WO2023087985A1 - 一种无刷直流电机相位延迟的补偿电路及控制方法 - Google Patents

一种无刷直流电机相位延迟的补偿电路及控制方法 Download PDF

Info

Publication number
WO2023087985A1
WO2023087985A1 PCT/CN2022/124998 CN2022124998W WO2023087985A1 WO 2023087985 A1 WO2023087985 A1 WO 2023087985A1 CN 2022124998 W CN2022124998 W CN 2022124998W WO 2023087985 A1 WO2023087985 A1 WO 2023087985A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
module
brushless
motor
phase delay
Prior art date
Application number
PCT/CN2022/124998
Other languages
English (en)
French (fr)
Inventor
李可礼
魏海峰
***
张懿
李垣江
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2023087985A1 publication Critical patent/WO2023087985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation

Definitions

  • the invention relates to the technical field of brushless direct current motors, in particular to a compensation circuit and control method for phase delay of brushless direct current motors.
  • the brushless DC motor is a new type of motor that no longer uses mechanical structure commutation brushes but uses electronic commutators.
  • the brushless DC motor is based on Faraday's law of electromagnetic induction. It has the characteristics of high-speed dynamic response, high efficiency, long life, low noise, high speed, no commutation spark, reliable operation and easy maintenance.
  • the zero-crossing point of the back EMF of the brushless DC motor winding reflects the position of the rotor pole. Therefore, as long as the zero-crossing signal of the back electromotive force of the winding can be accurately detected, the key position of the rotor can be judged. After 30° electrical angle delay processing, it can be used as the commutation point of the winding, and then according to the conduction sequence of the 6 power tubes, the commutation operation of the brushless DC motor is realized.
  • the invention provides a compensation circuit and a control method for phase delay of a brushless DC motor to solve the problem in the prior art that the frequency of the three-phase terminal voltage has a relatively large fluctuation range under different operating states such as motor startup and low, medium and high speed. , leading to the problem that the running state of the motor will become extremely unstable at different speeds.
  • the invention provides a compensation circuit for phase delay of a brushless DC motor, comprising: a voltage dividing module, an RC filter module and an adjustment module; the voltage dividing module is connected to the RC filtering module, and the voltage dividing module collects After the motor terminal voltage is divided, it is converted into a voltage that can be detected by the single-chip microcomputer; the RC filter module is used to filter out high-frequency interference signals in the terminal voltage signal and delay 30° electrical angle; the RC filter module and the The adjustment module is connected, and the adjustment module is used to adjust the phase delay in the RC filter module.
  • the voltage dividing module includes: a first resistor and a second resistor;
  • the RC filter module includes: a third resistor and a first capacitor;
  • One end of the first resistor is connected to one phase of the brushless DC motor, and the other end is respectively connected to one end of the second resistor and one end of the third resistor; the other end of the second resistor is respectively connected to the first One end of the capacitor is connected to the analog ground; the other end of the third resistor is respectively connected to the other end of the first capacitor and the input end of the MUC; the adjustment module is connected to both ends of the third resistor in parallel.
  • the adjustment module includes: a fourth resistor and a first triode; one end of the fourth resistor is respectively connected to one end of the first resistor, one end of the second resistor, and one end of the third resistor, and the first The other end of the four resistors is connected to the collector of the first triode; the base of the first triode is connected to the PWM signal terminal, and the emitter of the first triode is connected to the other end of the third resistor. Connected at one end.
  • the adjustment module includes: a fifth resistor and a first optocoupler; one end of the fifth resistor is respectively connected to one end of the first resistor, one end of the second resistor, and one end of the third resistor, and the fourth The other end of the resistor is connected to the collector of the triode in the first optocoupler; the emitter of the triode in the first optocoupler is connected to the other end of the third resistor, and the light emitting diode in the first optocoupler The cathode is grounded, and the anode of the light-emitting diode in the first optocoupler is connected to the PWM signal terminal.
  • the present invention also provides a method for controlling the phase delay of the brushless DC motor, comprising the following steps:
  • Step 1 Obtain the number of pole pairs of the brushless DC motor and the current speed of the brushless DC motor;
  • Step 2 Obtain the number of pole pairs and rotational speed of the brushless DC motor through step 1, and calculate the commutation frequency;
  • Step 3 Judging whether the commutation frequency is greater than the second preset value, if it is greater than the second preset value, perform step 6; when it is less than the second preset value, then perform step 4;
  • Step 4 Determine whether the commutation frequency is greater than the first preset value, and if it is greater than the first preset value, perform step 5; when it is less than the first preset value, perform step 2;
  • Step 5 The adjustment module enters the semi-working state, calculates the PWM duty cycle required in the adjustment module, and compensates the phase delay angle by adjusting the PWM duty cycle in real time;
  • Step 6 The adjustment module enters the full working state, calculates the PWM duty cycle required in the adjustment module, and compensates the phase delay angle by adjusting the PWM duty cycle in real time.
  • the specific calculation method of the commutation frequency in the step 2 is to calculate based on the number of pole pairs and the rotating speed of the brushless DC motor, and the specific formula is as follows:
  • f is the commutation frequency
  • n is the current speed of the motor
  • p is the number of pole pairs.
  • step 3 the specific calculation method of the second preset value in step 3 is:
  • C 0 is the capacity value of the first capacitor C1 in the RC filter module
  • f 2 is the second preset value of the commutation frequency
  • R 0 is the third resistor R3 in the RC filter module .
  • the specific calculation method of the first preset value in the step 4 is:
  • C 0 is the capacitance of the first capacitor C1 in the RC filter module
  • f 1 is the first preset value of the commutation frequency
  • C 0 is the capacity value of the first capacitor C1 in the RC filter module
  • f is the commutation frequency
  • R 0 is the third resistor R3 in the RC filter module
  • the third resistor R3 in the adjustment module. Resistance values of the fourth resistor R4 and the fifth resistor R5.
  • the PWM duty ratio required in the regulation module in step 6 is as follows:
  • the effect of the filter circuit can be well improved, and the problem that the frequency of the three-phase terminal voltage has a relatively large fluctuation range under different operating states such as motor startup and low, medium, and high speeds is solved.
  • the compensation circuit and control method of the present invention make the motor speed change process more efficient Smooth and real-time and adaptive.
  • Fig. 1 is the circuit diagram of concrete implementation of the present invention
  • Fig. 2 is another circuit diagram of the embodiment of the present invention.
  • Fig. 3 is a flow chart of the specific implementation control method of the present invention.
  • An embodiment of the present invention provides an excitation control device for a synchronous motor.
  • the voltage divider module is connected to the RC filter module, and the voltage divider module divides the collected motor terminal voltage and converts it into a voltage that can be detected by the single-chip microcomputer;
  • the RC filter module is used to filter out high-frequency interference in the terminal voltage signal Signal and delay 30° electrical angle to ensure that the motor commutation is triggered with a 30° delay after the back EMF zero crossing.
  • the single-chip microcomputer collects the filtered electrical signal; RC filter module It is connected with the adjustment module, and the adjustment module is used to adjust the phase delay problem in the RC filter module.
  • the voltage dividing module includes a first resistor R1 and a second resistor R2, one end of the first resistor R1 is connected to one phase of the brushless DC motor, the other end of the first resistor R1 is connected to one end of the second resistor R2, and the first resistor The other end of R1 is used as the output end of the voltage divider module, and the other end of the second resistor R2 is connected to the ground;
  • the filter module includes a third resistor R3 and a first capacitor C1, and one end of the third resistor R3 is connected to the other end of the first resistor R1 Connected, the other end of the third resistor R3 is connected to one end of the first capacitor C1, and the other end of the third resistor R3 is used as the input end of the single chip microcomputer signal, and the other end of the first capacitor C1 is connected to the ground;
  • the adjustment module includes a fourth resistor R4 and the first transistor M1, one end of the fourth resistor R4 is connected to the other end of the first resistor R
  • the adjustment module can also include a fifth resistor R5 and a first optocoupler T1, the first optocoupler T1 includes a first diode D1 and converts the optical signal emitted by the first diode D1 into an electrical signal
  • the fifth resistor R5 is connected to the other end of the first resistor R1
  • the other end of the fifth resistor R5 is connected to the collector of the second transistor M2
  • the second transistor M2 The emitter of the first diode D1 is connected to the other end of the third resistor R3, the cathode of the first diode D1 is connected to the ground, and the anode of the first diode D1 is connected to the PWM signal terminal.
  • the first resistor R1 and the second resistor R2 in the voltage dividing module adopt 100 ohms
  • the third resistor R3 in the RC filter module the fourth resistor R4 and the fifth resistor R5 in the adjustment module adopt 50 ⁇ Oh
  • the first capacitor C1 in the RC filter module is 1 microfarad.
  • the present invention also provides a control method for the phase delay of the brushless DC motor, which is characterized in that, by calculating the commutation frequency of the current brushless DC motor, it is judged whether to connect the adjustment module to realize the phase delay of the brushless DC motor by 30° Commutation, as shown in Figure 3, includes:
  • Step S1 Obtain the number of pole pairs of the brushless DC motor and the current speed of the brushless DC motor;
  • Step S2 Obtain the number of pole pairs and rotational speed of the brushless DC motor through step S1, and obtain the commutation frequency through calculation;
  • the specific calculation method of the commutation frequency in step S2 is based on the number of pole pairs and the rotational speed of the brushless DC motor, and the specific formula is as follows:
  • f is the commutation frequency
  • n is the current speed of the motor
  • p is the number of pole pairs.
  • the commutation frequency at this time is specifically:
  • Step S3 judging whether the calculated commutation frequency is greater than the second preset value, if yes, execute step S6; if not, execute step S4;
  • the second preset value of the commutation frequency in step S3 is calculated when the phase angle lags due to the strengthening of the delay effect of the RC filter module and the adjustment module is fully working.
  • the specific calculation method is:
  • C 0 is the capacity value of the first capacitor C1 in the RC filter module
  • f 2 is the second preset value of the commutation frequency
  • R 0 is the third resistor R3 in the RC filter module to adjust the first value in the module.
  • the third resistor R3 in the RC filter module the fourth resistor R4 and the fifth resistor R5 in the adjustment module use 50 ohms, and the first capacitor C1 in the RC filter module uses 1 microfarad, then the commutation at this time
  • the second preset value of the frequency is specifically:
  • Step S4 Judging whether the calculated commutation frequency is greater than the first preset value, if yes, execute step S5; if not, execute step S2;
  • the first preset value of the commutation frequency in step S4 is calculated when the phase angle lags due to the enhanced delay effect of the RC filter module and the adjustment module is not working.
  • the specific calculation method is:
  • C 0 is the capacitance of the first capacitor C1 in the RC filter module
  • f 1 is the first preset value of the commutation frequency
  • the first preset value of the commutation frequency at this time is specifically:
  • Step S5 The adjustment module starts a half-working state, calculates the required PWM duty ratio in the adjustment module, and adjusts the PWM duty ratio in real time to compensate for the phase delay angle;
  • step S5 when the regulating module starts a half-working state, the commutation frequency f is between the first preset value and the second preset value;
  • the PWM duty cycle that needs to be adjusted in step S5 is calculated when the phase angle lags due to the strengthening of the delay effect of the RC filter module.
  • the specific formula is as follows:
  • C 0 is the capacity value of the first capacitor C1 in the RC filter module
  • f is the commutation frequency
  • R 0 is the third resistor R3 in the RC filter module
  • R4 is the fourth resistor R4 in the adjustment module
  • the third resistor R3 in the RC filter module uses 50 ohms
  • the fourth resistor R4 and the fifth resistor R5 in the adjustment module use 50 ohms
  • the first capacitor C1 in the RC filter module uses 1 microfarad
  • Step S6 The adjustment module starts full working state, and the PWM duty cycle required in the adjustment module is obtained through calculation, and the phase delay angle is compensated by adjusting the PWM duty cycle in real time;
  • step S6 when the adjustment module starts to work fully, the commutation frequency f is greater than the second preset value
  • the PWM duty cycle that needs to be adjusted in step S6 is calculated when the phase angle lags due to the strengthening of the delay effect of the RC filter module.
  • the specific formula is as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明公开了一种无刷直流电机相位延迟的补偿电路,包括:分压模块、RC滤波模块和调节模块;所述分压模块和所述RC滤波模块相连,所述分压模块将采集到的电机端电压进行分压后,转换成单片机可以检测到的电压;所述RC滤波模块用于滤除端电压信号中的高频干扰信号和延迟30°电角度;所述RC滤波模块和所述调节模块相连,所述调节模块用来对所述RC滤波模块中的相位延迟进行调节。本发明可以很好的改善滤波电路的效果,解决了由于三相端电压的频率在电机启动以及低、中、高速等不同运行状态下波动范围比较大的问题。

Description

一种无刷直流电机相位延迟的补偿电路及控制方法 技术领域
本发明涉及无刷直流电机技术领域,具体涉及一种无刷直流电机相位延迟的补偿电路及控制方法。
背景技术
无刷直流电机是一种不再使用机械结构换向刷而改用电子换向器的新型电机。无刷直流电机以法拉第的电磁感应定律为基础,它具有高速动态响应、高效率、长寿命、低噪声、高转速、无换向火花、运行可靠和易于维护等特点。
无刷直流电机绕组反电动势的过零点反映了转子磁极的位置。因此,只要能准确的检测到绕组反电动势的过零点信号,就可以判断出转子的关键位置。经过30°电角度延时处理后,就可以作为绕组的换向点,再根据6根功率管的导通顺序,从而实现无刷直流电机的换向操作。目前,在实际应用中,由于三相端电压的频率在电机启动以及低、中、高速等不同运行状态下波动范围比较大,原因是原本的滤波电路无法做到30°的精确延迟,所以,这样会导致电机在不同转速下运行状态会变得极不平稳。
发明内容
本发明提供了一种无刷直流电机相位延迟的补偿电路及控制方法,以解决现有技术中由于三相端电压的频率在电机启动以及低、中、高速等不同运行状态下波动范围比较大,导致电机在不同转速下运行状态会变得极不平稳的问题。
本发明提供了一种无刷直流电机相位延迟的补偿电路,包括:分压模块、RC滤波模块和调节模块;所述分压模块和所述RC滤波模块相连,所述分压模块将采集到的电机端电压进行分压后,转换成单片机可以检测到的电压;所述RC滤波模块用于滤除端电压信号中的高频干扰信号和延迟30°电角度;所述RC滤波模块和所述调节模块相连,所述调节模块用来对所述RC滤波模块中的 相位延迟进行调节。
进一步地,所述分压模块包括:第一电阻、第二电阻;所述RC滤波模块包括:第三电阻、第一电容;
所述第一电阻的一端与无刷直流电机的一相连接,另一端分别与所述第二电阻的一端、第三电阻的一端连接;所述第二电阻的另一端分别与所述第一电容的一端、模拟地连接;所述第三电阻的另一端分别与所述第一电容的另一端、MUC的输入端连接;所述调节模块并接在所述第三电阻两端。
进一步地,所述调节模块包括:第四电阻、第一三极管;所述第四电阻的一端分别与所述第一电阻的一端、第二电阻的一端、第三电阻的一端连接,第四电阻的另一端与第一三极管的集电极连接;所述第一三极管的基极与PWM信号端连接,所述第一三极管的发射极与所述第三电阻的另一端连接。
进一步地,所述调节模块包括:第五电阻、第一光耦;所述第五电阻的一端分别与所述第一电阻的一端、第二电阻的一端、第三电阻的一端连接,第四电阻的另一端与所述第一光耦中三极管的集电极连接;所述第一光耦中三极管的发射极与所述第三电阻的另一端连接,所述第一光耦中发光二极管的负极接地,所述第一光耦中发光二极管的正极与PWM信号端连接。
本发明还提供了一种无刷直流电机相位延迟的控制方法,包括如下步骤:
步骤1:获取无刷直流电机的极对数和当前无刷直流电机的转速;
步骤2:通过步骤1得出无刷直流电机的极对数和转速,计算换相频率;
步骤3:判断换相频率是否大于第二预设值,当大于第二预设值时,执行步骤6;当小于第二预设值时,则执行步骤4;
步骤4:判断换相频率是否大于第一预设值,当大于第一预设值时,执行步骤5;当小于第一预设值时,则执行步骤2;
步骤5:调节模块进入半工作状态,计算得出调节模块中需要的PWM占空比,通过实时调节PWM的占空比来进行相位延迟角度的补偿;
步骤6:调节模块进入全工作状态,计算得出调节模块中需要的PWM占空比,通过实时调节PWM的占空比来进行相位延迟角度的补偿。
进一步地,所述步骤2中换相频率的具体计算方法为基于无刷直流电机的 极对数以及转速进行计算,具体公式如下:
Figure PCTCN2022124998-appb-000001
其中,“f”为换相频率,“n”为电机当前转速,“p”为极对数。
进一步地,所述步骤3中第二预设值具体计算方法为:
Figure PCTCN2022124998-appb-000002
其中,“C 0”为所述RC滤波模块中第一电容C1的容值,“f 2”为换相频率第二预设值,“R 0”为所述RC滤波模块中第三电阻R3、所述调节模块中第四电阻R4以及第五电阻R5的阻值。
进一步地,所述步骤4中第一预设值具体计算方法为:
Figure PCTCN2022124998-appb-000003
其中,“C 0”为所述RC滤波模块中第一电容C1的容值,“f 1”为换相频率第一预设值。
进一步地,所述步骤5中调节模块中需要的PWM占空比,具体公式如下:
Figure PCTCN2022124998-appb-000004
其中,“C 0”为所述RC滤波模块中第一电容C1的容值,“f”为换相频率,“R 0”为所述RC滤波模块中第三电阻R3、所述调节模块中第四电阻R4以及第五电阻R5的阻值。
进一步地,所述步骤6中调节模块中需要的PWM占空比如下:
PWM=1
本发明的有益效果:
1、通过本发明的调节,可以很好的改善滤波电路的效果,解决了由于三相端电压的频率在电机启动以及低、中、高速等不同运行状态下波动范围比较大的问题。
2、通过接入调节模块,控制PWM的占空比进行输出来补偿相位延迟角度,以达到RC滤波模块中电机相位延迟30°的电角度,本发明的补偿电路和控制 方法使得电机变速过程更加平稳并且具有实时性和自适应性。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1为本发明具体实施的电路图;
图2为本发明具体实施的另一电路图;
图3为本发明具体实施控制方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种同步电机的励磁控制装置,如图1所示,本发明提供了一种无刷直流电机相位延迟的补偿电路,其特征在于,包括分压模块、RC滤波模块和调节模块;分压模块和RC滤波模块相连,分压模块将采集到的电机端电压进行分压后,转换成单片机可以检测到的电压;RC滤波模块用于滤除端电压信号中的高频干扰信号和延迟30°电角度,确保反电势过零点后延时30°触发电机换相,将分压模块采集到的电信号经过滤波处理后,单片机对滤波后的电信号进行采集;RC滤波模块和调节模块相连,调节模块用来调节RC滤波模块中的相位延迟问题。
分压模块包括第一电阻R1和第二电阻R2,第一电阻R1的一端与无刷直流电机的一相相连,第一电阻R1的另一端与第二电阻R2的一端相连,且第一电阻R1的另一端作为分压模块的输出端,第二电阻R2的另一端与地相连;滤波模块包括第三电阻R3和第一电容C1,第三电阻R3的一端与第一电阻R1的另一端相连,第三电阻R3的另一端与第一电容C1的一端相连,且第三电阻R3的另一端作为单片机信号的输入端,第一电容C1的另一端与地相连;调节模块 包括第四电阻R4和第一三极管M1,第四电阻R4的一端与第一电阻R1的另一端相连,第四电阻R4的另一端与第一三极管M1的集电极相连,第一三极管M1的发射极与第三电阻R3的另一端相连,第一三极管M1的基极与PWM信号端相连。
如图2所示,调节模块还可以包括第五电阻R5和第一光耦T1,第一光耦T1包括第一二极管D1和将第一二极管D1发出的光信号转换成电信号的第二三极管M2,第五电阻R5的一端与与第一电阻R1的另一端相连,第五电阻R5的另一端与第二三极管M2的集电极相连,第二三极管M2的发射极与第三电阻R3的另一端相连,第一二极管D1的负极与地相连,第一二极管D1的正极与PWM信号端相连。
本发明实施例中,在分压模块中的第一电阻R1和第二电阻R2采用100欧,RC滤波模块中的第三电阻R3、调节模块中的第四电阻R4和第五电阻R5采用50欧,RC滤波模块中第一电容C1采用1微法。
本发明还提供了一种无刷直流电机相位延迟的控制方法,其特征在于,通过计算当前无刷直流电机的换相频率来判断是否接入调节模块来实现无刷直流电机的相位延迟30°换相,如图3所示,包括:
步骤S1:获取无刷直流电机的极对数和当前无刷直流电机的转速;
步骤S2:通过步骤S1得出无刷直流电机的极对数和转速,经过计算得出换相频率;
步骤S2中换相频率的具体计算方法为基于无刷直流电机的极对数以及转速进行计算,具体公式如下:
Figure PCTCN2022124998-appb-000005
其中,计算换相频率时,“f”为换相频率,“n”为电机当前转速,“p”为极对数。
例如,当获取到高速吸尘器的转速为18000转/分,极对数为1时,则此时的换相频率具体为:
Figure PCTCN2022124998-appb-000006
步骤S3:判断计算得出的换相频率是否大于第二预设值,当是时,执行步骤S6;当否时,则执行步骤S4;
步骤S3中换相频率第二预设值是由于RC滤波模块延迟效果加强而导致相位角度滞后,且调节模块全工作的情况下计算,具体计算方法为:
Figure PCTCN2022124998-appb-000007
其中,“C 0”为RC滤波模块中第一电容C1的容值,“f 2”为换相频率第二预设值,“R 0”为RC滤波模块中第三电阻R3调节模块中第四电阻R4以及第五电阻R5的阻值。
例如,当RC滤波模块中的第三电阻R3、调节模块中的第四电阻R4和第五电阻R5采用50欧,RC滤波模块中的第一电容C1采用1微法,则此时的换相频率第二预设值具体为:
Figure PCTCN2022124998-appb-000008
步骤S4:判断计算得出的换相频率是否大于第一预设值,当是时,执行步骤S5;当否时,则执行步骤S2;
步骤S4中换相频率第一预设值是由于RC滤波模块延迟效果加强而导致相位角度滞后,且调节模块不工作的情况下计算,具体计算方法为:
Figure PCTCN2022124998-appb-000009
其中,“C 0”为RC滤波模块中第一电容C1的容值,“f 1”为换相频率第一预设值。
例如,当RC滤波模块中的第一电容C1采用1微法,则此时的换相频率第一预设值具体为:
Figure PCTCN2022124998-appb-000010
步骤S5:调节模块开始半工作状态,经过计算得出调节模块中需要的PWM占空比,实时调节PWM的占空比来进行相位延迟角度的补偿;
步骤S5中调节模块开始半工作状态时,则换相频率f介于第一预设值和第二预设值之间;
步骤S5中需要调节的PWM占空比是由于RC滤波模块延迟效果加强而导致相位角度滞后的情况下计算,具体公式如下:
Figure PCTCN2022124998-appb-000011
其中,“C 0”为RC滤波模块中第一电容C1的容值,“f”为换相频率,“R 0”为RC滤波模块中第三电阻R3、调节模块中第四电阻R4以及第五电阻R5的阻值。
例如,当RC滤波模块中的第三电阻R3、调节模块中的第四电阻R4和第五电阻R5采用50欧,RC滤波模块中第一电容C1采用1微法,则此时需接入的PWM占空比具体为:
Figure PCTCN2022124998-appb-000012
步骤S6:调节模块开始全工作状态,经过计算得出调节模块中需要的PWM占空比,通过实时调节PWM的占空比来进行相位延迟角度的补偿;
步骤S6中调节模块开始全工作状态时,则换相频率f大于第二预设值;
步骤S6中需要调节的PWM占空比是由于RC滤波模块延迟效果加强而导致相位角度滞后的情况下计算,具体公式如下:
PWM=1。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种无刷直流电机相位延迟的补偿电路,其特征在于,包括:分压模块、RC滤波模块和调节模块;所述分压模块和所述RC滤波模块相连,所述分压模块将采集到的电机端电压进行分压后,转换成单片机可以检测到的电压;所述RC滤波模块用于滤除端电压信号中的高频干扰信号和延迟30°电角度;所述RC滤波模块和所述调节模块相连,所述调节模块用来对所述RC滤波模块中的相位延迟进行调节。
  2. 如权利要求1所述的无刷直流电机相位延迟的补偿电路,其特征在于,所述分压模块包括:第一电阻、第二电阻;所述RC滤波模块包括:第三电阻、第一电容;
    所述第一电阻的一端与无刷直流电机的一相连接,另一端分别与所述第二电阻的一端、第三电阻的一端连接;所述第二电阻的另一端分别与所述第一电容的一端、模拟地连接;所述第三电阻的另一端分别与所述第一电容的另一端、MUC的输入端连接;所述调节模块并接在所述第三电阻两端。
  3. 如权利要求2所述的无刷直流电机相位延迟的补偿电路,其特征在于,所述调节模块包括:第四电阻、第一三极管;所述第四电阻的一端分别与所述第一电阻的一端、第二电阻的一端、第三电阻的一端连接,第四电阻的另一端与第一三极管的集电极连接;所述第一三极管的基极与PWM信号端连接,所述第一三极管的发射极与所述第三电阻的另一端连接。
  4. 如权利要求3所述的无刷直流电机相位延迟的补偿电路,其特征在于,所述调节模块包括:第五电阻、第一光耦;所述第五电阻的一端分别与所述第一电阻的一端、第二电阻的一端、第三电阻的一端连接,第四电阻的另一端与所述第一光耦中三极管的集电极连接;所述第一光耦中三极管的发射极与所述第三电阻的另一端连接,所述第一光耦中发光二极管的负极接地,所述第一光耦中发光二极管的正极与PWM信号端连接。
  5. 一种无刷直流电机相位延迟的控制方法,其特征在于,包括如下步骤:
    步骤1:获取无刷直流电机的极对数和当前无刷直流电机的转速;
    步骤2:通过步骤1得出无刷直流电机的极对数和转速,计算换相频率;
    步骤3:判断换相频率是否大于第二预设值,当大于第二预设值时,执行步骤6;当小于第二预设值时,则执行步骤4;
    步骤4:判断换相频率是否大于第一预设值,当大于第一预设值时,执行步骤5;当小于第一预设值时,则执行步骤2;
    步骤5:调节模块进入半工作状态,计算得出调节模块中需要的PWM占空比,通过实时调节PWM的占空比来进行相位延迟角度的补偿;
    步骤6:调节模块进入全工作状态,计算得出调节模块中需要的PWM占空比,通过实时调节PWM的占空比来进行相位延迟角度的补偿。
  6. 如权利要求5所述的无刷直流电机相位延迟的控制方法,其特征在于,所述步骤2中换相频率的具体计算方法为基于无刷直流电机的极对数以及转速进行计算,具体公式如下:
    Figure PCTCN2022124998-appb-100001
    其中,“f”为换相频率,“n”为电机当前转速,“p”为极对数。
  7. 如权利要求5所述的无刷直流电机相位延迟的控制方法,其特征在于,所述步骤3中第二预设值具体计算方法为:
    Figure PCTCN2022124998-appb-100002
    其中,“C 0”为所述RC滤波模块中第一电容C1的容值,“f 2”为换相频率第二预设值,“R 0”为所述RC滤波模块中第三电阻R3、所述调节模块中第四电阻R4以及第五电阻R5的阻值。
  8. 如权利要求5所述的无刷直流电机相位延迟的控制方法,其特征在于,所述步骤4中第一预设值具体计算方法为:
    Figure PCTCN2022124998-appb-100003
    其中,“C 0”为所述RC滤波模块中第一电容C1的容值,“f 1”为换相频率第一预设值。
  9. 如权利要求5所述的无刷直流电机相位延迟的控制方法,其特征在于,所述步骤5中调节模块中需要的PWM占空比,具体公式如下:
    Figure PCTCN2022124998-appb-100004
    其中,“C 0”为所述RC滤波模块中第一电容C1的容值,“f”为换相频率,“R 0”为所述RC滤波模块中第三电阻R3、所述调节模块中第四电阻R4以及第五电阻R5的阻值。
  10. 如权利要求5所述的无刷直流电机相位延迟的控制方法,其特征在于,所述步骤6中调节模块中需要的PWM占空比如下:
    PWM=1。
PCT/CN2022/124998 2021-11-22 2022-10-13 一种无刷直流电机相位延迟的补偿电路及控制方法 WO2023087985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111387131.6A CN113992075B (zh) 2021-11-22 2021-11-22 一种无刷直流电机相位延迟的补偿电路及控制方法
CN202111387131.6 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023087985A1 true WO2023087985A1 (zh) 2023-05-25

Family

ID=79749784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124998 WO2023087985A1 (zh) 2021-11-22 2022-10-13 一种无刷直流电机相位延迟的补偿电路及控制方法

Country Status (2)

Country Link
CN (1) CN113992075B (zh)
WO (1) WO2023087985A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094883A (zh) * 2021-11-22 2022-02-25 江苏科技大学 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法
CN113992075B (zh) * 2021-11-22 2023-09-29 江苏科技大学 一种无刷直流电机相位延迟的补偿电路及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203289362U (zh) * 2013-05-23 2013-11-13 利尔达科技集团股份有限公司 一种无刷电机控制装置
CN203554345U (zh) * 2013-09-11 2014-04-16 常州信息职业技术学院 无刷直流电机恒相移换相信号检测器
US20140176031A1 (en) * 2012-12-21 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Back electromotive force detection circuit and motor driving control apparatus using the same
CN204119096U (zh) * 2014-10-10 2015-01-21 无锡机电高等职业技术学校 一种无刷直流电机的相位补偿电路
CN113992075A (zh) * 2021-11-22 2022-01-28 江苏科技大学 一种无刷直流电机相位延迟的补偿电路及控制方法
CN114094883A (zh) * 2021-11-22 2022-02-25 江苏科技大学 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140176031A1 (en) * 2012-12-21 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Back electromotive force detection circuit and motor driving control apparatus using the same
CN203289362U (zh) * 2013-05-23 2013-11-13 利尔达科技集团股份有限公司 一种无刷电机控制装置
CN203554345U (zh) * 2013-09-11 2014-04-16 常州信息职业技术学院 无刷直流电机恒相移换相信号检测器
CN204119096U (zh) * 2014-10-10 2015-01-21 无锡机电高等职业技术学校 一种无刷直流电机的相位补偿电路
CN113992075A (zh) * 2021-11-22 2022-01-28 江苏科技大学 一种无刷直流电机相位延迟的补偿电路及控制方法
CN114094883A (zh) * 2021-11-22 2022-02-25 江苏科技大学 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法

Also Published As

Publication number Publication date
CN113992075A (zh) 2022-01-28
CN113992075B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2023087985A1 (zh) 一种无刷直流电机相位延迟的补偿电路及控制方法
KR102546001B1 (ko) 모터 가변 주파수 구동 시스템 및 다중 분할 중앙 에어컨
CN102437805B (zh) 无位置传感器无刷直流电机重载相位补偿计算方法
TWI418135B (zh) 馬達控制方法與系統及其中之數位信號處理器
WO2023087905A1 (zh) 一种开关霍尔传感器采集相位延迟的补偿电路及控制方法
CN107395072B (zh) 一种无位置传感器直流无刷电机相位补偿的方法
CN109713949B (zh) 一种无刷直流电机转矩脉动的抑制方法及***
CN203289362U (zh) 一种无刷电机控制装置
JP4983457B2 (ja) モータ駆動装置
CN110138307B (zh) 开关磁阻电机功率变换器短路故障的容错控制方法
CN107846160A (zh) 一种高速无刷直流电机无位置传感器控制电路及其反电势相位补偿方法
CN1224272A (zh) 一种拟超导稳速***
CN206389292U (zh) 一种无刷直流电机功率变换器
CN115021623A (zh) 一种超前角自适应补偿电路及无刷直流电机
CN111585479A (zh) 一种三相无传感器无刷直流电机控制***
CN112865619A (zh) 一种基于反电动势法改进的无刷直流电机控制方法
Wu et al. Sensorless brushless DC motor drive for air-conditioner compressor
CN207835373U (zh) 一种自动调节发动机转速的控制***
WO2011130927A1 (zh) 永磁交流电动机的无传感器驱动方法
JP2855853B2 (ja) 電気掃除機
CN111010058A (zh) 一种基于pi和锁相环的硬盘电机稳速控制方法
CN110932646A (zh) 一种采用SiC MOSFET的双边滤波永磁同步电动机驱动装置
CN110623598B (zh) 吸尘器控制方法和装置、吸尘器
CN208589934U (zh) 一种自动进角调节电路
CN113395021B (zh) 一种基于Buck变换器的无刷直流电机低功耗驱动***及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894523

Country of ref document: EP

Kind code of ref document: A1