WO2023079730A1 - Building management system and building management method - Google Patents

Building management system and building management method Download PDF

Info

Publication number
WO2023079730A1
WO2023079730A1 PCT/JP2021/040941 JP2021040941W WO2023079730A1 WO 2023079730 A1 WO2023079730 A1 WO 2023079730A1 JP 2021040941 W JP2021040941 W JP 2021040941W WO 2023079730 A1 WO2023079730 A1 WO 2023079730A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
unit
building
floor
staying
Prior art date
Application number
PCT/JP2021/040941
Other languages
French (fr)
Japanese (ja)
Inventor
航 大野
憲治 大塚
雅幸 岡本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022571176A priority Critical patent/JP7419567B2/en
Priority to PCT/JP2021/040941 priority patent/WO2023079730A1/en
Publication of WO2023079730A1 publication Critical patent/WO2023079730A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/16Real estate

Definitions

  • the present invention relates to a building management system and a building management method.
  • the building manager looks at the monthly measured power consumption of the building and the amount of monthly electricity bills paid, and judges whether it is appropriate or not. was For example, if the amount of power consumption increased compared to the same month one year ago, it was determined whether the increase was normal or within an appropriate range.
  • Patent Document 1 the number of people entering and exiting each room of a building is managed at the entrance and exit, the number of people in each room is calculated, and the energy consumption per person is calculated from the energy consumption of the room and the number of people in the room. and display technology.
  • Patent Document 1 by managing the number of people entering and exiting each room of a building at the entrance gate, etc., the accurate number of people in each room can be calculated, and the energy consumption of the room and the number of people in the room can be calculated. Energy consumption per person can be calculated from the number of people.
  • the present application includes a plurality of means for solving the above problems.
  • a passenger number calculation unit that calculates the number of passengers on each floor, a power consumption measurement unit that calculates the power consumption in the building for each floor within a predetermined time, and the number of passengers calculated by the passenger number calculation unit. It is the value obtained by dividing the power consumption obtained by the staying number calculation unit and the power usage measurement unit by the average staying number calculated by the staying number calculation unit.
  • a unit power consumption calculating unit that calculates a certain unit power consumption, a storage unit that stores the unit power consumption calculated by the unit power consumption calculating unit, an output unit that outputs the unit power consumption stored in the storage unit in time series, Prepare.
  • the unit power consumption is obtained by obtaining the number of people staying on each floor from the number of people getting on and off the elevator for each floor, so that the number of people entering the room can be easily measured without using an entrance/exit management device. It becomes possible to obtain the unit power consumption of each floor. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is a configuration diagram showing an example of a building management system according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing a hardware configuration example of a building facility control quality management device according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing a hardware configuration example of an elevator monitoring device according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing a hardware configuration example of an air conditioner monitoring device according to an embodiment of the present invention
  • FIG. 4 is a flow chart showing unit power calculation processing and air conditioner control processing according to an embodiment of the present invention. 4 is a flow chart showing output processing according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example of change in unit power consumption of each floor over time according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example of change in unit power consumption of each floor over time according to an embodiment of the present invention
  • FIG. 5 is a diagram showing an example of change in the number of people staying on each floor over time according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example of change in power consumption of air conditioners on each floor over time according to an embodiment of the present invention
  • FIG. 4 is a diagram showing an example of change over time in the maximum temperature of a specific floor, current consumption, and power consumption of an air conditioner according to an embodiment of the present invention
  • FIG. 10 is a diagram showing an example (example 1) of changes over time in the number of people staying on a specific floor and power consumption according to an embodiment of the present invention
  • FIG. 10 is a diagram showing an example (example 2) of changes over time in the number of people staying on a specific floor and power consumption according to an embodiment of the present invention
  • FIG. 5 is a diagram showing a display example of output information according to an embodiment of the present invention
  • FIG. 1 shows the overall configuration of the building management system of this example.
  • the building management system of this example is configured to manage a plurality of buildings 100a, 100b, .
  • an elevator monitoring device 300, an entrance/exit monitoring device 400, and an air conditioner monitoring device 500 are connected to the network NW.
  • an administrator terminal 600 is connected to the network NW, and the administrator terminal 600 can manage the management status of the building equipment control quality management apparatus 200 and the like.
  • the building equipment control quality management apparatus 200 can acquire weather information from the weather information server 700 via the network NW.
  • FIG. 1 shows a configuration in which each building 100a, 100b, .
  • each building 100a, 100b, . 200 may be connected.
  • one administrator terminal 600 is shown in FIG. 1, a plurality of administrator terminals 600 may be provided.
  • the administrator terminal 600 may be composed of a dedicated terminal device, but may also be a device such as a smart phone or a tablet terminal possessed by the administrator.
  • the building equipment control quality management device 200 has a power consumption database 201 .
  • the power consumption database 201 records the power consumption of each building 100a, 100b, . . . to be managed. In the drawings, the database is described as DB.
  • the elevator monitoring device 300 includes a database 301 of passengers.
  • the passenger number database 301 records the number of passengers on each floor of the elevator installed in each building 100a, 100b, .
  • the entrance/exit monitoring device 400 includes an entrance/exit database 401 .
  • the entrance/exit database 401 records the number of people entering and leaving the building at the entrance/exit of the building counted by the entrance/exit management device 130 installed in each building 100a, 100b, . . . .
  • the air conditioner monitoring device 500 has an operation record database 501 .
  • the operation record database 501 the operation status of each floor of the air conditioners installed in each building 100a, 100b, . . . is recorded.
  • the building equipment control quality control device 200, the elevator monitoring device 300, the entrance/exit monitoring device 400, and the air conditioner monitoring device 500 shown in FIG. may be provided. Also, the functions of the devices 200, 300, 400, and 500 may be performed by a general-purpose server provided on the Internet.
  • each building 100a, 100b, . . . the configuration of the building 100a will be described. It is assumed that other buildings have the same configuration as the building 100a.
  • a building 100a is composed of a plurality of floors 101 to 107, and a car 115 of an elevator 110 moves between floors.
  • the car 115 of the elevator 110 moves up and down as the wire 114 is hoisted by the hoist 113 .
  • the elevator 110 has an elevator control device 111 installed in a machine room 111 or the like.
  • the elevator control device 111 transmits information about the operation status of the elevator to the elevator monitoring device 300 .
  • a load sensor (not shown) is attached to the car 115 . Load sensor values for the operation of car 115 are also transmitted by elevator controller 111 to elevator monitor 300 .
  • Air conditioners 121 to 127 for cooling and heating are installed on each floor 101 to 107, and each floor 101 to 107 has an appropriate temperature. Air conditioners 121 to 127 on each floor 101 to 107 are controlled by an air conditioning controller 120 installed in the building 100a. The control state of each of the air conditioners 121 to 127 by the air conditioning control device 120 is monitored by the air conditioner monitoring device 500 .
  • an entrance/exit management device 130 is installed in the building 100a, and this entrance/exit management device 130 manages entry into and exit from the building at the entrance of the building 100a.
  • a gate is installed at the entrance of the building 100a, and the entry/exit management device 130 permits entry and exit when a pre-registered building user can be correctly authenticated.
  • Building user authentication is performed by, for example, IC card authentication or face authentication.
  • the entrance/exit management device 130 counts the number of people entering and leaving the building 100a who have passed through the entrance/exit gate, and obtains the number of people staying in the building 100a.
  • the entrance/exit management device 130 may not be used to manage the people entering the building and the people leaving the building.
  • specific floors such as the 1st floor may be freely entered and exited without authentication, while floors other than the 2nd floor and above are configured to allow entry to persons who have been authenticated by the entrance/exit management device 130. may be
  • FIG. 2 shows a hardware configuration example of the building facility control quality management device 200. As shown in FIG. 2 is a case where the building equipment control quality management device 200 is configured by a computer. A building equipment control quality management device (computer device) 200 shown in FIG. .
  • the CPU 210 is an arithmetic processing unit that reads and executes the program code of software that executes processing in the building equipment control quality management device 200 from the main storage unit 220 or the storage unit 230 .
  • Various processing function units are configured in the main storage unit 220 by the CPU 210 executing arithmetic processing.
  • the main storage unit 220 includes a staying number calculation unit 221 , a unit power consumption calculation unit 222 , and an output unit 223 . Processing performed by the staying number calculation unit 221 and the unit power consumption calculation unit 222 will be described later.
  • the storage unit 230 is configured by a non-volatile storage device, and functions as a power consumption database 201 in which the above-described program code is recorded and power consumption is recorded.
  • the power consumption database 201 records information about the power consumption of air conditioners on each floor of the building to be monitored. In this case, the power consumption of the air conditioner is recorded as unit power consumption divided by the average number of people staying on each floor in the building for each time slot.
  • the network interface 240 is connected to the network NW (FIG. 1) and has a function of communicating with other devices.
  • FIG. 3 shows a hardware configuration example of the elevator monitoring device 300.
  • the example shown in FIG. 3 is a case where the elevator monitoring device 300 is configured by a computer.
  • An elevator monitoring device (computer device) 300 shown in FIG. 3 includes a CPU 310, a main storage unit 320, a storage unit 330, and a network interface 340, which are connected to a bus.
  • the CPU 310 is an arithmetic processing unit that reads out the program code of the software that executes the processing in the elevator monitoring device 300 from the main storage unit 320 or the storage unit 330 and executes it.
  • Various processing function units are configured in the main storage unit 320 by the CPU 310 executing arithmetic processing.
  • the main storage unit 320 includes a passenger number calculation unit 321 . The processing performed by the passenger number calculation unit 321 will be described later.
  • the storage unit 330 is configured by a non-volatile storage device, and has a function as a passenger number database 301 in which the above-described program code is recorded and the number of boarding and alighting passengers is recorded.
  • the number of passengers on each floor of the elevator calculated by the number-of-passengers calculating unit 321 is recorded in the passenger-passengers database 301 .
  • the network interface 340 is connected to the network NW (FIG. 1) and has a function of communicating with other devices.
  • FIG. 4 shows a hardware configuration example of the air conditioner monitoring device 500 .
  • the example shown in FIG. 3 is a case where the air conditioner monitoring device 500 is configured by a computer.
  • An air conditioner monitoring device (computer device) 500 shown in FIG. 4 includes a CPU 510, a main storage unit 520, a storage unit 530, and a network interface 540, which are each connected to a bus.
  • the CPU 510 is an arithmetic processing unit that reads out the program code of software that executes processing in the air conditioner monitoring device 500 from the main storage unit 520 or the storage unit 530 and executes it.
  • Various processing function units are configured in the main storage unit 520 by the CPU 510 executing arithmetic processing.
  • the main storage unit 520 includes a power consumption measurement unit 521 .
  • the power consumption measurement unit 521 measures the power consumption of the air conditioners on each floor of the building to be monitored and the power consumption of the air conditioners in the entire building.
  • the power consumption measurement unit 521 also measures the power consumption for each floor and for the entire building, except for the air conditioners in the building.
  • the storage unit 530 is composed of a non-volatile storage device, and functions as an operation record database 501 in which the above-described program code is recorded and the operating state of the elevator is recorded.
  • the operation record database 501 records information about the power consumption of the air conditioners on each floor of the building measured by the power consumption measuring unit 521 .
  • the network interface 540 is connected to the network NW (FIG. 1) and has a function of communicating with other devices.
  • each device such as the building equipment control quality management device 200 with the computer devices shown in FIGS.
  • some or all of the functions performed by the building equipment control quality management apparatus 200 may be realized by hardware such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
  • FIG. 5 is a flow chart showing the flow of processing for obtaining the unit power consumption of air conditioners on each floor of a building in the system of this example.
  • processing for obtaining the unit power consumption of the air conditioners on each floor of the building 100a shown in FIG. 1 will be described.
  • the number-of-passengers calculation unit 321 of the elevator monitoring device 300 calculates the number of passengers on each floor of the car 115 of the elevator 110 installed in the building 100a (step S11).
  • the number of passengers getting on and off on each floor is estimated, for example, from changes in load values detected by load sensors attached to the car 115 on each floor. For example, when the car 115 stops on a specific floor and the load value detected by the load sensor decreases by approximately 110 kg, the number-of-boarding/alighting number calculator 321 determines that two people got off on that floor. Conversely, when the load value detected by the load sensor increases by approximately 170 kg, the number-of-boarding/alighting number calculation unit 321 determines that three people have boarded the floor. Information on the number of passengers on each floor calculated by the passenger number calculation unit 321 of the elevator monitoring device 300 is stored in the passenger number database 301 .
  • the building facility control quality management device 200 reads out the number of passengers on each floor of the building 100 a stored in the database 301 of the number of passengers on the elevator monitoring device 300 .
  • the staying number calculation unit 221 of the building equipment control quality management apparatus 200 integrates the acquired number of passengers on each floor of the elevator to calculate the average staying number for each time period on each floor (step S12).
  • the number of staying people calculation unit 221 calculates the number of people staying on the floors other than the first floor from the number of people staying on the entire building counted by the entrance/exit monitoring device 400. Calculate by subtracting the number of people. In addition, in the case of a building where entry/exit management is not performed on the first floor where the entrance/exit is installed, the staying number calculation unit 221 may not calculate the number of staying persons on the first floor.
  • the power consumption measurement unit 521 of the air conditioner monitoring device 500 measures the power consumption of the air conditioners for each time period on each floor of the building 100a and records it in the operation record database 501 (step S13). Then, the building equipment control quality management device 200 reads out the power consumption of the air conditioners for each time period on each floor of the building 100 a recorded in the operation record database 501 of the air conditioner monitoring device 500 .
  • the unit power consumption calculation unit 222 of the building equipment control quality management device 200 is a value obtained by dividing the power consumption of the air conditioner for each time period on each floor of the building 100a by the average number of staying people for each time period on each floor. A unit power consumption is obtained (step S14). The obtained unit power consumption information is recorded in the power consumption database 201 . In addition, the unit power consumption calculation unit 222 determines whether or not the unit power consumption of each floor calculated in step S14 exceeds a preset value of unit power consumption per person (step S15).
  • step S15 if the unit power consumption exceeds the specified value (Yes in step S15), the building equipment control quality management device 200 instructs the air conditioning control device 120 of the building 100a to A command to change the set temperature of the air conditioner (one of the air conditioners 121 to 127) on the floor where the floor is on is sent (step S16).
  • the command to change the set temperature here is to reduce the power consumption of the air conditioner on the corresponding floor. become.
  • step S15 if the specified value of the unit power consumption is not exceeded (No in step S15), and after sending a command to change the set temperature in step S16, the output unit 223 of the building facility control quality management device 200 outputs the information of the unit power consumption for each floor of the building 100a to the administrator terminal 600 (step S17).
  • the administrator terminal 600 displays information on unit power consumption for each floor of the building 100a.
  • FIG. 6 is a flow chart showing the flow of output information selection processing performed by the output unit 223 of the building equipment control quality management apparatus 200 based on instructions from the administrator terminal 600 .
  • the output unit 223 receives output information selection by an instruction from the administrator terminal 600 (step S21). Then, the output unit 223 determines whether the received output information is a comparison between buildings or a correlation (step S22).
  • the output unit 223 accepts designation of buildings to be compared (step S23), and receives designation of the period to be compared (step S24). Then, the output unit 223 requests the power consumption database 201 to read the unit power consumption data for the designated period and building (step S25). Then, the output unit 223 receives the specified period and unit power consumption data of the building from the power consumption database 201 (step S26).
  • the output unit 223 receives the selection of the unit power consumption data of the building to be compared (step S27), and reads the unit power consumption data of the designated building from the power consumption database 201 (step S28). Furthermore, the output unit 223 outputs the unit power consumption of the specified building and the building to be compared to the administrator terminal 600 as associated data (step S29).
  • the output unit 223 accepts designation of the period (step S30).
  • the output unit 223 also accepts selection of weather data for which correlation is to be obtained (step S31).
  • the meteorological data for which the correlation is to be obtained includes the maximum temperature of each day within the period, the discomfort index, and the like.
  • the output unit 223 requests the weather information server 700 for the weather data of the area where the building is installed during the period accepted in step S31 (step S32), and receives the requested weather data (step S33). Then, the output unit 223 creates a correlation graph between the weather data for the specified period and the unit power consumption, and outputs the graph to the administrator terminal 600 .
  • FIG. 7 shows a calculation example of the unit power consumption of air conditioners on each floor for each hour of a day for a specific building A.
  • the example of FIG. 7 shows the unit power consumption (w/h) per person of the air conditioner for each hour from 8:00 to 18:00.
  • the area type of each floor indicates what type of tenant resides on each floor.
  • the information shown in FIG. 7 is recorded in the power consumption database 201 of the building equipment control quality management device 200.
  • FIG. 8 shows a calculation example of the number of people staying on each floor for each hour of the day for a specific building A.
  • the example in FIG. 8 shows the average number of people staying on each floor for each hour from 8:00 to 18:00.
  • the area type of each floor is also added to the staying number.
  • FIG. 9 shows an example of measurement of power consumption of air conditioners on each floor for each hour of a day for a specific building A.
  • the example in FIG. 9 shows the power consumption (kw/h) of the air conditioner for each hour from 8:00 to 18:00.
  • the unit power consumption, the number of staying people, and the power consumption are not measured or calculated for the first floor, which is the floor where the entrance/exit is installed.
  • the unit power consumption calculation unit 222 of the building facility control quality management device 200 performs a calculation process based on the average number of people staying on each floor shown in FIG. 8 and the power consumption of the air conditioners on each floor shown in FIG. Obtain the unit power consumption per person as shown in .
  • FIG. 10 shows an example of the relationship between the cumulative power consumption d11 [kwh] of an air conditioner on a specific floor of a specific building, current d12 [A], and indoor temperature d13 [° C.].
  • the horizontal axis of FIG. 10 is time, and indicates from 12:00 on August 18, 2021 to 18:00 on August 19, 2021.
  • the air conditioner is in a cooling operation. For example, after 6:00 on August 19, 2021, the air conditioner is in a state of being operated with a high load, the current d12 increases, and the indoor temperature d13 decreases.
  • Figures 11 and 12 show the relationship between the number of staying people and power consumption.
  • the horizontal axis of FIGS. 11 and 12 is time, and indicates the time from 00:00 on June 26, 2020 to 23:00 (FIG. 11) or to 22:00 (FIG. 12).
  • FIG. 11 shows the power consumption of one floor of a specific building (bar graph) and the average number of people staying on that floor (line graph) in chronological order.
  • the power consumption here indicates the power consumption of the entire floor including other than the air conditioner, and is divided into the power consumption P11 of the lighting equipment, the power consumption P12 of the outlet, and the power consumption P13 of the air conditioner. is shown. Therefore, the sum of the power consumptions P11, P12, and P13 is the power consumption of the entire floor.
  • the average number of people staying on the floor d21 gradually increases from time 06:00, decreases at time 11:00 due to the lunch break, increases again at time 12:00, and then gradually decreases.
  • FIG. 12 shows the unit power consumption calculated in the case of the power consumption shown in FIG. 11 and the average staying number of people in chronological order.
  • the power consumptions P21, P22, P23 of the lighting fixtures, outlets, and air conditioners shown in the bar graph in FIG. 12 are the same as the power consumptions P11, P12, P13 shown in FIG.
  • the line graph in FIG. 12 indicates the unit power consumption d22 per person on the corresponding floor.
  • the unit power consumption d22 shown in FIG. 12 includes not only the power consumption of the air conditioner but also the power consumption of the lighting equipment and outlets.
  • the building equipment control quality management apparatus 200 of this example may be used for obtaining the unit power consumption for the entire floor or for obtaining the unit power consumption only for the air conditioners on the floor. Both the unit power consumption obtained from the power consumption of the entire floor and the unit power consumption of only the air conditioners on the floor may be output and displayed side by side.
  • the unit power consumption d22 is high in the early morning, at night, and at lunchtime when there are few staying people, but in other time zones during the daytime, the value reflects the operation status of the air conditioner. Note that the unit power consumption d22 is the unit power consumption of the entire floor, but almost the same change is shown when the unit power consumption of only the air conditioner is calculated. By calculating and outputting the unit power consumption per person on the floor in this way, it is possible to determine whether or not the operation of the air conditioners on each floor of the building is appropriate.
  • FIG. 13 shows a display example of the information output by the output unit 223 of the building equipment control quality management apparatus 200 on the administrator terminal 600. As shown in FIG. In the display screen shown in FIG. 13, the period and time period are set at the left end, and the power consumption P31 (bar graph) of the floor air conditioners for each day and the unit per person per day are displayed at the upper center. The power consumption d31 (line graph) is graphically displayed in chronological order.
  • the average power consumption P32 (bar graph) of the air conditioners on the floor for each day of the week, and the average unit power consumption per person for each day of the week d32 ( line graph) are displayed in chronological order.
  • a graph shows the relationship between the unit electric energy per person for each day of the week and the maximum temperature. Using the highest temperature as the temperature is an example, and other temperature indicators such as the lowest temperature and the average daily temperature may be used.
  • Fig. 13 by displaying the unit power consumption per person per day, it is possible to judge whether the power consumption and air conditioner operating conditions on each floor of the building are appropriate. For example, when the unit power consumption is higher than the default value, it is possible to change the set temperature of the air conditioner to lower the unit power consumption. In addition, in the case of this example, since the number of staying people on each floor is calculated from the number of people getting on and off the elevator on each floor, it can be easily applied to any building in which an elevator is installed.
  • the display shown in FIG. 13 is an example, and more detailed unit power consumption may be displayed. For example, graphs shown in FIGS. 11 and 12 may be displayed.
  • the power is output so as to be associated and displayed so that the power can be compared. This makes it possible to judge how much the unit power consumption of each floor of a specific building is compared to the unit power consumption of each floor of another building, and the administrator can easily determine whether it is appropriate or not. become.
  • the average unit power consumption of each floor of multiple buildings being monitored (for example, all buildings being monitored) is compared instead of comparing two buildings. may be compared with the average unit power consumption of each floor of the corresponding building.
  • step S16 when the unit power consumption is equal to or higher than the specified value, the set temperature of the air conditioner is automatically changed to lower the unit power consumption.
  • the management center of the relevant building is notified, and the operation to actually change the set temperature of the air conditioner is to be done manually by the manager on the building side.
  • the use of the detected value of the load sensor installed in the elevator car as the process of measuring the number of people getting on and off on each floor of the elevator is an example, and other detected values may be used.
  • the number of passengers on each floor may be measured by image analysis of camera images installed in elevator halls and cars.
  • the detection value of the load sensor and the image of the camera installed in the elevator landing or the car may be used together.
  • the use of stairs or other elevators may be taken into consideration as movement between floors in the building. For example, in the case of a building with an elevator and stairs, assuming that almost all building users use the elevator when moving up in the building, the number of people getting on and off when the elevator goes up is calculated. Calculate the number of people traveling between On the other hand, when moving downhill in a building, a certain percentage, for example, about 10%, uses stairs. Calculate By doing so, it is possible to calculate the appropriate number of people staying on the floor even when stairs are used. It should be noted that the constant multiplication value, such as 10%, may be corrected during actual operation.
  • the number of people staying on the floor may be calculated using the number of people using elevators other than elevators.
  • the number of escalator users may be measured using surveillance cameras or motion sensors installed on the escalators, and the measured number of users may be added to the number of people staying on each floor.
  • the unit power consumption of the floor where the entrance/exit is installed is not calculated.
  • the number of people staying on other floors may be obtained.
  • the building facility control quality management device 200 acquires temperature information from the weather information server 700, and other configurations may be used.
  • the building facility control and quality management device 200 collects temperatures measured by a temperature measuring unit installed in an outdoor unit of an air conditioner installed in a building. Then, the collected temperature may be stored in the power consumption database 201, and the output unit 223 may output a graph showing the correlation between the unit power consumption and the temperature based on the stored information.
  • FIGS. 1 to 4 only control lines and information lines that are considered necessary for explanation are shown, and not all control lines and information lines are necessarily shown on the product. . In practice, it may be considered that almost all configurations are interconnected.
  • FIGS. 5 and 6 a plurality of processes may be executed simultaneously or the order of the processes may be changed as long as the processing results are not affected.
  • Reference Signs List 100a, 100b Building 101 to 107 Floor 110 Elevator 111 Machine room 112 Elevator control device 113 Hoist 114 Wire 120 Air conditioning control device 121 to 127 Air conditioner 130 Entry/Exit Management Device 200 Building Facility Control Quality Management Device 201 Power Consumption Database 210 CPU 220 Main Storage Unit 221 Staying Person Calculation Unit 222 Unit Power Consumption Calculation Unit 223 Output Unit , 230... Storage unit, 240... Network interface, 300... Elevator monitoring device, 301... Database of the number of passengers, 310... CPU, 320... Main storage unit, 321... Number of passengers calculation unit, 330... Storage unit, 340... Network interface, DESCRIPTION OF SYMBOLS 400... Entrance/exit monitoring apparatus, 401...
  • Entrance/exit database 500... Air-conditioner monitoring apparatus, 501... Operation record database, 510... CPU, 520... Main storage part, 521... Electric power consumption measurement part, 530... Storage part, 540 ... network interface, 600 ... administrator terminal, 700 ... weather information server

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In the present invention, the number of persons boarding/exiting an elevator installed in a building is calculated for each floor, and the average number of persons staying on each floor is obtained using the calculated number of persons boarding/exiting the elevator. Then, a unit power consumption is obtained by dividing the amount of power used for each floor by the average number of persons staying on the floor. This unit power consumption is output in time series. Thus, the unit power consumption for each floor can be easily obtained from the number of persons boarding/exiting the elevator.

Description

ビル管理システム及びビル管理方法Building management system and building management method
 本発明は、ビル管理システム及びビル管理方法に関する。 The present invention relates to a building management system and a building management method.
 従来、ビルの消費電力を管理する手法としては、例えば、ビルの管理者が、ビルの毎月の消費電力量の測定値や、毎月の電気料金の支払い金額を見て、適正かどうかを判断していた。例えば、一年前の同じ月よりも消費電力量が増えた場合に、その増え方が異常でないか、適正な範囲であるかなどを判断していた。 Conventionally, as a method of managing the power consumption of a building, for example, the building manager looks at the monthly measured power consumption of the building and the amount of monthly electricity bills paid, and judges whether it is appropriate or not. was For example, if the amount of power consumption increased compared to the same month one year ago, it was determined whether the increase was normal or within an appropriate range.
 ところが、単にビル全体での消費電力量などを見ているだけでは、ビル内の各フロアの使われ方が適正かどうかを判断することは困難であった。
 特許文献1には、ビルの各部屋の入退室人数を出入口で管理して、各部屋の在室人数を計算して、部屋のエネルギ消費量と在室人数から一人あたりのエネルギ消費量を算出して表示する技術が記載されている。
However, it was difficult to determine whether each floor in the building was being used appropriately by simply looking at the power consumption of the entire building.
In Patent Document 1, the number of people entering and exiting each room of a building is managed at the entrance and exit, the number of people in each room is calculated, and the energy consumption per person is calculated from the energy consumption of the room and the number of people in the room. and display technology.
特開2013-20307号公報Japanese Unexamined Patent Application Publication No. 2013-20307
 特許文献1に記載されるように、ビルの各部屋の入退室人数を、出入口のゲートなどで管理することで、各部屋の正確な在室人数が計算でき、部屋のエネルギ消費量と在室人数から一人あたりのエネルギ消費量を算出することができる。 As described in Patent Document 1, by managing the number of people entering and exiting each room of a building at the entrance gate, etc., the accurate number of people in each room can be calculated, and the energy consumption of the room and the number of people in the room can be calculated. Energy consumption per person can be calculated from the number of people.
 しかしながら、ビル内の全ての部屋の出入口にゲートを設ける構成とした場合、ビル内に多数のゲートが必要であり、ビル内の入退管理装置の構成が複雑化して、システム構成が複雑化するという問題がある。また、ビル内にオープンスペースのような自由に出入りができるフロアがある場合には、そのフロアについては、在室人数の計測が不可能であり、特許文献1に記載された技術では一人あたりのエネルギ消費量の算出ができないという問題があった。 However, if gates are provided at the entrances and exits of all rooms in the building, a large number of gates are required in the building, which complicates the configuration of the entrance/exit control device in the building and complicates the system configuration. There is a problem. In addition, if there is a floor such as an open space in the building that can be freely entered and exited, it is impossible to measure the number of people in the room on that floor. There was a problem that energy consumption could not be calculated.
 したがって、各部屋のゲートのような複雑なシステム構成を必要としない簡単な構成や処理により、ビルの一人あたりのエネルギ消費量を正確に推定できるようにすることが望まれていた。 Therefore, it was desired to be able to accurately estimate per capita energy consumption in a building with a simple configuration and processing that does not require a complicated system configuration such as gates for each room.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。
 本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、監視対象のビルで使用される電力の消費量を取得するビル管理システムにおいて、ビルに設置された昇降機のフロア毎の乗降人数を算出する乗降人数算出部と、予め定められた時間内の、ビル内の電力使用量をフロア毎に求める電力使用量測定部と、乗降人数算出部が求めた乗降人数を用いて予め定められた時間内の平均滞留人数をフロア毎に求める滞留人数算出部と、電力使用量測定部で求めた電力使用量を滞留人数算出部が求めた平均滞留人数で除した値である単位消費電力を求める単位消費電力算出部と、単位消費電力算出部が求めた単位消費電力を格納する記憶部と、記憶部に格納された単位消費電力を時系列に出力する出力部と、を備える。
In order to solve the above problems, for example, the configurations described in the claims are adopted.
The present application includes a plurality of means for solving the above problems. A passenger number calculation unit that calculates the number of passengers on each floor, a power consumption measurement unit that calculates the power consumption in the building for each floor within a predetermined time, and the number of passengers calculated by the passenger number calculation unit. It is the value obtained by dividing the power consumption obtained by the staying number calculation unit and the power usage measurement unit by the average staying number calculated by the staying number calculation unit. a unit power consumption calculating unit that calculates a certain unit power consumption, a storage unit that stores the unit power consumption calculated by the unit power consumption calculating unit, an output unit that outputs the unit power consumption stored in the storage unit in time series, Prepare.
 本発明によれば、昇降機のフロア毎の乗降人数から、各フロアの滞留人数を求めて、単位消費電力を得るようにしたことで、入室人数を入退管理装置で計測することなく、簡単に各フロアの単位消費電力を求めることが可能になる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, the unit power consumption is obtained by obtaining the number of people staying on each floor from the number of people getting on and off the elevator for each floor, so that the number of people entering the room can be easily measured without using an entrance/exit management device. It becomes possible to obtain the unit power consumption of each floor.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の一実施の形態例によるビル管理システムの例を示す構成図である。1 is a configuration diagram showing an example of a building management system according to an embodiment of the present invention; FIG. 本発明の一実施の形態例によるビル設備制御品質管理装置のハードウェア構成例を示すブロック図である。1 is a block diagram showing a hardware configuration example of a building facility control quality management device according to an embodiment of the present invention; FIG. 本発明の一実施の形態例によるエレベーター監視装置のハードウェア構成例を示すブロック図である。1 is a block diagram showing a hardware configuration example of an elevator monitoring device according to an embodiment of the present invention; FIG. 本発明の一実施の形態例による空調機監視装置のハードウェア構成例を示すブロック図である。1 is a block diagram showing a hardware configuration example of an air conditioner monitoring device according to an embodiment of the present invention; FIG. 本発明の一実施の形態例による単位電力の算出処理及び空調機の制御処理を示すフローチャートである。4 is a flow chart showing unit power calculation processing and air conditioner control processing according to an embodiment of the present invention. 本発明の一実施の形態例による出力処理を示すフローチャートである。4 is a flow chart showing output processing according to an embodiment of the present invention; 本発明の一実施の形態例による各フロアの単位消費電力の時間ごとの変化例を示す図である。FIG. 4 is a diagram showing an example of change in unit power consumption of each floor over time according to an embodiment of the present invention; 本発明の一実施の形態例による各フロアの滞留人数の時間ごとの変化例を示す図である。FIG. 5 is a diagram showing an example of change in the number of people staying on each floor over time according to an embodiment of the present invention; 本発明の一実施の形態例による各フロアの空調機の消費電力の時間ごとの変化例を示す図である。FIG. 4 is a diagram showing an example of change in power consumption of air conditioners on each floor over time according to an embodiment of the present invention; 本発明の一実施の形態例による特定のフロアの最高気温と空調機の消費電流と消費電力量の時間ごとの変化例を示す図である。FIG. 4 is a diagram showing an example of change over time in the maximum temperature of a specific floor, current consumption, and power consumption of an air conditioner according to an embodiment of the present invention; 本発明の一実施の形態例による特定のフロアの滞留人数と消費電力量の時間ごとの変化例(例1)を示す図である。FIG. 10 is a diagram showing an example (example 1) of changes over time in the number of people staying on a specific floor and power consumption according to an embodiment of the present invention; 本発明の一実施の形態例による特定のフロアの滞留人数と消費電力量の時間ごとの変化例(例2)を示す図である。FIG. 10 is a diagram showing an example (example 2) of changes over time in the number of people staying on a specific floor and power consumption according to an embodiment of the present invention; 本発明の一実施の形態例による出力情報による表示例を示す図である。FIG. 5 is a diagram showing a display example of output information according to an embodiment of the present invention;
 以下、本発明の一実施の形態例(以下「本例」と称する)のビル管理システムを、添付図面を参照して説明する。 A building management system according to an embodiment (hereinafter referred to as "this example") of the present invention will be described below with reference to the accompanying drawings.
<システム構成>
 図1は、本例のビル管理システムの全体構成を示す。
 本例のビル管理システムは、監視対象の複数のビル100a,100b,・・・を、ネットワークNWで接続されたビル設備制御品質管理装置200で管理する構成である。また、ネットワークNWには、エレベーター監視装置300と、入退監視装置400と、空調機監視装置500とが接続されている。さらに、ネットワークNWには、管理者端末600が接続され、管理者端末600でビル設備制御品質管理装置200による管理状態などを管理することができる。また、ビル設備制御品質管理装置200は、ネットワークNWを経由して気象情報サーバ700から気象情報を取得することができる。
<System configuration>
FIG. 1 shows the overall configuration of the building management system of this example.
The building management system of this example is configured to manage a plurality of buildings 100a, 100b, . Further, an elevator monitoring device 300, an entrance/exit monitoring device 400, and an air conditioner monitoring device 500 are connected to the network NW. Furthermore, an administrator terminal 600 is connected to the network NW, and the administrator terminal 600 can manage the management status of the building equipment control quality management apparatus 200 and the like. Also, the building equipment control quality management apparatus 200 can acquire weather information from the weather information server 700 via the network NW.
 なお、図1では1つのネットワークNWで各ビル100a,100b,・・・と各装置200,300,400,500や管理者端末600が接続された構成を示すが、この構成は一例である。例えば、各ビル100a,100b,・・・と各装置200,300,400,500は、専用の通信回線で接続し、管理者端末600は、公衆通信回線を使って、ビル設備制御品質管理装置200に接続してもよい。
 また、図1では、1台の管理者端末600を示すが、複数台の管理者端末600を備えてもよい。管理者端末600は専用の端末装置で構成してもよいが、例えば管理者が所持したスマートフォンやタブレット端末などの機器が兼ねてもよい。
Although FIG. 1 shows a configuration in which each building 100a, 100b, . For example, each building 100a, 100b, . 200 may be connected.
In addition, although one administrator terminal 600 is shown in FIG. 1, a plurality of administrator terminals 600 may be provided. The administrator terminal 600 may be composed of a dedicated terminal device, but may also be a device such as a smart phone or a tablet terminal possessed by the administrator.
 ビル設備制御品質管理装置200は、消費電力データベース201を備える。消費電力データベース201には、管理対象の各ビル100a,100b,・・・での電力消費量が記録される。図面ではデータベースはDBと記載する。
 エレベーター監視装置300は、乗降人数データベース301を備える。乗降人数データベース301には、各ビル100a,100b,・・・に設置されたエレベーターの各フロアの乗降人数が記録される。
The building equipment control quality management device 200 has a power consumption database 201 . The power consumption database 201 records the power consumption of each building 100a, 100b, . . . to be managed. In the drawings, the database is described as DB.
The elevator monitoring device 300 includes a database 301 of passengers. The passenger number database 301 records the number of passengers on each floor of the elevator installed in each building 100a, 100b, .
 入退監視装置400は、入退データベース401を備える。入退データベース401には、各ビル100a,100b,・・・に設置された入退管理装置130がカウントしたビルの出入口でのビル入場者及びビル退場者の人数が記録される。
 空調機監視装置500は、稼働記録データベース501を備える。稼働記録データベース501には、各ビル100a,100b,・・・に設置された空調機の各フロアの稼働状態が記録される。
The entrance/exit monitoring device 400 includes an entrance/exit database 401 . The entrance/exit database 401 records the number of people entering and leaving the building at the entrance/exit of the building counted by the entrance/exit management device 130 installed in each building 100a, 100b, . . . .
The air conditioner monitoring device 500 has an operation record database 501 . In the operation record database 501, the operation status of each floor of the air conditioners installed in each building 100a, 100b, . . . is recorded.
 なお、図1に示すビル設備制御品質管理装置200、エレベーター監視装置300、入退監視装置400、及び空調機監視装置500は、それぞれ個別の装置としたが、1つの装置が複数の装置の機能を備えてもよい。また、各装置200,300,400,500としての機能を、インターネット上に用意された汎用のサーバに行わせるようにしてもよい。 The building equipment control quality control device 200, the elevator monitoring device 300, the entrance/exit monitoring device 400, and the air conditioner monitoring device 500 shown in FIG. may be provided. Also, the functions of the devices 200, 300, 400, and 500 may be performed by a general-purpose server provided on the Internet.
 各ビル100a,100b,・・・の構成の一例として、ビル100aの構成について説明する。その他のビルもビル100aと同様の構成であるものとする。
 ビル100aは、複数のフロア101~107で構成され、エレベーター110のかご115でフロア間の移動が行われる。
As an example of the configuration of each building 100a, 100b, . . . , the configuration of the building 100a will be described. It is assumed that other buildings have the same configuration as the building 100a.
A building 100a is composed of a plurality of floors 101 to 107, and a car 115 of an elevator 110 moves between floors.
 エレベーター110のかご115は、ワイヤ114が巻き上げ機113により巻き上げられることで昇降する。エレベーター110は、機械室111などにエレベーター制御装置111が設置され、このエレベーター制御装置111が、かご115の運行状況を制御する。また、エレベーター制御装置111は、エレベーターの運行状況についての情報を、エレベーター監視装置300に伝送する。
 なお、かご115には荷重センサ(不図示)が取り付けられている。かご115の運行の荷重センサの値も、エレベーター制御装置111により、エレベーター監視装置300に伝送される。
The car 115 of the elevator 110 moves up and down as the wire 114 is hoisted by the hoist 113 . The elevator 110 has an elevator control device 111 installed in a machine room 111 or the like. In addition, the elevator control device 111 transmits information about the operation status of the elevator to the elevator monitoring device 300 .
A load sensor (not shown) is attached to the car 115 . Load sensor values for the operation of car 115 are also transmitted by elevator controller 111 to elevator monitor 300 .
 各フロア101~107には、冷房及び暖房を行う空調機121~127が設置され、フロア101~107ごとに適正な温度とされる。各フロア101~107の空調機121~127は、ビル100aに設置された空調制御装置120により制御される。空調制御装置120による各空調機121~127の制御状態は、空調機監視装置500により監視される。 Air conditioners 121 to 127 for cooling and heating are installed on each floor 101 to 107, and each floor 101 to 107 has an appropriate temperature. Air conditioners 121 to 127 on each floor 101 to 107 are controlled by an air conditioning controller 120 installed in the building 100a. The control state of each of the air conditioners 121 to 127 by the air conditioning control device 120 is monitored by the air conditioner monitoring device 500 .
 また、ビル100aには、入退管理装置130が設置され、この入退管理装置130により、ビル100aの出入口でのビルへの入場及びビルからの退場が管理される。例えば、ビル100aの出入口にはゲートが設置され、入退管理装置130は、予め登録されたビル利用者を正しく認証できた場合に、入場及び退場を許可する。ビル利用者の認証は、例えばICカードによる認証や顔認証などにより行われる。入退管理装置130は、出入口のゲートを通過した入場者及び退場者をカウントし、ビル100aの滞在者数を取得する。 In addition, an entrance/exit management device 130 is installed in the building 100a, and this entrance/exit management device 130 manages entry into and exit from the building at the entrance of the building 100a. For example, a gate is installed at the entrance of the building 100a, and the entry/exit management device 130 permits entry and exit when a pre-registered building user can be correctly authenticated. Building user authentication is performed by, for example, IC card authentication or face authentication. The entrance/exit management device 130 counts the number of people entering and leaving the building 100a who have passed through the entrance/exit gate, and obtains the number of people staying in the building 100a.
 なお、この入退管理装置130によるビル入場者やビル退場者の管理を行わない構成としてもよい。あるいは、1階などの特定フロアは、認証せずに自由に入退場できる構成として、2階以上のフロアなどの特定フロア以外は、入退管理装置130による認証が行われた者を入場させる構成としてもよい。 It should be noted that the entrance/exit management device 130 may not be used to manage the people entering the building and the people leaving the building. Alternatively, specific floors such as the 1st floor may be freely entered and exited without authentication, while floors other than the 2nd floor and above are configured to allow entry to persons who have been authenticated by the entrance/exit management device 130. may be
<各装置のハードウェア構成例>
 図2は、ビル設備制御品質管理装置200のハードウェア構成例を示す。図2に示す例は、ビル設備制御品質管理装置200をコンピュータで構成した場合である。
 図2に示すビル設備制御品質管理装置(コンピュータ装置)200は、バスにそれぞれ接続されたCPU(Central Processing Unit:中央処理ユニット)210、主記憶部220、記憶部230、及びネットワークインタフェース240を備える。
<Hardware configuration example of each device>
FIG. 2 shows a hardware configuration example of the building facility control quality management device 200. As shown in FIG. The example shown in FIG. 2 is a case where the building equipment control quality management device 200 is configured by a computer.
A building equipment control quality management device (computer device) 200 shown in FIG. .
 CPU210は、ビル設備制御品質管理装置200での処理を実行するソフトウェアのプログラムコードを主記憶部220又は記憶部230から読み出して実行する演算処理部である。CPU210が演算処理を実行することで、主記憶部220には、様々な処理機能部が構成される。例えば、主記憶部220には、滞留人数算出部221、単位消費電力算出部222、及び出力部223が構成される。滞留人数算出部221や単位消費電力算出部222が行う処理については後述する。 The CPU 210 is an arithmetic processing unit that reads and executes the program code of software that executes processing in the building equipment control quality management device 200 from the main storage unit 220 or the storage unit 230 . Various processing function units are configured in the main storage unit 220 by the CPU 210 executing arithmetic processing. For example, the main storage unit 220 includes a staying number calculation unit 221 , a unit power consumption calculation unit 222 , and an output unit 223 . Processing performed by the staying number calculation unit 221 and the unit power consumption calculation unit 222 will be described later.
 記憶部230は、不揮発性の記憶装置で構成され、上述したプログラムコードが記録されると共に、消費電力が記録される消費電力データベース201としての機能を有する。例えば、消費電力データベース201には、監視対象のビルの各フロアの空調機の消費電力についての情報が記録される。この場合、空調機の消費電力は、時間帯ごとのビル内の各フロアの平均滞留人数で除算した単位消費電力として記録される。
 ネットワークインタフェース240は、ネットワークNW(図1)に接続されて、他の機器と通信する機能を持つ。
The storage unit 230 is configured by a non-volatile storage device, and functions as a power consumption database 201 in which the above-described program code is recorded and power consumption is recorded. For example, the power consumption database 201 records information about the power consumption of air conditioners on each floor of the building to be monitored. In this case, the power consumption of the air conditioner is recorded as unit power consumption divided by the average number of people staying on each floor in the building for each time slot.
The network interface 240 is connected to the network NW (FIG. 1) and has a function of communicating with other devices.
 図3は、エレベーター監視装置300のハードウェア構成例を示す。図3に示す例は、エレベーター監視装置300をコンピュータで構成した場合である。
 図3に示すエレベーター監視装置(コンピュータ装置)300は、バスにそれぞれ接続されたCPU310、主記憶部320、記憶部330、及びネットワークインタフェース340を備える。
FIG. 3 shows a hardware configuration example of the elevator monitoring device 300. As shown in FIG. The example shown in FIG. 3 is a case where the elevator monitoring device 300 is configured by a computer.
An elevator monitoring device (computer device) 300 shown in FIG. 3 includes a CPU 310, a main storage unit 320, a storage unit 330, and a network interface 340, which are connected to a bus.
 CPU310は、エレベーター監視装置300での処理を実行するソフトウェアのプログラムコードを主記憶部320又は記憶部330から読み出して実行する演算処理部である。CPU310が演算処理を実行することで、主記憶部320には、様々な処理機能部が構成される。例えば、主記憶部320には、乗降人数算出部321が構成される。乗降人数算出部321が行う処理については後述する。 The CPU 310 is an arithmetic processing unit that reads out the program code of the software that executes the processing in the elevator monitoring device 300 from the main storage unit 320 or the storage unit 330 and executes it. Various processing function units are configured in the main storage unit 320 by the CPU 310 executing arithmetic processing. For example, the main storage unit 320 includes a passenger number calculation unit 321 . The processing performed by the passenger number calculation unit 321 will be described later.
 記憶部330は、不揮発性の記憶装置で構成され、上述したプログラムコードが記録されると共に、乗降人数が記録される乗降人数データベース301としての機能を有する。乗降人数データベース301には、乗降人数算出部321で算出されたエレベーターの各フロアの乗降人数が記録される。
 ネットワークインタフェース340は、ネットワークNW(図1)に接続されて、他の機器と通信する機能を持つ。
The storage unit 330 is configured by a non-volatile storage device, and has a function as a passenger number database 301 in which the above-described program code is recorded and the number of boarding and alighting passengers is recorded. The number of passengers on each floor of the elevator calculated by the number-of-passengers calculating unit 321 is recorded in the passenger-passengers database 301 .
The network interface 340 is connected to the network NW (FIG. 1) and has a function of communicating with other devices.
 図4は、空調機監視装置500のハードウェア構成例を示す。図3に示す例は、空調機監視装置500をコンピュータで構成した場合である。
 図4に示す空調機監視装置(コンピュータ装置)500は、バスにそれぞれ接続されたCPU510、主記憶部520、記憶部530、及びネットワークインタフェース540を備える。
FIG. 4 shows a hardware configuration example of the air conditioner monitoring device 500 . The example shown in FIG. 3 is a case where the air conditioner monitoring device 500 is configured by a computer.
An air conditioner monitoring device (computer device) 500 shown in FIG. 4 includes a CPU 510, a main storage unit 520, a storage unit 530, and a network interface 540, which are each connected to a bus.
 CPU510は、空調機監視装置500での処理を実行するソフトウェアのプログラムコードを主記憶部520又は記憶部530から読み出して実行する演算処理部である。CPU510が演算処理を実行することで、主記憶部520には、様々な処理機能部が構成される。例えば、主記憶部520には、電力使用量測定部521が構成される。電力使用量測定部521は、監視対象のビルの各フロアの空調機の電力使用量、及びビル全体の空調機の電力使用量を測定する。また、電力使用量測定部521は、ビル内の空調機以外の電力使用量についても、フロア毎及びビル全体で測定する。 The CPU 510 is an arithmetic processing unit that reads out the program code of software that executes processing in the air conditioner monitoring device 500 from the main storage unit 520 or the storage unit 530 and executes it. Various processing function units are configured in the main storage unit 520 by the CPU 510 executing arithmetic processing. For example, the main storage unit 520 includes a power consumption measurement unit 521 . The power consumption measurement unit 521 measures the power consumption of the air conditioners on each floor of the building to be monitored and the power consumption of the air conditioners in the entire building. The power consumption measurement unit 521 also measures the power consumption for each floor and for the entire building, except for the air conditioners in the building.
 記憶部530は、不揮発性の記憶装置で構成され、上述したプログラムコードが記録されると共に、エレベーターの稼動状態が記録される稼働記録データベース501としての機能を有する。稼働記録データベース501には、電力使用量測定部521で測定されたビルの各フロアの空調機の電力使用量に関する情報が記録される。
 ネットワークインタフェース540は、ネットワークNW(図1)に接続されて、他の機器と通信する機能を持つ。
The storage unit 530 is composed of a non-volatile storage device, and functions as an operation record database 501 in which the above-described program code is recorded and the operating state of the elevator is recorded. The operation record database 501 records information about the power consumption of the air conditioners on each floor of the building measured by the power consumption measuring unit 521 .
The network interface 540 is connected to the network NW (FIG. 1) and has a function of communicating with other devices.
 なお、ビル設備制御品質管理装置200などの各装置を図2~図4に示すコンピュータ装置で構成するのは一例であり、コンピュータ装置以外のその他の演算処理装置で構成してもよい。例えば、ビル設備制御品質管理装置200が行う機能の一部または全部を、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などのハードウェアによって実現してもよい。 It should be noted that the configuration of each device such as the building equipment control quality management device 200 with the computer devices shown in FIGS. For example, some or all of the functions performed by the building equipment control quality management apparatus 200 may be realized by hardware such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
<各フロアの単位消費電力を得る処理の流れ>
 図5は、本例のシステムでビルの各フロアの空調機の単位消費電力を得る処理の流れを示すフローチャートである。ここでは、図1に示すビル100aの各フロアの空調機の単位消費電力を得る処理について説明する。
<Flow of processing for obtaining unit power consumption of each floor>
FIG. 5 is a flow chart showing the flow of processing for obtaining the unit power consumption of air conditioners on each floor of a building in the system of this example. Here, processing for obtaining the unit power consumption of the air conditioners on each floor of the building 100a shown in FIG. 1 will be described.
 まず、エレベーター監視装置300の乗降人数算出部321は、ビル100aに設置されたエレベーター110のかご115の各フロアでの乗降人数を算出する(ステップS11)。この各フロアでの乗降人数は、例えば、かご115に取り付けられた荷重センサで検出された荷重値の、各フロアでの変化から推定される。例えば、かご115が特定のフロアに停止して、荷重センサが検出した荷重値が約110kg少なくなったとき、乗降人数算出部321は、2人がそのフロアで降りたと判断する。逆に、荷重センサが検出した荷重値が約170kg多くなったときには、乗降人数算出部321は、3人がそのフロアで乗車したと判断する。このエレベーター監視装置300の乗降人数算出部321が算出したフロアごとの乗降人数の情報は、乗降人数データベース301に記憶される。 First, the number-of-passengers calculation unit 321 of the elevator monitoring device 300 calculates the number of passengers on each floor of the car 115 of the elevator 110 installed in the building 100a (step S11). The number of passengers getting on and off on each floor is estimated, for example, from changes in load values detected by load sensors attached to the car 115 on each floor. For example, when the car 115 stops on a specific floor and the load value detected by the load sensor decreases by approximately 110 kg, the number-of-boarding/alighting number calculator 321 determines that two people got off on that floor. Conversely, when the load value detected by the load sensor increases by approximately 170 kg, the number-of-boarding/alighting number calculation unit 321 determines that three people have boarded the floor. Information on the number of passengers on each floor calculated by the passenger number calculation unit 321 of the elevator monitoring device 300 is stored in the passenger number database 301 .
 そして、ビル設備制御品質管理装置200は、エレベーター監視装置300の乗降人数データベース301に記憶されたビル100aの各フロアでのエレベーターの乗降人数を読み出す。ビル設備制御品質管理装置200の滞留人数算出部221は、取得したエレベーターの各フロアの乗降人数を積算して、各フロアの時間帯ごとの平均滞留人数を算出する(ステップS12)。 Then, the building facility control quality management device 200 reads out the number of passengers on each floor of the building 100 a stored in the database 301 of the number of passengers on the elevator monitoring device 300 . The staying number calculation unit 221 of the building equipment control quality management apparatus 200 integrates the acquired number of passengers on each floor of the elevator to calculate the average staying number for each time period on each floor (step S12).
 なお、ビル100aの出入口が設置された階(1階)の滞留人数については、滞留人数算出部221は、入退監視装置400がカウントしたビル全体の滞留人数から、1階を除く階の滞留人数を減算して算出する。また、出入口が設置された1階で入退管理が行われていないビルの場合には、滞留人数算出部221は、1階の滞留人数の算出を行わないようにしてもよい。 Regarding the number of people staying on the floor (first floor) where the entrance/exit of the building 100a is installed, the number of staying people calculation unit 221 calculates the number of people staying on the floors other than the first floor from the number of people staying on the entire building counted by the entrance/exit monitoring device 400. Calculate by subtracting the number of people. In addition, in the case of a building where entry/exit management is not performed on the first floor where the entrance/exit is installed, the staying number calculation unit 221 may not calculate the number of staying persons on the first floor.
 次に、空調機監視装置500の電力使用量測定部521は、ビル100aの各フロアの時間帯ごとの空調機の電力消費量を測定し、稼働記録データベース501に記録する(ステップS13)。そして、ビル設備制御品質管理装置200は、空調機監視装置500の稼働記録データベース501に記録されたビル100aの各フロアの時間帯ごとの空調機の電力消費量を読み出す。 Next, the power consumption measurement unit 521 of the air conditioner monitoring device 500 measures the power consumption of the air conditioners for each time period on each floor of the building 100a and records it in the operation record database 501 (step S13). Then, the building equipment control quality management device 200 reads out the power consumption of the air conditioners for each time period on each floor of the building 100 a recorded in the operation record database 501 of the air conditioner monitoring device 500 .
 ビル設備制御品質管理装置200の単位消費電力算出部222は、ビル100aの各フロアの時間帯ごとの空調機の電力消費量を、各フロアの時間帯ごとの平均滞留人数で除した値である単位消費電力を求める(ステップS14)。求めた単位消費電力の情報は、消費電力データベース201に記録される。
 また、単位消費電力算出部222は、ステップS14で求めた各フロアの単位消費電力が、予め設定された一人あたりの単位消費電力の規定値を超えているか否かを判断する(ステップS15)。
The unit power consumption calculation unit 222 of the building equipment control quality management device 200 is a value obtained by dividing the power consumption of the air conditioner for each time period on each floor of the building 100a by the average number of staying people for each time period on each floor. A unit power consumption is obtained (step S14). The obtained unit power consumption information is recorded in the power consumption database 201 .
In addition, the unit power consumption calculation unit 222 determines whether or not the unit power consumption of each floor calculated in step S14 exceeds a preset value of unit power consumption per person (step S15).
 ステップS15で、単位消費電力の規定値を超えている場合(ステップS15のYes)、ビル設備制御品質管理装置200は、ビル100aの空調制御装置120に対して、単位消費電力の規定値を超えているフロアの空調機(空調機121~127のいずれか)の設定温度を変える指令を送る(ステップS16)。ここでの設定温度を変える指令は、該当するフロアの空調機の消費電力を下げるために行うものであり、例えば冷房運転時には、設定温度を上げる指令であり、暖房運転時には、設定温度を下げる指令になる。 In step S15, if the unit power consumption exceeds the specified value (Yes in step S15), the building equipment control quality management device 200 instructs the air conditioning control device 120 of the building 100a to A command to change the set temperature of the air conditioner (one of the air conditioners 121 to 127) on the floor where the floor is on is sent (step S16). The command to change the set temperature here is to reduce the power consumption of the air conditioner on the corresponding floor. become.
 そして、ステップS15で、単位消費電力の規定値を超えていない場合(ステップS15のNo)と、ステップS16で設定温度を変える指令を送った後には、ビル設備制御品質管理装置200の出力部223は、ビル100aのフロアごとの単位消費電力の情報を、管理者端末600に出力する(ステップS17)。
 管理者端末600は、ビル100aのフロアごとの単位消費電力の情報の表示を行う。ビル設備制御品質管理装置200の出力部223がビル100aのフロアごとの単位消費電力の情報を出力する際には、管理者端末600から指示された出力情報の選択に基づいて、出力情報の種類や形態などが選択される。
Then, in step S15, if the specified value of the unit power consumption is not exceeded (No in step S15), and after sending a command to change the set temperature in step S16, the output unit 223 of the building facility control quality management device 200 outputs the information of the unit power consumption for each floor of the building 100a to the administrator terminal 600 (step S17).
The administrator terminal 600 displays information on unit power consumption for each floor of the building 100a. When the output unit 223 of the building equipment control quality management device 200 outputs the information of the unit power consumption for each floor of the building 100a, based on the selection of the output information instructed from the administrator terminal 600, the type of output information and form are selected.
 図6は、管理者端末600からの指示に基づいてビル設備制御品質管理装置200の出力部223で行われる出力情報の選択処理の流れを示すフローチャートである。
 まず、出力部223は、管理者端末600からの指示による出力情報選択を受付ける(ステップS21)。そして、出力部223は、受付けた出力情報が、建物間比較か、あるいは相関かを判断する(ステップS22)。
FIG. 6 is a flow chart showing the flow of output information selection processing performed by the output unit 223 of the building equipment control quality management apparatus 200 based on instructions from the administrator terminal 600 .
First, the output unit 223 receives output information selection by an instruction from the administrator terminal 600 (step S21). Then, the output unit 223 determines whether the received output information is a comparison between buildings or a correlation (step S22).
 ステップS22で出力情報が「建物間比較」の場合には、出力部223は、比較するビルの指定を受付け(ステップS23)、比較する期間の指定を受付ける(ステップS24)。そして、出力部223は、指定された期間とビルの単位消費電力データの読み出しを消費電力データベース201に要求する(ステップS25)。そして、出力部223は、指定された期間とビルの単位消費電力データを消費電力データベース201から受け取る(ステップS26)。 When the output information is "comparison between buildings" in step S22, the output unit 223 accepts designation of buildings to be compared (step S23), and receives designation of the period to be compared (step S24). Then, the output unit 223 requests the power consumption database 201 to read the unit power consumption data for the designated period and building (step S25). Then, the output unit 223 receives the specified period and unit power consumption data of the building from the power consumption database 201 (step S26).
 そして、出力部223は、比較するビルの単位消費電力データ選択を受付け(ステップS27)、指定されたビルの単位消費電力データの消費電力データベース201からの読み出しを行う(ステップS28)。
 さらに、出力部223は、指定されたビルと比較するビルの単位消費電力を、対応付けたデータとして管理者端末600に出力する(ステップS29)。
Then, the output unit 223 receives the selection of the unit power consumption data of the building to be compared (step S27), and reads the unit power consumption data of the designated building from the power consumption database 201 (step S28).
Furthermore, the output unit 223 outputs the unit power consumption of the specified building and the building to be compared to the administrator terminal 600 as associated data (step S29).
 また、ステップS22で出力情報が「相関」の場合には、出力部223は、期間の指定を受付ける(ステップS30)。また、出力部223は、相関を求める気象データの選択を受付ける(ステップS31)。ここでの相関を求める気象データには、期間内の各日の最高気温、不快指数などが含まれる。 Also, when the output information is "correlation" in step S22, the output unit 223 accepts designation of the period (step S30). The output unit 223 also accepts selection of weather data for which correlation is to be obtained (step S31). The meteorological data for which the correlation is to be obtained includes the maximum temperature of each day within the period, the discomfort index, and the like.
 出力部223は、ステップS31で受付けた期間のビルが設置された地域の気象データを、気象情報サーバ700に対して要求し(ステップS32)、要求した気象データを受け取る(ステップS33)。
 そして、出力部223は、指定された期間の気象データと、単位消費電力の相関グラフを作成して管理者端末600に出力する。
The output unit 223 requests the weather information server 700 for the weather data of the area where the building is installed during the period accepted in step S31 (step S32), and receives the requested weather data (step S33).
Then, the output unit 223 creates a correlation graph between the weather data for the specified period and the unit power consumption, and outputs the graph to the administrator terminal 600 .
<単位消費電力と表示画像の具体例>
 図7は、特定のビルAについての、1日の1時間ごとの各フロアの空調機の単位消費電力の算出例を示す。図7の例では、8時から18時までの1時間ごとの空調機の一人あたりの単位消費電力(w/h)を示す。各フロアのエリア種別は、各フロアにどのような種別のテナントが入居しているのかを示す。
 この図7に示す情報が、ビル設備制御品質管理装置200の消費電力データベース201に記録される。
<Specific example of unit power consumption and display image>
FIG. 7 shows a calculation example of the unit power consumption of air conditioners on each floor for each hour of a day for a specific building A. In FIG. The example of FIG. 7 shows the unit power consumption (w/h) per person of the air conditioner for each hour from 8:00 to 18:00. The area type of each floor indicates what type of tenant resides on each floor.
The information shown in FIG. 7 is recorded in the power consumption database 201 of the building equipment control quality management device 200. FIG.
 図8は、特定のビルAについての、1日の1時間ごとの各フロアの滞留人数の算出例を示す。図8の例では、8時から18時までの1時間ごとの各フロアの平均滞留人数を示す。この滞留人数についても、各フロアのエリア種別を付加している。 FIG. 8 shows a calculation example of the number of people staying on each floor for each hour of the day for a specific building A. The example in FIG. 8 shows the average number of people staying on each floor for each hour from 8:00 to 18:00. The area type of each floor is also added to the staying number.
 図9は、特定のビルAについての、1日の1時間ごとの各フロアの空調機の消費電力の測定例を示す。図9の例では、8時から18時までの1時間ごとの空調機の消費電力(kw/h)を示す。
 なお、図7~図9の例では、出入口が設置された階である1階については、単位消費電力、滞留人数及び消費電力を測定又は算出していない。
FIG. 9 shows an example of measurement of power consumption of air conditioners on each floor for each hour of a day for a specific building A. In FIG. The example in FIG. 9 shows the power consumption (kw/h) of the air conditioner for each hour from 8:00 to 18:00.
In the examples of FIGS. 7 to 9, the unit power consumption, the number of staying people, and the power consumption are not measured or calculated for the first floor, which is the floor where the entrance/exit is installed.
 ビル設備制御品質管理装置200の単位消費電力算出部222は、図8に示す各フロアの平均滞留人数と、図9に示す各フロアの空調機の消費電力とに基づいた算出処理で、図7に示すような一人あたりの単位消費電力を得る。 The unit power consumption calculation unit 222 of the building facility control quality management device 200 performs a calculation process based on the average number of people staying on each floor shown in FIG. 8 and the power consumption of the air conditioners on each floor shown in FIG. Obtain the unit power consumption per person as shown in .
 図10は、特定のビルの特定のフロアでの空調機の累積の消費電力d11[kwh]と、電流d12[A]と、室内の気温d13[℃]との関係の例を示している。図10の横軸は時間であり、2021年8月18日の12:00から2021年8月19日の18:00までを示す。ここでは、空調機は冷房運転を行っている場合である。
 例えば、2021年8月19日の6:00過ぎに空調機が高い負荷がかかって運転する状態になり、電流d12が増え、室内の気温d13が下がっている。
FIG. 10 shows an example of the relationship between the cumulative power consumption d11 [kwh] of an air conditioner on a specific floor of a specific building, current d12 [A], and indoor temperature d13 [° C.]. The horizontal axis of FIG. 10 is time, and indicates from 12:00 on August 18, 2021 to 18:00 on August 19, 2021. Here, the air conditioner is in a cooling operation.
For example, after 6:00 on August 19, 2021, the air conditioner is in a state of being operated with a high load, the current d12 increases, and the indoor temperature d13 decreases.
 図11及び図12は、滞留人数と消費電力量との関係を示している。図11及び図12の横軸は時間であり、2020年6月26日の時刻00:00から時刻23:00まで(図11)又は時刻22:00まで(図12)を示す。  Figures 11 and 12 show the relationship between the number of staying people and power consumption. The horizontal axis of FIGS. 11 and 12 is time, and indicates the time from 00:00 on June 26, 2020 to 23:00 (FIG. 11) or to 22:00 (FIG. 12).
 図11は、特定のビルの1つのフロアの消費電力量(棒グラフ)と、該当するフロアの平均滞留人数(折れ線グラフ)とを時系列で示す。
 ここでの消費電力量は、空調機以外を含むフロア全体での消費電力量を示し、照明器具の消費電力量P11と、コンセントの消費電力量P12と、空調機の消費電力量P13とに分けて示す。したがって、消費電力量P11,P12,P13の合計が、フロア全体での消費電力量になる。
 フロアの平均滞留人数d21は、時刻06:00から徐々に増え、時刻11:00で昼休みのために減少した後、時刻12:00で再度増え、その後は徐々に減少して行く。
FIG. 11 shows the power consumption of one floor of a specific building (bar graph) and the average number of people staying on that floor (line graph) in chronological order.
The power consumption here indicates the power consumption of the entire floor including other than the air conditioner, and is divided into the power consumption P11 of the lighting equipment, the power consumption P12 of the outlet, and the power consumption P13 of the air conditioner. is shown. Therefore, the sum of the power consumptions P11, P12, and P13 is the power consumption of the entire floor.
The average number of people staying on the floor d21 gradually increases from time 06:00, decreases at time 11:00 due to the lunch break, increases again at time 12:00, and then gradually decreases.
 図12は、この図11に示す消費電力量と平均滞留人数の場合に算出した単位消費電力を時系列で示す。
 図12に棒グラフで示す照明器具、コンセント、及び空調機の消費電力量P21,P22,P23は、図11に示す消費電力量P11,P12,P13と同じである。
 そして、図12の折れ線グラフは、該当するフロアの一人あたりの単位消費電力量d22を示す。図12に示す単位消費電力量d22は、空調機の消費電力だけでなく、照明器具及びコンセントの消費電力も含むようになっている。但し、本例のビル設備制御品質管理装置200は、フロア全体で単位消費電力を求める場合と、フロアの空調機だけで単位消費電力を求める場合のいずれでもよい。フロア全体の消費電力から求めた単位消費電力と、フロアの空調機だけの単位消費電力の双方を出力して、並べて表示させてもよい。
FIG. 12 shows the unit power consumption calculated in the case of the power consumption shown in FIG. 11 and the average staying number of people in chronological order.
The power consumptions P21, P22, P23 of the lighting fixtures, outlets, and air conditioners shown in the bar graph in FIG. 12 are the same as the power consumptions P11, P12, P13 shown in FIG.
The line graph in FIG. 12 indicates the unit power consumption d22 per person on the corresponding floor. The unit power consumption d22 shown in FIG. 12 includes not only the power consumption of the air conditioner but also the power consumption of the lighting equipment and outlets. However, the building equipment control quality management apparatus 200 of this example may be used for obtaining the unit power consumption for the entire floor or for obtaining the unit power consumption only for the air conditioners on the floor. Both the unit power consumption obtained from the power consumption of the entire floor and the unit power consumption of only the air conditioners on the floor may be output and displayed side by side.
 単位消費電力量d22は、滞留人数が少ない早朝や夜間、ならびに昼休み時には高くなるが、それ以外の日中の時間帯では、空調機の稼働状況などを反映した値になる。なお、単位消費電力量d22はフロア全体での単位消費電力であるが、空調機だけの単位消費電力を算出した場合にも、ほぼ同様の変化を示す。
 このようにフロアの一人あたりの単位消費電力量を算出して出力することで、ビルの各フロアでの空調機の運転が適正か否かを判断することができる。各フロアでの空調機の運転が適正か否かを判断できることで、各フロアが適正な滞留人数で適正な単位消費電力で使用されているか、あるいは、滞留人数に比べて空調機が強い状態で運転されているか、などが判るようになる。また、一人あたりの単位消費電力量が大きすぎる場合には、空調機の故障の可能性の判断も可能になる。
The unit power consumption d22 is high in the early morning, at night, and at lunchtime when there are few staying people, but in other time zones during the daytime, the value reflects the operation status of the air conditioner. Note that the unit power consumption d22 is the unit power consumption of the entire floor, but almost the same change is shown when the unit power consumption of only the air conditioner is calculated.
By calculating and outputting the unit power consumption per person on the floor in this way, it is possible to determine whether or not the operation of the air conditioners on each floor of the building is appropriate. By being able to determine whether the air conditioner is operating properly on each floor, it is possible to determine whether each floor is being used with an appropriate number of people and with an appropriate unit power consumption, or whether the air conditioning is strong compared to the number of people staying on each floor. It becomes possible to determine whether the vehicle is being driven or not. Moreover, when the unit power consumption per person is too large, it becomes possible to determine the possibility of failure of the air conditioner.
 図13は、ビル設備制御品質管理装置200の出力部223が出力した情報の、管理者端末600での表示例を示す。
 図13に示す表示画面は、左端に、期間及び時間帯の設定箇所があり、中央上部に、一日ごとのフロアの空調機の電力消費量P31(棒グラフ)と、一人あたりの一日の単位消費電力量d31(折れ線グラフ)とを、時系列でグラフ表示している。
FIG. 13 shows a display example of the information output by the output unit 223 of the building equipment control quality management apparatus 200 on the administrator terminal 600. As shown in FIG.
In the display screen shown in FIG. 13, the period and time period are set at the left end, and the power consumption P31 (bar graph) of the floor air conditioners for each day and the unit per person per day are displayed at the upper center. The power consumption d31 (line graph) is graphically displayed in chronological order.
 また、図13に示す表示画面の中央下部に、曜日ごとに示した一日のフロアの空調機の平均電力消費量P32(棒グラフ)と、一人あたりの曜日ごとの平均の単位消費電力量d32(折れ線グラフ)とを、時系列でグラフ表示している。
 さらに、図13に示す表示画面の右側に、一人あたりの曜日ごとの単位電力量と、最高気温との関係をグラフで示す。気温として、最高気温を使用しているのは一例であり、最低気温や1日の平均気温などのその他の気温の指標を使ってもよい。
In addition, at the lower center of the display screen shown in FIG. 13, the average power consumption P32 (bar graph) of the air conditioners on the floor for each day of the week, and the average unit power consumption per person for each day of the week d32 ( line graph) are displayed in chronological order.
Furthermore, on the right side of the display screen shown in FIG. 13, a graph shows the relationship between the unit electric energy per person for each day of the week and the maximum temperature. Using the highest temperature as the temperature is an example, and other temperature indicators such as the lowest temperature and the average daily temperature may be used.
 この図13に示すように、一人あたりの一日の単位消費電力量を表示することで、ビルの各フロアでの電力消費や空調機の稼働状況が適正か否かを判断することができる。例えば、単位消費電力が既定値よりも多い場合に、空調機の設定温度を変化させて、単位消費電力を下げる処理が可能である。また、本例の場合には、エレベーターの各フロアの乗降人数から各フロアの滞留人数を算出するようにしたので、エレベーターが設置されたビルであれば、簡単に適用が可能である。 As shown in Fig. 13, by displaying the unit power consumption per person per day, it is possible to judge whether the power consumption and air conditioner operating conditions on each floor of the building are appropriate. For example, when the unit power consumption is higher than the default value, it is possible to change the set temperature of the air conditioner to lower the unit power consumption. In addition, in the case of this example, since the number of staying people on each floor is calculated from the number of people getting on and off the elevator on each floor, it can be easily applied to any building in which an elevator is installed.
 なお、図13に示す表示は一例であり、より詳細な単位消費電力量を表示してもよい。例えば、図11や図12に示すグラフを表示するようにしてもよい。
 また、図6のフローチャートのステップS22で建物間比較が選択された場合には、出力部223は、該当する複数のビルの単位消費電力の情報を記憶部230から読み出し、複数のビルの単位消費電力を比較できるように対応付けして表示されるように出力させる。これにより、特定のビルの各フロアの単位消費電力が、他のビルの各フロアの単位消費電力に比べて、どの程度であるか判断でき、管理者は、適正か否かが容易に判るようになる。
 なお、この複数のビルの単位消費電力を比較する場合には、2つのビルの比較ではなく、例えば監視中の複数のビル(例えば監視中の全てのビル)の各フロアの平均の単位消費電力と、該当する1つのビルの各フロアの平均の単位消費電力とを比較してもよい。
Note that the display shown in FIG. 13 is an example, and more detailed unit power consumption may be displayed. For example, graphs shown in FIGS. 11 and 12 may be displayed.
Further, when the inter-building comparison is selected in step S22 of the flowchart of FIG. The power is output so as to be associated and displayed so that the power can be compared. This makes it possible to judge how much the unit power consumption of each floor of a specific building is compared to the unit power consumption of each floor of another building, and the administrator can easily determine whether it is appropriate or not. become.
When comparing the unit power consumption of multiple buildings, for example, the average unit power consumption of each floor of multiple buildings being monitored (for example, all buildings being monitored) is compared instead of comparing two buildings. may be compared with the average unit power consumption of each floor of the corresponding building.
 また、図13の例では、曜日ごとに示した一日のフロアの空調機の平均電力消費量を集計して表示する例を示したが、このような集計処理は、ビル設備制御品質管理装置200の出力部223が行う場合と、管理者端末600が行う場合のいずれでもよい。 Also, in the example of FIG. 13, an example was shown in which the average power consumption of the air conditioners on the floor for each day of the week is aggregated and displayed. Either the output unit 223 of 200 or the administrator terminal 600 may be used.
<変形例>
 なお、本発明は、上述した実施の形態例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Modification>
It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
 例えば、図5のフローチャートでは、ステップS16で、単位消費電力が規定値以上のとき、空調機の設定温度を自動的に変化させて、単位消費電力を下げるようにした。これに対して、単位消費電力が規定値以上のとき、該当するビルの管理センタなどに通知を行って、実際に空調機の設定温度を変える操作は、ビル側の管理者が手動で行うようにしてもよい。 For example, in the flowchart of FIG. 5, in step S16, when the unit power consumption is equal to or higher than the specified value, the set temperature of the air conditioner is automatically changed to lower the unit power consumption. On the other hand, when the unit power consumption exceeds the specified value, the management center of the relevant building is notified, and the operation to actually change the set temperature of the air conditioner is to be done manually by the manager on the building side. can be
 また、エレベーターの各フロアでの乗降人数の計測処理として、エレベーターのかごに設置された荷重センサの検出値を使用する点についても一例であり、その他の検出値を使ってもよい。例えば、エレベーター乗場やかご内に設置されたカメラ画像の画像解析で、各フロアの乗降人数を計測するようにしてもよい。また、荷重センサの検出値とエレベーター乗場やかご内に設置されたカメラ画像とを併用してもよい。 In addition, the use of the detected value of the load sensor installed in the elevator car as the process of measuring the number of people getting on and off on each floor of the elevator is an example, and other detected values may be used. For example, the number of passengers on each floor may be measured by image analysis of camera images installed in elevator halls and cars. Moreover, the detection value of the load sensor and the image of the camera installed in the elevator landing or the car may be used together.
 さらに、各フロアでの滞留人数を算出する際には、ビル内の各フロア間の移動として階段や他の昇降機(エスカレーター)の使用を考慮するようにしてもよい。
 例えば、エレベーターと階段が設置されたビルの場合に、ビル内での上りの移動時には、ほぼ全てのビル利用者がエレベーターを利用するものとして、エレベーターの上り運転時の乗降人数から、上りのフロア間移動の人数を算出する。一方、ビル内での下りの移動時には、一定比率、例えば10%程度は階段を利用するものとし、エレベーターの下り運転時の乗降人数に10%を乗算した人数から、下りのフロア間移動の人数を算出する。
 このようにすることで、階段の利用がある場合でも、適正なフロア滞留人数の算出ができるようになる。なお、10%などの乗算する一定比率の値は、実際の運用を行いながら修正してもよい。
Furthermore, when calculating the number of people staying on each floor, the use of stairs or other elevators (escalators) may be taken into consideration as movement between floors in the building.
For example, in the case of a building with an elevator and stairs, assuming that almost all building users use the elevator when moving up in the building, the number of people getting on and off when the elevator goes up is calculated. Calculate the number of people traveling between On the other hand, when moving downhill in a building, a certain percentage, for example, about 10%, uses stairs. Calculate
By doing so, it is possible to calculate the appropriate number of people staying on the floor even when stairs are used. It should be noted that the constant multiplication value, such as 10%, may be corrected during actual operation.
 また、エレベーター以外の昇降機の利用人数を利用して、フロアの滞留人数を算出してもよい。例えば、エスカレーターに設置された監視カメラや人感センサを使って、エスカレーターの利用者を計測し、計測した利用者数を、各フロアの滞留人数に加えるようにしてもよい。 Also, the number of people staying on the floor may be calculated using the number of people using elevators other than elevators. For example, the number of escalator users may be measured using surveillance cameras or motion sensors installed on the escalators, and the measured number of users may be added to the number of people staying on each floor.
 また、図7や図8の例では、出入口が設置されたフロアの単位消費電力は算出しないようにしたが、入退監視装置400によってビル全体の入場者数や出場者数が判る場合には、ビル全体の滞留人数から、他のフロアの滞留人数を減算して、出入口が設置されたフロアの滞留人数、並びにそのフロアの単位消費電力を求めるようにしてもよい。 In addition, in the examples of FIGS. 7 and 8, the unit power consumption of the floor where the entrance/exit is installed is not calculated. Alternatively, by subtracting the number of people staying on other floors from the number of people staying on the entire building, the number of people staying on the floor where the entrance/exit is installed and the unit power consumption of that floor may be obtained.
 また、ビル設備制御品質管理装置200が気象情報サーバ700から気温の情報を取得するようしたのは一例であり、その他の構成としてもよい。例えば、ビルに設置された空調機の室外機などに設置された温度測定部が計測した気温を、ビル設備制御品質管理装置200が収集する。そして、その収集した気温を消費電力データベース201に格納して、出力部223が、格納した情報に基づいて、単位消費電力と気温との相関を示すグラフを出力するようにしてもよい。 Also, it is an example that the building facility control quality management device 200 acquires temperature information from the weather information server 700, and other configurations may be used. For example, the building facility control and quality management device 200 collects temperatures measured by a temperature measuring unit installed in an outdoor unit of an air conditioner installed in a building. Then, the collected temperature may be stored in the power consumption database 201, and the output unit 223 may output a graph showing the correlation between the unit power consumption and the temperature based on the stored information.
 さらにまた、図1~図4のブロック図では、制御線や情報線は説明上必要と考えられるものだけを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。また、図5及び図6に示すフローチャートにおいて、処理結果に影響を及ぼさない範囲で、複数の処理を同時に実行するか、あるいは処理順序を変更してもよい。 Furthermore, in the block diagrams of FIGS. 1 to 4, only control lines and information lines that are considered necessary for explanation are shown, and not all control lines and information lines are necessarily shown on the product. . In practice, it may be considered that almost all configurations are interconnected. In addition, in the flowcharts shown in FIGS. 5 and 6, a plurality of processes may be executed simultaneously or the order of the processes may be changed as long as the processing results are not affected.
 100a,100b…ビル、101~107…フロア、110…エレベーター、111…機械室、112…エレベーター制御装置、113…巻き上げ機、114…ワイヤ、120…空調制御装置、121~127…空調機、130…入退管理装置、200…ビル設備制御品質管理装置、201…消費電力データベース、210…CPU、220…主記憶部、221…滞留人数算出部、222…単位消費電力算出部、223…出力部、230…記憶部、240…ネットワークインタフェース、300…エレベーター監視装置、301…乗降人数データベース、310…CPU、320…主記憶部、321…乗降人数算出部、330…記憶部、340…ネットワークインタフェース、400…入退監視装置、401…入退データベース、500…空調機監視装置、501…稼働記録データベース、510…CPU、520…主記憶部、521…電力使用量測定部、530…記憶部、540…ネットワークインタフェース、600…管理者端末、700…気象情報サーバ
 
Reference Signs List 100a, 100b Building 101 to 107 Floor 110 Elevator 111 Machine room 112 Elevator control device 113 Hoist 114 Wire 120 Air conditioning control device 121 to 127 Air conditioner 130 Entry/Exit Management Device 200 Building Facility Control Quality Management Device 201 Power Consumption Database 210 CPU 220 Main Storage Unit 221 Staying Person Calculation Unit 222 Unit Power Consumption Calculation Unit 223 Output Unit , 230... Storage unit, 240... Network interface, 300... Elevator monitoring device, 301... Database of the number of passengers, 310... CPU, 320... Main storage unit, 321... Number of passengers calculation unit, 330... Storage unit, 340... Network interface, DESCRIPTION OF SYMBOLS 400... Entrance/exit monitoring apparatus, 401... Entrance/exit database, 500... Air-conditioner monitoring apparatus, 501... Operation record database, 510... CPU, 520... Main storage part, 521... Electric power consumption measurement part, 530... Storage part, 540 ... network interface, 600 ... administrator terminal, 700 ... weather information server

Claims (9)

  1.  監視対象のビルで使用される電力の消費量を取得するビル管理システムにおいて、
     前記ビルに設置された昇降機のフロア毎の乗降人数を算出する乗降人数算出部と、
     予め定められた時間内の、前記ビル内の電力使用量をフロア毎に求める電力使用量測定部と、
     前記乗降人数算出部が求めた乗降人数を用いて予め定められた時間内の平均滞留人数をフロア毎に求める滞留人数算出部と、
     前記電力使用量測定部で求めた電力使用量を前記滞留人数算出部が求めた平均滞留人数で除した値である単位消費電力を求める単位消費電力算出部と、
     前記単位消費電力算出部が求めた単位消費電力を格納する記憶部と、
     前記記憶部に格納された単位消費電力を時系列に出力する出力部と、を備える
     ビル管理システム。
    In a building management system that acquires the amount of power consumption used in a building to be monitored,
    a passenger number calculation unit that calculates the number of boarding and alighting passengers for each floor of the elevator installed in the building;
    a power consumption measuring unit that obtains the power consumption in the building for each floor within a predetermined time period;
    a staying number calculation unit that calculates an average number of staying persons within a predetermined time for each floor using the number of passengers obtained by the passenger number calculation unit;
    a unit power consumption calculation unit that calculates unit power consumption, which is a value obtained by dividing the power consumption calculated by the power consumption measuring unit by the average number of staying people calculated by the staying number calculation unit;
    a storage unit that stores the unit power consumption calculated by the unit power consumption calculation unit;
    A building management system, comprising: an output unit that outputs the unit power consumption stored in the storage unit in time series.
  2.  前記出力部は、前記単位消費電力算出部が求めた特定のフロアの単位消費電力が予め定められた電力以上であるとき、当該フロアの空調機に設定温度を変更する指示を行う
     請求項1に記載のビル管理システム。
    2. When the unit power consumption of a specific floor obtained by the unit power consumption calculator is equal to or greater than a predetermined power, the output unit instructs the air conditioner on the floor to change the set temperature. A building management system as described.
  3.  前記出力部は、前記単位消費電力算出部が求めたフロア毎の単位消費電力を時系列に出力する
     請求項1に記載のビル管理システム。
    The building management system according to claim 1, wherein the output section outputs the unit power consumption for each floor obtained by the unit power consumption calculation section in time series.
  4.  前記電力使用量測定部が求めたフロア毎の単位消費電力は、当該フロアの空調機の消費電力と、当該フロアの空調機以外の機器の消費電力であり、
     前記単位消費電力算出部は、空調機だけの単位消費電力と、空調機以外の機器を含む単位消費電力との双方を算出する
     請求項1に記載のビル管理システム。
    The unit power consumption for each floor obtained by the power usage measurement unit is the power consumption of the air conditioner on the floor and the power consumption of equipment other than the air conditioner on the floor,
    The building management system according to claim 1, wherein the unit power consumption calculator calculates both the unit power consumption of only air conditioners and the unit power consumption of devices other than air conditioners.
  5.  さらに、前記出力部は、要求があった特定のビルの単位消費電力と他のビルの単位消費電力とを、前記記憶部から読み出し、読み出した複数のビルの単位消費電力を対応付けて出力する
     請求項1に記載のビル管理システム。
    Further, the output unit reads the requested unit power consumption of the specific building and the unit power consumption of the other buildings from the storage unit, and outputs the read unit power consumption of the plurality of buildings in association with each other. The building management system according to claim 1.
  6.  さらに、外気温を測定する温度測定部と、
     前記温度測定部が測定した気温を前記記憶部に格納する気温取得部と、を備え、
     前記出力部は、前記記憶部が格納した単位消費電力と気温を読み出し、単位消費電力と気温との相関を示すグラフを出力する
     請求項1に記載のビル管理システム。
    Furthermore, a temperature measuring unit that measures the outside air temperature,
    a temperature acquisition unit that stores the temperature measured by the temperature measurement unit in the storage unit;
    The building management system according to claim 1, wherein the output unit reads the unit power consumption and the temperature stored in the storage unit, and outputs a graph showing the correlation between the unit power consumption and the temperature.
  7.  前記滞留人数算出部は、前記ビルに設置された入退管理装置からのビル入場者数及びビル出場者数の情報を取得し、前記ビルの出入口が設置されたフロアについても平均滞留人数を求める
     請求項1に記載のビル管理システム。
    The staying number calculation unit obtains information on the number of people entering the building and the number of participants in the building from an entrance/exit management device installed in the building, and calculates the average number of people staying on the floor where the entrance/exit of the building is installed. The building management system according to claim 1.
  8.  前記乗降人数算出部が求めた昇降機の上り運転時の乗降人数と、前記乗降人数算出部が求めた昇降機の下り運転時の乗降人数に一定の比率を乗算した人数とを用いて、予め定められた時間内の平均滞留人数をフロア毎に求める
     請求項1に記載のビル管理システム。
    Predetermined using the number of people getting on and off the elevator during the upward operation of the elevator calculated by the number of passengers calculating unit and the number of people obtained by multiplying the number of people getting on and off the elevator during the downward operation of the elevator calculated by the number of passengers calculating unit by a certain ratio. 2. The building management system according to claim 1, wherein the average number of staying persons within the time period is calculated for each floor.
  9.  監視対象のビルで使用される電力の消費量を取得するビル管理方法において、
     前記ビルに設置された昇降機のフロア毎の乗降人数を算出する乗降人数算出ステップと、
     予め定められた時間内の、前記ビル内の電力使用量をフロア毎に求める電力使用量測定ステップと、
     前記乗降人数算出ステップが求めた乗降人数を用いて予め定められた時間内の平均滞留人数をフロア毎に求める滞留人数算出ステップと、
     前記電力使用量測定ステップで求めた電力使用量を前記滞留人数算出ステップが求めた平均滞留人数で除した値である単位消費電力を求める単位消費電力算出ステップと、
     単位消費電力算出ステップが求めた単位消費電力を格納する記憶ステップと、
     前記記憶ステップで格納された単位消費電力を時系列に出力する出力ステップを、を含む
     ビル管理方法。
     
    In a building management method for acquiring the amount of power consumption used in a building to be monitored,
    a step of calculating the number of passengers on each floor of the elevator installed in the building;
    a power consumption measuring step of obtaining the power consumption in the building for each floor within a predetermined time;
    a step of calculating the average number of staying people for each floor within a predetermined time period using the number of boarding/alighting people obtained by the step of calculating the number of people getting on/off;
    A unit power consumption calculating step of obtaining unit power consumption, which is a value obtained by dividing the power consumption obtained in the power consumption measuring step by the average number of staying people obtained in the staying number calculating step;
    a storage step of storing the unit power consumption obtained by the unit power consumption calculation step;
    A building management method including an output step of outputting the unit power consumption stored in the storing step in time series.
PCT/JP2021/040941 2021-11-08 2021-11-08 Building management system and building management method WO2023079730A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022571176A JP7419567B2 (en) 2021-11-08 2021-11-08 Building management system and building management method
PCT/JP2021/040941 WO2023079730A1 (en) 2021-11-08 2021-11-08 Building management system and building management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040941 WO2023079730A1 (en) 2021-11-08 2021-11-08 Building management system and building management method

Publications (1)

Publication Number Publication Date
WO2023079730A1 true WO2023079730A1 (en) 2023-05-11

Family

ID=86240901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040941 WO2023079730A1 (en) 2021-11-08 2021-11-08 Building management system and building management method

Country Status (2)

Country Link
JP (1) JP7419567B2 (en)
WO (1) WO2023079730A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118171374A (en) * 2024-05-14 2024-06-11 中海物业管理有限公司 Data acquisition and diagnosis method and storage medium for building energy consumption analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143359A (en) * 2004-11-17 2006-06-08 Mitsubishi Electric Corp Building facility diagnosing device
JP2016074525A (en) * 2014-10-08 2016-05-12 三菱電機ビルテクノサービス株式会社 Estimation device of number of person and program
JP2017134460A (en) * 2016-01-25 2017-08-03 一般財団法人電力中央研究所 Energy-saving advice generation device, energy-saving advice generation method and energy-saving advice generation program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143359A (en) * 2004-11-17 2006-06-08 Mitsubishi Electric Corp Building facility diagnosing device
JP2016074525A (en) * 2014-10-08 2016-05-12 三菱電機ビルテクノサービス株式会社 Estimation device of number of person and program
JP2017134460A (en) * 2016-01-25 2017-08-03 一般財団法人電力中央研究所 Energy-saving advice generation device, energy-saving advice generation method and energy-saving advice generation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118171374A (en) * 2024-05-14 2024-06-11 中海物业管理有限公司 Data acquisition and diagnosis method and storage medium for building energy consumption analysis

Also Published As

Publication number Publication date
JPWO2023079730A1 (en) 2023-05-11
JP7419567B2 (en) 2024-01-22

Similar Documents

Publication Publication Date Title
CN102403790B (en) Power control unit, electric control system and method
JP5091544B2 (en) Indoor air conditioning management system
EP3539844A1 (en) Transportation system, schedule proposal system, and train operations system
JP6970206B2 (en) Elevator operation management system and operation management method
JP4270929B2 (en) Air conditioning management device and air conditioning management system
CN104249957B (en) The cluster management system of elevator
JP2010249454A (en) Facility operation system
JP6448180B2 (en) Air conditioning control system and air conditioning control device
WO2023079730A1 (en) Building management system and building management method
JP4273730B2 (en) Energy monitoring system and energy monitoring device
JP6097210B2 (en) Equipment maintenance support apparatus and support method
CN111225866A (en) Automatic call registration system and automatic call registration method
JP4228862B2 (en) Facility operation planning system and facility operation system
JP2014040935A (en) System and method for controlling air conditioner
JPWO2021014485A1 (en) Air conditioning control device and air conditioning control system
CN111086936A (en) Elevator information display system
JP3230918U (en) Entry / exit management system
WO2020008595A1 (en) Elevator group management device and elevator system
CN112978529B (en) Congestion degree prediction display system, congestion degree prediction display method, and computer-readable medium
JP6445639B2 (en) Air conditioning control system and air conditioning control device
WO2016009541A1 (en) Air conditioning control apparatus, air conditioning control system, air conditioning control method, and program thereof
JP7514170B2 (en) Elevator operation management server, car congestion status output system, and car congestion status output method
JP2015183969A (en) Seat allocation information providing device, tenant building system and program
JP2012128641A (en) Seat management system, seat management method and facility operation system
WO2023053290A1 (en) Monitoring control device, monitoring control system, and monitoring control method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022571176

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963323

Country of ref document: EP

Kind code of ref document: A1