WO2023083117A1 - 一种探测方法、装置和终端 - Google Patents

一种探测方法、装置和终端 Download PDF

Info

Publication number
WO2023083117A1
WO2023083117A1 PCT/CN2022/129927 CN2022129927W WO2023083117A1 WO 2023083117 A1 WO2023083117 A1 WO 2023083117A1 CN 2022129927 W CN2022129927 W CN 2022129927W WO 2023083117 A1 WO2023083117 A1 WO 2023083117A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signal converter
detection unit
converter
detection
Prior art date
Application number
PCT/CN2022/129927
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023083117A1 publication Critical patent/WO2023083117A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a detection method, device and terminal.
  • Lidar based on single photon avalanche diode (SPAD) detectors has extremely high sensitivity. Noise photon counting with spatiotemporal correlation.
  • the laser of the lidar emits pulses outward, and the SPAD detector of the lidar can detect the signal photons reflected back by the detected target.
  • the system measures the signal photon count within the time range to obtain a histogram for single photon counting, and then uses a specific algorithm to process the histogram to obtain the time stamp of the signal photon, and then according to The time stamp of the signal photon calculates the distance between the lidar and the detected object.
  • the SPAD detector since the SPAD detector has a certain dead time after detecting the photon, when the light noise generated by the ambient light is strong, the SPAD detector is easily triggered by the noise photon preferentially and does not have enough dynamic range to respond to the signal photon , leading to a decrease in the ranging accuracy of the lidar.
  • the present application provides a detection method, device and terminal, which are used to reduce the adverse effect of optical noise on laser radar ranging and improve the ranging accuracy of laser radar.
  • a detection method including: controlling at least one laser to emit a first emission signal and a second emission signal at a first moment; controlling a first detection unit to receive a first reflection signal corresponding to the first emission signal and a first reflection signal corresponding to the second emission signal The second reflection signal of the second transmission signal; controlling the first signal converter connected to the first detection unit to process the first reflection signal; controlling the second signal converter connected to the first detection unit to process the second reflection signal ; Outputting the processing results of the first signal converter and the second signal converter to at least one processing unit.
  • each detection unit can be connected with a plurality of signal converters, and different signal converters (such as the first signal converter) in the plurality of signal converters can detect the signals emitted at the same time and reflected back by the same target object.
  • Different signals are processed separately, which can increase the number of reflected signals detected by the detection device, thereby improving the accuracy of the detection device to detect relevant information of the target object.
  • this scheme will increase the number of noise signals detected by the detection device at the same time, due to the strong time correlation between different signals emitted at the same time and reflected back by the same target object, the difference between the noise signals There is no time correlation between them, and the distribution in time is random, so the number of reflected signals actually detected by the detection device will be far greater than the number of detected noise signals, so this scheme can improve the signal-to-noise ratio and reduce ambient light The adverse effects brought by the noise can help improve the accuracy of the detection device to detect the relevant information of the target object.
  • the first detection unit is a single photon avalanche diode SPAD detection unit
  • the first signal converter and the second signal converter are time-to-digital converters TDC.
  • the first detection unit includes at least one detection subunit.
  • the detection subunit has a one-to-one relationship with the signal converter, which can reduce the complexity of the structure; when the first detection unit contains multiple detection subunits, that is, the detection subunit
  • the relationship with the signal converter can be many-to-one, which can further improve the detection capability of the first detection unit.
  • start times of the first signal converter and the second signal converter are different.
  • the dynamic range of the detection device can be increased from the time dimension, that is, the timing of detecting photons by the detection device can be increased, thereby increasing the number of photons that can be detected by the detection device as a whole.
  • the strengths of the trigger signals corresponding to the first signal converter and the second signal converter are different.
  • the dynamic range of the detection device can be increased from the dimension of signal amplitude, thereby increasing the number of photons detectable by the detection device as a whole.
  • the method further includes: controlling at least one processing unit to determine information of at least one target according to processing results of the first signal converter and the second signal converter.
  • the information of the at least one target includes, but is not limited to, one or more of the distance, orientation, height, speed, posture or shape of the at least one target.
  • the information of at least one target can be calculated based on the output results of multiple signal converters of the same detection unit, and the detection accuracy of the target can be improved.
  • controlling at least one processing unit to determine at least one target information according to the processing results of the first signal converter and the second signal converter may include: controlling at least one processing unit to determine the information of at least one target according to the processing results of the first signal converter
  • the histogram corresponding to the processing result of the second signal converter determines the position information of at least one target; wherein, the histogram includes time information when the first detection unit receives the first reflection signal and the second reflection signal.
  • the histogram can be used to efficiently count the time stamps of the signal photons, thereby improving the efficiency of the detection device in calculating target-related information.
  • the dead time corresponding to the first signal converter is less than or equal to the dead time corresponding to the first detection unit.
  • the overall photon counting capability of the detection device can be improved, which helps to further improve the detection capability of the lidar for target objects.
  • the dead time corresponding to the first signal converter is the same as the dead time corresponding to the second signal converter, or the type of the first signal converter is the same as that of the second signal converter.
  • a detection method includes: at least one laser emits a first transmission signal and a second transmission signal at a first moment; a first detection unit receives a first reflection signal corresponding to the first transmission signal and a corresponding second transmission signal the second reflected signal of the transmitted signal; the first signal converter connected to the first detection unit processes the first reflected signal;
  • a second signal converter connected to the first detection unit processes the second reflected signal; at least one processing unit
  • Processing results of the first signal converter and the second signal converter are processed.
  • the first detection unit includes at least one detection subunit.
  • the start times of the first signal converter and the second signal converter are different; or, the strengths of trigger signals corresponding to the first signal converter and the second signal converter are different.
  • At least one processing unit processes the processing results of the first signal converter and the second signal converter, including: at least one processing unit processes the processing results of the first signal converter and the second signal converter As a result, information of at least one target is determined.
  • At least one processing unit determines at least one target information according to processing results of the first signal converter and the second signal converter, including: at least one processing unit determines the information of at least one target according to the first signal converter and the second The histogram corresponding to the processing result of the signal converter determines the position information of at least one target; wherein, the histogram includes time information when the first detection unit receives the first reflection signal and the second reflection signal.
  • the dead time corresponding to the first signal converter is less than or equal to the dead time corresponding to the first detection unit.
  • the dead time corresponding to the first signal converter is the same as the dead time corresponding to the second signal converter, or the type of the first signal converter is the same as that of the second signal converter.
  • the first detection unit is a SPAD detection unit
  • the first signal converter and the second signal converter are TDCs.
  • a processing device which includes at least one processor and an interface circuit, and the interface circuit is used to receive signals from devices other than the processing device and transmit them to the processor or send signals from the processor to the processing device
  • the processor is used to execute: control at least one laser to emit a first emission signal and a second emission signal at the first moment; control the first detection unit to receive the first reflection signal corresponding to the first emission signal and the corresponding second emission signal The second reflection signal of the transmitting signal; controlling the first signal converter connected to the first detection unit to process the first reflection signal; controlling the second signal converter connected to the first detection unit to process the second reflection signal; The processing results of the first signal converter and the second signal converter are output to at least one processing unit.
  • the first detection unit includes at least one detection subunit.
  • the start times of the first signal converter and the second signal converter are different; or, the strengths of trigger signals corresponding to the first signal converter and the second signal converter are different.
  • the processor is further configured to: control at least one processing unit to determine information about at least one target according to processing results of the first signal converter and the second signal converter.
  • the processor is further configured to: control at least one processing unit to determine the position information of at least one target according to the histograms corresponding to the processing results of the first signal converter and the second signal converter; wherein, The histogram includes time information when the first detection unit receives the first reflected signal and the second reflected signal.
  • the dead time corresponding to the first signal converter is less than or equal to the dead time corresponding to the first detection unit.
  • the dead time corresponding to the first signal converter is the same as the dead time corresponding to the second signal converter, or the type of the first signal converter is the same as that of the second signal converter.
  • the first detection unit is a SPAD detection unit
  • the first signal converter and the second signal converter are TDCs.
  • a detection device including at least one laser, at least one detection unit, and at least one processing unit, and each detection unit in the at least one detection unit is connected to a plurality of signal converters; at least one laser is used for: The first transmission signal and the second transmission signal are transmitted at one time; the first detection unit is used to: receive the first reflection signal corresponding to the first transmission signal and the second reflection signal corresponding to the second transmission signal; wherein, the first detection unit is Any one of the at least one detection unit; the first detection unit is connected to the first signal converter and the second signal converter; the first signal converter is used to: process the first reflected signal; the second signal converter is used to: The second reflection signal is processed; at least one processing unit is configured to: process the processing results of the first signal converter and the second signal converter.
  • the first detection unit includes at least one detection subunit.
  • the start times of the first signal converter and the second signal converter are different; or, the strengths of trigger signals corresponding to the first signal converter and the second signal converter are different.
  • At least one processing unit is configured to: determine information of at least one target according to processing results of the first signal converter and the second signal converter.
  • At least one processing unit is configured to: determine the position information of at least one target according to histograms corresponding to processing results of the first signal converter and the second signal converter; wherein the histogram includes the first
  • the detection unit receives time information of the first reflection signal and the second reflection signal.
  • the dead time corresponding to the first signal converter is less than or equal to the dead time corresponding to the first detection unit.
  • the dead time corresponding to the first signal converter is the same as the dead time corresponding to the second signal converter, or the type of the first signal converter is the same as that of the second signal converter.
  • the first detection unit is a SPAD detection unit
  • the first signal converter and the second signal converter are TDCs.
  • a processing device including a module for executing the method described in the first aspect or any optional implementation manner of the first aspect.
  • a computer-readable storage medium including programs or instructions.
  • programs or instructions When the programs or instructions are run on a computer, the method described in the first aspect or any optional implementation manner of the first aspect is executed. implement.
  • a seventh aspect provides a terminal, including the device described in the fourth aspect or any optional implementation manner of the fourth aspect.
  • FIG. 1 is a schematic diagram of a laser radar applicable to an embodiment of the present application
  • Fig. 2 is the structural representation of a kind of SPAD detector
  • Figure 3 is a schematic diagram of single photon counting
  • FIG. 4 is a schematic diagram of a possible detection device provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a detection method provided by an embodiment of the present application.
  • FIG. 6A is a schematic diagram of the working principle of a SPAD detection unit provided in the embodiment of the present application.
  • FIG. 6B is a schematic diagram of a TDC working principle provided in the embodiment of the present application.
  • FIG. 7A is a schematic structural diagram of a SPAD detector provided by an embodiment of the present application.
  • Fig. 7B is a schematic structural diagram of another SPAD detector provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of another detection device provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship between the dead time corresponding to the first TDC and the dead time corresponding to the SPAD detection unit;
  • FIG. 10A is a schematic diagram of another TDC working principle provided by the embodiment of the present application.
  • FIG. 10B is a schematic diagram of another TDC working principle provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a processing device 1110 provided in an embodiment of the present application.
  • FIG. 12 is a flow chart of another detection method provided by the embodiment of the present application.
  • FIG. 1 is a schematic diagram of a lidar applicable to the embodiment of the present application.
  • the laser radar method includes a laser, a SPAD detector and a processor.
  • the lidar may also include other devices.
  • the laser is used to emit pulses (that is, transmit signals), and the pulses will be reflected back after reaching the detected target (also called the target object).
  • the SPAD detector can receive the signal photons reflected back by the target object (that is, the reflected signal), and output relevant information of the target object according to the signal photons reflected back by the target object.
  • the processor is used to control the laser and the SPAD detector to perform the above operations.
  • the relevant information of the target object includes, but is not limited to, one or more of distance, orientation, height, speed, attitude, shape, and the like.
  • FIG. 2 it is a schematic structural diagram of a SPAD detector, and the SPAD detector may include a plurality of SPAD detection units. Each SPAD detection unit is connected to the TDC through a comparator, and one or more processing units are connected after the TDC.
  • the comparator can also be included in the SPAD detection unit or in the TDC, so the comparator indicated by the dotted line in FIG. 2 is optional.
  • the SPAD detector may also include other components, or some components (such as the processing unit) shown in FIG. 2 may also be arranged outside the SPAD detector, which is not limited in this application.
  • the SPAD detection unit is used to receive photons (the photons here may be signal photons or noise photons) after the pulse is emitted, and a multiplication effect occurs after receiving a single photon, and an analog pulse signal is output; the comparator is used to compare The analog pulse signal output by the SPAD detection unit is processed to generate a digital pulse signal, that is, a rectangular wave (or called a square wave); the TDC is used to respond to the rising edge of the rectangular wave signal and perform single-photon counting (the single-photon counting here It may be counting signal photons, or counting noise photons); one or more processing units count single photon counts within the system measurement time range after several pulses are emitted, and obtain a histogram for single photon counts, and then use A specific algorithm performs data processing on the histogram to obtain the time stamp of the signal photon, and then calculates the distance between the lidar and the target object according to the time stamp of the signal photon.
  • the photons here may be signal photons or
  • FIG. 3 is a schematic diagram of single photon counting.
  • the SPAD detection unit receives the first photon, which can be a signal photon or a noise photon.
  • the SPAD detection unit responds to the received photon, avalanche multiplication occurs, and an analog pulse signal is output.
  • the analog pulse signal passes through the comparator, a rectangular wave is generated, and the TDC connected to the SPAD detection unit responds to the rising edge of the rectangular wave.
  • to generate a count that is, the TDC generates the first count at time t1.
  • the rectangular wave lasts for a period of time, which is called the signal pulse width, or the dead time corresponding to TDC (TDC dead time for short). During the TDC dead time, the TDC will no longer respond to the rising edges of other rectangular waves.
  • the SPAD dead time the time when the SPAD detection unit has a weak ability to detect photons is called the dead time corresponding to the SPAD (abbreviated as the SPAD dead time), which is approximately equal to the duration of the analog pulse signal output by the SPAD detection unit with a multiplication effect.
  • the SPAD detection unit receives the second photon and the third photon respectively. Since time t2 falls into the SPAD dead time, the ability of the SPAD detection unit to respond to photons is weak, and the intensity of the analog pulse signal corresponding to time t2 is less than the corresponding threshold of the comparator, so the comparator will not be triggered to generate a rectangular wave, and the TDC will not The received photons are counted.
  • the photon can be a signal photon or a noise photon, and the SPAD detection unit responds to the received The received photon will be multiplied by avalanche, and an analog pulse signal will be output.
  • the moment t3 falls within the TDC dead time range corresponding to the previous rectangular wave, the third photon received at the moment t3 will not trigger the comparator to generate a new rectangular wave, but instead The waveform is extended, and the length of extension is the width of a signal pulse starting from time t3. Since the comparator is not triggered to generate a new rectangular wave at time t3, the TDC will not count the third photon received at time t3.
  • the SPAD detection unit receives a fourth photon, which may be a signal photon or a noise photon. Since the SPAD dead time has ended at time t4, the SPAD detection unit responds to the received photon by avalanche multiplication and outputs an analog pulse signal. Since the time t4 does not fall within the range of a TDC dead time, the comparator is triggered to respond to the rising edge of the analog pulse signal to generate a rectangular wave, and the TDC connected to the SPAD detection unit responds to the rising edge of the rectangular wave , generate a count, that is, the TDC generates a second count at time t4. The rectangular wave lasts for a certain duration, which is a signal pulse width.
  • the TDC connected to the SPAD detection unit only counts part of the photons received by the SPAD detection unit, resulting in a large number of signal photons not being counted, thus reducing the SPAD detector’s ability to detect the target object. accuracy of distance measurement.
  • the SPAD detector is easily triggered by the noise photons preferentially, and there is not enough dynamic range to respond to the signal photons reflected by the target object, so that the detection performance of the lidar is significantly reduced.
  • the dynamic range can be characterized by the number of single photon counts completed by the SPAD detector per unit time. The larger the dynamic range of the SPAD detector, the more single photon counts completed by the SPAD detector, and the higher the detection performance of the SPAD detector. .
  • the detection device is, for example, a laser radar or a part of the laser radar.
  • the detection device includes a laser and a detector, wherein the number of lasers may be one or more, and the detector may include at least one detection unit, at least one processing unit, and multiple signal converters connected to each detection unit.
  • FIG. 4 is a schematic diagram of a possible detection device provided by an embodiment of the present application.
  • the detection device includes at least one laser and a first detection unit, the first detection unit is connected to the first signal converter and the second signal converter, and the first signal converter and the second signal converter are connected to at least one processing unit.
  • the first detection unit may be any detection unit with single photon detection capability.
  • the first detection unit is a SPAD detection unit.
  • the first signal converter and the second signal converter may be any device capable of counting single photons in response to the signal output by the first detection unit.
  • the signal converter is a TDC or an analog-to-digital converter (analog-to-digital converter, ADC), etc., which is not limited in this application.
  • Each SPAD detection unit may be connected to the TDC through a comparator, for example, the first detection unit is connected to the first signal converter through the first comparator, and the second detection unit is connected to the second signal converter through the second comparator.
  • the first comparator may also be included in the first SPAD detection unit or in the first TDC
  • the second comparator may also be included in the second SPAD detection unit or in the second TDC, Therefore, dashed lines in FIG. 4 indicate that the first comparator and the second comparator are optional.
  • At least one processing unit can be any chip or integrated circuit with computing power, for example, the processing unit can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field Programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor, or any conventional processor.
  • an embodiment of the present application provides a detection method, the method is executed by the detection device shown in Figure 4, see Figure 5, the method includes:
  • the laser emits a first transmission signal and a second transmission signal at a first moment
  • the laser emits a pulse at the first moment, and the pulse includes several signal photons, wherein the first emission signal and the second emission signal can be any two signal photons in the pulse, such as the first signal photon and the second signal photons.
  • the first detection unit receives a first reflected signal corresponding to the first transmitted signal and a second reflected signal corresponding to the second transmitted signal;
  • the reflected signal includes several signal photons, for example, the first reflected signal corresponding to the first transmitted signal (that is, the first reflected signal a signal photon) and a second reflected signal (ie, a second signal photon) corresponding to the second transmitted signal.
  • the first detection unit can receive signal photons reflected back by the target object, and of course the first detection unit can also receive noise photons (ie ambient light). After receiving the signal photon or the noise photon, the first detection unit can trigger the connected signal converter to perform single photon counting.
  • FIG. 6A is a schematic diagram of the working principle of the SPAD detection unit in the embodiment of the present application.
  • the SPAD detection unit receives the first signal photon, and the first signal photon triggers the SPAD detection unit to generate a multiplication effect, output a first analog pulse signal, and enter the SPAD dead time.
  • the SPAD detection unit receives the second signal photon.
  • the ability of the SPAD detection unit to detect photons is weakened, but it still has the detection capability and can output an analog pulse signal with a smaller amplitude (Section 2 Two analog pulse signals), the second analog pulse signal triggered by the photon of the second signal can be superimposed on the analog pulse signal triggered by the photon of the first signal, as shown in Figure 6A, the waveform of the analog pulse signal has a small bump at t2 , which is the superposition effect of the analog pulse signal triggered by the photon of the second signal and the analog pulse signal triggered by the photon of the first signal.
  • the first signal converter processes the first reflected signal; the second signal converter processes the second reflected signal; and at least one processing unit processes processing results of the first signal converter and the second signal converter.
  • the at least one processing unit processing the processing results of the first signal converter and the second signal converter includes: at least one processing unit determining at least one target according to the processing results of the first signal converter and the second signal converter Information.
  • the information of at least one target includes, but is not limited to, one or more of the distance, orientation, height, speed, attitude, or shape of the at least one target.
  • the start-up times of the first signal converter and the second signal converter are different.
  • FIG. 6B it is a schematic diagram of a TDC working principle provided by the embodiment of the present application.
  • the first TDC starts earlier than the second TDC, the first analog pulse signal output by the SPAD detection unit passes through the first comparator to generate the first rectangular wave, and the first TDC performs a single photon count in response to the rising edge of the first rectangular wave , to obtain the first processing result for the first reflected signal; the second analog pulse signal output by the SPAD detection unit passes through the second comparator to generate a second rectangular wave, and the second TDC responds to the rising edge of the second rectangular wave, and executes once Single photon counting to obtain a second processing result for the second reflected signal.
  • the first TDC and the second TDC respectively transmit the first processing result and the second processing result to at least one processing unit; at least one processing unit determines information of at least one target according to the first processing result and the second processing result.
  • first comparator and the second comparator can be set in the SPAD detection unit, or in the TDC, or between the SPAD detection unit and the TDC, which is not limited in this application.
  • the threshold corresponding to the second comparator is smaller than the set value, so that the second analog pulse signal can generate the second rectangular wave after passing through the second comparator.
  • the set value may be a threshold corresponding to a comparator in the device shown in FIG. 2 .
  • the threshold corresponding to the first comparator may be greater than or equal to the threshold corresponding to the second comparator.
  • starting the signal converter includes but is not limited to one of powering on the signal converter, activating the counting function of the signal converter, or turning on the signal transmission path between the signal converter and the first detection unit. one or more species.
  • the first signal converter and the second signal converter are started at different times, and there may be multiple implementations, among which several possible ways are listed below:
  • Mode 1 Take the example of starting the signal converter by powering on the signal converter: the logic control circuit powers on the first signal converter at the second moment, and powers on the second signal converter at the third moment.
  • the second moment is after the first moment and is separated from the first moment by ⁇ t1
  • the third moment is after the second moment and separated from the second moment by ⁇ t2
  • ⁇ t1 and ⁇ t2 can be determined by the processing unit according to the histogram data collected before Get calculated.
  • Mode 2 Activate the counting function of the first signal converter by starting the signal converter
  • the logic control circuit powers on the first signal converter and the second signal converter at the second moment, and activates the first signal converter at the same time Counting function (but does not activate the counting function of the second signal converter);
  • the first signal converter sends a trigger signal to the second signal converter when or after receiving the first reflected signal at the fourth moment, and the trigger signal Activate the counting function of the second signal converter.
  • the second moment is after the first moment and is separated from the first moment by ⁇ t1, and ⁇ t1 can be calculated by the processing unit based on the previously collected histogram data
  • the fourth moment is after the second moment.
  • the strengths of the trigger signals corresponding to the first signal converter and the second signal converter are different.
  • the first signal converter performs single photon counting only when the amplitude of the analog pulse signal output by the first detection unit exceeds the first threshold
  • the second signal converter performs single photon counting only when the analog pulse signal output by the first detection unit Single-photon counting is performed only when the magnitude of exceeds a second threshold.
  • the first threshold is greater than the second threshold, or the second threshold is greater than the first threshold.
  • the photon of the first signal triggers the SPAD detection unit to output the first analog pulse signal, and the first analog pulse signal triggers the first comparator to output the first square wave, and then the first TDC reacts to the first signal Photon counting; at time t2, the second signal photon triggers the SPAD detection unit to output a second analog pulse signal, and the second analog pulse signal triggers the second comparator to output a second square wave, and then the first TDC counts the second signal photon.
  • the first signal converter and the second signal converter can be respectively triggered under different signal strengths by means of a diode or a logic circuit.
  • a logic control circuit (specifically such as an AND-OR gate circuit) is provided, at t1 moment, the first signal photon triggers the SPAD detection unit to output the first An analog pulse signal, the intensity of the first analog pulse signal exceeds the first threshold, the logic control circuit gates the branch where the first TDC is located, the first analog pulse signal triggers the first comparator to output the first square wave, and then the first TDC Count the photons of the first signal; at t2 time, the second signal photon triggers the SPAD detection unit to output the second analog pulse signal, the intensity of the second analog pulse signal exceeds the second threshold but is less than the first threshold, and the logic control circuit gates the second TDC In the branch where it is located, the second analog pulse signal triggers the second comparator to output a second square wave, and then the first TDC counts the photons of the second signal.
  • the logic control circuit specifically such as an AND-OR gate circuit
  • a diode is provided at the front end of the first comparator and the second comparator respectively.
  • the first signal photon triggers the SPAD detection unit to output the first analog pulse signal
  • the intensity of the first analog pulse signal exceeds the first threshold
  • the diode at the front end of the first comparator is turned on
  • the diode at the front end of the second comparator is turned off
  • the first analog pulse signal is turned on.
  • An analog pulse signal triggers the first comparator to output the first square wave, and then the first TDC counts the photons of the first signal; at t2, the second signal photon triggers the SPAD detection unit to output the second analog pulse signal, and the second analog pulse signal
  • the intensity exceeds the second threshold but is less than the first threshold the diode at the front end of the first comparator is cut off, the diode at the front end of the second comparator is turned on, and the second analog pulse signal triggers the second comparator to output a second square wave, and then the first TDC The second signal photons are counted.
  • the first threshold corresponding to the first comparator and the second threshold corresponding to the second comparator may be fixed, or may be dynamically configured by at least one processing unit. For example, when the at least one processing unit determines that the dynamic range of the detector is relatively small according to the previously obtained histogram data, the value of the second threshold may be reduced to improve the dynamic range of the detector.
  • the above is to realize that the first signal converter and the second signal converter are triggered under different signal intensities through a logic control circuit or a diode, and there may be other implementation ways in practical applications.
  • the above two implementation methods can also be implemented in combination, that is, the start-up times of the first signal converter and the second signal converter are different, and the strengths of the trigger signals corresponding to the start-up of the first signal converter and the second signal converter are also different. different.
  • the SPAD detection unit receives 1 photon (i.e. the second signal photon) within the SPAD dead time, but in practical applications, the number of photons received by the SPAD detection unit within the SPAD dead time can be There are many, which are not limited in this application.
  • the above is an example where the number of detection units in the detection device is 1, but in actual applications, the number of detection units in the detection device is not limited to 1, there can be more, and multiple detection units can work together .
  • the detection device includes a first detection unit and a second detection unit, and a plurality of signal converters are connected after the first detection unit (for The photons detected by the first detection unit are counted), the second detection unit is connected with a plurality of signal converters (for counting the photons detected by the second detection unit), at least one processing unit is connected to the first detection unit
  • the processing result of the signal converter and the processing result of the signal converter connected to the second detection unit determine the information of at least one target.
  • the working method of the second detection unit and the signal converter connected thereto can refer to the working method of the first detection unit and the signal converter connected thereto, which will not be repeated here.
  • each detection unit is connected to a plurality of signal converters, and different signal converters in the plurality of signal converters can respectively process different signals emitted at the same time and reflected back by the same target object,
  • the ability of the detection device to process reflected signals can be improved, and the adverse effects brought by ambient light noise can be reduced, thereby helping to improve the accuracy of the detection device to detect relevant information of the target object.
  • the processing unit can determine When the target object’s distance, orientation, height, speed, attitude or shape and other related information, you can refer to the count of more signal photons, thereby reducing the adverse effects of ambient light noise and helping to improve the lidar’s detection of the target object. detection capability.
  • the number of detected signal photons can be increased, and on the other hand, the number of detected noise photons will also be increased, because when the detection unit detects the received single photon, No distinction is made whether the single photon is a signal photon or a noise photon.
  • the first detection unit includes at least one detection subunit.
  • each detection subunit can independently complete single photon counting.
  • the detection sub-unit may be obtained by dividing the first detection unit according to the granularity of pixels, that is, one detection sub-unit corresponds to one pixel.
  • the first detection unit includes a detection subunit
  • the detection unit corresponds to one pixel
  • the detection subunit and the signal converter can have a one-to-one relationship, which can reduce the structural complexity of the detector.
  • the first detection unit includes multiple detection subunits (that is, when multiple detection subunits are combined (binning) to form a detection unit), it is equivalent to one detection unit corresponding to multiple pixels.
  • the detection sub-units and the signal converters may have a many-to-one relationship, and of course may also have a many-to-many relationship, which is not limited in this application. Further, any two different detection subunits in the first detection unit can be connected to different signal converters, and any two different detection subunits can also be connected to the same signal converter, which is not limited in this application .
  • each detection subunit can independently complete the measurement of single photon counting
  • the first detection unit contains multiple detection subunits
  • it is equivalent to combining the single photon events independently measured by multiple detection subunits into Together, so the first detection unit can respond to more incident photons and output single-photon counts at the same time. Therefore, the greater the number of detection sub-units included in the first detection unit, the greater the dynamic range of the first detection unit.
  • the dead time corresponding to the first signal converter is less than or equal to the dead time corresponding to the first detection unit.
  • the dead time corresponding to the first TDC is less than or equal to the dead time corresponding to the SPAD detection unit, then when the third photon arrives at the SPAD detection unit, the dead time of the first TDC has ended, so the first TDC A third photon can be counted. Comparing the third photon in FIG. 9 with the third photon in FIG. 3, it can be seen that the first TDC can count more photons in the same time range. Therefore, this embodiment can improve the photon counting capability of the detection device as a whole, and is helpful to further improve the detection capability of the laser radar for target objects.
  • the laser also emits a third emission signal at the first moment
  • the first detection unit also receives a third reflection signal corresponding to the third emission signal
  • the detection device can use the third signal converter to perform The reflection signal is processed, or, if the first signal converter has processed the first reflection signal, the detection device can process the third reflection signal through the first signal converter.
  • the detection unit as a SPAD detection unit and the signal converter as TDC as an example, after receiving the second signal photon in the SPAD dead time corresponding to the SPAD detection unit, if the third signal photon is also received in the SPAD dead time in the SPAD detection After receiving the second signal photon within the SPAD dead time corresponding to the unit, if the third signal photon is also received within the SPAD dead time, the third TDC connected to the SPAD detection unit can be triggered to respond to the third signal photon according to the third signal photon.
  • Three signal photons are counted, such as shown in Figure 10A; or, when the time of receiving the third signal photon is after the TDC dead time range corresponding to the first TDC, the first TDC can be triggered according to the third signal photon.
  • the third signal photons are counted, for example as shown in FIG. 10B .
  • dead times corresponding to all signal converters connected to the same detection unit are the same, or types of all signal converters connected to the same detection unit are the same. Therefore, the dead time corresponding to the first signal converter is the same as the dead time corresponding to the second signal converter, such as shown in FIG. 9 , or the type of the first signal converter is the same as that of the second signal converter.
  • the first signal converter and the second signal converter are TDCs of the same model, and the TDC dead times of the TDCs of the same model are the same. In this way, the complexity of the detection device can be reduced.
  • At least one processing unit may specifically determine the position information of at least one target according to the histogram corresponding to the processing results of the first signal converter and the second signal converter, the histogram including the first detection unit Time information of the first reflected signal and the second reflected signal is received.
  • the signal converter counts the single photons received by the SPAD detection unit, which can be the time stamp for generating the single photon, which can represent the SPAD detection The time at which the unit receives the single photon.
  • At least one processing unit can count several time stamps generated within the system measurement time range after the laser pulse is emitted, and obtain a histogram for single photon counting; then, using the characteristic that signal photons have time correlation and noise photons have no time correlation, use Specific algorithms (such as FIR filtering, peak detection, sliding window, coherent detection, etc.) perform data processing on the histogram to obtain the time stamp of the signal photon;
  • the distance between the target objects for example, can be calculated according to the histogram according to the time of flight (time of flight, TOF) method to calculate the distance between the detection device and the target object.
  • the main control chip of the laser radar can also perform data processing on the histogram and calculate the distance between the detection device and the target object.
  • the histogram can be used to efficiently count the time stamps of the signal photons, thereby improving the efficiency of the detection device in calculating target-related information.
  • the above-mentioned detection device can be a laser radar, wherein the laser adopts a vertical cavity surface emitting laser (vertical cavity surface emitting laser, VCSEL) light source and electrical scanning, which can ensure that for any SPAD detection unit, There are sufficient signal photon counts during the measurement period.
  • VCSEL vertical cavity surface emitting laser
  • the pulse emitted by one pixel of the laser is received by a corresponding pixel of the detector.
  • the pulse emitted by pixel 1 of the laser is received by pixel 1 of the detector; the pulse emitted by pixel 2 of the laser is received by pixel 2 of the detector, and so on.
  • the pulse emitted by one pixel of the laser is received by the corresponding multiple pixels of the detector.
  • the pulse emitted by pixel 1 of the laser is received by pixels 1 to 10 of the detector; the pulse emitted by pixel 2 of the laser is received by pixels 11 to 20 of the detector, and so on.
  • different pixels on the laser may emit pulses to the outside according to certain rules.
  • each frame corresponds to a graphic
  • the graphic corresponds to multiple pixels on the laser, and then the random number generator is used to determine the pixels that need to be driven to light up each time in the pixels corresponding to the graphic.
  • an embodiment of the present application also provides a processing device, which is used to control components in the detection device (such as lasers, detection units, signal converters, etc.) to perform the corresponding functions described in the above embodiments.
  • a processing device which is used to control components in the detection device (such as lasers, detection units, signal converters, etc.) to perform the corresponding functions described in the above embodiments.
  • the processing device 1110 includes at least one processor 1110 and an interface circuit 1120, and the interface circuit 1120 is used to receive signals from other devices (such as lasers, detection units, signal converter units, etc.) and transmit the signal to the processor 1110 or send the signal from the processor 1110 to other devices (such as lasers, detection units, signal converters, etc.) other than the processing device 1100, the processor 1110 is used to execute the Detection method:
  • S203 Output the processing results of the first signal converter and the second signal converter to at least one processing unit.
  • the processor 1110 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • an embodiment of the present application further provides a processing device, including a module for executing the method steps shown in FIG. 12 .
  • an embodiment of the present application also provides a computer-readable storage medium, including a program or an instruction.
  • a program or an instruction When the program or instruction is run on a computer, the method steps shown in FIG. 12 are executed.
  • the embodiment of the present application also provides a computer program product containing instructions, the computer program product stores instructions, and when it is run on a computer, it causes the computer to execute the method steps shown in FIG. 12 .
  • an embodiment of the present application further provides a terminal, where the terminal includes one or more devices described above.
  • the terminal may be a vehicle, or an aircraft, or a surveying and mapping device, or a ship, and the present application does not limit the specific form of the terminal.
  • an embodiment of the present application further provides a vehicle, and the vehicle may include a processor configured to execute the method steps shown in FIG. 5 .
  • the vehicle also includes a memory for storing computer programs or instructions.
  • the vehicle also includes a transceiver for receiving or sending information.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

探测方法、处理装置、探测装置、计算机可读存储介质、终端和计算机程序产品。探测方法包括:控制至少一个激光器在第一时刻发射第一发射信号和第二发射信号;控制第一探测单元接收对应第一发射信号的第一反射信号和对应第二发射信号的第二反射信号;控制与第一探测单元连接的第一信号转换器对第一反射信号进行处理;控制与第一探测单元连接的第二信号转换器对第二反射信号进行处理;将第一信号转换器和第二信号转换器的处理结果输出到至少一个处理单元;处理单元对第一信号转换器和第二信号转换器的处理结果进行处理。处理装置包含至少一个处理器和接口电路,接口电路用于接收来自处理装置之外的其它装置的信号并传输至处理器或将来自处理器的信号发送给处理装置之外的其它装置,处理器用于执行探测方法。探测装置包含至少一个激光器、至少一个探测单元、至少一个处理单元,至少一个探测单元中的每个探测单元连接多个信号转换器。计算机可读存储介质,包括程序或指令,当程序或指令在计算机上运行时,使得探测方法被执行。终端,包括探测装置。计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行探测方法。

Description

一种探测方法、装置和终端
相关申请的交叉引用
本申请要求在2021年11月10日提交中国专利局、申请号为202111325491.3、申请名称为“一种探测方法、装置和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种探测方法、装置和终端。
背景技术
基于单光子雪崩二极管(single photon avalanche diode,SPAD)探测器的激光雷达具有极高的灵敏度,其测距的基本原理是通过SPAD探测器采集单光子事件,利用信号光子的时空相关特性,区分无时空相关性的噪声光子计数。
具体的,激光雷达的激光器向外发射脉冲,激光雷达的SPAD探测器可以探测到被探测目标反射回来的信号光子。激光雷达统计若干次脉冲发射后,在***测量时间范围内的信号光子计数,得到针对单光子计数的直方图,然后利用特定的算法对直方图进行数据处理,得到信号光子的时间戳,然后根据信号光子的时间戳计算激光雷达与被探测目标之间的距离。
然而,由于SPAD探测器在探测到光子后存在一定的死时间(deadtime),当环境光产生的光噪声较强时,SPAD探测器很容易被噪声光子优先触发而没有足够的动态范围响应信号光子,导致激光雷达的测距准确性降低。
因此,如何减少光噪声对激光雷达测距带来的不利影响,是目前需要解决的。
发明内容
本申请提供一种探测方法、装置和终端,用以减少光噪声对激光雷达测距带来的不利影响,提高激光雷达的测距准确性。
第一方面,提供一种探测方法,包括:控制至少一个激光器在第一时刻发射第一发射信号和第二发射信号;控制第一探测单元接收对应第一发射信号的第一反射信号和对应第二发射信号的第二反射信号;控制与第一探测单元连接的第一信号转换器对第一反射信号进行处理;控制与第一探测单元连接的第二信号转换器对第二反射信号进行处理;将第一信号转换器和第二信号转换器的处理结果输出到至少一个处理单元。
根据上述方案,每个探测单元可以连接多个信号转换器,多个信号转换器中的不同信号转换器(如第一信号转换器)可以对在同一时刻发射出去且由同一目标物体反射回来的不同信号分别进行处理,可以提升探测装置探测到的反射信号的数量,进而提升探测装置探测目标物体相关信息的准确性。
应理解,尽管该方案同时会增加探测装置探测到的噪声信号的数量,但是由于在同一时刻发射出去且由同一目标物体反射回来的不同信号之间具有极强的时间相关性,而噪声 信号之间没有时间相关性,在时间上的分布是随机的,因此探测装置实际探测到的反射信号的数量会远远大于探测到的噪声信号的数量,所以该方案可以提升信噪比,减少环境光噪声带来的不利影响,从而有助于提升探测装置探测目标物体相关信息的准确性。
一种可能的实现方式中,第一探测单元为单光子雪崩二极管SPAD探测单元,第一信号转换器和第二信号转换器为时间数字转换器TDC。
如此,通过增加SPAD探测单元连接的TDC的数量,可以实现对SPAD死时间内接收到的信号光子进行计数,进而增加信号光子的计数数量,从而减少环境光噪声带来的不利影响,有助于提升激光雷达对目标物体的探测能力。
一种可能的实现方式中,第一探测单元包含至少一个探测子单元。第一探测单元包含一个探测子单元时,即探测子单元与信号转换器为一对一的关系,可以降低结构的复杂度;当第一探测单元包含多个探测子单元时,即探测子单元与信号转换器可以为多对一的关系,可以进一步提高第一探测单元的探测能力。
一种可能的实现方式中,第一信号转换器和第二信号转换器的启动时间不同。如此,可以从时间维度增加探测装置的动态范围,即增加探测装置探测光子的时机,从而增加探测装置整体可探测的光子数量。
一种可能的实现方式中,第一信号转换器和第二信号转换器对应的触发信号的强度不同。如此,可以从信号幅度维度增加探测装置的动态范围,从而增加探测装置整体可探测的光子数量。
一种可能的实现方式中,方法还包括:控制至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果,确定至少一个目标的信息。其中,至少一个目标的信息包括但不限于是至少一个目标的距离、方位、高度、速度、姿态或形状中的一个或多个。
如此,可以实现基于同一探测单元的多个信号转换器的输出结果计算至少一个目标的信息,提高对目标的探测精度。
一种可能的实现方式中,控制至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果,确定至少一个目标的信息,可以包括:控制至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果对应的直方图,确定至少一个目标的位置信息;其中,直方图包括第一探测单元接收第一反射信号和第二反射信号的时间信息。
如此,可以利用直方图可以高效地统计出信号光子的时间戳,进而提高探测装置计算目标相关信息的效率。
一种可能的实现方式中,第一信号转换器对应的死时间小于或等于第一探测单元对应的死时间。
如此,可以提升探测装置整体对光子的计数能力,有助于进一步提升激光雷达对目标物体的探测能力。
一种可能的实现方式中,第一信号转换器对应的死时间与第二信号转换器对应的死时间相同,或者,第一信号转换器的类型与第二信号转换器的类型相同。
如此,可以降低探测装置的复杂度。
第二方面,提供一种探测方法,方法包括:至少一个激光器在第一时刻发射第一发射信号和第二发射信号;第一探测单元接收对应第一发射信号的第一反射信号和对应第二发射信号的第二反射信号;与第一探测单元连接的第一信号转换器对第一反射信号进行处理;
与第一探测单元连接的第二信号转换器对第二反射信号进行处理;至少一个处理单元
对第一信号转换器和第二信号转换器的处理结果进行处理。
一种可能的实现方式中,第一探测单元包含至少一个探测子单元。
一种可能的实现方式中,第一信号转换器和第二信号转换器的启动时间不同;或者,第一信号转换器和第二信号转换器对应的触发信号的强度不同。
一种可能的实现方式中,至少一个处理单元对第一信号转换器和第二信号转换器的处理结果进行处理,包括:至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果,确定至少一个目标的信息。
一种可能的实现方式中,至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果,确定至少一个目标的信息,包括:至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果对应的直方图,确定至少一个目标的位置信息;其中,直方图包括第一探测单元接收第一反射信号和第二反射信号的时间信息。
一种可能的实现方式中,第一信号转换器对应的死时间小于或等于第一探测单元对应的死时间。
一种可能的实现方式中,第一信号转换器对应的死时间与第二信号转换器对应的死时间相同,或者,第一信号转换器的类型与第二信号转换器的类型相同。
一种可能的实现方式中,第一探测单元为SPAD探测单元,第一信号转换器和第二信号转换器为TDC。
第三方面,提供一种处理装置,包含至少一个处理器和接口电路,接口电路用于接收来自处理装置之外的其它装置的信号并传输至处理器或将来自处理器的信号发送给处理装置之外的其它装置,处理器用于执行:控制至少一个激光器在第一时刻发射第一发射信号和第二发射信号;控制第一探测单元接收对应第一发射信号的第一反射信号和对应第二发射信号的第二反射信号;控制与第一探测单元连接的第一信号转换器对第一反射信号进行处理;控制与第一探测单元连接的第二信号转换器对第二反射信号进行处理;将第一信号转换器和第二信号转换器的处理结果输出到至少一个处理单元。
一种可能的实现方式中,第一探测单元包含至少一个探测子单元。
一种可能的实现方式中,第一信号转换器和第二信号转换器的启动时间不同;或者,第一信号转换器和第二信号转换器对应的触发信号的强度不同。
一种可能的实现方式中,处理器还用于执行:控制至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果,确定至少一个目标的信息。
一种可能的实现方式中,处理器还用于执行:控制至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果对应的直方图,确定至少一个目标的位置信息;其中,直方图包括第一探测单元接收第一反射信号和第二反射信号的时间信息。
一种可能的实现方式中,第一信号转换器对应的死时间小于或等于第一探测单元对应的死时间。
一种可能的实现方式中,第一信号转换器对应的死时间与第二信号转换器对应的死时间相同,或者,第一信号转换器的类型与第二信号转换器的类型相同。
一种可能的实现方式中,第一探测单元为SPAD探测单元,第一信号转换器和第二信号转换器为TDC。
第四方面,提供一种探测装置,包含至少一个激光器、至少一个探测单元、至少一个处理单元,至少一个探测单元中的每个探测单元连接多个信号转换器;至少一个激光器用 于:在第一时刻发射第一发射信号和第二发射信号;第一探测单元用于:接收对应第一发射信号的第一反射信号和对应第二发射信号的第二反射信号;其中,第一探测单元为至少一个探测单元中的任意一个探测单元;第一探测单元连接第一信号转换器、第二信号转换器;第一信号转换器用于:对第一反射信号进行处理;第二信号转换器用于:对第二反射信号进行处理;至少一个处理单元用于:对第一信号转换器和第二信号转换器的处理结果进行处理。
一种可能的实现方式中,第一探测单元包含至少一个探测子单元。
一种可能的实现方式中,第一信号转换器和第二信号转换器的启动时间不同;或者,第一信号转换器和第二信号转换器对应的触发信号的强度不同。
一种可能的实现方式中,至少一个处理单元用于:根据第一信号转换器和第二信号转换器的处理结果,确定至少一个目标的信息。
一种可能的实现方式中,至少一个处理单元用于:根据第一信号转换器和第二信号转换器的处理结果对应的直方图,确定至少一个目标的位置信息;其中,直方图包括第一探测单元接收第一反射信号和第二反射信号的时间信息。
一种可能的实现方式中,第一信号转换器对应的死时间小于或等于第一探测单元对应的死时间。
一种可能的实现方式中,第一信号转换器对应的死时间与第二信号转换器对应的死时间相同,或者,第一信号转换器的类型与第二信号转换器的类型相同。
一种可能的实现方式中,第一探测单元为SPAD探测单元,第一信号转换器和第二信号转换器为TDC。
第五方面,提供一种处理装置,包括用于执行如第一方面或第一方面任一种可选的实施方式中所述方法的模块。
第六方面,提供一种计算机可读存储介质,包括程序或指令,当程序或指令在计算机上运行时,使得如第一方面或第一方面任一种可选的实施方式中所述方法被执行。
第七方面,提供一种终端,包括如第四方面或第四方面任一种可选的实施方式中所述的装置。
附图说明
图1为本申请实施例所适用的激光雷达的一个示意图;
图2为一种SPAD探测器的结构示意图;
图3为单光子计数的示意图;
图4为本申请实施例提供的一种可能的探测装置的示意图;
图5为本申请实施例提供的一种探测方法的流程图;
图6A为本申请实施例提供的一种SPAD探测单元工作原理示意图;
图6B为本申请实施例提供的一种TDC工作原理示意图;
图7A为本申请实施例提供的一种SPAD探测器的结构示意图;
图7B为本申请实施例提供的另一种SPAD探测器的结构示意图;
图8为本申请实施例提供的另一种探测装置的示意图;
图9为第一TDC对应的死时间与SPAD探测单元对应的死时间的大小关系示意图;
图10A为本申请实施例提供的另一种TDC工作原理示意图;
图10B为本申请实施例提供的另一种TDC工作原理示意图;
图11为本申请实施例提供的处理装置1110的示意图;
图12为本申请实施例提供的另一种探测方法的流程图。
具体实施方式
图1为本申请实施例所适用的激光雷达的一个示意图。该激光雷法包括激光器、SPAD探测器和处理器。当然,该激光雷达还可以包括其他器件。其中,激光器用于对外发射脉冲(即发射信号),该脉冲到达被探测目标(也可称为目标物体)后,会被反射回来。SPAD探测器可以接收到目标物体反射回来的信号光子(即反射信号),根据目标物体反射回来的信号光子输出目标物体的相关信息。处理器用于控制激光器和SPAD探测器执行上述操作。其中目标物体的相关信息包括但不限于距离、方位、高度、速度、姿态、形状等中的一个或多个。
参见图2,为一种SPAD探测器的结构示意图,SPAD探测器可以包括多个SPAD探测单元。每个SPAD探测单元通过比较器与TDC的相连,TDC之后连接一个或多个处理单元。当然,比较器也可以被包括在SPAD探测单元内或被包括在TDC内,因此图2中以虚线表示比较器是可选的。另外,SPAD探测器还可以包括其它部件,或者图2所示的部分部件(如处理单元)也可以设置在SPAD探测器之外,本申请不做限制。
其中,SPAD探测单元用于在脉冲发射后,接收光子(这里的光子可能是信号光子,也可能是噪声光子),在收到单个光子后发生倍增效应,输出一个模拟脉冲信号;比较器用于对SPAD探测单元输出的模拟脉冲信号进行处理,生成数字脉冲信号,即产生矩形波(或者称为方波);TDC用于响应于矩形波信号的上升沿,进行单光子计数(这里的单光子计数可能是对信号光子计数,也可以能对噪声光子计数);一个或多个处理单元统计若干次脉冲发射后在***测量时间范围内的单光子计数,得到针对单光子计数的直方图,然后利用特定的算法对直方图进行数据处理,得到信号光子的时间戳,然后根据信号光子的时间戳计算激光雷达与目标物体之间的距离。
图3为单光子计数的示意图。以比较器设置在TDC内(即矩形波由TDC产生)为例,在t1时刻,SPAD探测单元接收到第一个光子,该光子可以是信号光子或噪声光子。该SPAD探测单元响应于接收到的该光子,发生雪崩倍增,输出模拟脉冲信号,该模拟脉冲信号通过比较器之后产生一个矩形波,与该SPAD探测单元连接的TDC响应于该矩形波的上升沿,产生一个计数,也即在t1时刻TDC产生第一次计数。该矩形波会持续一段时长,该时长称为信号脉冲宽度,或称为TDC对应的死时间(简称TDC死时间)。在TDC死时间内,该TDC不会再响应其它矩形波的上升沿。
需要说明的是,SPAD探测单元在接收到一个光子并发生雪崩倍增之后的一段时间内,SPAD探测单元响应其它光子的能力将会大大降低。其中,将SPAD探测单元探测光子能力较弱的时间称为SPAD对应的死时间(简称SPAD死时间),近似等于SPAD探测单元发生倍增效应输出的模拟脉冲信号的持续时长。
在t2时刻和t3时刻,SPAD探测单元分别接收到第二个光子和第三个光子。由于t2时刻落入了SPAD死时间,SPAD探测单元响应光子的能力弱,t2时刻对应的模拟脉冲信号的强度小于比较器对应的阈值,因此不会触发比较器产生一个矩形波,TDC也不会对该接收到的光子进行计数。
t3时刻由于没有落入一个SPAD死时间内,因此当在t3时刻接收到一个光子,即如图所示的第三个光子,该光子可以是信号光子或噪声光子,则SPAD探测单元响应于接收到的该光子,发生雪崩倍增,输出模拟脉冲信号。然而,由于t3时刻落入了前一个矩形波对应的TDC死时间范围内,因此在t3时刻收到的第三个光子不会触发比较器产生一个新的矩形波,而是对前一个矩形波进行波形的延长,延长的时长即为从t3时刻开始后的一个信号脉冲宽度。由于在t3时刻没有触发比较器产生一个新的矩形波,因此TDC也不会对t3时刻收到的第三个光子进行计数。
在t4时刻,SPAD探测单元接收到第四个光子,该光子可以是信号光子或噪声光子。由于t4时刻SPAD死时间已经结束,因此该SPAD探测单元响应于接收到的该光子,发生雪崩倍增,输出模拟脉冲信号。由于t4时刻没有落入一个TDC死时间的范围内,因此会触发比较器响应于该模拟脉冲信号的上升沿,产生一个矩形波,与该SPAD探测单元连接的TDC响应于该矩形波的上升沿,产生一个计数,也即在t4时刻该TDC产生第二次计数。该矩形波会持续一定时长,该时长即为一个信号脉冲宽度。
从上述单光子计数的过程可以看出,SPAD探测单元连接的TDC只对该SPAD探测单元接收到的部分光子进行计数,导致大量的信号光子没有被计数,从而降低了SPAD探测器对目标物体进行测距的准确性。尤其是当环境光背景噪声较强时,SPAD探测器很容易被噪声光子优先触发,而没有足够的动态范围响应目标物体反射的信号光子,使得激光雷达的探测性能明显下降。其中,动态范围可以通过SPAD探测器在单位时间内完成的单光子计数的数量表征,SPAD探测器的动态范围越大,SPAD探测器完成的单光子计数越多,SPAD探测器的探测性能越高。
为提升激光雷达的探测性能,本申请实施例提供一种探测装置及探测方法,该探测装置例如是激光雷达或者是激光雷达的一部分。探测装置包含激光器和探测器,其中激光器的数量可以是一个或多个,探测器可以包括至少一个探测单元、至少一个处理单元、以及与每个探测单元连接的多个信号转换器。
示例性的,参考图4,为本申请实施例提供的一种可能的探测装置的示意图。探测装置包含至少一个激光器、第一探测单元,第一探测单元连接第一信号转换器和第二信号转换器,第一信号转换器、第二信号转换器与至少一个处理单元相连。
第一探测单元可以是具有单光子探测能力的任何探测单元。作为一种可能的实现方式,第一探测单元是SPAD探测单元。
第一信号转换器、第二信号转换器可以是能够响应于第一探测单元输出的信号进行单光子计数的任何器件。作为一种可能的实现方式,信号转换器是TDC或模数转换器(analog-to-digital converter,ADC)等,本申请不做限制。
每个SPAD探测单元可以通过比较器与TDC的相连,例如第一探测单元通过第一比较器与第一信号转换器相连,第二探测单元通过第二比较器与第二信号转换器相连。当然,第一比较器也可以被包括在第一SPAD探测单元内或被包括在第一TDC内,第二比较器也可以被包括在第二SPAD探测单元内或被包括在第二TDC内,因此图4中以虚线表示第一比较器、第二比较器可选的。
至少一个处理单元可以是任何具有计算能力的芯片或集成电路,例如处理单元可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA) 或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其中通用处理器可以是微处理器,也可以是任何常规的处理器。
基于图4所示的探测装置,本申请实施例提供一种探测方法,该方法由图4所示的探测装置执行,参见图5,该方法包括:
S101、激光器在第一时刻发射第一发射信号和第二发射信号;
示例性的,激光器在第一时刻对外发射脉冲,该脉冲包括若干信号光子,其中第一发射信号和第二发射信号可以为该脉冲中的任意两个信号光子,如第一信号光子和第二信号光子。
S102、第一探测单元接收对应第一发射信号的第一反射信号和对应第二发射信号的第二反射信号;
激光器发射出去的脉冲中的部分或者全部信号光子到达目标物体,被目标物体反射回来,形成反射信号,该反射信号中包括若干信号光子,例如包括对应第一发射信号的第一反射信号(即第一信号光子)和对应第二发射信号的第二反射信号(即第二信号光子)。第一探测单元可以接收目标物体反射回来的信号光子,当然第一探测单元接还可以接收噪声光子(即环境光)。第一探测单元接收到的信号光子或噪声光子后,可以触发相连接的信号转换器执行单光子计数。
以第一探测单元为SPAD探测单元为例,参见图6A,为本申请实施例中SPAD探测单元的工作原理示意图。t1时刻,SPAD探测单元收到第一信号光子,第一信号光子触发SPAD探测单元发生倍增效应,输出第一模拟脉冲信号,进入SPAD死时间。t2时刻,SPAD探测单元收到第二信号光子,由于t2时刻在SPAD死时间范围内,SPAD探测单元探测光子的能力减弱,但仍具备探测能力,可以输出较小幅值的模拟脉冲信号(第二模拟脉冲信号),第二信号光子触发的第二模拟脉冲信号可以叠加到第一信号光子触发的模拟脉冲信号上,如图6A所示,模拟脉冲信号的波形在t2时刻有一个小凸起,即为第二信号光子触发的模拟脉冲信号与第一信号光子触发的模拟脉冲信号的叠加效果。
S103、第一信号转换器对第一反射信号进行处理;第二信号转换器对第二反射信号进行处理;至少一个处理单元对第一信号转换器和第二信号转换器的处理结果进行处理。
可选的,至少一个处理单元对第一信号转换器和第二信号转换器的处理结果进行处理包括:至少一个处理单元根据第一信号转换器和第二信号转换器的处理结果确定至少一个目标的信息。其中,至少一个目标的信息包括但不限于是至少一个目标的距离、方位、高度、速度、姿态或形状等中的一个或多个。
一种实现方法中,第一信号转换器和第二信号转换器的启动时间不同。
以第一信号转换器为第一TDC、第二信号转换器为第二TDC为例。参见图6B,为本申请实施例提供的一种TDC工作原理示意图。第一TDC早于第二TDC启动,SPAD探测单元输出的第一模拟脉冲信号经过第一比较器后产生第一矩形波,第一TDC响应于第一矩形波的上升沿,执行一次单光子计数,得到针对第一反射信号的第一处理结果;SPAD探测单元输出的第二模拟脉冲信号经过第二比较器后产生第二矩形波,第二TDC响应于第二矩形波的上升沿,执行一次单光子计数,得到针对第二反射信号的第二处理结果。之后,第一TDC、第二TDC分别将第一处理结果、第二处理结果分别传输给至少一个处理单元;至少一个处理单元根据第一处理结果和第二处理结果确定至少一个目标的信息。
可以理解的是,第一比较器、第二比较器可以设置在SPAD探测单元内,也可以设置 在TDC内,或者设置在SPAD探测单元、TDC之间,本申请不做限制。
可以理解的是,第二比较器对应的阈值小于设定值,以使得第二模拟脉冲信号经过第二比较器后可以产生第二矩形波。例如,该设定值可以是图2所示器件中的比较器对应的阈值。
可选的,第一比较器对应的阈值可以大于或等于第二比较器对应的阈值。
可以理解的是,启动信号转换器包括但不限于是对信号转换器上电、激活信号转换器的计数功能、或者导通信号转换器与第一探测单元之间的信号传输路径等中的一种或多种。
在本申请实施例中,第一信号转换器和第二信号转换器在不同时间启动,可以有多种实现方式,以下例举其中几种可能的方式:
方式1、以启动信号转换器是对信号转换器上电为例:逻辑控制电路在第二时刻对第一信号转换器上电,在第三时刻对第二信号转换器上电。其中,第二时刻在第一时刻之后且与第一时刻间隔Δt1时长,第三时刻在第二时刻之后且与第二时刻间隔Δt2时长,Δt1、Δt2可以由处理单元根据之前采集的直方图数据进行计算获得。
方式2、以启动信号转换器是激活第一信号转换器的计数功能例:逻辑控制电路在第二时刻对第一信号转换器和第二信号转换器上电,同时激活第一信号转换器的计数功能(但不激活第二信号转换器的计数功能);第一信号转换器在第四时刻接收到第一反射信号之时或之后,向第二信号转换器发送一个触发信号,通过触发信号激活第二信号转换器的计数功能。其中,第二时刻在第一时刻之后且与第一时刻间隔Δt1时长,Δt1可以由处理单元根据之前采集直方图数据计算获得,第四时刻在第二时刻之后。
当然,以上两种方式仅为示例而非具体限定。
另一种实现方法中,第一信号转换器和所述第二信号转换器对应的触发信号的强度不同。具体的,第一信号转换器只有在第一探测单元输出的模拟脉冲信号的幅值超过第一阈值时,才执行单光子计数,第二信号转换器只有在第一探测单元输出的模拟脉冲信号的幅值超过第二阈值时,才执行单光子计数。其中,第一阈值大于第二阈值,或者第二阈值大于第一阈值。
示例性的,参见图6B,t1时刻,第一信号光子触发SPAD探测单元输出第一模拟脉冲信号,第一模拟脉冲信号触发第一比较器输出第一方波,进而第一TDC对第一信号光子计数;t2时刻,第二信号光子触发SPAD探测单元输出第二模拟脉冲信号,第二模拟脉冲信号触发第二比较器输出第二方波,进而第一TDC对第二信号光子计数。
在具体实现时,可以通过二极管或逻辑电路等方式,使得第一信号转换器、第二信号转换器分别在不同信号强度下被触发。
例如,参见图7A,在SPAD探测单元后、第一TDC和第二TDC前,设置有逻辑控制电路(具体例如是一个与或门电路),t1时刻,第一信号光子触发SPAD探测单元输出第一模拟脉冲信号,第一模拟脉冲信号的强度超过第一阈值,逻辑控制电路选通第一TDC所在的支路,第一模拟脉冲信号触发第一比较器输出第一方波,进而第一TDC对第一信号光子计数;t2时刻,第二信号光子触发SPAD探测单元输出第二模拟脉冲信号,第二模拟脉冲信号的强度超过第二阈值但小于第一阈值,逻辑控制电路选通第二TDC所在的支路,第二模拟脉冲信号触发第二比较器输出第二方波,进而第一TDC对第二信号光子计数。
例如,参见图7B,第一比较器和第二比较器前端分别设置有一个二极管。t1时刻,第 一信号光子触发SPAD探测单元输出第一模拟脉冲信号,第一模拟脉冲信号的强度超过第一阈值,第一比较器前端的二极管导通,第二比较器前端的二极管截止,第一模拟脉冲信号触发第一比较器输出第一方波,进而第一TDC对第一信号光子计数;t2时刻,第二信号光子触发SPAD探测单元输出第二模拟脉冲信号,第二模拟脉冲信号的强度超过第二阈值但小于第一阈值,第一比较器前端的二极管截止,第二比较器前端的二极管导通,第二模拟脉冲信号触发第二比较器输出第二方波,进而第一TDC对第二信号光子计数。
可以理解的是,第二阈值越小,探测器的动态范围越大。第一比较器对应的第一阈值、第二比较器对应的第二阈值可以固定不变,也可以由至少一个处理单元动态配置。例如,至少一个处理单元根据之前获得的直方图数据,确定探测器的动态范围较小时,可以降低第二阈值的取值,以提高探测器的动态范围。
当然,以上是通过逻辑控制电路或二极管实现第一信号转换器和第二信号转换器在不同信号强度下被触发,实际应用中还可以有其它实现方式。
当然,上述两种实现方法也可以结合实施,即第一信号转换器和第二信号转换器的启动时间不同、第一信号转换器和第二信号转换器的启动时对应的触发信号的强度也不同。
需要说明的是,以上是以SPAD探测单元在SPAD死时间内接收到1个光子(即第二信号光子),但在实际应用中,SPAD探测单元在SPAD死时间内接收到的光子的数量可以是很多个,本申请不做限定。
需要说明的是,以上是以探测装置中探测单元的数量是1为例,但实际应用中探测装置中探测单元的数量不限于是1个,可以有更多,且多个探测单元可以协同工作。
例如,参见图8,为本申请实施例提供的另一种探测装置的示意图,该探测装置包括第一探测单元和第二探测单元,第一探测单元之后连接多个信号转换器(用于对第一探测单元检测到的光子进行计数)、第二探测单元之后连接多个信号转换器(用于对第二探测单元检测到的光子进行计数),至少一个处理单元根据与第一探测单元连接的信号转换器的处理结果、以及与第二探测单元连接的信号转换器的处理结果确定至少一个目标的信息。其中第二探测单元及其连接的信号转换器的工作方法可以参考第一探测单元及其连接的信号转换器的工作方法,此处不再赘述。
根据本申请上述方案,每个探测单元连接多个信号转换器,该多个信号转换器中的不同信号转换器可以对在同一时刻发射出去且由同一目标物体反射回来的不同信号分别进行处理,可以提升探测装置处理反射信号的能力,减少环境光噪声带来的不利影响,从而有助于提升探测装置探测目标物体相关信息的准确性。
以SPAD探测单元连接多个TDC为例,通过增加SPAD探测单元连接的TDC的数量,可以实现对SPAD死时间内接收到的信号光子进行计数,进而增加信号光子的计数数量,使得处理单元在确定目标物体的距离、方位、高度、速度、姿态或形状等相关信息时,可以参考更多的信号光子的计数,从而减少环境光噪声带来的不利影响,有助于提升激光雷达对目标物体的探测能力。
需要说明的是,使用本申请上述方案,一方面可以增加探测到的信号光子的数量,另一方面也会增加探测的噪声光子的数量,这是因为探测单元在探测收到的单光子时,不会区分该单光子是信号光子还是噪声光子。尽管该方案会增加探测到的噪声光子的数量,但是由于信号光子具有极强的时间相关性(即在激光器发射脉冲后的短时间内,会有大量的信号光子反射回来,因此当探测单元接收到一个信号光子之后,在接下来的死时间内也会 收到大量的其它信号光子),而噪声光子没有时间相关性,是随机的,因此探测装置实际探测到的信号光子的数量会远远大于探测到的噪声光子的数量,即可以提升信噪比,进而有助于提升激光雷达对目标物体的探测能力。
作为一种可选的实施方式,第一探测单元包含至少一个探测子单元。其中,每个探测子单元可以独立地完成单光子计数。一种可能的设计中,探测子单元可以是按照像素的粒度对第一探测单元进行划分得到,即一个探测子单元对应一个像素。
当第一探测单元包含一个探测子单元时,相当于探测单元对应一个像素,探测子单元与信号转换器可以为一对一的关系,可以降低探测器的结构复杂度。
当第一探测单元包含多个探测子单元时(即把多个探测子单元合并(binning)起来作为一个探测单元时),相当于一个探测单元对应多个像素。探测子单元与信号转换器可以为多对一的关系,当然也可以是多对多的关系,本申请不做限制。进一步的,第一探测单元中任意两个不同的探测子单元可以与不同的信号转换器连接,任意两个不同的探测子单元也可以与同一个信号转换器连接,本申请对此不做限制。
可以理解的是,由于每个探测子单元可以独立完成单光子计数的测量,所以当第一探测单元包含多个探测子单元时,相当于把多个探测子单元独立测量的单光子事件合并到一起,所以第一探测单元在同一时刻可以响应更多的入射光子并输出单光子计数。因此,第一探测单元中包括的探测子单元的数量越多,第一探测单元的动态范围越大。
作为一种可选的实施方式,第一信号转换器对应的死时间小于或等于第一探测单元对应的死时间。例如,参见图9所示,第一TDC对应的死时间小于或等于SPAD探测单元对应的死时间,则第三个光子到达SPAD探测单元时,第一TDC的死时间已经结束,所以第一TDC可以对第三个光子进行计数。对比图9中的第三个光子和图3中第三个光子可以看出,第一TDC在相同时间范围内可以对更多的光子计数。因此,本实施方式可以提升探测装置整体对光子的计数能力,有助于进一步提升激光雷达对目标物体的探测能力。
作为一种可选的实施方式,激光器在第一时刻还发射第三发射信号,第一探测单元还接收对应第三发射信号的第三反射信号,探测装置可以通过第三信号转换器对第三反射信号进行处理,或者,若第一信号转换器对第一反射信号已经处理完毕,则探测装置可以通过第一信号转换器对第三反射信号进行处理。例如,以探测单元为SPAD探测单元、信号转换器为TDC为例,SPAD探测单元对应的SPAD死时间内接收第二信号光子之后,如果在该SPAD死时间内还接收第三信号光子在SPAD探测单元对应的SPAD死时间内接收第二信号光子之后,如果在该SPAD死时间内还接收第三信号光子,则可以根据该第三信号光子,触发与SPAD探测单元连接的第三TDC对该第三信号光子进行计数,例如图10A所示;或者是,当接收到第三信号光子的时间是在第一TDC对应的TDC死时间范围之后,则可以根据第三信号光子,触发第一TDC对第三信号光子进行计数,例如图10B所示。
作为一种可选的实施方式,连接至同一个探测单元的所有信号转换器对应的死时间均相同,或者,连接至同一个探测单元的所有信号转换器的类型相同。因此,上述第一信号转换器对应的死时间与第二信号转换器对应的死时间相同,例如图9所示,或者,第一信号转换器的类型与第二信号转换器的类型相同。例如,第一信号转换器和第二信号转换器为同一型号的TDC,相同型号的TDC的TDC死时间相同。如此,可以降低探测装置的复杂度。
作为一种可选的实施方式,至少一个处理单元具体可以根据第一信号转换器和第二信 号转换器的处理结果对应的直方图,确定至少一个目标的位置信息,直方图包括第一探测单元接收第一反射信号和第二反射信号的时间信息。
仍以探测单元为SPAD探测单元、信号转换器为TDC为例,信号转换器对SPAD探测单元接收到的单光子进行计数,可以是生成该单光子的时间戳,该时间戳可表征该SPAD探测单元接收该单光子的时间。至少一个处理单元可以统计激光脉冲发射后在***测量时间范围内产生的若干时间戳,得到针对单光子计数的直方图;然后利用信号光子具有时间相关性而噪声光子没有时间相关性的特点,使用特定的算法(如FIR滤波、峰值检测、滑窗、相干检测等)对直方图进行数据处理,得到信号光子的时间戳;然后,根据激光器发射脉冲的时间以及信号光子的时间戳计算探测装置与目标物体之间的距离,比如可以根据该直方图按照飞行时间(time of flight,TOF)法计算探测装置与目标物体之间的距离。当然,在实际应用中,也可以是由激光雷达的主控芯片对直方图进行数据处理、计算探测装置与目标物体之间的距离。
该实施方式利用直方图可以高效地统计出信号光子的时间戳,进而提高探测装置计算目标相关信息的效率。
作为一种可选的实施方式,上述探测装置可以是激光雷达,其中,激光器采用垂直共振腔表面放射激光(vertical cavity surface emitting laser,VCSEL)光源及电学扫描,可以保证对于任何一个SPAD探测单元,在测量周期内有足够的信号光子计数。
作为一种可选的实施方式,激光器的像素与探测器的像素之间是一一对应的。即激光器的一个像素发射的脉冲,是由探测器的相对应的一个像素接收到的。比如,激光器的像素1发射的脉冲,是由探测器的像素1接收到的;激光器的像素2发射的脉冲,是由探测器的像素2接收到的,等等。
作为另一种可选的实施方式,激光器的像素与探测器的像素之间是一对多的关系。即激光器的一个像素发射的脉冲,是由探测器的相对应的多个像素接收到的。比如,激光器的像素1发射的脉冲,是由探测器的像素1至像素10接收到的;激光器的像素2发射的脉冲,是由探测器的像素11至像素20接收到的,等等。
作为另一种可选的实施方式,激光器上的不同像素可以按照一定的规则对外发射脉冲。比如每一帧对应一个图形,该图形对应激光器上的多个像素,然后通过随机数生成器,确定该图形对应的像素中每次需要驱动点亮的像素。
应理解,上述各实施方式可以相互结合实施。
基于同一技术构思,本申请实施例还提供一种处理装置,该处理装置用于控制探测装置中各部件(如激光器、探测单元、信号转换器等)执行上述实施例中所述的对应功能。
示例性的,参见图11,处理装置1110包含至少一个处理器1110和接口电路1120,接口电路1120用于接收来自处理装置1100之外的其它装置(如激光器、探测单、信号转换器元等)的信号并传输至处理器1110或将来自处理器1110的信号发送给处理装置1100之外的其它装置(如激光器、探测单元、信号转换器等),处理器1110用于执行图12所示的探测方法:
S201、控制至少一个激光器在第一时刻发射第一发射信号和第二发射信号;控制第一探测单元接收对应第一发射信号的第一反射信号和对应第二发射信号的第二反射信号;
S202、控制与第一探测单元连接的第一信号转换器对第一反射信号进行处理;控制与第一探测单元连接的第二信号转换器对第二反射信号进行处理;
S203、将第一信号转换器和第二信号转换器的处理结果输出到至少一个处理单元。
上述各步骤的具体实现方法可以参考上文,此处不再赘述。
其中,处理器1110可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
基于同一技术构思,本申请实施例还提供一种处理装置,包括用于执行图12所示方法步骤的模块。
基于同一技术构思,本申请实施例还提供一种计算机可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,使得图12所示的方法步骤被执行。
基于同一技术构思,本申请实施例还提供一种包含指令的计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行图12所示方法步骤。
基于同一技术构思,本申请实施例还提供一种终端,该终端包括上文所描述的一个或多个装置。该终端具体可以是车辆、或飞行器、或测绘装置、或船舶等,本申请对该终端的具体形态不做限制。
示例性的,本申请实施例还提供一种车辆,该车辆可以包括处理器,所述处理器用于执行图5所示的方法步骤。
在一种可能的设计中,该车辆还包括存储器,用于存储计算机程序或指令。
在一种可能的设计中,该车辆还包括收发器,用于接收或发送信息。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范 围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (36)

  1. 一种探测方法,其特征在于,所述方法包括:
    控制至少一个激光器在第一时刻发射第一发射信号和第二发射信号;
    控制第一探测单元接收对应所述第一发射信号的第一反射信号和对应所述第二发射信号的第二反射信号;
    控制与所述第一探测单元连接的第一信号转换器对所述第一反射信号进行处理;
    控制与所述第一探测单元连接的第二信号转换器对所述第二反射信号进行处理;
    将所述第一信号转换器和所述第二信号转换器的处理结果输出到至少一个处理单元。
  2. 如权利要求1所述的方法,其特征在于,所述第一探测单元包含至少一个探测子单元。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信号转换器和所述第二信号转换器的启动时间不同;或者,所述第一信号转换器和所述第二信号转换器对应的触发信号的强度不同。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    控制所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果,确定至少一个目标的信息。
  5. 如权利要求4所述的方法,其特征在于,所述控制所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果,确定至少一个目标的信息,包括:
    控制所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果对应的直方图,确定所述至少一个目标的位置信息;
    其中,所述直方图包括所述第一探测单元接收所述第一反射信号和所述第二反射信号的时间信息。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一信号转换器对应的死时间小于或等于所述第一探测单元对应的死时间。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一信号转换器对应的死时间与所述第二信号转换器对应的死时间相同,或者,所述第一信号转换器的类型与所述第二信号转换器的类型相同。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述第一探测单元为单光子雪崩二极管SPAD探测单元,所述第一信号转换器和所述第二信号转换器为时间数字转换器TDC。
  9. 一种探测方法,其特征在于,所述方法包括:
    至少一个激光器在第一时刻发射第一发射信号和第二发射信号;
    第一探测单元接收对应所述第一发射信号的第一反射信号和对应所述第二发射信号的第二反射信号;
    与所述第一探测单元连接的第一信号转换器对所述第一反射信号进行处理;
    与所述第一探测单元连接的第二信号转换器对所述第二反射信号进行处理;
    至少一个处理单元对所述第一信号转换器和所述第二信号转换器的处理结果进行处理。
  10. 如权利要求9所述的方法,其特征在于,所述第一探测单元包含至少一个探测子单元。
  11. 如权利要求9或10所述的方法,其特征在于,所述第一信号转换器和所述第二信号转换器的启动时间不同;或者,所述第一信号转换器和所述第二信号转换器对应的触发信号的强度不同。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述至少一个处理单元对所述第一信号转换器和所述第二信号转换器的处理结果进行处理,包括:
    所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果,确定至少一个目标的信息。
  13. 如权利要求12所述的方法,其特征在于,所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果,确定至少一个目标的信息,包括:
    所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果对应的直方图,确定所述至少一个目标的位置信息;
    其中,所述直方图包括所述第一探测单元接收所述第一反射信号和所述第二反射信号的时间信息。
  14. 如权利要求9-13任一项所述的方法,其特征在于,所述第一信号转换器对应的死时间小于或等于所述第一探测单元对应的死时间。
  15. 如权利要求9-14任一项所述的方法,其特征在于,所述第一信号转换器对应的死时间与所述第二信号转换器对应的死时间相同,或者,所述第一信号转换器的类型与所述第二信号转换器的类型相同。
  16. 如权利要求9-15任一项所述的方法,其特征在于,所述第一探测单元为SPAD探测单元,所述第一信号转换器和所述第二信号转换器为TDC。
  17. 一种处理装置,其特征在于,包含至少一个处理器和接口电路,所述接口电路用于接收来自所述处理装置之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述处理装置之外的其它装置,所述处理器用于执行:
    控制至少一个激光器在第一时刻发射第一发射信号和第二发射信号;
    控制第一探测单元接收对应所述第一发射信号的第一反射信号和对应所述第二发射信号的第二反射信号;
    控制与所述第一探测单元连接的第一信号转换器对所述第一反射信号进行处理;
    控制与所述第一探测单元连接的第二信号转换器对所述第二反射信号进行处理;
    将所述第一信号转换器和所述第二信号转换器的处理结果输出到至少一个处理单元。
  18. 如权利要求17所述的装置,其特征在于,所述第一探测单元包含至少一个探测子单元。
  19. 如权利要求17或18所述的装置,其特征在于,所述第一信号转换器和所述第二信号转换器的启动时间不同;或者,所述第一信号转换器和所述第二信号转换器对应的触发信号的强度不同。
  20. 如权利要求17-19任一项所述的装置,其特征在于,所述处理器还用于执行:
    控制所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果,确定至少一个目标的信息。
  21. 如权利要求20所述的装置,其特征在于,所述处理器还用于执行:
    控制所述至少一个处理单元根据所述第一信号转换器和所述第二信号转换器的处理结果对应的直方图,确定所述至少一个目标的位置信息;
    其中,所述直方图包括所述第一探测单元接收所述第一反射信号和所述第二反射信号的时间信息。
  22. 如权利要求17-21任一项所述的装置,其特征在于,所述第一信号转换器对应的死时间小于或等于所述第一探测单元对应的死时间。
  23. 如权利要求17-22任一项所述的装置,其特征在于,所述第一信号转换器对应的死时间与所述第二信号转换器对应的死时间相同,或者,所述第一信号转换器的类型与所述第二信号转换器的类型相同。
  24. 如权利要求17-23任一项所述的装置,其特征在于,所述第一探测单元为SPAD探测单元,所述第一信号转换器和所述第二信号转换器为TDC。
  25. 一种探测装置,其特征在于,包含至少一个激光器、至少一个探测单元、至少一个处理单元,其特征在于,所述至少一个探测单元中的每个探测单元连接多个信号转换器;
    所述至少一个激光器用于:在第一时刻发射第一发射信号和第二发射信号;
    第一探测单元用于:接收对应所述第一发射信号的第一反射信号和对应所述第二发射信号的第二反射信号;其中,所述第一探测单元为所述至少一个探测单元中的任意一个探测单元;所述第一探测单元连接第一信号转换器、第二信号转换器;
    所述第一信号转换器用于:对所述第一反射信号进行处理;
    所述第二信号转换器用于:对所述第二反射信号进行处理;
    所述至少一个处理单元用于:对所述第一信号转换器和所述第二信号转换器的处理结果进行处理。
  26. 如权利要求25所述的装置,其特征在于,所述第一探测单元包含至少一个探测子单元。
  27. 如权利要求25或26所述的装置,其特征在于,所述第一信号转换器和所述第二信号转换器的启动时间不同;或者,所述第一信号转换器和所述第二信号转换器对应的触发信号的强度不同。
  28. 如权利要求25-27任一项所述的装置,其特征在于,所述至少一个处理单元用于:
    根据所述第一信号转换器和所述第二信号转换器的处理结果,确定至少一个目标的信息。
  29. 如权利要求28所述的装置,其特征在于,所述至少一个处理单元用于:
    根据所述第一信号转换器和所述第二信号转换器的处理结果对应的直方图,确定所述至少一个目标的位置信息;
    其中,所述直方图包括所述第一探测单元接收所述第一反射信号和所述第二反射信号的时间信息。
  30. 如权利要求25-29任一项所述的装置,其特征在于,所述第一信号转换器对应的死时间小于或等于所述第一探测单元对应的死时间。
  31. 如权利要求25-30任一项所述的装置,其特征在于,所述第一信号转换器对应的死时间与所述第二信号转换器对应的死时间相同,或者,所述第一信号转换器的类型与所述第二信号转换器的类型相同。
  32. 如权利要求25-31任一项所述的装置,其特征在于,所述第一探测单元为SPAD探 测单元,所述第一信号转换器和所述第二信号转换器为TDC。
  33. 一种处理装置,其特征在于,包括用于执行如权利要求1-8任一项所述方法的模块。
  34. 一种计算机可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,使得如权利要求1-8中任一项所述的方法被执行。
  35. 一种终端,其特征在于,包括如权利要求25-32任一项所述的装置。
  36. 一种包含指令的计算机程序产品,其特征在于,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项所述的方法。
PCT/CN2022/129927 2021-11-10 2022-11-04 一种探测方法、装置和终端 WO2023083117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111325491.3A CN114185057B (zh) 2021-11-10 2021-11-10 一种探测方法、装置和终端
CN202111325491.3 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023083117A1 true WO2023083117A1 (zh) 2023-05-19

Family

ID=80602053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129927 WO2023083117A1 (zh) 2021-11-10 2022-11-04 一种探测方法、装置和终端

Country Status (2)

Country Link
CN (1) CN114185057B (zh)
WO (1) WO2023083117A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185057B (zh) * 2021-11-10 2024-05-17 华为技术有限公司 一种探测方法、装置和终端
CN116678799B (zh) * 2023-08-03 2023-12-26 深圳市灵明光子科技有限公司 一种颗粒物探测器及颗粒物探测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996344A (zh) * 2009-08-19 2011-03-30 三星电子株式会社 计数光子的***和方法
CN110389333A (zh) * 2018-04-20 2019-10-29 豪威科技股份有限公司 第一光子相关飞行时间传感器
CN110579773A (zh) * 2019-09-30 2019-12-17 华中光电技术研究所(中国船舶重工集团有限公司第七一七研究所) 基于多探测器的单光子激光雷达探测***及方法
CN111108407A (zh) * 2017-09-22 2020-05-05 ams有限公司 半导体主体和用于飞行时间测量的方法
JP2020120175A (ja) * 2019-01-21 2020-08-06 キヤノン株式会社 撮像装置およびその制御方法
CN111562590A (zh) * 2020-05-22 2020-08-21 深圳市灵明光子科技有限公司 一种多梯度时间箱的测距方法及测距***
CN211553064U (zh) * 2018-08-13 2020-09-22 意法半导体(R&D)有限公司 用于检测与光电检测器相关联的电路内的堆积的装置
CN113093212A (zh) * 2021-03-30 2021-07-09 宁波飞芯电子科技有限公司 一种spad传感器与使用其的探测***及电子设备
CN113330328A (zh) * 2019-02-11 2021-08-31 苹果公司 使用脉冲束稀疏阵列的深度感测
US20210290066A1 (en) * 2020-03-20 2021-09-23 Hi Llc Dynamic Range Optimization in an Optical Measurement System
CN114185057A (zh) * 2021-11-10 2022-03-15 华为技术有限公司 一种探测方法、装置和终端

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2797081B1 (fr) * 1999-07-29 2002-10-31 Positive Procede d'identification d'un vehicule automobile immatricule et appareil d'identification de vehicule automobile correspondant
JP5042781B2 (ja) * 2007-11-06 2012-10-03 株式会社ミツトヨ 周波数安定化レーザ装置及びレーザ周波数安定化方法
EP2446301B1 (en) * 2009-06-22 2018-08-01 Toyota Motor Europe Pulsed light optical rangefinder
WO2013144812A2 (en) * 2012-03-27 2013-10-03 Koninklijke Philips N.V. Conventional imaging with an imaging system having photon counting detectors
CN103631316B (zh) * 2012-08-21 2020-06-26 是德科技股份有限公司 用于输出复杂触发信号的多级触发***
CN105607073A (zh) * 2015-12-18 2016-05-25 哈尔滨工业大学 一种采用相邻像元阈值法实时滤噪的光子计数成像激光雷达
CN105606232B (zh) * 2016-01-28 2019-03-12 中国人民解放军信息工程大学 一种探测光信号的实现方法及***
US11221400B2 (en) * 2018-03-27 2022-01-11 Omnivision Technologies, Inc. Dual mode stacked photomultipliers suitable for use in long range time of flight applications
WO2019229891A1 (ja) * 2018-05-30 2019-12-05 株式会社ニコンビジョン 光検出装置及び方法並びに測距装置及び方法
US10616512B2 (en) * 2018-07-27 2020-04-07 Wisconsin Alumni Research Foundation Systems, methods, and media for high dynamic range imaging using dead-time-limited single photon detectors
CN109238462B (zh) * 2018-09-10 2020-10-27 湖北京邦科技有限公司 一种光子探测方法及装置
JP7015801B2 (ja) * 2019-03-18 2022-02-03 株式会社東芝 電子装置および方法
US10938485B2 (en) * 2019-04-18 2021-03-02 Microsoft Technology Licensing, Llc Error control coding with dynamic ranges
CN115427838A (zh) * 2020-03-02 2022-12-02 棱镜传感器公司 用于光子计数x射线检测器的光谱堆积校正
CN111487637B (zh) * 2020-04-20 2023-12-01 深圳奥锐达科技有限公司 一种基于时间延时的距离测量***及方法
WO2023279375A1 (zh) * 2021-07-09 2023-01-12 华为技术有限公司 一种探测控制方法及装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996344A (zh) * 2009-08-19 2011-03-30 三星电子株式会社 计数光子的***和方法
CN111108407A (zh) * 2017-09-22 2020-05-05 ams有限公司 半导体主体和用于飞行时间测量的方法
CN110389333A (zh) * 2018-04-20 2019-10-29 豪威科技股份有限公司 第一光子相关飞行时间传感器
CN211553064U (zh) * 2018-08-13 2020-09-22 意法半导体(R&D)有限公司 用于检测与光电检测器相关联的电路内的堆积的装置
JP2020120175A (ja) * 2019-01-21 2020-08-06 キヤノン株式会社 撮像装置およびその制御方法
CN113330328A (zh) * 2019-02-11 2021-08-31 苹果公司 使用脉冲束稀疏阵列的深度感测
CN110579773A (zh) * 2019-09-30 2019-12-17 华中光电技术研究所(中国船舶重工集团有限公司第七一七研究所) 基于多探测器的单光子激光雷达探测***及方法
US20210290066A1 (en) * 2020-03-20 2021-09-23 Hi Llc Dynamic Range Optimization in an Optical Measurement System
CN111562590A (zh) * 2020-05-22 2020-08-21 深圳市灵明光子科技有限公司 一种多梯度时间箱的测距方法及测距***
CN113093212A (zh) * 2021-03-30 2021-07-09 宁波飞芯电子科技有限公司 一种spad传感器与使用其的探测***及电子设备
CN114185057A (zh) * 2021-11-10 2022-03-15 华为技术有限公司 一种探测方法、装置和终端

Also Published As

Publication number Publication date
CN114185057B (zh) 2024-05-17
CN114185057A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2023083117A1 (zh) 一种探测方法、装置和终端
US11754686B2 (en) Digital pixel
CN102692622B (zh) 基于密集脉冲的激光探测方法
US20220299613A1 (en) Pulse ranging device and method, and automatic cleaning apparatus having same
US20210333360A1 (en) Anti-interference processing method and apparatus for multi-pulse laser radar system
CN113748356A (zh) 数字像素及其操作方法
US10497738B2 (en) First photon correlated time-of-flight sensor
WO2019125349A1 (en) Time-of-flight sensing using an addressable array of emitters
CN107290755B (zh) 基于4d成像光子计数激光雷达***实现的目标距离和目标强度的获取方法
US20210011139A1 (en) Light detection device, light detection method and optical distance sensor
WO2023279375A1 (zh) 一种探测控制方法及装置
US20210199802A1 (en) Using time-of-flight and pseudo-random bit sequences to measure distance to object
US20230333220A1 (en) Systems and methods for operating lidar systems
US20240248181A1 (en) Methods and devices for peak signal detection
CN112014824A (zh) 一种多脉冲抗干扰信号处理方法及装置
US20210325514A1 (en) Time of flight apparatus and method
WO2022110947A1 (zh) 电子装置的控制方法、电子装置及计算机可读存储介质
US20230273304A1 (en) Efficient Fault Detection For Lidar Sensors
WO2022160622A1 (zh) 一种距离测量方法、装置及***
WO2022206293A1 (zh) 一种激光雷达测距方法及探测***
WO2022022432A1 (zh) 探测装置及方法
US20200233081A1 (en) Proximity detection device and method
WO2024130608A1 (zh) 飞行时间测量方法、装置、激光测距装置及存储介质
US20230243975A1 (en) Logic For Controlling Histogramming Of Measurements Of Lidar Sensors
WO2022041189A1 (zh) 光电探测器件、探测方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022891912

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891912

Country of ref document: EP

Effective date: 20240522