WO2023083099A1 - 一种火电机组停炉保护防锈蚀效果的评价方法及装置 - Google Patents

一种火电机组停炉保护防锈蚀效果的评价方法及装置 Download PDF

Info

Publication number
WO2023083099A1
WO2023083099A1 PCT/CN2022/129680 CN2022129680W WO2023083099A1 WO 2023083099 A1 WO2023083099 A1 WO 2023083099A1 CN 2022129680 W CN2022129680 W CN 2022129680W WO 2023083099 A1 WO2023083099 A1 WO 2023083099A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron content
unit
average value
boiler
water
Prior art date
Application number
PCT/CN2022/129680
Other languages
English (en)
French (fr)
Inventor
杨俊�
乔越
宋飞
舒进
王彤
曹松彦
贾若飞
刘炎伟
贾明祥
马珍珍
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Priority to JP2023551118A priority Critical patent/JP2024507274A/ja
Publication of WO2023083099A1 publication Critical patent/WO2023083099A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis

Definitions

  • thermal power units have strictly controlled the operation time, and are facing longer and longer periods of outage or more and more times of start and stop. Therefore, the anti-corrosion requirements for the decommissioning protection of coal-fired boilers of thermal power units are becoming more and more stringent, so as to prevent a large amount of corrosion of coal-fired boilers during decommissioning, ensure that the coal-fired boilers of the units can be started safely and reliably at any time, and maintain long-term normal safety and stability operation, to avoid accidents such as pipe bursts during the operation of coal-fired boilers caused by out-of-service corrosion.
  • the embodiment of the present disclosure provides an evaluation method and device for the anti-corrosion effect of thermal power unit shutdown protection, which is simple to operate and easy to implement, and can effectively control the water vapor system of a huge coal-fired boiler under the shutdown protection state The anti-corrosion situation in the pipeline, and judge whether the current coal-fired boiler deactivation protection method is reliable and effective.
  • the embodiment of the first aspect of the present disclosure proposes a method for evaluating the anti-corrosion effect of thermal power unit shutdown protection, including:
  • the total iron content in the start-up stage of the unit is calculated by a preset total iron content fitting formula
  • the measuring the cumulative flow at the outlet of the condensate pump during the start-up phase of the unit includes:
  • the second cumulative flow of the unit is measured from the start of the steam turbine rushing to the grid connection of the steam turbine generator set.
  • the measurement of the mass content of iron in the water vapor related to the heating surface of the boiler during the start-up phase of the unit includes: iron content in condensate, iron content in feed water, iron content in boiler water or start-up separator water, Iron content of superheated steam.
  • the calculating and obtaining the average value of the iron content in the steam related to the heating surface of the boiler includes: within a detection period, calculating and obtaining the average value of the iron content in the steam related to the heating surface of the boiler average iron content.
  • the preset total iron amount fitting formula is:
  • M total iron content V at the end of hot flushing ⁇ c average value of iron content in condensate + V at the end of hot flushing ⁇ c average value of iron content in feed water + V at the end of hot flushing ⁇ c boiler water or start-up separator outlet water
  • M total iron content is the total iron content in the start-up stage of the unit
  • V at the end of the hot state flushing is the first cumulative flow rate of the unit from the start of the stable operation of the condensate pump to the end of the hot state flushing
  • the V steam turbine running stage to When connected to the grid it is the second cumulative flow of the unit from the start of the steam turbine to the grid connection of the steam turbine generator set.
  • the average value of iron content in condensed water is the average value of iron content in condensed water
  • the average value of iron content in feed water is the average value of iron content in feed water
  • the average value of iron content in boiler water or starting separator water is the average value of iron content in boiler water or starting separator water
  • the average value of iron content in superheated steam is the average value of iron content in superheated steam.
  • the method for evaluating the anti-corrosion effect of thermal power unit shutdown protection further includes the steps of adding ammonia to condensed water and ammonia to feedwater during the start-up phase.
  • the embodiment of the second aspect of the present disclosure proposes an evaluation device for the anti-corrosion effect of thermal power unit shutdown protection, including:
  • An iron content measurement module used to measure the mass content of iron in the water vapor associated with the heating surface of the boiler during the start-up phase of the unit
  • the iron content measurement module includes a calculation unit, which is used to calculate and obtain the average value of the iron content in the water vapor corresponding to the heating surface of the boiler;
  • the total iron content calculation module is used to calculate the total iron content of the unit at the start-up stage according to the cumulative flow and the average value of the iron content by a preset total iron content fitting formula
  • the evaluation module is used to use the total iron content as an evaluation index to evaluate the effect of shutdown protection and anti-corrosion of the unit before the start-up.
  • the cumulative flow measurement module includes:
  • the first-stage measurement module is used to measure the first cumulative flow of the unit from the start of stable operation after the start of the condensate pump to the end of the hot state flushing;
  • the second stage measurement module is used to measure the second cumulative flow of the unit from the start of the steam turbine run-in to the grid connection of the steam turbine generator set.
  • the iron content measurement module includes:
  • the first measurement module is used to measure the iron content of the condensed water
  • the second measurement module is used to measure the iron content of the feed water
  • a third measurement module for measuring iron content in boiler water or start-up separator effluent
  • the fourth measurement module is used to measure the iron content of the superheated steam.
  • the evaluation device for the protection and anti-corrosion effect of the thermal power unit shutdown further includes: condensate water ammonia addition equipment and feed water ammonia addition equipment.
  • the embodiment of the present disclosure provides a method and device for evaluating the anti-corrosion effect of thermal power unit shutdown protection.
  • Any one of the shutdown protection methods can be selected to protect the unit for a period of time, and then start the unit to evaluate the anti-corrosion protection effect , with a wide range of applications; by measuring the cumulative flow at each stage of startup and the iron content of each water vapor system on the main heating surface of the coal-fired boiler and fitting calculations to obtain the corresponding total iron content in the system, the shutdown protection of each water vapor system of the coal-fired boiler.
  • the total iron content can effectively grasp the huge coal-fired boiler water vapor system pipeline under the shutdown protection state.
  • the anti-corrosion situation of the coal-fired boiler and judge whether the currently adopted coal-fired boiler decommissioning protection method is reliable and effective, so as to avoid the safety hazard caused by the decommissioning of the coal-fired boiler.
  • the preconditions can be standardized uniformly, which is convenient for each coal-fired boiler outage protection method and each coal-fired boiler outage protection.
  • Fig. 1 is a process flow diagram of an evaluation device according to an embodiment of the present disclosure
  • Fig. 3 is a flowchart for implementing an evaluation method according to an embodiment of the present disclosure.
  • Selection module 100 cumulative flow measurement module 110, first stage measurement module 111, second stage measurement module 112, iron content measurement module 120, first measurement module 121, second measurement module 122, third measurement module 123, fourth A measurement module 124 , a total iron content calculation module 130 , and an evaluation module 140 .
  • the embodiment of the disclosure proposes an evaluation method and device for the protection and anti-corrosion effect of the thermal power unit shutdown protection.
  • the monitoring and control methods are as follows: The total iron content in the effluent water vapor of each heating surface during the start-up stage of the coal-fired boiler of the thermal power unit indicates the anti-corrosion effect of the coal-fired boiler when it is out of service.
  • the embodiment of the present disclosure proposes an evaluation method for the anti-corrosion effect of thermal power unit shutdown protection, including:
  • the total iron content in the start-up stage of the unit is calculated by the preset total iron content fitting formula
  • the total iron content is used as an evaluation index to evaluate the anti-corrosion effect of the shutdown protection before the start-up of the unit. The higher the total iron content, the worse the anti-corrosion effect of the shutdown protection method.
  • the method and device for evaluating the anti-corrosion effect of thermal power unit shutdown protection can choose any shutdown protection method to protect the unit for a period of time, and then start the unit to evaluate the anti-corrosion protection effect. It has a wide range of applications; by measuring the cumulative flow at each stage of startup and the iron content of each water vapor system on the main heating surface of the coal-fired boiler, and fitting and calculating the corresponding total iron content in the system, it can protect and prevent the shutdown of each water vapor system of the coal-fired boiler
  • the corrosion situation has been very effectively characterized, the data accuracy is high, the results are intuitive and clear, and the device structure is simple, and the operation is easy to implement.
  • the total iron content can effectively grasp the huge coal-fired boiler water vapor system pipeline under the shutdown protection state. Anti-corrosion conditions, and judge whether the currently adopted coal-fired boiler decommissioning protection method is reliable and effective, and avoid potential safety hazards caused by coal-fired boiler decommissioning corrosion.
  • the cumulative flow at the outlet of the condensate pump during the start-up phase of the unit is measured, including:
  • measure the iron content in the water vapor related to the heating surface of the boiler during the start-up stage of the unit including:
  • Iron content in condensate iron content in feed water, iron content in boiler water or starting separator effluent and iron content in superheated steam.
  • the detection period may vary from 1 hour, 2 hours or 3 hours, and the detection period is determined according to the actual situation.
  • the average value of the iron content is calculated according to the mass content of iron in the water vapor related to the heating surface of the boiler, including calculating the average value of the iron content in the condensate, the average value of the iron content in the feed water, the boiler water or the start-up separator Average iron content in effluent, average iron content in superheated steam.
  • the preset total iron amount fitting formula is as follows:
  • M total iron content V at the end of hot flushing ⁇ c average value of iron content in condensate + V at the end of hot flushing ⁇ c average value of iron content in feed water + V at the end of hot flushing ⁇ c boiler water or start-up separator outlet water
  • M total iron content is the total iron content in the start-up stage of the unit
  • V at the end of the hot state flushing is the first cumulative flow rate of the unit from the start of the stable operation of the condensate pump to the end of the hot state flushing
  • the V steam turbine running stage to When connected to the grid it is the second cumulative flow of the unit from the start of the steam turbine to the grid connection of the steam turbine generator set.
  • the average value of iron content in condensed water is the average value of iron content in condensed water
  • the average value of iron content in feed water is the average value of iron content in feed water
  • the average value of iron content in boiler water or starting separator water is the average value of iron content in boiler water or starting separator water
  • the average value of iron content in superheated steam is the average value of iron content in superheated steam.
  • the method for evaluating the anti-corrosion effect of thermal power unit shutdown protection and anti-corrosion also includes the steps of adding ammonia to condensed water and adding ammonia to feedwater during the start-up phase.
  • the pH value of the feed water is controlled at 9.5 ⁇ 0.1, that is, the conductivity
  • the rate is controlled within the range of 6.8 ⁇ S/cm to 10.8 ⁇ S/cm.
  • the preconditions can be unified and standardized, which is convenient for the shutdown protection of each coal-fired boiler.
  • the method and the anti-corrosion effect of each coal-fired boiler shutdown protection are compared horizontally, and the same protection method can be compared and observed with the change of the shutdown time, the change of the anti-corrosion effect, and the endurance of its protection can be judged; it can also be compared Based on the protection effect of different protection methods in the same outage time, a better protection scheme can be selected, and the protection method can be further optimized, which has strong practicability.
  • Fig. 1 is a process flow diagram of an evaluation device according to an embodiment of the present disclosure.
  • the evaluation device of the thermal power unit shutdown protection anti-corrosion effect may include:
  • the selection module 100 is used to select any one of the shutdown protection methods to protect the unit for a preset shutdown time before evaluation;
  • the cumulative flow measurement module 110 is used to measure the cumulative flow at the outlet of the condensate pump during the start-up phase of the unit;
  • the iron content measurement module 120 is used to measure the mass content of iron in the water vapor related to the heating surface of the boiler during the start-up stage of the unit,
  • the iron content measurement module 120 includes a calculation unit for calculating the average value of the iron content in the water vapor corresponding to the heating surface of the boiler;
  • the total iron content calculation module 130 is used to calculate the total iron content at the start-up stage of the unit according to the cumulative flow and the average value of the iron content by a preset total iron content fitting formula;
  • the evaluation module 140 is used to use the total iron content as an evaluation index to evaluate the anti-corrosion effect of the shutdown protection of the unit before the start-up.
  • the cumulative flow measurement module 110 includes:
  • the first-stage measurement module 111 is used to measure the first cumulative flow of the unit from the start of stable operation after the start of the condensate pump to the end of the hot state flushing;
  • the second stage measurement module 112 is used to measure the second cumulative flow of the unit from the start of the steam turbine run-in to the grid connection of the steam turbine generator set.
  • the iron content measurement module 120 includes:
  • the first measurement module 121 is used to measure the iron content of the condensed water
  • the second measurement module 122 is used to measure the iron content of the feed water
  • the third measurement module 123 is used to measure the iron content in the furnace water or start the separator effluent.
  • the fourth measurement module 124 is used to measure the iron content of the superheated steam.
  • the calculation unit is also used to calculate the arithmetic mean value of the iron content according to the iron content in the water vapor related to the heating surface of the boiler within the detection period.
  • the evaluation device for the protection and anti-corrosion effect of the thermal power unit shutdown further includes condensate water ammonia addition equipment and feedwater ammonia addition equipment that are in operation.
  • the method and device proposed in the embodiments of the present disclosure specifically quantify the evaluation of the anti-corrosion effect of the thermal power unit’s coal-fired boiler decommissioning protection, and the specific data of the total iron content finally obtained can be used to compare the anti-corrosion effects of the decommissioning protection of the unit , can also be used for comparison of anti-corrosion effects under different out-of-service protection methods, and can also be used for comparison of out-of-service protection and anti-corrosion effects under similar units.
  • This is an evaluation method that can directly compare data; in addition, the implementation of the present disclosure
  • the method and device proposed in this example have more specific and specific requirements and monitoring for the supervision of water vapor quality during the start-up process of the unit, and there are rules to follow and evidence to follow.
  • an ultra-supercritical 660MW DC furnace is selected for shutdown protection, and the coal-fired boiler shutdown protection method adopts the method of increasing the pH value of the feed water for protection.
  • the evaluation method and device of the embodiment of the present disclosure are used to evaluate the anti-corrosion effect of the coal-fired boiler shutdown protection under different shutdown protection times, as follows:
  • the fine treatment high-speed mixed bed of the unit is not put into operation, and the condensate water ammonia addition equipment and the feed water ammonia addition equipment are put into operation to control the pH value of the feed water to maintain between 9.5 ⁇ 0.1 and the conductivity to be controlled at 7.0 ⁇ S/cm ⁇ 10.0 ⁇ S/cm;
  • the average iron content in condensate is 111.8 ⁇ g/L;
  • the average iron content in feed water is 82 ⁇ g/L
  • the average iron content in the effluent from the separator is 102.1 ⁇ g/L;
  • the average iron content of superheated steam is 30.3 ⁇ g/L;
  • the total iron content is calculated to be 2781.3kg.
  • the average iron content in condensate is 24 ⁇ g/L;
  • the average iron content in feed water is 9.5 ⁇ g/L
  • the average iron content in the effluent from the separator is 12.5 ⁇ g/L;
  • the average iron content of superheated steam is 5.5 ⁇ g/L
  • the total iron content is calculated to be 375.0 kg.
  • Nitrogen gas protection method is used: the unit starts after about 179 days of shutdown protection: at the end of hot flushing, the cumulative flow at the outlet of the condensate pump is 8173t, the average iron content of the condensate is 86.9 ⁇ g/L, and the average iron content of the feed water is 71.3 ⁇ g/L, the average iron content of the effluent from the separator is 80.9 ⁇ g/L; when the steam turbine is running and connected to the grid, the cumulative flow at the outlet of the condensate pump is 3019t, and the average iron content of the superheated steam is 26.1 ⁇ g/L. According to the fitting formula proposed in this method, the total iron content is 2033.0kg.
  • the protection method of increasing the pH value of the feed water is adopted: the unit starts up after 170 days of shutdown protection: at the end of the hot state flushing, the cumulative flow at the outlet of the condensate pump is 9014t, the average iron content of the condensate is 111.8 ⁇ g/L, and the average iron content of the feed water 82 ⁇ g/L, and the average iron content in the effluent from the separator is 102.1 ⁇ g/L; when the steam turbine is running and connected to the grid, the cumulative flow at the outlet of the condensate pump is 3765t, and the average iron content in the superheated steam is 30.3 ⁇ g/L. According to the fitting formula proposed in this method, the total iron content is 2781.3kg.
  • the corrosion amount of the same unit using the nitrogen filling shutdown protection method is less than that of increasing the feed water pH value in the same shutdown time, indicating that the nitrogen filling shutdown protection method is more effective.
  • the anti-corrosion effect of the furnace shutdown protection is better, and the method proposed in the embodiment of the present disclosure can also be used to compare the anti-corrosion effects of different furnace shutdown protection methods, so as to select a better furnace shutdown protection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Game Theory and Decision Science (AREA)
  • Food Science & Technology (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种火电机组停炉保护防锈蚀效果的评价方法及装置,所述方法包括:测量机组启动阶段凝结水泵出口的累积流量;测量所述机组所述启动阶段与锅炉受热面相关水汽中铁的质量含量,计算得到对应所述锅炉受热面相关水汽中的铁含量平均值;根据所述累积流量和所述铁含量平均值,由预设的总铁量拟合式计算出所述机组所述启动阶段的总铁含量;和以所述总铁含量作为评价指标,对所述机组该次启动前的停炉保护防锈蚀效果进行评价。

Description

一种火电机组停炉保护防锈蚀效果的评价方法及装置
相关申请的交叉引用
本申请基于申请号为202111327974.7、申请日为2021年11月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开属于锅炉腐蚀保护技术领域,具体涉及一种火电机组停炉保护防锈蚀效果的评价方法及装置。
背景技术
近年来随着核电、水电、风电和光伏发电机组的不断投入运行,火电机组严格控制投运时间,面临着越来越长的停用状态或者越来越多的启停次数。因此对火电机组燃煤锅炉停用保护的防锈蚀要求也越来越严格,以防止燃煤锅炉在停用期间发生大量腐蚀,保障机组燃煤锅炉能随时安全可靠启动,并保持长期正常安全稳定运行,避免由于停用腐蚀造成的燃煤锅炉在运行过程中发生爆管等事故。
目前,对于火电机组燃煤锅炉停用保护防锈蚀方法在相关标准中已经有较多的记录,但是却没有任何一种对于燃煤锅炉停用保护防锈蚀效果的评价方法,导致无法对燃煤锅炉的停用保护防锈蚀效果进行评价,不能掌握停用保护状态下的庞大的燃煤锅炉水汽***的防锈蚀情况,不能表征采用的燃煤锅炉停用保护方法是否可靠有效,为停用保护不当造成的燃煤锅炉腐蚀甚至 在后续的运行中发生爆管埋下安全隐患。
发明内容
为了解决相关技术中存在的问题,本公开实施例提供一种火电机组停炉保护防锈蚀效果的评价方法及装置,操作简单,易实施,可以有效掌握停炉保护状态下庞大燃煤锅炉水汽***管道内的防锈蚀情况,并判断目前采用的燃煤锅炉停用保护方法是否可靠有效。
为实现上述目的,本公开提供如下技术方案。
本公开第一方面实施例提出一种火电机组停炉保护防锈蚀效果的评价方法,包括:
测量机组启动阶段凝结水泵出口的累积流量;
测量所述机组所述启动阶段与锅炉受热面相关水汽中铁的质量含量,计算得到对应所述锅炉受热面相关水汽中的铁含量平均值;
根据所述累积流量和所述铁含量平均值,由预设的总铁量拟合式计算出所述机组所述启动阶段的总铁含量;和
以所述总铁含量作为评价指标,对所述机组该次启动前的停炉保护防锈蚀效果进行评价。
在一些实施例中,所述测量机组启动阶段凝结水泵出口的累积流量,包括:
测量所述机组从所述凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量;和
测量所述机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量。
在一些实施例中,所述测量所述机组所述启动阶段与锅炉受热面相关水汽中的铁的质量含量,包括:凝结水铁含量、给水铁含量、炉水或启动分离器出水铁含量、过热蒸汽铁含量。
在一些实施例中,所述计算得到对应所述锅炉受热面相关水汽中的铁含量平均值包括:在检测周期内,根据所述锅炉受热面相关水汽中的所述铁的质量含量计算得到所述铁含量平均值。
在一些实施例中,所述预设的总铁量拟合式为:
M 总铁量=V 热态冲洗结束时×c 凝结水铁含量平均值+V 热态冲洗结束时×c 给水铁含量平均值+V 热态冲洗结束时×c 炉水或启动分离器出水铁含量平均值+V 汽轮机冲转阶段至并网时×c 过热蒸汽铁含量平均值
其中,M 总铁量为机组启动阶段的总铁含量,V 热态冲洗结束时为机组从凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量,V 汽轮机冲 转阶段至并网时为机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量,
c 凝结水铁含量平均值为凝结水铁含量平均值,c 给水铁含量平均值为给水铁含量平均值,c 炉水或启动分离器出水铁含量平均值为炉水或启动分离器出水铁含量平均值,c 过热蒸汽铁含量平均值为过热蒸汽铁含量平均值。
在一些实施例中,所述火电机组停炉保护防锈蚀效果的评价方法还包括在所述启动阶段进行凝结水加氨和给水加氨的步骤。
本公开第二方面实施例提出一种火电机组停炉保护防锈蚀效果的评价装置,包括:
累积流量测量模块,用于测量机组启动阶段凝结水泵出口的累积流量;
铁含量测量模块,用于测量所述机组所述启动阶段与所述锅炉受热面相 关水汽中的铁的质量含量,
其中所述铁含量测量模块包括计算单元,用于计算得到对应所述锅炉受热面相关水汽中的铁含量平均值;
总铁含量计算模块,用于根据所述累积流量和所述铁含量平均值,由预设的总铁量拟合式计算出所述机组所述启动阶段的总铁含量;和
评价模块,用于以所述总铁含量作为评价指标,对所述机组该次启动前的停炉保护防锈蚀效果进行评价。
在一些实施例中,所述累积流量测量模块包括:
第一阶段测量模块,用于测量所述机组从所述凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量;和
第二阶段测量模块,用于测量所述机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量。
在一些实施例中,所述铁含量测量模块包括:
第一测量模块,用于测量凝结水铁含量;
第二测量模块,用于测量给水铁含量;
第三测量模块,用于测量炉水或启动分离器出水铁含量;和
第四测量模块,用于测量过热蒸汽铁含量。
在一些实施例中,所述火电机组停炉保护防锈蚀效果的评价装置还包括:凝结水加氨设备和给水加氨设备。
与相关技术相比,本公开具有以下有益效果:
本公开实施例提供一种火电机组停炉保护防锈蚀效果的评价方法及装置,可以选取任意一种停炉保护方法对机组进行一段时间的保护后,启动机组对其进行防锈蚀保护效果的评价,适用范围广泛;通过测量启动各阶段的累积 流量和燃煤锅炉主要受热面各水汽***的铁含量并拟合计算得到***内相应的总铁含量,对燃煤锅炉各水汽***的停用保护防锈蚀情况进行了非常有效的表征,数据准确度高,结果直观清晰,且装置构造简单,操作易实施,通过总铁含量能够有效掌握停炉保护状态下的庞大的燃煤锅炉水汽***管道内的防锈蚀情况,并判断目前采用的燃煤锅炉停用保护方法是否可靠有效,避免燃煤锅炉停用腐蚀产生的安全隐患。
根据本公开实施例,通过在启动阶段随时进行凝结水加氨和给水加氨,并且机组的此次启动过程中不投运任何精处理设备,可以保证给水pH值控制在适宜范围内,即电导率控制在优选范围内,对于启动过程中加药对水汽控制和精处理设备的规定,可以统一规范前提条件,便于对每种燃煤锅炉停用保护方法以及每次燃煤锅炉停用保护的防锈蚀效果进行横向比较,可以对比观察到同一种保护方法随着停用时间的变化,防锈蚀效果的变化,判断其保护的续航能力;也可以比对不同保护方法在相同停用时间内的保护效果,从而选择更优的保护方案,并且可以对保护方法进行进一步地优化,实用性强。
附图说明
图1是根据本公开实施例的评价装置工艺流程图;
图2是根据本公开实施例的评价方法流程图;
图3是根据本公开实施例的评价方法实施流程图。
附图标记:
选取模块100,累积流量测量模块110,第一阶段测量模块111,第二阶段测量模块112,铁含量测量模块120,第一测量模块121,第二测量模 块122,第三测量模块123,第四测量模块124,总铁含量计算模块130,评价模块140。
具体实施方式
下面结合具体的实施例对本公开做进一步的详细说明,所述是对本公开的解释而不是限定。
本公开实施例根据对火电机组冷态启动过程中水汽品质的检测数据分析和试验研究成果,提出了一种火电机组停炉保护防锈蚀效果的评价方法及装置,所监测和控制方法为:采用火电机组燃煤锅炉启动阶段各受热面出水水汽中的总铁含量表征燃煤锅炉停用保护防锈蚀的效果,总铁含量越低,燃煤锅炉停用保护防锈蚀效果越佳。
具体的,如图2所示,本公开实施例提出了一种火电机组停炉保护防锈蚀效果的评价方法,包括:
在进行评价前,选取任意一种停炉保护方法对机组进行预设停炉时间的保护;
测量机组启动阶段凝结水泵出口的累积流量;
测量机组启动阶段与锅炉受热面相关水汽中的铁的质量含量,计算得到对应锅炉受热面相关水汽中的铁含量平均值;
根据累积流量和铁含量平均值,由预设的总铁量拟合式计算出机组启动阶段的总铁含量;
以总铁含量作为评价指标,对机组该次启动前的停炉保护防锈蚀效果进行评价,总含铁量越高,则该停炉保护方法的防锈蚀效果越差。
本公开实施例提供的火电机组停炉保护防锈蚀效果的评价方法及装置, 可以选取任意一种停炉保护方法对机组进行一段时间的保护后,启动机组对其进行防锈蚀保护效果的评价,适用范围广泛;通过测量启动各阶段的累积流量和燃煤锅炉主要受热面各水汽***的铁含量并拟合计算得到***内相应的总铁含量,对燃煤锅炉各水汽***的停用保护防锈蚀情况进行了非常有效的表征,数据准确度高,结果直观清晰,且装置构造简单,操作易实施,通过总铁含量能够有效掌握停炉保护状态下的庞大的燃煤锅炉水汽***管道内的防锈蚀情况,并判断目前采用的燃煤锅炉停用保护方法是否可靠有效,避免燃煤锅炉停用腐蚀产生的安全隐患。
如图3所示,进一步地,测量机组启动阶段凝结水泵出口的累积流量,包括:
测量机组从凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量;
测量机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量。
具体地,热态冲洗结束时与汽轮机冲转开始时是同一时间。
进一步地,测量机组启动阶段与锅炉受热面相关水汽中的铁含量,包括:
凝结水铁含量、给水铁含量、炉水或启动分离器出水铁含量和过热蒸汽铁含量。
本公开实施例中,测量机组启动阶段锅炉受热面相关水汽中的铁含量平均值,包括:在检测周期内,根据锅炉受热面相关水汽中的铁含量计算铁含量算术平均值。
在一些实施例中,检测周期可以为1小时、2小时或3小时不等,根据实际情况确定检测周期。
本公开实施例中,在检测周期内,根据锅炉受热面相关水汽中的铁的质 量含量计算得到铁含量平均值包括计算凝结水铁含量平均值,给水铁含量平均值,炉水或启动分离器出水铁含量平均值,过热蒸汽铁含量平均值。
本公开实施例中,预设的总铁量拟合式如下:
M 总铁量=V 热态冲洗结束时×c 凝结水铁含量平均值+V 热态冲洗结束时×c 给水铁含量平均值+V 热态冲洗结束时×c 炉水或启动分离器出水铁含量平均值+V 汽轮机冲转阶段至并网时×c 过热蒸汽铁含量平均值
其中,M 总铁量为机组启动阶段的总铁含量,V 热态冲洗结束时为机组从凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量,V 汽轮机冲 转阶段至并网时为机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量,
c 凝结水铁含量平均值为凝结水铁含量平均值,c 给水铁含量平均值为给水铁含量平均值,c 炉水或启动分离器出水铁含量平均值为炉水或启动分离器出水铁含量平均值,c 过热蒸汽铁含量平均值为过热蒸汽铁含量平均值。
进一步地,本公开实施例的火电机组停炉保护防锈蚀效果的评价方法还包括在启动阶段进行凝结水加氨和给水加氨的步骤。
根据本公开实施例,通过在启动阶段随时进行凝结水加氨和给水加氨,并且机组的此次启动过程中不投运任何精处理设备,可以保证给水pH值控制在9.5±0.1,即电导率控制在6.8μS/cm~10.8μS/cm之间的范围内,对于启动过程中加药对水汽控制和精处理设备的规定,可以统一规范前提条件,便于对每种燃煤锅炉停用保护方法以及每次燃煤锅炉停用保护的防锈蚀效果进行横向比较,可以对比观察到同一种保护方法随着停用时间的变化,防锈蚀效果的变化,判断其保护的续航能力;也可以比对不同保护方法在相同停用时间内的保护效果,从而选择更优的保护方案,并且可以对保护方法进行进一步地优化,实用性强。
图1是根据本公开实施例的评价装置工艺流程图,如图1所示,该火电机组停炉保护防锈蚀效果的评价装置可以包括:
选取模块100,用于在进行评价前,选取任意一种停炉保护方法对机组进行预设停炉时间的保护;
累积流量测量模块110,用于测量机组启动阶段凝结水泵出口的累积流量;
铁含量测量模块120,用于测量机组启动阶段与锅炉受热面相关水汽中的铁的质量含量,
其中所述铁含量测量模块120包括计算单元,用于计算得到对应锅炉受热面相关水汽中的铁含量平均值;
总铁含量计算模块130,用于根据累积流量和铁含量平均值,由预设的总铁量拟合式计算出机组启动阶段的总铁含量;和
评价模块140,用于以总铁含量作为评价指标,对机组该次启动前的停炉保护防锈蚀效果进行评价。
本公开实施例中,所述累积流量测量模块110包括:
第一阶段测量模块111,用于测量机组从凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量;和
第二阶段测量模块112,用于测量机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量。
本公开实施例中,所述铁含量测量模块120包括:
第一测量模块121,用于测量凝结水铁含量;
第二测量模块122,用于测量给水铁含量;
第三测量模块123,用于测量炉水或启动分离器出水铁含量;和
第四测量模块124,用于测量过热蒸汽铁含量。
本公开实施例中,计算单元还用于在检测周期内,根据锅炉受热面相关水汽中的铁含量计算铁含量算术平均值。
本公开实施例中,所述火电机组停炉保护防锈蚀效果的评价装置还包括在投运的凝结水加氨设备和给水加氨设备。
本公开实施例提出的方法和装置具体量化了火电机组燃煤锅炉停用保护防锈蚀效果的评价,可以采用最后得出的总铁含量的具体数据进行本机组的历次停用保护防锈蚀效果对比,也可以用于不同停用保护方法下的防锈蚀效果对比,也可以用于同类机组下的停用保护防锈蚀效果对比,这是一个能进行直接数据对比的评价方法;此外,本公开实施例提出的方法和装置对机组启动过程中水汽品质的监督有了更加明确具体的要求和监控,可以有章可循、有依可据。
实施例1
本实施例1中选取某超超临界660MW直流炉对其进行停炉保护,燃煤锅炉停炉保护方法采用提高给水pH值的方法进行保护。在某次启动过程中,采用本公开实施例的评价方法及装置进行不同停炉保护时间下燃煤锅炉停用保护防锈蚀效果的评价,具体如下:
在启动过程中,不投运机组精处理高速混床,投运凝结水加氨设备和给水加氨设备,用于控制给水pH值维持在9.5±0.1之间,电导率控制在7.0μS/cm~10.0μS/cm之间;
从冷天冲洗至机组并网整个启动阶段过程中,每2小时以及在点火、冲转、并网的重要节点时取样检测各水汽水样中的铁含量等指标;
根据凝结水泵出口设置的累积流量计读取并记录凝结水的累计流量,直 至机组并网。
第一次机组在停炉保护170日后重新启动过程,根据本公开实施例的评价方法得到的测量结果如下:
热态冲洗结束时,凝结水泵出口的累计流量为9014t;
凝结水铁含量平均值为111.8μg/L;
给水铁含量平均值为82μg/L;
启动分离器出水铁含量平均值为102.1μg/L;
汽轮机冲转阶段至并网时,凝结水泵出口的累计流量为3765t;
过热蒸汽铁含量平均值为30.3μg/L;
根据本公开实施例提供的拟合式计算得到总铁含量为2781.3kg。
第二次机组在停炉保护8日后重新启动过程,根据本公开实施例的评价方法得到的测量结果如下:
热态冲洗结束时,凝结水泵出口的累计流量为7514t;
凝结水铁含量平均值为24μg/L;
给水铁含量平均值为9.5μg/L;
启动分离器出水铁含量平均值为12.5μg/L;
汽轮机冲转阶段至并网时,凝结水泵出口的累计流量为5327t;
过热蒸汽铁含量平均值为5.5μg/L;
根据本公开实施例提供的拟合式计算得到总铁含量为375.0kg。
根据评价结果可以观察到,明显的,机组在长时间的停炉时间内的腐蚀量比在较短的停炉时间内的腐蚀量高的多,说明本公开实施例提出的方法可以更加直观的认识停用保护的防锈蚀效果,也可以据此对停炉保护的方法进行改进。
实施例2
我国某超超临界660MW直流炉,燃煤锅炉在前后两次的停炉中分别采用充氮气保护和提高给水pH值保护。在两次停用保护后的启动过程中,均采用本方法进行燃煤锅炉停用保护防锈蚀效果的评价:在启动过程中,不投运机组精处理高速混床,投运凝结水加氨设备和给水加氨设备,保障给水pH控制在9.5±0.1之间,电导率控制7.0μS/cm~10.0μS/cm之间;从冷天冲洗至机组并网过程中,每2小时以及点火、冲转、并网的重要节点时取样检测各水汽水样中的铁含量等指标,同时记录凝结水的累计流量,直至机组并网。
采用充氮气保护方法:机组在停炉保护约179日后启动过程:热态冲洗结束时,凝结水泵出口的累计流量为8173t,凝结水铁含量平均值为86.9μg/L,给水铁含量平均值为71.3μg/L,启动分离器出水铁含量平均值为80.9μg/L;汽轮机冲转阶段至并网时,凝结水泵出口的累计流量为3019t,过热蒸汽铁含量平均值为26.1μg/L。根据本方法中提出的拟合式得出总铁量为2033.0kg。
采用提高给水pH值保护方法:机组在停炉保护170日后启动过程:热态冲洗结束时,凝结水泵出口的累计流量为9014t,凝结水铁含量平均值为111.8μg/L,给水铁含量平均值为82μg/L,启动分离器出水铁含量平均值为102.1μg/L;汽轮机冲转阶段至并网时,凝结水泵出口的累计流量为3765t,过热蒸汽铁含量平均值为30.3μg/L。根据本方法中提出的拟合式得出总铁量为2781.3kg。
根据评价结果可以观察到,明显的,同一机组在同样停炉时间内采用充氮气停炉保护方法的腐蚀量比提高给水pH值停炉保护方法的腐蚀量少,表 示充氮气停炉保护方法对停炉保护防锈蚀效果更佳,本公开实施例提出的方法也可以用于不同停炉保护方法下的防锈蚀效果对比,从而选出更优的停炉保护方法。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。
本公开所有实施例均可以单独被执行,也可以与其他实施例相结合被执行,均视为本公开要求的保护范围。

Claims (10)

  1. 一种火电机组停炉保护防锈蚀效果的评价方法,包括:
    测量机组启动阶段凝结水泵出口的累积流量;
    测量所述机组所述启动阶段与锅炉受热面相关水汽中铁的质量含量,计算得到对应所述锅炉受热面相关水汽中的铁含量平均值;
    根据所述累积流量和所述铁含量平均值,由预设的总铁量拟合式计算出所述机组所述启动阶段的总铁含量;和
    以所述总铁含量作为评价指标,对所述机组该次启动前的停炉保护防锈蚀效果进行评价。
  2. 根据权利要求1所述的火电机组停炉保护防锈蚀效果的评价方法,其中,所述测量机组启动阶段凝结水泵出口的累积流量,包括:
    测量所述机组从所述凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量;和
    测量所述机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量。
  3. 根据权利要求1或2所述的火电机组停炉保护防锈蚀效果的评价方法,其中,所述测量所述机组所述启动阶段与锅炉受热面相关水汽中的铁的质量含量,包括:凝结水铁含量、给水铁含量、炉水或启动分离器出水铁含量、过热蒸汽铁含量。
  4. 根据权利要求1至3中任一项所述的火电机组停炉保护防锈蚀效果的评价方法,其中,所述计算得到对应所述锅炉受热面相关水汽中的铁含量平均值包括:在检测周期内,根据所述锅炉受热面相关水汽中的所述铁的质量 含量计算得到所述铁含量平均值。
  5. 根据权利要求1至4中任一项所述的火电机组停炉保护防锈蚀效果的评价方法,其中,所述预设的总铁量拟合式为:
    M 总铁量=V 热态冲洗结束时×c 凝结水铁含量平均值+V 热态冲洗结束时×c 给水铁含量平均值+V 热态冲洗结束时×c 炉水或启动分离器出水铁含量平均值+V 汽轮机冲转阶段至并网时×c 过热蒸汽铁含量平均值
    其中,M 总铁量为机组启动阶段的总铁含量,V 热态冲洗结束时为机组从凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量,V 汽轮机冲 转阶段至并网时为机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量,
    c 凝结水铁含量平均值为凝结水铁含量平均值,c 给水铁含量平均值为给水铁含量平均值,c 炉水或启动分离器出水铁含量平均值为炉水或启动分离器出水铁含量平均值,c 过热蒸汽铁含量平均值为过热蒸汽铁含量平均值。
  6. 根据权利要求1至5中任一项所述的火电机组停炉保护防锈蚀效果的评价方法,其中,所述方法还包括在所述启动阶段进行凝结水加氨和给水加氨的步骤。
  7. 一种火电机组停炉保护防锈蚀效果的评价装置,其中,基于如权利要求1至6中任一项所述的火电机组停炉保护防锈蚀效果的评价方法,包括:
    累积流量测量模块(110),用于测量机组启动阶段凝结水泵出口的累积流量;
    铁含量测量模块(120),用于测量所述机组所述启动阶段与所述锅炉受热面相关水汽中的铁的质量含量,
    其中所述铁含量测量模块(120)包括计算单元,用于计算得到对应所述锅炉受热面相关水汽中的铁含量平均值;
    总铁含量计算模块(130),用于根据所述累积流量和所述铁含量平均值,由预设的总铁量拟合式计算出所述机组所述启动阶段的总铁含量;和
    评价模块(140),用于以所述总铁含量作为评价指标,对所述机组该次启动前的停炉保护防锈蚀效果进行评价。
  8. 根据权利要求7所述的火电机组停炉保护防锈蚀效果的评价装置,其中,所述累积流量测量模块(110)包括:
    第一阶段测量模块(111),用于测量所述机组从所述凝结水泵启动后稳定运行开始至热态冲洗结束该阶段的第一累积流量;和
    第二阶段测量模块(112),用于测量所述机组从汽轮机冲转开始至汽轮发电机组并网该阶段的第二累积流量。
  9. 根据权利要求7或8所述的火电机组停炉保护防锈蚀效果的评价装置,其中,所述铁含量测量模块(120)包括:
    第一测量模块(121),用于测量凝结水铁含量;
    第二测量模块(122),用于测量给水铁含量;
    第三测量模块(123),用于测量炉水或启动分离器出水铁含量;和
    第四测量模块(124),用于测量过热蒸汽铁含量。
  10. 根据权利要求7至9中任一项所述的火电机组停炉保护防锈蚀效果的评价装置,其中,所述装置还包括凝结水加氨设备和给水加氨设备。
PCT/CN2022/129680 2021-11-10 2022-11-03 一种火电机组停炉保护防锈蚀效果的评价方法及装置 WO2023083099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551118A JP2024507274A (ja) 2021-11-10 2022-11-03 火力発電ユニットのボイラ使用停止保護による防食効果の評価方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111327974.7 2021-11-10
CN202111327974.7A CN114036756A (zh) 2021-11-10 2021-11-10 一种火电机组停炉保护防锈蚀效果的评价方法及装置

Publications (1)

Publication Number Publication Date
WO2023083099A1 true WO2023083099A1 (zh) 2023-05-19

Family

ID=80137179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129680 WO2023083099A1 (zh) 2021-11-10 2022-11-03 一种火电机组停炉保护防锈蚀效果的评价方法及装置

Country Status (3)

Country Link
JP (1) JP2024507274A (zh)
CN (1) CN114036756A (zh)
WO (1) WO2023083099A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114036756A (zh) * 2021-11-10 2022-02-11 西安热工研究院有限公司 一种火电机组停炉保护防锈蚀效果的评价方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236845A (en) * 1992-10-22 1993-08-17 Nalco Chemical Company On-line iron (II) concentration monitoring to continuously determine corrosion in boiler systems
CN1479100A (zh) * 2002-08-27 2004-03-03 上海电力学院 水中颗粒状悬浮铁的快速测定方法
CN104931380A (zh) * 2015-06-12 2015-09-23 国网河南省电力公司电力科学研究院 一种火力发电厂机组热力***非溶解性铁含量测定方法及装置
CN105388309A (zh) * 2015-11-11 2016-03-09 华北电力科学研究院有限责任公司 电厂水汽中痕量铁离子自动快速检测方法及***和应用
CN109283090A (zh) * 2018-10-23 2019-01-29 河南省日立信股份有限公司 热力循环***水中不溶物含量在线检测装置及方法
CN113049282A (zh) * 2021-03-11 2021-06-29 西安热工研究院有限公司 一种火电机组停用保养效果在线评价装置及方法
CN114036756A (zh) * 2021-11-10 2022-02-11 西安热工研究院有限公司 一种火电机组停炉保护防锈蚀效果的评价方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236845A (en) * 1992-10-22 1993-08-17 Nalco Chemical Company On-line iron (II) concentration monitoring to continuously determine corrosion in boiler systems
CN1479100A (zh) * 2002-08-27 2004-03-03 上海电力学院 水中颗粒状悬浮铁的快速测定方法
CN104931380A (zh) * 2015-06-12 2015-09-23 国网河南省电力公司电力科学研究院 一种火力发电厂机组热力***非溶解性铁含量测定方法及装置
CN105388309A (zh) * 2015-11-11 2016-03-09 华北电力科学研究院有限责任公司 电厂水汽中痕量铁离子自动快速检测方法及***和应用
CN109283090A (zh) * 2018-10-23 2019-01-29 河南省日立信股份有限公司 热力循环***水中不溶物含量在线检测装置及方法
CN113049282A (zh) * 2021-03-11 2021-06-29 西安热工研究院有限公司 一种火电机组停用保养效果在线评价装置及方法
CN114036756A (zh) * 2021-11-10 2022-02-11 西安热工研究院有限公司 一种火电机组停炉保护防锈蚀效果的评价方法及装置

Also Published As

Publication number Publication date
CN114036756A (zh) 2022-02-11
JP2024507274A (ja) 2024-02-16

Similar Documents

Publication Publication Date Title
WO2023083099A1 (zh) 一种火电机组停炉保护防锈蚀效果的评价方法及装置
CN205748814U (zh) 阀门内漏监视***
JP5916431B2 (ja) 発電プラントおよびその運転方法
CN210396827U (zh) 一种火电厂热力设备停运保护***
CN109078931A (zh) 高温气冷堆核电机组二回路化学清洗的动态模拟试验装置及使用方法
CN103557992A (zh) 基于阀前管壁温度检测的蒸汽疏水阀内漏检测方法
CN102288064A (zh) 一种空冷岛及机组联合停用保护方法
CN104121803A (zh) 一种不受除盐水量制约的空冷岛热态冲洗法
CN201648062U (zh) 一种发电机内冷水优化调节***
CN105202522A (zh) 一种直流锅炉腐蚀、结垢风险的诊断方法
CZ156294A3 (en) Corrosion and a part material disintegration velocity in jet operation monitoring method and apparatus for making the same
JP5519920B2 (ja) Pwr発電所二次冷却系の水処理システム及びその方法
CN115563762A (zh) 一种受热面管屏状态的预警方法、装置、设备及存储介质
CN110455465B (zh) 一种基于频率波动的钠中气泡探测信号处理方法
JP6620445B2 (ja) 取放水温度差管理方法および取放水温度差管理設備
CN104063585A (zh) 锅炉结垢风险评估方法
CN111128418B (zh) 用于检测冷阱净化性能的方法及***
CN113218596A (zh) 一种燃煤发电机组#4低压加热器泄漏检测方法及装置
CN208921302U (zh) 一种锅炉二次风温度检测装置
CN210464589U (zh) 一种定子冷却水箱漏氢检测装置
Osterhout Operation of the water-to-sodium leak detection system at the experimental breeder reactor II
CN215449081U (zh) 用于蒸汽管道的冷凝水检测装置
JPH05157207A (ja) スケール付着状態監視装置
CN210625888U (zh) 上升管蒸发器监测***
RU2764944C2 (ru) Способ определения начала образования жидкостных или гидратных пробок в газосборной промысловой сети

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551118

Country of ref document: JP