获取的MCS,并根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与预置MCS对应的MCS,将其作为目标MCS,即获取切片终端的误块率下可获取的MCS,然后根据获取到的目标MCS与预获取的网络切片业务所需的传输块大小,能够确定终端接入网络切片业务需要消耗的PRB数量,即可以得到终端级的PRB资源估算结果,满足了ToB切片业务的实际需求。由于传统的通过网规仿真的方式得到某个栅格的MCS时,需要对发射端到接收端的每个环节上都进行准确的评估,才能保证最终预测结果的准确度,涉及到的环节包括:站点工程参数、电子地图、传播模型,以及基于大规模天线(Massive MIMO)业务信道赋形的精准建模,前提条件过多,而本申请实施例只依据预置MCS与预设的不同误块率下的MCS映射关系,来获取切片终端的MCS,无需仿真计算,因此,本申请依赖的前提条件大幅减少,评估因素的随机性降低,极大提高了资源估算的准确性。
下面对本实施例的确定网络切片可用资源的方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本实施例的确定网络切片可用资源的方法应用于ToB网络切片业务中,根据ToB行业中应用的业务模型(业务带宽和可靠性)、典型的***参数配置(载波带宽、双工制式、帧结构等)、终端所处的无线环境ToC网络的网管、 以及测量报告(Measurement Report,MR)的MCS统计数据,可以得到ToB网络切片业务中终端的可获得MCS,然后结合3GPP协议标准中对于传输块大小(Transport Block Size,TBS)的计算原则,即可进行单业务或者多业务综合的PRB资源估算。
在步骤201中,服务器获取现网ToC的栅格的预置MCS,也就是终端的MCS,其中,预置MCS为终端在参考误块率(Block Error Rate,BLER)下可获取的MCS。其中,预置MCS可以从终端的MR中获取。
在具体计算机实现中,以MCS索引值唯一表征该MCS。
可以理解的是,不同的网络终端对业务可靠性的要求不同,其中,可靠性与误块率的关系为:误块率=1-可靠性,如表1所示:
表1
可靠性 误块率
90% 10%
99.9% 0.1%
99.999% 0.001%
而在不同的误块率下,终端可获取的MCS不同,其中,ToC网络中终端对业务可靠性的要求为90%,即MCS索引值为在参考误块率等于10%下终端可获取的MCS。
在该实施例的方法执行时,预置MCS的索引值可以人工输入或者通过大数据自动获得,若为人工输入,则需要在交互界面输入该MCS索引值,若为大数据自动获得,则可以获得现网中的每一个终端的MCS索引值。
在步骤202中,ToB网络中的不同网络切片业务的可靠性要求不同,在终端接入网络切片业务后,为了便于说明,下面将接入网络切片业务的终端称作“切片终端”,由于不同切片终端的误块率不相同,则需要根据预设的切片终端在不同误块率下的MCS映射关系,获取切片终端在目标误块率下与MCS索引值对应的目标MCS。
其中,参考误块率为普通消费者移动终端的误块率,例如,参考误块率为10%;目标误块率为切片终端的误块率,即终端接入网络切片业务后的误块率,目标误块率可以为0.1%,0.001%。
在一个例子中,MCS映射关系包括:多个参考MCS、备选误块率下每个参考MCS对应的MCS,其中,不同误块率下相对应的各MCS所对应的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)相匹配。其中,多个参考MCS,即参考MCS索引值,指参考误块率下的多个MCS;在参考误块率下,不同SINR所对应的MCS值不同。
其中,不同误块率包括参考误块率和备选误块率,在一个例子中,参考误块率可以是10%,备选误块率可以是0.1%,0.001%。
在一个例子中,MCS映射关系可以通过以下方式得到:
具体地,首先可以基于链路仿真的方式得到参考MCS,SINR,BLER的仿真结果,然后根据在参考误块率下,不同的备选误块率和参考MCS的对应关 系,以及不同MCS值与SINR的对应关系来建立MCS映射关系表,MCS映射关系可以如表2所示,表中的BLER=10%为参考误块率,BLER=0.1%和BLER=0.001%为备选误块率。
表2
Figure PCTCN2022126008-appb-000001
具体实现中,在上述建立MCS映射关系时,可以先获取参考误块率下,参考MCS索引值对应的SINR,然后在备选误块率下各MCS索引值所对应的各SINR中查找与参考MCS索引值相匹配的SINR,并将该SINR对应的MCS索引值作为与该参考MCS索引值对应的该备选误块率下的MCS索引值,即可得到MCS映射关系。
例如,在参考误块率BLER=10%时,参考MCS=10对应的SINR≥0.89,当备选误块率BLER=0.1%,根据表2可知,SINR=0.89dB介于参考MCS=7和参考MCS=8之间,满足参考MCS=7,但不满足参考MCS=8,则在BLER=0.1%时,终端可获取的目标MCS=7;同理,当备选误块率BLER=0.001%时,根据表2可知,SINR=0.89dB介于参考MCS=4和参考MCS5=之间,满足参考MCS=4,但是不满足参考MCS=5,则在BLER=0.001%时,终端可获取的目标MCS=4。
需要说明的是,上述建立MCS映射关系的方式只是为了便于理解进行的举例说明,具体步骤可不唯一。
在建立好MCS映射关系之后,可以基于表2得到的MCS映射关系,形成BLER=10%的MCS至BLER=0.1%和BLER=0.001%的映射关系表,如表3所示:
表3
Figure PCTCN2022126008-appb-000002
Figure PCTCN2022126008-appb-000003
具体实现中,根据表3中的不同误块率下,参考MCS与目标MCS之间的映射关系,即可得到切片终端在目标误块率下与参考MCS对应的目标MCS。即将现网ToC中终端的基于90%可靠性的MCS索引值映射至基于99.9%、99.999%的高可靠性的目标MCS。
在步骤203中,若终端为普通移动终端,则获取的终端的预置MCS的数量至少为两个,获取的目标MCS与预置MCS的数量相同且一一对应。若终端为固定终端,例如台式电脑,则获取的终端的预置MCS为一个。其中,对于每个目标MCS,都需要根据目标MCS和传输块大小,确定终端基于目标MCS接入网络切片业务需要消耗的PRB数量。
在一个例子中,根据传输块大小(Transport Block Size,TBS)和目标MCS的关系,通过3GPP协议38.214,5.1.3Modulation order,target code rate,redundancy version and transport block size determination(PSDCH)、6.1.4Modulation order,redundancy version and transport block size determination(PUSCH)章节中给定的原则进行计算,可以得到终端基于目标MCS接入网络切片业务需要消耗的PRB数量。
具体实现中,在根据目标MCS和预获取的网络切片业务所需的传输块大小TBS,确定终端接入网络切片业务需要消耗的PRB数量之前,还需根据网络切片业务的业务模型,计算网络切片业务所需的传输块大小。
其中,TBS可以根据下面的公式计算得到:
Figure PCTCN2022126008-appb-000004
其中,业务带宽可以通过下面的公式计算得到:
Figure PCTCN2022126008-appb-000005
其中,业务带宽的单位为bps;
子载波间隔为30k时,调度周期=0.5*10 -3s,子载波间隔为15k时,调度周期=1*10 -3s;
若采用频分双工(Frequency Division Duplexing,FDD)方式,上下行的符号比例均取100%,若采用时分双工(Time Division Duplexing,TDD)方式,上下行的符号比例由帧结构决定,典型的2.5ms单周期、2.5ms双周期、5ms单周期的上下行符号比例如表4所示:
表4
周期 上行符号比例 下行符号比例
2.5ms单周期 20.0% 74.3%
2.5ms双周期 30.0% 64.3%
5ms单周期 20.0% 74.3%
在另一个实施例中,在根据目标MCS和预获取的网络切片业务所需的传输块大小,确定终端接入网络切片业务需要消耗的PRB数量之后,还会根据终端接入网络切片业务需要消耗的PRB数量和小区为网络切片业务分配的PRB数量,计算小区支持接入网络切片业务的终端总数量,本实施例的具体实现流程图如图3所示,具体包括:
步骤301,获取终端的预置MCS;其中,预置MCS是指终端在参考误块率下可获取的MCS。
步骤302,根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与预置MCS对应的MCS,作为目标MCS。
步骤303,根据目标MCS和预获取的网络切片业务所需的传输块大小,确定终端接入网络切片业务需要消耗的PRB数量。
其中,步骤301至步骤303与步骤201至步骤203大致相同,此处不再赘述。
步骤304,根据终端接入网络切片业务需要消耗的PRB数量和小区为网络切片业务分配的PRB数量,计算小区支持接入网络切片业务的终端总数量。
在步骤304中,首先根据终端在参考误块率下可获得的各MCS占比,确定终端可获得的各目标MCS占比,并根据终端基于各目标MCS接入网络切片业务需要消耗的PRB数量和各目标MCS占比,可以计算出终端接入网络切片业务平均需要消耗的PRB数量,最后根据平均消耗的PRB数量和小区为网络切片业务分配的PRB数量,即可计算得到小区支持接入网络切片业务的终端总数量。
在一个例子中,可以根据预设的参考MCS与MCS占比的映射关系,将各目标MCS分别对应的各参考MCS所对应的MCS占比,作为各目标MCS占比,其中,参考MCS是指参考误块率下的MCS。
具体地,MCS映射关系、参考MCS与MCS占比的映射关系集成在同一张映射关系表中,如表5所示:
表5
Figure PCTCN2022126008-appb-000006
Figure PCTCN2022126008-appb-000007
根据表5中终端在参考误块率下可获得的各MCS占比,即可映射得到终端基于不同误块率的可获得的各目标MCS占比。
其中,在根据终端在参考误块率下可获得的各MCS占比,确定终端可获得的各目标MCS占比之前,终端可以预先获取在参考误块率下可获得的各MCS占比,具体为:根据终端的测量报告获取终端在参考误块率下可获得的各MCS占比,或者,通过终端的网管获取终端在参考误块率下可获得的各MCS占比。例如,根据网管或MR,得到ToC网络中BLER=10%时每个小区的终端可获得MCS占比。例如,MCS 0的占比为Y 0%,MCS 1的占比为Y 1%;结合表3,则可映射得到切片终端基于不同目标BLER的可获得MCS占比。
在一个例子中,可以根据终端基于各目标MCS接入网络切片业务需要消耗的PRB数量和各目标MCS占比,采用下面的公式计算终端接入网络切片业务平均需要消耗的PRB数量:
Figure PCTCN2022126008-appb-000008
其中,Z为终端接入网络切片业务平均需要消耗的PRB数量,k为目标MCS,X i%为目标MCS接入网络切片业务需要消耗的PRB数量,Y i%为MCS占比。
根据上述计算得到的平均消耗的PRB数量和小区为网络切片业务分配的PRB数量,采用下面的公式计算出小区支持接入网络切片业务的终端总数:
Figure PCTCN2022126008-appb-000009
其中,W为小区支持接入网络切片业务的终端总数,V为小区为网络切片业务分配的PRB数量,Z为终端接入网络切片业务平均需要消耗的PRB数量。
在本实施例中,在步骤201中的终端为普通移动终端,即获取的终端的预置MCS的数量至少为两个,获取的目标MCS与预置MCS的数量相同且一一对应。
下面以该普通移动终端业务为电网差动保护业务为网络切片业务为例,对该电网差动保护业务的PRB资源进行估算。
需要说明的是,下面的实施方式只是为了便于理解进行的举例说明,其中普通移动终端可不唯一。
假设该电网差动保护业务的网络参数如表6所示:
表6
Figure PCTCN2022126008-appb-000010
确定该电网差动保护业务的可用资源的具体实现流程如下:
首先,获取ToC终端的多个预置MCS,然后根据ToC终端的多个预置MCS获取电网差动保护业务的多个目标MCS,如表7所示:
表7
Figure PCTCN2022126008-appb-000011
在获取电网差动保护业务的多个目标MCS之后,根据预获取的TBS和各目标MCS,计算该业务需要消耗的PRB数量。
具体地,根据表6可以计算得到预获取的TBS:
Figure PCTCN2022126008-appb-000012
在一个例子中,按照3GPP协议38.214,6.1.4Modulation order,redundancy version and transport block size determination(PUSCH)章节中给定的原则得到上行TBS、MCS、PRB的关系表,如表8所示,为了便于理解,表8为部分上行TBS、MCS、PRB的关系:
表8
Figure PCTCN2022126008-appb-000013
Figure PCTCN2022126008-appb-000014
根据TBS、MCS、PRB的关系表,即表8,查找不同MCS条件下对应的PRB数量,如表9所示:
表9
Figure PCTCN2022126008-appb-000015
根据该终端业务,即电网差动保护业务可获得的MCS占比,计算平均单业务消耗的PRB数量:
Figure PCTCN2022126008-appb-000016
根据平均单业务消耗的PRB数量和小区为该终端业务分配的PRB数量,计算小区支持接入该终端业务的终端总数量。
具体地,根据现网的基础配置:总载波带宽为100M,273个PRB,即上行PRB最大分配比例为80%,则小区为该终端业务分配的PRB数量为 273*80%=218.4,小区支持接入该终端业务的终端总数量为218.4/36=6。
因此,小区支持接入该终端业务的终端总数量为6个。
在另一个实施例中,若在步骤301中获取的终端的预置MCS只有一个,即终端的位置是固定的,例如,台式电脑,监控摄像头,则在步骤304中计算的终端数量是指在该固定位置所的地理区域内,支持的允许同一时间接入该网络切片业务的终端数量。本实施例的具体实现流程如图4所示,包括:
步骤401,获取终端的预置MCS;其中,预置MCS是指终端在参考误块率下可获取的MCS。
步骤402,根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与预置MCS对应的MCS,作为目标MCS。
步骤403,根据目标MCS和预获取的网络切片业务所需的传输块大小,确定终端接入网络切片业务需要消耗的PRB数量。
其中,步骤401至步骤403与步骤301至步骤303大致相同,此处不再赘述。
步骤404,根据终端接入网络切片业务需要消耗的PRB数量和终端所在区域内被分配的PRB数量,计算该终端所在区域内允许同一时间接入该网络切片业务的终端数量。
为了便于理解,以该固定终端为某1080p视频监控应用为例,对其单摄像头的PRB资源进行估算。
需要说明的是,下面的实施方式只是为了便于理解进行的举例说明,其中固定终端可不唯一。
假设该单摄像头的网络参数如表10所示:
表10
Figure PCTCN2022126008-appb-000017
确定该1080p视频监控应用的可用资源的具体流程如下:
首先,获取该终端的预置MCS,然后根据预置MCS,确定终端的目标 MCS。
由于该终端,即单摄像头业务基于90%可靠性、10%BLER时预置MCS=25;根据表3,当该终端接入网络切片业务时,可以映射得到该切片终端基于99.9%可靠性、0.1%BLER时,目标MCS=21。
在获取目标MCS后,根据预获取的TBS和目标MCS,计算该切片终端需要消耗的PRB数量。
具体地,根据表10可以计算得到预获取的TBS:
Figure PCTCN2022126008-appb-000018
在一个例子中,按照3GPP协议TS 38.214,6.1.4Modulation order,redundancy version and transport block size determination章节中给定的原则得到上行TBS、MCS、PRB的关系表,如表11所示,为了便于理解,表11为部分上行TBS、MCS、PRB的关系:
表11
Figure PCTCN2022126008-appb-000019
根据表11可知,目标MCS=21时,若TBS=13108bit,则PRB=8,即该切片终端需要消耗的PRB数量为8。
最终,根据终端接入网络切片业务需要消耗的PRB数量和终端所在区域内被分配的PRB数量,计算该终端所在区域内允许同一时间接入该网络切片业务的终端数量。
根据现网的基础配置:总载波带宽为100M,273个PRB,即上行PRB最大分配比例为80%,则该终端所在区域内被分配的PRB数量为273*80%=218.4, 则计算该终端所在区域内允许同一时间接入该网络切片业务的终端数量为218.4/8=27。
因此,该终端所在区域内允许同一时间接入该网络切片业务的终端数量为27个。
本实施例与第二实施例的实现流程大致相同,区别之处在于获取的预置MCS只有一个,因此,最终确定的接入网络片业务的终端数量为该终端所在区域内允许同一时间接入该网络切片业务的终端数量。
需要说明的是,本实施方式中的上述各示例均为方便理解进行的举例说明,并不对本申请的技术方案构成限定。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请另一个实施例涉及一种电子设备,如图5所示,包括:至少一个处理器501;以及,与所述至少一个处理器501通信连接的存储器502;其中,所述存储器502存储有可被所述至少一个处理器501执行的指令,所述指令被所述至少一个处理器501执行,以使所述至少一个处理器501能够执行上述各实施例中的确定网络切片可用资源的方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请另一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实 施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种确定网络切片可用资源的方法,包括:
    获取终端的预置调制与编码策略MCS(201);其中,预置MCS是指所述终端在参考误块率下可获取的MCS;
    根据预设的不同误块率下的MCS映射关系,获取网络切片业务的目标误块率下与所述预置MCS对应的MCS,作为目标MCS(202);以及
    根据所述目标MCS和预获取的所述网络切片业务所需的传输块大小,确定所述终端接入所述网络切片业务需要消耗的物理资源块PRB数量(203)。
  2. 根据权利要求1所述的方法,其中,所述MCS映射关系中包括:多个参考MCS、备选误块率下与每个参考MCS对应的MCS;所述映射关系中,所述不同误块率下相对应的各MCS所对应的信号与干扰加噪声比相匹配;
    其中,所述多个参考MCS是指所述参考误块率下的多个MCS,所述不同误块率包括所述参考误块率和所述备选误块率。
  3. 根据权利要求1所述的方法,其中,所述预置MCS的数量为至少两个;获取的所述目标MCS与所述预置MCS的数量相同且一一对应;
    所述根据所述目标MCS和预获取的所述网络切片业务所需的传输块大小,确定所述终端接入所述网络切片业务需要消耗的物理资源块PRB数量(203),具体为:
    对于每个所述目标MCS,根据所述目标MCS和所述传输块大小,确定所述终端基于所述目标MCS接入所述网络切片业务需要消耗的PRB数量。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述根据所述目标MCS和预获取的所述网络切片业务所需的传输块大小,确定所述终端接入所述网络切片业务需要消耗的物理资源块PRB数量(203)之后,还包括:
    根据所述终端接入所述网络切片业务需要消耗的PRB数量和小区为所述网络切片业务分配的PRB数量,计算所述小区支持接入所述网络切片业务的终端总数量(304)。
  5. 根据权利要求4所述的方法,其中,所述根据所述终端接入所述网络切片业务需要消耗的PRB数量和小区为所述网络切片业务分配的PRB数量,计算所述小区支持接入所述网络切片业务的终端总数量(304),包括:
    根据所述终端在所述参考误块率下可获得的各MCS占比,确定所述终端可获得的各所述目标MCS占比;
    根据所述终端基于各所述目标MCS接入所述网络切片业务需要消耗的PRB数量和各所述目标MCS占比,计算所述终端接入所述网络切片业务平均需要消耗的PRB数量;
    根据所述平均需要消耗的PRB数量和所述小区为所述网络切片业务分配的PRB数量,计算所述小区支持接入所述网络切片业务的终端总数量。
  6. 根据权利要求5所述的方法,其中,所述根据所述终端在所述参考误块率下可获得的各MCS占比,确定所述终端可获得的各所述目标MCS占比,包括:
    根据预设的参考MCS与MCS占比的映射关系,将与各所述目标MCS分别对应的各参考MCS所对应的MCS占比,作为各所述目标MCS占比;
    其中,所述参考MCS是指所述参考误块率下的MCS。
  7. 根据权利要求6所述的方法,其中,所述MCS映射关系、所述参考MCS与MCS占比的映射关系集成在同一张映射关系表中。
  8. 根据权利要求5所述的方法,其中,所述根据所述终端在所述参考误块率下可获得的各MCS占比,确定所述终端可获得的各所述目标MCS占比之前,还包括:
    根据所述终端的测量报告获取所述终端在所述参考误块率下可获得的各MCS占比,或者,通过所述终端的网管获取所述终端在所述参考误块率下可获得的各MCS占比。
  9. 根据权利要求1所述的方法,其中,所述根据所述目标MCS和预获取的所述网络切片业务所需的传输块大小,确定所述终端接入所述网络切片业务需要消耗的物理资源块PRB数量(203)之前,还包括:
    根据所述网络切片业务的业务模型,计算所述网络切片业务所需的传输块大小。
  10. 根据权利要求1所述的方法,其中,所述获取终端的预置调制与编码策略MCS,包括:
    根据所述终端的测量报告获取所述终端的预置MCS。
  11. 一种电子设备,包括:
    至少一处理器(501);以及
    与所述至少一处理器(501)通信连接的存储器(502);其中,
    所述存储器(502)存储有可被所述至少一处理器(501)执行的指令,所述指令被所述至少一处理器(501)执行,以使所述至少一处理器(501)能够执行如权利要求1至10中任一项所述的方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器(501)执行时实现如权利要求1至10中任一项所述的方法。
PCT/CN2022/126008 2021-11-17 2022-10-18 确定网络切片可用资源的方法、电子设备和存储介质 WO2023088017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111361540.9A CN116155442A (zh) 2021-11-17 2021-11-17 确定网络切片可用资源的方法、电子设备和存储介质
CN202111361540.9 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023088017A1 true WO2023088017A1 (zh) 2023-05-25

Family

ID=86352940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126008 WO2023088017A1 (zh) 2021-11-17 2022-10-18 确定网络切片可用资源的方法、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN116155442A (zh)
WO (1) WO2023088017A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193335A1 (zh) * 2016-05-12 2017-11-16 华为技术有限公司 数据传输方法、设备及***
CN112119601A (zh) * 2018-05-11 2020-12-22 三星电子株式会社 用于在无线蜂窝通信***中发送和接收控制信息的方法和设备
US20210352630A1 (en) * 2020-05-11 2021-11-11 Kabushiki Kaisha Toshiba Base station, system, and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193335A1 (zh) * 2016-05-12 2017-11-16 华为技术有限公司 数据传输方法、设备及***
CN112119601A (zh) * 2018-05-11 2020-12-22 三星电子株式会社 用于在无线蜂窝通信***中发送和接收控制信息的方法和设备
US20210352630A1 (en) * 2020-05-11 2021-11-11 Kabushiki Kaisha Toshiba Base station, system, and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "CQI/MCS Design for NR", 3GPP TSG RAN WG1 MEETING #90, R1-1712553, 20 August 2017 (2017-08-20), XP051315369 *

Also Published As

Publication number Publication date
CN116155442A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN102282896B (zh) 用于调度多个载波上的数据传输的方法和装置
US10652880B2 (en) Facilitating physical downlink shared channel resource element mapping indicator
IL269497B2 (en) Data transmission method, terminal device and network device
CN105142227B (zh) 一种mcs等级的确定方法和设备
US11277786B2 (en) Facilitating compact signaling design for reserved resource configuration in wireless communication systems
TWI735920B (zh) 資訊傳輸方法、終端、基地台及電腦可讀存儲介質
CN113115370B (zh) 资源块的配置方法、装置及存储介质
CN113452478B (zh) 帧结构确定方法及装置
CN106714223B (zh) 一种基站能耗模型的建立方法及装置
US10063340B2 (en) Dynamic resource adaptation
WO2018137188A1 (zh) 一种用于覆盖增强的资源配置方法及装置
US20180324845A1 (en) Facilitating incremental downlink control information design to support downlink control information scheduling
CN108777857B (zh) 一种URLLC和mMTC共存场景下的接入控制方法及***
WO2022116014A1 (zh) 一种tbs确定方法
CN117201369A (zh) 网络速率确定方法、装置、电子设备及存储介质
WO2023088017A1 (zh) 确定网络切片可用资源的方法、电子设备和存储介质
CN114745792B (zh) 资源调度方法及装置、设备、计算机可读存储介质
WO2023029757A1 (zh) 一种资源预估方法和相关设备
Tan et al. A novel approach for bandwidth allocation among soft QoS traffic in wireless networks
CN114745079A (zh) 一种自适应调制编码方法、接入网设备及存储介质
CN110461048A (zh) 一种调整通信处理能力的方法及用户设备
CN110167182A (zh) 一种上行码率的确定方法及基站
CN110519664B (zh) 软件定义光网络中收发机的配置方法及装置
CN110475341A (zh) 一种进行资源分配的方法和装置
CN105992355B (zh) 一种资源分配方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894554

Country of ref document: EP

Kind code of ref document: A1