WO2023080663A1 - 마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커 - Google Patents

마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커 Download PDF

Info

Publication number
WO2023080663A1
WO2023080663A1 PCT/KR2022/017099 KR2022017099W WO2023080663A1 WO 2023080663 A1 WO2023080663 A1 WO 2023080663A1 KR 2022017099 W KR2022017099 W KR 2022017099W WO 2023080663 A1 WO2023080663 A1 WO 2023080663A1
Authority
WO
WIPO (PCT)
Prior art keywords
mycobacterium
phosphatidylcholine
patients
composition
fluid
Prior art date
Application number
PCT/KR2022/017099
Other languages
English (en)
French (fr)
Inventor
신성재
박지해
김크은산
전병우
김수영
이원식
Original Assignee
연세대학교 산학협력단
사회복지법인 삼성생명공익재단
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210151438A external-priority patent/KR102596057B1/ko
Priority claimed from KR1020210151451A external-priority patent/KR102613631B1/ko
Application filed by 연세대학교 산학협력단, 사회복지법인 삼성생명공익재단, 성균관대학교산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2023080663A1 publication Critical patent/WO2023080663A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Definitions

  • the present invention relates to metabolomic markers for diagnosing Mycobacterium avium complex infectious diseases or predicting therapeutic response.
  • Mycobacterium includes not only species that cause serious diseases to humans and animals, such as tuberculosis, Mycobacterium bovis, and Mycobacterium leprae, but also species that are referred to as opportunistic infections, and About 72 species are known to date, including saprophytic species that can be seen in the natural environment, and among them, 25 species are known to be related to human diseases.
  • These Mycobacterium genus are not easily dyed with commonly used staining solutions, but once dyed, they are also called acid-fast bacteria because they are not easily discolored even when treated with alcohol or hydrochloric acid.
  • Nontuberculous mycobacteria means mycobacteria other than Mycobacterium tuberculosis complex and Mycobacterium leprae.
  • NTM Mycobacterium avium complex
  • M. avium M. avium
  • M. intracellulare M. intracellulare
  • MAB Mycobacterium abscessus
  • M. abscessus subspecies Absesu. M. abscessus subspecies abscessus
  • M. abscessus subspecies massiliense M.
  • NTM Nontuberculous mycobacteria
  • MAC Mycobacterium avium complex
  • Efforts were made to discover diagnostic markers for distinguishing from healthy subjects and diagnostic markers for determining the severity of infected patients.
  • 24 types of lipid metabolites were found as diagnostic markers that can clearly distinguish non-tuberculosis mycobacterium-infected patients from non-infected subjects, and as diagnostic markers that can reflect the severity of non-tuberculosis mycobacterial infections with high reproducibility and reliability.
  • 25 species of polar and lipid metabolites were discovered.
  • an object of the present invention is to provide a composition for diagnosis of non-tuberculous mycobacterial infectious diseases and a diagnosis method using the same.
  • Another object of the present invention is to provide a composition for predicting the severity of non-tuberculous mycobacterial infection disease.
  • the present invention provides lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (
  • LPC lysophosphatidylcholine
  • LPE lysophosphatidylethanolamine
  • PC phosphatidylcholine
  • PE phosphatidylethanolamine
  • sphingomyelin Provided is a composition for diagnosing infectious diseases of non-tuberculous mycobacteria comprising, as an active ingredient, an agent for measuring one or more metabolites selected from the group consisting of sphingomyeline (SM) and triacylglycerol (TAG).
  • SM sphingomyeline
  • TAG triacylglycerol
  • NTM Nontuberculous mycobacteria
  • MAC Mycobacterium avium complex
  • non-tuberculosis mycobacteria refers to acid-fast bacteria other than Mycobacterium tuberculosis, and specifically includes all mycobacteria that do not cause tuberculosis and leprosy.
  • Anti-acid bacteria unlike general bacteria, mean strains that do not dissolve and have the ability to withstand the addition of acid during the dyeing process.
  • Mycobacterium tuberculosis is representative of these mycobacteria, and mycobacteria other than Mycobacterium tuberculosis are called nontuberculous mycobacteria (NTM), and new nontuberculous mycobacteria are discovered almost every year.
  • diagnosis refers to determining the susceptibility of a subject to a specific disease or disorder, determining whether a subject currently has a specific disease or disorder (e.g., non-tuberculous mycobacteria) infection), determining the prognosis of a subject suffering from a particular disease or condition, or therametrics (e.g., monitoring the condition of a subject to provide information about the efficacy of a treatment). .
  • diagnosis means determining whether a subject currently has a particular disease or condition.
  • metabolite also referred to as a metabolite or metabolite
  • metabolites are fuel, structure, signal transduction, stimulatory and inhibitory effects on enzymes, their own catalytic activity (usually as cofactors for enzymes), defense, and interactions with other organisms (e.g., pigments, aromatic compounds). , pheromones).
  • Primary metabolites are directly involved in normal growth, development and reproduction. Secondary metabolites are not directly involved in these processes, but usually have important ecological functions.
  • the metabolite refers to a metabolite obtained from a sample of biological origin, that is, a biological sample, and the biological sample refers to a biological fluid, tissue or cell.
  • the metabolite may be a metabolite obtained from a liquid sample derived from blood, specifically serum.
  • the lysophosphatidylcholine is at least one lysophosphatidylcholine selected from the group consisting of LPC (18:0) and LPC (20:5).
  • the lysophosphatidylethanolamine is at least one lysophosphatidylethanolamine selected from the group consisting of LPE (18:2) and LPE (20:4).
  • the phosphatidylcholine is PC 36:5 (20:5/16:0), PC 28:0 (14:0/14:0), PC 30:0 (14:0/16 :0), PC 32:2 (18:2/14:0), PC 33:2 (18:2/15:0), PC 34:2 (18:2/16:0), PC 34:3 (16:1/18:2), PC 36:4(20:4/16:0), PC O--36:3(O--18:1/18:2), PC O--36: 5 (O--16:1/20:4) and PC O-36:5 (O--16:1/20:4).
  • the phosphatidylethanolamine is PE-NME 34:1 (18:1/16:0).
  • the sphingomyelin is SM d34: 1 (d18: 1/16: 0), SM d42: 1 (d18: 1/24: 0) and SM d42: 2 (d18: 1/24: 1) is at least one sphingomyelin selected from the group consisting of.
  • the triacylglycerol is TAG 54:5 (18:1/18:1/18:3), TAG 55:7 (21:5/18:2/16:0), TAG 58:11 (22:6/20:5/16:0), TAG 60:11 (22:6/20:4/18:1) and TAG 60:12 (22:6/22:6/16 :0) is at least one triacylglycerol selected from the group consisting of.
  • the concentration of the lysophosphatidylcholine, phosphatidylcholine, sphingomyelin or triacylglycerol is increased compared to the normal control group, infection by non-tuberculous mycobacteria is predicted.
  • control group means a normal subject not infected by non-tuberculous mycobacteria.
  • the term "increase in concentration” used while referring to "diagnostic composition” in the composition of the present invention refers to a case in which the concentration of a major body in the serum of an infected patient is significantly higher than that of a normal person who is not infected with Mycobacterium. Specifically, means an increase of about 10% or more, an increase of about 20% or more, an increase of about 30% or more, an increase of about 40% or more, or an increase of about 50% or more, more specifically, an increase of about 40% or more compared to the normal person and the control group It means a case, and does not exclude the scope outside of this.
  • the term “decrease in concentration” used while referring to the “diagnostic composition” in the composition of the present invention refers to a case in which the concentration of a major body in the serum of an infected patient is significantly lower than that of a normal person who is not infected with Mycobacterium. Specifically, It means a decrease of about 10% or more, a decrease of about 20% or more, or a decrease of about 30% or more compared to the normal person and the control group, and more specifically, a case of about 40% or more decrease, excluding the range outside this no.
  • the metabolite is whole blood, leukocytes, peripheral blood mononuclear cells, leukocyte buffy coat, plasma, serum ), sputum, tears, mucus, nasal washes, nasal aspirate, breath, urine, semen, saliva ), peritoneal washings, ascites, cystic fluid, meningeal fluid, amniotic fluid, glandular fluid, pancreatic fluid, lymph fluid ), pleural fluid, nipple aspirate, bronchial aspirate, synovial fluid, joint aspirate, organ secretions, cell, It is present in cell extracts and cerebrospinal fluid. Specifically, it may be serum, but is not limited thereto.
  • whole blood, plasma or serum may be pretreated to detect the metabolite.
  • it may include filtration, distillation, extraction, separation, concentration, inactivation of interfering components, addition of reagents, and the like.
  • the metabolites may include substances produced by metabolism and metabolic processes or substances generated by chemical metabolism by biological enzymes and molecules.
  • the non-tuberculous mycobacteria are Mycobacterium avium ( M. avium ), Mycobacterium abscessus ( M. abscessus ), Mycobacterium flavecens ( M. flavescence ), Mycobacterium africanum ( M. africanum ), Mycobacterium bovis ( M. bovis ), Mycobacterium chelone ( M. chelonae ), Mycobacterium cellatum ( M. celatum ), Mycobacterium Fortuitum ( M. fortuitum ), Mycobacterium Gordone ( M. gordonae ), Mycobacterium gastri ( M. gastri ), Mycobacterium hemophilum ( M.
  • Mycobacterium Cobacterium intracellular lare M. intracellulare
  • Mycobacterium kansasii M. kansasii
  • Mycobacterium malmoenseu M. malmoense
  • Mycobacterium marinum M. marinum
  • mycobac Therium suzulgai M. szulgai
  • Mycobacterium terre M. terrae
  • Mycobacterium scrofulaceum M. scrofulaceum
  • Mycobacterium Ulceranseu M. ulcerans
  • Mycobacterium It may be selected from the group consisting of Leeum simiae ( M. simiae ) and Mycobacterium xenopi ( M. xenopi ), but is not limited thereto.
  • the infectious disease of the non-tuberculous mycobacteria is lung disease, lymphadenitis, skin, soft tissue, bone infection, or disseminated disease.
  • the non-tuberculous mycobacterium infection disease includes all clinical symptoms caused by infection with non-tuberculous mycobacteria.
  • the present invention provides Lysophosphatidylcholine, Lysophosphatidylethanolamine, Phosphatidylcholine, Phosphatidylethanolamine, Sphingomyeline and Triacylglycerol )
  • Provides an information method for diagnosing an infectious disease of non-tuberculous mycobacteria comprising measuring one or more metabolites selected from the group consisting of.
  • the step of measuring the concentration of the metabolite may use a quantitative device such as chromatography or mass spectrometry, but is not limited thereto.
  • the chromatography used in the present invention includes High Performance Liquid Chromatography (HPLC), Liquid-Solid Chromatography (LSC), Paper Chromatography (PC), and Thin Layer Chromatography (Thin Chromatography).
  • HPLC High Performance Liquid Chromatography
  • LSC Liquid-Solid Chromatography
  • PC Paper Chromatography
  • Thin Layer Chromatography Thin Layer Chromatography
  • -Layer Chromatography TLC
  • Gas-Solid Chromatography GSC
  • Liquid-Liquid Chromatography LLC
  • FC Emulsion Chromatography Chromatography
  • EC Emulsion Chromatography Chromatography
  • GFC Gel Filtration Chromatography
  • GFC Gel Filtration Chromatography
  • GPC Gel Permeation Chromatography
  • GPC Gel Permeation Chromatography
  • the mass spectrometer may use a conventionally known mass spectrometer without particular limitation, but specifically, for example, a Fourier transform mass spectrometer (FTMS), a Maldi-TOF mass spectrometer (MALDI-TOF MS), It may be Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • FTMS Fourier transform mass spectrometer
  • MALDI-TOF MS Maldi-TOF mass spectrometer
  • Q-TOF MS Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • the present invention is lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylcholine (PC), phosphatidylethanolamine (PE), Uses of sphingomyelin (SM) and triacylglycerols (TAG) are provided.
  • LPC lysophosphatidylcholine
  • LPE lysophosphatidylethanolamine
  • PC phosphatidylcholine
  • PE phosphatidylethanolamine
  • TAG triacylglycerols
  • the present invention is a non-tuberculosis drug comprising, as an active ingredient, an agent for measuring at least one metabolite selected from the group consisting of lipid metabolites, amino acids, and amino acid derivatives.
  • an agent for measuring at least one metabolite selected from the group consisting of lipid metabolites, amino acids, and amino acid derivatives.
  • the lipid metabolite is at least one selected from the group consisting of lysophosphatidylcholine (LPC), phosphatidylcholine (PC), sphingomyeline (SM) and triacylglycerol (TAG),
  • LPC lysophosphatidylcholine
  • PC phosphatidylcholine
  • SM sphingomyeline
  • TAG triacylglycerol
  • amino acids and amino acid derivatives include glutamine, histidine, methionine, asgparagine, glutamate, lysine, glycine, N,N-dimethylglycine (N, N-Dimethylglycine), threonine, homoserine, tryptophan, and citrulline.
  • NTM Nontuberculous mycobacteria
  • MAC Mycobacterium avium complex
  • non-tuberculosis mycobacteria refers to acid-fast bacteria other than Mycobacterium tuberculosis, and specifically includes all mycobacteria that do not cause tuberculosis and leprosy.
  • Anti-acid bacteria unlike general bacteria, mean strains that do not dissolve and have the ability to withstand the addition of acid during the dyeing process.
  • Mycobacterium tuberculosis is representative of these mycobacteria, and mycobacteria other than Mycobacterium tuberculosis are called nontuberculous mycobacteria (NTM), and new nontuberculous mycobacteria are discovered almost every year.
  • prediction means evaluating whether a specific disease or disorder is currently severely advanced or has a risk of developing severe disease in the future based on a marker having a significant correlation with severity.
  • composition for prediction refers to lipid metabolites, amino acids or amino acid derivatives in order to predict whether a subject's non-tuberculous mycobacterium infection has changed to severe or has a risk of developing severe disease in the future. It means an integrated mixture or device that includes a means for measuring the concentration of, and may be expressed as a “prediction kit”. Since the composition for prediction of the present invention includes a means for measuring the metabolite discovered in the present invention, the term “composition for prediction” may also be expressed as a "device for quantification" of metabolites.
  • metabolite also referred to as a metabolite or metabolite
  • metabolites are fuel, structure, signal transduction, stimulatory and inhibitory effects on enzymes, their own catalytic activity (usually as cofactors for enzymes), defense, and interactions with other organisms (e.g., pigments, aromatic compounds). , pheromones).
  • Primary metabolites are directly involved in normal growth, development and reproduction. Secondary metabolites are not directly involved in these processes, but usually have important ecological functions.
  • the metabolite refers to a metabolite obtained from a sample of biological origin, that is, a biological sample, and the biological sample refers to a biological fluid, tissue or cell.
  • the metabolite may be a metabolite obtained from a liquid sample derived from blood, specifically serum.
  • the lysophosphatidylcholine is at least one lysophosphatidylcholine selected from the group consisting of LPC (14:0), LPC (15:0) and LPC (20:3).
  • the phosphatidylcholine is PC 32:2 (18:2/14:0), PC 34:3 (16:1/18:2), PC 36:1 (18:0/18 :1), selected from the group consisting of PC 36:3 (16:0/20:3), PC 36:6 (14:0/22:6) and PC 38:7 (16:1/22:6) is one or more phosphatidylcholines.
  • the sphingomyelin is SM d34: 1 (d18: 1/16: 0), SM d36: 1 (d18: 1/18: 0) or SM d42: 2 (d18: 1/24: 1) is at least one sphingomyelin selected from the group consisting of.
  • the triacylglycerol is TAG 58:11 (22:6/20:5/16:0).
  • the glutamine, histidine, methionine, asparagine, glutamic acid, threonine, lysine, and tryptophan are L-forms.
  • the concentration of glutamine, histidine, methionine, asparagine, lysine, glycine, N,N-dimethylglycine, threonine, homoserine, tryptophan or citrulline is in the upper lobe cavity type (Upper lobe caviary form) patient If the contrast is low, it is determined as severe non-tuberculous mycobacteria.
  • the infectious lung disease caused by the non-tuberculous mycobacterium is an upper lobe cavitary form or a nodular bronchiectatic form.
  • the severity of the infectious disease caused by the non-tuberculous mycobacteria means upper lobe cavity type.
  • the measured metabolite concentration can be diagnosed by distinguishing whether a disease developed in a subject after infection with a non-tuberculous mycobacterium is an upper lobe cavity type lung disease or a nodular bronchiectasis type lung disease.
  • the term "upper lobe cavity type” is a well-known disease from a long time ago, and it occurs frequently in middle-aged men in their 40s and 50s with a long history of smoking and drinking, and if not treated, extensive lung disease occurs within 1-2 years. It refers to a disease that leads to death due to parenchymal destruction and respiratory failure. In chest radiography, upper lobe cavity and fibrotic lesion similar to pulmonary tuberculosis are observed, but contact spread is more distinct and pleural invasion is more marked than spread of lesion through the thin-walled cavity and bronchus surrounded by the lung parenchyma. Have.
  • the term “nodular bronchiectasis” is a disease known only in the late 1980s, and is mainly found in middle-aged or older non-smokers without underlying disease, and is also called “Lady Windermere syndrome”, It is a disease that progresses very slowly compared to type MAC lung disease and requires long-term follow-up. This disease has characteristic high-resolution computed tomography findings, with multiple bronchiectasis in the center and small nodules and infiltrates around it, mainly in the right middle lobe and the left upper lingual lobe.
  • composition for prediction refers to a case in which the concentration of a metabolite in the serum of patients with upper lobe cavity type is significantly lower than that of patients with nodular bronchiectasis.
  • concentration of the metabolite is reduced by about 5% or more, about 10% or more, about 15% or more, about 20% or more, or about 25% or more, compared to nodular bronchiectasis patients and upper lobe cavity patients. It means, and more specifically, it means a case of decreasing by about 30% or more, and does not exclude a range outside this range.
  • the concentration of glutamic acid when the concentration of glutamic acid is higher than that of upper lobe cavity type patients , it is determined as severe non-tuberculous mycobacteria.
  • the term "increased or high concentration” used while referring to the "composition for prediction" in the composition of the present invention refers to a case in which the concentration of the major body in the serum of patients with upper lobe cavity type is significantly higher than that of patients with nodular bronchiectasis.
  • concentration of the metabolite is increased by about 5% or more, about 10% or more, or about 15% or more, more specifically, about 20% or more, compared to the nodular bronchiectasis type patient and the upper lobe cavity type patient. It means the case of increasing, and does not exclude the range beyond this.
  • the concentration of the lysophosphatidylcholine or triacylglycerol is lower than that of upper lobe cavity type patients, it is determined as severe non-tuberculous mycobacteria.
  • the term "decreased or low concentration” used while referring to the "composition for prediction" in the composition of the present invention refers to a case in which the concentration of the allele in the serum of patients with upper lobe cavity type is significantly lower than that of patients with nodular bronchiectasis, Specifically, it means a decrease of about 10% or more, about 20% decrease, or about 30% or more decrease in the concentration of a metabolite compared to a patient with nodular bronchiectasis and a patient with upper lobe cavity type, and more specifically, a decrease of about 40% or more It means the case of, and does not exclude the scope outside of this.
  • the concentration of the sphingomyelin when the concentration of the sphingomyelin is higher than that of upper lobe cavity type patients, it is determined as severe non-tuberculous mycobacteria.
  • the term "increased or high concentration” used while referring to the "composition for prediction" in the composition of the present invention refers to a case in which the concentration of the major body in the serum of patients with upper lobe cavity type is significantly higher than that of patients with nodular bronchiectasis.
  • a metabolite concentration it means an increase of about 10% or more, an increase of about 20% or more, or an increase of about 30% or more, more specifically, an increase of about 35% or more compared to patients with nodular bronchiectasis and upper lobe cavity patients. It means the case of, and does not exclude the scope outside of this.
  • PC 38:7 (16:1/22:6) is lower than that of upper lobe cavitary form patients, it is judged as severe non-tuberculous mycobacteria.
  • the concentration of the phosphatidylcholine PC 36: 1 (18: 0 / 18: 1) or PC 36: 3 (16: 0 / 20: 3) is the upper lobe cavity form If it is high compared to patients, it is determined as severe non-tuberculous mycobacteria.
  • the lipid metabolites, amino acids and amino acid derivatives can be used in whole blood, leukocytes, peripheral blood mononuclear cells, leukocyte buffy coat, plasma ( plasma, serum, sputum, tears, mucus, nasal washes, nasal aspirate, breath, urine, semen ( semen, saliva, peritoneal washings, ascites, cystic fluid, meningeal fluid, amniotic fluid, glandular fluid, pancreatic fluid ), lymph fluid, pleural fluid, nipple aspirate, bronchial aspirate, synovial fluid, joint aspirate, organ secretions , present in cells, cell extracts and cerebrospinal fluid.
  • it may be serum, but is not limited thereto.
  • whole blood, plasma or serum may be pretreated to detect the metabolites.
  • it may include filtration, distillation, extraction, separation, concentration, inactivation of interfering components, addition of reagents, and the like.
  • the metabolites may include substances produced by metabolism and metabolic processes or substances generated by chemical metabolism by biological enzymes and molecules.
  • the non-tuberculous mycobacteria are Mycobacterium avium ( M. avium ), Mycobacterium abscessus ( M. abscessus ), Mycobacterium flavecens ( M. flavescence ), Mycobacterium africanum ( M. africanum ), Mycobacterium bovis ( M. bovis ), Mycobacterium chelone ( M. chelonae ), Mycobacterium cellatum ( M. celatum ), Mycobacterium Fortuitum ( M. fortuitum ), Mycobacterium Gordone ( M. gordonae ), Mycobacterium gastri ( M. gastri ), Mycobacterium hemophilum ( M.
  • Mycobacterium Cobacterium intracellular lare M. intracellulare
  • Mycobacterium kansasii M. kansasii
  • Mycobacterium malmoenseu M. malmoense
  • Mycobacterium marinum M. marinum
  • mycobac Therium suzulgai M. szulgai
  • Mycobacterium terre M. terrae
  • Mycobacterium scrofulaceum M. scrofulaceum
  • Mycobacterium Ulceranseu M. ulcerans
  • Mycobacterium It may be selected from the group consisting of Leeum simiae ( M. simiae ) and Mycobacterium xenopi ( M. xenopi ), but is not limited thereto.
  • the non-tuberculous mycobacterial infectious disease includes all clinical symptoms caused by infection with the non-tuberculous mycobacterium, and the infectious disease is lung disease, lymphadenitis, skin, soft tissue, bone infection, or disseminated disease. diseases and the like.
  • the present invention is a non-tuberculous mycobacteria comprising the step of measuring one or more metabolites selected from the group consisting of lipid metabolites, amino acids and amino acid derivatives.
  • the lipid metabolite is at least one selected from the group consisting of Lysophosphatidylcholine, Phosphatidylcholine, Sphingomyeline and Triacylglycerol,
  • amino acids and amino acid derivatives include glutamine, histidine, methionine, asgparagine, glutamate, lysine, glycine, N,N-dimethylglycine (N, N-Dimethylglycine), threonine, homoserine, tryptophan, and citrulline.
  • Lipid metabolites, amino acids, and amino acid derivatives which are targets of measurement of non-tuberculous mycobacteria in the present invention, have already been described in detail, and thus description thereof is omitted to avoid excessive redundancy.
  • the step of measuring the concentration of the metabolite uses a quantitative device such as chromatography or mass spectrometry.
  • Chromatography used in the present invention includes high performance liquid chromatography (HPLC), liquid-solid chromatography (LSC), paper chromatography (PC), thin layer chromatography (Thin -Layer Chromatography (TLC), Gas-Solid Chromatography (GSC), Liquid-Liquid Chromatography (LLC), Foam Chromatography (FC), Emulsion Chromatography Chromatography (EC), Gas-Liquid Chromatography (GLC), Ion Chromatography (IC), Gel Filtration Chromatography (GFC) or Gel Permeation Chromatography (GLC) GPC), but is not limited thereto, and all quantitative chromatography commonly used in the art may be used.
  • the mass spectrometer may use a conventionally known mass spectrometer without particular limitation, but specifically, for example, a Fourier transform mass spectrometer (FTMS), a Maldi-TOF mass spectrometer (MALDI-TOF MS), It may be Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • FTMS Fourier transform mass spectrometer
  • MALDI-TOF MS Maldi-TOF mass spectrometer
  • Q-TOF MS Q-TOF MS or LTQ-Orbitrap MS, but is not limited thereto.
  • the present invention is lysophosphatidylcholine (LPC), phosphatidylcholine (PC), sphingomyelin (SM) and triacylglycerol (TAG ), Glutamine, Histidine, Methionine, Asgparagine, Glutamate, Lysine, Glysine, N,N-Dimethylglycine , Threonine, Homoserine, Tryptophan and Citrulline.
  • LPC lysophosphatidylcholine
  • PC phosphatidylcholine
  • SM sphingomyelin
  • TAG triacylglycerol
  • the present invention applies the metabolites as biomarkers for rapid, accurate and highly reliable measurement of non-tuberculous mycobacteria (NTM), especially Mycobacterium avium complex (MAC), which lacks objective and highly reliable diagnostic markers. , can be usefully used for more efficient diagnosis of non-tuberculous mycobacterial infectious diseases.
  • NTM non-tuberculous mycobacteria
  • MAC Mycobacterium avium complex
  • the present invention relates to non-tuberculous mycobacteria (NTM), especially Mycobacterium avium complex (MAC), which has no objective and highly reliable biomarker for the course of disease, and the metabolites can be used to determine the course and severity of the disease.
  • NTM non-tuberculous mycobacteria
  • MAC Mycobacterium avium complex
  • Figure 1a compares the expression levels of Lysophosphatidylcholine (LPC 18:0) in serum samples from patients with Mycobacterium avium complex (MAC)-infected lung disease and healthy people before antibiotic treatment in one embodiment of the present invention. that shows the graph.
  • LPC 18:0 Lysophosphatidylcholine
  • MAC Mycobacterium avium complex
  • Figure 1b is a comparison of the expression levels of Lysophosphatidylcholine (LPC 20:5) in serum samples from patients with Mycobacterium avium complex (MAC)-infected lung disease and healthy people before antibiotic treatment in one embodiment of the present invention. that shows the graph.
  • LPC 20:5 Lysophosphatidylcholine
  • MAC Mycobacterium avium complex
  • Figure 1c is a phosphatidylcholine (Phosphatidylcholine; PC 36:5 (20:5/16:0; 20:5/16:0 ) It shows a graph comparing the expression levels of)).
  • 1d is a diagram of sphingomyeline (SM d34: 1 (d18: 1/ It shows a graph comparing the expression levels of 16:0)).
  • 1e is a diagram of sphingomyeline (SM d42: 1 (d18: 1/ 24:0)) shows a graph comparing the expression levels.
  • 1f is a diagram of sphingomyeline (SM d42:2 (d18:1/ 24: 1)) shows a graph comparing the expression levels.
  • Figure 1g is a triacylglycerol (TAG 54: 5 (18: 1/18; 18: 1/18; :1/18:3)) shows a graph comparing the expression levels.
  • Figure 1h is a triacylglycerol (TAG 55: 7 (21: 5/18; :2/16:0)) shows a graph comparing the expression levels.
  • Figure 1i shows triacylglycerol (TAG 58: 11 (22: 6/20) in serum samples from patients with Mycobacterium avium complex (MAC)-infected lung disease and healthy people before antibiotic treatment in one embodiment of the present invention. :5/16:0)) shows a graph comparing the expression levels.
  • TAG 58: 11 22: 6/20
  • MAC Mycobacterium avium complex
  • Figure 1j shows the triacylglycerol (TAG 60:11 (22:6/20 22:6/20 :4/18:1)) shows a graph comparing the expression levels.
  • Figure 1k shows the triacylglycerol (TAG 60:12 (22:6/22; 22:6/22 :6/16:0)) shows a graph comparing the expression levels.
  • Figure 2a shows the expression level of Lysophosphatidylethanolamine (LPE 18:2) in serum samples from Mycobacterium avium complex (MAC) infected lung disease patients and healthy people before antibiotic treatment in one embodiment of the present invention. It shows the comparison graph.
  • LPE 18:2 Lysophosphatidylethanolamine
  • Figure 2b shows the expression level of Lysophosphatidylethanolamine (LPE 20:4) in serum samples from Mycobacterium avium complex (MAC) infected lung disease patients and healthy people before antibiotic treatment in one embodiment of the present invention. It shows the comparison graph.
  • LPE 20:4 Lysophosphatidylethanolamine
  • MAC Mycobacterium avium complex
  • Figure 2c is a phosphatidylcholine (Phosphatidylcholine; PC 28:0 (14:0/14:0 ) It shows a graph comparing the expression levels of)).
  • Figure 2d is a phosphatidylcholine (Phosphatidylcholine; PC 30:0 (14:0/16:0 ) It shows a graph comparing the expression levels of)).
  • Figure 2e is a phosphatidylcholine (Phosphatidylcholine; PC 32:2 (18:2/14:0; PC 32:2 (18:2/14:0 ) It shows a graph comparing the expression levels of)).
  • Figure 2f is a phosphatidylcholine (Phosphatidylcholine; PC 33:2 (18:2/15:0; 18:2/15:0 ) It shows a graph comparing the expression levels of)).
  • Figure 2g is a phosphatidylcholine (Phosphatidylcholine; PC 34:2 (18:2/16:0; 18:2/16:0 ) It shows a graph comparing the expression levels of)).
  • Figure 2h is a phosphatidylcholine (Phosphatidylcholine; PC 34:3 (16:1/18:2; 16:1/18:2 ) It shows a graph comparing the expression levels of)).
  • Figure 2i is a phosphatidylcholine (Phosphatidylcholine; PC 36:4 (20:4/16:0; 20:4/16:0 ) It shows a graph comparing the expression levels of)).
  • Figure 2j is a phosphatidylcholine (Phosphatidylcholine; PC O--36:3 (O--18; PC O--36:3 (O--18 :1/18:2)) shows a graph comparing the expression levels.
  • Figure 2k is a phosphatidylcholine (Phosphatidylcholine; PC O--36:5 (O--16; PC O--36:5 (O--16 :1/20:4)) shows a graph comparing the expression levels.
  • Figure 2l is a phosphatidylcholine (Phosphatidylcholine; PC O--38:5 (O--18; PC O--38:5 (O--18 :1/20:4)) shows a graph comparing the expression levels.
  • Figure 2m is in one embodiment of the present invention, phosphatidylethanolamine (PE--NME 34: 1 (18: 18: It shows a graph comparing the expression levels of 1/16:0)).
  • Figure 3a is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression level of L-glutamine.
  • MAC Mycobacterium avium complex
  • Figure 3b is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of L-histidine.
  • MAC Mycobacterium avium complex
  • Figure 3c is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of L-methionine.
  • MAC Mycobacterium avium complex
  • Figure 3d is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC) infected lung disease It shows a graph comparing the expression level of L-asparagine.
  • MAC Mycobacterium avium complex
  • Figure 3e is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of L-glutamic acid (L-Glutamate).
  • Figure 3f is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of L-threonine.
  • MAC Mycobacterium avium complex
  • Figure 3g is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of N,N-dimethylglycine.
  • MAC Mycobacterium avium complex
  • Figure 3h is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression level of L- lysine (L-Lysine).
  • Figure 3i is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of glycine.
  • MAC Mycobacterium avium complex
  • Figure 3j is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of homoserine.
  • MAC Mycobacterium avium complex
  • Figure 3k is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of citrulline.
  • MAC Mycobacterium avium complex
  • Figure 3l is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavitary form among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of L-tryptophan.
  • MAC Mycobacterium avium complex
  • Figure 4a is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC) infected lung disease It shows a graph comparing the expression level of Lysophosphatidylcholine (LPC 14:0).
  • Figure 4b is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of Lysophosphatidylcholine (LPC 15:0).
  • MAC Mycobacterium avium complex
  • Figure 4c is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of Lysophosphatidylcholine (LPC 20:3).
  • Figure 4d is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavitary form among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression levels of phosphatidylcholine (PC 32:2 (18:2/14:0)).
  • Figure 4e is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression levels of phosphatidylcholine (PC 34:3 (16:1/18:2)).
  • Figure 4f is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression levels of phosphatidylcholine (PC 36:1 (18:0/18:1)).
  • Figure 4g is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression levels of phosphatidylcholine (PC 36:3 (16:0/20:3)).
  • Figure 4h is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression levels of phosphatidylcholine (PC 36:6 (14:0/22:6)).
  • Figure 4i is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression levels of phosphatidylcholine (PC 38:7 (16:1/22:6)).
  • Figure 4j is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression level of sphingomyeline (SM d34: 1 (d18: 1/16: 0)).
  • Figure 4k is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression level of sphingomyeline (SM d36: 1 (d18: 1/18: 0)).
  • Figure 4l is in one embodiment of the present invention, in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among lung disease patients infected with Mycobacterium avium complex (MAC) It shows a graph comparing the expression levels of sphingomyeline (SM d42:2 (d18:1/24:1)).
  • Figure 4m is in one embodiment of the present invention in serum samples from patients with nodular bronchiectatic form and patients with upper lobe cavity type among patients with Mycobacterium avium complex (MAC)-infected lung disease It shows a graph comparing the expression level of triacylglycerol (TAG 58:11 (22:6/20:5/16:0)).
  • TAG 58:11 22:6/20:5/16:0
  • the present invention relates to patients infected with nontuberculous mycobacteria (NTM), in particular, Mycobacterium avium complex (MAC), which causes lung disease very common in humans, for which it is difficult to develop objective and reliable diagnostic markers. It is for discovering diagnostic markers for distinguishing from healthy subjects and discovering diagnostic markers for determining the severity of infected patients.
  • NTM nontuberculous mycobacteria
  • MAC Mycobacterium avium complex
  • lipid metabolites were discovered as diagnostic markers that can clearly distinguish non-tuberculosis mycobacterium-infected patients from non-infected subjects, and as diagnostic markers that can reflect the severity of non-tuberculosis mycobacterium infection with high reproducibility and reliability, 25 species of polar and lipid metabolites were discovered. Accordingly, it is possible to establish a patient-specific treatment strategy at an early stage by more efficiently diagnosing non-tuberculous mycobacterium infectious diseases and determining the severity of patients infected with non-tuberculous mycobacteria.
  • lipid metabolites in the analysis sample treated with serum were separated using chromatography-tandem mass spectrometry (UHPLC-MS).
  • the equipment used was Thermo Scientific's Ultimate 3000RS pump UHPLC and Q-Exactive Orbitrap Plus MS.
  • chromatographic conditions for hydrophilic interaction lipid metabolites were separated using an Acquity UPLC BEH C18 (2.1 x 100 mm, 1.7 ⁇ m, Waters) column using gradient elution at 35 °C.
  • the first mobile phase includes (A) 10mM Ammonium formate in 50% ACN + 0.1% Formic acid (v/v) and (B) 2mM Ammonium formate in ACN/IPA/Water 10:88:2 + 0.02% Formic acid (v/v). v) was used, and the gradient elution of the next mobile phase was performed in the same manner as in Table 1 below with a total analysis time of 28 minutes. Electrospray Ionization (ESI) was performed in two modes of ionization, positive and negative, and the full scan mass range was 250-1200 m/z with 70,000 resolution.
  • ESI Electrospray Ionization
  • AGC automatic gain control
  • HC represents the expression level of each metabolite in serum samples of 30 healthy people
  • Tx0 represents the expression level of each metabolite in serum samples of 145 patients infected with Mycobacterium avium complex (MAC) before antibiotic treatment. It shows the expression level of each metabolite.
  • *P ⁇ 0.05; **P ⁇ 0.01; ***P ⁇ 0.001 means.
  • Lysophosphatidylcholine LPC 18:0
  • lysophosphatidylcholine LPC 20:5
  • phosphatidylcholine PC 36:5 (20:5/ 16:0)
  • Sphingomyeline SM d34:1 (d18:1/16:0)
  • SM d42:1 d18:1/24:0
  • sphingomyelin Myelin SM d42:2 (d18:1/24:1)
  • triacylglycerol TAG 54:5 (18:1/18:1/18:3)
  • triacylglycerol TAG 55: 7 (21:5/18:2/16:0)
  • triacylglycerol TAG 58:11 (22:6/20:5/16:0)
  • triacylglycerol TAG 60:11 (22: 6/20:4/18:1)
  • triacylglycerol TAG 60:11 (22: 6/20:4/18:1)
  • lysophosphatidylethanolamine LPE 18:2
  • lysophosphatidylethanolamine LPE 20:4
  • phosphatidylcholine PC 28:0 (14:0/14:0)
  • phosphatidylcholine PC 30:0 (14:0/16:0)
  • Phosphatidylcholine PC 32:2 (18:2/14:0)
  • Phosphatidylcholine PC 33:2 (18:2/15:0)
  • Phosphatidylcholine PC 34:2 (18:2/16:0)
  • phosphatidylcholine PC 34:3 (16:1/18:2)
  • phosphatidylcholine PC 36:4 (20:4/16:0)
  • Phosphatidylcholine PC O-36:3 (O-18:1/18:2)
  • Phosphatidylcholine PC O-36:5 (O-16:1/20:4)
  • Phosphatidylcholine PC
  • Lysophosphatidylcholine LPC 18:0
  • Lysophosphatidylcholine LPC 20:5
  • PC 36:5 (20:5/16:0)
  • sphingomyelin Sphingomyeline
  • SM d34:1 d18:1/16:0
  • sphingomyelin SM d42:1 (d18:1/24:0)
  • sphingomyelin SM d42:2 (d18:1 /24:1)
  • triacylglycerol TAG 54:5 (18:1/18:1/18:3)
  • triacylglycerol TG 55:7 (21:5/18:2/16 :0)
  • triacylglycerol TAG 58:11 (22:6/20:5/16:0)
  • triacylglycerol TAG 60:11 (22:6/20:4/18:1)
  • triacylglycerol TAG 60:11 (22:6/20:4/18:1)
  • Serum samples from patients infected with Mycobacterium avium complex collected at Seoul Samsung Hospital for about 6 years from January 2012 to August 2016 were analyzed in the form of lung disease (NB: 83 patients, UC: 31 people, a total of 114 people) were divided according to extraction and preparation.
  • the source temperature was 500 °C
  • the ion-spray floating voltage was 5,5 kV (negative -4.5 kV)
  • the mass range was 50-1000 m/z.
  • Sample injection was performed by 3 ⁇ l using the HTC_PAL system/CTC analytics auto-sampler, and the tandem mass spectrometry conditions (Scheduled Multiple Reaction Monitoring, sMRM) were performed as shown in Tables 3 to 7 below.
  • Table 4 is Water method (+), and 21 metabolites
  • Table 5 is Water method (-)
  • Table 6 is Formic acid method (+)
  • 32 metabolites is the formic acid method (-), and 24 metabolites.
  • (+) means positive ion mode and (-) means negative ion mode.
  • Electrospray Ionization was performed with positive and negative two modes of ionization, and the full scan mass range was 250-1200 m/z with a resolution of 70,000 and automatic gain control.
  • AGC Automatic gain control
  • the target was 1x106ion and the maximum injection time (Injection time, IT) was analyzed at 100ms.
  • the collision energy (CE) was 20, 30, and 40, the source ionization spray voltage was 3.0 kV, and the capillary temperature was 370 °C.
  • Thermo Scientific's analysis software Compound Discoverer
  • lipid metabolites with high significance p-value ⁇ 0.05
  • NB_Tx0 shows the expression levels of each metabolite in serum samples from 83 patients with bronchiectasis before starting antibiotic treatment
  • UC_Tx0 shows the expression level of each metabolite in serum samples from 31 patients with upper lobe cavity before starting antibiotic treatment. It shows the expression level of the body.
  • the present invention relates to patients infected with nontuberculous mycobacteria (NTM), in particular, Mycobacterium avium complex (MAC), which causes lung disease very common in humans, for which it is difficult to develop objective and reliable diagnostic markers. It is for the discovery of diagnostic markers for distinguishing from healthy subjects and the development of diagnostic markers for determining the severity of infected patients. Recently, reports of lung infections caused by non-tuberculous mycobacteria are increasing worldwide, but there is a lack of biomarkers for differentiating patients with non-tuberculous mycobacteria lung infections from healthy populations, or studies on the pathophysiology of the disease.
  • NTM nontuberculous mycobacteria
  • MAC Mycobacterium avium complex
  • the present invention relates to more efficient diagnosis of non-tuberculous mycobacterial infectious diseases and prediction of the severity of patients infected with non-tuberculous mycobacteria, and is useful for significantly improving the survival rate of patients by establishing a treatment strategy tailored to patients with infectious diseases at an early stage. expected to be used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본 발명은 혈액 내 특정 대사체를 측정함으로써, 비결핵 항산균의 감염 여부를 정확히 판정하는 진단 및 감염 질환의 중증도 예측용 조성물에 관한 것이다. 본 발명은 비결핵 항산균(NTM), 특히 객관적이고 신뢰성 높은 진단 표지자가 부족한 마이코박테리움 아비움 복합체(MAC)에 있어서, 상기 대사체들을 신속 정확하며 신뢰도 높은 측정을 위한 바이오마커로 적용함으로써, 비결핵 항산균 감염 질환의 보다 효율적인 진단에 유용하게 이용될 수 있으며, 본 발명은 비결핵 항산균(NTM), 특히 질환의 진행 경과에 대한 객관적이고 신뢰도 높은 바이오마커가 전무한 마이코박테리움 아비움 복합체(MAC)에 있어서, 상기 대사체들을 질환의 진행 경과 및 중증도를 높은 정확도로 예측하는 표지자로 적용함으로써, 비결핵 항산균으로 인한 감염 환자의 중증도를 판정하여 환자 맞춤형 치료 전략을 조기에 수립함으로써, 환자의 생존률을 현저히 개선시키는데 유용하게 이용될 수 있다.

Description

마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커
본 발명은 마이코박테리움 아비움 복합체 감염질환 진단 또는 치료반응성 예측용 대사체 마커에 관한 것이다.
마이코박테리움 (Mycobacterium) 종류에는 결핵, 우형결핵(Mycobacterium bovis), 나병(Mycobacterium leprae)과 같이 사람과 동물에 심각한 질병을 일으키는 균 종(species)뿐 아니라, 기회 감염균으로 일컬어지는 균 종, 그리고 자연환경에서 볼 수 있는 수포성 종(saprophytic species) 등 현재까지 약 72 종(species)이 알려져 있으며, 그 중 인체 질환과 관련된 것이 25종에 이르는 것으로 알려져 있다. 이러한 마이코박테리움 속은 일반적으로 사용되는 염색액으로는 용이하게 염색되지 않지만 일단 염색되면 알코올이나 염산 등으로 처리시에도 용이하게 탈색되지 않기 때문에 항산균이라고도 불린다.
비결핵 항산균(Nontuberculous mycobacteria; NTM)은 결핵균(Mycobacterium tuberculosis complex) 및 나균(Mycobacterium leprae)을 제외한 항산균을 의미한다. 한편, 마이코박테리움 아비움 복합체(Mycobacterium avium complex; MAC)에 속하는 비결핵 항산균주 중 흔히 인간에게서 폐 질환을 일으키는 균주로는 공식적으로 대략 180 종 이상이 규명되었다. MAC는 주로 M. 아비움(M. avium)과 M. 인트라셀룰라(M. intracellulare)를 포함하고, 마이코박테리움 압세수스(Mycobacterium abscessus; MAB)는 주로 M. 압세수스 아종인 압세수스(M. abscessus subspecies abscessus)와 M. 압세수스 아종인 마실리엔스(M. abscessus subspecies massiliense)를 포함한다. 최근 전세계적으로 비결핵 항산균에 기인한 폐 감염 보고가 증가하고 있지만, 건강한 개체군으로부터 비결핵 항산균 폐 감염 질환자를 구별하기 위한 바이오마커나, 질환에 대한 병태 생리의 연구가 부족한 실정이다.
본 발명자들은 객관적이고 신뢰성 높은 진단 마커의 개발이 어려운 비결핵 항산균(Nontuberculous mycobacteria; NTM), 특히 인간에게 매우 흔하게 폐 질환을 일으키는 마이코박테리움 아비움 복합체(Mycobacterium avium complex; MAC)에 감염된 환자를 건강한 대상체로부터 구별하기 위한 진단 표지자 발굴 및감염된 환자의 중증도를 판정하기 위한 진단 표지자 발굴을 위하여 예의 연구 노력하였다. 그 결과, 비결핵 항산균 감염환자와 비감염 대상체를 명확히 구분할 수 있는 진단 표지자로서 24종의 지질 대사체를 발견하였으며, 비결핵 항산균 감염증의 중증도를 높은 재현성과 신뢰도로 반영할 수 있는 진단 표지자로써, 극성 및 지질대사체 25종을 발굴하였다.
따라서 본 발명의 목적은 비결핵 항산균 감염 질환의 진단용 조성물 및 이를 이용한 진단방법을 제공하는데 있다.
본 발명의 다른 목적은 비결핵 항산균 감염 질환의 중증도 예측용 조성물을 제공하는데 있다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세 사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.
본 발명 내 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당 업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.
본 발명의 일 양태에 따르면, 본 발명은 리소포스파티딜콜린(Lysophosphatidylcholine; LPC), 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine; LPE), 포스파티딜콜린(Phosphatidylcholine; PC), 포스파티딜에탄올아민(Phosphatidylethanolamine; PE), 스핑고마이엘린(Sphingomyeline; SM) 및 트리아실글리세롤(Triacylglycerol; TAG)로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 제제를 유효성분으로 포함하는 비결핵 항산균의 감염 질환의 진단용 조성물을 제공한다.
본 발명자들은 객관적이고 신뢰성 높은 진단 마커의 개발이 어려운 비결핵 항산균(Nontuberculous mycobacteria; NTM), 특히 인간에게 매우 흔하게 폐 질환을 마일으키는 마이코박테리움 아비움 복합체(Mycobacterium avium complex; MAC)에 감염된 환자를 건강한 대상체로부터 구별하기 위한 진단 표지자 발굴을 위하여 예의 연구 노력하였다. 그 결과, 비결핵 항산균 감염환자와 비감염 대상체를 명확히 구분할 수 있는 진단 표지자로서 24종의 지질 대사체를 발굴하였다.
본 명세서에서 용어 “비결핵 항산균”은 결핵균이 아닌 항산균을 의미하며 구체적으로는 결핵 및 나병을 유발하지 않는 모든 마이코박테리아를 포함하는 의미이다. 항산균은 일반적인 세균들과 달리 염색과정에서 산(acid)을 첨가해도 용해되지 않고 견딜 수 있는 능력을 가지는 균주를 의미한다. 이런 항산균들 중 대표적인 것이 바로 결핵균이며, 결핵균이 이외의 항산균을 비결핵항산균(Nontuberculous mycobacteria; NTM)이라고 하고, 거의 매년 새로운 비결핵항산균이 발견되고 있다.
본 명세서에서 용어 “진단”은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는 지 여부를 판정하는 것(예컨대, 비결핵 항산균 감염), 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링하는 것)을 포함한다. 구체적으로는 본 발명의 취지상 본 명세서의 용어 진단은 한 객체가 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것을 의미한다.
본 명세서에서 용어“진단용 조성물”은 대상체의 비결핵 항산균의 감염질환의 발병 여부를 판단하거나 발병 가능성을 예측하기 위해 리소포스파티딜콜린(Lysophosphatidylcholine), 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine), 포스파티딜콜린(Phosphatidylcholine), 포스파티딜에탄올아민(Phosphatidylethanolamine), 스핑고마이엘린(Sphingomyeline) 및 트리아실글리세롤(Triacylglycerol)의 대사체 농도 측정수단을 포함하는 통합적인 혼합물(mixture) 또는 장비(device)를 의미하며, 이에“진단용 키트”로 표현될 수도 있다. 본 발명의 진단용 조성물은 본 발명에서 발굴된 대사체를 측정하기 위한 수단이 포함되므로, 용어“진단용 조성물”은 대사체의“정량 장치”로 표현될 수도 있다.
본 명세서에서 용어 "대사체(metabolite)"는 대사물질 또는 대사산물이라고도 불리우며, 물질 대사의 중간 생성물 또는 생성물이다. 이러한 대사체는 연료, 구조, 신호전달, 효소에 대한 촉진 및 저해 효과, 그 자신의 촉매 활성(일반적으로 효소에 대한 보조 인자로서), 방어, 다른 생물체와의 상호작용(예: 색소, 방향 화합물, 페로몬)을 포함하는 다양한 기능을 가지고 있다. 1차 대사체는 정상적인 생장, 발생 및 생식에 직접적으로 관여한다. 2차 대사체는 이러한 과정들에 직접적으로 관여하지 않지만, 대개 중요한 생태학적 기능을 가지고 있다.
본 발명에 따르면, 상기 대사체는 생체 기원의 시료, 즉 생물학적 시료로부터 수득한 대사 물질을 말하는 것으로, 상기 생물학적 시료는 생물학적 체액, 조직 또는 세포를 의미하는 것이다.
본 발명에 따르면, 상기 대사체는 혈액, 구체적으로는 혈청 기원의 액상 시료로부터 수득한 대사물질일 수 있다.
본 발명의 구체적인 구현예에 따르면, 상기 리소포스파티딜콜린은 LPC (18:0) 및 LPC (20:5)로 구성된 군으로부터 선택되는 하나 이상의 리소포스파티딜콜린이다.
본 발명의 구체적인 구현예에 따르면, 상기 리소포스파티딜에탄올아민은 LPE (18:2) 및 LPE (20:4)로 구성된 군으로부터 선택되는 하나 이상의 리소포스파티딜에탄올아민이다.
본 발명의 구체적인 구현예에 따르면, 상기 포스파티딜콜린은 PC 36:5(20:5/16:0), PC 28:0(14:0/14:0), PC 30:0(14:0/16:0), PC 32:2(18:2/14:0), PC 33:2(18:2/15:0), PC 34:2(18:2/16:0), PC 34:3(16:1/18:2), PC 36:4(20:4/16:0), PC O--36:3(O--18:1/18:2), PC O--36:5(O--16:1/20:4) 및 PC O-36:5(O--16:1/20:4)로 구성된 군으로부터 선택되는 하나 이상의 포스파티딜콜린이다.
본 발명의 구체적인 구현예에 따르면, 상기 포스파티딜에탄올아민은 PE-NME 34:1(18:1/16:0)이다.
본 발명의 구체적인 구현예에 따르면, 상기 스핑고마이엘린은 SM d34:1(d18:1/16:0), SM d42:1(d18:1/24:0) 및 SM d42:2(d18:1/24:1)로 구성된 군으로부터 선택되는 하나 이상의 스핑고마이엘린이다.
본 발명의 구체적인 구현예에 따르면, 상기 트리아실글리세롤은 TAG 54:5(18:1/18:1/18:3), TAG 55:7(21:5/18:2/16:0), TAG 58:11(22:6/20:5/16:0), TAG 60:11(22:6/20:4/18:1) 및 TAG 60:12(22:6/22:6/16:0)로 구성된 군으로부터 선택되는 하나 이상의 트리아실글리세롤이다.
본 발명의 구체적인 구현예에 따르면, 상기 리소포스파티딜콜린, 포스파티딜콜린, 스핑고마이엘린 또는 트리아실글리세롤의 농도가 정상 대조군 대비 증가한 경우, 비결핵 항산균에 의해 감염된 것으로 예측한다.
본 발명에 따르면, 상기 "대조군"이란 비결핵 항산균에 의해 감염되지 않은 정상 개체를 의미한다.
본 발명의 구성 중“진단용 조성물”을 언급하면서 사용되는 용어“농도의 증가”는 마이코박테리움에 감염되지 않은 정상인에 비해 감염환자 혈청 내 대세체 농도가 유의하게 높은 경우를 의미하며, 구체적으로는 상기 정상인과 대조군과 비교하여 약 10% 이상 증가, 약 20% 이상 증가, 약 30% 이상 증가, 약 40% 이상 증가 또는 약 50% 이상 증가를 의미하고, 보다 구체적으로는 약 40% 이상 증가한 경우를 의미하며, 이를 벗어나는 범위를 제외하는 것은 아니다.
본 발명의 구체적인 구현예에 따르면, 리소포스파티딜에탄올아민, 포스파티딜콜린 또는 포스파티딜에탄올아민의 농도가 정상 대조군 대비 감소한 경우, 비결핵 항산균에 의해 감염된 것으로 예측한다.
본 발명의 구성 중“진단용 조성물”을 언급하면서 사용되는 용어“농도의 감소”는 마이코박테리움에 감염되지 않은 정상인에 비해 감염환자 혈청 내 대세체 농도가 유의하게 낮은 경우를 의미하며, 구체적으로는 상기 정상인과 대조군과 비교하여 약 10% 이상 감소, 약 20% 이상 감소 또는 약 30% 이상 감소를 의미하고, 보다 구체적으로는 약 40% 이상 감소한 경우를 의미하며, 이를 벗어나는 범위를 제외하는 것은 아니다.
본 발명의 구체적인 구현예에 따르면, 상기 대사체는 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 내 존재한다. 구체적으로는 혈청일 수 있으나, 이에 제한되는 것은 아니다.
보다 구체적으로는 상기 대사체를 검출하기 위해 전혈, 혈장 또는 혈청을 전처리할 수 있다. 예를 들어, 여과, 증류, 추출, 분리, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다. 또한, 상기 대사체는 대사 및 대사 과정에 의해 생산된 물질 또는 생물학적 효소 및 분자에 의한 화학적 대사작용으로 발생한 물질 등을 포함할 수 있다.
본 발명의 구체적인 구현예에 따르면, 상기 비결핵 항산균은 마이코박테리움 아비움(M. avium), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 플라베센스(M. flavescence), 마이코박테리움 아프리카눔(M. africanum), 마이코박테리움 보비스(M. bovis), 마이코박테리움 첼로네(M. chelonae), 마이코박테리움 셀라툼(M. celatum), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 고르도네(M. gordonae), 마이코박테리움 가스트리(M. gastri), 마이코박테리움 헤모필룸(M. haemophilum), 마이코박테리움 인트라셀루라레(M. intracellulare), 마이코박테리움 칸사시이(M. kansasii), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 스줄가이(M. szulgai), 마이코박테리움 테레(M. terrae), 마이코박테리움 스크로풀라세움(M. scrofulaceum), 마이코박테리움 울서란스(M. ulcerans), 마이코박테리움 시미애(M. simiae) 및 마이코박테리움 제노피(M. xenopi)로 구성된 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 구체적인 구현예에 따르면, 상기 비결핵 항산균의 감염 질환은 폐 질환, 림프절염, 피부·연조직·골감염증 또는 파종성 질환인 것이다.
본 발명에 따르면, 상기 비결핵 항산균 감염 질환은 비결핵 항산균의 감염에 의해 나타나는 모든 임상적 증상을 포함한다.
본 발명의 다른 양태에 따르면, 본 발명은 리소포스파티딜콜린(Lysophosphatidylcholine), 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine), 포스파티딜콜린(Phosphatidylcholine), 포스파티딜에탄올아민(Phosphatidylethanolamine), 스핑고마이엘린(Sphingomyeline) 및 트리아실글리세롤(Triacylglycerol)로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 단계를 포함하는 비결핵 항산균의 감염 질환을 진단하기 위한 정보방법을 제공한다.
본 발명에서 진단하고자 하는 비결핵 항산균 및 진단 표지자인 대사체에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.
본 발명의 구체적인 구현예에 따르면, 상기 대사체의 농도를 측정하는 단계는 크로마토그래피 또는 질량분석기인 정량 장치를 이용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 이용되는 크로마토그래피는 고성능 액체 크로마토그래피(High Performance Liquid Chromatography, HPLC), 액체-고체 크로마토그래피(Liquid-Solid Chromatography, LSC), 종이크로마토그래피(Paper Chromatography, PC), 박층 크로마토그래피(Thin-Layer Chromatography, TLC), 기체-고체 크로마토그래피(Gas-Solid Chromatography, GSC), 액체-액체 크로마토그래피(Liquid-Liquid Chromatography, LLC), 포말 크로마토그래피(Foam Chromatography, FC), 유화 크로마토그래피(Emulsion Chromatography, EC), 기체-액체 크로마토그래피(Gas-Liquid Chromatography, GLC), 이온 크로마토그래피(Ion Chromatography, IC), 겔 여과 크로마토그래피(Gel Filtration Chromatograhy, GFC) 또는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 포함될수 있으나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량용 크로마토그래피를 사용할 수 있다.
본 발명에서 상기 질량분석기는 특별한 제한없이 종래 공지된 질량 분석기를 이용할 수 있지만, 구체적으로 예를 들면, 푸리에 변환 질량분석기(FTMS, Fourier transform mass spectrometer), 말디토프 질량분석기(MALDI-TOF MS), Q-TOF MS 또는 LTQ-Orbitrap MS일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 양태에 따르면, 본 발명은 비결핵 항산균 감염 질환의 예방 또는 진단하기 위한 리소포스파티딜콜린(LPC), 리소포스파티딜에탄올아민(LPE), 포스파티딜콜린(PC), 포스파티딜에탄올아민(PE), 스핑고마이엘린(SM) 및 트리아실글리세롤(TAG)의 용도를 제공한다.
본 발명의 일 양태에 따르면, 본 발명은 지질대사체(lipid metabolites), 아미노산(amino acid) 및 아미노산 유도체로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 제제를 유효성분으로 포함하는, 비결핵 항산균에 의한 감염 질환의 중증도 예측용 조성물로,
상기 지질대사체는 리소포스파티딜콜린(Lysophosphatidylcholine; LPC), 포스파티딜콜린(Phosphatidylcholine; PC), 스핑고마이엘린(Sphingomyeline; SM) 및 트리아실글리세롤(Triacylglycerol; TAG)로 구성된 군으로부터 선택되는 하나 이상이고,
상기 아미노산 및 아미노산 유도체는 글루타민(Glutamine), 히스티딘(Histidine), 메티오닌(Methionine), 아스파라긴(Asgparagine), 글루탐산(Glutamate), 라이신(Lysine), 글라이신(Glysine), N,N-디메틸글라이신(N,N-Dimethylglycine), 트레오닌(Threonine), 호모세린(Homoserine), 트립토판(Tryptophan) 및 시트룰린(Citrulline)로 구성된 군으로부터 선택되는 하나 이상이인 것을 특징으로 하는 조성물을 제공한다.
본 발명자들은 객관적이고 신뢰성 높은 진단 마커의 개발이 어려운 비결핵 항산균(Nontuberculous mycobacteria; NTM), 특히 인간에게 매우 흔하게 폐 질환을 일으키는 마이코박테리움 아비움 복합체(Mycobacterium avium complex; MAC)에 감염된 환자의 중증도를 판정하기 위한 진단 표지자 발굴을 위하여 예의 연구 노력하였다. 그 결과, 비결핵 항산균 감염증의 중증도를 높은 재현성과 신뢰도로 반영할 수 있는 진단 표지자로써, 극성 및 지질대사체 25종을 발굴하였다.
본 명세서에서 용어 “비결핵 항산균”은 결핵균이 아닌 항산균을 의미하며 구체적으로는 결핵 및 나병을 유발하지 않는 모든 마이코박테리아를 포함하는 의미이다. 항산균은 일반적인 세균들과 달리 염색과정에서 산(acid)을 첨가해도 용해되지 않고 견딜 수 있는 능력을 가지는 균주를 의미한다. 이런 항산균들 중 대표적인 것이 바로 결핵균이며, 결핵균이 이외의 항산균을 비결핵항산균(Nontuberculous mycobacteria; NTM)이라고 하고, 거의 매년 새로운 비결핵항산균이 발견되고 있다.
본 명세서에서 용어“예측”은 한 객체가 특정 질병 또는 질환이 현재 중증으로 진행되었거나 또는 향후 중증으로 진행될 위험이 있는지 여부를 중증도와 유의한 상관관계를 가지는 표지자를 기반으로 평가하는 것을 의미한다.
본 명세서에서 용어“예측용 조성물”은 대상체의 비결핵 항산균의 감염이 중증으로 변화했거나 향후 중증으로 진행될 위험성을 가지는지를 예측하기 위해 지질대사체(lipid metabolites), 아미노산(amino acid) 또는 아미노산 유도체의 농도 측정 수단을 포함하는 통합적인 혼합물(mixture) 또는 장비(device)를 의미하며, 이에“예측용 키트”로 표현될 수도 있다. 본 발명의 예측용 조성물은 본 발명에서 발굴된 대사체를 측정하기 위한 수단이 포함되므로, 용어“예측용 조성물”은 대사체의“정량 장치”로 표현될 수도 있다.
본 명세서에서 용어 "대사체(metabolite)"는 대사물질 또는 대사산물이라고도 불리우며, 물질 대사의 중간 생성물 또는 생성물이다. 이러한 대사체는 연료, 구조, 신호전달, 효소에 대한 촉진 및 저해 효과, 그 자신의 촉매 활성(일반적으로 효소에 대한 보조 인자로서), 방어, 다른 생물체와의 상호작용(예: 색소, 방향 화합물, 페로몬)을 포함하는 다양한 기능을 가지고 있다. 1차 대사체는 정상적인 생장, 발생 및 생식에 직접적으로 관여한다. 2차 대사체는 이러한 과정들에 직접적으로 관여하지 않지만, 대개 중요한 생태학적 기능을 가지고 있다.
본 발명에 따르면, 상기 대사체는 생체 기원의 시료, 즉 생물학적 시료로부터 수득한 대사 물질을 말하는 것으로, 상기 생물학적 시료는 생물학적 체액, 조직 또는 세포를 의미하는 것이다.
본 발명에 따르면, 상기 대사체는 혈액, 구체적으로는 혈청 기원의 액상 시료로부터 수득한 대사물질일 수 있다.
본 발명의 구체적인 구현예에 따르면, 상기 리소포스파티딜콜린은 LPC (14:0), LPC (15:0) 또는 LPC (20:3)로 구성된 군으로부터 선택되는 하나 이상의 리소포스파티딜콜린이다.
본 발명의 구체적인 구현예에 따르면, 상기 포스파티딜콜린은 PC 32:2(18:2/14:0), PC 34:3(16:1/18:2), PC 36:1(18:0/18:1), PC 36:3(16:0/20:3), PC 36:6(14:0/22:6) 및 PC 38:7(16:1/22:6)로 구성된 군으로부터 선택되는 하나 이상의 포스파티딜콜린이다.
본 발명의 구체적인 구현예에 따르면, 상기 스핑고마이엘린은 SM d34:1(d18:1/16:0), SM d36:1(d18:1/18:0) 또는 SM d42:2(d18:1/24:1)로 구성된 군으로부터 선택되는 하나 이상의 스핑고마이엘린이다.
본 발명의 구체적인 구현예에 따르면, 상기 트리아실글리세롤은 TAG 58:11(22:6/20:5/16:0)이다.
본 발명의 구체적인 구현예에 따르면, 상기 글루타민, 히스티딘, 메티오닌, 아스파라긴, 글루탐산, 트레오닌, 라이신, 트립토판은 L-형태(L-form)이다.
본 발명의 구체적인 구현예에 따르면, 상기 글루타민, 히스티딘, 메티오닌, 아스파라긴, 라이신, 글라이신, N,N-디메틸글라이신, 트레오닌, 호모세린, 트립토판 또는 시트룰린의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 낮은 경우, 중증의 비결핵 항산균으로 판정한다.
본 발명에서 상기 비결핵 항산균에 의한 감염성 폐 질환은 상엽 공동형(upper lobe cavitary form) 또는 결절 결절 기관지 확장증형 (nodular bronchiectatic form)이다. 또한 상기 비결핵 항산균에 의한 감염 질환의 중증도인 것은 상엽 공동형임을 의미한다.
본 발명에서, 측정되는 대사체 농도는 비결핵 항산균에 의한 감염 후 대상체에서 발병한 질환이 상엽 공동형 폐 질환인지 결절 기관지 확장증형 폐 질환인지 구별하여 진단이 가능하다.
본 발명에서 용어, “상엽 공동형”은 오래 전부터 잘 알려진 질환으로 주로 40대에서 50대의 중년남성에서 오랜 기간 흡연력과 음주력이 있는 경우에 빈번하게 발생하고 치료를 하지 않으면 1-2년 이내에 광범위한 폐 실질의 파괴와 호흡부전으로 사망에 이르는 질환을 의미한다. 흉부방사선촬영에서는 폐결핵과 유사한 상엽의 공동과 섬유화를 보이는 병변이 관찰되지만, 폐실질에 둘러싸인 얇은 벽을 가진 공동과 기관지를 통한 병변의 전파보다는 접촉성 전파가 더 뚜렷하고 흉막을 더 현저히 침범하는 특징을 가지고 있다.
본 발명에서 용어, “결절 기관지확장증형”은 1980년대 후반에서야 알려진 질병으로 기저 질환이 없는 중년 이상의 비흡연자 여성에서 주로 발견되어 “레이디 윈더미어 증후군(Lady Windermere syndrome)”으로 불려지기도 하며, 상엽 공동형 MAC 폐질환에 비해 진행속도가 매우 느려서, 장기간의 추적 관찰이 필요한 질환을 의미한다. 이 질환은 특징적인 고해상도 전산화단층촬영 소견을 가지는데 중심부에 다발성 기관지 확장증과 주변의 작은 결절과 침윤이 주로 우중엽과 좌상엽의 설상엽에서 관찰되는 특징을 가진다.
본 발명의 구성 중“예측용 조성물”을 언급하면서 사용되는 용어“농도의 감소 또는 낮음”은 결절 기관지확장증형 환자에 비해 상엽 공동형 환자 혈청 내 대사체 농도가 유의하게 낮은 경우를 의미하며, 구체적으로는 상기 대사체의 농도가 결절 기관지확장증형 환자와 상엽 공동형 환자와 비교하여 약 5% 이상 감소, 약 10% 감소, 약 15% 이상 감소, 약 20% 이상 감소 또는 약 25% 이상 감소를 의미하고, 보다 구체적으로는 약 30% 이상 감소하는 경우를 의미하며, 이를 벗어나는 범위를 제외하는 것은 아니다.
본 발명의 구체적인 구현예에 따르면, 상기 글루탐산의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 높은 경우, 중증의 비결핵 항산균으로 판정한다.
본 발명의 구성 중“예측용 조성물”을 언급하면서 사용되는 용어“농도의 증가 또는 높음”은 결절 기관지확장증형 환자에 비해 상엽 공동형 환자 혈청 내 대세체 농도가 유의하게 높은 경우를 의미하며, 구체적으로는 상기 대사체의 농도가 결절 기관지확장증형 환자와 상엽 공동형 환자와 비교하여 약 5% 이상 증가, 약 10% 이상 증가 또는 약 15% 이상 증가를 의미하고, 보다 구체적으로는 약 20% 이상 증가하는 경우를 의미하며, 이를 벗어나는 범위를 제외하는 것은 아니다.
본 발명의 구체적인 구현예에 따르면, 상기 리소포스파티딜콜린 또는 트리아실글리세롤의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 낮은 경우, 중증의 비결핵 항산균으로 판정한다.
본 발명의 구성 중“예측용 조성물”을 언급하면서 사용되는 용어“농도의 감소 또는 낮음”은 결절 기관지확장증형 환자에 비해 상엽 공동형 환자 혈청 내 상기 대세체 농도가 유의하게 낮은 경우를 의미하며, 구체적으로는 대사체의 농도가 결절 기관지확장증형 환자와 상엽 공동형 환자와 비교하여 약 10% 이상 감소, 약 20% 감소 또는 약 30% 이상 감소를 의미하고, 보다 구체적으로는 약 40% 이상 감소하는 경우를 의미하며, 이를 벗어나는 범위를 제외하는 것은 아니다.
본 발명의 구체적인 구현예에 따르면, 상기 스핑고마이엘린의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 높은 경우, 중증의 비결핵 항산균으로 판정한다.
본 발명의 구성 중“예측용 조성물”을 언급하면서 사용되는 용어“농도의 증가 또는 높음”은 결절 기관지확장증형 환자에 비해 상엽 공동형 환자 혈청 내 대세체 농도가 유의하게 높은 경우를 의미하며, 구체적으로는 대사체의 농도가 결절 기관지확장증형 환자와 상엽 공동형 환자와 비교하여 약 10% 이상 증가, 약 20% 이상 증가 또는 약 30% 이상 증가를 의미하고, 보다 구체적으로는 약 35% 이상 증가하는 경우를 의미하며, 이를 벗어나는 범위를 제외하는 것은 아니다.
본 발명의 구체적인 구현예에 따르면, 상기 포스파티딜콜린PC 32:2(18:2/14:0), PC 34:3(16:1/18:2), PC 36:6(14:0/22:6) 또는 PC 38:7(16:1/22:6)의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 낮은 경우, 중증의 비결핵 항산균으로 판정한다.
본 발명의 구체적인 구현예에 따르면, 상기 포스파티딜콜린PC 36:1(18:0/18:1) 또는 PC 36:3(16:0/20:3)의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 높은 경우, 중증의 비결핵 항산균으로 판정한다.
본 발명의 구체적인 구현예에 따르면, 상기 지질대사체, 아미노산 및 아미노산 유도체는 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 내 존재한다. 구체적으로는 혈청일 수 있으나, 이에 제한되는 것은 아니다.
구체적으로는, 상기 대사체를 검출하기 위해 전혈, 혈장 또는 혈청을 전처리할 수 있다. 예를 들어, 여과, 증류, 추출, 분리, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다. 또한, 상기 대사체는 대사 및 대사 과정에 의해 생산된 물질 또는 생물학적 효소 및 분자에 의한 화학적 대사작용으로 발생한 물질 등을 포함할 수 있다.
본 발명의 구체적인 구현예에 따르면, 상기 비결핵 항산균은 마이코박테리움 아비움(M. avium), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 플라베센스(M. flavescence), 마이코박테리움 아프리카눔(M. africanum), 마이코박테리움 보비스(M. bovis), 마이코박테리움 첼로네(M. chelonae), 마이코박테리움 셀라툼(M. celatum), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 고르도네(M. gordonae), 마이코박테리움 가스트리(M. gastri), 마이코박테리움 헤모필룸(M. haemophilum), 마이코박테리움 인트라셀루라레(M. intracellulare), 마이코박테리움 칸사시이(M. kansasii), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 스줄가이(M. szulgai), 마이코박테리움 테레(M. terrae), 마이코박테리움 스크로풀라세움(M. scrofulaceum), 마이코박테리움 울서란스(M. ulcerans), 마이코박테리움 시미애(M. simiae) 및 마이코박테리움 제노피(M. xenopi)로 구성된 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따르면, 상기 비결핵 항산균 감염 질환은 상기 비결핵 항산균의 감염에 의해 나타나는 모든 임상적 증상을 포함하는 것으로, 상기 감염 질환은 폐 질환, 림프절염, 피부·연조직·골감염증 또는 파종성 질환 등을 포함할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 지질대사체(lipid metabolites), 아미노산(amino acid) 및 아미노산 유도체로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 단계를 포함하는 비결핵 항산균에 의한 감염 질환의 중증도를 예측하기 위한 정보 제공 방법으로서,
상기 지질대사체는 리소포스파티딜콜린(Lysophosphatidylcholine), 포스파티딜콜린(Phosphatidylcholine), 스핑고마이엘린(Sphingomyeline) 및 트리아실글리세롤(Triacylglycerol)로 구성된 군으로부터 선택되는 하나 이상이며,
상기 아미노산 및 아미노산 유도체는 글루타민(Glutamine), 히스티딘(Histidine), 메티오닌(Methionine), 아스파라긴(Asgparagine), 글루탐산(Glutamate), 라이신(Lysine), 글라이신(Glysine), N,N-디메틸글라이신(N,N-Dimethylglycine), 트레오닌(Threonine), 호모세린(Homoserine), 트립토판(Tryptophan) 및 시트룰린(Citrulline)로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 제제를 유효성분으로 포함하는 것을 제공한다.
본 발명에서 비결핵 항산균의 측정대상인 지질대사체, 아미노산 및 아미노산 유도체에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위해 그 기재를 생략한다.
본 발명의 구체적인 구현예에 따르면, 상기 대사체의 농도를 측정하는 단계는 크로마토그래피 또는 질량분석기인 정량 장치를 이용한다.
본 발명에서 이용되는 크로마토그래피는 고성능 액체 크로마토그래피(High erformance Liquid Chromatography, HPLC), 액체-고체 크로마토그래피(Liquid-Solid Chromatography, LSC), 종이크로마토그래피(Paper Chromatography, PC), 박층 크로마토그래피(Thin-Layer Chromatography, TLC), 기체-고체 크로마토그래피(Gas-Solid Chromatography, GSC), 액체-액체 크로마토그래피(Liquid-Liquid Chromatography, LLC), 포말 크로마토그래피(Foam Chromatography, FC), 유화 크로마토그래피(Emulsion Chromatography, EC), 기체-액체 크로마토그래피(Gas-Liquid Chromatography, GLC), 이온 크로마토그래피(Ion Chromatography, IC), 겔 여과 크로마토그래피(Gel Filtration Chromatograhy, GFC) 또는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 포함될수 있으나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량용 크로마토그래피를 사용할 수 있다.
본 발명에서 상기 질량분석기는 특별한 제한없이 종래 공지된 질량 분석기를 이용할 수 있지만, 구체적으로 예를 들면, 푸리에 변환 질량분석기(FTMS, Fourier transform mass spectrometer), 말디토프 질량분석기(MALDI-TOF MS), Q-TOF MS 또는 LTQ-Orbitrap MS일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 양태에 따르면, 본 발명은 비결핵 항산균에 의한 감염 질환의 중증도를 예측하기 위한 리소포스파티딜콜린(LPC), 포스파티딜콜린(PC), 스핑고마이엘린(SM) 및 트리아실글리세롤(TAG), 글루타민(Glutamine), 히스티딘(Histidine), 메티오닌(Methionine), 아스파라긴(Asgparagine), 글루탐산(Glutamate), 라이신(Lysine), 글라이신(Glysine), N,N-디메틸글라이신(N,N-Dimethylglycine), 트레오닌(Threonine), 호모세린(Homoserine), 트립토판(Tryptophan) 및 시트룰린(Citrulline)의 용도를 제공한다.
본 발명은 비결핵 항산균(NTM), 특히 객관적이고 신뢰도 높은 진단 표지자가 부족한 마이코박테리움 아비움 복합체(MAC)에 있어서, 상기 대사체들을 신속 정확하며 신뢰도 높은 측정을 위한 바이오마커로 적용함으로써, 비결핵 항산균 감염 질환의 보다 효율적인 진단에 유용하게 이용될 수 있다.
본 발명은 비결핵 항산균(NTM), 특히 질환의 진행 경과에 대한 객관적이고 신뢰도 높은 바이오마커가 전무한 마이코박테리움 아비움 복합체(MAC)에 있어서, 상기 대사체들을 질환의 진행 경과 및 중증도를 높은 정확도로 예측하는 표지자로 적용함으로써, 비결핵 항산균으로 인한 감염 환자의 중증도를 판정하여 환자 맞춤형 치료 전략을 조기에 수립함으로써, 환자의 생존률을 현저히 개선시키는데 유용하게 이용될 수 있다.
도 1a는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 리소포스파티딜콜린(Lysophosphatidylcholine; LPC 18:0)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1b는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 리소포스파티딜콜린(Lysophosphatidylcholine; LPC 20:5)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1c는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 36:5(20:5/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1d는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 스핑고마이엘린(Sphingomyeline; SM d34:1(d18:1/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1e는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 스핑고마이엘린(Sphingomyeline; SM d42:1(d18:1/24:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1f는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 스핑고마이엘린(Sphingomyeline; SM d42:2(d18:1/24:1))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1g는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 트리아실글리세롤(Triacylglycerol; TAG 54:5(18:1/18:1/18:3))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1h는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 트리아실글리세롤(Triacylglycerol; TAG 55:7(21:5/18:2/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1i는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 트리아실글리세롤(Triacylglycerol; TAG 58:11(22:6/20:5/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1j는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 트리아실글리세롤(Triacylglycerol; TAG 60:11(22:6/20:4/18:1))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 1k는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 트리아실글리세롤(Triacylglycerol; TAG 60:12(22:6/22:6/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2a는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine; LPE 18:2)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2b는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine; LPE 20:4)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2c는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 28:0(14:0/14:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2d는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 30:0(14:0/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2e는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 32:2(18:2/14:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2f는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 33:2(18:2/15:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2g는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 34:2(18:2/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2h는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 34:3(16:1/18:2))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2i는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 36:4(20:4/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2j는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC O--36:3(O--18:1/18:2))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2k는 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC O--36:5(O--16:1/20:4))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2l은 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC O--38:5(O--18:1/20:4))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 2m은 본 발명의 일 실시예에서 항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 혈청 시료에서 포스파티딜에탄올아민(Phosphatidylethanolamine; PE--NME 34:1(18:1/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3a는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-글루타민(L-Glutamine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3b는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-히스티딘(L-Histidine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3c는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-메티오닌(L-Methionine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3d는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-아스파라긴(L-Asgparagine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3e는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-글루탐산(L-Glutamate)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3f는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-트레오닌(L-Threonine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3g는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 N,N-디메틸글라이신(N,N-Dimethylglycine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3h는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-라이신(L-Lysine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3i는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 글라이신(Glysine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3j는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 호모세린(Homoserine)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3k는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 시트룰린(Citrulline)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 3l는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 L-트립토판(L-Tryptophan)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4a는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 리소포스파티딜콜린(Lysophosphatidylcholine; LPC 14:0)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4b는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 리소포스파티딜콜린(Lysophosphatidylcholine; LPC 15:0)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4c는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 리소포스파티딜콜린(Lysophosphatidylcholine; LPC 20:3)의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4d는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 32:2(18:2/14:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4e는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 34:3(16:1/18:2))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4f는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 36:1(18:0/18:1))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4g는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 36:3(16:0/20:3))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4h는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 36:6(14:0/22:6))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4i는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 포스파티딜콜린(Phosphatidylcholine; PC 38:7(16:1/22:6))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4j는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 스핑고마이엘린(Sphingomyeline; SM d34:1(d18:1/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4k는 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 스핑고마이엘린(Sphingomyeline; SM d36:1(d18:1/18:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4l은 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 스핑고마이엘린(Sphingomyeline; SM d42:2(d18:1/24:1))의 발현 수준을 비교한 그래프를 나타낸 것이다.
도 4m은 본 발명의 일 실시예에서 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자 중 결절 기관지 확장증형(nodular bronchiectatic form) 환자와 상엽 공동형(upper lobe cavitary form) 환자의 혈청 시료에서 트리아실글리세롤(Triacylglycerol; TAG 58:11(22:6/20:5/16:0))의 발현 수준을 비교한 그래프를 나타낸 것이다.
본 발명은 객관적이고 신뢰성 높은 진단 마커의 개발이 어려운 비결핵 항산균(Nontuberculous mycobacteria; NTM), 특히 인간에게 매우 흔하게 폐 질환을 일으키는 마이코박테리움 아비움 복합체(Mycobacterium avium complex; MAC)에 감염된 환자를 건강한 대상체로부터 구별하기 위한 진단 표지자 발굴 및감염된 환자의 중증도를 판정하기 위한 진단 표지자 발굴을 위한 것이다. 감염 환자의 치료전(Tx0) 혈청 샘플과 건강한 사람의 혈청 샘플을 비교 분석과 감염 환자의 혈청 샘플을 비교 분석함으로 연구를 진행했다. 그 결과 비결핵 항산균 감염환자와 비감염 대상체를 명확히 구분할 수 있는 진단 표지자로서 24종의 지질 대사체를 발견하였으며, 비결핵 항산균 감염증의 중증도를 높은 재현성과 신뢰도로 반영할 수 있는 진단 표지자로써, 극성 및 지질대사체 25종을 발굴하였다. 이로써, 비결핵 항산균 감염 질환의 보다 효율적인 진단과 비결핵 항산균으로 인한 감염 환자의 중증도를 판정하여 환자 맞춤형 치료 전략을 조기에 수립할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예
[실험예 1] MAC 감염 환자와 건강한 사람의 시료 수집
2012년 1월부터 2016년 8월까지 기간 동안 대략 6년간 서울 삼성병원에서 수집한 마이코박테리움 아비움 복합체(Mycobacterium avium complex) (avium : 80명, intracellulare : 65명, 총 145명) 감염 환자의 항생제 치료 전의 혈청 샘플 145개와 건강한 사람의 혈청 30개를 준비하였다.
[실험예 2] 시료에 대한 전처리
먼저, 상기 실험예 1에서 얻어진 혈청 시료 (50 μl)에 300 μl 클로로포름, 150 μl 메탄올 (chloroform-methanol, 2:1, v/v, 4 ℃)을 첨가하고 30초 동안 섞어 주었다. 여기에 150 μl 물을 첨가하고 30 초 동안 섞은 뒤 ICE에 넣어 10 분간 방치하여 추출하였다. 이후, 원심분리기기를 이용하여 10 분간 13,000 rpm, 4 ℃에서 원심분리한 뒤 하층액(200 μl) 분리해내어 Speed vacuum (full vacuum, no temp, 1-2hours)을 이용하여 건조하여 이하의 대사체 분석 전까지 -20 ℃에서 보관하였다. 질량 분석기 분석을 위해 건조된 시료를 200 μl 아이소프로판올:아세토니트릴:물(Isopropanol :Acetonitrile:Water) (2:1:1, v/v)에 재용해 후, 존재할 가능성이 있는 불순물 제거를 위하여 필터 튜브(Filter tube)(Costar 8169)를 이용하여 여과한 후 분석을 진행하였다. 기계 품질 관리(Machinery Quality Control; MQC)로, MS/MS 기기상태를 체크하기 위하여 혈청 샘플과 같은 전 처리방법으로 건강한 사람의 혈청을 기계 품질 관리(MQC)의 샘플로 사용하여 배치 당 6회 반복 분석하였다. 시료 품질 관리(Sample Quality Control; SQC)를 위하여 각 배치 안에서 시료 간의 차이를 비교하기 위해 시료 당 10 μl씩 모아 시료 품질 관리를 제작하여 배치 당 6회 반복 분석하였다.
[실험예 3] UHPLC-MS(Q-Exactive Orbitrap Plus)를 통한 대사체 분석
혈청에서 처리한 분석 시료 내의 지질대사체를 분석하기 위하여 크로마토그래피-텐덤 질량분석기(UHPLC-MS)를 이용하여 분석을 진행하였다. 사용된 장비는 Thermo Scientific의 Ultimate 3000RS pump UHPLC와 Q-Exactive Orbitrap Plus MS를 이용하였다. 친수성 상호 작용을 위한 크로마토그래피 조건으로는 Acquity UPLC BEH C18(2.1 x 100 mm, 1.7μm, Waters) 컬럼을 이용하여 35 ℃에서 기울기 용리를 이용하여 지질대사체들을 분리하였다. 첫 번째 이동상으로는 (A) 10mM Ammonium formate in 50% ACN + 0.1% Formic acid (v/v)및 (B) 2mM Ammonium formate in ACN/IPA/Water 10:88:2 + 0.02% Formic acid (v/v)을 이용하였으며, 다음 이동상의 기울기 용리는 총 분석 시간을 28분으로 하여 아래 표 1과 동일하게 수행하였다. 전기분무법(Electrospray Ionization, ESI)은 양(positive), 음(negative) 2가지 모드의 이온화방식으로 수행하였으며, Full scan 매스 범위(Mass range)는 250-1200 m/z으로 70,000 해상도(Resolution)를 사용하였으며, 자동 이득 제어(Automatic gain control, AGC) target은 1x106 이온으로 최대 주입 시간(Injection time, IT)는 100ms로 분석하였다. 충돌 에너지(Collision energy, CE)는 20, 30, 40이며 이온화 소스 (Source ionization spray voltage)는 3.0kV, Capillary temperature은 370°C였다. 분석을 통해 얻어진 결과는 Thermo Scientific의 분석소프트웨어(Compound Discoverer)를 통하여 로우 데이터(raw data)를 계산하여 유의성(p-value<0.05)이 높은 지질대사체를 산출하였다.
시간(분) 이동상 A(%) 이동상 B(%) 유속(mL/min)
0 65 35 0.30
4 40 60 0.30
12 15 85 0.30
21 0 100 0.30
24 0 100 0.30
28 65 35 0.30
[실험예 4] 비결핵항산균 감염자의 혈청 시료 내 대사체 분석 결과
항생제 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람의 대사체 농도를 비교하기 위해 다음의 통계 검정 2가지 방법으로 Metaboanalyst(data 통계사이트)와 SPSS 통계 프로그램을 이용하여 그룹간 유의성 있는 (p-value<0.05) 지질대사체를 산출하였고, 그 결과를 이용하여 치료 전의 마이코박테리움 아비움 복합체(MAC) 감염 폐 질환 환자와 건강한 사람을 구분할 수 있는 질병 관련 대사체 총 24 종(p-value<0.05)을 각각의 p-value와 건강한 사람 대비 발현 수준의 배수 변화(Fold change) 값을 토대로 선정하여 그 결과를 하기 표 2 및 도 1a 내지 2m에 나타내었다. 단, 도 1a 내지 2m에서, HC는 건강한 사람 30명의 혈청 샘플에서 각 대사체의 발현 수준을 나타낸 것이고, Tx0는 항생제 치료 시작전의 마이코박테리움 아비움 복합체(MAC) 감염 환자 145명의 혈청 샘플에서 각 대사체의 발현 수준을 나타낸 것이다. 또한, 유의성 unpaired t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
치료전 MAC환자 시료 대비 건강한 사람 시료에서 증가된 지질대사체
대사체 종류(Compounds) 유의성 (p-value) Fold Change
LPC 18:0 0.038 1.10
LPC 20:5 <0.001 1.63
PC 36:5(20:5/16:0) <0.001 1.44
SM d34:1(d18:1/16:0) 0.003 1.16
SM d42:1(d18:1/24:0) 0.004 1.20
SM d42:2(d18:1/24:1) <0.001 1.29
TAG 54:5(18:1/18:1/18:3) 0.025 1.31
TAG 55:7(21:5/18:2/16:0) <0.001 1.96
TAG 58:11(22:6/20:5/16:0) <0.001 2.43
TAG 60:11(22:6/20:4/18:1) <0.001 1.96
TAG 60:12(22:6/22:6/16:0) 0.002 1.96
치료전 MAC환자 시료 대비 건강한 사람 시료에서 감소된 지질대사체
LPE 18:2 0.011 0.76
LPE 20:4 <0.001 0.72
PC 28:0(14:0/14:0) 0.003 0.54
PC 30:0(14:0/16:0) 0.019 0.79
PC 32:2(18:2/14:0) <0.001 0.65
PC 33:2(18:2/15:0) 0.048 0.87
PC 34:2(18:2/16:0) 0.032 0.92
PC 34:3(16:1/18:2) 0.049 0.84
PC 36:4(20:4/16:0) <0.001 0.77
PE-NME 34:1(18:1/16:0) 0.002 0.87
PC O-36:3(O-18:1/18:2) <0.001 0.78
PC O-36:5(O-16:1/20:4) <0.001 0.69
PC O-38:5(O-18:1/20:4) <0.001 0.79
상기 표 2 및 도 1a 내지 2m에서 보는 바와 같이, 혈액 대사체 중 리소포스파티딜콜린(Lysophosphatidylcholine; LPC 18:0), 리소포스파티딜콜린(LPC 20:5), 포스파티딜콜린(Phosphatidylcholine; PC 36:5(20:5/16:0)), 스핑고마이엘린(Sphingomyeline; SM d34:1(d18:1/16:0)), 스핑고마이엘린(SM d42:1(d18:1/24:0)), 스핑고마이엘린(SM d42:2(d18:1/24:1)), 트리아실글리세롤(Triacylglycerol; TAG 54:5(18:1/18:1/18:3)), 트리아실글리세롤(TAG 55:7(21:5/18:2/16:0)), 트리아실글리세롤(TAG 58:11(22:6/20:5/16:0)), 트리아실글리세롤(TAG 60:11(22:6/20:4/18:1)) 및 트리아실글리세롤(TAG 60:12(22:6/22:6/16:0))은 건강한 사람 대비 비결핵 항산균 감염자에서 유의적으로 그 발현이 증가하였고, 그 외에 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine; LPE 18:2), 리소포스파티딜에탄올아민(LPE 20:4), 포스파티딜콜린(Phosphatidylcholine; PC 28:0(14:0/14:0)), 포스파티딜콜린(PC 30:0(14:0/16:0)), 포스파티딜콜린(PC 32:2(18:2/14:0)), 포스파티딜콜린(PC 33:2(18:2/15:0)), 포스파티딜콜린(PC 34:2(18:2/16:0)), 포스파티딜콜린(PC 34:3(16:1/18:2)), 포스파티딜콜린(PC 36:4(20:4/16:0)), 포스파티딜콜린(PC O-36:3(O-18:1/18:2)), 포스파티딜콜린(PC O-36:5(O-16:1/20:4)), 포스파티딜콜린(PC O-36:5(O-16:1/20:4)) 및 포스파티딜에탄올아민(PE-NME 34:1(18:1/16:0))은 건강한 사람 대비 비결핵 항산균 감염자에서 유의적으로 그 발현이 감소한 것을 확인할 수 있었다.
이를 통하여 지질대사체로, 리소포스파티딜콜린(Lysophosphatidylcholine; LPC 18:0), 리소포스파티딜콜린(LPC 20:5), 포스파티딜콜린(Phosphatidylcholine; PC 36:5(20:5/16:0)), 스핑고마이엘린(Sphingomyeline; SM d34:1(d18:1/16:0)), 스핑고마이엘린(SM d42:1(d18:1/24:0)), 스핑고마이엘린(SM d42:2(d18:1/24:1)), 트리아실글리세롤(Triacylglycerol; TAG 54:5(18:1/18:1/18:3)), 트리아실글리세롤(TAG 55:7(21:5/18:2/16:0)), 트리아실글리세롤(TAG 58:11(22:6/20:5/16:0)), 트리아실글리세롤(TAG 60:11(22:6/20:4/18:1)), 트리아실글리세롤(TAG 60:12(22:6/22:6/16:0)), 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine; LPE 18:2), 리소포스파티딜에탄올아민(LPE 20:4), 포스파티딜콜린(Phosphatidylcholine; PC 28:0(14:0/14:0)), 포스파티딜콜린(PC 30:0(14:0/16:0)), 포스파티딜콜린(PC 32:2(18:2/14:0)), 포스파티딜콜린(PC 33:2(18:2/15:0)), 포스파티딜콜린(PC 34:2(18:2/16:0)), 포스파티딜콜린(PC 34:3(16:1/18:2)), 포스파티딜콜린(PC 36:4(20:4/16:0)), 포스파티딜콜린(PC O-36:3(O-18:1/18:2)), 포스파티딜콜린(PC O-36:5(O-16:1/20:4)), 포스파티딜콜린(PC O-36:5(O-16:1/20:4)) 및 포스파티딜에탄올아민(PE-NME 34:1(18:1/16:0))을 비결핵 항산균에 의한 감염 또는 감염 질환을 진단하기 위한 바이오마커로 사용할 수 있음을 알 수 있었다.
[실험예 5] MAC 감염 환자의 폐질환의 형태별 기관지확장증형(Nodular bronchiectatic; NB)과 상엽 공동형(Upper lobe cavitary; UC) 환자의 시료 수집
2012년 1월부터 2016년 8월까지 기간 동안 대략 6년간 서울 삼성병원에서 수집한 마이코박테리움 아비움 복합체(Mycobacterium avium complex)감염 환자의 혈청샘플을 폐 질환 형태(NB : 83명, UC : 31명, 총 114명)에 따라 나누어 추출하고 준비하였다.
[실험예 6] 시료에 대한 전처리
먼저, 지질대사체 분석을 위하여 상기 실험예 1에서 얻어진 혈청 시료 (50 μl)에 300 μl 클로로포름, 150 μl 메탄올 (chloroform-methanol, 2:1, v/v, 4 ℃)을 첨가하고 30초 동안 섞어 주었다. 여기에 150 μl 물을 첨가하고 30 초 동안 섞은 뒤 ICE에 넣어 10 분간 방치하여 추출하였다. 이후, 원심분리기기를 이용하여 10 분간 13,000 rpm, 4 ℃에서 원심분리한 뒤 하층액(200 μl)을 분리해내어 Speed vacuum (full vacuum, no temp, 1-2hours)을 이용하여 건조하여 이하의 대사체 분석 전까지 -20 ℃에서 보관하였다. 질량 분석기 분석을 위해 건조된 시료를 200 μl 아이소프로판올:아세토니트릴:물 (Isopropanol:Acetonitrile:Water (2:1:1, v/v))에 재용해 후, 존재할 가능성이 있는 불순물 제거를 위하여 필터 튜브(Filter tube)(Costar 8169)를 이용하여 여과한 후 분석을 진행하였다. 극성 대사체 분석을 위해 혈청 시료 (10μl)에 86μl 물과 201μl 아세토나이트릴 (총 287μl의 70% Acetonitrile, 4°C, v/v)를 첨가하고 3μl의 internal standard mixture (Cambridge Isotope Laboratories사의 Isotopic solution과 13C labeled taurine, allantoin, hypoxanthine)을 넣고 30초 동안 섞은 뒤 ICE에 넣어 10분간 방치하여 추출을 진행하였으며, 불순물 제거를 위해 필터 튜브(Filter tube, Costar 8169)를 이용하여 여과 후 분석 진행하였다. 기계 품질 관리(Machinery Quality Control; MQC)로, MS/MS 기기상태를 체크하기 위하여 구입한 인간의 혈청 샘플을 환자 혈청 샘플과 같은 전 처리방법으로 기계 품질 관리(MQC)의 샘플로 사용하여 배치 당 6회 반복 분석하였다. 시료 품질 관리(Sample Quality Control; SQC)를 위하여 각 배치 안에서 시료 간의 차이를 비교하기 위해 시료 당 10 μl씩 모아 시료 품질 관리를 제작하여 배치 당 6회 반복 분석하였다.
[실험예 7] HPLC-Triple Quad-MS를 통한 대사체 분석
혈청에서 처리한 분석시료내의 극성 대사체를 분석하기 위해 크로마토그래피-텐덤 질량분석기(HPLC-MS/MS)를 이용하여 분석을 진행하였다. 사용된 장비는 Agilent 1200 HPLC와 Sciex API4000 triple quadrupole MS를 이용하였다. 친수성 상호작용을 위한 크로마토그래피 조건으로는 Luna PFPP(2.0 x 150 mm, 3μm, Phenomenex) 컬럼을 이용하여 20℃에서 용매에 따른 2가지 방법으로 기울기 용리를 이용하여 극성 대사체들을 분리하였다. 첫 번째 이동상으로는 (A) H2O (v/v)및 (B) Acetonitrile (v/v)를 이용하였고, 두 번째 이동상으로는 (A) H2O (v/v, 0.1% formic acid) 및 (B) Acetonitrile (v/v) 이용하였으며, 각각 조건의 기울기 용리는 총 분석 시간을 15분으로 하여 아래 표 3과 동일하게 수행하였다. 분무기 가스(Ion-Source Gas 1/2)단위는 50/50 arbitrary unit이었으며, 가스커튼(Curtain Gas)의 단위는 25 arbitrary unit이었다. 소스 온도(Source temperature)는 500℃였으며, 이온스프레이 부유 전압(Ion-spray Floating Voltage)는 5,5kV(negative -4.5kV)이었으며, 매스 범위(Mass range)는 50-1000 m/z였다. 시료 주입은 HTC_PAL system/CTC analytics auto-sampler를 이용하여 3μl씩 주입하였으며, 텐덤 질량 분석기 조건 (예약 다중 반응 검지법; Scheduled Multiple Reaction Monitoring, sMRM)은 아래 표 3 내지 7과 같이 수행하였다. 표 4는 Water method (+), 및 21종 대사체이며, 표 5는 Water method (-), 및 12종 대사체이고, 표 6은 Formic acid method (+), 및 32종 대사체이며, 표 7은 Formic acid method (-), 및 24종 대사체이다.
시간(분) 이동상 A(%) 이동상 B(%) 유속(mL/min)
0 100 0 0.35
8 73 27 0.35
9 15 85 0.35
10 100 0 0.35
15 100 0 0.35
대사체 종류(Compounds) m/z Product ion RT CE
타이로신(L-Tyrosine) 182 77 2.8 41
시스타티오닌(L-Cystathionine) 223 134 0.9 11
베타인(Betaine) 118 58 1.32 39
티아민(Thymine) 127 110 5.43 21
오르니틴(Ornithine) 133 70 0.95 25
구아닌(Guanine) 152 110 2.2 27
히스티딘(Histidine) 156 110 1.32 12
아세틸오르니틴(N-Acetylornithine) 175 115 1.14 14
글루코사민(Glucosamine) 180 162 1.4 10
우라실(Uracil) 113 70 1.85 23
디옥시우리딘(Deoxyuridine) 229 113 6.21 11
씨티딘(Cytidine) 244 112 2.44 12
디옥시아데노신(Deoxyadenosine) 252 136 8.5 20
디옥시이노신(Deoxyinosine) 253 137 6.58 12
아데노신(Adenosine) 268 136 7.72 27
디옥시구아노신(Deoxyguanosine) 268 152 6.84 15
이노신(Inosine) 269 137 6.24 14
구아노신(Guanosine) 284 152 6.55 17
잔토신(Xanthosine) 285 153 6.97 20
싸이클릭 AMP(Cyclic AMP) 328 287 0.86 9
에스-아데노실메티오닌
S-Adenosylmethionine (SAH)
385 136 0.46 19
대사체 종류(Compounds) m/z Product ion RT CE
글루코스(D-Glucose) 179 89 0.92 -12
하이드록시뷰티레이트(3-hydroxybutyric acid) 103 41 0.96 -32
타우린(Taurine) 124 80 0.9 -16
안트라닐레이트(Anthranilate) 136 92 3.68 -16
하이드록시벤조에이트(p-Hydroxybenzoate) 137 93 1.6 -21
시투를린(Citrulline) 174 131 1.21 -13
하이드록시페닐파이루베이트(p-Hydroxybenzoate) 179 107 0.97 -11
마이오이노시톨(myo-Inositol) 179 161 0.94 -15
티미딘(Thymidine) 241 125 7.02 -10
우리딘(Uridine) 243 111 4.22 -12
니코티네이트(Nicotinate) 122 78 1.54 -14
우레이트(Uric acid) 167 124 1.35 -22
대사체 종류(Compounds) m/z Product ion RT CE
세린(L-Serine) 106 60 0.9 15
프롤린(L-Proline) 116 70 1.13 21
발린(L-Valine) 118 72 1.41 15
트레오닌(L-Threonine) 120 74 0.96 15
이소류신(L-isoLeucine) 132 86 1.93 15
류신(L-Leucine) 132 86 2.3 15
아스파라긴(L-Asparagine) 133 74 0.9 17
글루타민(L-Glutamine) 147 84 0.95 23
라이신(L-Lycine) 147 84 0.74 23
글루타메이트(L-Glutamate) 148 84 1 23
메티오닌(L-Methionine) 150 104 1.8 11
페닐알라닌(L-Phenylalanine) 166 120 6.41 17
알지닌(L-Arginine) 175 70 0.8 35
트립토판(L-Tryptophan) 205 188 8.4 13
다이메틸글라이신(N,N-Dimethylglycine) 104 58 1.21 27
콜린(Choline) 104 60 0.9 19
글라이신(Glycine) 76 30 1.06 16
폴레이트(Folate) 442 295 9.58 19
아데닌(Adenine) 136 119 1.75 24
호모시스테인(Homocysteine) 136 90 1.26 15
하이포잔틴(Hypoxanthine) 137 110 2.8 29
잔틴(Xanthine) 153 110 2.5 23
알란토인(Allantoin) 159 99 1.17 13
사이토신(Cytosine) 112 95 0.98 17
호모세린(Homoserine) 120 56 1.03 27
티아민(Thiamine) 265 122 0.96 17
시스테인(Cysteine) 122 59 1.24 27
사이티딘 모노포스페이트Cytidine monophosphate (CMP) 324 112 1.68 16
유리딘 모노포스페이트Uridine monophosphate (UMP) 325 97 3 49
아데노신 모노포스페이트
Adenosine monophosphate (AMP)
348 136 1.99 21
이노신 모노포스페이트
Inosine monophosphate (IMP)
349 137 5.7 17
스펄민(Spermine) 203 112 0.53 27
대사체 종류(Compounds) m/z Product ion RT CE
아스팔테이트(L-Aspartate) 132 88 0.96 -17
락테이트((S)-Lactate)) 89 43 1.74 -18
포스포글리세라이트(3-Phosphoglycerate) 185 97 2.11 -22
석시네이트(Succinate) 117 73 3.88 -18
말레이트(L-Malic acid) 133 115 1.78 -16
시트레이트(Citrate) 191 111 3.58 -12
하이드로글루타레이트(D-2-Hydroyglutaric acid) 147 129 1.03 -14
구아노신 트리포스페이트Guanosine triphosphate (GTP) 522 424 1.6 -30
아세틸포스페이트(Acetylphosphate) 139 79 1.65 -22
칼바모일포스페이트(Carbamoyl-phosphate) 140 79 0.9 -22
글리세라이트(Glycerate) 105 75 1.24 -15
포스포에놀파이루베이트(Phosphoenolpyruvate) 167 79 2.3 -16
디하이드록시아세톤포스페이트
(Dihydroxyacetonephosphate)
169 79 1.7 -38
글리세롤 3-포스페이트(Glycerol 3-Phosphate) 171 79 1.5 -22
시키메이트(Shikimate) 173 93 1.65 -16
알란토에이트(Allontoate) 175 132 1.05 -12
디옥시리보스 1-포스페이트
(Deoxyrebose 1-Phosphate)
213 79 1.6 -33
리불로스 5-포스페이트(D-Ribulose 5-Phosphate) 229 79 1.3 -48
글루코스 6-포스페이트(Glucose 6-Phosphate) 259 79 1.73 -40
프룩토스 1,6-비스포스페이트
(Fructose1,6-Bisphosphate)
339 271 0.98 -18
디옥시구아노신 모노포스페이트
Deoxyguanosine monophosphate (dGMP)
346 79 2.02 -20
포스포리보실파이로 포스페이트Phosphoribosyl pyrophosphate (PRPP) 389 291 1.4 -18
이타코네이트(Itaconate) 129 85 6.4 -14
프룩토스 6-포스페이트(Fructose 6-Phosphate) 259 79 1.23 -54
- m/z는 mass to charge ratio를 의미한다.
- RT는 Retention time을 의미한다.
- CE는 Collision energy를 의미한다.
- (+)는 positive ion mode를 (-)는 negative ion mode를 의미한다.
- sMRM 분석을 통해 얻어진 결과는 Sciex의 Quantitative Analysis Software를 통하여 raw data를 계산하였고, MQC data 평균값을 이용하여 상대표준편차(RSD<20)이하의 극성대사체를 산출하였다.
[실험예 8] UHPLC-MS(Q-Exactive Orbitrap Plus)를 통한 대사체 분석
혈청에서부터 분리한 분석 시료의 지질대사체를 분석하기 위해 크로마토그래피-텐덤 질량분석기(UHPLC-MS)를 이용하여 분석을 진행하였다. 사용된 장비는 Thermo Scientific의 Ultimate 3000RS pump UHPLC와 Q-Exactive Orbitrap Plus MS를 이용하였다. 친수성 상호작용을 위한 크로마토그래피 조건으로는 Acquity UPLC BEH C18(2.1 x 100 mm, 1.7μm, Waters) 컬럼을 이용하여 35℃에서 기울기 용리를 이용하여 지질대사체들을 분리하였다. 이동상으로는 (A) 10mM Ammonium formate in 50% ACN + 0.1% Formic acid (v/v)및 (B) 2mM Ammonium formate in ACN/IPA/Water 10:88:2 + 0.02% Formic acid (v/v)를 이용하였고, 다음 이동상의 기울기 용리는 총 분석 시간을 28분으로 하여 아래 표 8과 동일하게 수행하였다.
전기분무법 (Electrospray Ionization, ESI)는 positive, negative 2가지 모드의 이온화방식으로 수행하였으며, Full scan 매스 범위(Mass range)는 250-1200 m/z으로 70,000 해상도(Resolution)를 사용하였으며, 자동 이득 제어(Automatic gain control, AGC) target은 1x106ion으로 최대 주입 시간(Injection time, IT)는 100ms로 분석하였습니다. 충돌 에너지(Collision energy, CE)는 20, 30, 40이며 이온화 소스 (Source ionization spray voltage)는 3.0kV, Capillary temperature은 370℃였다. 분석을 통해 얻어진 결과는 Thermo Scientific의 분석소프트웨어(Compound Discoverer)를 통하여 로우 데이터(raw data)를 계산하여 유의성(p-value<0.05)이 높은 지질대사체를 산출하였다.
시간(분) 이동상 A(%) 이동상 B(%) 유속(mL/min)
0 65 35 0.30
4 40 60 0.30
12 15 85 0.30
21 0 100 0.30
24 0 100 0.30
28 65 35 0.30
[실험예 9] 비결핵항산균 감염자의 혈청 시료 내 대사체 분석 결과
항생제 치료전의 MAC 감염환자의 혈청 샘플 중 기관지확장증형(Nodular bronchiectatic; NB)의 환자 83명과 상엽 공동형(Upper lobe cavitary; UC)의 환자 31명의 혈청 샘플내 극성 및 지질대사체 농도를 비교하기 위해 다음의 통계검정방법으로 Metaboanalyst(통계 사이트)와 Quantitative Analysis Software of SCIEXTM, Compound Discoverer of ThermofisherTM,SPSS(통계 프로그램)의 Unpaired, Welch’s T-test 검정을 통하여 그룹간 유의성이 높거나 (p-value<0.05), 가능성이 높은 (p-value<0.09) 극성 및 지질대사체를 산출하였고, 그 결과를 이용하여 치료 전의 MAC환자의 중증도를 예측할 지표가 될 수 있는 극성 대사체 12종과 지질대사체 13종을 포함한 총 25종의 대사체를 각각의 p-value와 상엽 공동형(Upper lobe cavitary; UC) 대비 발현 수준의 배수 변화(Fold change) 값을 토대로 선정하여 그 결과를 하기 도 3a 내지 4m에 나타내었다. 단, 도 3a 내지 4m에서, NB_Tx0는 항생제 치료 시작 전의 기관지확장증형 환자 83명의 혈청 샘플에서 각 대사체의 발현 수준을 나타낸 것이고, UC_Tx0는 항생제 치료 시작 전의 상엽 공동형 환자 31명의 혈청 샘플에서 각 대사체의 발현 수준을 나타낸 것이다. 또한, 유의성 unpaired, Welch’s t-test에서 *P<0.05; **P<0.01; ***P<0.001를 의미한다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
본 발명은 객관적이고 신뢰성 높은 진단 마커의 개발이 어려운 비결핵 항산균(Nontuberculous mycobacteria; NTM), 특히 인간에게 매우 흔하게 폐 질환을 일으키는 마이코박테리움 아비움 복합체(Mycobacterium avium complex; MAC)에 감염된 환자를 건강한 대상체로부터 구별하기 위한 진단 표지자 발굴 및 감염된 환자의 중증도를 판정하기 위한 진단 표지자 개발을 위한 것이다. 최근 전세계적으로 비결핵 항산균에 기인한 폐 감염 보고가 증가하고 있지만, 건강한 개체군으로부터 비결핵 항산균 폐 감염 질환자를 구별하기 위한 바이오마커나, 질환에 대한 병태 생리 연구가 부족하다. 또한, 감염환자 내 중증도를 구별 및 진단하는 연구가 부족함이 문제점으로 보고되어 그 개발 필요성이 요구되고 있다. 본 발명은 비결핵 항산균 감염 질환의 보다 효율적인 진단과 비결핵 항산균으로 인한 감염 환자의 중증도 예측에 관한 것으로, 감염 질환 환자 맞춤형 치료 전략을 조기에 수립함으로써, 환자의 생존률을 현저히 개선시키는데 유용하게 이용될 것으로 기대된다.

Claims (32)

  1. 리소포스파티딜콜린(Lysophosphatidylcholine; LPC), 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine; LPE), 포스파티딜콜린(Phosphatidylcholine; PC), 포스파티딜에탄올아민(Phosphatidylethanolamine; PE), 스핑고마이엘린(Sphingomyeline; SM) 및 트리아실글리세롤(Triacylglycerol; TAG)로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 제제를 유효성분으로 포함하는 비결핵 항산균의 감염 질환의 진단용 조성물.
  2. 제 1항에 있어서,
    상기 리소포스파티딜콜린은 LPC (18:0) 및 LPC (20:5)로 구성된 군으로부터 선택되는 하나 이상의 리소포스파티딜콜린인 것을 특징으로 하는 조성물.
  3. 제 1항에 있어서,
    상기 리소포스파티딜에탄올아민은 LPE (18:2) 및 LPE (20:4)로 구성된 군으로부터 선택되는 하나 이상의 리소포스파티딜에탄올아민인 것을 특징으로 하는 조성물.
  4. 제 1항에 있어서,
    상기 포스파티딜콜린은 PC 36:5(20:5/16:0), PC 28:0(14:0/14:0), PC 30:0(14:0/16:0), PC 32:2(18:2/14:0), PC 33:2(18:2/15:0), PC 34:2(18:2/16:0), PC 34:3(16:1/18:2), PC 36:4(20:4/16:0), PC O--36:3(O--18:1/18:2), PC O--36:5(O-16:1/20:4) 및 PC O--36:5(O--16:1/20:4)로 구성된 군으로부터 선택되는 하나 이상의 포스파티딜콜린인 것을 특징으로 하는 조성물.
  5. 제 1항에 있어서,
    상기 포스파티딜에탄올아민은 PE--NME 34:1(18:1/16:0)인 것을 특징으로 하는 조성물.
  6. 제 1항에 있어서,
    상기 스핑고마이엘린은 SM d34:1(d18:1/16:0), SM d42:1(d18:1/24:0) 및 SM d42:2(d18:1/24:1)로 구성된 군으로부터 선택되는 하나 이상의 스핑고마이엘린인 것을 특징으로 하는 조성물.
  7. 제 1항에 있어서,
    상기 트리아실글리세롤은 TAG 54:5(18:1/18:1/18:3), TAG 55:7(21:5/18:2/16:0), TAG 58:11(22:6/20:5/16:0), TAG 60:11(22:6/20:4/18:1) 및 TAG 60:12(22:6/22:6/16:0)로 구성된 군으로부터 선택되는 하나 이상의 트리아실글리세롤인 것을 특징으로 하는 조성물.
  8. 제 1항에 있어서,
    상기 리소포스파티딜콜린, 포스파티딜콜린, 스핑고마이엘린 또는 트리아실글리세롤의 농도가 정상 대조군 대비 증가한 경우, 비결핵 항산균에 의해 감염된 것으로 예측하는 조성물.
  9. 제 1항에 있어서,
    리소포스파티딜에탄올아민, 포스파티딜콜린 또는 포스파티딜에탄올아민의 농도가 정상 대조군 대비 감소한 경우, 비결핵 항산균에 의해 감염된 것으로 예측하는 조성물.
  10. 제 1항에 있어서,
    상기 대사체는 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 내 존재하는 것을 특징으로 하는 조성물.
  11. 제 1항에 있어서,
    상기 비결핵 항산균은 마이코박테리움 아비움(M. avium), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 플라베센스(M. flavescence), 마이코박테리움 아프리카눔(M. africanum), 마이코박테리움 보비스(M. bovis), 마이코박테리움 첼로네(M. chelonae), 마이코박테리움 셀라툼(M. celatum), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 고르도네(M. gordonae), 마이코박테리움 가스트리(M. gastri), 마이코박테리움 헤모필룸(M. haemophilum), 마이코박테리움 인트라셀루라레(M. intracellulare), 마이코박테리움 칸사시이(M. kansasii), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 스줄가이(M. szulgai), 마이코박테리움 테레(M. terrae), 마이코박테리움 스크로풀라세움(M. scrofulaceum), 마이코박테리움 울서란스(M. ulcerans), 마이코박테리움 시미애(M. simiae) 및 마이코박테리움 제노피(M. xenopi)로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  12. 제 1항에 있어서,
    상기 비결핵 항산균의 감염 질환은 폐 질환, 림프절염, 피부·연조직·골감염증 또는 파종성 질환인 것을 특징으로 하는 조성물.
  13. 리소포스파티딜콜린(Lysophosphatidylcholine), 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine), 포스파티딜콜린(Phosphatidylcholine), 포스파티딜에탄올아민(Phosphatidylethanolamine), 스핑고마이엘린(Sphingomyeline) 및 트리아실글리세롤(Triacylglycerol)로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 단계를 포함하는 비결핵 항산균의 감염 질환을 진단하기 위한 정보 제공 방법.
  14. 제 13항에 있어서,
    상기 대사체의 농도를 측정하는 단계는 크로마토그래피 또는 질량분석기인 정량 장치를 이용하여 수행되는 것을 특징으로 하는 방법.
    리소포스파티딜콜린(Lysophosphatidylcholine; LPC), 리소포스파티딜에탄올아민(Lysophosphatidylethanolamine; LPE), 포스파티딜콜린(Phosphatidylcholine; PC), 포스파티딜에탄올아민(Phosphatidylethanolamine; PE), 스핑고마이엘린(Sphingomyeline; SM) 및 트리아실글리세롤(Triacylglycerol; TAG)로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 제제를 유효성분으로 포함하는 비결핵 항산균의 감염 질환의 진단용 조성물.
  15. 비결핵 항산균 감염 질환을 예방 또는 진단하기 위한 리소포스파티딜콜린(LPC), 리소포스파티딜에탄올아민(LPE), 포스파티딜콜린(PC), 포스파티딜에탄올아민(PE), 스핑고마이엘린(SM) 및 트리아실글리세롤(TAG)의 용도.
  16. 지질대사체(lipid metabolites), 아미노산(amino acid) 및 아미노산 유도체로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 제제를 유효성분으로 포함하는, 비결핵 항산균에 의한 감염 질환의 중증도 예측용 조성물로,
    상기 지질대사체는 리소포스파티딜콜린(Lysophosphatidylcholine; LPC), 포스파티딜콜린(Phosphatidylcholine; PC), 스핑고마이엘린(Sphingomyeline; SM) 및 트리아실글리세롤(Triacylglycerol; TAG)로 구성된 군으로부터 선택되는 하나 이상이고,
    상기 아미노산 및 아미노산 유도체는 글루타민(Glutamine), 히스티딘(Histidine), 메티오닌(Methionine), 아스파라긴(Asgparagine), 글루탐산(Glutamate), 라이신(Lysine), 글라이신(Glysine), N,N-디메틸글라이신(N,N-Dimethylglycine), 트레오닌(Threonine), 호모세린(Homoserine), 트립토판(Tryptophan) 및 시트룰린(Citrulline)로 구성된 군으로부터 선택되는 하나 이상이인 것을 특징으로 하는 조성물.
  17. 제 16항에 있어서,
    상기 리소포스파티딜콜린은 LPC (14:0), LPC (15:0) 또는 LPC (20:3)로 구성된 군으로부터 선택되는 하나 이상의 리소포스파티딜콜린인 것을 특징으로 하는 조성물.
  18. 제 16항에 있어서,
    상기 포스파티딜콜린은 PC 32:2(18:2/14:0), PC 34:3(16:1/18:2), PC 36:1(18:0/18:1), PC 36:3(16:0/20:3), PC 36:6(14:0/22:6) 및 PC 38:7(16:1/22:6)로 구성된 군으로부터 선택되는 하나 이상의 포스파티딜콜린인 것을 특징으로 하는 조성물
  19. 제 16항에 있어서,
    상기 스핑고마이엘린은 SM d34:1(d18:1/16:0), SM d36:1(d18:1/18:0) 또는 SM d42:2(d18:1/24:1)로 구성된 군으로부터 선택되는 하나 이상의 스핑고마이엘린인 것을 특징으로 하는 조성물
  20. 제 16항에 있어서,
    상기 트리아실글리세롤은 TAG 58:11(22:6/20:5/16:0)인 것을 특징으로 하는 조성물.
  21. 제 16항에 있어서,
    상기 글루타민, 히스티딘, 메티오닌, 아스파라긴, 글루탐산, 트레오닌, 라이신, 트립토판은 L-형태(L-form)인 것을 특징으로 하는 조성물.
  22. 제 16항에 있어서,
    상기 글루타민, 히스티딘, 메티오닌, 아스파라긴, 라이신, 글라이신, N,N-디메틸글라이신, 트레오닌, 호모세린, 트립토판 또는 시트룰린의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 낮은 경우, 중증의 비결핵 항산균으로 판정하는 것을 특징으로 하는 조성물.
  23. 제 16항에 있어서,
    상기 글루탐산의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 높은 경우, 중증의 비결핵 항산균으로 판정하는 것을 특징으로 하는 조성물.
  24. 제 16항에 있어서,
    상기 리소포스파티딜콜린 또는 트리아실글리세롤의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 낮은 경우, 중증의 비결핵 항산균으로 판정하는 것을 특징으로 하는 조성물.
  25. 제 19항에 있어서,
    상기 스핑고마이엘린의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 높은 경우, 중증의 비결핵 항산균으로 판정하는 것을 특징으로 하는 조성물.
  26. 제 18항에 있어서,
    상기 포스파티딜콜린PC 32:2(18:2/14:0), PC 34:3(16:1/18:2), PC 36:6(14:0/22:6) 또는 PC 38:7(16:1/22:6)의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 낮은 경우, 중증의 비결핵 항산균으로 판정하는 것을 특징으로 하는 조성물.
  27. 제 18항에 있어서,
    상기 포스파티딜콜린PC 36:1(18:0/18:1) 또는 PC 36:3(16:0/20:3)의 농도가 상엽 공동형(Upper lobe cavitary form) 환자대비 높은 경우, 중증의 비결핵 항산균으로 판정하는 것을 특징으로 하는 조성물.
  28. 제 16항에 있어서,
    상기 지질대사체, 아미노산 및 아미노산 유도체는 전혈(whole blood), 백혈구(leukocytes), 말초혈액 단핵 세포(peripheral blood mononuclear cells), 백혈구 연층(buffy coat), 혈장(plasma), 혈청(serum), 객담(sputum), 눈물(tears), 점액(mucus), 세비액(nasal washes), 비강 흡인물(nasal aspirate), 호흡(breath), 소변(urine), 정액(semen), 침(saliva), 복강 세척액(peritoneal washings), 복수(ascites), 낭종액(cystic fluid), 뇌척수막 액(meningeal fluid), 양수(amniotic fluid), 선액(glandular fluid), 췌장액(pancreatic fluid), 림프액(lymph fluid), 흉수(pleural fluid), 유두 흡인물(nipple aspirate), 기관지 흡인물(bronchial aspirate), 활액(synovial fluid), 관절 흡인물(joint aspirate), 기관 분비물(organ secretions), 세포(cell), 세포 추출물(cell extract) 및 뇌척수액(cerebrospinal fluid) 내 존재하는 것을 특징으로 하는 조성물.
  29. 제 16항에 있어서,
    상기 비결핵 항산균은 마이코박테리움 아비움(M. avium), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 플라베센스(M. flavescence), 마이코박테리움 아프리카눔(M. africanum), 마이코박테리움 보비스(M. bovis), 마이코박테리움 첼로네(M. chelonae), 마이코박테리움 셀라툼(M. celatum), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 고르도네(M. gordonae), 마이코박테리움 가스트리(M. gastri), 마이코박테리움 헤모필룸(M. haemophilum), 마이코박테리움 인트라셀루라레(M. intracellulare), 마이코박테리움 칸사시이(M. kansasii), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 스줄가이(M. szulgai), 마이코박테리움 테레(M. terrae), 마이코박테리움 스크로풀라세움(M. scrofulaceum), 마이코박테리움 울서란스(M. ulcerans), 마이코박테리움 시미애(M. simiae) 및 마이코박테리움 제노피(M. xenopi)로 구성된 군으로부터 선택되는 것을 특징으로 하는 조성물.
  30. 지질대사체(lipid metabolites), 아미노산(amino acid) 및 아미노산 유도체로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 단계를 포함하는 비결핵 항산균에 의한 감염 질환의 중증도를 예측하기 위한 정보 제공 방법으로서,
    상기 지질대사체는 리소포스파티딜콜린(Lysophosphatidylcholine), 포스파티딜콜린(Phosphatidylcholine), 스핑고마이엘린(Sphingomyeline) 및 트리아실글리세롤(Triacylglycerol)로 구성된 군으로부터 선택되는 하나 이상이며,
    상기 아미노산 및 아미노산 유도체는 글루타민(Glutamine), 히스티딘(Histidine), 메티오닌(Methionine), 아스파라긴(Asgparagine), 글루탐산(Glutamate), 라이신(Lysine), 글라이신(Glysine), N,N-디메틸글라이신(N,N-Dimethylglycine), 트레오닌(Threonine), 호모세린(Homoserine), 트립토판(Tryptophan) 및 시트룰린(Citrulline)로 구성된 군으로부터 선택되는 하나 이상의 대사체를 측정하는 제제를 유효성분으로 포함하는 것을 특징으로 하는 방법.
  31. 제 30항에 있어서,
    상기 대사체의 농도를 측정하는 단계는 크로마토그래피 또는 질량분석기인 정량 장치를 이용하여 수행되는 것을 특징으로 하는 방법.
  32. 비결핵 항산균에 의한 감염 질환의 중증도를 예측하기 위한 리소포스파티딜콜린(LPC), 포스파티딜콜린(PC), 스핑고마이엘린(SM) 및 트리아실글리세롤(TAG), 글루타민(Glutamine), 히스티딘(Histidine), 메티오닌(Methionine), 아스파라긴(Asgparagine), 글루탐산(Glutamate), 라이신(Lysine), 글라이신(Glysine), N,N-디메틸글라이신(N,N-Dimethylglycine), 트레오닌(Threonine), 호모세린(Homoserine), 트립토판(Tryptophan) 및 시트룰린(Citrulline)의 용도.
PCT/KR2022/017099 2021-11-05 2022-11-03 마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커 WO2023080663A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0151451 2021-11-05
KR1020210151438A KR102596057B1 (ko) 2021-11-05 2021-11-05 마이코박테리움 아비움 복합체 감염질환 진단용 지질대사체 마커
KR1020210151451A KR102613631B1 (ko) 2021-11-05 2021-11-05 마이코박테리움 아비움 복합체 감염증의 중증도 예측용 대사체 마커
KR10-2021-0151438 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023080663A1 true WO2023080663A1 (ko) 2023-05-11

Family

ID=86241820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017099 WO2023080663A1 (ko) 2021-11-05 2022-11-03 마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커

Country Status (1)

Country Link
WO (1) WO2023080663A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170005104A (ko) * 2014-05-15 2017-01-11 인스메드 인코포레이티드 폐의 비-결핵성 마이코박테리아 감염을 치료하기 위한 방법
KR20190021987A (ko) * 2017-08-24 2019-03-06 (의료)길의료재단 지질 대사체의 분포를 이용한 대장암의 발암 과정 예측 및 대장암의 예방 방법 및 이를 이용한 진단용 키트
KR20210064097A (ko) * 2019-11-25 2021-06-02 연세대학교 산학협력단 비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170005104A (ko) * 2014-05-15 2017-01-11 인스메드 인코포레이티드 폐의 비-결핵성 마이코박테리아 감염을 치료하기 위한 방법
KR20190021987A (ko) * 2017-08-24 2019-03-06 (의료)길의료재단 지질 대사체의 분포를 이용한 대장암의 발암 과정 예측 및 대장암의 예방 방법 및 이를 이용한 진단용 키트
KR20210064097A (ko) * 2019-11-25 2021-06-02 연세대학교 산학협력단 비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE BUCK JEROEN, SHAYKHUTDINOV RUSTEM, BARKEMA HERMAN W., VOGEL HANS J.: "Metabolomic Profiling in Cattle Experimentally Infected with Mycobacterium avium subsp. paratuberculosis", PLOS ONE, vol. 9, no. 11, 5 November 2014 (2014-11-05), pages 1 - 11, XP055815032, DOI: 10.1371/journal.pone.0111872 *
HONDA, J. R. et al. Mycobacterium Avium Complex Species Virulence And Lipid Profiles. American Journal of Respiratory and Critical Care Medicine. 2017, vol. 195, A5060. *
WOOD PAUL L., ERDAL EROL, GLEN F HOFFSIS, MARGARET STEINMAN, JEROEN DEBUCK: "Serum lipidomics of bovine paratuberculosis: Disruption of choline-containing glycerophospholipids and sphingolipids", SAGE OPEN MEDICINE, vol. 6, 9 May 2018 (2018-05-09), pages 1 - 7, XP093063444 *

Similar Documents

Publication Publication Date Title
WO2021107598A1 (ko) 비결핵 항산균에 의한 감염 후 치료 반응성 예측용 바이오마커
KR102270382B1 (ko) 비결핵 항산균에 의한 감염 또는 감염 질환의 진단용 바이오마커
Eoh et al. Metabolic anticipation in Mycobacterium tuberculosis
Qiu et al. Measurement of hydroxyproline in collagen with three different methods
Hu et al. Conventional liquid chromatography/triple quadrupole mass spectrometry based metabolite identification and semi-quantitative estimation approach in the investigation of in vitro dabigatran etexilate metabolism
WO2021107551A1 (ko) 비결핵 항산균에 의한 감염 질환을 구별하기 위한 바이오마커
Hu et al. Optimization of global DNA methylation measurement by LC-MS/MS and its application in lung cancer patients
WO2023080663A1 (ko) 마이코박테리움 아비움 복합체 감염질환 진단 또는 중증도 예측용 대사체 마커
WO2021107550A1 (ko) 비결핵 항산균에 의한 감염 후 균 양성의 지속 여부 예측용 바이오마커
Li et al. Untargeted metabolomic profiling identifies disease-specific and outcome-related signatures in chronic rhinosinusitis
Ye et al. Improved sample preparation for untargeted metabolomics profiling of Escherichia coli
WO2023080664A1 (ko) 마이코박테리움 아비움 복합체 감염환자의 치료 반응성 예측용 대사체 마커
KR102613631B1 (ko) 마이코박테리움 아비움 복합체 감염증의 중증도 예측용 대사체 마커
WO2021107549A1 (ko) 비결핵 항산균에 의한 감염 후 자발적 균 음전 예측용 바이오마커
WO2024039142A1 (ko) 폐결핵 환자의 중증도 감별 진단 대사체 마커
Shipkova et al. Investigation of the crossreactivity of mycophenolic acid glucuronide metabolites and of mycophenolate mofetil in the Cedia MPA assay
Wang et al. Helminth lipidomics: technical aspects and future prospects
Wojnicz et al. Simultaneous monitoring of monoamines, amino acids, nucleotides and neuropeptides by liquid chromatography‐tandem mass spectrometry and its application to neurosecretion in bovine chromaffin cells
WO2024039143A1 (ko) 폐결핵 환자의 치료에 따라 변화된 극성대사체 마커
KR102619913B1 (ko) 마이코박테리움 아비움 복합체 감염환자의 치료 반응성 예측용 지질대사체 마커
KR102596057B1 (ko) 마이코박테리움 아비움 복합체 감염질환 진단용 지질대사체 마커
KR102615869B1 (ko) 마이코박테리움 아비움 복합체 폐질환 환자의 정보에 따른 치료 반응 예측용 지질대사체 마커
CN114829621A (zh) 细菌对抗生素的敏感性或抗性的质谱法测定
KR20240023778A (ko) 폐결핵 환자의 치료에 따라 변화된 지질대사체 마커
Gundogdu et al. Investigation of the metabolic difference between ST-elevated myocardial infarction and non-ST-elevated myocardial infarction via LC/Q-TOF/MS/MS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890394

Country of ref document: EP

Kind code of ref document: A1