WO2023084838A1 - 位相差層付偏光板および該位相差層付偏光板を含む画像表示装置 - Google Patents

位相差層付偏光板および該位相差層付偏光板を含む画像表示装置 Download PDF

Info

Publication number
WO2023084838A1
WO2023084838A1 PCT/JP2022/025917 JP2022025917W WO2023084838A1 WO 2023084838 A1 WO2023084838 A1 WO 2023084838A1 JP 2022025917 W JP2022025917 W JP 2022025917W WO 2023084838 A1 WO2023084838 A1 WO 2023084838A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retardation layer
polarizing plate
retardation
liquid crystal
Prior art date
Application number
PCT/JP2022/025917
Other languages
English (en)
French (fr)
Inventor
大輔 林
洋毅 千田
克己 塚本
直樹 藤本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280068692.6A priority Critical patent/CN118119867A/zh
Publication of WO2023084838A1 publication Critical patent/WO2023084838A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polarizing plate with a retardation layer and an image display device including the polarizing plate with the retardation layer.
  • a thin retardation plate tends to undergo a large dimensional shrinkage of the polarizing plate under high-temperature conditions, and the retardation may change. Further, in a retardation layer formed using a liquid crystal material, the effect of dimensional shrinkage becomes greater, and as a result, the reflection hue may change more.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to provide a polarizing plate with a retardation layer that suppresses the in-plane unevenness of the reflection hue and has excellent high-temperature durability. .
  • the retardation layer-attached polarizing plate of the embodiment of the present invention has a polarizing plate including a polarizer and a first retardation layer, and the retardation layer-attached polarizing plate has a retardation change value RS of 2.0. is 0 or less, and the retardation change value RS is 0 kg, 0.5 kg, 1 kg, 1.5 kg, and in-plane retardation Re of the retardation layer-attached polarizing plate measured under a tension of 2 kg. It is the slope of the approximation straight line of the value of (550).
  • the retardation layer-attached polarizing plate further has a second retardation layer having a breaking elongation of 1% or more.
  • the second retardation layer is a positive C plate composed of a resin film containing a polymer exhibiting negative birefringence.
  • the polymer exhibiting negative birefringence is an acrylic resin having an aromatic ring introduced into its side chain, a styrene resin having an aromatic ring introduced into its side chain, or an aromatic ring introduced into its side chain. is at least one selected from the group consisting of maleimide-based resins.
  • the in-plane retardation Re(550) of the first retardation is 100 nm ⁇ Re(550) ⁇ 160 nm, and Re(450)/Re(550) ⁇ 1, and Re(650)/Re(550)>1 is satisfied.
  • the angle between the slow axis of the first retardation layer and the absorption axis of the polarizer is 40° to 50°.
  • the first phase layer has a laminated structure of a fixed alignment layer A of a liquid crystal compound and a fixed alignment layer B of a liquid crystal compound, the fixed alignment layer A functions as a ⁇ /2 plate, The orientation fixed layer B functions as a ⁇ /4 plate.
  • the angle formed by the slow axis of the liquid crystal compound alignment fixed layer A and the absorption axis of the polarizer is 70° to 80°, and the liquid crystal compound alignment fixed layer B has a slow axis.
  • the angle between the phase axis and the absorption axis of the polarizer is 10° to 20°.
  • An image display device is provided in another aspect of the present invention. This image display device includes the retardation layer-attached polarizing plate.
  • the embodiment of the present invention it is possible to provide a polarizing plate with a retardation layer that suppresses in-plane unevenness in reflection hue and has excellent high-temperature durability.
  • the retardation layer that is the liquid crystal alignment fixed layer even when the retardation layer that is the liquid crystal alignment fixed layer is included, the retardation change of the polarizing plate is suppressed in a high-temperature environment. Therefore, a change in retardation in the polarizing plate with a retardation layer can be suppressed, and a change in reflection hue can also be suppressed.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the invention
  • refractive index (nx, ny, nz) is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re( ⁇ )” is an in-plane retardation measured at 23° C. with light having a wavelength of ⁇ nm.
  • Re(550) is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Thickness direction retardation (Rth) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of ⁇ nm.
  • Rth(550) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm.
  • FIG. 1 is a schematic cross-sectional view of a retardation layer-attached polarizing plate according to one embodiment of the present invention.
  • a polarizing plate 100 with a retardation layer in the illustrated example has a polarizing plate 10, a first retardation layer 20, and a second retardation layer 30 in this order from the viewing side.
  • the second retardation layer 30 is an arbitrary retardation layer and may be omitted. Also, the second retardation layer 30 may be arranged on the viewing side of the first retardation layer 20 .
  • the polarizing plate 10 typically includes a polarizer 11 and protective layers 12 and 13 arranged on both sides of the polarizer 11 . Protective layer 13 may be omitted.
  • the first retardation layer 20 is preferably an alignment fixed layer of a liquid crystal compound (hereinafter sometimes simply referred to as a liquid crystal alignment fixed layer).
  • the second retardation layer 30 is preferably composed of a resin film containing a polymer exhibiting negative birefringence.
  • the first retardation layer 20 is a single layer.
  • the term “liquid crystal alignment fixed layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction within the layer and the alignment state is fixed.
  • the "alignment fixed layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later.
  • FIG. 2 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to another embodiment of the invention.
  • a polarizing plate 101 with a retardation layer in the illustrated example has a polarizing plate 10, a first retardation layer 20, and a second retardation layer 30 in this order from the viewing side.
  • the second retardation layer 30 is an arbitrary retardation layer and may be omitted. Also, the second retardation layer 30 may be arranged on the viewing side of the first retardation layer 20 .
  • the first retardation layer 20 is preferably a liquid crystal alignment fixed layer.
  • the second retardation layer 30 is preferably composed of a resin film containing a polymer exhibiting negative birefringence.
  • the first retardation layer 20 has a laminated structure of a liquid crystal alignment fixed layer A21 and a liquid crystal alignment fixed layer B22.
  • the first retardation layer has a laminated structure
  • one of the liquid crystal alignment fixed layer A and the liquid crystal alignment fixed layer B can function as a ⁇ /4 plate, and the other can function as a ⁇ /2 plate.
  • a polarizing plate with a retardation layer that suppresses in-plane unevenness in reflected hue and has excellent high-temperature durability even when a liquid crystal alignment fixed layer having a laminated structure is used as the first retardation layer 20. can do.
  • the retardation change value RS of the retardation layer-attached polarizing plates 100 and 101 is 2.0 or less, preferably 1.9 or less, more preferably 1.8 or less, and still more preferably 1.7 or less. be.
  • the phase difference change value RS is, for example, ⁇ 2.5 or more, preferably ⁇ 2.4 or more, and more preferably ⁇ 2.3 or more.
  • the retardation change value RS is within the above range, it is possible to provide a polarizing plate with a retardation layer in which the in-plane unevenness of the reflection hue is suppressed. The closer the phase difference change value RS is to 0, the better.
  • the retardation change value RS is the in-plane retardation Re ( 550) is the slope of the approximate straight line.
  • the first retardation layer is a single layer.
  • the retardation layer-attached polarizing plate is cut into a rectangle, and (i) the angle formed by the absorption axis of the polarizer and the long side direction of the retardation layer-attached polarizing plate is counterclockwise about 45° (about ⁇ 45°), and (ii) when the slow axis and the long side direction of the polarizing plate with the retardation layer are arranged to correspond, the tension is applied in the long side direction of the polarizing plate with the retardation layer (first The retardation change value RS in the state in which the film is applied in the direction parallel to the slow axis of the retardation layer 1) is preferably 1.9 or less, more preferably 1.8 or less, and still more preferably 1.8.
  • the retardation layer-attached polarizing plate is cut into a rectangle, (iii) the angle formed by the absorption axis of the polarizer and the long side direction of the retardation layer-attached polarizing plate is set to about 45° clockwise, and (iv) the When the slow axis and the short side direction of the polarizing plate with the retardation layer are arranged to correspond, the tension is applied in the long side direction of the polarizing plate with the retardation layer (the slow axis of the first retardation layer and
  • the phase difference change value RS in the state of being applied in the orthogonal direction) is preferably -2.5 or more, preferably -2.4 or more, and more preferably -2.3 or more. The closer the phase difference change value RS is to 0, the better.
  • the first retardation layer has a laminated structure of the liquid crystal alignment fixed layer A and the liquid crystal alignment fixed layer B, and either the liquid crystal alignment fixed layer A or the liquid crystal alignment fixed layer B One can function as a ⁇ /4 plate and the other as a ⁇ /2 plate.
  • the liquid crystal alignment fixed layer A functions as a ⁇ /2 plate and the liquid crystal alignment fixed layer B functions as a ⁇ /4 plate.
  • the retardation layer-attached polarizing plate is cut into a rectangle, and (v) the angle formed by the absorption axis of the polarizer and the long side direction of the retardation layer-attached polarizing plate is counterclockwise about 45° (about (vi) the angle formed by the slow axis of the liquid crystal alignment fixed layer A and the absorption axis of the polarizer is about 75° (about -75°) in the counterclockwise direction; The angle formed by the phase axis and the absorption axis of the polarizer is set to about 15° (about -15°) counterclockwise, and (vii) the tension is applied in the long side direction of the polarizing plate with the retardation layer (liquid crystal alignment fixed layer A
  • the phase difference change value RS in the state in which the or less, and particularly preferably 1.0 or less.
  • the polarizing plate with the retardation layer is cut into a rectangle, (viii) the angle formed by the absorption axis of the polarizer and the long side direction of the polarizing plate with the retardation layer is about 45° clockwise, and (ix) the liquid crystal
  • the angle formed by the slow axis of the fixed alignment layer A and the absorption axis of the polarizer is about 75° clockwise, and the angle between the slow axis of the fixed liquid crystal alignment layer B and the absorption axis of the polarizer is about 75° clockwise.
  • the retardation change value RS in a state where the tension is applied in the long side direction of the polarizing plate with the retardation layer (the direction that is about 120° with the slow axis of the liquid crystal alignment fixed layer A) is preferable.
  • the retardation layer-attached polarizing plates 100 and 101 have an adhesive layer as the outermost layer (for example, the surface where the first retardation layer 20 of the second retardation layer 30 in the illustrated example is not laminated) , and can be attached to an image display device (substantially, an image display cell).
  • an image display device substantially, an image display cell.
  • a release liner is temporarily attached to the surface of the pressure-sensitive adhesive layer until the polarizing plate is used. By temporarily attaching the release liner, the pressure-sensitive adhesive layer can be appropriately protected.
  • the thickness of the polarizing plate can be set to any appropriate value.
  • the thickness of the polarizing plate is, for example, 30 ⁇ m to 150 ⁇ m, preferably 40 ⁇ m to 100 ⁇ m, more preferably 50 ⁇ m to 80 ⁇ m.
  • the total thickness of the retardation layer-attached polarizing plate is preferably 40 ⁇ m to 120 ⁇ m, more preferably 40 ⁇ m to 110 ⁇ m, still more preferably 40 ⁇ m to 100 ⁇ m.
  • a polarizing plate with a retardation layer including a polarizing plate having a certain thickness can have such a thickness.
  • a polarizing plate with a retardation layer tends to be greatly affected by dimensional shrinkage of the polarizing plate in a high-temperature environment.
  • a polarizing plate with a retardation layer that suppresses in-plane unevenness of the reflected hue even in a polarizing plate with a retardation layer having the thickness described above and that has excellent high-temperature durability. be able to.
  • the total thickness of the polarizing plate with a retardation layer refers to the polarizing plate, the retardation layer (when the second retardation layer is present, the first retardation layer and the second retardation layer) and these
  • the total thickness of the adhesive layer for laminating that is, the total thickness of the polarizing plate with a retardation layer does not include the thickness of the pressure-sensitive adhesive layer provided as the outermost layer and the release liner that can be temporarily attached to its surface. ).
  • Polarizing plate B-1 Polarizer A polarizer is typically composed of a resin film containing a dichroic substance (typically iodine). Any appropriate resin film that can be used as a polarizer can be adopted as the resin film.
  • the resin film is typically a polyvinyl alcohol-based resin (hereinafter referred to as "PVA-based resin") film.
  • the resin film may be a single-layer resin film or a laminate of two or more layers.
  • a specific example of a polarizer composed of a single-layer resin film is a PVA-based resin film that has been dyed with iodine and stretched (typically, uniaxially stretched).
  • the dyeing with iodine is performed by, for example, immersing the PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial drawing is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment, or may be performed while dyeing. Moreover, you may dye after extending
  • the polarizer obtained using a laminate include a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA-based resin layer formed by coating on a substrate can be mentioned.
  • a polarizer obtained by using a laminate of a resin base material and a PVA-based resin layer formed by coating on the resin base material is obtained, for example, by applying a PVA-based resin solution to the resin base material and drying the resin base material.
  • a PVA-based resin layer thereon to obtain a laminate of a resin substrate and a PVA-based resin layer; stretching and dyeing the laminate to use the PVA-based resin layer as a polarizer; obtain.
  • a polyvinyl alcohol-based resin layer containing a halide and a polyvinyl alcohol-based resin is formed on one side of the resin substrate.
  • Stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching.
  • stretching may further include stretching the laminate in air at a high temperature (eg, 95° C. or higher) before stretching in an aqueous boric acid solution, if necessary.
  • the laminate is preferably subjected to drying shrinkage treatment for shrinking the laminate by 2% or more in the width direction by heating while conveying in the longitudinal direction.
  • the manufacturing method of the present embodiment includes subjecting the laminate to an in-air auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order.
  • auxiliary stretching it is possible to improve the crystallinity of PVA and achieve high optical properties even when PVA is coated on a thermoplastic resin.
  • by increasing the orientation of PVA in advance it is possible to prevent problems such as deterioration of orientation and dissolution of PVA when immersed in water in the subsequent dyeing process or stretching process, resulting in high optical properties. can be achieved.
  • the PVA-based resin layer when the PVA-based resin layer is immersed in a liquid, disturbance of the orientation of the polyvinyl alcohol molecules and deterioration of the orientation can be suppressed as compared with the case where the PVA-based resin layer does not contain a halide.
  • This can improve the optical properties of the polarizer obtained through treatment steps such as dyeing treatment and underwater stretching treatment in which the laminate is immersed in a liquid.
  • the optical properties can be improved by shrinking the laminate in the width direction by drying shrinkage treatment.
  • the obtained resin substrate/polarizer laminate may be used as it is (that is, the resin substrate may be used as a protective layer for the polarizer), or the resin substrate may be peeled off from the resin substrate/polarizer laminate.
  • any suitable protective layer may be laminated on the release surface according to the purpose. Details of such a polarizer manufacturing method are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (Patent No. 5414738) and Japanese Patent No. 6470455. These publications are incorporated herein by reference in their entirety.
  • the thickness of the polarizer is preferably 1 ⁇ m to 15 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m, even more preferably 1 ⁇ m to 8 ⁇ m, and particularly preferably 2 ⁇ m to 5 ⁇ m.
  • the thickness of the polarizer is, for example, 7 ⁇ m or more, or, for example, 8 ⁇ m or more, or, for example, 10 ⁇ m or more, or, for example, 12 ⁇ m or more, or, for example, 15 ⁇ m or more.
  • the thickness of the polarizer is large, the dimensional shrinkage of the retardation layer-attached polarizing plate tends to increase.
  • the thickness of the polarizer is, for example, 30 ⁇ m or less.
  • the boric acid content of the polarizer is preferably 20% by weight or less, more preferably 5% to 20% by weight, even more preferably 10% to 18% by weight. If the boric acid content of the polarizer is within such a range, it is possible to provide a polarizing plate with a retardation layer having excellent high-temperature durability. If the boric acid content is less than 5% by weight, the polarizer may become polyene and the durability may decrease. According to the embodiment of the present invention, even when placed in a high-temperature environment, a change in retardation due to dimensional shrinkage of the polarizing plate can be suppressed, and a change in reflected hue can also be suppressed.
  • the boric acid content of the polarizer can be adjusted, for example, by adjusting the boric acid content in the aqueous solutions used in the following steps.
  • the boric acid content can be calculated as the boric acid content contained in the polarizer per unit weight, for example, using the following formula from the neutralization method.
  • the iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% to 10% by weight. If the iodine content of the polarizer is within such a range, the synergistic effect with the above-mentioned boric acid content can maintain the ease of curl adjustment during bonding and prevent curl during heating. It is possible to improve the appearance durability during heating while satisfactorily suppressing the As used herein, "iodine content” means the total amount of iodine contained in the polarizer (PVA-based resin film).
  • iodine exists in the form of iodine ions (I ⁇ ), iodine molecules (I 2 ), polyiodine ions (I 3 ⁇ , I 5 ⁇ ) and the like in the polarizer.
  • the iodine content means the amount of iodine including all these forms.
  • the iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis.
  • the polyiodine ions are present in the polarizer in the form of a PVA-iodine complex. Absorption dichroism can be expressed in the visible light wavelength range by forming such a complex.
  • the complex of PVA and triiodide ion (PVA ⁇ I 3 ⁇ ) has an absorption peak near 470 nm
  • the complex of PVA and pentaiodide ion (PVA ⁇ I 5 ⁇ ) has an absorption peak near 600 nm. has an absorption peak at
  • polyiodine ions can absorb light in a wide range of visible light, depending on their morphology.
  • iodine ions (I ⁇ ) have an absorption peak near 230 nm and are not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex with PVA may be primarily responsible for the absorption performance of the polarizer.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%.
  • the degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, still more preferably 99.9% or more.
  • the single transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
  • the degree of polarization is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
  • Degree of polarization (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • Protective layers 12, 13 are formed of any suitable film that can be used as a protective layer for a polarizer.
  • materials that are the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, and polysulfones.
  • TAC triacetyl cellulose
  • Thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may also be used.
  • a glassy polymer such as a siloxane-based polymer can also be used.
  • polymer films described in JP-A-2001-343529 can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in a side chain.
  • the polymer film can be, for example, an extrudate of the resin composition.
  • the polarizing plate with a retardation layer is typically arranged on the viewing side of the image display device, and the protective layer 12 is typically arranged on the viewing side. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary.
  • the thickness of the protective layer is preferably 10 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
  • the first retardation layer 20 is preferably an alignment fixed layer of a liquid crystal compound.
  • a liquid crystal compound By using a liquid crystal compound, it is possible to realize an in-plane retardation equivalent to that of a resin film with a thickness much thinner than that of a resin film. Further, in the liquid crystal alignment fixed layer, the retardation change due to the dimensional shrinkage of the retardation layer-attached polarizing plate in a high-temperature environment may become more remarkable.
  • the first retardation layer may be a single layer or a laminate of two or more layers. The first retardation layer is typically provided to impart antireflection properties to the polarizing plate.
  • the single layer first retardation layer can function as a ⁇ /4 plate.
  • the in-plane retardation Re(550) of the first retardation layer is preferably more than 100 nm and less than 160 nm, more preferably 110 nm to 155 nm, still more preferably 130 nm to less than 150 nm.
  • the Nz coefficient of the first retardation layer which is a single layer, is preferably 0.9 to 1.5, more preferably 0.9 to 1.3.
  • the thickness of the first retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 7 ⁇ m, still more preferably 1 ⁇ m to 5 ⁇ m.
  • the first retardation layer preferably exhibits reverse dispersion wavelength characteristics.
  • Re(550)/Re(650) is preferably greater than 1, more preferably greater than 1 and 1.2 or less, still more preferably 1.01 to 1.15.
  • Re(450)/Re(550) of the first retardation layer is preferably less than 1, more preferably less than 0.95, still more preferably less than 0.90.
  • Re(450)/Re(550) is, for example, 0.8 or more. With such a configuration, very excellent antireflection properties can be achieved.
  • the angle between the slow axis of the first retardation layer 20 and the absorption axis of the polarizer 11 is preferably 40° to 50°, more preferably 42° to 48°, and more preferably about 45°. °. If the angle is in such a range, by using the ⁇ / 4 plate as the first retardation layer as described above, very good circularly polarized light properties (as a result, very good antireflection properties) can be obtained. A polarizing plate with a retardation layer can be obtained.
  • the first retardation layer 20 is preferably an alignment fixed layer of a liquid crystal compound.
  • a liquid crystal compound By using a liquid crystal compound, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. can be significantly reduced. As a result, it is possible to further reduce the thickness of the retardation layer-attached polarizing plate.
  • the retardation layer which is an alignment fixed layer of a liquid crystal compound, can be formed using a composition containing a polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound contained in the composition as used herein refers to a compound having a polymerizable group and liquid crystallinity.
  • a polymerizable group means a group involved in a polymerization reaction, preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
  • liquid crystallinity may be thermotropic or lyotropic.
  • the structure of the liquid crystal phase may be nematic liquid crystal or smectic liquid crystal. Thermotropic nematic liquid crystals are preferred from the standpoint of ease of production.
  • the single-layer retardation layer is formed using a composition containing a liquid crystal compound represented by the following formula (1).
  • L 1 and L 2 each independently represent a monovalent organic group, and at least one of L 1 and L 2 represents a polymerizable group.
  • Monovalent organic groups include any suitable groups.
  • the polymerizable group represented by at least one of L 1 and L 2 include radically polymerizable groups (groups capable of radical polymerization). Any appropriate radically polymerizable group can be used as the radically polymerizable group.
  • An acryloyl group or a methacryloyl group is preferred.
  • An acryloyl group is preferred because it has a high polymerization rate and improves productivity.
  • a methacryloyl group can also be used as a polymerizable group for highly birefringent liquid crystals.
  • SP 1 and SP 2 each independently constitute a single bond, a linear or branched alkylene group, or a linear or branched alkylene group having 1 to 14 carbon atoms —CH 2 represents a divalent linking group in which one or more of - are substituted with -O-;
  • the linear or branched alkylene group having 1 to 14 carbon atoms preferably includes methylene group, ethylene group, propylene group, butylene group, pentylene group and hexylene group.
  • a 1 and A 2 each independently represent an alicyclic hydrocarbon group or an aromatic ring substituent.
  • a 1 and A 2 are preferably aromatic ring substituents having 6 or more carbon atoms or cycloalkylene rings having 6 or more carbon atoms.
  • D 1 , D 2 , D 3 and D 4 each independently represent a single bond or a divalent linking group.
  • D 3 is preferably -O-CO-, and D 3 and D 4 are more preferably -O-CO-.
  • D 1 and D 2 are preferably single bonds.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms.
  • G 1 and G 2 each independently represent a single bond or an alicyclic hydrocarbon group.
  • G 1 and G 2 may represent an unsubstituted or substituted divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms.
  • one or more —CH 2 — constituting the alicyclic hydrocarbon group may be substituted with —O—, —S— or —NH—.
  • G 1 and G 2 preferably represent a single bond.
  • Ar represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Ar represents, for example, an aromatic ring selected from the group consisting of groups represented by the following formulas (Ar-1) to (Ar-6).
  • *1 represents the bonding position with D1
  • *2 represents the bonding position with D2 .
  • Q 1 represents N or CH
  • Q 2 represents -S-, -O-, or -N(R 5 )-.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1 , Z 2 and Z 3 each independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 3 carbon atoms. represents a monovalent alicyclic hydrocarbon group of up to 20, a monovalent aromatic hydrocarbon group of 6 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, -NR 6 R 7 or -SR 8 .
  • R 6 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Z 1 and Z 2 may combine with each other to form a ring.
  • the ring may be an alicyclic, heterocyclic or aromatic ring, preferably an aromatic ring.
  • the formed ring may be substituted with a substituent.
  • a 3 and A 4 are each independently a group consisting of -O-, -N(R 9 )-, -S- and -CO- represents a group selected from the above, and R 9 represents a hydrogen atom or a substituent.
  • R 9 represents a hydrogen atom or a substituent. Examples of the substituent represented by R 9 include the same substituents that Y 1 in the above formula (Ar-1) may have.
  • X represents a hydrogen atom or an unsubstituted or substituted group 14 to group 16 nonmetallic atom.
  • nonmetallic atoms of groups 14 to 16 represented by X include an oxygen atom, a sulfur atom, an unsubstituted or substituted nitrogen atom, and an unsubstituted or substituted carbon atom.
  • substituent include the same substituents that Y 1 in the above formula (Ar-1) may have.
  • R 1 , R 2 , R 3 and R 4 are as described above.
  • SP 3 and SP 4 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a linear chain having 1 to 12 carbon atoms. divalent in which one or more —CH 2 — constituting a branched or branched alkylene group is substituted with —O—, —S—, —NH—, —N(Q)—, or —CO— and Q represents a polymerizable group.
  • L 3 and L 4 each independently represent a monovalent organic group, and at least one of L 3 and L 4 and L 1 and L 2 in formula (1) above is represents a polymerizable group.
  • Ax is an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of aromatic hydrocarbon rings and aromatic heterocyclic rings. represents In formulas (Ar-4) to (Ar-6), Ax preferably has an aromatic heterocyclic ring, more preferably a benzothiazole ring.
  • Ay is a hydrogen atom, an unsubstituted or optionally substituted alkyl group having 1 to 6 carbon atoms, or an aromatic hydrocarbon ring and aromatic represents an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of heterocyclic rings. In formulas (Ar-4) to (Ar-6), Ay preferably represents a hydrogen atom.
  • Q 3 represents a hydrogen atom or an unsubstituted or optionally substituted alkyl group having 1 to 6 carbon atoms. In formulas (Ar-4) to (Ar-6), Q3 preferably represents a hydrogen atom.
  • Ar a group (atomic group) represented by the above formula (Ar-4) or the above formula (Ar-6) is preferable.
  • liquid crystal compound represented by Formula (1) A specific example of the liquid crystal compound represented by Formula (1) is disclosed in International Publication No. 2018/123551. The description of the publication is incorporated herein by reference. These compounds may be used alone or in combination of two or more.
  • a composition containing a liquid crystal compound preferably contains a polymerization initiator.
  • Any appropriate polymerization agent can be used as the polymerization initiator.
  • a photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation is preferred.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted Aromatic acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos.
  • a composition containing a liquid crystal compound preferably contains a solvent from the viewpoint of workability for forming a retardation layer. Any suitable solvent can be used as the solvent, and organic solvents are preferably used.
  • composition containing the liquid crystal compound further contains any appropriate other component.
  • antioxidants such as phenolic antioxidants, liquid crystal compounds other than the above, leveling agents, surfactants, tilt angle control agents, alignment aids, plasticizers, and cross-linking agents.
  • the liquid crystal alignment fixed layer is formed by applying an alignment treatment to the surface of a predetermined base material, coating the surface with a composition (coating liquid) containing a liquid crystal compound, and aligning the liquid crystal compound in the direction corresponding to the alignment treatment. and fixing the orientation state.
  • the substrate is any appropriate resin film, and the liquid crystal alignment solidified layer formed on the substrate can be transferred to the surface of the polarizing plate.
  • orientation treatment can be adopted as the orientation treatment.
  • Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment.
  • Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment.
  • Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment.
  • Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose.
  • the alignment of the liquid crystal compound is performed by processing at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the base material surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • the first retardation layer comprises an alignment fixed layer A of a liquid crystal compound (hereinafter also referred to as A layer) and an alignment fixed layer B of a liquid crystal compound (hereinafter referred to as B layer).
  • a layer a liquid crystal compound
  • B layer a liquid crystal compound
  • one of the liquid crystal alignment fixed layer A and the liquid crystal alignment fixed layer B can function as a ⁇ /4 plate, and the other can function as a ⁇ /2 plate.
  • Re (550) of the liquid crystal alignment fixed layer A is preferably 200 nm to 300 nm.
  • Re(550) of the liquid crystal alignment layer B is preferably 100 nm to 200 nm, more preferably 100 nm to 170 nm, still more preferably 110 nm to 150 nm, and particularly preferably 110 nm to 130 nm.
  • the thickness of the A layer can be adjusted, for example, to obtain the desired in-plane retardation of the ⁇ /2 plate.
  • the thickness of the A layer is, for example, 2.0 ⁇ m to 4.0 ⁇ m.
  • the thickness of the B layer can be adjusted, for example, so as to obtain the desired in-plane retardation of the ⁇ /4 plate.
  • the thickness of the B layer is, for example, 0.5 ⁇ m to 2.5 ⁇ m.
  • the angle formed by the slow axis of the A layer and the absorption axis of the polarizer is preferably 10° to 20°, more preferably 12° to 18°, still more preferably 12°. ⁇ 16°.
  • each layer e.g., A layer and B layer
  • each layer may exhibit an inverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, A positive wavelength dispersion characteristic in which the phase difference value decreases according to the wavelength of the measurement light may be exhibited, or a flat wavelength dispersion characteristic in which the phase difference value hardly changes with the wavelength of the measurement light may be exhibited.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3.
  • examples of the liquid crystal compound used in the first retardation layer include a liquid crystal compound having a nematic liquid crystal phase (nematic liquid crystal).
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used. Either lyotropic or thermotropic mechanism may be used to develop the liquid crystallinity of the liquid crystal compound.
  • the liquid crystal polymer and liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer.
  • the alignment state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, the alignment state can be fixed by polymerizing or cross-linking the liquid crystal monomers.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by cross-linking, but these are non-liquid crystalline. Therefore, the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a change in temperature, which is peculiar to liquid crystalline compounds. As a result, the retardation layer becomes a highly stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and even more preferably 60°C to 90°C.
  • liquid crystal monomer Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer.
  • polymerizable mesopolymers described in JP-T-2002-533742 WO00/37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93/22397 EP0261712, DE19504224, DE4408171, and GB2280445 Gen compounds and the like
  • polymerizable mesogenic compounds include LC242 (trade name) available from BASF, E7 (trade name) available from Merck, and LC-Sillicon-CC3767 (trade name) available from Wacker-Chem.
  • a nematic liquid crystal monomer is preferable as the liquid crystal monomer.
  • Specific examples of the liquid crystal compound and details of the method for forming the alignment fixed layer are as described above.
  • the liquid crystal alignment fixed layer A functions as a ⁇ /2 plate and the liquid crystal alignment fixed layer B functions as a ⁇ /4 plate.
  • B may be a ⁇ /2 plate.
  • the angle between the slow axis of the liquid crystal alignment fixed layer A and the absorption axis of the polarizer is about 75°, and the angle between the slow axis of the liquid crystal alignment fixed layer B and the absorption axis of the polarizer is about 15°.
  • the retardation layer-attached polarizing plate of the embodiment of the present invention preferably further has a second retardation layer.
  • the second retardation layer By further including the second retardation layer, it is possible to provide a polarizing plate with a retardation layer that suppresses in-plane unevenness in the reflected hue and has excellent high-temperature durability.
  • the second retardation layer preferably has a breaking elongation of 1% or more, more preferably 2% or more, and still more preferably 3% or more.
  • the elongation at break of the second retardation layer is, for example, 5% or less.
  • the second retardation layer 30 is preferably composed of a resin film containing a polymer exhibiting negative birefringence.
  • the term "exhibiting negative birefringence" means that when a polymer is oriented by stretching or the like, the refractive index in the stretching direction becomes relatively small. In other words, it means that the refractive index in the direction perpendicular to the stretching direction increases.
  • the second retardation layer can reduce the change in retardation due to dimensional shrinkage of the polarizing plate. Therefore, it is possible to provide a polarizing plate with a retardation layer, in which the in-plane unevenness of the reflection hue is further suppressed and which has excellent high-temperature durability.
  • the thickness direction retardation Rth (550) of the second retardation layer is preferably ⁇ 10 nm to ⁇ 200 nm, more preferably ⁇ 20 nm to ⁇ 180 nm, still more preferably ⁇ 30 nm to ⁇ 160 nm, particularly preferably ⁇ 40 nm to ⁇ 140 nm.
  • the thickness of the second retardation layer 30 can be set to any suitable thickness.
  • the thickness of the second retardation layer is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 20 ⁇ m, still more preferably 3 ⁇ m to 8 ⁇ m.
  • polymers exhibiting negative birefringence include polymers in which chemical bonds or functional groups with large polarization anisotropy such as aromatic rings and/or carbonyl groups are introduced into side chains.
  • Specific examples include acrylic resins, styrene resins, maleimide resins, and the like.
  • it is selected from the group consisting of an acrylic resin having an aromatic ring introduced into its side chain, a styrene resin having an aromatic ring introduced into its side chain, and a maleimide resin having an aromatic ring introduced into its side chain.
  • At least one type of polymer can be used, and more preferably a styrenic resin having an aromatic ring introduced into the side chain can be used. Only one type of polymer exhibiting negative birefringence may be used, or two or more types may be used in combination.
  • Acrylic resins can be obtained, for example, by addition polymerization of acrylate monomers.
  • acrylic resins include polymethyl methacrylate (PMMA), polybutyl methacrylate, polycyclohexyl methacrylate, and the like.
  • a styrenic resin can be obtained, for example, by addition polymerization of a styrenic monomer.
  • Styrenic monomers include, for example, styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, p-chlorostyrene, p-nitrostyrene, p-aminostyrene, p-carboxystyrene, p-phenylstyrene, 2,5-dichlorostyrene, pt-butylstyrene and the like.
  • a maleimide-based resin can be obtained, for example, by addition polymerization of a maleimide-based monomer.
  • Maleimide-based monomers include, for example, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-(2-methylphenyl)maleimide, N-(2-ethylphenyl)maleimide, N-(2-propylphenyl ) maleimide, N-(2-isopropylphenyl)maleimide, N-(2,6-dimethylphenyl)maleimide, N-(2,6-dipropylphenyl)maleimide, N-(2,6-diisopropylphenyl)maleimide, N-(2-methyl-6-ethylphenyl)maleimide, N-(2-chlorophenyl)maleimide, N-(2,6-dichlorophenyl)maleimide, N-(2-bromophen
  • a polymer exhibiting negative birefringence may be copolymerized with another monomer.
  • the other monomer include olefins such as ethylene, propylene, 1-butene, 1,3-butadiene, 2-methyl-1-butene, 2-methyl-1-pentene, and 1-hexene; acrylonitrile; acrylic acid; (meth)acrylates such as methyl and methyl methacrylate; maleic anhydride; and vinyl esters such as vinyl acetate.
  • the blending ratio of the styrene-based monomer is preferably 50 mol % to 80 mol %.
  • the blending ratio of the maleimide-based monomer is preferably 2 mol % to 50 mol %.
  • the polymer exhibiting negative birefringence is preferably a styrene-maleic anhydride copolymer, a styrene-acrylonitrile copolymer, a styrene-(meth)acrylate copolymer, a styrene-maleimide copolymer, a vinyl ester- Maleimide copolymers, olefin-maleimide copolymers, and the like are used. These can be used alone or in combination of two or more. These polymers can exhibit high negative birefringence and excellent heat resistance. These polymers can be obtained, for example, from Nova Chemical Japan, Arakawa Chemical Industries, Ltd., and the like.
  • a polymer having a repeating unit represented by the following general formula (II) is also preferably used as the polymer exhibiting negative birefringence.
  • Such a polymer can exhibit even higher negative birefringence and be excellent in heat resistance and mechanical strength.
  • Such a polymer can be obtained, for example, by using an N-phenyl-substituted maleimide into which a phenyl group having a substituent at least at the ortho position is introduced as the N-substituent of the maleimide-based monomer as the starting material.
  • R 1 to R 5 each independently represent a hydrogen atom, a halogen atom, a carboxylic acid, a carboxylic acid ester, a hydroxyl group, a nitro group, or a linear or branched chain having 1 to 8 carbon atoms. (provided that R 1 and R 5 are not hydrogen atoms at the same time), R 6 and R 7 each represent a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, or represents an alkoxy group, and n represents an integer of 2 or more.
  • the polymer exhibiting negative birefringence is not limited to the above, and for example, a cyclic olefin copolymer disclosed in JP-A-2005-350544 can also be used. Furthermore, compositions containing polymers and inorganic fine particles, as disclosed in JP-A-2005-156862, JP-A-2005-227427, etc., can also be preferably used. Further, these can be modified by copolymerization, branching, cross-linking, molecular terminal modification (or capping), stereoregular modification, and the like.
  • the resin composition forming the second retardation layer may further contain any appropriate additive as necessary.
  • additives include plasticizers, heat stabilizers, light stabilizers, lubricants, antioxidants, ultraviolet absorbers, flame retardants, colorants, antistatic agents, compatibilizers, cross-linking agents, thickeners, etc. is mentioned.
  • the type and content of the additive can be appropriately set according to the purpose.
  • the content of the additive is typically about 3 to 10 parts by weight per 100 parts by weight of the total solid content of the resin composition. If the content of the additive is excessively high, the transparency of the polymer film may be impaired, or the additive may exude from the surface of the polymer film.
  • any appropriate molding method can be adopted as the method for molding the second retardation layer.
  • Examples thereof include compression molding, transfer molding, injection molding, extrusion molding, blow molding, powder molding, FRP molding, solvent casting, and the like.
  • the extrusion molding method and the solvent casting method are preferably used. This is because a retardation film having high smoothness and good optical uniformity can be obtained.
  • the resin composition containing the above thermoplastic resin, plasticizer, additives, etc. is heated and melted, and this is extruded into a thin film on the surface of a casting roll using a T-die or the like, It is a method of forming a film by cooling.
  • a concentrated solution (dope) obtained by dissolving the above resin composition in a solvent is degassed and cast uniformly in a thin film on the surface of a metal endless belt or rotating drum, or a plastic substrate.
  • a method of forming a film by evaporating a solvent can be appropriately set according to the composition and type of the resin to be used, the molding method, and the like.
  • Adhesive layer Any appropriate adhesive can be used as an adhesive that constitutes the adhesive layer (adhesive layer between the image display device) provided as the outermost layer.
  • adhesives include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, polyvinyl alcohol-based adhesives, polyvinylpyrrolidone-based adhesives, polyacrylamide-based adhesives, A cellulose-based pressure-sensitive adhesive and the like are included.
  • these pressure-sensitive adhesives those having excellent optical transparency, appropriate wettability, cohesiveness, and adhesion properties, and excellent weather resistance and heat resistance are preferably used.
  • Acrylic pressure-sensitive adhesives are preferably used as those exhibiting such characteristics.
  • image Display Device The polarizing plate with a retardation layer according to the above items A to E can be applied to an image display device. Accordingly, embodiments of the present invention include image display devices using such retardation layer-attached polarizing plates. Typical examples of image display devices include liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices).
  • An image display device according to an embodiment of the present invention includes the retardation layer-attached polarizing plate according to the above items A to E on the viewing side thereof.
  • the retardation layer-attached polarizing plate is laminated so that the retardation layer is on the image display cell (for example, liquid crystal cell, organic EL cell, inorganic EL cell) side (so that the polarizer is on the viewing side).
  • Thickness The thickness of 10 ⁇ m or less was measured using an interferometric film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). A thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”).
  • Hue a* value and hue b* value at measurement positions A, B and C were measured using a spectrophotometer (manufactured by Konica Minolta, product name: CM-26d, light source D65). Plot the hue a* value and hue b* value of each measurement position, compare the results of measurement position A and measurement position B, and the result of measurement position B and measurement position C, respectively, and find that the hue difference is large (plot The value of the one with the larger distance between the two was taken as the hue unevenness of each sample.
  • Phase difference change value RS A 15 mm wide and 200 mm long piece was cut from the polarizing plate with a retardation layer obtained in Examples and Comparative Examples to obtain a sample. Using a tensiometer (manufactured by MYCARBON, product name: Digital Luggage Scale), tension was applied to the obtained sample in the longitudinal direction. At tension levels of 0 kg, 0.5 kg, 1 kg, 1.5 kg, and 2 kg, an in-plane phase difference (Re (550)) was measured using a phase difference measuring device (manufactured by Oji Instruments Co., Ltd., product name: KOBRA-WPR). was measured. An approximate straight line was obtained from the Re(550) value measured at each tension, and the slope of the approximate straight line was taken as the phase difference change value RS.
  • a tensiometer manufactured by MYCARBON, product name: Digital Luggage Scale
  • the weight ratio of iodine and potassium iodide is 1:7 and the iodine concentration is adjusted so that the single transmittance of the resulting polarizer is 45.0%. while stretching to 1.4 times.
  • a two-step cross-linking treatment was adopted for the cross-linking treatment, and in the first-step cross-linking treatment, the film was stretched 1.2 times while being treated in an aqueous solution of boric acid and potassium iodide at 40°C.
  • the boric acid content of the aqueous solution for the first-stage cross-linking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the film was stretched 1.6 times while being treated in an aqueous solution of boric acid and potassium iodide at 65°C.
  • the boric acid content of the aqueous solution for the second-stage cross-linking treatment was 3.7% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed with an aqueous solution of potassium iodide at 20°C.
  • the potassium iodide content of the aqueous solution for the cleaning treatment was 3.1% by weight.
  • the drying treatment was performed at 70° C. for 5 minutes to obtain a polarizer.
  • HC-COP film was attached as a protective layer to the surface of the polarizer obtained above (the surface opposite to the resin substrate) via an ultraviolet curable adhesive. Specifically, the curable adhesive was applied so as to have a total thickness of 1.0 ⁇ m, and was bonded using a roll machine. After that, UV rays were applied from the protective layer side to cure the adhesive.
  • the HC-COP film is a film in which a hard coat (HC) layer (thickness 2 ⁇ m) is formed on a cycloolefin (COP) film (manufactured by Zeon Corporation, product name “ZF12”, thickness 25 ⁇ m), and the COP film was placed on the polarizer side. Then, the resin substrate was peeled off to obtain a polarizing plate having a structure of protective layer (HC layer/COP film)/adhesive layer/polarizer.
  • the solution of the above compound is returned to room temperature, and the solution of the above compound is added with 3 parts by weight of Irgacure 907 (manufactured by BASF Japan), 0.2 parts by weight of Megafac F-554 (manufactured by DIC), and p -0.1 parts by weight of methoxyphenol (MEHQ) was added and further stirred.
  • the solution after stirring was transparent and uniform.
  • the resulting solution was filtered through a 0.20 ⁇ m membrane filter to obtain a polymerizable composition.
  • the polyimide solution for alignment film was applied to a glass substrate having a thickness of 0.7 mm by spin coating, dried at 100° C. for 10 minutes, and then baked at 200° C. for 60 minutes to obtain a coating film.
  • the resulting coating film was rubbed with a commercially available rubbing device to form an alignment film.
  • the polymerizable composition obtained above was applied to the substrate (substantially, the alignment film) by spin coating, and dried at 100° C. for 2 minutes.
  • ultraviolet light is irradiated for 30 seconds at an intensity of 30 mW / cm 2 to form a first retardation layer (thickness 3 ⁇ m) was obtained.
  • the in-plane retardation Re(550) of the first retardation layer was 130 nm.
  • the Re(450)/Re(550) of the first retardation layer was 0.851, indicating reverse dispersion wavelength characteristics.
  • the first retardation layer can function as a ⁇ /4 plate.
  • a biaxially stretched film (thickness: 75 ⁇ m) of polyester (polyethylene-terephthalate/isophthalate copolymer) was used.
  • the prepared dope was applied to the support film so that the film thickness after drying was 5 ⁇ m, and dried at 140°C.
  • the surface of a polyethylene terephthalate (PET) film was rubbed with a rubbing cloth and subjected to orientation treatment.
  • the direction of the orientation treatment was set to be 15° from the direction of the absorption axis of the polarizer when viewed from the viewing side when attached to the polarizing plate.
  • the above liquid crystal coating solution was applied to the alignment-treated surface using a bar coater, and dried by heating at 90° C. for 2 minutes to align the liquid crystal compound.
  • a metal halide lamp was used to irradiate the liquid crystal layer thus formed with light of 1 mJ/cm 2 to cure the liquid crystal layer, thereby forming a liquid crystal alignment fixed layer A on the PET film.
  • a liquid crystal alignment fixed layer B was formed.
  • Example 1 A protective layer (triacetyl cellulose (TAC) film, thickness: 20 ⁇ m) was attached to the polarizer of the polarizing plate obtained in Production Example 1 via an adhesive layer, and protective layer (HC layer/COP film)/adhesive A polarizing plate of layer/polarizer/adhesive layer/protective layer (TAC) was obtained.
  • TAC triacetyl cellulose
  • the liquid crystal alignment fixed layer A and the liquid crystal alignment fixed layer B obtained in Production Example 4 were aligned so that the angle formed by the absorption axis of the polarizer and the slow axis of the alignment fixed layer A was 15°, and the absorption axis of the polarizer and the orientation The transfer (bonding) was performed in this order so that the angle between the solidified layer B and the slow axis was 75°.
  • the oriented fixed layer A and the oriented fixed layer B were each laminated via an ultraviolet curable adhesive (having a thickness of 1 ⁇ m after curing).
  • an ultraviolet curable adhesive (thickness after curing: 1 ⁇ m) is applied to the liquid crystal alignment fixed layer B, the second retardation layer obtained in Production Example 3 is laminated, and the liquid crystal alignment fixed layer A/adhesive layer is laminated.
  • a laminate of /liquid crystal alignment fixed layer B/adhesive layer/second retardation layer was obtained.
  • the TAC-side surface of the obtained polarizing plate and the liquid crystal alignment solid layer A of the laminate were laminated via an acrylic pressure-sensitive adhesive layer (thickness: 5 ⁇ m). Then, the substrate of the second retardation layer was peeled off.
  • an acrylic adhesive (thickness 26 ⁇ m) is applied to the release surface of the substrate of the second retardation layer, and the protective layer (HC layer/COP film)/adhesive layer/polarizer/adhesive layer/protective layer ( TAC)/adhesive layer/first retardation layer (liquid crystal alignment fixed layer A/adhesive layer/liquid crystal alignment fixed layer B)/adhesive layer/second retardation layer/adhesive layer A polarizing plate with a retardation layer was obtained. The obtained polarizing plate was subjected to the above evaluation. Table 1 shows the results.
  • Example 2 A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that the second retardation layer was not laminated. The obtained polarizing plate was subjected to the above evaluation. Table 1 shows the results.
  • the coating solution was applied to the vertically aligned PET substrate using a bar coater, and dried by heating at 80° C. for 4 minutes to align the liquid crystal.
  • the breaking elongation of the obtained retardation layer was 3%.
  • Example 3 A protective layer (triacetyl cellulose (TAC) film, thickness: 20 ⁇ m) was attached to the polarizer of the polarizing plate obtained in Production Example 1 via an adhesive layer, and protective layer (HC layer/COP film)/adhesive A polarizing plate of layer/polarizer/adhesive layer/protective layer (TAC) was obtained.
  • TAC triacetyl cellulose
  • the first retardation layer and the protective layer (TAC) were laminated via an ultraviolet curable adhesive (having a thickness of 1 ⁇ m after curing).
  • an ultraviolet curable adhesive having a thickness of 1 ⁇ m after curing.
  • the TAC-side surface of the obtained polarizing plate and the first retardation layer were laminated via an acrylic pressure-sensitive adhesive layer (thickness: 5 ⁇ m). Then, the substrate of the second retardation layer was peeled off.
  • an acrylic adhesive (thickness 26 ⁇ m) is applied to the release surface of the substrate of the second retardation layer, and the protective layer (HC layer/COP film)/adhesive layer/polarizer/adhesive layer/protective layer ( TAC)/adhesive layer/first retardation layer/adhesive layer/second retardation layer/adhesive layer.
  • the obtained polarizing plate was subjected to the above evaluation. Table 1 shows the results.
  • Example 2 A polarizing plate with a retardation layer was obtained in the same manner as in Example 2, except that the second retardation layer was not laminated. The obtained polarizing plate was subjected to the above evaluation. Table 1 shows the results.
  • the polarizing plate with a retardation layer of the present invention is suitably used for image display devices such as liquid crystal display devices, organic EL display devices and inorganic EL display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

反射色相の面内ムラが抑制された位相差層付偏光板を提供すること。本発明の実施形態の位相差層付偏光板は、偏光子を含む偏光板と、第1の位相差層と、を有する。この位相差層付偏光板の位相差変化値RSは2.0以下であり、該位相差変化値RSは0kg、0.5kg、1kg、1.5kg、および、2kgの張力を付与した状態で測定された該位相差層付偏光板の面内位相差Re(550)の値の近似直線の傾きである。

Description

位相差層付偏光板および該位相差層付偏光板を含む画像表示装置
 本発明は、位相差層付偏光板および該位相差層付偏光板を含む画像表示装置に関する。
 近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられている(例えば、特許文献1)。画像表示装置の薄型化への要望が強くなるに伴い、位相差層付偏光板についても薄型化の要望が強まっている。位相差層付偏光板の薄型化を目的として、位相差板の薄型化が進んでおり、液晶系の材料を用いて作製された位相差板が用いられている。薄型の位相差板は高温条件下において偏光板の寸法収縮が大きくなりやすく、位相差が変化し得る。また、液晶系の材料を用いて形成された位相差層では、より寸法収縮の影響が大きくなり、その結果、反射色相がより変化する場合がある。
特許第3325560号公報
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は反射色相の面内ムラが抑制され、高温耐久性に優れた位相差層付偏光板を提供することにある。
 本発明の実施形態の位相差層付偏光板は、偏光子を含む偏光板と、第1の位相差層と、を有し、該位相差層付偏光板の位相差変化値RSは2.0以下であり、該位相差変化値RSは0kg、0.5kg、1kg、1.5kg、および、2kgの張力を付与した状態で測定された該位相差層付偏光板の面内位相差Re(550)の値の近似直線の傾きである。
 1つの実施形態において、上記位相差層付偏光板は破断伸度が1%以上である第2の位相差層をさらに有する。
 1つの実施形態において、上記第2の位相差層は負の複屈折を示すポリマーを含む樹脂フィルムで構成されるポジティブCプレートである。
 1つの実施形態において、上記負の複屈折を示すポリマーは、芳香環が側鎖に導入されたアクリル系樹脂、芳香環が側鎖に導入されたスチレン系樹脂、芳香環が側鎖に導入されたマレイミド系樹脂からなる群より選択される少なくとも1種である。
 1つの実施形態において、上記第1の位相差の面内位相差Re(550)は、100nm<Re(550)<160nmであり、かつ、Re(450)/Re(550)<1、および、Re(650)/Re(550)>1を満たす。
 1つの実施形態において、上記第1の位相差層の遅相軸と上記偏光子の吸収軸とのなす角度は、40°~50°である。
 1つの実施形態において、上記第1の位相層は液晶化合物の配向固化層Aと液晶化合物の配向固化層Bとの積層構造を有し、該配向固化層Aはλ/2板として機能し、該配向固化層Bはλ/4板として機能する。
 1つの実施形態において、上記液晶化合物の配向固化層Aの遅相軸と上記偏光子の吸収軸とのなす角度は70°~80°であり、かつ、上記液晶化合物の配向固化層Bの遅相軸と上記偏光子の吸収軸とのなす角度は10°~20°である。
 本発明の別の局面においては、画像表示装置が提供される。この画像表示装置は、上記位相差層付偏光板を含む。
 本発明の実施形態によれば、反射色相の面内ムラが抑制され、高温耐久性に優れた位相差層付偏光板を提供することができる。本発明の実施形態によれば、液晶配向固化層である位相差層を含む場合であっても、高温環境下での偏光板の位相差変化が抑制される。そのため、位相差層付偏光板での位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、反射色相の面内ムラが抑制され、優れた高温耐久性を有する位相差層付偏光板を提供し得る。
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。 本発明の別の実施形態による位相差層付偏光板の概略断面図である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
A.位相差層付偏光板の全体構成
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板100は、偏光板10と第1の位相差層20と第2の位相差層30とを視認側からこの順に有する。第2の位相差層30は任意の位相差層であり、省略されていてもよい。また、第2の位相差層30が第1の位相差層20の視認側に配置されていてもよい。偏光板10は、代表的には、偏光子11と、偏光子11の両側に配置された保護層12、13と、を含む。保護層13は省略されていてもよい。位相差層付偏光板を構成する各部材は、任意の適切な接着層(図示せず)を介して積層され得る。接着層の具体例としては、接着剤層、粘着剤層が挙げられる。第1の位相差層20は、好ましくは液晶化合物の配向固化層(以下、単に液晶配向固化層と称する場合がある)である。第2の位相差層30は、好ましくは負の複屈折を示すポリマーを含む樹脂フィルムで構成される。図示例では、第1の位相差層20は単一の層である。本明細書において「液晶配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。
 図2は本発明の別の実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板101は、偏光板10と、第1の位相差層20と、第2の位相差層30とを視認側からこの順に有する。第2の位相差層30は任意の位相差層であり、省略されていてもよい。また、第2の位相差層30が第1の位相差層20の視認側に配置されていてもよい。第1の位相差層20は、好ましくは液晶配向固化層である。第2の位相差層30は、好ましくは負の複屈折を示すポリマーを含む樹脂フィルムで構成される。図示例において、第1の位相差層20は、液晶配向固化層A21と、液晶配向固化層B22との積層構造を有する。第1の位相差層が積層構造を有する場合、液晶配向固化層Aおよび液晶配向固化層Bのいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。第1の位相差層20として積層構造を有する液晶配向固化層を用いた場合であっても、反射色相の面内ムラが抑制され、優れた高温耐久性を有する位相差層付偏光板を提供することができる。
 位相差層付偏光板100、101の位相差変化値RSは2.0以下であり、好ましくは1.9以下であり、より好ましくは1.8以下であり、さらに好ましくは1.7以下である。位相差変化値RSは、例えば、-2.5以上であり、好ましくは-2.4以上であり、より好ましくは-2.3以上である。位相差変化値RSが上記範囲であることにより、反射色相の面内ムラが抑制された位相差層付偏光板を提供することができる。位相差変化値RSは0に近いほど好ましい。本明細書において、位相差変化値RSは0kg、0.5kg、1kg、1.5kg、および、2kgの張力を付与した状態で測定された該位相差層付偏光板の面内位相差Re(550)の値の近似直線の傾きをいう。
 上記のとおり、1つの実施形態において、第1の位相差層は単一の層である。この実施形態において、位相差層付偏光板を矩形に切断し、(i)偏光子の吸収軸と位相差層付偏光板の長辺方向とがなす角度を反時計回りに約45°(約-45°)とし、(ii)該遅相軸と位相差層付偏光板の長辺方向とが対応するように配置した場合において、上記張力を位相差層付偏光板の長辺方向(第1の位相差層の遅相軸と平行する方向)に付与した状態における位相差変化値RSは、好ましくは1.9以下であり、より好ましくは1.8以下であり、さらに好ましくは1.7以下である。位相差変化値RSは0に近いほど好ましい。また、位相差層付偏光板を矩形に切断し、(iii)偏光子の吸収軸と位相差層付偏光板の長辺方向とがなす角度を時計回りに約45°とし、(iv)該遅相軸と位相差層付偏光板の短辺方向とが対応するように配置した場合において、上記張力を位相差層付偏光板の長辺方向(第1の位相差層の遅相軸と直交する方向)に付与した状態における位相差変化値RSは好ましくは-2.5以上であり、好ましくは-2.4以上であり、より好ましくは-2.3以上である。位相差変化値RSは0に近いほど好ましい。
 上記のとおり、1つの実施形態において、第1の位相差層は液晶配向固化層Aと液晶配向固化層Bとの積層構造とを有し、液晶配向固化層Aおよび液晶配向固化層Bのいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。1つの実施形態において、液晶配向固化層Aはλ/2板として機能し、液晶配向固化層Bはλ/4板として機能する。この実施形態において、位相差層付偏光板を矩形に切断し、(v)偏光子の吸収軸と位相差層付偏光板の長辺方向とがなす角度を反時計回りに約45°(約-45°)とし、(vi)液晶配向固化層Aの遅相軸と偏光子の吸収軸とのなす角度を反時計回りに約75°(約-75°)、液晶配向固化層Bの遅相軸と偏光子の吸収軸とのなす角度を反時計回りに約15°(約-15°)とし、(vii)上記張力を位相差層付偏光板の長辺方向(液晶配向固化層Aの遅相軸方向に対し約30°となる方向)に付与した状態における位相差変化値RSは好ましくは1.8以下であり、より好ましくは1.6以下であり、さらに好ましくは1.2以下であり、特に好ましくは1.0以下である。位相差変化値RSは0に近いほど好ましい。また、位相差層付偏光板を矩形に切断し、(viii)偏光子の吸収軸と位相差層付偏光板の長辺方向とがなす角度を時計回りに約45°とし、(ix)液晶配向固化層Aの遅相軸と偏光子の吸収軸とのなす角度を時計回りに約75°、液晶配向固化層Bの遅相軸と偏光子の吸収軸とのなす角度を時計回りに約15°とし、(x)上記張力を位相差層付偏光板の長辺方向(液晶配向固化層Aの遅相軸と約120°となる方向)に付与した状態における位相差変化値RSは好ましくは-1.5以上であり、より好ましくは-1.2以上であり、さらに好ましくは-1.0以上であり、特に好ましくは-0.8以上である。位相差変化値RSは0に近いほど好ましい。
 1つの実施形態において、位相差層付偏光板100、101は粘着剤層が最外層(例えば、図示例の第2の位相差層30の第1の位相差層20が積層されていない面)に設けられ、画像表示装置(実質的には、画像表示セル)に貼り付け可能とされている。実用的には、粘着剤層の表面には、偏光板が使用に供されるまで、はく離ライナーが仮着されていることが好ましい。はく離ライナーを仮着することにより、粘着剤層を適切に保護することができる。
 偏光板の厚みは任意の適切な値に設定され得る。1つの実施形態において、偏光板の厚みは、例えば30μm~150μmであり、好ましくは40μm~100μmであり、さらに好ましくは50μm~80μmである。また、1つの実施形態において、位相差層付偏光板の総厚みは、好ましくは40μm~120μmであり、より好ましくは40μm~110μmであり、さらに好ましくは40μm~100μmである。ある程度の厚みを有する偏光板を含む位相差層付偏光板はこのような厚みを有し得る。このような位相差層付偏光板では高温環境下での偏光板の寸法収縮の影響が大きくなる傾向がある。本発明の実施形態によれば、上記の厚みを有する位相差層付偏光板であっても反射色相の面内ムラが抑制され、優れた高温耐久性を有する位相差層付偏光板を提供することができる。なお、位相差層付偏光板の総厚みとは、偏光板、位相差層(第2の位相差層が存在する場合には、第1の位相差層および第2の位相差層)およびこれらを積層するための接着層の厚みの合計をいう(すなわち、位相差層付偏光板の総厚みは、最外層として設けられる粘着剤層およびその表面に仮着され得るはく離ライナーの厚みを含まない)。
 以下、位相差層付偏光板の構成要素について、より詳細に説明する。
B.偏光板
B-1.偏光子
 偏光子は、代表的には、二色性物質(代表的には、ヨウ素)を含む樹脂フィルムで構成される。樹脂フィルムとしては、偏光子として用いられ得る任意の適切な樹脂フィルムを採用することができる。樹脂フィルムは、代表的には、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムである。樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
 単層の樹脂フィルムから構成される偏光子の具体例としては、PVA系樹脂フィルムにヨウ素による染色処理および延伸処理(代表的には、一軸延伸)が施されたものが挙げられる。上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系樹脂フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系樹脂フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系樹脂フィルムを膨潤させて染色ムラなどを防止することができる。
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる偏光子の光学特性を向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報(特許第5414738号)、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。
 偏光子の厚みは、好ましくは1μm~15μmであり、より好ましくは1μm~10μmであり、さらに好ましくは1μm~8μmであり、特に好ましくは2μm~5μmである。また、1つの実施形態において、偏光子の厚みは、例えば7μm以上であり、また例えば8μm以上であり、また例えば10μm以上であり、また例えば12μm以上であり、また例えば15μm以上である。偏光子の厚みが大きい場合、位相差層付偏光板の寸法収縮が大きくなる傾向がある。本発明の実施形態においては、上記の厚みの偏光子を用いる場合であっても、位相差層付偏光板の面内の反射色相ムラが抑制され得る。偏光子の厚みは、例えば、30μm以下である。
 1つの実施形態において、偏光子のホウ酸含有量は、好ましくは20重量%以下であり、より好ましくは5重量%~20重量%であり、さらに好ましくは10重量%~18重量%である。偏光子のホウ酸含有量がこのような範囲であれば、高温耐久性に優れた位相差層付偏光板を提供することができる。ホウ酸含有量が5重量%未満の場合、偏光子がポリエン化し、耐久性が低下するおそれがある。本発明の実施形態によれば、高温環境に置かれた場合であっても偏光板の寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、反射色相の面内ムラが抑制され、優れた高温耐久性を有する位相差層付偏光板を提供し得る。偏光子のホウ酸含有量は、例えば以下の各工程において用いられる水溶液におけるホウ酸含有量を調整することにより、調整され得る。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸含有量として算出することができる。
Figure JPOXMLDOC01-appb-M000001
 偏光子のヨウ素含有量は、好ましくは2重量%以上であり、より好ましくは2重量%~10重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率Tsは、好ましくは40%~48%であり、より好ましくは41%~46%である。偏光子の偏光度Pは、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
B-2.保護層
 保護層12、13は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
 位相差層付偏光板は、代表的には画像表示装置の視認側に配置され、保護層12は、代表的にはその視認側に配置される。したがって、保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。
 保護層の厚みは、好ましくは10μm~50μm、より好ましくは10μm~30μmである。なお、表面処理が施されている場合、外側保護層(保護層12)の厚みは、表面処理層の厚みを含めた厚みである。
C.第1の位相差層
 第1の位相差層20は好ましくは液晶化合物の配向固化層である。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。また、液晶配向固化層では位相差層付偏光板の高温環境での寸法収縮による位相差変化がより顕著となり得る。本発明の実施形態においては、液晶化合物の配向固化層である位相差層を採用した場合であっても、反射色相の面内ムラが抑制された位相差層付偏光板を提供することができる。第1の位相差層は単一の層であってもよく、2以上の層の積層体であってもよい。第1の位相差層は、代表的には偏光板に反射防止特性を付与するために設けられる。
C-1.単一の層である第1の位相差層
 第1の位相差層20が単一層である場合、単一の層である第1の位相差層はλ/4板として機能し得る。第1の位相差層の面内位相差Re(550)は好ましくは100nmを超えて160nm未満であり、より好ましくは110nm~155nmであり、さらに好ましくは130nm~150nm未満である。
 単一の層である第1の位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。
 第1の位相差層の厚みは好ましくは0.5μm~10μmであり、より好ましくは0.5μm~7μmであり、さらに好ましくは1μm~5μmである。
 第1の位相差層は、好ましくは逆分散波長特性を示す。この場合、Re(550)/Re(650)は好ましくは1を超え、より好ましくは1を超えて1.2以下であり、さらに好ましくは1.01~1.15である。また、第1の位相差層のRe(450)/Re(550)は、好ましくは1未満であり、より好ましくは0.95未満であり、さらに好ましくは0.90未満である。Re(450)/Re(550)は、例えば、0.8以上である。このような構成であれば、非常に優れた反射防止特性を実現することができる。
 第1の位相差層20の遅相軸と偏光子11の吸収軸とのなす角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度がこのような範囲であれば、上記のように第1の位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。
 上記のとおり、第1の位相差層20は好ましくは液晶化合物の配向固化層である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板のさらなる薄型化を実現することができる。
 液晶化合物の配向固化層である位相差層は、重合性液晶化合物を含む組成物を用いて形成され得る。本明細書において組成物に含まれる重合性液晶化合物とは、重合性基を有し、かつ、液晶性を有する化合物をいう。重合性基は、重合反応に関与する基を意味し、好ましくは光重合性基である。ここで、光重合性基とは、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。
 液晶性の発現は、サーモトロピックであってもよく、リオトロピックであってもよい。また、液晶相の構成としてはネマチック液晶であってもよく、スメクチック液晶であってもよい。製造の容易さという観点から、液晶性はサーモトロピックのネマチック液晶が好ましい。
 1つの実施形態において、単一層である位相差層は、下記式(1)で表される液晶化合物を含む組成物を用いて形成される。
-SP-A-D-G-D-Ar-D-G-D-A-SP-L (1)
 LおよびLは、それぞれ独立して、1価の有機基を表し、LおよびLの少なくとも一方は重合性基を表す。1価の有機基としては任意の適切な基が含まれる。LおよびLの少なくとも一方が示す重合性基としては、ラジカル重合性基(ラジカル重合可能な基)が挙げられる。ラジカル重合性基としては、任意の適切なラジカル重合性基を用いることができる。好ましくはアクリロイル基またはメタクリロイル基である。重合速度が速く、生産性向上の観点からアクリロイル基が好ましい。メタクリロイル基も高複屈折性液晶の重合性基として同様に使用できる。
 SPおよびSPは、それぞれ独立して、単結合、直鎖状もしくは分岐鎖状のアルキレン基、または、炭素数1~14の直鎖状もしくは分岐鎖状のアルキレン基を構成する-CH-の1個以上が-O-に置換された2価の連結基を表す。炭素数1~14の直鎖状または分岐鎖状のアルキレン基としては、好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基およびへキシレン基が挙げられる。
 AおよびAは、それぞれ独立して、脂環式炭化水素基または芳香族環置換基を表す。AおよびAは好ましくは炭素数6以上の芳香族環置換基または炭素数6以上のシクロアルキレン環である。
 D、D、DおよびDは、それぞれ独立して、単結合または二価の連結基を表す。具体的には、D、D、DおよびDは、単結合、-O-CO-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-、または、-CO-NR-を表す。ただし、D、D、DおよびDの少なくとも一つは-O-CO-を表す。なかでも、Dが-O-CO-であることが好ましく、DおよびDが-O-CO-であることがより好ましい。D1およびDは、好ましくは、単結合である。R、R、RおよびRは、それぞれ独立して、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。
 GおよびGは、それぞれ独立して、単結合または脂環式炭化水素基を表す。具体的には、GおよびGは無置換または置換された炭素数5~8の2価の脂環式炭化水素基を表してもよい。また、脂環式炭化水素基を構成する-CH-の1個以上が-O-、-S-または-NH-で置換されていてもよい。GおよびGは、好ましくは単結合を表す。
 Arは、芳香族炭化水素環または芳香族複素環を表す。Arは、例えば、下記式(Ar-1)~(Ar-6)で表される基からなる群より選択される芳香族環を表す。なお、下記式(Ar-1)~(Ar-6)中、*1はDとの結合位置を表し、*2はDとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000002
 式(Ar-1)中、Qは、NまたはCHを表し、Qは、-S-、-O-、または、-N(R)-を表す。Rは、水素原子または炭素数1~6のアルキル基を表す。
 式(Ar-1)~(Ar-6)中、Z、ZおよびZは、それぞれ独立して、水素原子、炭素数1~20の1価の脂肪族炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR、または、-SRを表す。R~Rは、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、ZおよびZは、互いに結合して環を形成してもよい。環は、脂環式、複素環、および、芳香族環のいずれであってもよく、好ましくは芳香族環である。形成される環には、置換基が置換していてもよい。
 式(Ar-2)および(Ar-3)中、AおよびAは、それぞれ独立して、-O-、-N(R)-、-S-、および、-CO-からなる群より選択される基を表し、Rは、水素原子または置換基を表す。Rが示す置換基としては、上記式(Ar-1)中のYが有していてもよい置換基と同じものが挙げられる。
 式(Ar-2)中、Xは、水素原子もしくは無置換または置換基を有する第14族~第16族の非金属原子を表す。Xが表す第14族~第16族の非金属原子としては、例えば、酸素原子、硫黄原子、無置換または置換基を有する窒素原子、無置換または置換基を有する炭素原子が挙げられる。置換基としては、上記式(Ar-1)中のYが有していてもよい置換基と同じものが挙げられる。
 式(Ar-3)中、DおよびDは、それぞれ独立して、単結合、-O-CO-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-、または、-CO-NR-を表す。R、R、RおよびRは、上記のとおりである。
 式(Ar-3)中、SPおよびSPは、それぞれ独立して、単結合、炭素数1~12の直鎖状もしくは分岐鎖状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐鎖状のアルキレン基を構成する-CH-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、重合性基を表す。
 式(Ar-3)中、LおよびLは、それぞれ独立して、1価の有機基を表し、LおよびLならびに上記式(1)中のLおよびLの少なくとも1つが重合性基を表す。
 式(Ar-4)~(Ar-6)中、Axは、芳香族炭化水素環および芳香族複素環からなる群より選ばれる少なくとも1つの芳香族環を有する、炭素数2~30の有機基を表す。式(Ar-4)~(Ar-6)中、Axは、好ましくは、芳香族複素環を有し、より好ましくはベンゾチアゾール環を有する。式(Ar-4)~(Ar-6)中、Ayは、水素原子、無置換または置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群より選択される少なくとも1つの芳香族環を有する、炭素数2~30の有機基を表す。式(Ar-4)~(Ar-6)中、Ayは、好ましくは水素原子を表す。
 式(Ar-4)~(Ar-6)中、Qは、水素原子、または、無置換または置換基を有していてもよい炭素数1~6のアルキル基を表す。式(Ar-4)~(Ar-6)中、Qは、好ましくは水素原子を表す。
 このようなArのなかでは、好ましくは、上記式(Ar-4)または上記式(Ar-6)で表される基(原子団)が挙げられる。
 式(1)で表される液晶化合物の具体例は国際公開第2018/123551号公報に開示されている。当該公報の記載は本明細書に参考として援用される。これらの化合物は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 液晶化合物を含む組成物は、好ましくは重合開始剤を含む。重合開始剤としては、任意の適切な重合剤が用いられる。好ましくは紫外線照射によって重合反応を開始可能な光重合開始剤である。光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、オキサジアゾール化合物(米国特許第4212970号明細書記載)、および、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)が挙げられる。当該公報の記載は本明細書に参考として援用される。重合開始剤は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 液晶化合物を含む組成物は、位相差層を形成する作業性の観点から、溶媒を含むことが好ましい。溶媒としては任意の適切な溶媒を用いることができ、好ましくは有機溶媒が用いられる。
 液晶化合物を含む組成物は、任意の適切な他の成分をさらに含む。例えば、フェノール系酸化防止剤などの酸化防止剤、上記以外の液晶化合物、レベリング剤、界面活性剤、チルト角制御剤、配向助剤、可塑剤、および、架橋剤などが挙げられる。
 液晶配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む組成物(塗工液)を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された液晶配向固化層は、偏光板の表面に転写され得る。
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。
 配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。
C-2.積層構造を有する第1の位相差層
 1つの実施形態において、第1の位相差層は液晶化合物の配向固化層A(以下、A層ともいう)と液晶化合物の配向固化層B(以下、B層ともいう)との積層構造を有する。第1の位相差層が積層構造を有する場合、液晶配向固化層Aおよび液晶配向固化層Bのいずれか一方がλ/4板として機能し、他方がλ/2板として機能し得る。例えば、液晶配向固化層Aがλ/2板として機能し、液晶配向固化層Bがλ/4板として機能する場合、液晶配向固化層AのRe(550)は、好ましくは200nm~300nmであり、より好ましくは200nm~270nmであり、さらに好ましくは210nm~260nmであり、特に好ましくは230nm~260nmである。液晶配向固化層BのRe(550)は、好ましくは100nm~200nmであり、より好ましくは100nm~170nmであり、さらに好ましくは110nm~150nmであり、特に好ましくは110nm~130nmである。
 A層の厚みは、例えば、λ/2板の所望の面内位相差が得られるよう調整され得る。A層の厚みは、例えば2.0μm~4.0μmである。B層の厚みは、例えば、λ/4板の所望の面内位相差が得られるよう調整され得る。B層の厚みは、例えば0.5μm~2.5μmである。本実施形態においては、A層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは12°~16°である。また、B層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは72°~76°である。第1の位相差層が積層構造を有する場合、それぞれの層(例えば、A層およびB層)は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。
 位相差層(積層構造を有する場合には少なくとも一つの層)は、代表的には、屈折率特性がnx>ny=nzの関係を示す。なお、「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。
 この実施形態において、第1の位相差層に用いられる上記液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、より好ましくは50℃~100℃であり、さらに好ましくは60℃~90℃である。
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、ネマチック性液晶モノマーが好ましい。液晶化合物の具体例および配向固化層の形成方法の詳細は、上記のとおりである。
 液晶配向固化層Aがλ/2板として機能し、液晶配向固化層Bがλ/4板として機能する場合を説明してきたが、液晶配向固化層Aをλ/4板とし、液晶配向固化層Bをλ/2板としてもよい。また、液晶配向固化層Aの遅相軸と偏光子の吸収軸とのなす角度を約75°とし、液晶配向固化層Bの遅相軸と偏光子の吸収軸とのなす角度を約15°としてもよい。
D.第2の位相差層
 1つの実施形態において、本発明の実施形態の位相差層付偏光板は好ましくは第2の位相差層をさらに有する。第2の位相差層をさらに有することにより、反射色相の面内ムラが抑制され、優れた高温耐久性を有する位相差層付偏光板を提供することができる。
 第2の位相差層は好ましくは破断伸度が1%以上であり、より好ましくは2%以上であり、さらに好ましくは3%以上である。第2の位相差層の破断伸度は、例えば5%以下である。第2の位相差層として、破断伸度が1%以上である位相差層を用いることにより、反射色相の面内ムラが抑制され、優れた高温耐久性を有する位相差層付偏光板を提供することができる。本明細書において、位相差層の破断伸度は熱機械分析装置(TMA)を用いることにより測定することができる。
 第2の位相差層30は好ましくは負の複屈折を示すポリマーを含む樹脂フィルムで構成される。ここで、「負の複屈折を示す」とは、ポリマーを延伸等により配向させた場合に、その延伸方向の屈折率が相対的に小さくなることをいう。換言すると、延伸方向と直交する方向の屈折率が大きくなることをいう。負の複屈折を示すポリマーを含む樹脂フィルムで構成されていることにより、第2の位相差層は偏光板の寸法収縮による位相差変化が小さくなり得る。そのため、より反射色相の面内ムラが抑制され、優れた高温耐久性を有する位相差層付偏光板を提供し得る。
 第2の位相差層は、好ましくは屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートである。第2の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-10nm~-200nm、より好ましくは-20nm~-180nm、さらに好ましくは-30nm~-160nm、特に好ましくは-40nm~-140nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の位相差層の面内位相差Re(550)は10nm未満であり得る。
 第2の位相差層30の厚みは任意の適切な厚みに設定され得る。第2位相差層の厚みは、好ましくは1μm~30μmであり、より好ましくは2μm~20μmであり、さらに好ましくは3μm~8μmである。
 負の複屈折を示すポリマーとしては、例えば、芳香環および/またはカルボニル基などの分極異方性の大きい化学結合や官能基が、側鎖に導入されたポリマーが挙げられる。具体的には、アクリル系樹脂、スチレン系樹脂、マレイミド系樹脂等が挙げられる。好ましくは、芳香環が側鎖に導入されたアクリル系樹脂、芳香環が側鎖に導入されたスチレン系樹脂、および、芳香環が側鎖に導入されたマレイミド系樹脂からなる群より選択される少なくとも1種のポリマーを用いることができ、より好ましくは芳香環が側鎖に導入されたスチレン系樹脂を用いることができる。負の複屈折を示すポリマーは1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 アクリル系樹脂は、例えば、アクリレート系モノマーを付加重合させることにより得られ得る。アクリル系樹脂としては、例えば、ポリメチルメタクリレート(PMMA)、ポリブチルメタクリレート、ポリシクロヘキシルメタクリレート等が挙げられる。
 スチレン系樹脂は、例えば、スチレン系モノマーを付加重合させることにより得られ得る。スチレン系モノマーとしては、例えば、スチレン、α―メチルスチレン、o-メチルスチレン、p-メチルスチレン、p-クロロスチレン、p-ニトロスチレン、p-アミノスチレン、p-カルボキシスチレン、p-フェニルスチレン、2,5-ジクロロスチレン、p-t-ブチルスチレン等が挙げられる。
 マレイミド系樹脂は、例えば、マレイミド系モノマーを付加重合させることにより得られ得る。マレイミド系モノマーとしては、例えば、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(2-エチルフェニル)マレイミド、N-(2-プロピルフェニル)マレイミド、N-(2-イソプロピルフェニル)マレイミド、N-(2,6-ジメチルフェニル)マレイミド、N-(2,6-ジプロピルフェニル)マレイミド、N-(2,6-ジイソプロピルフェニル)マレイミド、N-(2-メチル-6-エチルフェニル)マレイミド、N-(2-クロロフェニル)マレイミド、N-(2,6-ジクロロフェニル)マレイミド、N-(2-ブロモフェニル)マレイミド、N-(2,6-ジブロモフェニル)マレイミド、N-(2-ビフェニル)マレイミド、N-(2-シアノフェニル)マレイミド等が挙げられる。マレイミド系モノマーは、例えば、東京化成工業(株)等から入手することができる。
 付加重合において、重合後に、側鎖を置換したり、マレイミド化やグラフト化反応させたりすること等により、得られる樹脂の複屈折特性を制御することもできる。
 負の複屈折を示すポリマーは、他のモノマーが共重合されていてもよい。他のモノマーが共重合されることにより、脆性や成形加工性、耐熱性が改善され得る。当該他のモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、1,3-ブタジエン、2-メチル-1-ブテン、2-メチル-1-ペンテン、1-ヘキセン等のオレフィン;アクリロニトリル;アクリル酸メチル、メタクリル酸メチル等の(メタ)アクリレート;無水マレイン酸;酢酸ビニル等のビニルエステル等が挙げられる。
 負の複屈折を示すポリマーが、上記スチレン系モノマーと上記他のモノマーとの共重合体である場合、スチレン系モノマーの配合率は、好ましくは50モル%~80モル%である。上記負の複屈折を示すポリマーが、上記マレイミド系モノマーと上記他のモノマーとの共重合体である場合、マレイミド系モノマーの配合率は、好ましくは2モル%~50モル%である。このような範囲で配合させることにより、靭性および成形加工性に優れた高分子フィルムが得られ得る。
 上記負の複屈折を示すポリマーとしては、好ましくは、スチレン-無水マレイン酸共重合体、スチレン-アクリロニトリル共重合体、スチレン-(メタ)アクリレート共重合体、スチレン-マレイミド共重合体、ビニルエステル-マレイミド共重合体、オレフィン-マレイミド共重合体等が用いられる。これらは単独でまたは2種以上組み合わせて用いることができる。これらのポリマーは高い負の複屈折を示し、かつ、耐熱性に優れ得る。これらのポリマーは、例えば、ノヴァ・ケミカル・ジャパン、および、荒川化学工業(株)等から入手することができる。
 上記負の複屈折を示すポリマーとして、好ましくは、下記一般式(II)で表わされる繰り返し単位を有するポリマーも用いられる。このようなポリマーは、より一層、高い負の複屈折を示し、かつ、耐熱性、機械的強度に優れ得る。このようなポリマーは、例えば、出発原料のマレイミド系モノマーのN置換基として、少なくともオルト位に置換基を有するフェニル基を導入したN-フェニル置換マレイミドを用いることにより得ることができる。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(II)中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、カルボン酸、カルボン酸エステル、水酸基、ニトロ基、または炭素数1~8の直鎖もしくは分枝のアルキル基もしくはアルコキシ基を表し(ただし、RおよびRは、同時に水素原子ではない)、RおよびRは、水素原子または炭素数1~8の直鎖もしくは分枝のアルキル基もしくはアルコキシ基を表し、nは、2以上の整数を表す。
 上記負の複屈折を示すポリマーとしては、上記に限定されず、例えば、特開2005-350544号公報等に開示されているような環状オレフィン系共重合体等も用いることができる。さらに、特開2005-156862号公報、特開2005-227427号公報等に開示されているような、ポリマーと無機微粒子とを含む組成物も好適に用いることができる。さらに、これらを共重合、分枝、架橋、分子末端修飾(または封止)、および立体規則変性等によって変性して用いることもできる。
 第2の位相差層を形成する樹脂組成物は、必要に応じて、任意の適切な添加剤をさらに含有し得る。添加剤の具体例としては、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、増粘剤等が挙げられる。添加剤の種類および含有量は、目的に応じて適宜設定され得る。添加剤の含有量は、代表的には、樹脂組成物の全固形分100重量部に対して3~10重量部程度である。添加剤の含有量が過度に多くなると、高分子フィルムの透明性が損なわれたり、添加剤が高分子フィルム表面から滲み出したりする場合がある。
 第2の位相差層の成形方法としては、任意の適切な成形方法が採用され得る。例えば、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、ソルベントキャスティング法等が挙げられる。これらの中でも、押出成形法、ソルベントキャスティング法が好ましく用いられる。平滑性が高く、かつ、良好な光学的均一性を有する位相差フィルムを得ることができるからである。具体的には、押出成形法は、上記熱可塑性樹脂、可塑剤、添加剤等を含む樹脂組成物を加熱して溶融し、これをTダイ等によりキャスティングロールの表面に薄膜状に押し出して、冷却させてフィルムを成形する方法である。ソルベントキャスティング法は、上記樹脂組成物を溶剤に溶解させた濃厚溶液(ドープ)を脱泡し、金属性のエンドレスベルトもしくは回転ドラム、またはプラスチック基材等の表面に均一に薄膜状に流延し、溶剤を蒸発させてフィルムを成形する方法である。なお、成形条件は、用いる樹脂の組成や種類、成形加工法等に応じて、適宜設定され得る。
E.粘着剤層
 最外層として設けられる粘着剤層(画像表示装置との間の粘着剤層)を構成する粘着剤としては、任意の適切な粘着剤を用いることができる。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。
F.画像表示装置
 上記A項からE項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明の実施形態は、そのような位相差層付偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からE項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光子が視認側となるように)積層されている。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 10μm以下の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)反射色相ムラ
 実施例および比較例で得られた位相差層付偏光板を、縦60mm、横130mmに切り出し、試料とした。試料の縦30mm、横25mmの部分を測定位置A、縦30mm、横65mmの部分を測定位置B、縦30mm、横105mmの部分を測定位置Cとそれぞれ規定した。
 次いで、位相差層付偏光板の粘着剤層を厚さ0.5mmのガラス板(80mm×150mm)に貼り合わせ積層した。その後、ガラス板に貼り合わせた位相差層付偏光板を80℃の条件下に500時間置いた。分光測色計(コニカミノルタ社製、製品名:CM-26d、光源D65)を用いて測定位置A、BおよびCの色相a*値および色相b*値をそれぞれ測定した。それぞれの測定位置の色相a*値および色相b*値をプロットし、測定位置Aと測定位置Bの結果、および、測定位置Bと測定位置Cの結果をそれぞれ比較し、色相差が大きい(プロット間の距離が大きい)方の値を各試料の色相ムラとした。
(3)位相差変化値RS
 実施例および比較例で得られた位相差層付偏光板を幅15mm、長さ200mmに切り出し、試料とした。張力計(MYCARBON社製、製品名:Digital Luggage Scale)を用いて、得られた試料の長さ方向に張力を付与した。張力0kg、0.5kg、1kg、1.5kg、2kgの段階で、位相差測定装置(王子計測器株式会社製、製品名:KOBRA-WPR)を用いて面内位相差(Re(550))を測定した。各張力で測定されたRe(550)の値から近似直線を求め、近似直線の傾きを位相差変化値RSとした。
(4)破断伸度
 製造例3および製造例5で作製した第2の位相差層を幅4mm、長さ2cmの短冊状に切り出し、試料として用いた。熱機械分析装置(TMA)(商品名「TMA Q400」,TAインスツルメント社製)を使用して行う引張試験で破断伸度(%)を測定した。測定はチャック間距離8mm、引張速度0.1%歪/分の条件でおこなった。
[製造例1:偏光板の作製]
1.偏光子の作製
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。さらに、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は3.7重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は3.1重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
2.偏光板の作製
 上記で得られた偏光子の表面(樹脂基材とは反対側の面)に、保護層としてHC-COPフィルムを、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線を保護層側から照射して接着剤を硬化させた。なお、HC-COPフィルムは、シクロオレフィン(COP)フィルム(日本ゼオン社製、製品名「ZF12」、厚み25μm)にハードコート(HC)層(厚み2μm)が形成されたフィルムであり、COPフィルムが偏光子側となるようにして貼り合わせた。次いで、樹脂基材を剥離し、保護層(HC層/COPフィルム)/接着剤層/偏光子の構成を有する偏光板を得た。
[製造例2:第1の位相差層A(単一の第1の位相差層)の作製]
 下記式(I)で示される化合物55重量部と、下記式(II)で示される化合物25重量部と、式(III)で示される化合物20重量部とを、シクロペンタノン(CPN)400重量部に加えた後、60℃に加温、撹拌して溶解させた。その後、上記した化合物の溶液を室温に戻し、上記した化合物の溶液に、イルガキュア907(BASFジャパン社製)3重量部と、メガファックF-554(DIC社製)0.2重量部と、p-メトキシフェノール(MEHQ)0.1重量部とを加えて、さらに撹拌した。撹拌後の溶液は、透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、重合性組成物を得た。
 また、配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜を、市販のラビング装置によってラビング処理し、配向膜を形成した。
 次いで、基材(実質的には、配向膜)に、上記で得られた重合性組成物をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して、液晶化合物の配向固化層である第1の位相差層(厚み3μm)を得た。第1の位相差層の面内位相差Re(550)は130nmであった。また、第1の位相差層のRe(450)/Re(550)は0.851であり、逆分散波長特性を示した。第1の位相差層は、λ/4板として機能し得る。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
[製造例3:第2の位相差層の作製]
 攪拌機、冷却管、窒素導入管および温度計を備えたオートクレーブに、ヒドロキシプロピルメチルセルロース(信越化学製、商品名:メトローズ60SH-50)48重量部、蒸留水15601重量部、フマル酸ジイソプロピル8161重量部、アクリル酸3-エチル-3-オキセタニルメチル240重量部および重合開始剤であるt-ブチルパーオキシピバレート45重量部を入れ、窒素バブリングを1時間行った後、攪拌しながら49℃で24時間保持することにより、ラジカル懸濁重合を行なった。次いで、室温まで冷却し、生成したポリマー粒子を含む懸濁液を遠心分離した。得られたポリマーを蒸留水で2回及びメタノールで2回洗浄した後、減圧乾燥した。得られたフマル酸エステル系樹脂を、トルエン・メチルエチルケトン混合溶液(トルエン/メチルエチルケトン50重量%/50重量%)に溶解して20%溶液とした。さらに、フマル酸エステル系樹脂100重量部に対し、可塑剤としてトリブチルトリメリテート5重量部を添加して、ドープを調製した。支持体フィルムとして、ポリエステル(ポリエチレン-テレフタレート/イソフタレート共重合体)の二軸延伸フィルム(厚み75μm)を用いた。支持体フィルムに調製したドープを、乾燥後の膜厚が5μmになるように塗布して、140℃で乾燥させた。乾燥後の塗膜(ポジティブCプレート)は、Re(550)≒0nm、Rth(550)=-75nmであった。
[製造例4:第1の位相差層B(積層構造を有する第1の位相差層)の作製]
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000006
 ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光子の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層Aを形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率特性を示した。
 塗工厚みを変更したこと、および、配向処理方向を偏光子の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層Bを形成した。液晶配向固化層Bの厚みは1.5μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率特性を示した。
[実施例1]
 製造例1で得られた偏光板の偏光子に接着剤層を介して保護層(トリアセチルセルロース(TAC)フィルム、厚み:20μm)を貼り合わせ、保護層(HC層/COPフィルム)/接着剤層/偏光子/接着剤層/保護層(TAC)の偏光板を得た。
 別途、製造例4で得られた液晶配向固化層Aおよび液晶配向固化層Bを偏光子の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光子の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして、この順に転写(貼り合わせ)を行った。配向固化層Aと、配向固化層Bとはそれぞれ紫外線硬化型接着剤(硬化後厚み1μm)を介して積層した。
 次いで、液晶配向固化層Bに紫外線硬化型接着剤(硬化後の厚み1μm)を塗布し、製造例3で得られた第2の位相差層を積層し、液晶配向固化層A/接着剤層/液晶配向固化層B/接着剤層/第2の位相差層の積層体を得た。
 次いで、得られた偏光板のTAC側表面と上記積層体の液晶配向固化層Aとをアクリル系粘着剤層(厚み5μm)を介して積層した。次いで、第2の位相差層の基材を剥離した。その後、第2の位相差層の基材剥離面にアクリル系粘着剤(厚み26μm)を塗布し、保護層(HC層/COPフィルム)/接着剤層/偏光子/接着剤層/保護層(TAC)/接着剤層/第1の位相差層(液晶配向固化層A/接着剤層/液晶配向固化層B)/接着剤層/第2の位相差層/粘着剤層の構成を有する位相差層付偏光板を得た。得られた偏光板を上記の評価に供した。結果を表1に示す。
[実施例2]
 第2の位相差層を積層しなかったこと以外は実施例1と同様にして、位相差層付偏光板を得た。得られた偏光板を上記の評価に供した。結果を表1に示す。
[製造例5:液晶配向固化層であるポジティブCプレートの作製]
 下記化学式(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、垂直配向処理を施したPET基材に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、nz>nx=nyの屈折率特性を示す位相差層(厚み3μm)を基材上に形成した。得られた位相差層の破断伸度は3%であった。
Figure JPOXMLDOC01-appb-C000007
(比較例1)
 製造例3で得られた第2の位相差層に代えて、製造例5で得られた位相差層を用いた以外は実施例1と同様にして位相差層付偏光板を得た。得られた偏光板を上記の評価に供した。結果を表1に示す。
[実施例3]
 製造例1で得られた偏光板の偏光子に接着剤層を介して保護層(トリアセチルセルロース(TAC)フィルム、厚み:20μm)を貼り合わせ、保護層(HC層/COPフィルム)/接着剤層/偏光子/接着剤層/保護層(TAC)の偏光板を得た。
 別途、製造例2で得られた第1の位相差層Aを、偏光子の吸収軸と第1の位相差層Aの遅相軸とのなす角度が45°になるようにして上記偏光板の保護層(TAC)と貼り合わせた。第1の位相差層と保護層(TAC)とは、紫外線硬化型接着剤(硬化後厚み1μm)を介して積層した。
 次いで、得られた偏光板のTAC側表面と第1の位相差層とをアクリル系粘着剤層(厚み5μm)を介して積層した。次いで、第2の位相差層の基材を剥離した。その後、第2の位相差層の基材剥離面にアクリル系粘着剤(厚み26μm)を塗布し、保護層(HC層/COPフィルム)/接着剤層/偏光子/接着剤層/保護層(TAC)/接着剤層/第1の位相差層/接着剤層/第2の位相差層/粘着剤層の構成を有する位相差層付偏光板を得た。得られた偏光板を上記の評価に供した。結果を表1に示す。
(比較例2)
 第2の位相差層を積層しなかったこと以外は実施例2と同様にして位相差層付偏光板を得た。得られた偏光板を上記の評価に供した。結果を表1に示す。
(比較例3)
 製造例3で得られた第2の位相差層に代えて、製造例5で得られた位相差層を用いた以外は実施例1と同様にして位相差層付偏光板を得た。得られた偏光板を上記の評価に供した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
[評価]
 表1から明らかなように、本発明の実施例の位相差層付偏光板は、反射色相の面内ムラが抑制されていた。
 本発明の位相差層付偏光板は、液晶表示装置、有機EL表示装置および無機EL表示装置等の画像表示装置に好適に用いられる。
 10   偏光板
 11   偏光子
 12   保護層
 13   保護層
 20   第1の位相差層
 30   第2の位相差層
100   位相差層付偏光板
101   位相差層付偏光板

Claims (9)

  1.  偏光子を含む偏光板と、第1の位相差層と、を有する位相差層付偏光板であって、
     該位相差層付偏光板の位相差変化値RSが2.0以下であり、
     該位相差変化値RSが0kg、0.5kg、1kg、1.5kg、および、2kgの張力を付与した状態で測定された該位相差層付偏光板の面内位相差Re(550)の値の近似直線の傾きである、位相差層付偏光板。
  2.  破断伸度が1%以上である第2の位相差層をさらに有する、請求項1に記載の位相差層付偏光板。
  3.  前記第2の位相差層が負の複屈折を示すポリマーを含む樹脂フィルムで構成されるポジティブCプレートである、請求項1または2に記載の位相差層付偏光板。
  4.  前記負の複屈折を示すポリマーが、芳香環が側鎖に導入されたアクリル系樹脂、芳香環が側鎖に導入されたスチレン系樹脂、芳香環が側鎖に導入されたマレイミド系樹脂からなる群より選択される少なくとも1種である、請求項3に記載の位相差層付偏光板。
  5.  前記第1の位相差層が液晶化合物の配向固化層であり、該第1の位相差層の面内位相差Re(550)が、100nm<Re(550)<160nmであり、かつ、Re(450)/Re(550)<1、および、Re(650)/Re(550)>1を満たす、請求項1から4のいずれかに記載の位相差層付偏光板。
  6.  前記第1の位相差層の遅相軸と前記偏光子の吸収軸とのなす角度が、40°~50°である、請求項5に記載の位相差層付偏光板。
  7.  前記第1の位相層が液晶化合物の配向固化層Aと液晶化合物の配向固化層Bとの積層構造を有し、
     該配向固化層Aがλ/2板として機能し、該配向固化層Bがλ/4板として機能する、請求項1から4のいずれかに記載の位相差層付偏光板。
  8.  前記液晶化合物の配向固化層Aの遅相軸と前記偏光子の吸収軸とのなす角度が70°~80°であり、かつ、前記液晶化合物の配向固化層Bの遅相軸と前記偏光子の吸収軸とのなす角度が10°~20°である、請求項7に記載の位相差層付偏光板。
  9.  請求項1から8のいずれかに記載の位相差層付偏光板を含む、画像表示装置。
PCT/JP2022/025917 2021-11-15 2022-06-29 位相差層付偏光板および該位相差層付偏光板を含む画像表示装置 WO2023084838A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280068692.6A CN118119867A (zh) 2021-11-15 2022-06-29 带相位差层的偏振片以及包含该带相位差层的偏振片的图像显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021185969A JP2023073125A (ja) 2021-11-15 2021-11-15 位相差層付偏光板および該位相差層付偏光板を含む画像表示装置
JP2021-185969 2021-11-15

Publications (1)

Publication Number Publication Date
WO2023084838A1 true WO2023084838A1 (ja) 2023-05-19

Family

ID=86335569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025917 WO2023084838A1 (ja) 2021-11-15 2022-06-29 位相差層付偏光板および該位相差層付偏光板を含む画像表示装置

Country Status (4)

Country Link
JP (1) JP2023073125A (ja)
CN (1) CN118119867A (ja)
TW (1) TW202323952A (ja)
WO (1) WO2023084838A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068816A (ja) * 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
WO2013191152A1 (ja) * 2012-06-21 2013-12-27 日東電工株式会社 偏光板および有機elパネル
WO2017094624A1 (ja) * 2015-12-02 2017-06-08 日東電工株式会社 光学積層体および画像表示装置
KR20170068861A (ko) * 2015-12-10 2017-06-20 엘지디스플레이 주식회사 광학 보상필름을 포함하는 편광판 및 이를 구비한 액정표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068816A (ja) * 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
WO2013191152A1 (ja) * 2012-06-21 2013-12-27 日東電工株式会社 偏光板および有機elパネル
WO2017094624A1 (ja) * 2015-12-02 2017-06-08 日東電工株式会社 光学積層体および画像表示装置
KR20170068861A (ko) * 2015-12-10 2017-06-20 엘지디스플레이 주식회사 광학 보상필름을 포함하는 편광판 및 이를 구비한 액정표시장치

Also Published As

Publication number Publication date
JP2023073125A (ja) 2023-05-25
CN118119867A (zh) 2024-05-31
TW202323952A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2018225542A1 (ja) 位相差層付偏光板および画像表示装置
JP4737629B2 (ja) 楕円偏光板およびそれを用いた画像表示装置
JP7182533B2 (ja) 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
JP2008242467A (ja) 光学フィルムおよびこれを用いた偏光フィルム、および偏光フィルムの視野角改良方法
WO2008072468A1 (ja) 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
JPWO2019167926A1 (ja) 積層体、有機電界発光装置、液晶表示装置
JP2004287416A (ja) 傾斜配向フィルムの製造方法、傾斜配向フィルムおよびそれを用いた画像表示装置
JP6900213B2 (ja) 反射防止層および映り込み防止層付偏光板およびその製造方法
WO2022185802A1 (ja) 円偏光板およびそれを用いた画像表示装置
WO2023084838A1 (ja) 位相差層付偏光板および該位相差層付偏光板を含む画像表示装置
WO2023084837A1 (ja) 位相差層付偏光板および該位相差層付偏光板を含む画像表示装置
JP4116577B2 (ja) 複屈折フィルム、光学フィルム、偏光板、および、液晶表示装置
KR20240107318A (ko) 위상차층 부착 편광판 및 해당 위상차층 부착 편광판을 포함하는 화상 표시 장치
WO2023047748A1 (ja) 位相差層付偏光板およびそれを用いた画像表示装置、ならびに、位相差層付偏光板の評価方法
JP7411520B2 (ja) 偏光板、位相差層付偏光板および有機エレクトロルミネセンス表示装置
JP7355955B1 (ja) 光学積層体
WO2022045188A1 (ja) 光学フィルム、円偏光板、有機エレクトロルミネッセンス表示装置
WO2022044500A1 (ja) 偏光板、位相差層付偏光板および画像表示装置
WO2022181414A1 (ja) 積層体、映り込み防止システム、および、画像表示装置
WO2022045185A1 (ja) 円偏光板、有機エレクトロルミネッセンス表示装置、表示装置
WO2022045187A1 (ja) 光学フィルム、円偏光板、有機エレクトロルミネッセンス表示装置
JP2023075748A (ja) 位相差層付偏光板およびそれを用いた画像表示装置
KR20230145479A (ko) 위상차층 부착 편광판 및 그의 제조 방법, 및 해당 위상차층 부착 편광판을 이용한 화상 표시 장치
JP2023111232A (ja) 光学積層体および画像表示装置
JP2023111234A (ja) 光学積層体および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892341

Country of ref document: EP

Kind code of ref document: A1