WO2023082054A1 - 电路结构及其控制方法、智能设备 - Google Patents

电路结构及其控制方法、智能设备 Download PDF

Info

Publication number
WO2023082054A1
WO2023082054A1 PCT/CN2021/129603 CN2021129603W WO2023082054A1 WO 2023082054 A1 WO2023082054 A1 WO 2023082054A1 CN 2021129603 W CN2021129603 W CN 2021129603W WO 2023082054 A1 WO2023082054 A1 WO 2023082054A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit structure
switch
power supply
controller
sampling
Prior art date
Application number
PCT/CN2021/129603
Other languages
English (en)
French (fr)
Inventor
雷云
张智锋
林建平
Original Assignee
深圳市华思旭科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华思旭科技有限公司 filed Critical 深圳市华思旭科技有限公司
Priority to PCT/CN2021/129603 priority Critical patent/WO2023082054A1/zh
Publication of WO2023082054A1 publication Critical patent/WO2023082054A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of consumer electronic products, and more specifically, to a circuit structure, a control method thereof, and an intelligent device.
  • the power supply device when the voltage of the vehicle battery is insufficient, the power supply device can be used to supply power to the engine to assist in ignition. Wherein, in order to enable the power supply equipment to effectively output energy, it is necessary to control the discharge of the power supply equipment. Therefore, how to accurately control the power supply equipment to supply power to the engine is a technical problem that needs to be solved urgently in this field.
  • the embodiments of the present application relate to a circuit structure, a control method thereof, and an intelligent device.
  • the circuit structure of the embodiment of the present application can realize the connection between the power supply device and the car battery, the power supply device includes a power supply component, and the circuit structure includes a first power port, a second power port, a sampling module, a first switch and a controller,
  • the first power port can be connected to the first pole of the car battery through the sampling module and the first switch respectively;
  • the second power port can be connected to the second pole of the car battery;
  • the control The controller is used to control the state of the first switch according to the sampling electrical signal on the sampling module.
  • the sampling module includes a sampling resistor and a second switch, and when the second switch is turned on, the controller is used to control the first sampling resistor according to the sampling electrical signal on the sampling resistor. The state of a switch.
  • the controller is configured to control the second switch to turn off when controlling the first switch to turn on.
  • the sampling module further includes a current-limiting resistor, and the first power port can be connected to the first pole of the car battery through the sampling resistor, the current-limiting resistor and the second switch .
  • the controller is used to determine whether the vehicle starts ignition according to the sampled electrical signal.
  • the value of the sampled electrical signal is related to the current of the sampling module, and the controller can determine that the rate of change of the current of the sampling module is greater than a preset current change based on the sampled electrical signal. If the rate is low, make sure the car is sparked.
  • the value of the sampled electrical signal is related to the voltage of the sampling module, and the controller can determine that the rate of change of the voltage of the sampling module is greater than a preset voltage change based on the sampled electrical signal. If the rate is low, make sure the car is sparked.
  • the controller is configured to control the first switch to be turned on when it is determined that the car is being turned on; and to control the first switch to be turned off when it is determined that the car is not being turned on. .
  • the circuit structure further includes a signal amplification module, the signal amplification module is used to amplify the sampled electrical signal, and the controller is used to control the first The state of the switch.
  • the controller is used to control the sampling module to be turned on at a preset period, so as to control the state of the first switch according to the sampling electrical signal.
  • the circuit structure includes an electronic switch driving power supply and an electronic switch control circuit
  • the electronic switch driving power supply is used to provide an operating voltage for the first switch
  • the electronic switch control circuit is used to A signal from the controller controls the state of the first switch.
  • the circuit structure includes a controller power supply circuit, and the controller power supply circuit is used to provide an operating voltage for the controller.
  • the circuit structure includes a voltage detection circuit for detecting the voltage value of the vehicle battery, and the controller is used for outputting a control signal according to the voltage value of the vehicle battery.
  • the circuit structure includes a prompting element, and the prompting element is used to issue a prompt when the power supply device is connected to the vehicle battery in reverse.
  • the circuit structure further includes a key
  • the controller is used to control the working mode of the circuit structure according to the state of the key.
  • the power supply component includes a plurality of supercapacitors connected in series.
  • the control method in the embodiment of the present application is used in a circuit structure, the circuit structure can realize the connection between the power supply device and the car battery, the power supply device includes a power supply component, and the circuit structure includes a first power supply port, a second power supply port, a sampling module and a first switch, the first power port can be connected to the first pole of the car battery through the sampling module and the first switch respectively; the second power port can be connected to the second pole of the car battery pole connection; the control method includes:
  • the state of the first switch is controlled according to the sampling electrical signal on the sampling module.
  • the smart device in the embodiment of the present application includes a housing and the circuit structure in any of the above embodiments, the circuit structure is arranged in the housing.
  • the power port forms a loop with the car battery through the sampling module, and the power port can discharge to the car battery through the sampling module. Therefore, the electrical signal on the loop will also change. At this time, the sampling electrical signal on the sampling module can reflect whether there is such a change. By obtaining the sampling electrical signal on the sampling module, the sampling electrical signal can be quickly and accurately The state of the first switch can be precisely controlled, so that the power supply port can be accurately controlled to supply power to the vehicle engine.
  • Fig. 1 is a schematic diagram of connection of power supply equipment, circuit structure, and car battery in some embodiments of the present application.
  • Fig. 2 is a schematic diagram of the circuit structure of some embodiments of the present application.
  • Fig. 3 is a schematic diagram of a smart device in some embodiments of the present application.
  • the circuit structure 10 of the embodiment of the present application can realize the connection between the power supply device 400 and the car battery 600 , and the power supply device 400 includes a power supply assembly 410 .
  • the circuit structure 10 includes a first power port 11 , a second power port 12 , a sampling module 13 , a first switch 14 and a controller 15 .
  • the first power port 11 can be connected to the first pole of the car battery 600 through the sampling module 13 and the first switch 14 respectively.
  • the second power supply port 12 can be connected to the second pole of the vehicle battery 600 .
  • the controller 15 is configured to control the state of the first switch 14 according to the sampling electrical signal on the sampling module 13 , wherein the state of the first switch 14 includes on, off and so on.
  • the power port (the first power port 11 and the second power port 12) forms a loop with the car battery 600 through the sampling module 13, and the power port can discharge the car battery 600 through the sampling module 13, because When the car is turned on, the voltage of the car battery 600 will change, therefore, the electrical signal on the loop will also change.
  • the sampling electrical signal on the sampling module 13 can reflect whether there is such a change.
  • the sampled electrical signal can be used to quickly and accurately control the state of the first switch 14 according to the sampled electrical signal, so that the power port can be accurately controlled to supply power to the vehicle engine.
  • the power supply device 400 can be a starting power supply, an emergency power supply and other equipment.
  • the power supply device 400 can be connected to the car battery 600 through the circuit structure 10, and the power supply device 400 is used to assist the car in ignition.
  • the power supply device 400 includes a power supply assembly 410, and the electric energy stored in the power supply assembly 410 can be used to assist the ignition of the vehicle.
  • the first power port 11 can be used to connect the first pole of the power supply assembly 410 and the first pole of the car battery 600
  • the second power port 12 can be used to connect the second pole of the power supply assembly 410 and the second pole of the car battery 600 .
  • the first pole of the power supply component 410 may be one of the positive pole and the negative pole of the power supply component 410
  • the second pole of the power supply component 410 may be the other of the positive pole and the negative pole of the power supply component 410
  • the first power port 11 can be used to connect the positive pole of the power supply component 410
  • the second power supply port 12 can be used to connect the negative pole of the power supply component 410 .
  • the first power port 11 can be connected to the first pole of the car battery 600 through the sampling module 13 and the first switch 14 respectively, thereby forming two branches.
  • the first branch is that the first power port 11 is connected to the first pole of the car battery 600 through the sampling module 13, and the state of the car battery 600 (for example, whether it is discharged) can be detected through the first branch.
  • the second branch is that the first power port 11 is connected to the first pole of the car battery 600 through the first switch 14, and the first power port 11 can discharge to the car through the second branch.
  • the first switch 14 can include a high-power electronic switch, which can be an electronic switch with a power greater than a preset power, and the first power port 11 can be connected to the first pole of the car battery 600 through a high-power electronic switch, thereby improving discharge Speed, so that the electric energy of the power supply assembly 410 can be discharged to the car with a relatively large power, thereby assisting the ignition of the car.
  • the first pole of the car battery 600 may be one of the positive pole and the negative pole of the car battery 600
  • the second pole of the car battery 600 may be the other of the positive pole and the negative pole of the car battery 600 .
  • the first pole of the car battery 600 corresponds to the first pole of the power supply assembly 410, that is, both are positive or negative; the second pole of the car battery 600 The poles correspond to the second poles of the power supply assembly 410, that is, both are negative poles or both are positive poles.
  • the control of the circuit arrangement 10 can be realized by means of the controller 15 .
  • the controller 15 may include a driver board, other general-purpose processors, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a ready-made programmable gate array (Field-Programmable Gate Array, FPGA) ) or one or more of other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • the driver board may include a central processing unit (Central Processing Unit, CPU).
  • the sampling module 13 includes a sampling resistor 132 and a second switch 134.
  • the controller 15 is used to control the The state of the first switch 14 .
  • the control of the sampling resistor 132 can be realized through the second switch 134, so that the sampling resistor 132 can be connected to the circuit or disconnected.
  • the second switch 134 When the second switch 134 is turned on, the sampling resistor 132 is connected to the circuit, and the first power supply port 11 can be connected to the first pole of the car battery 600 through the sampling resistor 132 and the second switch 134. Therefore, when the voltage of the car battery 600 occurs When changing, the sampling electrical signal on the sampling resistor 132 can reflect whether there is the change, therefore, by acquiring the sampling electrical signal on the sampling resistor 132, the state of the first switch 14 can be quickly and accurately controlled according to the sampling electrical signal, thereby The power port can be accurately controlled to supply power to the car engine.
  • the specific resistance value of the sampling resistor 132 can be designed according to circuit requirements, and is not specifically limited here. In one embodiment, the resistance value of the sampling resistor 132 may be 10 milliohms or 20 milliohms (m ⁇ ).
  • the withstand power of the first switch 14 is greater than the withstand power of the second switch 134, and the relatively small withstand power of the second switch 134 can facilitate the reduction of the loop current of the branch corresponding to the sampling module 13, and reduce the load on the loop. Lost power, thereby reducing the energy consumption of the power supply device 400 .
  • the controller 15 is configured to control the second switch 134 to turn off when the first switch 14 is turned on.
  • the power supply device 400 discharges to the car through the first power port 11. At this time, it is not necessary to detect the state of the car battery 600 through the sampling module 13. Therefore, the second switch 134 can be controlled to be disconnected, thereby avoiding Unnecessary energy consumption.
  • the controller 15 is used to control the first switch 14 to be turned off when the second switch 134 is controlled to be closed.
  • the circuit structure 10 detects the state of the car storage battery 600 through the sampling module 13. At this time, the power supply device 400 does not need to discharge to the car through the first power port 11. Therefore, the first switch 14 can be controlled to be disconnected, thereby Avoid unnecessary energy consumption.
  • the sampling module 13 also includes a current-limiting resistor 136 , and the first power port 11 can be connected to the first battery 600 of the car battery 600 through the sampling resistor 132 , the current-limiting resistor 136 and the second switch 134 . pole.
  • the current limiting resistor 136 can reduce the loop current of the branch corresponding to the sampling module 13, reduce the power consumed by the loop, thereby reducing the energy consumption of the power supply device 400, and can avoid the second switch 134, Components such as the car battery 600 are damaged.
  • the resistance value of the current limiting resistor 136 is greater than the resistance value of the sampling resistor 132 , so the current limiting resistor 136 can play a better role in current limiting. In one embodiment, the resistance value of the current limiting resistor 136 is 100 ohms ( ⁇ ).
  • the controller 15 is used to determine whether the vehicle starts ignition according to the sampled electrical signal.
  • the power port forms a loop with the car battery 600 through the sampling module 13, and the power port can discharge to the car battery 600 through the sampling module 13.
  • the voltage of the car battery 600 will change.
  • the electric signal also changes, and the sampling electric signal on the sampling module 13 can reflect whether there is this change at this time.
  • the value of the sampled electrical signal is related to the current of the sampling module 13, and the controller 15 can determine that the rate of change of the current of the sampling module 13 based on the sampled electrical signal is greater than the preset rate of change of the current. To start a fire.
  • the sampled electrical signal is a current signal, and it may be directly determined whether the current change rate of the sampled electrical signal is greater than a preset current change rate. In another embodiment, the sampled electrical signal is a voltage signal, and whether the current change rate is greater than a preset current change rate can be determined through the voltage signal and the resistance value of the sampling resistor 132 .
  • the preset current change rate can be adjusted according to the actual circuit design, and different sampling resistors 132 and current limiting resistors 136 can correspond to different preset current change rates.
  • the preset current change rate is, for example, 20mA/2ms.
  • the controller 15 can determine that the car is being turned on when it is determined based on the sampled electrical signal that the current current of the sampling module 13 is greater than a preset current value. In this way, it can be judged quickly according to the current whether the car is sparking.
  • the value of the sampled electrical signal is related to the voltage of the sampling module 13, and the controller 15 can determine that the rate of change of the voltage of the sampling module 13 based on the sampled electrical signal is greater than a preset rate of change of the voltage To start a fire.
  • the car battery 600 will discharge to the car engine, so the voltage of the car battery 600 will become lower. , therefore, the power supply component 410 will discharge to the car battery 600, thereby forming a loop.
  • the voltage drop of the car battery 600 is relatively obvious. Therefore, the voltage difference between the power supply component 410 and the car battery 600 will be relatively large at this time. It can be determined based on the sampled electrical signal whether the rate of change of the voltage of the sampling module 13 is greater than the preset rate of change of the voltage.
  • the sampled electrical signal is a voltage signal, and it may be directly determined whether the rate of change of the voltage is greater than a preset rate of change of the voltage.
  • the preset voltage change rate can be adjusted according to the actual circuit design, and different sampling resistors 132 and current limiting resistors 136 can correspond to different preset voltage change rates. In one embodiment, the preset voltage change rate is, for example, 1V/2ms.
  • the controller 15 can determine that the car is being turned on when it is determined based on the sampled electrical signal that the current voltage of the sampling module 13 is greater than a preset voltage value. In this way, it can be judged quickly according to the voltage whether the car is sparking.
  • the controller 15 is configured to control the first switch 14 to be turned on when it is determined that the car is being turned on; and to be turned off when it is determined that the car is not being turned on.
  • the state of the first switch 14 can be quickly and accurately controlled, so that the power port can be accurately controlled to supply power to the vehicle engine.
  • the first switch 14 when the car is turned on, the first switch 14 is turned on, so that the power supply assembly 410 can supply power to the car engine through the first switch 14 to assist the ignition; when the car is not turned on, the first switch 14 is turned off , so as to avoid unnecessary energy consumption caused by the power supply component 410 discharging to the car battery 600 .
  • the circuit structure 10 further includes a signal amplification module 16, the signal amplification module 16 is used to amplify the sampled electrical signal, and the controller 15 is used to control the first switch according to the amplified sampled electrical signal 14 states.
  • the state of the first switch 14 can be accurately controlled according to the amplified sampled electrical signal.
  • the sampling electrical signal on the sampling module 13 may be relatively small, so the signal amplification module 16 can be used to convert the sampling electrical signal Amplification is carried out, so that it can be accurately determined whether the car is to be ignited and the state of the first switch 14 can be accurately controlled according to the amplified sampled electrical signal.
  • the signal amplifying module 16 may be any electronic component capable of amplifying signals, which is not specifically limited here. In one embodiment, the signal amplification module 16 may be an operational amplifier.
  • the controller 15 is used to control the sampling module 13 to be turned on at a preset period, so as to control the state of the first switch 14 according to the sampling electrical signal.
  • the sampling module 13 is turned on at a preset cycle, specifically means that the sampling module 13 is turned on for a period of time, then turned off for a period of time, and continues to circulate until the ignition of the car is detected or the connection between the power supply device 400 and the car battery 600 is disconnected.
  • the energy consumption of the power supply assembly 410 can be reduced while the state of the car battery 600 can be detected more accurately according to the sampling electrical signal.
  • the specific value of the preset period can be set according to requirements, wherein the longer the conduction time is, the more accurate the detection result is, and the shorter the conduction time is, the lower the energy consumption is.
  • the circuit structure 10 includes an electronic switch driving power supply 171 and an electronic switch control circuit 172 , the electronic switch driving power supply 171 is used to provide an operating voltage for the first switch 14 , and the electronic switch control circuit 172 For controlling the state of the first switch 14 based on a signal from the controller 15 .
  • the electronic switch driving power supply 171 can be used to convert the voltage of the power supply assembly 410 or the car battery 600 into an operating voltage for supplying the first switch 14 or other circuit components for operation.
  • the electronic switch driving power supply 171 may be a voltage stabilizing circuit. In this way, the normal operation of the first switch 14 can be facilitated.
  • the first switch 14 may include a high-power electronic switch, and the controller 15 may not be able to directly control the state of the first switch 14. Therefore, the controller 15 may control the first switch 14 through the electronic switch control circuit 172.
  • the state of the electronic switch control circuit 172 can be, for example, a driving circuit, and the driving circuit can be used to control the state of the high-power electronic switch based on the signal of the controller 15 . In this way, the state of the first switch 14 can be accurately controlled by the electronic switch control circuit 172 .
  • the circuit structure 10 includes a controller power supply circuit 173 , and the controller power supply circuit 173 is used to provide the controller 15 with an operating voltage.
  • the controller power supply circuit 173 can be used to convert the voltage of the power supply assembly 410 or the car battery 600 into a working voltage for the controller 15 or other circuit components to work.
  • the controller power supply circuit 173 may be a voltage stabilizing circuit. In this way, the normal operation of the controller 15 can be facilitated.
  • the circuit structure 10 includes a voltage detection circuit 174 for detecting the voltage value of the car battery 600 , and the controller 15 is used for outputting a control signal according to the voltage value of the car battery 600 .
  • the controller 15 can be used to output a control signal according to the voltage value of the car battery 600 to control the car battery 600 to charge the power supply device 400, for example, when the voltage of the car battery 600 is greater than that of the power supply device 400 and the voltage difference between the two is greater than the preset difference, the car battery 600 can charge the power supply component 410 through the step-down circuit in the circuit structure 10 .
  • the car battery 600 can directly charge the power supply component 410 .
  • the circuit structure 10 includes a load reverse connection control circuit 175 , and the load reverse connection control circuit 175 is used to detect whether the power supply device 400 and the car battery 600 are reversely connected.
  • the reverse connection between the power supply device 400 and the car battery 600 can be quickly and accurately detected by the load reverse connection control circuit 175 .
  • the reverse connection between the power supply device 400 and the car battery 600 may mean that the first pole of the car battery 600 is opposite to the first pole of the power supply assembly 410 (one is positive and the other is negative); The second pole of the power supply assembly 410 is also reversed.
  • the load reverse connection control circuit 175 can also be used to detect whether the power supply device 400 is connected to the car battery 600 .
  • the load reverse connection control circuit 175 is also used to control the electronic switch drive power supply 171 to turn off, thereby preventing the power supply component 410 from discharging to the car battery 600 by mistake.
  • the circuit structure 10 includes a prompting element 176 , and the prompting element 176 is used to issue a prompt when the power supply device 400 is connected reversely to the car battery 600 .
  • the prompting element 176 can be a display module 1762, a vibrating element, a horn, etc.
  • the display module 1762 can be used to display the prompt text of "positive and negative polarity reversed", or the vibrating element can be used to vibrate according to a preset rule, and the horn can also be used to broadcast " The positive and negative poles are reversed" prompt sound.
  • Using the prompting element 176 to prompt information can facilitate the user to quickly and accurately grasp the relevant information of the power supply device 400 .
  • the prompting element 176 can also be used to prompt the voltage of the car battery 600 , for example, the prompting element is a display module 1762 , and the display module 1762 can be used to display the voltage of the car battery 600 detected by the voltage detection circuit 174 .
  • the circuit structure 10 further includes a key 177 , and the controller 15 is used to control the working mode of the circuit structure 10 according to the state of the key 177 .
  • the setting of the key 177 enables the circuit structure 10 to realize more functions.
  • the button 177 can be used to forcibly control the power supply device 400 to output energy to assist the ignition of the car.
  • the circuit structure 10 includes a lighting element, and the button 177 can be used to control the lighting element to emit light, so as to provide light for the user.
  • the lighting element is, for example, a light emitting diode or the like.
  • the circuit structure 10 further includes a current sampling module 178, and the current sampling module 178 can be used to detect the loop current.
  • the power supply component 410 includes a plurality of supercapacitors connected in series.
  • the supercapacitor can be a capacitor with a capacitance value greater than a preset capacitance value, and a supercapacitor can be equivalent to a battery.
  • the preset capacitance value is, for example, 1F.
  • the number of supercapacitors in the power supply assembly 11 may be two or more, such as 2, 3, 4, 5, 6, 7, 8, 9, and so on.
  • the rated voltage of each supercapacitor can be a preset rated voltage.
  • the power supply device 400 is used as an example to illustrate the starting power supply for assisting the ignition of the car.
  • the preset rated voltage of each supercapacitor is 3V, and the number of supercapacitors in the power supply assembly 11 is 5 , the voltage required to start the car is 12V, and the five supercapacitors are fully charged (that is, the voltage of each supercapacitor is greater than the set voltage, the set voltage can be the preset rated voltage or slightly lower than the preset rated circuit, For example, in the case of 3.0V, 2.9V, 2.8V, etc.), the voltage of the power supply device 400 is 15V, so that it can assist the ignition of the car.
  • the control method in the embodiment of the present application can be used in the circuit structure 10 of any of the above embodiments.
  • the circuit structure 10 can realize the connection between the power supply device 400 and the car battery 600 , and the power supply device 400 includes a power supply component 410 .
  • the circuit structure 10 includes a first power port 11 , a second power port 12 , a sampling module 13 and a first switch 14 .
  • the first power port 11 can be connected to the first pole of the car battery 600 through the sampling module 13 and the first switch 14 respectively.
  • the second power supply port 12 can be connected to the second pole of the vehicle battery 600 .
  • Control methods include:
  • control method in the embodiment of the present application can be realized by the circuit structure 10 in the embodiment of the present application, specifically, the control method can be realized by the controller 15 .
  • the power port (the first power port 11 and the second power port 12) forms a loop with the car battery 600 through the sampling module 13, and the power port can discharge to the car battery 600 through the sampling module 13.
  • the voltage of the car battery 600 will change, therefore, the electrical signal on the loop will also change.
  • the sampling electrical signal on the sampling module 13 can reflect whether there is this change.
  • the sampling module 13 includes a sampling resistor 132 and a second switch 134, and the state of the first switch 14 is controlled according to the sampling electrical signal on the sampling module 13, including:
  • the second switch 134 is controlled to be turned on so as to control the state of the first switch 14 according to the sampling electrical signal on the sampling resistor 132 .
  • control method includes:
  • the second switch 134 is controlled to be opened.
  • control method includes:
  • control method includes:
  • the value of the sampled electrical signal is related to the current of the sampling module 13, and it is determined whether the car is started according to the sampled electrical signal, including:
  • the value of the sampled electrical signal is related to the voltage of the sampling module 13, and it is determined whether the car is started according to the sampled electrical signal, including:
  • controlling the state of the first switch 14 according to the sampling electrical signal on the sampling module 13 includes:
  • the first switch 14 When it is determined that the car is being turned on, the first switch 14 is controlled to be turned on; when it is determined that the car is not being turned on, the first switch 14 is controlled to be turned off.
  • the circuit structure 10 further includes a signal amplification module 16, the signal amplification module 16 is used to amplify the sampling electrical signal, and control the state of the first switch 14 according to the sampling electrical signal on the sampling module 13, including:
  • the state of the first switch 14 is controlled according to the amplified sampled electrical signal.
  • controlling the state of the first switch 14 according to the sampling electrical signal on the sampling module 13 includes:
  • the sampling module 13 is controlled to be turned on at a preset period, so as to control the state of the first switch 14 according to the sampling electrical signal.
  • the circuit structure 10 includes an electronic switch driving power supply 171 and an electronic switch control circuit 172, and the control method includes:
  • the electronic switch driving power supply 171 is controlled to provide an operating voltage for the first switch 14
  • the electronic switch control circuit 172 is controlled to control the state of the first switch 14 .
  • the circuit structure 10 includes a controller power supply circuit 173, and the control method includes:
  • the control controller power supply circuit 173 provides the controller 15 with operating voltage.
  • the circuit structure 10 includes a voltage detection circuit 174, and the voltage detection circuit 174 is used to detect the voltage value of the car storage battery 600, and the control method includes:
  • a control signal is output according to the voltage value of the car battery 600 .
  • the circuit structure 10 includes a load reverse connection control circuit 175, and the control method includes:
  • Control the load reverse connection control circuit 175 to detect whether the power supply device 400 and the car battery 600 are reversely connected.
  • the prompting element 176 is controlled to issue a prompt.
  • the circuit structure 10 also includes a button 177, and the control method includes:
  • the working mode of the circuit structure 10 is controlled according to the state of the button 177 .
  • circuit structure 10 are also applicable to the control method, and will not be repeated here.
  • a smart device 100 includes a casing 20 and a circuit structure 10 according to any one of the above-mentioned embodiments, and the circuit structure 10 is disposed in the casing 20 .
  • the power port (the first power port 11 and the second power port 12) forms a loop with the car battery 600 through the sampling module 13, and the power port can discharge the car battery 600 through the sampling module 13, because When the car is turned on, the voltage of the car battery 600 will change, therefore, the electrical signal on the loop will also change.
  • the sampling electrical signal on the sampling module 13 can reflect whether there is such a change.
  • the sampled electrical signal can be used to quickly and accurately control the state of the first switch 14 according to the sampled electrical signal, so that the power port can be accurately controlled to supply power to the vehicle engine.
  • the casing 20 can be made of plastic, metal and other materials, and the casing 20 can provide protection for the circuit structure 10, thereby reducing or preventing the circuit structure 10 from being affected by external dust, water vapor and the like.
  • the smart device 100 is a power supply device 400 , that is to say, the circuit structure 10 can be set in the power supply device 400 , and the power supply device 400 can be connected to the car battery 600 through a common battery clip.
  • the smart device 100 is a smart battery clip, that is to say, the circuit structure 10 can be set in the smart battery clip, and the common power supply device 400 can be connected to the car battery 600 through the smart battery clip.
  • the smart device 100 can also be a power supply device 400 and a smart battery clip, and the circuit structure 10 can be split into two parts, part of the circuit structure is located in the power supply device 400, and part of the circuit structure is located in the smart battery clip , not specifically limited here.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the term "connected” may include “directly connected” or "indirectly connected”.
  • the first power port can be connected to the first pole of the car battery through the sampling module, wherein the first power port can be directly connected to the sampling module, and the first power port can also be indirectly connected to the sampling module through a certain circuit module or component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电路结构(10)及其控制方法、智能设备(100)。电路结构(10)能够实现电源设备(400)与汽车电瓶(600)的连接,电源设备(400)包括电源组件(410)。电路结构(10)包括第一电源端口(11)、第二电源端口(12)、采样模块(13)、第一开关(14)和控制器(15)。第一电源端口(11)能够分别通过采样模块(13)和第一开关(14)连接汽车电瓶(600)的第一极。第二电源端口(12)能够与汽车电瓶(600)的第二极连接。控制器(15)用于根据采样模块(13)上的采样电信号控制第一开关(14)的状态。

Description

电路结构及其控制方法、智能设备 技术领域
本申请涉及消费性电子产品领域,更具体而言,涉及到一种电路结构及其控制方法、智能设备。
背景技术
在相关技术中,在汽车电瓶的电压不足时,可以采用电源设备为发动机供电以辅助实现打火。其中,为了使得电源设备有效地输出能量,需要对电源设备进行放电控制。因此,如何准确地控制电源设备为发动机供电是本领域亟需解决的技术问题。
发明内容
本申请的实施方式涉及一种电路结构及其控制方法、智能设备。
本申请实施方式的电路结构能够实现电源设备与汽车电瓶的连接,所述电源设备包括电源组件,所述电路结构包括第一电源端口、第二电源端口、采样模块、第一开关和控制器,所述第一电源端口能够分别通过所述采样模块和所述第一开关连接所述汽车电瓶的第一极;所述第二电源端口能够与所述汽车电瓶的第二极连接;所述控制器用于根据所述采样模块上的采样电信号控制所述第一开关的状态。
在某些实施方式中,所述采样模块包括采样电阻和第二开关,在所述第二开关导通时,所述控制器用于根据所述采样电阻上的所述采样电信号控制所述第一开关的状态。
在某些实施方式中,所述控制器用于在控制所述第一开关闭合时,控制所述第二开关断开。
在某些实施方式中,所述控制器用于在控制所述第二开关闭合时,控制所述第一开关断开。
在某些实施方式中,所述采样模块还包括限流电阻,所述第一电源端口能够通过所述采样电阻、所述限流电阻和所述第二开关连接所述汽车电瓶的第一极。
在某些实施方式中,所述控制器用于根据所述采样电信号确定汽车是否进行打火。
在某些实施方式中,所述采样电信号的值与所述采样模块的电流相关,所述控制器能够在基于所述采样电信号确定所述采样模块的电流的变化率大于预设电流变化率的情况下,确定汽车进行打火。
在某些实施方式中,所述采样电信号的值与所述采样模块的电压相关,所述控制器能够在基于所述采样电信号确定所述采样模块的电压的变化率大于预设电压变化率的情况 下,确定汽车进行打火。
在某些实施方式中,所述控制器用于在确定汽车进行打火的情况下,控制所述第一开关导通;在确定汽车没有进行打火的情况下,控制所述第一开关断开。
在某些实施方式中,所述电路结构还包括信号放大模块,所述信号放大模块用于放大所述采样电信号,所述控制器用于根据放大后的所述采样电信号控制所述第一开关的状态。
在某些实施方式中,所述控制器用于控制所述采样模块以预设周期导通,以根据所述采样电信号控制所述第一开关的状态。
在某些实施方式中,所述电路结构包括电子开关驱动电源和电子开关控制电路,所述电子开关驱动电源用于为所述第一开关提供工作电压,所述电子开关控制电路用于基于所述控制器的信号控制所述第一开关的状态。
在某些实施方式中,所述电路结构包括控制器电源电路,所述控制器电源电路用于为所述控制器提供工作电压。
在某些实施方式中,所述电路结构包括电压检测电路,所述电压检测电路用于检测所述汽车电瓶的电压值,所述控制器用于根据所述汽车电瓶的电压值输出控制信号。
在某些实施方式中,所述电路结构包括负载反接控制电路,所述负载反接控制电路用于检测所述电源设备与所述汽车电瓶是否反接。
在某些实施方式中,所述电路结构包括提示元件,所述提示元件用于在所述电源设备与所述汽车电瓶反接时发出提示。
在某些实施方式中,所述电路结构还包括按键,所述控制器用于根据所述按键的状态控制所述电路结构的工作模式。
在某些实施方式中,所述电源组件包括多个相互串联的超级电容。
本申请实施方式的控制方法用于电路结构,所述电路结构能够实现电源设备与汽车电瓶的连接,所述电源设备包括电源组件,所述电路结构包括第一电源端口、第二电源端口、采样模块和第一开关,所述第一电源端口能够分别通过所述采样模块和所述第一开关连接所述汽车电瓶的第一极;所述第二电源端口能够与所述汽车电瓶的第二极连接;所述控制方法包括:
根据所述采样模块上的采样电信号控制所述第一开关的状态。
本申请实施方式的智能设备包括壳体和上述任一实施方式的电路结构,所述电路结构设置在所述壳体内。
本申请实施方式的电路结构及其控制方法、智能设备中,电源端口通过采样模块与汽车电瓶形成回路,电源端口可以通过采样模块向汽车电瓶放电,由于汽车进行打火时,汽车电瓶的电压会发生变化,因此,回路上的电信号也会发生变化,此时采样模块上的采样 电信号可以反映是否存在该变化,通过获取采样模块上的采样电信号,即可根据采样电信号快速、准确地控制第一开关的状态,从而可以准确地控制电源端口为汽车发动机供电。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的电源设备、电路结构、汽车电瓶的连接示意图。
图2是本申请某些实施方式的电路结构的示意图。
图3是本申请某些实施方式的智能设备的示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在实际应用中,汽车电瓶容易因为老化、破损等原因导致功率不足而无法进行打火(在打火后可以正常使用,但是无法满足打火时所需的较高功率),因此,在汽车电瓶的电压不足时,相关技术采用启动电源等电源设备辅助进行打火。其中,若在汽车不启动时,电源设备给汽车电瓶或发动机供电,则会导致电源设备的电量损耗。为了使得电源设备有效地输出能量,需要对电源设备进行放电控制。因此,如何准确地控制电源设备为发动机供电是本领域亟需解决的技术问题。
请参阅图1和图2,本申请实施方式的电路结构10能够实现电源设备400与汽车电瓶600的连接,电源设备400包括电源组件410。电路结构10包括第一电源端口11、第二电源端口12、采样模块13、第一开关14和控制器15。第一电源端口11能够分别通过采样模块13和第一开关14连接汽车电瓶600的第一极。第二电源端口12能够与汽车电瓶600的第二极连接。控制器15用于根据采样模块13上的采样电信号控制第一开关14的状态,其中,第一开关14的状态包括导通、断开等。
本申请实施方式的电路结构10中,电源端口(第一电源端口11和第二电源端口12)通过采样模块13与汽车电瓶600形成回路,电源端口可以通过采样模块13向汽车电瓶600放电,由于汽车进行打火时,汽车电瓶600的电压会发生变化,因此,回路上的电信号也会发生变化,此时采样模块13上的采样电信号可以反映是否存在该变化,通过获取 采样模块13上的采样电信号,即可根据采样电信号快速、准确地控制第一开关14的状态,从而可以准确地控制电源端口为汽车发动机供电。
电源设备400可以是启动电源、应急电源等设备,电源设备400能够通过电路结构10与汽车电瓶600连接,电源设备400用于辅助汽车进行打火。电源设备400包括电源组件410,电源组件410存储的电能能够用于辅助汽车进行打火。
第一电源端口11可以用于连接电源组件410的第一极和汽车电瓶600的第一极,第二电源端口12可以用于连接电源组件410的第二极和汽车电瓶600的第二极。电源组件410的第一极可以是电源组件410的正极和负极中的一个,电源组件410的第二极可以是电源组件410的正极和负极中的另一个。在一个实施例中,第一电源端口11可以用于连接电源组件410的正极,第二电源端口12可以用于连接电源组件410的负极。
第一电源端口11能够分别通过采样模块13和第一开关14连接汽车电瓶600的第一极,从而形成两条支路。第一条支路是第一电源端口11通过采样模块13连接汽车电瓶600的第一极,通过第一条支路可以检测汽车电瓶600的状态(例如是否放电)。第二条支路是第一电源端口11通过第一开关14连接汽车电瓶600的第一极,通过第二条支路可以使得第一电源端口11能够向汽车放电。
第一开关14可以包括大功率电子开关,大功率电子开关可以是承受功率大于预设功率的电子开关,第一电源端口11能够通过大功率电子开关连接汽车电瓶600的第一极,从而提高放电速度,使得电源组件410的电能能够以较大功率放电至汽车,从而辅助汽车打火。其中,汽车电瓶600的第一极可以是汽车电瓶600的正极和负极中的一个,汽车电瓶600的第二极可以是汽车电瓶600的正极和负极中的另一个。需要说明的是,在正常连接、正常工作的情况下,汽车电瓶600的第一极与电源组件410的第一极是相对应的,即均为正极或均为负极;汽车电瓶600的第二极与电源组件410的第二极是相对应的,即均为负极或均为正极。
利用控制器15可以实现对电路结构10的控制。控制器15可以包括驱动板、其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件中的一种或多种组件。其中,驱动板可以包括中央处理单元(Central Processing Unit,CPU)。
请继续参阅图2,在某些实施方式中,采样模块13包括采样电阻132和第二开关134,在第二开关134导通时,控制器15用于根据采样电阻132上的采样电信号控制第一开关14的状态。
如此,能够通过第二开关134实现对采样电阻132的控制,从而使得采样电阻132能 够接入电路或断开。在第二开关134导通时,采样电阻132接入电路中,第一电源端口11能够通过采样电阻132和第二开关134连接汽车电瓶600的第一极,因此,在汽车电瓶600的电压发生变化时,采样电阻132上的采样电信号可以反映是否存在该变化,因此,通过获取采样电阻132上的采样电信号,即可根据采样电信号快速、准确地控制第一开关14的状态,从而可以准确地控制电源端口为汽车发动机供电。
采样电阻132的具体电阻值可以根据电路需求进行设计,在此不做具体限定。在一个实施例中,采样电阻132的电阻值可以是10毫欧、20毫欧(mΩ)。
在某些实施方式中,第一开关14的承受功率大于第二开关134的承受功率,第二开关134的承受功率较小可以便于减小采样模块13对应的支路的回路电流、降低回路所损耗的功率,从而降低电源设备400的能量消耗。
在某些实施方式中,控制器15用于在控制第一开关14闭合时,控制第二开关134断开。
在第一开关14闭合时,电源设备400通过第一电源端口11向汽车放电,此时不需要再通过采样模块13检测汽车电瓶600的状态,因此,可以控制第二开关134断开,从而避免不必要的能量消耗。
在某些实施方式中,控制器15用于在控制第二开关134闭合时,控制第一开关14断开。
在第二开关134闭合时,电路结构10通过采样模块13检测汽车电瓶600的状态,此时电源设备400不用通过第一电源端口11向汽车放电,因此,可以控制第一开关14断开,从而避免不必要的能量消耗。
请继续参阅图2,在某些实施方式中,采样模块13还包括限流电阻136,第一电源端口11能够通过采样电阻132、限流电阻136和第二开关134连接汽车电瓶600的第一极。
如此,通过限流电阻136可以减小采样模块13对应的支路的回路电流、降低回路所损耗的功率,从而降低电源设备400的能量消耗,并且可以避免电流过大而导致第二开关134、汽车电瓶600等元件损坏。
在某些实施方式中,限流电阻136的电阻值大于采样电阻132的电阻值,如此,限流电阻136可以起到较好的限流作用。在一个实施例中,限流电阻136的电阻值为100欧(Ω)。
在某些实施方式中,控制器15用于根据采样电信号确定汽车是否进行打火。
具体地,电源端口通过采样模块13与汽车电瓶600形成回路,电源端口可以通过采样模块13向汽车电瓶600放电,由于汽车进行打火时,汽车电瓶600的电压会发生变化,因此,回路上的电信号也会发生变化,此时采样模块13上的采样电信号可以反映是否存在该变化,通过获取采样模块13上的采样电信号,即可确定汽车是否进行打火,从而能 够快速、准确地确定汽车是否打火,进而可以准确地控制电源端口为汽车发动机供电。
在某些实施方式中,采样电信号的值与采样模块13的电流相关,控制器15能够在基于采样电信号确定采样模块13的电流的变化率大于预设电流变化率的情况下,确定汽车进行打火。
如此,能够根据电流的变化率准确地判断汽车是否进行打火。具体地,由于汽车进行打火时,汽车电瓶600会向汽车发动机放电,因此,汽车电瓶600的电压会变低,在采样模块13导通时,由于电源组件410的电压大于汽车电瓶600的电压,因此,电源组件410会向汽车电瓶600放电,从而形成回路。其中,由于汽车打火时所需要的功率较高,汽车电瓶600的电压下降比较明显,因此,此时电源组件410与汽车电瓶600的压差也会比较大。可以基于采样电信号确定采样模块13的电流的变化率是否大于预设电流变化率,若是,则说明电源组件410与汽车电瓶600的压差比较大,可以确定汽车进行打火,若否,则说明电源组件410与汽车电瓶600的压差比较小,可以确定汽车没有进行打火。在一个实施例中,采样电信号为电流信号,可以直接判断采样电信号的电流变化率是否大于预设电流变化率。在另一个实施例中,采样电信号为电压信号,可以通过电压信号与采样电阻132的电阻值来判断电流变化率是否大于预设电流变化率。预设电流变化率可以根据实际电路的设计进行调整,不同的采样电阻132、限流电阻136可以对应不同的预设电流变化率。在一个实施例中,预设电流变化率例如为20mA/2ms。
在某些实施方式中,控制器15能够在基于采样电信号确定采样模块13的当前的电流大于预设电流值的情况下,确定汽车进行打火。如此,能够根据电流快速地判断汽车是否进行打火。
在某些实施方式中,采样电信号的值与采样模块13的电压相关,控制器15能够在基于采样电信号确定采样模块13的电压的变化率大于预设电压变化率的情况下,确定汽车进行打火。
如此,能够根据电压的变化率快速、准确地判断汽车是否进行打火。具体地,由于汽车进行打火时,汽车电瓶600会向汽车发动机放电,因此,汽车电瓶600的电压会变低,在采样模块13导通时,由于电源组件410的电压大于汽车电瓶600的电压,因此,电源组件410会向汽车电瓶600放电,从而形成回路。其中,由于汽车打火时所需要的功率较高,汽车电瓶600的电压下降比较明显,因此,此时电源组件410与汽车电瓶600的压差也会比较大。可以基于采样电信号确定采样模块13的电压的变化率是否大于预设电压变化率,若是,则说明电源组件410与汽车电瓶600的压差比较大,可以确定汽车进行打火,若否,则说明电源组件410与汽车电瓶600的压差比较小,可以确定汽车没有进行打火。在一个实施例中,采样电信号为电压信号,可以直接通过判断电压变化率是否大于预设电 压变化率。预设电压变化率可以根据实际电路的设计进行调整,不同的采样电阻132、限流电阻136可以对应不同的预设电压变化率。在一个实施例中,预设电压变化率例如为1V/2ms。
在某些实施方式中,控制器15能够在基于采样电信号确定采样模块13的当前的电压大于预设电压值的情况下,确定汽车进行打火。如此,能够根据电压快速地判断汽车是否进行打火。
在某些实施方式中,控制器15用于在确定汽车进行打火的情况下,控制第一开关14导通;在确定汽车没有进行打火的情况下,控制第一开关14断开。
如此,能够在快速、准确地控制第一开关14的状态,从而可以准确地控制电源端口为汽车发动机供电。具体地,在汽车进行打火时,第一开关14导通,从而电源组件410能够通过第一开关14向汽车发动机供电以辅助打火;在汽车没有进行打火时,第一开关14断开,从而避免电源组件410向汽车电瓶600进行放电而造成不必要的能量消耗。
请继续参阅图2,在某些实施方式中,电路结构10还包括信号放大模块16,信号放大模块16用于放大采样电信号,控制器15用于根据放大后的采样电信号控制第一开关14的状态。
如此,能够根据放大后的采样电信号准确地控制第一开关14的状态。具体地,由于采样电阻132的电阻值比较小和/或限流电阻136的电阻值比较大等原因,采样模块13上的采样电信号可能比较小,因此可以采用信号放大模块16将采样电信号进行放大,从而可以根据放大后的采样电信号准确地确定汽车是否进行打火、准确地控制第一开关14的状态。信号放大模块16可以是能够放大信号的任意电子元件,在此不做具体限定。在一个实施例中,信号放大模块16可以是运算放大器。
在某些实施方式中,控制器15用于控制采样模块13以预设周期导通,以根据采样电信号控制第一开关14的状态。
如此,能够降低电源组件410的能量消耗。具体地,采样模块13以预设周期导通,具体是指采样模块13导通一段时间,然后关闭一段时间,一直循环,直到检测到汽车点火或电源设备400与汽车电瓶600的连接断开,相较于采样模块13一直导通,可以在根据采样电信号比较准确地检测汽车电瓶600的状态的同时,降低电源组件410的能量消耗。预设周期的具体取值可以根据需求进行设置,其中,导通的时间越长,检测结果越准确,导通的时间越短,能量消耗越低。
请继续参阅图2,在某些实施方式中,电路结构10包括电子开关驱动电源171和电子开关控制电路172,电子开关驱动电源171用于为第一开关14提供工作电压,电子开关控制电路172用于基于控制器15的信号控制第一开关14的状态。
电子开关驱动电源171可以用于将电源组件410或汽车电瓶600的电压转换为工作电压以提供给第一开关14或者其他电路元件进行工作。在一个实施例中,电子开关驱动电源171可以为稳压电路。如此,能够便于第一开关14正常工作。
在某些实施方式中,第一开关14可以包括大功率电子开关,控制器15可能无法直接控制第一开关14的状态,因此,可以控制器15可以通过电子开关控制电路172控制第一开关14的状态,其中,电子开关控制电路172例如可以是驱动电路,驱动电路能够用于基于控制器15的信号控制大功率电子开关的状态。如此,能够通过电子开关控制电路172准确地控制第一开关14的状态。
在某些实施方式中,电路结构10包括控制器电源电路173,控制器电源电路173用于为控制器15提供工作电压。
控制器电源电路173可以用于将电源组件410或汽车电瓶600的电压转换为工作电压以提供给控制器15或者其他电路元件进行工作。在一个实施例中,控制器电源电路173可以为稳压电路。如此,能够便于控制器15正常工作。
在某些实施方式中,电路结构10包括电压检测电路174,电压检测电路174用于检测汽车电瓶600的电压值,控制器15用于根据汽车电瓶600的电压值输出控制信号。
具体地,在某些实施方式中,控制器15可以用于根据汽车电瓶600的电压值输出控制信号,以控制汽车电瓶600为电源设备400充电,例如,在汽车电瓶600的电压大于电源设备400的电压且两者的电压差值大于预设差值时,汽车电瓶600可以通过电路结构10中的降压电路为电源组件410充电。在汽车电瓶600的电压大于电源设备400的电压且两者的电压差值小于预设差值时,汽车电瓶600可以直接为电源组件410充电。
在某些实施方式中,电路结构10包括负载反接控制电路175,负载反接控制电路175用于检测电源设备400与汽车电瓶600是否反接。
如此,能够通过负载反接控制电路175快速、准确地检测电源设备400与汽车电瓶600是否反接。电源设备400与汽车电瓶600反接,可以是指汽车电瓶600的第一极与电源组件410的第一极是相反的(一个是正极、另一个是负极);汽车电瓶600的第二极与电源组件410的第二极也是相反的。另外,负载反接控制电路175还可以用于检测电源设备400与汽车电瓶600是否连接。
在某些实施方式中,在电源设备400与汽车电瓶600反接时,负载反接控制电路175还用于控制电子开关驱动电源171关闭,从而避免电源组件410错误地向汽车电瓶600放电。
在某些实施方式中,在电源设备400与汽车电瓶600反接时,由于此时电路连接异常,不需要检测是否打火、不需要控制第一开关14导通,因此控制器15可以控制采样模块 13保持断开。
在某些实施方式中,电路结构10包括提示元件176,提示元件176用于在电源设备400与汽车电瓶600反接时发出提示。
提示元件176可以为显示模块1762、振动元件、喇叭等,例如可以利用显示模块1762显示“正负极接反”的提示文字,也可以利用振动元件按预设规律振动,还可以利用喇叭播报“正负极接反”的提示声音。利用提示元件176提示信息可以便于用户快速、准确地掌握电源设备400的相关信息。
在某些实施方式中,提示元件176还可以用于提示汽车电瓶600的电压,例如,提示元件为显示模块1762,显示模块1762可以用于显示电压检测电路174检测到的汽车电瓶600的电压。
在某些实施方式中,电路结构10还包括按键177,控制器15用于根据按键177的状态控制电路结构10的工作模式。
如此,通过按键177的设置使得电路结构10能够实现更多的功能。在一个实施例中,按键177可以用于强制控制电源设备400输出能量以辅助汽车打火。在另一个实施例中,电路结构10包括照明元件,按键177可以用于控制照明元件发光,从而为用户提供光亮,照明元件例如为发光二极管等元件。
在某些实施方式中,电路结构10还包括电流采样模块178,电流采样模块178可以用于检测回路电流。
在某些实施方式中,电源组件410包括多个相互串联的超级电容。
超级电容可以是电容值大于预设电容值的电容,一个超级电容可以相当于一个电池。预设电容值例如为1F。电源组件11的超级电容的数量可以为两个或两个以上,例如为2、3、4、5、6、7、8、9等。每个超级电容的额定电压可以均为预设额定电压。在本申请实施方式中,以电源设备400为用于辅助汽车进行打火的启动电源为例进行说明,每个超级电容的预设额定电压为3V,电源组件11的超级电容的数量为5个,汽车打火所需的电压为12V,在5个超级电容充满电(即每个超级电容的电压均大于设定电压,设定电压可以为预设额定电压或者略低于预设额定电路,例如3.0V、2.9V、2.8V等)的情况下电源设备400的电压为15V,从而能够辅助汽车进行打火。
本申请实施方式的控制方法可以用于上述任意一种实施方式的电路结构10,电路结构10能够实现电源设备400与汽车电瓶600的连接,电源设备400包括电源组件410。电路结构10包括第一电源端口11、第二电源端口12、采样模块13和第一开关14。第一电源端口11能够分别通过采样模块13和第一开关14连接汽车电瓶600的第一极。第二电源端口12能够与汽车电瓶600的第二极连接。控制方法包括:
根据采样模块13上的采样电信号控制第一开关14的状态。
本申请实施方式的控制方法可以由本申请实施方式的电路结构10实现,具体地,控制方法可以由控制器15实现。
本申请实施方式的控制方法中,电源端口(第一电源端口11和第二电源端口12)通过采样模块13与汽车电瓶600形成回路,电源端口可以通过采样模块13向汽车电瓶600放电,由于汽车进行打火时,汽车电瓶600的电压会发生变化,因此,回路上的电信号也会发生变化,此时采样模块13上的采样电信号可以反映是否存在该变化,通过获取采样模块13上的采样电信号,即可根据采样电信号快速、准确地控制第一开关14的状态,从而可以准确地控制电源端口为汽车发动机供电。
在某些实施方式中,采样模块13包括采样电阻132和第二开关134,根据采样模块13上的采样电信号控制第一开关14的状态,包括:
控制第二开关134导通以根据采样电阻132上的采样电信号控制第一开关14的状态。
在某些实施方式中,控制方法包括:
在控制第一开关14闭合时,控制第二开关134断开。
在某些实施方式中,控制方法包括:
在控制第二开关134闭合时,控制第一开关14断开。
在某些实施方式中,控制方法包括:
根据采样电信号确定汽车是否进行打火。
在某些实施方式中,采样电信号的值与采样模块13的电流相关,根据采样电信号确定汽车是否进行打火,包括:
在基于采样电信号确定采样模块13的电流的变化率大于预设电流变化率的情况下,确定汽车进行打火。
在某些实施方式中,采样电信号的值与采样模块13的电压相关,根据采样电信号确定汽车是否进行打火,包括:
在基于采样电信号确定采样模块13的电压的变化率大于预设电压变化率的情况下,确定汽车进行打火。
在某些实施方式中,根据采样模块13上的采样电信号控制第一开关14的状态,包括:
在确定汽车进行打火的情况下,控制第一开关14导通;在确定汽车没有进行打火的情况下,控制第一开关14断开。
在某些实施方式中,电路结构10还包括信号放大模块16,信号放大模块16用于放大采样电信号,根据采样模块13上的采样电信号控制第一开关14的状态,包括:
根据放大后的采样电信号控制第一开关14的状态。
在某些实施方式中,根据采样模块13上的采样电信号控制第一开关14的状态,包括:
控制采样模块13以预设周期导通,以根据采样电信号控制第一开关14的状态。
在某些实施方式中,电路结构10包括电子开关驱动电源171和电子开关控制电路172,控制方法包括:
控制电子开关驱动电源171为第一开关14提供工作电压,控制电子开关控制电路172以控制第一开关14的状态。
在某些实施方式中,电路结构10包括控制器电源电路173,控制方法包括:
控制控制器电源电路173为控制器15提供工作电压。
在某些实施方式中,电路结构10包括电压检测电路174,电压检测电路174用于检测汽车电瓶600的电压值,控制方法包括:
根据汽车电瓶600的电压值输出控制信号。
在某些实施方式中,电路结构10包括负载反接控制电路175,控制方法包括:
控制负载反接控制电路175检测电源设备400与汽车电瓶600是否反接。
在某些实施方式中,电路结构10包括提示元件176,控制方法包括:
在电源设备400与汽车电瓶600反接时控制提示元件176发出提示。
在某些实施方式中,电路结构10还包括按键177,控制方法包括:
根据按键177的状态控制电路结构10的工作模式。
上述对电路结构10的解释说明也适用于控制方法,在此不再赘述。
请参阅图3,本申请实施方式的智能设备100包括壳体20和上述任意一种实施方式的电路结构10,电路结构10设置在壳体20内。
本申请实施方式的智能设备100中,电源端口(第一电源端口11和第二电源端口12)通过采样模块13与汽车电瓶600形成回路,电源端口可以通过采样模块13向汽车电瓶600放电,由于汽车进行打火时,汽车电瓶600的电压会发生变化,因此,回路上的电信号也会发生变化,此时采样模块13上的采样电信号可以反映是否存在该变化,通过获取采样模块13上的采样电信号,即可根据采样电信号快速、准确地控制第一开关14的状态,从而可以准确地控制电源端口为汽车发动机供电。
壳体20可以利用塑料、金属等材料制成,壳体20能够为电路结构10提供保护,从而减少或避免电路结构10受外界的灰尘、水汽等的影响。
在某些实施方式中,智能设备100为电源设备400,也即是说,电路结构10可以设置在电源设备400中,此时电源设备400可以通过普通电瓶夹与汽车电瓶600连接。在某些实施方式中,智能设备100为智能电瓶夹,也即是说,电路结构10可以设置在智能电瓶夹中,普通的电源设备400可以通过智能电瓶夹与汽车电瓶600连接。当然,在其他实 施方式中,智能设备100也可以是电源设备400和智能电瓶夹,电路结构10可以被拆分成两部分,部分电路结构位于电源设备400中,部分电路结构位于智能电瓶夹中,在此不做具体限定。
在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
从外,在本申请中,术语“连接”可以包括“直接连接”或“间接连接”。例如,第一电源端口能够通过采样模块连接汽车电瓶的第一极,其中,第一电源端口可以直接连接采样模块,第一电源端口也可以通过某一电路模块或元器件间接连接采样模块。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种电路结构,其特征在于,所述电路结构能够实现电源设备与汽车电瓶的连接,所述电源设备包括电源组件,所述电路结构包括第一电源端口、第二电源端口、采样模块、第一开关和控制器,所述第一电源端口能够分别通过所述采样模块和所述第一开关连接所述汽车电瓶的第一极;所述第二电源端口能够与所述汽车电瓶的第二极连接;所述控制器用于根据所述采样模块上的采样电信号控制所述第一开关的状态。
  2. 根据权利要求1所述的电路结构,其特征在于,所述采样模块包括采样电阻和第二开关,在所述第二开关导通时,所述控制器用于根据所述采样电阻上的所述采样电信号控制所述第一开关的状态。
  3. 根据权利要求2所述的电路结构,其特征在于,所述控制器用于在控制所述第一开关闭合时,控制所述第二开关断开。
  4. 根据权利要求2所述的电路结构,其特征在于,所述控制器用于在控制所述第二开关闭合时,控制所述第一开关断开。
  5. 根据权利要求2所述的电路结构,其特征在于,所述采样模块还包括限流电阻,所述第一电源端口能够通过所述采样电阻、所述限流电阻和所述第二开关连接所述汽车电瓶的第一极。
  6. 根据权利要求1所述的电路结构,其特征在于,所述控制器用于根据所述采样电信号确定汽车是否进行打火。
  7. 根据权利要求6所述的电路结构,其特征在于,所述采样电信号的值与所述采样模块的电流相关,所述控制器能够在基于所述采样电信号确定所述采样模块的电流的变化率大于预设电流变化率的情况下,确定汽车进行打火。
  8. 根据权利要求6所述的电路结构,其特征在于,所述采样电信号的值与所述采样模块的电压相关,所述控制器能够在基于所述采样电信号确定所述采样模块的电压的变化率大于预设电压变化率的情况下,确定汽车进行打火。
  9. 根据权利要求6所述的电路结构,其特征在于,所述控制器用于在确定汽车进行打火的情况下,控制所述第一开关导通;在确定汽车没有进行打火的情况下,控制所述第一开关断开。
  10. 根据权利要求1所述的电路结构,其特征在于,所述电路结构还包括信号放大模块,所述信号放大模块用于放大所述采样电信号,所述控制器用于根据放大后的所述采样电信号控制所述第一开关的状态。
  11. 根据权利要求1所述的电路结构,其特征在于,所述控制器用于控制所述采样模块以预设周期导通,以根据所述采样电信号控制所述第一开关的状态。
  12. 根据权利要求1所述的电路结构,其特征在于,所述电路结构包括电子开关驱动电源和电子开关控制电路,所述电子开关驱动电源用于为所述第一开关提供工作电压,所述电子开关控制电路用于基于所述控制器的信号控制所述第一开关的状态。
  13. 根据权利要求1所述的电路结构,其特征在于,所述电路结构包括控制器电源电路,所述控制器电源电路用于为所述控制器提供工作电压。
  14. 根据权利要求1所述的电路结构,其特征在于,所述电路结构包括电压检测电路,所述电压检测电路用于检测所述汽车电瓶的电压值,所述控制器用于根据所述汽车电瓶的电压值输出控制信号。
  15. 根据权利要求1所述的电路结构,其特征在于,所述电路结构包括负载反接控制电路,所述负载反接控制电路用于检测所述电源设备与所述汽车电瓶是否反接。
  16. 根据权利要求15所述的电路结构,其特征在于,所述电路结构包括提示元件,所述提示元件用于在所述电源设备与所述汽车电瓶反接时发出提示。
  17. 根据权利要求1所述的电路结构,其特征在于,所述电路结构还包括按键,所述控制器用于根据所述按键的状态控制所述电路结构的工作模式。
  18. 根据权利要求1所述的电路结构,其特征在于,所述电源组件包括多个相互串联的超级电容。
  19. 一种电路结构的控制方法,其特征在于,所述电路结构能够实现电源设备与汽车电瓶的连接,所述电源设备包括电源组件,所述电路结构包括第一电源端口、第二电源端口、采样模块和第一开关,所述第一电源端口能够分别通过所述采样模块和所述第一开关连接所述汽车电瓶的第一极;所述第二电源端口能够与所述汽车电瓶的第二极连接;所述控制方法包括:
    根据所述采样模块上的采样电信号控制所述第一开关的状态。
  20. 一种智能设备,其特征在于,所述智能设备包括壳体和权利要求1-18任一项所述的电路结构,所述电路结构设置在所述壳体内。
PCT/CN2021/129603 2021-11-09 2021-11-09 电路结构及其控制方法、智能设备 WO2023082054A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129603 WO2023082054A1 (zh) 2021-11-09 2021-11-09 电路结构及其控制方法、智能设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129603 WO2023082054A1 (zh) 2021-11-09 2021-11-09 电路结构及其控制方法、智能设备

Publications (1)

Publication Number Publication Date
WO2023082054A1 true WO2023082054A1 (zh) 2023-05-19

Family

ID=86334991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129603 WO2023082054A1 (zh) 2021-11-09 2021-11-09 电路结构及其控制方法、智能设备

Country Status (1)

Country Link
WO (1) WO2023082054A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007202A1 (en) * 2006-06-30 2008-01-10 Pryor Bryan K System and method for optimizing grid charging of an electric/hybrid vehicle
CN201472270U (zh) * 2009-07-25 2010-05-19 比亚迪股份有限公司 一种车辆启动***
JP2012110071A (ja) * 2010-11-15 2012-06-07 Mitsubishi Electric Corp 車両用電源装置
CN105449785A (zh) * 2015-12-31 2016-03-30 深圳市华思旭科技有限公司 一种辅助车辆启动装置及方法
CN107124023A (zh) * 2017-06-16 2017-09-01 奇瑞汽车股份有限公司 电池充电装置及电池充电方法
CN107546790A (zh) * 2016-06-29 2018-01-05 深圳市华思旭科技有限公司 供电组件和方法
CN110011371A (zh) * 2019-03-07 2019-07-12 深圳市电将军科技有限公司 智能电瓶线夹、一体式启动电源装置及启动打火方法
CA3079795A1 (en) * 2019-03-11 2020-09-11 Shenzhen Carku Technology Co.,Limited Emergency starting power supply and emergency start method
CN113474965A (zh) * 2020-11-19 2021-10-01 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN216981587U (zh) * 2021-11-09 2022-07-15 深圳市华思旭科技有限公司 电路结构、智能设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007202A1 (en) * 2006-06-30 2008-01-10 Pryor Bryan K System and method for optimizing grid charging of an electric/hybrid vehicle
CN201472270U (zh) * 2009-07-25 2010-05-19 比亚迪股份有限公司 一种车辆启动***
JP2012110071A (ja) * 2010-11-15 2012-06-07 Mitsubishi Electric Corp 車両用電源装置
CN105449785A (zh) * 2015-12-31 2016-03-30 深圳市华思旭科技有限公司 一种辅助车辆启动装置及方法
CN107546790A (zh) * 2016-06-29 2018-01-05 深圳市华思旭科技有限公司 供电组件和方法
CN107124023A (zh) * 2017-06-16 2017-09-01 奇瑞汽车股份有限公司 电池充电装置及电池充电方法
CN110011371A (zh) * 2019-03-07 2019-07-12 深圳市电将军科技有限公司 智能电瓶线夹、一体式启动电源装置及启动打火方法
CA3079795A1 (en) * 2019-03-11 2020-09-11 Shenzhen Carku Technology Co.,Limited Emergency starting power supply and emergency start method
CN113474965A (zh) * 2020-11-19 2021-10-01 深圳市华思旭科技有限公司 智能连接装置、启动电源以及电瓶夹
CN216981587U (zh) * 2021-11-09 2022-07-15 深圳市华思旭科技有限公司 电路结构、智能设备

Similar Documents

Publication Publication Date Title
CN107487201B (zh) 充电唤醒方法、电池管理***及车辆
US7642674B2 (en) Switch state assurance system
CN110011371B (zh) 智能电瓶线夹、一体式启动电源装置及启动打火方法
TWI523774B (zh) 日行燈控制器、日行燈系統、以及汽車內光源供電控制方法
JP4387391B2 (ja) 蓄電装置
JP2007318849A (ja) 電気自動車の電気システム
US8872451B2 (en) Motor device and power tool
JP2007306787A (ja) 二次電池の充電方法及び二次電池の保護回路装置
US9190945B2 (en) Voltage regulator, under-voltage protection circuit thereof and voltage regulation system
US7639519B2 (en) Switching booster power circuit
JP2015061427A (ja) 電池制御ユニットシステム
CN216981587U (zh) 电路结构、智能设备
WO2023082054A1 (zh) 电路结构及其控制方法、智能设备
JP2008026025A (ja) 断線検出回路を備えた電源供給回路
TWI394973B (zh) 運用於手持式電子裝置中的電池偵測器與電池偵測方法
JP2008131675A (ja) 電源装置及び漏電検出方法
JP2008081114A (ja) 制御装置
JP2011077698A (ja) 負荷駆動装置
US7561386B2 (en) Switch monitoring circuit
WO2023065084A1 (zh) 电路结构及其控制方法、电源设备
CN107340719B (zh) 开机自锁装置及智能家居控制***
JP5381793B2 (ja) 蓄電池状態検出装置
CN109989655A (zh) 自动开门机及其驱动方法
CN206364550U (zh) 一种输出电压模拟检测的汽车应急电源
JP2000269029A (ja) 誘導負荷駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963511

Country of ref document: EP

Kind code of ref document: A1