WO2023082040A1 - Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite - Google Patents

Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite Download PDF

Info

Publication number
WO2023082040A1
WO2023082040A1 PCT/CN2021/129526 CN2021129526W WO2023082040A1 WO 2023082040 A1 WO2023082040 A1 WO 2023082040A1 CN 2021129526 W CN2021129526 W CN 2021129526W WO 2023082040 A1 WO2023082040 A1 WO 2023082040A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforated
matrix
composite
triangular
rebar
Prior art date
Application number
PCT/CN2021/129526
Other languages
French (fr)
Inventor
Chi Kuen WONG
Yee Sun Calvin YAU
Original Assignee
Flexcrete Technology Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flexcrete Technology Limited filed Critical Flexcrete Technology Limited
Priority to CN202180049639.7A priority Critical patent/CN116419999A/en
Priority to EP21939586.0A priority patent/EP4204636A4/en
Priority to PCT/CN2021/129526 priority patent/WO2023082040A1/en
Publication of WO2023082040A1 publication Critical patent/WO2023082040A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance

Definitions

  • This invention relates broadly to an innovative form of Reinforced Cementitious Composite material system having a new interlocking structured rebar network combined with an infiltrated heterogeneous blend hydraulic material in lieu of the ribbed solid metal rebar being widely used in construction industries currently for forming concrete structural elements.
  • this invention allow the realization of Novel Elastic Reinforced Cementitious Composite characterized with high mechanical bond performance by using interlocking hydraulic material matrix dowel approach and high deformation/ductility capacity by using anti-buckling features of triangular perforated tubular rebar structure lacing with multi-layer perforated metallic plates.
  • a typical ribbed solid and/or hollow rebar with different polygonal sectional shapes are shown to demonstrate the typical state of art approach for bonding and anchoring rebar with hydraulic binder matrix material by ribs distributed over the circumference of the core of the solid and/or hollow rod to form structural concrete elements.
  • the buckling of rebar rod during high dynamic lateral load is still an unresolved and recognized drawback of mono-solid/hollow rebar that result principally due to its low Moment-of-Inertia, Ineffective anchorage mechanism, shear lag size-effect and large elastic modulus mismatch in-between rebar and surrounding cementitious matrix.
  • novel perforated tubular monolithic architected rebar together with the infiltrated normal strength high elastic modulus hydraulic binder matrix which is proposed by the present invention, while retaining all of the important advantages offered by conventional, solid, composite rebar, both significantly, correctively, addresses the mono-solid/hollow rebar limitations and elastic modulus mismatch problem just mentioned, and concurrently introduces new mechanism in rebar matrix interface bonding and reinforcement lap splicing.
  • Ferrocement laminate Figure 3c In construction industry the technology based on using multiple layers steel mesh as welded solid bar reinforcement network for forming concrete products is generally named Ferrocement laminate Figure 3c and the best known high performance product is DUCON. However its main application is in jointless flooring overlay and concrete reinstatement. Alternative improvement on state of art Ferrocement laminate is also highly desirable.
  • a reinforced concrete structure In a reinforced concrete structure, steel reinforcing in the form of ribbed solid rebar is embedded in cast concrete. The steel reinforcing provides the concrete structure with tensile strength and complements the compressive strength of the concrete. However the steel reinforcing bar/cage can distort or twist causing unnecessary deflection of the resulting reinforced concrete structure. Meanwhile, with the imposition of strict wind and earthquake resistant design, reinforced concrete design specifications regarding confinement transverse reinforcing bar details have been made and widely applied to cater for higher ductility performance of the reinforced concrete structure.
  • Another aspect of the present invention the development of elastic reinforced monolithic laminate composite concept base on three-dimensional tension interlocked confinement reinforcement cage network.
  • debonding failure due to interfacial crack propagation between the reinforcing phase and matrix phase of reinforced cementitious composite could be alleviated and segmentation of infiltrated cementitious continuous matrix by the confinement reinforcement cage network into hard and soft phases further translate their individual structural properties into advanced composite material.
  • the invented three-dimensional tension interlocked confinement reinforcement cage network utilize the full capacity of the continuous reinforcing phase from inner to outer uniformly. Unlike the traditional friction force between conventional rebar and matrix, interfacial bonding is not the main action for the transfer of forces in this novel elastic reinforced composite system. Instead the fully rigid composite action is invoked by the interlocked and distributed anchorage network force transfer mechanism between the three-dimensional reinforcement phase and the infiltrated high elastic modulus matrix binder material.
  • the invention may be described as a composite-rebar network material system expressible as including (a) an elongate, triangular perforated tubular rebar structure, and a defined-function collar-sleeve fitting joined to that perforated triangular tubular rebar element, (b) a perforated cellular transverse reinforcing metal plate for arranging a plurality of perforated triangular tubular rebar forming reinforcing bar networks, and (c) a low hydration heat high elastic modulus infiltrated cementitious matrix embedding the perforated triangular tubular rebar element/networks.
  • the present invention in addition to the systemic perspective of the above, further propose a new composite-material anchorage bonding mechanism in lieu of ribs bonding as a result of the robust dowel interlocking mechanism in-between triangular perforated tubular rebar network and high elastic modulus infiltrated matrix together with the laterally spaced perforated cellular reinforcing plate in lieu of transverse rebar.
  • Another feature of the present invention is to provide a method of constructing a high deformation capacity and ductility structural system having a new reinforcing bar topology configuration which enables better bond strength and reduction of development length through the distributed perforated hole arrangement and apex material-volume usage.
  • an elongate, hot-extruded tubular metallic material rebar composite structure formed unitarily and homogenously, having a long axis, and including, (a) three interconnected continuous apex solid rod portions as reinforcing phase, (b) multiple perforated mid-span shell bandage portions as anchorage phase along the length of the rebar, (c) profiled head portions as splice connection phase and (d) hot-extruded tubular metallic collar-sleeve as contact lapping phase.
  • the hot-extruded tubular rebar and collar-sleeve are triangularly cylindrical, and the perforated mid-span shell structure possessing longitudinally patterning square dowel holes.
  • the perforated tubular rebar and collar-sleeve are triangularly cylindrical, and the perforated mid-span shell structure possessing longitudinally patterning square dowel holes.
  • created integrally with and as a part homogeneously of the preferred, triangular perforated tubular rebar with the configuration of the apex solid/mid-span shell bandage combination which centrally defines the rebar confinement structure of the present invention collaborate to offer significant performance advantages over all known solid rebar structures, including unique anti-buckling load managing, maximum material-moment of inertia distribution to counteract the “shear-lag” problem confronts traditional solid rebar-usage designers in “size effect” dilemma and high interface mechanical bonding/anchorage mechanism to effectively retaining good internal coherence with infiltrated cementitious matrix
  • the seamless monolithic anti-buckling bandage nodal zone existing between the continuous apex solid reinforcing phase and the mid-span shell which has resulted from a single hot extrusion manufacturing procedure hold the endless hoop confinement capability for restraining matrix dilating borne force and directing them effectively into the long, linear axially extending, tension-capable apex corner rods present in the rebar structure.
  • the dimension of the continuous apex solid portions (8mm-16mm) are sized effectively to achieve sufficient failure toughness and at the same time minimize the lap-length parameter, where, in the design standards, it is considered 40 times of bar diameter.
  • Another key feature of the present invention is that it offers, for useful and innovative employment, snugly inserted connections by means of a perforated triangular tubular collar-sleeve over both profiled dual-headed ends of two perforated triangular tubular rebars of the same outside dimension.
  • the collar-sleeve, per se, in the rebar structure of the invention is independently expressible as being a jacketing-structure possessing similar physical form and properties as the rebar structure with an offset-dimensionality extend structure.
  • This innovative connection model facilitates and reduces the assembly cost of the invented rebar structure, is describable as an integral-form of contact lapping splice sleeve associated with interlocked dowel keys.
  • rebar networks structure can be effectively assembled involving simple insertion of multi-layer perforated cellular metal plates as transverse reinforcement.
  • the cellular transverse reinforcing metal plate also employed as embedded “internal endless loop” reinforcing inclusions, dramatically avoid the dilation phenomenon of infiltrated cementitious matrix typically occurred during earthquake action.
  • This innovative insertion assembly model can measurably improve the efficiency of construction and shorten the construction period via incorporation of modularized rebar network cage for on-site assembly.
  • the present invention also proposes infiltrated low hydration heat high elastic modulus cementitous matrix forming interlocking dowel networks for interface bonding and anchorage mechanism inside the novel reinforced composite material.
  • Such high elastic modulus matrix play an important role in the deformation and ductility performance of the present invention in structural application.
  • both the low yield stress rheological mix properties of the fresh paste and high elastic modulus properties of the hardened paste are mandatory in the proposed, preferred-embodiment matrix structure.
  • the unique ternary composition binder containing ultra-fine Ultrafine Ground granulated blast furnace slag (UFGGBS) at (15%-35%) , and more preferably at (25%-35%) , by weight of the total binder with water/binder ratio at 0.28-0.32 of the present invention provide superior elastic modulus enhancement characteristics in the range of 40GPa-45GPa for normal grade 60MPa compressive strength concrete without using ultra-high strength concrete approach, herein so-called “decoupling-effect” .
  • This novel low heat ternary composition cementitious binder together with the organic osmotic spacer dispersant hereafter named “G.
  • Seed may have significant improvement in the C-A-S-H gel morphology and bond density due a large portion of Ultra-fine Slag induced aluminate silicate bridging molecules interface strengthening effect.
  • the hardened matrix closely resemble metallic alloy matrix in term of the modulus strengthening approach by using in-situ seeding template to control the gel grain morphology and size of the basic gel building blocks of C-A-S-H so that they can self-assemble into microstructures with far greater bond packing density together with the shifting of amorphous gel state towards ordered crystalline gel state after matrix solidification.
  • the high elastic modulus infiltrated cementitious matrix hereafter named “ModulusCEM” is formed of air-cured hydraulic active binder which contain Portland cement (OPC) , Ground granulated blast furnace slag (GGBS) and Ultrafine Ground granulated blast furnace slag (UFGGBS) , organic osmotic spacer, fine aggregate, coarse aggregate, water and organic dispersing agents.
  • the preferred infiltrated cementitious matrix takes the form of an optimized packing bond density paste dispersed combinatorially with small molecular organic osmotic-spacer co-dispersant present in the fresh mixed matrix for imparting dense packing filling effect at low water/binder-ratio.
  • the interfacing transition zone exiting between paste and aggregate takes the form of a dense thin layer which has resulted from the pozzolanic reaction of ultra-fine active hydraulic mineral filler is essential to the novel reinforced composite for distributing crack control and obtaining high durability.
  • this elastic reinforced laminate composite “Architected Cellular Layers material” can be characterized as a “Triangular Interlocked Material (TIM) ” based on a combination of ternary composition binder containing ultra-fine Ultrafine Ground granulated blast furnace slag “normal strength-high elastic modulus matrix” and a three-dimensional reinforcement cage confinement network derived from assemblages of aligned multiple layers perforated iso-grid patterned metal plates which is internally tension interlocked with a plurality of inter-fitted apex solid triangular hollow rebars in at least one dimension.
  • the apex solid triangular hollow rebars acting as transverse reinforcement system within the multi-layer monolithic sandwich composite counteract separation through matrix dowel anchorage mechanism and give a strong tension interlocking action, even under conditions of heavy destruction where matrix might fail.
  • the invention is now ascertained by creating an innovative “Triangular Interlocked Material –TIM” structured-structures laminate design and pre-determined topological configurations approach which are characterized by what is stated in the independent claims.
  • the preferred embodiments of the invention are disclosed in the independent claims.
  • the “Triangular Interlocked Material (TIM) ” system are derived from assemblages of unit cells, where each of the unit cells has a solid triangular cylindrical core geometry configuration with the top and bottom faces bounded by endless cellular confinement hoop based on a triangular motif ordered inside the slender-beam architected two-dimensional perforated grid plate.
  • the unit cell's dimension parameters has a profound control effect in developing the dowel properties of unit cell through confinement action attributed from the non-slip topological interlocking action in-between the reinforcing structure phase and matrix phase. This obviate the traditional composite reinforcing limitation based on bond stresses force transfer to alloy the full tensile strength of the reinforcing phase.
  • TIM could be assigned as the control representative volume element (RVE) and induce the mechanical properties of the invented composite.
  • the "Triangular Interlocked Material (TIM)" shape factor has the highest intrinsic efficiency ratio defined as the ratio of bonded lateral surface area of the cylindrical material to its cross sectional area for a given equivalent height and unit mass of the matrix material. As such, for the same cross-sectional area, the triangular interlocked material (TIM) is around 30%more effective than a circular shape in developing surface adhesive force and significantly improve the shear strain capacity for a given displacement demand.
  • this invented novel elastic reinforced sandwich laminate composite material system is a novel class of multi-layer sandwich composite material having multi-materials structured-structures hybridization strategy being focused on pre-determined topological configurations inclusive of cellular, layers and segmented structures to constitute ordered phases with differing connectivities, optimally serving specific engineering purpose.
  • this invention relates to mono-or multi-layer sandwich composite where the stiffness mismatch limitation between the reinforcing and matrix phase is intentionally controlled for fabricating novel elastic reinforced monolithic sandwich composite of incredibly high strength, high flexural stiffness, high ductility, high deformation capacity and high tolerance of local mechanical damage couples with minimum mass.
  • This innovative and realizable thin composite panel can be conceptualized as a highly modified form of infiltrated type laminate sandwich composite without using adhesive or welding technique for binding the dual outer layer sheets with the core.
  • a plurality of apex solid perforated hollow rebar which function as tension interlocking connectors and spacers are inserted as bridging anchor rods which firmly binding the dual sandwiched outer layer composite panel sheets with the sandwiched inner layer composite panel core and thereon deliberately generate a fully rigid thin laminate sandwich composite component or element for general structural applications.
  • the present invention also proposes special apparatus for carrying out the methodology of the invention in order to produce the rebar structure and perforated metal plate of the invention.
  • the proposed apparatus progressing therein, and therealong, from the upstream region toward the downstream region, includes (a) a triangular profile mandrel having a long axis which is substantially coincident with the rebar-formation axis, (b) an elongate, hollow pultrusion-die disposed operatively adjacent the extrusion region, having a long axis which is substantially coincident with the rebar-formation axis, circumsurrrounding the mandrel, (c) plural heaters distributed in spaced relation with respect to one another along the rebar-forming axis and disposed in operative adjacency relative to and association with the pultrusion mold die, and (d) a power-driven pusher moving a preheated solid metal rod at a rate relative to the pultrusion-die.
  • a fibre-laser tube cutting machine having a rotatable clamp holder coincident with the rebar-forming axis and operable to form pre-defined hole cutting in a manner distributed along the length of the mid-span shell of the rebar structure.
  • Figure 1 shows typical prior art rib-rebar structure with solid or hollow configuration
  • Figures 2a and 2b show typical prior art rib-rebar cage assembly, splice lapping and reinforced concrete column-beam joint using headed rebar or bent-shape rebar arrangement;
  • FIGS 3a, 3b and 3c show typical prior art typical sandwich panel and ferroconcrete
  • Figure 4 shows three dimensional views of proposed novel rebar structure network including monolithic triangular perforated tubular longitudinal rebar and perforated transverse reinforcement plate;
  • Figure 5a is a flow chart showing design of novel reinforced cementitious composite
  • Figure 5b is a diagram showing strength range of novel reinforced cementitious composite
  • Figure 6a shows configuration of novel reinforced cementitious composite
  • Figure 6b shows self-standing state triangular bar network with mutual insertion of multi-layered perforated cellular plates
  • Figure 7 are schematic views showing collar-sleeve join connection arrangement
  • Figure 8a is a Multi-Layered View of Architected Cellular Layers Material
  • Figure 8b is a TIM View of the Architected Cellular Layers Material of Figure 8a;
  • Figure 8c is a Matrix View of the Architected Cellular Layers Material of Figure 8a;
  • Figure 8d is a perforated Plate View of the Architected Cellular Layers Material of Figure 8a;
  • Figures 8e and 8f are TIM Hoop Section View and hard-soft matrix domain view of the Architected Cellular Layers Material of Figure 8a;
  • Figure 9 is a flowchart of Architected Cellular Layers Material design and fabrication
  • Figure 10 shows a Unit-cell As Dowel Network of Architected Cellular Layers Material
  • Figure 11 is a Hard and Soft Matrix Phase Deformation Diagram
  • Figure 12 shows testing of multi-layer monolithic sandwich composite showing stretch-bending fully rigidity composite action
  • Figure13a shows ternary binder particle size composition matrix
  • Figure 13b are tables showing proposed high elastic modulus binder matrix mix design and properties in fresh and hardened state
  • Figure 13c are tables showing cementitious composite design flow chart
  • Figure 13d are tables showing test result of proposed high elastic modulus binder matrix in hardened state
  • Figure 14 are photos showing hot extrusion production of monolithic triangular tubular rebar with apex solid corners
  • Figure 15 are schematic views showing application of novel reinforced cementitious composite for column-beam assembly and modular unit fabrication
  • Figures 16a and 16b are photos of finished Panel and Volumetric Prefabricated Concrete Component using Novel Elastic Reinforced Composite Technology
  • Figure 17a and 17b are 3D Model showing using Novel Elastic Reinforced Composite Technology in building design and manufacturing.
  • Triangular Perforated Tubular Rebar (20) which has a long axis seen at Figure 4 includes continuous solid apex reinforcing phase portion (21) , mid-span shell anchorage phase portion (22) , profiled end-cap head anchorage phase portion (24) , and perforated cellular dowel hole interlocking phase portion (23) .
  • the Infiltrated high elastic modulus matrix (40) which has a dense mass form after hardened disposed along the length of the Rebar (20) , includes Array of matrix dowels (42) , Confined matrix (41) within Rebar envelope and Unconfined matrix (43) . Accordingly, the perforated tubular composite rebar structure proposed by the present invention, plays the evident role of furnishing excellent, longitudinal anti-buckling stability for the rebar structure when it is in place within a body of infiltrated high elastic modulus matrix.
  • an array of Dowel holes (23) along the rebar mid-span shell, is the main interlocking interface for developing matrix bond and anchorage strength in lieu of state of art typical rebar ribs along the surface of rod and bent hook arrangement at end of solid rod bar.
  • the main continuous solid apex corners (21) , perforated mid-span shells (22) , along with the dual-end-cap head (24) formed by hot extrusion and fiber-laser cutting are referred to herein collectively as a perforated-tubular-rebar structure (20) .
  • perforated tubular rebar is a hot extrusion structure and it allow required elongation characteristics as traditional solid steel rob rebar under tension force applied.
  • the formation of homogeneous apex solid corners and mid-span shell structure includes a mass of a suitable metallic ingot, preferably low carbon steel, and hot extruded through a mold die oriented in perpendicular to the rebar longitudinal axis.
  • the reinforcing phase (21) is strategically located at the apex corner of an equilateral triangular sectional geometry to maximize the Moment-Of-Inertia of the rebar structure (20) .
  • This configuration of three continuous apex interconnected elongated solid-like rods (21) will eliminate the “shear lag” dilemma that an increase in rebar diameter size to achieve hoped-for greater reinforcing strength.
  • bandage structure By periodically confining the triangular sectional with seamless, homogenous, and endless hoop bandage stiffeners that run circumferentially as nodes or bulkheads, referred herein as a bandage structure, it further guard against Brazier buckling of proposed reinforcing bar structure for enhancing deformation capacity during seismic action.
  • tubular rebar structure can be realized by providing elaborate structural efficiency in substantially linear, long-axis-tension-carrying-capable reinforcing apex solid, preferably made of metallic material and takes the designated architected form from extrusion formation and fibre laser cutting process.
  • the proposed active mineral filler bond density compositional methodology involves what we refer to as a modified form of strength-elastic modulus decoupling effect which differs from aggregate modulus upgrading practice commonly adopted in strength-elastic modulus coupling mix design as depicted in Figures 13c.
  • the high elastic modulus hydraulic binder may take on a particular compositional mix based on ternary blend cementitious material (45) includes Ordinary portland cement (OPC) , Fine ground granulated blast furnace slag (GGBS) , and Ultra-fine ground granulated blast furnace slag (UFGGBS) associated with Organic osmotic-spacer co-dispersant (46) can be made from the following “G. Seed” recipe:
  • the perforated tubular rebar structure of the present invention employ triangular geometry cross-section shape which endowed with highest bending-torsion rigidity. Beside it has largest surface area/volume ratio for maximizing matrix infiltration penetration and flow rate. More specifically, the triangular sectional geometry of the preferred embodiment effectively results in an extremely strong and robust mechanical coupling action between the rebar structure and infiltrated matrix –a bond which also plays a very important role for stiffening the continuous apex corner reinforcing phase against buckling force.
  • the collar-sleeve insertion proposed by the present invention as illustrated in Figure 7 is a radical way of integrating splice sleeve and contact lapping methodology commonly adopted separately in state of art solid rebar splice connection.
  • Perforated tubular collar-sleeve is one of the very unique contributions of the present invention in that it cooperates in a very special way to align perforated tubular rebars coaxially for emulating non-splice continuous rebar tensile load bearing capacity.
  • the proposed snugly insertion methodology including the steps of (a) minimizing the lapping length parameter of apex solid corner reinforcing phase, (b) matching the outside dimensions and geometry of coaxial rebar structure with inside dimensions and geometry of collar-sleeve, and (c) effecting interlocking bonding mechanism with infiltrated high elastic modulus matrix.
  • This integral connection approach is the included presence of the profile dual-end-cap head (24) of the perforated tubular rebar which is anchorage-bearing, and cooperatively, engaged with the collar-sleeve (25) .
  • this facet recognizes the opportunities, furnished by the perforated tubular rebar structure of the invention to construct rebar assembly systemically, as for examples, (a) forming triangular rebar network column cage, (b) forming triangular rebar network beam cage, and (c) forming triangular rebar network foundation cage.
  • Figures 6a and 6b pictures a multi-layer perforated cellular transverse reinforcement plate (30) sandwiched in-between a plurality of triangular perforated tubular rebar (20) forming composite-cellular rebar cage system.
  • These multi-layered three-dimensional architected cellular composite rebar cage structure also referred to as confinement-cage components, collaborate with the infiltrated high elastic modulus matrix to offer the high deformation and ductility features of the novel reinforced cementitious composite that take advantage of the invention-proposed anti-buckling perforated tubular rebar structure for resisting both the wind and seismic load which act laterally on the building (70) .
  • the three-dimensional architected cellular rebar cage composite (50) having at least two perforated metal plate (30) with repeated pattern of triangular endless cellular hoops (31) that are aligned, spaced and parallel with one another being designed matchingly to engage with at least two axially aligned triangular perforated tubular rebar (20) in such a rebar network cage structure thereby compulsory act together as high-stiffness confinement envelop for forming "Interlocked Dowel” unit cells (41) distributed within the novel reinforced cementitious composite element structure.
  • the formed “Interlocked Dowel” unit cells exploit its confinement reinforcement capacity effectively to the maximum yielding level before occurrence of matrix slipping and crushing failure.
  • the composite rebar cage can establish highest energy absorption capacity to dissipate dynamic forces applied on the novel reinforced cementitious composite element.
  • This ultra-ductile ability indicate that the proposed preferred-embodiment of the invented reinforced composite work together as a whole to obtain higher levels of strength, stiffness and resilience mechanical properties in resisting compressive, wind and seismic load while retaining good internal coherence.
  • the triangular perforated tubular rebar (20) is fabricated from hot extruded low carbon steel material, herein has an overall length of about 10m-12m and possesses a central, long, axis referred to as rebar-formation axis. Extending in a manner along the apex corner axis are continuous solid rod region of approximately drawn diameter (8mm-25mm) –the dimension which defines the effective sectional area of the reinforcing phase.
  • the associated mid-span shell bandage region has thickness of about (3mm-6mm) and width of about (6mm-12mm) –the dimension which defines the effective sectional area of the anchorage phase.
  • the endless cellular hoop region has area of about (25mmx25mm -50mmx50mm) –the dimension which defines the effective sectional area of the interlocking matrix dowel.
  • the multi-layered perforated cellular transverse reinforcing phase (30) has equilateral triangle hoops (31) of length size (40mm-70mm) with small rounded vertices that are spaced to create an isogrid topology patterned rib and node web for achieving the best local confinement effect and the perforated plate has thickness of about (2mm-5mm) .
  • the infiltrated high performance matrix binder material (40) as shown in Figure 13c is a high elastic modulus cementituous binder matrix material with a compressive strength between (60MPa-80MPa) and an elastic modulus above 40GPa to provide the requisite strength, hardness and tough ductile behaviour, and the maximum aggregate size is limited to one quarter of the cellular hoop size for unblocked infiltration.
  • the elastic reinforced composite structure as shown in Figure 8 is an elastic reinforced laminate sandwich composite (10) with a plurality of perforated thin metallic plate (30) engineered with endless cellular equilateral triangle hoops as multi-layer transverse reinforcement network bodies.
  • a global three-dimensional cellular confinement cage network as reinforcing phase are constituted by inter-fitting a plurality of apex solid perforated triangular hollow rebar (20) as shear connectors and tension interlocking multi-layered transverse reinforcement bodies thereby a elastic reinforced high performance thin laminate sandwich composite component can be generated after infiltration of the normal strength high elastic modulus ultrafine matrix (40) .
  • the elastic reinforced laminate sandwich composite (10) as shown in Figures 8, 9, 10, 11 and 12 is a three-dimensional architected cellular layers material composite has at least two perforated metal plate (30) with repeated pattern of endless cellular hoops (31) or (31a) and a group of apex solid perforated triangular hollow metal rebar (20) as tension interlocked reinforcement inserted preferably with staggered configuration arrangement in-between perforated metal plates (30) at defined locations.
  • the replicated patterned endless cellular hoops (31) or (31a) of the multi-layered perforated metal plate (30) are reciprocally opposite with respect to each other as illustrated in Figure 8e and thereby compulsory cooperate together as high-stiffness confinement envelop of the "Triangular Interlocked Material (TIM) " unit cells (41&42) .
  • the formed “TIM” cells consume its reinforcement capacity to the maximum yielding level before occurrence of high performance matrix slipping and crushing failure.
  • confinement is monolithic and consequently the multilayer structure reinforcing phase can establish higher energy absorption capacity to dissipate dynamic forces applied on the composite panel.
  • This ultra-ductile ability indicate that the invented composite panel work together as a whole to obtain higher levels of strength, stiffness and resilience mechanical properties in resisting compressive, wind and seismic load.
  • This exemplar invention is based on an unexpected discovery that uniformly distributed local hoops confinement effect can be synergistically generated in-between the infiltrated high performance matrix binder material core and the integral continuous reinforcing structure phase featured with endless cellular hoop architected by rib and node web reinforcement structure.
  • a three-dimensional cellular reinforcement cage network phase are formed for distributing endless cellular triangular shaped confinement loops into three-dimensional periodically networked pattern which are systematically spaced.
  • a novel architected material having continuous reinforcing and matrix phases can be fabricated while using conventional constituent material and translating their individual structural properties into advanced composite material performance.
  • This invented Architected Material having Cellular and Layers lattice configurations engineered inside Sandwich hybrid material topology obtain its novel elastic reinforced monolithic composite material properties through tension interlocking reinforcement and matrix dowel anchorage mechanism working synergistically within the continuous matrix phase being partitioned into hard domain and soft domain phases by the configuration of cellular confinement rebar network cage.
  • the hard domain (41 &42) consist of the unit cells based solid triangular cylindrical core geometry dowel matrix and the soft domain (43) consist of the hexagonal honeycomb cellular core geometry matrix as shown in Figures 8a, 8c, 8d and 8f.
  • This combination of triangular and hexagonal domain configuration of matrix phase will maximize the interface strain gradient density to produce high back-stress work hardening for further enhancing laminate composite ductility during deformation. Thereby optimize the composite material design for strength, stiffness and resilient at minimum mass.
  • the inter-fitted three-dimensional continuous reinforcing phases (50) are assembled from multiple layers of cellular triangular hoop engineered perforated plate (30) through simple insertion operation permitted by the apex solid perforated hollow rebar (20) derived from the complimentary shape configuration, thereby totally eliminate welding and adhesive procedure currently used in honeycomb sandwich and DSC production.
  • the triangular perforated tubular rebar structure, the collar-sleeve connector, and the perforated cellular metal plates components of the invented rebar cage composite (50) as shown in Figure 6b can be robotically assembled with the advent of computer aided design (CAD) and computer aided manufacture (CAM) .
  • CAD computer aided design
  • CAM computer aided manufacture
  • the perforation cutting pattern can be design in CAD software.
  • the design can then be used to program for the cutting and milling processes as shown in Figures 14, 17a and 17b.
  • the time and labour savings make it possible to economically produce one of a kind product.
  • CADCAM high volume and low cost product of the three-dimensional architected cellular rebar cage composite (50) is possible.
  • a plurality of novel reinforced cementitious composite formed structural elements such as columns, beams and laminated panels are arranged to fabricate the prefabricated prefinished building modular components (60) in factory and then deliver to construction site for the on-site assembly of building (70) in the next assembly stage.
  • the above described manufacturing and production process of the invented three-dimensional architected cellular layers material sandwich composite as shown in Figure 12 clearly show that no welding or adhesive glue technique are employed for forming the said composite. It exemplify the easily adoption of the said invention in established prefabrication plants with minor modification on existing equipments and fully demonstrate the broad industrial applicability of the said invention.

Abstract

Fabrication and design of novel reinforced cementitious composite (10) made up of seamless elongate monolithic perforated tubular metallic reinforcement bar (20) with triangular sectional confinement topology configured by three continuous parallel aligned interconnected solid rod-like portion located at triangular apexes respectively as longitudinal reinforcing phase (21), multiple perforated mid-span shell bandage as anchorage phase (22), and infiltrated heterogeneous blend tunable low hydration heat high elastic modulus hydraulic binder material as matrix phase (40) characterized by an unique, core-radial, axial-align, distributed mechanical bond anchorage dowel network (41) effected from multi-cellular matrix dowel unit cells (42) synergistically formed unitarily with endless cellular confinement hoops along the perforated mid-span shell during hydraulic binder composite solidification and its use therewith multi-layer perforated metallic plates as transversal reinforcing phase (30) for fabricating diverse three-dimensional reinforcement bar network confinement cage in constructing reinforced solid concrete elements of buildings and civil structures.

Description

ELASTIC REINFORCED COMPOSITE FOR FORMING DIVERSE STRUCTURAL SYSTEMS AND ITS APPLICATION IN MONOLITHIC SANDWICH MATERIAL COMPOSITE FIELD OF THE INVENTION
This invention relates broadly to an innovative form of Reinforced Cementitious Composite material system having a new interlocking structured rebar network combined with an infiltrated heterogeneous blend hydraulic material in lieu of the ribbed solid metal rebar being widely used in construction industries currently for forming concrete structural elements. As will become apparent, this invention allow the realization of Novel Elastic Reinforced Cementitious Composite characterized with high mechanical bond performance by using interlocking hydraulic material matrix dowel approach and high deformation/ductility capacity by using anti-buckling features of triangular perforated tubular rebar structure lacing with multi-layer perforated metallic plates.
Prior Art Reinforced Cementitious Composite Technologies
Publications and applications of Reinforced Concrete Composite Technologies are well-known art in construction industry and the merit of it is the ribbed steel rebar providing the concrete structure with tensile strength and complementing the compressive strength of the concrete. However, the steel reinforcing ribbed rebar cage can distort or buckle extensively even restrained by confinement rebar system during high dynamic lateral load, such as earthquake.
With reference to Figures 1, 2a and 2b a typical ribbed solid and/or hollow rebar with different polygonal sectional shapes are shown to demonstrate the typical state of art approach for bonding and anchoring rebar with hydraulic binder matrix material by ribs distributed over the circumference of the core of the solid and/or hollow rod to form structural concrete elements. However the buckling of rebar rod during high dynamic lateral load is still an unresolved and recognized drawback of mono-solid/hollow rebar that result principally due to its low Moment-of-Inertia, Ineffective anchorage mechanism, shear lag size-effect and large elastic modulus mismatch in-between rebar and surrounding cementitious matrix. In a more particular sense, the novel perforated tubular monolithic architected rebar together with the infiltrated normal strength high elastic modulus hydraulic binder matrix which is proposed by the present invention, while retaining all of the important advantages offered by conventional, solid, composite rebar, both significantly, correctively, addresses the mono-solid/hollow rebar limitations and elastic modulus mismatch problem just  mentioned, and concurrently introduces new mechanism in rebar matrix interface bonding and reinforcement lap splicing.
In construction industry the technology based on using multiple layers steel mesh as welded solid bar reinforcement network for forming concrete products is generally named Ferrocement laminate Figure 3c and the best known high performance product is DUCON. However its main application is in jointless flooring overlay and concrete reinstatement. Alternative improvement on state of art Ferrocement laminate is also highly desirable.
It is also known that state of the art high performance thin sandwich composite panel system for example steel-concrete-steel (DSC) hybrid panel Figures 3a and 3b is typically composed of dual steel plates as reinforcing skin and sandwiched with Portland cement matrix by using welded steel stud as shear connector. However, welding fatigue problem is one of the major drawback that occur frequently in thin steel plate sandwich composite during service lifetime. Beside the wide adoption of DSC in the construction market is very limited due to the fire proofing requirement of the outermost double skin metal sheets and the prescribed special welding steps for installing the steel shear stud plus the fatigue problem.
Thus, there is still a need in the art for reinforced laminate structure materials that can be utilized within current design code for structural application, while eliminating the above mentioned limitations in particular cement-based reinforced laminate structures, with large failure toughness and low hydration heat during curing.
Key Problems in Current Reinforced Cementitious Composite Material Development
Architectural and civil engineering structures, such as buildings, bridges, etc., generally employ a reinforced concrete structure. In a reinforced concrete structure, steel reinforcing in the form of ribbed solid rebar is embedded in cast concrete. The steel reinforcing provides the concrete structure with tensile strength and complements the compressive strength of the concrete. However the steel reinforcing bar/cage can distort or twist causing unnecessary deflection of the resulting reinforced concrete structure. Meanwhile, with the imposition of strict wind and earthquake resistant design, reinforced concrete design specifications regarding confinement transverse reinforcing bar details have been made and widely applied to cater for higher ductility performance of the reinforced concrete structure. Current state of the art reinforced cementitious composite materials are limited in arranging cross-tie loop bar as confinement reinforcement in combination with mono-solid/hollow rebar and the buckling issue of solid rebar under seismic load still  remain unresolved. Notably, as the diameter of traditional, solid, composite rebar increases, the “shear-lag” problem leads to the combined negative effects of non-proportional core-strength increasing and losing core-area efficiency in terms of strength and load handling. Other common practice to improve ductility of reinforced concrete is adding metal fiber to prevent the concrete from cracking but only limited result can be achieved unless dose with very high fiber content. Such major drawback regarding traditional solid steel rebar is principally due to its “buckling” -limitations which, importantly, are now successfully addressed by the features of the present, “perforated-tubular” two-main-component apex solid/mid-span shell, composite rebar invention, shortly to be more fully disclosed.
Very interestingly, the apparatus employed by the invention to make the proposed new perforated tubular rebar structure, and the associated making methodology, collaboratively contribute significantly to the manufacturability of the prevent invention that enhance its utility in this field.
Another aspect of the present invention, the development of elastic reinforced monolithic laminate composite concept base on three-dimensional tension interlocked confinement reinforcement cage network. By tailoring the non-slip topological interlocking mechanism, debonding failure due to interfacial crack propagation between the reinforcing phase and matrix phase of reinforced cementitious composite could be alleviated and segmentation of infiltrated cementitious continuous matrix by the confinement reinforcement cage network into hard and soft phases further translate their individual structural properties into advanced composite material.
The invented three-dimensional tension interlocked confinement reinforcement cage network utilize the full capacity of the continuous reinforcing phase from inner to outer uniformly. Unlike the traditional friction force between conventional rebar and matrix, interfacial bonding is not the main action for the transfer of forces in this novel elastic reinforced composite system. Instead the fully rigid composite action is invoked by the interlocked and distributed anchorage network force transfer mechanism between the three-dimensional reinforcement phase and the infiltrated high elastic modulus matrix binder material.
More elaborations about these new features and advantages are presented now immediately below in the respective summary descriptions as well as later on in the detailed description of the invention.
SUMMARY OF INVENTION
Novel Reinforced Cementitious Composite Systemic Features
From a systemic perspective, the invention may be described as a composite-rebar network material system expressible as including (a) an elongate, triangular perforated tubular rebar structure, and a defined-function collar-sleeve fitting joined to that perforated triangular tubular rebar element, (b) a perforated cellular transverse reinforcing metal plate for arranging a plurality of perforated triangular tubular rebar forming reinforcing bar networks, and (c) a low hydration heat high elastic modulus infiltrated cementitious matrix embedding the perforated triangular tubular rebar element/networks.
The present invention, in addition to the systemic perspective of the above, further propose a new composite-material anchorage bonding mechanism in lieu of ribs bonding as a result of the robust dowel interlocking mechanism in-between triangular perforated tubular rebar network and high elastic modulus infiltrated matrix together with the laterally spaced perforated cellular reinforcing plate in lieu of transverse rebar.
Another feature of the present invention is to provide a method of constructing a high deformation capacity and ductility structural system having a new reinforcing bar topology configuration which enables better bond strength and reduction of development length through the distributed perforated hole arrangement and apex material-volume usage.
Tubular, Composite, Apex Solid/Mid-span Shell Rebar Structure
According to a preferred and best-mode embodiment of the invention, what is proposed, from a structural, product point of view, is an elongate, hot-extruded tubular metallic material rebar composite structure formed unitarily and homogenously, having a long axis, and including, (a) three interconnected continuous apex solid rod portions as reinforcing phase, (b) multiple perforated mid-span shell bandage portions as anchorage phase along the length of the rebar, (c) profiled head portions as splice connection phase and (d) hot-extruded tubular metallic collar-sleeve as contact lapping phase. Preferably, the hot-extruded tubular rebar and collar-sleeve are triangularly cylindrical, and the perforated mid-span shell structure possessing longitudinally patterning square dowel holes. Created integrally with and as a part homogeneously of the preferred, triangular perforated tubular rebar with the configuration of the apex solid/mid-span shell bandage combination which centrally defines the rebar confinement structure of the present invention, collaborate to offer significant performance advantages over all known solid rebar structures, including unique anti-buckling load managing, maximum material-moment of inertia distribution to counteract the “shear-lag” problem confronts traditional solid rebar-usage designers in “size effect”  dilemma and high interface mechanical bonding/anchorage mechanism to effectively retaining good internal coherence with infiltrated cementitious matrix material.
Importantly, the seamless monolithic anti-buckling bandage nodal zone existing between the continuous apex solid reinforcing phase and the mid-span shell which has resulted from a single hot extrusion manufacturing procedure hold the endless hoop confinement capability for restraining matrix dilating borne force and directing them effectively into the long, linear axially extending, tension-capable apex corner rods present in the rebar structure.
In the proposed, preferred-embodiment rebar structure, the dimension of the continuous apex solid portions (8mm-16mm) are sized effectively to achieve sufficient failure toughness and at the same time minimize the lap-length parameter, where, in the design standards, it is considered 40 times of bar diameter.
Collar-Sleeve Splice Connector and Triangular Reinforcing Rebar Networks
Another key feature of the present invention is that it offers, for useful and innovative employment, snugly inserted connections by means of a perforated triangular tubular collar-sleeve over both profiled dual-headed ends of two perforated triangular tubular rebars of the same outside dimension.
The collar-sleeve, per se, in the rebar structure of the invention is independently expressible as being a jacketing-structure possessing similar physical form and properties as the rebar structure with an offset-dimensionality extend structure. This innovative connection model facilitates and reduces the assembly cost of the invented rebar structure, is describable as an integral-form of contact lapping splice sleeve associated with interlocked dowel keys.
Another extremely interesting feature of the perforated triangular tubular rebar structure of the present invention is that, rebar networks structure can be effectively assembled involving simple insertion of multi-layer perforated cellular metal plates as transverse reinforcement. Not only is this feature of the invention by itself interesting, the cellular transverse reinforcing metal plate, also employed as embedded “internal endless loop” reinforcing inclusions, dramatically avoid the dilation phenomenon of infiltrated cementitious matrix typically occurred during earthquake action. This innovative insertion assembly model can measurably improve the efficiency of construction and shorten the construction period via incorporation of modularized rebar network cage for on-site assembly.
Synergistic Infiltrated Matrix Filler
The present invention, as mentioned above, also proposes infiltrated low hydration heat high elastic modulus cementitous matrix forming interlocking dowel networks for interface bonding and anchorage mechanism inside the novel reinforced composite material. Such high elastic modulus matrix play an important role in the deformation and ductility performance of the present invention in structural application. Put another way, being an infiltrated inorganic hydraulic binder based material, both the low yield stress rheological mix properties of the fresh paste and high elastic modulus properties of the hardened paste are mandatory in the proposed, preferred-embodiment matrix structure.
As in the state of art practice, one will note that, with conventional cementitious matrix mixing approach, the attainment of high elastic modulus concrete will invoke an upgraded change in the elastic modulus of aggregate employed and or using concrete compressive strength grade above 100MPa. However, with concrete compressive strength grade above 80MPa, large amount of binder hydration heat release during hardening is a major issue that cause concrete internal cracking unless appropriate cooling procedure is properly executed drying curing and even fibre reinforcement is mandatory in building regulation to prevent expose cracking under fire.
For reasons not completely understood and which have surprised us, the fact that the unique ternary composition binder containing ultra-fine Ultrafine Ground granulated blast furnace slag (UFGGBS) at (15%-35%) , and more preferably at (25%-35%) , by weight of the total binder with water/binder ratio at 0.28-0.32 of the present invention provide superior elastic modulus enhancement characteristics in the range of 40GPa-45GPa for normal grade 60MPa compressive strength concrete without using ultra-high strength concrete approach, herein so-called “decoupling-effect” . This novel low heat ternary composition cementitious binder together with the organic osmotic spacer dispersant hereafter named “G. Seed” may have significant improvement in the C-A-S-H gel morphology and bond density due a large portion of Ultra-fine Slag induced aluminate silicate bridging molecules interface strengthening effect. Thereby the hardened matrix closely resemble metallic alloy matrix in term of the modulus strengthening approach by using in-situ seeding template to control the gel grain morphology and size of the basic gel building blocks of C-A-S-H so that they can self-assemble into microstructures with far greater bond packing density together with the shifting of amorphous gel state towards ordered crystalline gel state after matrix solidification.
In the proposed, preferred-embodiment novel reinforced composite material, the high elastic modulus infiltrated cementitious matrix hereafter named “ModulusCEM” is formed of air-cured hydraulic  active binder which contain Portland cement (OPC) , Ground granulated blast furnace slag (GGBS) and Ultrafine Ground granulated blast furnace slag (UFGGBS) , organic osmotic spacer, fine aggregate, coarse aggregate, water and organic dispersing agents. Importantly, the preferred infiltrated cementitious matrix takes the form of an optimized packing bond density paste dispersed combinatorially with small molecular organic osmotic-spacer co-dispersant present in the fresh mixed matrix for imparting dense packing filling effect at low water/binder-ratio.
Preferably after hardening, the interfacing transition zone exiting between paste and aggregate, according to preference, takes the form of a dense thin layer which has resulted from the pozzolanic reaction of ultra-fine active hydraulic mineral filler is essential to the novel reinforced composite for distributing crack control and obtaining high durability.
Architected Monolithic Sandwich Structure
The present invention, as mentioned above, also proposes novel elastic reinforced sandwich laminate composite material system. In its broadest aspect, this elastic reinforced laminate composite “Architected Cellular Layers material” can be characterized as a “Triangular Interlocked Material (TIM) ” based on a combination of ternary composition binder containing ultra-fine Ultrafine Ground granulated blast furnace slag “normal strength-high elastic modulus matrix” and a three-dimensional reinforcement cage confinement network derived from assemblages of aligned multiple layers perforated iso-grid patterned metal plates which is internally tension interlocked with a plurality of inter-fitted apex solid triangular hollow rebars in at least one dimension. The apex solid triangular hollow rebars acting as transverse reinforcement system within the multi-layer monolithic sandwich composite counteract separation through matrix dowel anchorage mechanism and give a strong tension interlocking action, even under conditions of heavy destruction where matrix might fail.
The invention is now ascertained by creating an innovative “Triangular Interlocked Material –TIM” structured-structures laminate design and pre-determined topological configurations approach which are characterized by what is stated in the independent claims. The preferred embodiments of the invention are disclosed in the independent claims. In particular, the “Triangular Interlocked Material (TIM) ” system are derived from assemblages of unit cells, where each of the unit cells has a solid triangular cylindrical core geometry configuration with the top and bottom faces bounded by endless cellular confinement hoop based on a triangular motif ordered inside the slender-beam architected two-dimensional perforated grid plate. The unit cell's dimension parameters has a profound control effect in developing the dowel properties of unit cell  through confinement action attributed from the non-slip topological interlocking action in-between the reinforcing structure phase and matrix phase. This obviate the traditional composite reinforcing limitation based on bond stresses force transfer to alloy the full tensile strength of the reinforcing phase. As an effective structural materials, the periodically replicated cellular cylindrical solid dowels with well-controlled "interlocking parameter" triangle geometry hereafter named as "Triangular Interlocked Material (TIM) " confer the Architected Cellular Layers Material system with tunable mechanisms, precise structural properties and functionalities. Thus "TIM" could be assigned as the control representative volume element (RVE) and induce the mechanical properties of the invented composite. The "Triangular Interlocked Material (TIM) " shape factor has the highest intrinsic efficiency ratio defined as the ratio of bonded lateral surface area of the cylindrical material to its cross sectional area for a given equivalent height and unit mass of the matrix material. As such, for the same cross-sectional area, the triangular interlocked material (TIM) is around 30%more effective than a circular shape in developing surface adhesive force and significantly improve the shear strain capacity for a given displacement demand.
Unlike the traditional conception of multi-layer sandwich structures, this invented novel elastic reinforced sandwich laminate composite material system is a novel class of multi-layer sandwich composite material having multi-materials structured-structures hybridization strategy being focused on pre-determined topological configurations inclusive of cellular, layers and segmented structures to constitute ordered phases with differing connectivities, optimally serving specific engineering purpose. In particular, this invention relates to mono-or multi-layer sandwich composite where the stiffness mismatch limitation between the reinforcing and matrix phase is intentionally controlled for fabricating novel elastic reinforced monolithic sandwich composite of incredibly high strength, high flexural stiffness, high ductility, high deformation capacity and high tolerance of local mechanical damage couples with minimum mass. This innovative and realizable thin composite panel can be conceptualized as a highly modified form of infiltrated type laminate sandwich composite without using adhesive or welding technique for binding the dual outer layer sheets with the core. To substitute the adhesive or welding method, a plurality of apex solid perforated hollow rebar which function as tension interlocking connectors and spacers are inserted as bridging anchor rods which firmly binding the dual sandwiched outer layer composite panel sheets with the sandwiched inner layer composite panel core and thereon deliberately generate a fully rigid thin laminate sandwich composite component or element for general structural applications.
Apparatus for Implementing Novel Rebar and Perforated Plate -Making Methodology
The present invention, as mentioned above, also proposes special apparatus for carrying out the methodology of the invention in order to produce the rebar structure and perforated metal plate of the invention.
The proposed apparatus, progressing therein, and therealong, from the upstream region toward the downstream region, includes (a) a triangular profile mandrel having a long axis which is substantially coincident with the rebar-formation axis, (b) an elongate, hollow pultrusion-die disposed operatively adjacent the extrusion region, having a long axis which is substantially coincident with the rebar-formation axis, circumsurrrounding the mandrel, (c) plural heaters distributed in spaced relation with respect to one another along the rebar-forming axis and disposed in operative adjacency relative to and association with the pultrusion mold die, and (d) a power-driven pusher moving a preheated solid metal rod at a rate relative to the pultrusion-die.
Additionally included in the apparatus of the invention is a fibre-laser tube cutting machine having a rotatable clamp holder coincident with the rebar-forming axis and operable to form pre-defined hole cutting in a manner distributed along the length of the mid-span shell of the rebar structure.
These and various other features and advantages of, and offered, the present invention will become more fully apparent as the detailed description of it below is read in conjunction with the accompanying drawings and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows typical prior art rib-rebar structure with solid or hollow configuration;
Figures 2a and 2b show typical prior art rib-rebar cage assembly, splice lapping and reinforced concrete column-beam joint using headed rebar or bent-shape rebar arrangement;
Figures 3a, 3b and 3c show typical prior art typical sandwich panel and ferroconcrete;
Figure 4 shows three dimensional views of proposed novel rebar structure network including monolithic triangular perforated tubular longitudinal rebar and perforated transverse reinforcement plate;
Figure 5a is a flow chart showing design of novel reinforced cementitious composite;
Figure 5b is a diagram showing strength range of novel reinforced cementitious composite;
Figure 6a shows configuration of novel reinforced cementitious composite;
Figure 6b shows self-standing state triangular bar network with mutual insertion of multi-layered perforated cellular plates;
Figure 7 are schematic views showing collar-sleeve join connection arrangement;
Figure 8a is a Multi-Layered View of Architected Cellular Layers Material;
Figure 8b is a TIM View of the Architected Cellular Layers Material of Figure 8a;
Figure 8c is a Matrix View of the Architected Cellular Layers Material of Figure 8a;
Figure 8d is a perforated Plate View of the Architected Cellular Layers Material of Figure 8a;
Figures 8e and 8f are TIM Hoop Section View and hard-soft matrix domain view of the Architected Cellular Layers Material of Figure 8a;
Figure 9 is a flowchart of Architected Cellular Layers Material design and fabrication;
Figure 10 shows a Unit-cell As Dowel Network of Architected Cellular Layers Material;
Figure 11 is a Hard and Soft Matrix Phase Deformation Diagram;
Figure 12 shows testing of multi-layer monolithic sandwich composite showing stretch-bending fully rigidity composite action;
Figure13a shows ternary binder particle size composition matrix;
Figure 13b are tables showing proposed high elastic modulus binder matrix mix design and properties in fresh and hardened state;
Figure 13c are tables showing cementitious composite design flow chart;
Figure 13d are tables showing test result of proposed high elastic modulus binder matrix in hardened state;
Figure 14 are photos showing hot extrusion production of monolithic triangular tubular rebar with apex solid corners;
Figure 15 are schematic views showing application of novel reinforced cementitious composite for column-beam assembly and modular unit fabrication;
Figures 16a and 16b are photos of finished Panel and Volumetric Prefabricated Concrete Component using Novel Elastic Reinforced Composite Technology;
Figure 17a and 17b are 3D Model showing using Novel Elastic Reinforced Composite Technology in building design and manufacturing.
BEST MODE FOR CARRYING OUT THE INVENTION
Turing now to the drawings, and referring first of all to Figure 6a, inclusive, indicated generally at (10) the novel reinforced cementitious composite material is an elongate, linear, composite material constructed in accordance with a preferred and best-mode embodiment of the present invention. Triangular Perforated Tubular Rebar (20) which has a long axis seen at Figure 4 includes continuous solid apex reinforcing phase portion (21) , mid-span shell anchorage phase portion (22) , profiled end-cap head  anchorage phase portion (24) , and perforated cellular dowel hole interlocking phase portion (23) . Embedded integrally and homogenously with the Rebar (20) is the Infiltrated high elastic modulus matrix (40) which has a dense mass form after hardened disposed along the length of the Rebar (20) , includes Array of matrix dowels (42) , Confined matrix (41) within Rebar envelope and Unconfined matrix (43) . Accordingly, the perforated tubular composite rebar structure proposed by the present invention, plays the evident role of furnishing excellent, longitudinal anti-buckling stability for the rebar structure when it is in place within a body of infiltrated high elastic modulus matrix. Illustrated at Figure 4, an array of Dowel holes (23) , along the rebar mid-span shell, is the main interlocking interface for developing matrix bond and anchorage strength in lieu of state of art typical rebar ribs along the surface of rod and bent hook arrangement at end of solid rod bar. Collectively the main continuous solid apex corners (21) , perforated mid-span shells (22) , along with the dual-end-cap head (24) formed by hot extrusion and fiber-laser cutting, are referred to herein collectively as a perforated-tubular-rebar structure (20) .
As was mentioned above, perforated tubular rebar is a hot extrusion structure and it allow required elongation characteristics as traditional solid steel rob rebar under tension force applied. The formation of homogeneous apex solid corners and mid-span shell structure includes a mass of a suitable metallic ingot, preferably low carbon steel, and hot extruded through a mold die oriented in perpendicular to the rebar longitudinal axis. Those skilled in the art will readily understand that the various dimensions of the component portions making up the rebar structure (20) may have a relatively wide range of satisfactorily usable and different dimensions, depending upon the particular application for that structure.
Dimensional changes in the rebar component also play a role, of course, in the design load-handling capability of that structure. The fact that the structure, as a whole is a perforated tubular structure, result in substantial elimination of what was described above as the so-called “rebar size shear lag issue” which characterizes conventional large diameter solid rebar. Accordingly, relatively large overall rebar structures are thus producible and usable for high load-handling requirements without the diminution of capability that characterizes large solid-cross-section rebar.
Looking specifically at Figure 4, the reinforcing phase (21) is strategically located at the apex corner of an equilateral triangular sectional geometry to maximize the Moment-Of-Inertia of the rebar structure (20) . This configuration of three continuous apex interconnected elongated solid-like rods (21) will eliminate the “shear lag” dilemma that an increase in rebar diameter size to achieve hoped-for greater reinforcing strength. By periodically confining the triangular sectional with seamless, homogenous, and  endless hoop bandage stiffeners that run circumferentially as nodes or bulkheads, referred herein as a bandage structure, it further guard against Brazier buckling of proposed reinforcing bar structure for enhancing deformation capacity during seismic action.
In principle, anything which stiffens a tubular rod to buckling will also increase its resistance in bending and so it stronger in compression. Therefore, a quantum jump in strength and ductility of the proposed tubular rebar structure can be realized by providing elaborate structural efficiency in substantially linear, long-axis-tension-carrying-capable reinforcing apex solid, preferably made of metallic material and takes the designated architected form from extrusion formation and fibre laser cutting process.
Especially interesting about this capacity of the bandage rebar structure of the present invention is that such changes in anti-buckling capability may be made without in any way altering the material volume occupied by rebar structure within the infiltrated matrix. In other words, there is provided a striking counter-balance action between rebar anti-buckling handling capability and surrounding matrix dilation during earthquake and lateral force driven.
Directing attention now to Figure 4, by architecting the "Multi-Cellular Matrix Dowel" unit cells (42) along the mid-span shell (23) as anchorage phase, both the bond strength and anchorage development length long-standing issues that have been experienced in conventional steel rib rebar configuration can now successfully addressed by this unique feature of the present invention. Importantly, the intrinsic efficiency in area to volume ratio of "Triangular" sectional shape further maximize the bond existing between the proposed rebar intrinsic angular surface and infiltrated matrix.
This distributed local interlocking mechanism as shown in Figures 4 and 6a, follow the similitude theory in scale change (i.e. Reinforcing Phase + Anchorage Phase + Configuration + Scale) by shifting the design phase of reinforcing component scale to the material scale. Thereby the traditional approach for shortening rebar development length such as using welded anchorage head replacing end hooks can be simplified by a more unified approach through integrated profile shaped end-cap (24) .
Describing now the composition of infiltrated high elastic modulus matrix “ModulusCEM” (40) , and looking at the overall composition as shown in Figures 13a and 13b, it includes hydraulic mineral binder “G. Seed” (47) with ternary blend cementitious materials (45) , fine aggregate, coarse aggregate, organic dispersant, organic osmotic-spacer co-dispersant (46) and water.
Considering aspects of the behaviour of the infiltrated high elastic modulus matrix of the present invention, in addition to those general performance features which are the requirements of cementitious composite such as concrete, are the low yield stress flowing during fresh state and high bond density after hardening in order to obtain high elastic modulus characteristics for the infiltrated inorganic binder matrix.
Focusing for a moment on the hydraulic mineral binder composition, the inclusion of large amount of ultra-fine active mineral filler (UFGGBS) , have been purposely to develop high bond density with aggregate, under the organic osmotic-spacer co-dispersant effect, for achieving high elastic modulus paste. This leads to a major improvement over the prior art methodology in using volcanic aggregate which cause alkaline silica reaction. Another state of the art alternative is to employ ultra high strength concrete with compressive strength above 80 MPa, however addition of organic fibre is required for explosive crack control.
As an important performance factor for deformation control of the novel reinforced cementitious composite, the proposed active mineral filler bond density compositional methodology involves what we refer to as a modified form of strength-elastic modulus decoupling effect which differs from aggregate modulus upgrading practice commonly adopted in strength-elastic modulus coupling mix design as depicted in Figures 13c.
The high elastic modulus hydraulic binder, as has also already been mentioned and test result shown in Figure 13d may take on a particular compositional mix based on ternary blend cementitious material (45) includes Ordinary portland cement (OPC) , Fine ground granulated blast furnace slag (GGBS) , and Ultra-fine ground granulated blast furnace slag (UFGGBS) associated with Organic osmotic-spacer co-dispersant (46) can be made from the following “G. Seed” recipe:
(a) 50-60 vol %of Portland cement with average grain size 30μm;
(b) 25-30 vol %of UFGGBS with average grain size 5μm;
(c) 15-20 vol %of GGBS with average grain size 20μm;
(d) Water/binder ratio in-between 0.28 –0.32;
(e) 0.5-2 vol %of organic osmotic-spacer co-dispersant.
The novel “ModulusCEM” composite performance after 28 days normal curing are shown in Figure 13d test result table. It clearly demonstrate the high effectiveness of C-A-S-H binder gel layers interfacing strengthening strategy to improve cementitious composite elastic modulus without employing ultra high strength concrete design approach.
Preferably, as shown in Figure 5, the perforated tubular rebar structure of the present invention employ triangular geometry cross-section shape which endowed with highest bending-torsion rigidity. Beside it has largest surface area/volume ratio for maximizing matrix infiltration penetration and flow rate. More specifically, the triangular sectional geometry of the preferred embodiment effectively results in an extremely strong and robust mechanical coupling action between the rebar structure and infiltrated matrix –a bond which also plays a very important role for stiffening the continuous apex corner reinforcing phase against buckling force.
Regarding the triangular perforated tubular rebar splice connection mechanisms, unlike the traditional solid rebar typical lapping arrangement, the collar-sleeve insertion proposed by the present invention as illustrated in Figure 7 is a radical way of integrating splice sleeve and contact lapping methodology commonly adopted separately in state of art solid rebar splice connection.
Perforated tubular collar-sleeve is one of the very unique contributions of the present invention in that it cooperates in a very special way to align perforated tubular rebars coaxially for emulating non-splice continuous rebar tensile load bearing capacity.
As an important aspect of this just-described connection methodology, the proposed snugly insertion methodology including the steps of (a) minimizing the lapping length parameter of apex solid corner reinforcing phase, (b) matching the outside dimensions and geometry of coaxial rebar structure with inside dimensions and geometry of collar-sleeve, and (c) effecting interlocking bonding mechanism with infiltrated high elastic modulus matrix. Particularly distinguishing this integral connection approach from the state of art approaches is the included presence of the profile dual-end-cap head (24) of the perforated tubular rebar which is anchorage-bearing, and cooperatively, engaged with the collar-sleeve (25) .
Moving attention now to yet another, the systemic, facet of the present invention, this facet recognizes the opportunities, furnished by the perforated tubular rebar structure of the invention to construct  rebar assembly systemically, as for examples, (a) forming triangular rebar network column cage, (b) forming triangular rebar network beam cage, and (c) forming triangular rebar network foundation cage.
Accordingly, Figures 6a and 6b pictures a multi-layer perforated cellular transverse reinforcement plate (30) sandwiched in-between a plurality of triangular perforated tubular rebar (20) forming composite-cellular rebar cage system. These multi-layered three-dimensional architected cellular composite rebar cage structure, also referred to as confinement-cage components, collaborate with the infiltrated high elastic modulus matrix to offer the high deformation and ductility features of the novel reinforced cementitious composite that take advantage of the invention-proposed anti-buckling perforated tubular rebar structure for resisting both the wind and seismic load which act laterally on the building (70) .
Illustrated in Figures 6a and 6b the three-dimensional architected cellular rebar cage composite (50) having at least two perforated metal plate (30) with repeated pattern of triangular endless cellular hoops (31) that are aligned, spaced and parallel with one another being designed matchingly to engage with at least two axially aligned triangular perforated tubular rebar (20) in such a rebar network cage structure thereby compulsory act together as high-stiffness confinement envelop for forming "Interlocked Dowel" unit cells (41) distributed within the novel reinforced cementitious composite element structure. The formed “Interlocked Dowel” unit cells exploit its confinement reinforcement capacity effectively to the maximum yielding level before occurrence of matrix slipping and crushing failure. Hence, confinement is monolithic and consequently the composite rebar cage can establish highest energy absorption capacity to dissipate dynamic forces applied on the novel reinforced cementitious composite element. This ultra-ductile ability indicate that the proposed preferred-embodiment of the invented reinforced composite work together as a whole to obtain higher levels of strength, stiffness and resilience mechanical properties in resisting compressive, wind and seismic load while retaining good internal coherence.
In one preferred embodiment the triangular perforated tubular rebar (20) is fabricated from hot extruded low carbon steel material, herein has an overall length of about 10m-12m and possesses a central, long, axis referred to as rebar-formation axis. Extending in a manner along the apex corner axis are continuous solid rod region of approximately drawn diameter (8mm-25mm) –the dimension which defines the effective sectional area of the reinforcing phase. The associated mid-span shell bandage region has thickness of about (3mm-6mm) and width of about (6mm-12mm) –the dimension which defines the effective sectional area of the anchorage phase. The endless cellular hoop region has area of about  (25mmx25mm -50mmx50mm) –the dimension which defines the effective sectional area of the interlocking matrix dowel.
In one preferred embodiment of the three-dimensional architected cellular rebar confinement cage composite (50) , the multi-layered perforated cellular transverse reinforcing phase (30) has equilateral triangle hoops (31) of length size (40mm-70mm) with small rounded vertices that are spaced to create an isogrid topology patterned rib and node web for achieving the best local confinement effect and the perforated plate has thickness of about (2mm-5mm) .
In one preferred embodiment the infiltrated high performance matrix binder material (40) as shown in Figure 13c is a high elastic modulus cementituous binder matrix material with a compressive strength between (60MPa-80MPa) and an elastic modulus above 40GPa to provide the requisite strength, hardness and tough ductile behaviour, and the maximum aggregate size is limited to one quarter of the cellular hoop size for unblocked infiltration.
In an exemplar embodiment, the elastic reinforced composite structure as shown in Figure 8 is an elastic reinforced laminate sandwich composite (10) with a plurality of perforated thin metallic plate (30) engineered with endless cellular equilateral triangle hoops as multi-layer transverse reinforcement network bodies. A global three-dimensional cellular confinement cage network as reinforcing phase are constituted by inter-fitting a plurality of apex solid perforated triangular hollow rebar (20) as shear connectors and tension interlocking multi-layered transverse reinforcement bodies thereby a elastic reinforced high performance thin laminate sandwich composite component can be generated after infiltration of the normal strength high elastic modulus ultrafine matrix (40) .
As is hereinafter more fully described, the elastic reinforced laminate sandwich composite (10) as shown in Figures 8, 9, 10, 11 and 12 is a three-dimensional architected cellular layers material composite has at least two perforated metal plate (30) with repeated pattern of endless cellular hoops (31) or (31a) and a group of apex solid perforated triangular hollow metal rebar (20) as tension interlocked reinforcement inserted preferably with staggered configuration arrangement in-between perforated metal plates (30) at defined locations. Under this aligned configuration arrangement, the replicated patterned endless cellular hoops (31) or (31a) of the multi-layered perforated metal plate (30) are reciprocally opposite with respect to each other as illustrated in Figure 8e and thereby compulsory cooperate together as high-stiffness confinement envelop of the "Triangular Interlocked Material (TIM) " unit cells (41&42) . The formed “TIM”  cells consume its reinforcement capacity to the maximum yielding level before occurrence of high performance matrix slipping and crushing failure. Hence, confinement is monolithic and consequently the multilayer structure reinforcing phase can establish higher energy absorption capacity to dissipate dynamic forces applied on the composite panel. This ultra-ductile ability indicate that the invented composite panel work together as a whole to obtain higher levels of strength, stiffness and resilience mechanical properties in resisting compressive, wind and seismic load.
This exemplar invention is based on an unexpected discovery that uniformly distributed local hoops confinement effect can be synergistically generated in-between the infiltrated high performance matrix binder material core and the integral continuous reinforcing structure phase featured with endless cellular hoop architected by rib and node web reinforcement structure. By purposely inter-fitting a plurality of apex solid perforated triangular hollow tube rebars with functionally graded multiple layers perforated metal plates, a three-dimensional cellular reinforcement cage network phase are formed for distributing endless cellular triangular shaped confinement loops into three-dimensional periodically networked pattern which are systematically spaced. By using these inter-fitting operation, a novel architected material having continuous reinforcing and matrix phases can be fabricated while using conventional constituent material and translating their individual structural properties into advanced composite material performance. This invented Architected Material having Cellular and Layers lattice configurations engineered inside Sandwich hybrid material topology obtain its novel elastic reinforced monolithic composite material properties through tension interlocking reinforcement and matrix dowel anchorage mechanism working synergistically within the continuous matrix phase being partitioned into hard domain and soft domain phases by the configuration of cellular confinement rebar network cage. The hard domain (41 &42) consist of the unit cells based solid triangular cylindrical core geometry dowel matrix and the soft domain (43) consist of the hexagonal honeycomb cellular core geometry matrix as shown in Figures 8a, 8c, 8d and 8f. This combination of triangular and hexagonal domain configuration of matrix phase will maximize the interface strain gradient density to produce high back-stress work hardening for further enhancing laminate composite ductility during deformation. Thereby optimize the composite material design for strength, stiffness and resilient at minimum mass.
By following the design flowchart as shown in Figures 5a, 5b and 9 the mechanical properties of the present invention can be tailored for the intended application and the method presented above provide a clear advantage in manufacturing structural components by avoiding welding and or adhesive processes but  instead allow insertion based methodology for fabricating reinforcement configuration in the final desired geometry.
As shown in Figures 6a and 8, the inter-fitted three-dimensional continuous reinforcing phases (50) are assembled from multiple layers of cellular triangular hoop engineered perforated plate (30) through simple insertion operation permitted by the apex solid perforated hollow rebar (20) derived from the complimentary shape configuration, thereby totally eliminate welding and adhesive procedure currently used in honeycomb sandwich and DSC production. This leads to a major improvement over the prior art manufacturing requirements mandated in the DSC (Double Skin Composite) and honeycomb sandwich composite design. This way the production cost significantly is slashed down and recap the full beneficial potential of simple inter-fitting operation.
Finally the triangular perforated tubular rebar structure, the collar-sleeve connector, and the perforated cellular metal plates components of the invented rebar cage composite (50) as shown in Figure 6b, can be robotically assembled with the advent of computer aided design (CAD) and computer aided manufacture (CAM) . Using CAD/CAM the perforation cutting pattern can be design in CAD software. The design can then be used to program for the cutting and milling processes as shown in Figures 14, 17a and 17b. The time and labour savings make it possible to economically produce one of a kind product. With CADCAM high volume and low cost product of the three-dimensional architected cellular rebar cage composite (50) is possible.
Accordingly, as shown in Figures 15, 16a and 16b a plurality of novel reinforced cementitious composite formed structural elements such as columns, beams and laminated panels are arranged to fabricate the prefabricated prefinished building modular components (60) in factory and then deliver to construction site for the on-site assembly of building (70) in the next assembly stage. The above described manufacturing and production process of the invented three-dimensional architected cellular layers material sandwich composite as shown in Figure 12 clearly show that no welding or adhesive glue technique are employed for forming the said composite. It exemplify the easily adoption of the said invention in established prefabrication plants with minor modification on existing equipments and fully demonstrate the broad industrial applicability of the said invention.
Today’s industry 4.0 trend dictates that construction sector be creative. This architected cellular layers material approach cherish and absorb well established manufacturing technologies and exploit  new composite force transfer mechanism to gain innovative and exciting solution as exemplified in the best mode for carrying out the invention. While the best mode for carrying out the invention has been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for carrying out the invention as defined by the following claims. All art-known functional equivalents, of any such materials and methods are intended to be included in this invention. Notwithstanding this, we appreciate that other variations and modifications may be perceived and made by those skilled in the art, and it is our intention that all such other variations and modifications will be understood to be within the spirit of the invention and the following claims.

Claims (17)

  1. A novel elastic reinforced cementitious composite made-up of elongate monolithic seamless perforated tubular metallic material reinforcement bar with triangular sectional confinement topology configured by three continuous parallel aligned interconnected solid rod-like portion located at triangular apexes respectively as longitudinal reinforcing phase, multiple perforated mid-span shell bandage portion as anchorage phase, and infiltrated heterogeneous blend high elastic modulus hydraulic binder material as matrix phase characterized by an unique, core-radial, axial-align, distributed mechanical bond anchorage dowel network effected from multi-cellular matrix dowel unit cells synergistically formed unitarily with endless cellular confinement hoops along the perforated mid-span shell during hydraulic binder composite solidification wherein:
    (a) the novel perforated tubular reinforcement bar is an extruded closed-shaped metallic material having an equilateral triangular sectional topology to maximize the moment-of-inertia of the said reinforcement bar structure;
    (b) the elongate continuous solid apex corners of the equilateral triangular sectional topology reinforcement bar are designated as reinforcing phase to maximize the rigidity of the said reinforcement bar structure;
    (c) the perforated mid-span shell bandage portion of the equilateral triangular sectional topology are designated as anchorage phase characterized by the periodically arranged endless cellular confinement hoops to maximize the matrix dowel interlocking and confinement action of the said reinforcement bar structure;
    (d) the elongate continuous solid apex corners are monolithically connected by the perforated mid-span shell portions of the said reinforcement bar in order to maximize the composite bonding action with the infiltrated matrix thereby eliminating the shear lag effect of traditional thick solid reinforcement bar structure;
    (e) the elongate continuous solid apex corners are monolithically connected by the perforated mid-span shell bandage portions to maximize the anti-buckling capacity of the said reinforcement bar structure;
    (f) the profile-shaped anchorage end-cap heads to maximize the anchorage capacity and shorten the embedment length requirement of the said reinforcement bar structure;
    (g) the infiltrated high elastic modulus ternary blend hydraulic binder matrix material to stiffen-up the anti-buckling capacity of the said reinforcement bar structure;
    (h) the novel triangular shaped perforated tubular reinforcement bar is engineered with multi-cellular confinement dowel unit cells network as principal matrix interface interlocking bonding mechanism of the said reinforcement rebar structure;
    (i) the novel triangular shaped perforated tubular reinforcement bars are longitudinally assembled to form self-standing state triangular reinforcement bar network by coupling with a plurality of multi-layered metallic plate having triangular shaped perforated receiving holes configured as lateral reinforcement confinement hoop system.
  2. A novel elastic reinforced cementitious composite having laminate topology of claim 1, at least one domain of which has a three-dimensionally reinforced composite structure, the composite structure comprising a partitioned Ultrafine Ground granulated blast furnace slag based cementitious matrix (A) with a tension interlocked cellular hollow rebar network structure (B) wholly embedded in matrix (A) , the matrix system (A) comprising a plurality of in-situ formed triangular cylindrical cellular hard inclusion dowel units phase (C) , and a plurality of replicated hexagonal cellular soft units phase (D) , the tension interlocked rebar network (B) comprising multi-layered perforated triangular hole patterned plates (E) stacking up in parallel and tension interlocked by a plurality of apex solid perforated triangular hollow rebar bodies (F) in transverse direction wherein the elastic reinforced laminate article is characterized by:
    (a) architecting the triangular shaped tension interlocked reinforcement components dimension, alignment and density for toughness tuning;
    (b) architecting the layer volume, thickness and spacing of the parallel stacked iso-grid rib patterned perforated metallic plates for compressive strength, rigidity and ductility tuning;
    (c) architecting the in-situ formed anchorage matrix dowel network confinement topology for shear strength tuning.
  3. A novel elastic reinforced cementitious composite “ModulusCEM” having infiltrated heterogeneous blend tuneable high elastic modulus hydraulic binder “G. Seed” matrix material of claim 1 characterized by:
    (a) ternary blend hydraulic binder comprising Portland cement (OPC) , Ground granulated blast furnace slag (GGBS) and Ultrafine Ground granulated blast furnace slag (UFGGBS) in associated with polymer co-dispersant as osmotic spacer to synergistically forming fresh matrix material with low yield stress, low viscosity rheological properties while, after  hardening, possessing high elastic modulus mechanical properties derived from optimized bond packing density of the said ternary binder;
    (b) ternary blend hydraulic binder comprising highly effective Co-dispersant agent to enhance ultrafine active mineral filler filling ability of the binder and optimized global packing density with least water-film thickness;
    (c) ternary blend hydraulic binder cementitious component composition at the best performance arranged in proportion as OPC-30μm (50-60%) , GGBS-20μm (10-25%) , UFGGBS-10μm~5μm (15-35%) by weight of total binder content;
    (d) ternary blend hydraulic binder cementitious composite with water to binder ratio for the best performance assigned at (0.30-0.33) to achieve self compacting ability during casting stage with flow range in between (650mm -800mm) by adjusting fluidizing agent dosage;
    (e) ternary blend hydraulic binder cementitious composite with binder to aggregate ratio at the best performance designates as (0.30-0.33) to achieve high global packing density;
    (f) ternary blend hydraulic binder cementitious composite at the best performance after full curing at 28 days having elastic modulus in the range of (35-45 GPa) , more preferably (40-45 GPa) and compressive strength in the range of (60-80 MPa) .
  4. A novel elastic reinforced cementitious composite having monolithic seamless perforated tubular metallic material reinforcement bar with triangular sectional topology of claim 1 characterized by:
    (a) high anti-buckling capacity developed from the restraining action of the periodically spaced closed form triangular hoop bandage node of the tubular reinforcement bar;
    (b) high non-slippage bonding strength through interlocking confinement dowel action between reinforcement bar and concrete matrix;
    (c) high mechanical anchorage strength through straight and/or L-shaped profile end-cap to shorten embedment development length;
    (d) high confinement capacity endless cellular hoops configured by perforated mid-span shell thickness at least (3-6mm) , perforated hole size at least (25-40mm) and cross-link bar width at least (6-12mm) ;
    (e) high failure toughness with apex interconnected solid-like rod section diameter in the range of (8-25mm) ;
    (f) high tensile yield steel strength in the range of (Steel Grade 275-500) ;
    (g) high ductility and deformation capacity with elongation percentage at least (20-30%) .
  5. A novel elastic reinforced cementitious composite having self-standing state triangular reinforcement bar network of claim 1 characterized by:
    (a) high effective lateral support restraining action effected by the interlocked matting action between a plurality of periodically spaced perforated transverse reinforcement plates and a plurality of elongate perforated longitudinal tubular metallic reinforcement bars;
    (b) high shear rigidity perforated transverse reinforcement plates with isogrid rids configuration and equilateral triangular holes for the coupling insertion of the perforated tubular metallic reinforcement bars;
    (c) high failure toughness with perforated lateral reinforcement plates thickness in the range of (3-6mm) .
  6. A novel elastic reinforced cementitious composite having monolithic seamless perforated tubular metallic material reinforcement bar with triangular sectional topology of claim 1 characterized by:
    (a) using triangular sectional topology perforated tubular collar-sleeve connector for splice connections between two co-axial perforated tubular rebars of the same outside dimensions;
    (b) using bent-shaped/multi-branched collar-sleeve connector for aligning, orientating multiple splice connection joints among a plurality of perforated tubular rebar;
    (c) having perforated tubular collar-sleeve connector inside dimensions equals to outside dimensions of the two co-axial perforated tubular rebars such that snugly insertion connection are reliably formed;
    (d) having an integral form of contact lapping and splice sleeve mechanism for making continuous force transfer in-between the continuous solid apex corners of perforated tubular collar sleeve and co-axial perforated tubular rebars;
    (e) using infiltrated cementitious matrix dowel anchorage mechanism for interlocking perforated tubular collar-sleeve and co-axial perforated tubular rebars.
  7. A novel elastic reinforced cementitious composite having monolithic seamless perforated tubular metallic material reinforcement bar with triangular sectional topology of claim 1 characterized by:
    (a) using hot extrusion metallic tube forming process to achieve high elongation tensile properties;
    (b) using fibre laser fabrication process to define high precision perforation dimensional properties associated with minimum heat zone effect (HAE) ;
    (c) using fibre laser etching process resulting in roughened rebar structure surface texture for enhancing bonding characteristics.
  8. A novel elastic reinforced cementitious composite of claim 1 for use as structural components and/or elements in forming in-situ and/or prefabricated reinforced cementitious composite components such as column, beam and beam-frame system for erection of buildings, civil structures characterized by:
    (a) high sectional ductility performance for both axially and/or horizontally load structural components effected by the high stiffness distributed hoops tension action of the periodically spaced perforated transverse metal plate as anti-dilating internal reinforcement;
    (b) high deformation capacity for both axially and/or horizontally load structural components effected by the three dimensional architected cellular rebar confinement cage structure, thereby furnishing a unique, and effective, distributed interlocking dowel cell units in the reinforced cementitious composite;
    (c) high seismic response performance for beam-frame structural components effected by the core zone hoops tension reinforcement of the self-standing state triangular reinforcement bar network by providing resistance against diagonal tension due to shear in continuous manner.
  9. A novel elastic reinforced monolithic laminate shaped article of claim 2 wherein the perforated triangular hole patterned plates (E) is an engineered fine grain material characterized by:
    (a) the perforated metal plate formed by hot-rolled low carbon thin metal with high tensile strength being at least 250 MPa and high elongation ductility being at least 20%;
    (b) the architected hoop with triangle geometry, preferably equilateral shape to form the periodic grid rib and node web having nearly isotropic property and distributed endless hoop confinement elements;
    (c) the architected hoop with lengthwise dimension in between 30mm-70mm, preferably in-between 40mm-60mm with non-blurring and or blurring rim;
    (d) the high-stiffness fine grain matrix perforated plate reinforcing phase with plate thickness in-between 2mm-5mm and stacking spacing in-between 30mm-100mm, and even better in-between 40mm-60mm which is at least 2.5 times the dimension of the maximum aggregate grain size of the infiltrate matrix phase;
    (e) the rid web with thickness dimension in-between 5mm-20mm, preferably in-between 5mm-15mm;
    (f) the endless triangle motif hoops of the perforated grid plate having an optimum form factor ratio between the total perimeter length of the hoop and maximum aggregate grain size of the matrix phase at least greater than 10, and even better greater 20;
    (g) the endless triangle motif hoops of the perforated grid plate having hoop size which is at least 2.5 times the dimension of the maximum aggregate grain size of the infiltrate matrix phase.
  10. A novel elastic reinforced monolithic laminate shaped article of claim 2 wherein the monolithic three-dimensionally reinforced composite structure is a sandwich topology grouping of a plurality of high stiffness plate shaped matrix embedded with elongated reinforcement components in first, second and third dimensions with minimum mass characterized by:
    (a) the high resistance against peeling on bending with larger active connection zone by employing sandwich topology as thin panels are assembled in bundles forming composite panels corresponding to a larger moment of inertia;
    (b) the minimized stiffness mismatch limitation between the reinforcing and matrix phases;
    (c) the elimination of welding and or adhesive material inside the composite and thereby compact fatigue resistant structure can be realized through adoption of the invented material system.
  11. A novel elastic reinforced monolithic laminate shaped article of claim 2 for use as structural element or component comprise of :
    (a) multiple layers metal perforated grid plate elements (E) for interlocking (b) ;
    (b) plurality of perforated hollow metal tubular reinforcing bodies (F) as connectors and spacers generating (c) ;
    (c) interlocking three-dimensional grid cells continuous reinforcing structure phase (B) and stiffened by (d) ;
    (d) infiltration of high performance inorganic cementitious matrix binder material (A) and after hardening synergistically forming (e) ;
    (e) fully rigid thin mono-or multi-layered architected monolithic laminate shaped sandwich composite structural component or element with high intrinsic strength to weight ratio for general and specialized applications in construction and other industries.
  12. A three-dimensionally elastic reinforced laminate composite structure of claim 2 having multi-materials structured-structures hybridization strategy with pre-determined topological configurations  inclusive of cellular, layers and tubular configured structures to constitute ordered material phases to form mono-and or multi-layer sandwich composite characterized by:
    (a) high compressive and tensile strength, high stiffness;
    (b) high global ductility and deformation capacity;
    (c) high tolerance of local mechanical damage.
  13. An architected monolithic laminate shaped article of claim 2 wherein the monolithic three-dimensionally reinforced composite structure is a sandwich topology grouping of a plurality of high stiffness plate shaped matrix embedded with elongated apex solid perforated triangular hollow reinforcement components in first, second and third dimensions with minimum mass characterized by:
    (a) the high resistance against peeling on bending with larger active connection zone by employing sandwich topology as thin panels are assembled in bundles forming composite panels corresponding to a larger moment of inertia;
    (b) the minimized stiffness mismatch limitation between the reinforcing and matrix phases;
    (c) the elimination of welding and or adhesive material inside the composite and thereby compact fatigue resistant structure can be realized through adoption of the invented material system.
  14. The lap-spliced length of perforated transverse reinforcement grid plates of claim 5 are minimized by having direct overlapping of confinement hoops for transferring force in adjacent plates.
  15. An architected monolithic laminate composite of claim 9 for use as structural components or elements in manufacturing modular components for adoption of assembly type construction method during on-site operation.
  16. The modular components of claim 15 wherein said structural components or elements are composed of mono layer architected cellular laminate wall panels and slab panels, after mutually assembling the said modular components on site followed by in-situ infiltration of matrix (A) , a plurality of multi-layered monolithic laminate articles of the claim (2) are formed.
  17. A building for habitation composed of structural components or elements wherein said structural components are comprised of dual modular components of claim (15) and a plurality of architected monolithic laminate shaped articles of claim (2) .
PCT/CN2021/129526 2021-11-09 2021-11-09 Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite WO2023082040A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180049639.7A CN116419999A (en) 2021-11-09 2021-11-09 Elastic reinforced composite materials for forming multiple structural systems and their use in monolithic sandwich composites
EP21939586.0A EP4204636A4 (en) 2021-11-09 2021-11-09 Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite
PCT/CN2021/129526 WO2023082040A1 (en) 2021-11-09 2021-11-09 Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/129526 WO2023082040A1 (en) 2021-11-09 2021-11-09 Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite

Publications (1)

Publication Number Publication Date
WO2023082040A1 true WO2023082040A1 (en) 2023-05-19

Family

ID=86334937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129526 WO2023082040A1 (en) 2021-11-09 2021-11-09 Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite

Country Status (3)

Country Link
EP (1) EP4204636A4 (en)
CN (1) CN116419999A (en)
WO (1) WO2023082040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117010258A (en) * 2023-10-07 2023-11-07 中国船舶集团有限公司第七〇七研究所 Design method for leveling mechanism rigid-elastic integrated leveling ejector rod

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210767A1 (en) * 2004-02-21 2005-09-29 Defever Michael D Trilithic and/or twin shell dome type structures and method of making same
WO2008035057A1 (en) * 2006-09-19 2008-03-27 Co-Tropic Limited Reinforcement structures
CN101979798A (en) * 2010-01-28 2011-02-23 汪超 Novel ecological building structure system suitable for building industrialization
US20120066994A1 (en) * 2010-09-22 2012-03-22 Composite Rebar Technologies, Inc. Hollow, composite-material rebar structure, associated components, and fabrication apparatus and methodology
CN202596028U (en) * 2012-03-19 2012-12-12 河南理工大学 Carbon fiber pres-stressed reinforcing steel and high strength steel bar ultra-high toughness fiber reinforced cement-based composite beam structure
CN206360399U (en) * 2016-12-29 2017-07-28 天津城建大学 The existing reinforced concrete coupling beam bracing means of one species " doubly-linked beam "
CN110424605A (en) * 2019-07-03 2019-11-08 云南联固建筑材料有限公司 A kind of steel bar girder composite floor
CN110616840A (en) * 2019-09-02 2019-12-27 吉林建筑大学 Concrete laminated slab bottom plate based on steel truss and cement plate and preparation method
CN210177770U (en) * 2019-06-26 2020-03-24 霍起家 Box template for building floor
CN111827147A (en) * 2020-08-10 2020-10-27 广西交科集团有限公司 Box-type arch bridge splicing section and arch foot section reinforcing method
KR102265607B1 (en) * 2020-12-21 2021-06-15 임병준 Steel rod support apparatus for concrete slab
CN113309266A (en) * 2021-07-05 2021-08-27 华中科技大学 Concrete infilled wall with self-resetting function based on topological interlocking

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3785490D1 (en) * 1986-01-14 1993-05-27 Nill Werner A CEMENT, ADDITIVES AND WATER-RESISTANT CONCRETE.
US20090120025A1 (en) * 2004-10-05 2009-05-14 Halil Sezen Prefabricated concrete reinforcement system
CN105839818A (en) * 2016-05-18 2016-08-10 戴旭谦 Integral concrete prefabricated wallboard free of lateral die assembly as well as assembling structure and assembling method thereof
RU2704396C1 (en) * 2019-02-06 2019-10-28 Николаев Станислав Васильевич, Россия, RU, Hollow-core reinforced concrete slab with means of reinforcement of support zone

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210767A1 (en) * 2004-02-21 2005-09-29 Defever Michael D Trilithic and/or twin shell dome type structures and method of making same
WO2008035057A1 (en) * 2006-09-19 2008-03-27 Co-Tropic Limited Reinforcement structures
CN101979798A (en) * 2010-01-28 2011-02-23 汪超 Novel ecological building structure system suitable for building industrialization
US20120066994A1 (en) * 2010-09-22 2012-03-22 Composite Rebar Technologies, Inc. Hollow, composite-material rebar structure, associated components, and fabrication apparatus and methodology
CN202596028U (en) * 2012-03-19 2012-12-12 河南理工大学 Carbon fiber pres-stressed reinforcing steel and high strength steel bar ultra-high toughness fiber reinforced cement-based composite beam structure
CN206360399U (en) * 2016-12-29 2017-07-28 天津城建大学 The existing reinforced concrete coupling beam bracing means of one species " doubly-linked beam "
CN210177770U (en) * 2019-06-26 2020-03-24 霍起家 Box template for building floor
CN110424605A (en) * 2019-07-03 2019-11-08 云南联固建筑材料有限公司 A kind of steel bar girder composite floor
CN110616840A (en) * 2019-09-02 2019-12-27 吉林建筑大学 Concrete laminated slab bottom plate based on steel truss and cement plate and preparation method
CN111827147A (en) * 2020-08-10 2020-10-27 广西交科集团有限公司 Box-type arch bridge splicing section and arch foot section reinforcing method
KR102265607B1 (en) * 2020-12-21 2021-06-15 임병준 Steel rod support apparatus for concrete slab
CN113309266A (en) * 2021-07-05 2021-08-27 华中科技大学 Concrete infilled wall with self-resetting function based on topological interlocking

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4204636A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117010258A (en) * 2023-10-07 2023-11-07 中国船舶集团有限公司第七〇七研究所 Design method for leveling mechanism rigid-elastic integrated leveling ejector rod
CN117010258B (en) * 2023-10-07 2024-02-27 中国船舶集团有限公司第七〇七研究所 Design method for leveling mechanism rigid-elastic integrated leveling ejector rod

Also Published As

Publication number Publication date
EP4204636A1 (en) 2023-07-05
EP4204636A4 (en) 2023-12-27
CN116419999A (en) 2023-07-11

Similar Documents

Publication Publication Date Title
Shams et al. Innovative sandwich structures made of high performance concrete and foamed polyurethane
Zhang et al. Seismic performance of a novel interior precast concrete beam-column joint using ultra-high performance concrete
US6718712B1 (en) Structural panel and method of fabrication
Anand et al. Development and performance evaluation of interlocking-block masonry
US8826626B2 (en) Light-weight load-bearing structures
KR20090039500A (en) Structure having reinforcement of three-dimensional truss type cellular material and manufacturing method thereof
WO2023082040A1 (en) Elastic reinforced composite for forming diverse structural systems and its application in monolithic sandwich material composite
Aristizabal-Ocfaoa Seismic behavior of slender coupled wall systems
CN113833201B (en) Novel assembled heat preservation external wall panel
JP4022205B2 (en) Joining structure of members
CN101280580B (en) Load bearing screen plate and load bearing masonry composite building structure as well as construction method thereof
CN111206715B (en) Prestressed hoop constraint high-expansion concrete wallboard, shear wall and construction method
CN114718186A (en) Steel reinforced concrete column-steel beam assembly type structure locally adopting ECC (error correction code) and assembly method
CN211006310U (en) Stainless steel core plate truss composite beam
CN210105041U (en) Self-supporting prefabricated steel reinforced concrete wallboard component, wall and structural system
Acharya et al. Full-scale flexural testing of slabs made of modular structural concrete insulated panels.
GB2591905A (en) A structural truss, assembly and method of manufacture
CN220790112U (en) Splicing joint of high-ductility concrete-steel plate-concrete superposed column
CN218911929U (en) Novel assembled truss concrete composite floor slab
Muraleedharan et al. A review on the various factors influencing the structural behaviour of TRC sandwich elements
CN220848330U (en) Reinforced concrete composite beam with high shear bearing capacity and ductility
KR102558353B1 (en) Composite Column Structures Applied to Beam to Column Structures
Sun et al. UHPC Through-Girder System for Shallow Bridge Structures
Hocaoğlu et al. Alternative Ferrocement Panels for Reinforcement of Reinforced Concrete Structures Damaged on the 6 February 2023 Turkey Earthquake
Kumar et al. A review on light weight steel foam concrete composite panels for buildings

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021939586

Country of ref document: EP

Effective date: 20221109