WO2023078126A1 - 一种寻址方法、装置及设备 - Google Patents

一种寻址方法、装置及设备 Download PDF

Info

Publication number
WO2023078126A1
WO2023078126A1 PCT/CN2022/127324 CN2022127324W WO2023078126A1 WO 2023078126 A1 WO2023078126 A1 WO 2023078126A1 CN 2022127324 W CN2022127324 W CN 2022127324W WO 2023078126 A1 WO2023078126 A1 WO 2023078126A1
Authority
WO
WIPO (PCT)
Prior art keywords
plmn
called terminal
network element
request
nrf
Prior art date
Application number
PCT/CN2022/127324
Other languages
English (en)
French (fr)
Inventor
景昊
戚彩霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023078126A1 publication Critical patent/WO2023078126A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data

Definitions

  • the present application relates to the field of communication technologies, and in particular to an addressing method, device and equipment.
  • SMSF short message service function
  • SMS-GMSC short message gateway
  • IWMSC Mobile Switching Center
  • SMS router SMS router
  • AMF Access and mobility management function
  • SMSF can be used to support SMS based on network attached storage (NAS), and is mainly used to manage user data check and SMS delivery.
  • the core network adopts a service based architecture (service based architecture, SBA), and the network elements use a service based interface (service based interface, SBI) for communication.
  • SBA service based architecture
  • SBI service based interface
  • 3GPP R16 proposed an enhanced SBA architecture, that is, the eSBA architecture, which introduces a service communication proxy (SCP) and defines four communication modes as shown in Table 1.
  • the network repository function network repository function, NRF
  • SCP network function consumer
  • NF Profile network profile of the network function producer
  • the NF information of the peer is obtained through NRF service discovery, but after obtaining the peer information, the message can be sent directly to the peer without being forwarded by SCP.
  • Mode C scenario that is, the NF consumer discovers the peer NF through the NRF, and sends the message to the SCP for routing. If the destination NF address information carried by the NF consumer in the message sent to the SCP points to a NF set, the SCP needs to further query the destination NF through the NRF.
  • Mode D scenario that is, NF consumers need to query and discover peer information, send request messages to SCP, and SCP interacts with NRF to discover and select, and route the messages to the finally selected NF Producer.
  • the embodiment of the present application provides an addressing method, device and equipment, which are used to solve the problem that frequent interaction between the short message gateway and the network element of the core network is required when obtaining the routing information of the called terminal.
  • an embodiment of the present application provides a communication method, including: a proxy network element receives a first request, the first request includes first indication information, and the first indication information is used to indicate that the proxy network element Discover the unified data management UDM in the public land mobile network PLMN to which the called terminal belongs; the proxy network element obtains the identifier of the PLMN to which the called terminal belongs; the proxy network element obtains the UDM of the PLMN according to the PLMN identifier address.
  • the PLMN to which the called terminal belongs is the PLMN currently subscribed to by the called terminal.
  • the proxy network element obtaining the identifier of the PLMN to which the called terminal belongs includes: the proxy network element obtaining the identifier of the PLMN to which the called terminal belongs from a mobile number portability MNP; or, The proxy network element determines that the called terminal and the proxy network element belong to the same PLMN according to the locally configured mobile subscriber number information of the proxy network element, and determines that the identifier of the PLMN to which the called terminal belongs is the The identifier of the PLMN to which the proxy NE belongs.
  • the proxy network element obtains the identifier of the PLMN to which the called terminal belongs from a mobile number portability MNP, including: the proxy network element, according to the second indication information in the first request, Obtain the identifier of the PLMN to which the called terminal belongs from the MNP, and the second indication information is used to instruct the proxy network element to obtain the identifier of the PLMN to which the called terminal belongs; or, no mobile user is configured in the proxy network element number information, the proxy network element obtains the identifier of the PLMN to which the called terminal belongs from the MNP; or, the proxy network element determines that the mobile number of the called terminal holds the PLMN and The PLMNs to which the proxy network elements belong are different.
  • the proxy network element is a service communication proxy network element SCP, or a network warehouse function network element NRF.
  • the proxy network element receiving the first request includes: the SCP receiving the first routing request sent by the short message gateway, and the first routing request is used to obtain the called terminal's routing information; after the proxy network element obtains the address of the UDM of the PLMN according to the PLMN identifier, the method further includes: the SCP sends a first routing request to the UDM according to the address of the UDM, The first routing request is used to obtain the routing information of the called terminal; the SCP receives the routing information of the called terminal sent by the UDM, and sends the routing information of the terminal to the short message gateway.
  • the proxy network element is an SCP; the proxy network element obtains the identifier of the PLMN to which the called terminal belongs from the mobile number portability MNP, including: the SCP sends the network warehouse function network element NRF Sending a first discovery request for requesting to obtain the address of the MNP; the SCP receives the first discovery response sent by the NRF, the first discovery response includes the address of the MNP; the SCP according to the MNP address, Sending a query request to the MNP, where the query request includes the identifier of the called terminal; the SCP receives the identifier of the PLMN to which the called terminal belongs sent by the MNP.
  • the SCP sends the network warehouse function network element NRF Sending a first discovery request for requesting to obtain the address of the MNP
  • the SCP receives the first discovery response sent by the NRF, the first discovery response includes the address of the MNP
  • the SCP according to the MNP address, Sending a query request to the MNP, where the query request includes the identifier
  • the proxy network element obtaining the address of the UDM of the PLMN according to the PLMN identifier includes: the SCP sends a second discovery request to the NRF, and the second discovery request is used to obtain The address of the UDM of the PLMN; the proxy network element receives the second discovery response sent by the NRF, and the second discovery response includes the address of the UDM.
  • the proxy network element receiving the first request includes: the NRF receiving the first request sent by the SCP; when the proxy network element obtains the UDM of the PLMN according to the PLMN identifier After the address, the method further includes: the NRF sending the address of the UDM to the SCP.
  • the proxy network element to which it belongs is an NRF; the proxy network element obtains the identifier of the PLMN to which the called terminal belongs from a mobile number portability MNP, including: The MNP obtains the identifier of the PLMN to which the called terminal belongs; or, the NRF sends a query request to the NRF in other PLMNs, and the query request is used to obtain the identifier of the PLMN to which the called terminal belongs, so that the other PLMNs
  • the NRF obtains the identification of the PLMN to which the called terminal belongs from the registered MNP; the NRF receives the query response sent by the NRF in the other PLMN, and the query response includes the identification of the PLMN to which the called terminal belongs.
  • the proxy network element obtaining the address of the UDM of the PLMN according to the PLMN identifier includes: the NRF sending a third discovery to the NRF in the PLMN according to the PLMN identifier Request, the third discovery request is used to obtain the address of the UDM in the PLMN; the NRF receives the address of the UDM sent by the NRF in the PLMN; or, the PLMN is identified as the PLMN to which the NRF belongs ID, the NRF determines the address of the UDM in the PLMN to which the NRF belongs.
  • the embodiment of the present application provides an addressing method, including the service communication proxy network element SCP sending a first request to the proxy network element, and the first indication information is used to instruct the proxy network element to find the called terminal belongs to Unified data management UDM in the public land mobile network PLMN; the SCP receives the address of the UDM sent by the proxy network element; the SCP obtains the route of the called terminal from the UDM according to the address of the UDM information.
  • the method before the SCP sends the first request to the proxy network element, the method further includes: the SCP receives a routing request sent by the short message gateway, and the routing request is used to obtain the called Routing information of the terminal; after the SCP obtains the routing information of the called terminal from the UDM according to the address of the UDM, the method further includes: the SCP sends the called terminal to the short message gateway Terminal routing information.
  • the embodiment of the present application provides a communication device, the device includes modules/units that perform the methods of the above-mentioned first aspect and any possible implementation manner of the first aspect; these modules/units can be implemented by hardware, Corresponding software implementation can also be executed by hardware.
  • the communication device may include a transceiver module and a processing module, and the transceiver module may be used to perform information sending and receiving processing in each design solution of the first aspect above, such as receiving a first request, and the processing module is used to obtain the The identifier of the PLMN to which the called terminal belongs, and the address of the UDM of the PLMN is acquired according to the identifier of the PLMN.
  • an embodiment of the present application provides a communication device, including: a processor, and a memory and a communication interface respectively coupled to the processor; the communication interface is used to communicate with other devices; the processor is used to Execute the instructions or programs in the memory, and execute the method according to the first aspect, the second aspect, and any possible implementation manner through the communication interface.
  • an embodiment of the present application provides a computer-readable storage medium, wherein computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a computer, the first The method described in the aspect, the second aspect, and any possible implementation manner thereof is executed.
  • the embodiments of the present application provide a computer program product containing instructions, which, when run on a computer, cause the method described in the first aspect, the second aspect, and any possible implementation manners thereof to be executed.
  • Fig. 1 is a schematic diagram of the SMS network architecture provided by the embodiment of the present application.
  • Fig. 2 is a schematic flow diagram of a service-based SMS
  • FIG. 3 is a schematic diagram of a network architecture applicable to the present application provided by the embodiment of the present application;
  • FIG. 4 is a schematic flow chart of an addressing method provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another addressing method provided by the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another addressing method provided in the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another addressing method provided in the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another addressing method provided by the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another addressing method provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another addressing method provided in the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another addressing method provided by the embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another addressing method provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the called (MT) short message needs to be identified according to the mobile subscriber international ISDN/PSTN number (MSISDN) or generic public subscription identifier (GPSI) of the short message recipient.
  • MSISDN mobile subscriber international ISDN/PSTN number
  • GPSI generic public subscription identifier
  • SMS-GMSC short message gateway
  • the target PLMN that is, the PLMN subscribed by the called terminal
  • the UDM of the target PLMN for the routing information of the short message.
  • the service GPRS supports Node (serving GPRS support node, SGSN), mobility management entity (mobility management entity, MME), etc.
  • the 3GPP CT4 working group is transforming the short message network as a service, that is, except for the short message center (SMS-SC), other short message network elements are transformed into NF and service interfaces. This requires multiple interactions between the SMS-GMSC and the network elements of the core network to obtain the target PLMN and the UDM address information of the target PLMN, so as to query the routing information of the short message from the UDM of the target PLMN.
  • SMS-SC short message center
  • the service-based SMS process can be shown in Figure 2, wherein the source network represents the subscription PLMN of the calling terminal, the subscription network represents the subscription PLMN of the called terminal, and the number segment holder network (number range holder network) indicates the PLMN that initially holds the MSISDN of the called terminal. For example, if the MSISDN of the called terminal has been ported to another network, the corresponding contracted PLMN is different from the PLMN that originally held the MSISDN.
  • the SMS process includes the following steps:
  • Step 201 mobile number portability (Mobile Number Portability, MNP) registration to NRF.
  • MNP Mobile Number Portability
  • Step 202 SMS-GMSC sends a discovery request (Nnrf_NFDiscovery) to NRF.
  • the target discovery type (target-nf-type) in the discovery request is MNP, which indicates that information of the MNP is requested to be acquired.
  • the NRF sends a discovery response (Nnrf_NFDiscovery_Response) to the SMS-GMSC.
  • the response includes the information of the MNP instance.
  • Step 204 SMS-GMSC sends a query request (Nmnp_NPStatus GET) to MNP.
  • the query request includes the MSISDN of the called terminal, so as to request to obtain the identifier of the PLMN subscribed by the called terminal.
  • step 205 the MNP searches for the corresponding PLMN identifier according to the MSISDN.
  • Step 206 the MNP sends a query response (Nmnp_NPStatue response) to the SMS-GMSC.
  • the query response includes the identifier of the target PLMN (target PLMN ID), that is, the identifier of the PLMN subscribed by the called terminal.
  • Step 207a SMS-GMSC sends a discovery request (Nnrf_NFDiscovery) to NRF.
  • the target discovery type (target-nf-type) in the discovery request is UDM, and the discovery request also includes the identifier of the target PLMN, that is, the identifier of the PLMN of the source network, indicating that the UDM information of the target PLMN is requested.
  • step 208a the NRF sends a discovery response to the SMS-GMSC.
  • the response includes the information of the UDM instance of the target PLMN.
  • the SMS-GMSC sends a routing request (Nudm routing info query) to the UDM in the source network.
  • the routing request includes the MSISDN of the called terminal, so as to request to obtain the routing information of the called terminal.
  • Step 210a the UDM in the source network sends a routing response (Nudm routing info response) to the SMS-GMSC.
  • the response includes routing information of the called terminal.
  • step 207b If the PLMN identifier acquired by the SMS-GMSC indicates that the called terminal and the calling terminal subscribe to different PLMNs, then perform step 207b to step 210b.
  • Step 207b SMS-GMSC sends a discovery request (Nnrf_NFDiscovery) to NRF.
  • the target discovery type (target-nf-type) in the discovery request is UDM, and the discovery request also includes the identifier of the target PLMN, that is, the PLMN identifier of the contracted network shown in the figure, indicating the request to obtain the UDM of the target PLMN information.
  • the NRF After receiving the discovery request, the NRF confirms that the target PLMN is not the source PLMN, and then sends a discovery request to the NRF in the target PLMN, so as to request to obtain the information of the UDM in the target PLMN.
  • Step 208b the NRF of the source network receives the discovery response sent by the NRF in the target PLMN, and forwards the discovery response to the SMS-GMSC.
  • the discovery response includes the information of the UDM instance of the target PLMN.
  • the SMS-GMSC sends a routing request (Nudm routing info query) to the UDM in the target PLMN.
  • the routing request includes the MSISDN of the called terminal, so as to request to obtain the routing information of the called terminal.
  • Step 210b the UDM in the target PLMN sends a routing response (Nudm routing info response) to the SMS-GMSC.
  • the response includes routing information of the called terminal.
  • the embodiment of the present application provides an addressing method, which is used to enable the SCP or NRF to obtain the PLMN identifier and UDM information related to the called terminal.
  • FIG. 3 exemplarily provides a network architecture to which this embodiment of the present application is applicable.
  • the network architecture may include terminal equipment, radio access network (RAN), access and mobility management function (access and mobility management function, AMF), session management function (session management function) , SMF), user plane function (user plane function, UPF), application function (application function, AF), policy control function (policy control function, PCF), UDM, SCP, NRF, data network (data network, DN), Network exposure function (network exposure function, NEF), network slice selection function (network slice selection function, NSSF), NSSAAF, NSACF, authentication server function (authentication server function, AUSF), etc.
  • the terminal device is a device with a wireless transceiver function.
  • the terminal equipment is connected to the wireless access network in a wireless manner, so as to be connected to the communication system.
  • a terminal device may also be called a terminal, a UE, a mobile station, a mobile terminal, etc. (UE is used for illustration in the figure).
  • Terminal devices can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal devices, augmented reality terminal devices, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, smart grids wireless terminals in transportation security, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device may also be a wearable device, such as glasses, gloves, watches, clothing, shoes, and the like.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • the terminal device can also be an on-board module, on-board component, on-board chip or on-board unit built into the vehicle as one or more components or units, and the vehicle can A unit may implement the methods of the present application.
  • the following embodiments of the present application refer to a terminal device as a "terminal" for short.
  • the RAN can also be called an access network device or a base station, and is used to connect terminal devices to a wireless network.
  • the wireless access network may be a base station (base station), an evolved base station (evolved NodeB, eNodeB) in an LTE system or an evolved LTE system (LTE-Advanced, LTE-A), or a next-generation base station in a 5G communication system (next generation NodeB, gNB), transmission reception point (transmission reception point, TRP), base band unit (base band unit, BBU), WiFi access point (access point, AP), base station or WiFi system in the future mobile communication system Access nodes in etc.
  • the radio access network may also be a module or unit that completes some functions of the base station, for example, it may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the wireless access network.
  • the radio access network may be a CU node, or a DU node, or a radio access network including a CU node and a DU node.
  • the CU node is used to support radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP), service data adaptation protocol (service data adaptation protocol, SDAP) and other protocols;
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • the DU node It is used to support radio link control (radio link control, RLC) layer protocol, medium access control (medium access control, MAC) layer protocol and physical layer protocol.
  • the access and mobility management function network element is mainly used for the attachment of terminal equipment in the mobile network, mobility management, tracking area update process, etc.
  • the access and mobility management function network element can be called AMF, and in the future communication system (such as 6G communication system), it can also be a network element with other names with the above functions. Not limited.
  • the session management function network element is mainly used for session management in the mobile network, such as session establishment, modification, and release. Specific functions include assigning an Internet protocol (internet protocol, IP) address to the terminal, selecting a user plane network element that provides a packet forwarding function, and the like.
  • IP Internet protocol
  • the network element with the session management function may be called SMF, and in future communication systems, it may also be a network element with other names having the above functions, which is not limited in this application.
  • the user plane functional network element is mainly used to process user packets, such as forwarding, charging, and lawful interception.
  • the user plane functional network element may be called UPF, and in future communication systems, it may also be a network element with other names having the above functions, which is not limited in this application.
  • Policy control function network element including user subscription data management function, policy control function, charging policy control function, quality of service (quality of service, QoS) control, etc.
  • the policy control function network element may be called PCF, and in the future communication system, it may also be a network element with other names with the above functions, which is not limited in this application.
  • the network slice selection function network element is mainly used to select the appropriate network slice for the service of the terminal equipment.
  • the network element with the network slice selection function may be called NSSF, and in the future communication system, it may also be a network element with other names with the above functions, which is not limited in this application.
  • the network warehouse function network element is mainly used to provide registration and discovery functions of the network element or the service provided by the network element.
  • the network element with the network warehouse function may be called NRF, and in the future communication system, it may also be a network element with other names having the above functions, which is not limited in this application.
  • the unified data management network element is mainly used to manage the contract information of terminal equipment.
  • the unified data management network element may be called UDM, and in the future communication system, it may also be a network element with other names having the above functions, which is not limited in this application.
  • the authentication service function network element is mainly used for security authentication of terminal equipment.
  • the authentication service function network element may be called AUSF, and in the future communication system, it may also be a network element with other names with the above functions, which is not limited in this application.
  • the network opening function network element can expose some functions of the network to applications in a controlled manner.
  • the network element with the network opening function may be called NEF, and in the future communication system, it may also be a network element with other names with the above functions, which is not limited in this application.
  • the service communication agent network element is used to support indirect communication, that is, the message transfer and routing between the service calling network element and the service providing network element, the selection and discovery of the service providing network element, etc.
  • the service communication proxy network element may be called SCP, and in future communication systems, it may also be a network element with other names having the above functions, which is not limited in this application.
  • the application function network element can provide service data of various applications to the control plane network element of the operator's communication network, or obtain network data information and control information from the control plane network element of the communication network.
  • the application function network element can be called AF, and in the future communication system, it can also be a network element with other names with the above functions, which is not limited in this application.
  • the data network is mainly used to provide data transmission services for terminal devices.
  • the data network can be a private network, such as a local area network, or a public data network (public data network, PDN) network, such as the Internet (Internet), or a proprietary network jointly deployed by operators, such as a configured IP multimedia network subnet.
  • PDN public data network
  • Internet Internet
  • proprietary network jointly deployed by operators, such as a configured IP multimedia network subnet.
  • System IP multimedia core network subsystem, IMS
  • the network elements introduced in the above network architecture can be used as service calling network elements (ie, NF consumers), and can also be used as service providing network elements (ie, NF producers).
  • AMF can serve as service providing network elements and provide services to SMF.
  • the AMF can also be used as a service to call the network element and call the service provided by the SMF.
  • FIG. 1 and FIG. 3 are only examples of applicable network architectures, and an actual network architecture may include more or fewer network elements than those in FIG. 1 and FIG. 3 .
  • the PLMN to which the terminal belongs may refer to the PLMN currently subscribed by the terminal.
  • the signed PLMN after the transfer will be used as the PLMN to which the terminal belongs, and the number segment of the mobile phone number (that is, MSISDN) holds the network, that is, the PLMN before the transfer. Then there is the PLMN to which it belongs.
  • FIG. 4 a schematic flow chart of an addressing method is provided for an embodiment of the present application. As shown in the figure, the method may include the following steps:
  • Step 401 the proxy network element receives a first request, the first request includes first indication information, and the first indication information is used to instruct the proxy network element to discover the UDM in the PLMN to which the called terminal belongs.
  • the proxy network element may be an SCP
  • the first request it receives may be a routing request sent by the short message gateway, and the routing request is used to obtain routing information of the called terminal.
  • the routing request may contain information for instructing to acquire the UDM in the PLMN to which the called terminal belongs.
  • the HTTP custom header (HTTP custom header) in the routing request contains the following parameters: network function discovery type (NF type): UDM (that is, the first indication information), service name (Service name): routing information (RoutingInfo);
  • NF type network function discovery type
  • UDM that is, the first indication information
  • Service name service name
  • routing information routing information
  • the routing request may include the MSISDN or GPSI of the called terminal; the above parameters indicate a request to discover the UDM capable of obtaining the routing information of the called terminal and obtain the routing information of the called terminal.
  • the proxy network element may also be an NRF
  • the first request it receives may be a discovery request sent by the SCP
  • the discovery request is used to request to discover the UDM storing the subscription information of the called terminal.
  • the discovery request includes the network function discovery type (NF type): UDM, the identifier (such as MSISDN or GPSI) of the called terminal, etc.; the above-mentioned parameters represent the request to discover the UDM that can obtain the routing information of the called terminal.
  • Step 402 the proxy network element obtains the identifier of the PLMN to which the called terminal belongs.
  • the UDM in the PLMN to which the called terminal belongs can provide the UDM of the routing information of the called terminal. Therefore, to find the UDM, it is necessary to first determine the PLMN where the UDM is located, that is, the PLMN to which the called terminal belongs.
  • the first request received by the proxy network element may also include second indication information, and the second indication information is used to instruct the proxy network element to obtain the identifier of the PLMN to which the called terminal belongs, so that the proxy network element can clarify its needs Obtain the ID of the PLMN to which the called terminal belongs.
  • the network element that sends the first request can first determine whether the called terminal is a contracted terminal of the local network (that is, the network element that sends the first request and the PLMN to which the proxy network element belongs) according to the identifier of the called terminal. If the terminal is not a contracted terminal of the local network, the second indication information is carried in the first request to instruct the proxy network element to obtain the identifier of the PLMN to which the called terminal belongs from the MNP.
  • the network element that sends the first request may not judge whether the called terminal is a contracted terminal of the network, and the second indication information is only used to indicate that the proxy network element needs to obtain the identifier of the PLMN to which the called terminal belongs, and the proxy network element How to obtain it is decided by the agent network element.
  • the above second indication information may be added to the HTTP custom header of the first request, for example, the MSISDN-PLMN field is added to the HTTP custom header of the first request; or, it may also be added to other fields of the first request, This embodiment of the present application does not limit it.
  • the proxy network element can be pre-configured with the information of the contracted terminal of the local network, such as mobile subscriber number information (such as MSISDN) or GPSI.
  • the proxy network element can first use the configuration information and the called The identification of the terminal, to determine whether the called terminal is a contracted terminal of the network. If the called terminal is a contracted terminal of the local network, the proxy network element determines the identifier of the PLMN to which the called terminal belongs, which is the identifier of the PLMN of the local network.
  • the proxy network element can obtain the identifier of the PLMN to which the called terminal belongs from the MNP.
  • the proxy network element is configured with the information of the contracted terminal of the local network, when the proxy network element determines that the called terminal is not a terminal signed by the local network according to the identifier of the called terminal and the configured information of the contracted terminal of the local network, at this time, the proxy The network element may also acquire the identifier of the PLMN of the called terminal through the MNP.
  • the proxy network element when the proxy network element obtains the identifier of the PLMN to which the called terminal belongs from the MNP, it can further obtain the number portability of the called terminal.
  • Number portability refers to the service that users can keep their old phone numbers within the range of the portability cluster so as to maintain easy contact, which is commonly referred to as "number portability".
  • the agent network element can also query the number holding network of the called terminal and its number portability according to the identifier of the called terminal (such as MSISDN or GPSI).
  • Step 403 the proxy network element obtains the address of the UDM in the PLMN to which the called terminal belongs according to the obtained PLMN identifier.
  • the proxy network element After obtaining the identifier of the PLMN of the called terminal, the proxy network element can obtain the address of the UDM in the PLMN to which the called terminal belongs through the discovery service.
  • an addressing method suitable for communication mode D in the eSBA architecture is provided.
  • the proxy network element executes the query of the PLMN to which the called terminal belongs, and executes the UDM discovery process in the PLMN to which the called terminal belongs, and then Realize obtaining the routing information of the called terminal from the UDM to complete the sending of the short message.
  • the query of PLMN and UDM is carried out through the proxy network element, which reduces the multiple interactions between the short message gateway and the core network element, and helps to simplify the short message service process.
  • the above solution utilizes the already defined and widely used discovery service, which makes the implementation of the above solution relatively easy.
  • the above-mentioned proxy network element may be an SCP, if the SCP receives the first request sent by the short message gateway in step 401, which is a request for obtaining the routing information of the called terminal that includes the first indication information, then After the SCP obtains the address of the UDM in the PLMN to which the called terminal belongs, the SCP may send a first routing request to the UDM in the PLMN to which the called terminal belongs according to the obtained address of the UDM, so as to request to obtain the routing information of the called terminal. After receiving the routing information of the called terminal, send the routing information of the called terminal to the short message gateway, so that the short message gateway sends the short message according to the routing information of the called terminal.
  • the SCP can obtain the identifier of the PLMN to which the called terminal belongs from the MNP, or, the SCP is configured with the information of the contracted terminal of the local network and the called terminal is a contracted terminal of the local network , it is determined that the identifier of the PLMN to which the called terminal belongs is the PLMN identifier of the local network.
  • the SCP may send a first discovery request to the NRF in the local network, and the first discovery request is used to request to obtain the address of the MNP.
  • the NRF in the local network may carry the address of the MNP in the first discovery response and send it to the SCP according to the information of the MNP that has registered in the NRF.
  • the SCP can directly communicate with the MNP according to the stored address of the MNP, without repeatedly obtaining the address of the MNP through the NRF.
  • the SCP may send a request to the MNP to obtain the identifier of the PLMN of the called terminal.
  • the SCP sends a request (such as Nmnp_NPStatus message) to the MNP, which contains the identifier of the called terminal (such as MSISDN or GPSI); the MNP determines the PLMN to which the called terminal belongs according to the identifier of the called terminal, and sends the called terminal The identifier of the PLMN to which it belongs is sent to the SCP.
  • the SCP can obtain the address of the UDM in the PLMN to which the called terminal belongs according to the obtained identifier of the PLMN.
  • the SCP may send a second discovery request to the NRF of the local network, so as to request to obtain the address of the UDM in the PLMN to which the called terminal belongs.
  • the second discovery request (such as the Nnrf_NFDiscovery message) includes the identifier of the above-mentioned PLMN, and the NF type: UDM parameter, indicating that the UDM in the PLMN corresponding to the PLMN identifier is requested to be discovered.
  • the NRF of the local network can determine the address of the UDM in the local network according to the configured information, and carry the address of the UDM of the local network in the second discovery response sent to the SCP. If the PLMN identification in the second discovery request is not the PLMN identification of this network, the NRF of this network sends a discovery request to the NRF in the PLMN corresponding to the identification (i.e., the target PLMN) according to the PLMN identification in the second request. It also contains the NF type: UDM parameter to request the information of UDM in the target PLMN.
  • the NRF in the target PLMN sends a discovery response to the NRF in the local network, which contains the address of the UDM in the target PLMN; then the NRF in the local network sends a second discovery response to the SCP, which contains the address of the UDM in the target PLMN.
  • the address of the UDM is the address of the UDM.
  • the SCP can directly communicate with the UDM according to the stored address of the UDM, without re-acquiring the address of the UDM through the NRF.
  • the proxy network element can also be an NRF, then after the NRF performs the above step 403, it can send the obtained UDM address in the PLMN to which the called terminal belongs to the SCP, so that the SCP can use the UDM address to which the called terminal belongs.
  • the NRF executes the above step 402, it can obtain the identifier of the PLMN to which the called terminal belongs from the MNP.
  • the identifier (such as MSISDN or GPSI) determines that the called terminal is a contracted terminal of the local network, that is, the identifier of the PLMN to which the called terminal belongs is the PLMN identifier of the local network.
  • the MNP can complete the registration with the NRF, so that when the NRF needs to obtain the identifier of the PLMN to which the called terminal belongs from the MNP, it can determine the address of the MNP according to the registration information, and send the obtained called terminal to the MNP. Call the request for the identity of the PLMN to which the terminal belongs.
  • the NRF sends a request (such as Nmnp_NPStatus message) to the MNP, which contains the identifier of the called terminal (such as MSISDN or GPSI); the MNP determines the PLMN to which the called terminal belongs according to the identifier of the called terminal, and sends the called terminal The identity of the PLMN to which it belongs is sent to the NRF.
  • a request such as Nmnp_NPStatus message
  • the MNP contains the identifier of the called terminal (such as MSISDN or GPSI)
  • the MNP determines the PLMN to which the called terminal belongs according to the identifier of the called terminal, and sends the called terminal
  • the identity of the PLMN to which it belongs is sent to the NRF.
  • the NRF executes the above step 403 if the acquired identifier of the PLMN to which the called terminal belongs is the PLMN identifier of the local network, the NRF can directly obtain the address of the UDM in the local network according to the pre-configured information. If the obtained identification of the PLMN to which the called terminal belongs is not the PLMN identification of the local network, then the NRF in the local network can send a discovery request to the NRF in the PLMN corresponding to the identification (that is, the target PLMN) according to the identification of the PLMN to which the called terminal belongs , the discovery request includes the NF type: UDM parameter to request to obtain the information of UDM in the target PLMN.
  • the discovery request may also include other parameters carried in the first request, such as one or more of service name (Service name), terminal identifier (such as MSISDN or GPSI).
  • Service name service name
  • terminal identifier such as MSISDN or GPSI.
  • MSISDN is used as an example for terminal identifiers. It should be understood that MSISDN in the following embodiments may also be replaced by GPSI or other terminal identifiers.
  • Fig. 5 exemplarily provides an SMS flow, wherein the SCP performs the addressing method in the above embodiment.
  • the information of the contracted terminal of the local network is not configured in the SCP, and the called terminal is the subscribed terminal of the local network.
  • the PLMN to which the calling terminal belongs is called a source network, and an MNP is deployed in the source network.
  • the process can include the following steps:
  • Step 501 the MNP registers with the NRF.
  • Step 502 the SMS-GMSC sends a routing request to the SCP.
  • the routing request is the first request in the foregoing embodiment, and the first request includes NF type: UDM (ie, the first indication information in the foregoing embodiment). Further, one or more of the following parameters may also be included in the first request: service name (Service name): routing information (RoutingInfo), the identifier of the called terminal and the PLMN indication (second instructions).
  • Step 503 the SCP sends a discovery request to the NRF.
  • the discovery request includes NF type (discovery type): MNP, indicating that the request is to discover the MNP, that is, the request to obtain the MNP address.
  • the discovery request may also include part or all of the information contained in the above-mentioned first request.
  • step 504 the NRF sends a discovery response to the SCP, and the discovery response includes the address of the MNP.
  • the address of the MNP may be a fully qualified domain name (fully qualified domain name, FQDN) address or IP address of the MNP.
  • Step 505 the SCP sends a query request to the MNP, the query request includes the MSISDN of the called terminal, so as to request to obtain the identifier of the PLMN to which the called terminal belongs.
  • the MNP sends an inquiry response to the SCP, and the inquiry response includes the identifier of the target PLMN, that is, the identifier of the PLMN to which the called terminal belongs.
  • the MNP may search for the identifier of the PLMN to which the called terminal belongs according to the MSISDN of the called terminal.
  • the MNP determines that the called terminal is a contracted terminal of the network, that is, the called terminal belongs to the same PLMN as the calling terminal, MS-GMSC, SCP, and NRF.
  • Step 507 the SCP sends a discovery request to the NRF, the discovery request includes NF type: UDM and the identification (ID) of the target PLMN, indicating that it requests to obtain the information of the UDM of the target PLMN. Further, the discovery request may also include part or all of the parameters included in the routing request in step 502 .
  • step 508 the NRF sends a discovery response to the SCP, and the discovery response includes the address of the UDM.
  • the NRF determines the address of the UDM in the local network according to the stored information, and sends the address of the UDM in the local network to the SCP.
  • Step 509 the SCP sends a routing request to the UDM, and the routing request includes the MSISDN of the called terminal. Further, the discovery request may also include part or all of the parameters included in the routing request in step 502 .
  • Step 510 the UDM sends a routing response to the SCP, and the routing response includes the routing information of the called terminal.
  • Step 511 the SCP sends a routing response to the SMS-GMSC.
  • the response includes routing information of the called terminal.
  • FIG. 6 exemplarily provides an SMS flow, wherein the SCP executes the addressing method in the foregoing embodiment.
  • the information of the subscribed terminal of the local network is not configured in the SCP, and the called terminal belongs to a different PLMN from the calling terminal.
  • the PLMN to which the calling terminal belongs is called a source network, and the MNP is deployed in the source network, and the PLMN to which the called terminal belongs is called a subscription network (Subscription Network).
  • the process may include the following steps:
  • Steps 601 to 605 are similar to steps 501 to 505 and will not be repeated this time.
  • the MNP sends an inquiry response to the SCP, and the inquiry response includes the identifier of the target PLMN, that is, the identifier of the PLMN to which the called terminal belongs.
  • the MNP may search for the identifier of the PLMN to which the called terminal belongs according to the MSISDN of the called terminal.
  • the MNP determines that the called terminal and the calling terminal belong to different PLMNs.
  • the PLMN to which the called terminal belongs is called a contracted network.
  • the called terminal may be a terminal that has undergone number portability transfer, that is, the number segment holding network of the called terminal is not the current contracted network; or, the called terminal may not have occurred
  • the terminal that transfers the network through number portability, that is, the contracted network is the network that holds the number segment of the called terminal.
  • the SCP sends a discovery request to the NRF in the local network.
  • the discovery request includes NF type: UDM and the identifier of the PLMN to which the called terminal belongs, indicating that it requests to obtain information about the UDM in the PLMN corresponding to the PLMN identifier. Further, the discovery request may also include part or all of the parameters included in the routing request in step 602 .
  • Step 608 the NRF in the local network forwards the sending request in step 607 to the NRF in the contracted network.
  • the NRF in this network determines the NRF in the PLMN to which the called terminal belongs according to the identifier of the PLMN to which the called terminal belongs, and forwards the discovery request in step 607 to the NRF in the PLMN to which the called terminal belongs.
  • Step 609 the NRF in the contracted network sends a discovery response to the NRF in the local network, and the discovery response includes the address of the UDM in the contracted network.
  • Step 610 the NRF in the local network forwards the discovery response in step 609 to the SCP.
  • Step 611 the SCP sends a routing request to the UDM in the contracted network, and the routing request includes the MSISDN of the called terminal. Further, the discovery request may also include part or all of the parameters included in the routing request in step 602 .
  • Step 612 the UDM in the contracted network sends a routing response to the SCP, and the routing response includes the routing information of the called terminal.
  • Step 613 the SCP sends a routing response to the SMS-GMSC.
  • the response includes routing information of the called terminal.
  • FIG. 7 exemplarily provides an SMS flow, wherein the SCP executes the addressing method in the foregoing embodiment.
  • the information of the subscribed terminal of the local network is not configured in the SCP, and the called terminal belongs to a different PLMN from the calling terminal.
  • the PLMN to which the calling terminal belongs is called the source network, and no MNP is deployed in the source network, and the called terminal has not undergone number portability, so the network with the number segment of the called terminal is the called network.
  • the PLMN to which the terminal currently belongs that is, the network in which the number segment of the called terminal is held, is the contracted network of the called terminal, and the MNP is deployed in the network of the called terminal.
  • Step 701 the MNP in the contracted network registers with the NRF in the contracted network.
  • Step 702 the SMS-GMSC in the source network sends a routing request to the SCP in the source network.
  • the routing request is the first request in the foregoing embodiment, and the first request includes NF type: UDM (ie, the first indication information in the foregoing embodiment). Further, the first request may also include one or more of the following parameters: service name (Service name): routing information (RoutingInfo), the MSISDN of the called terminal, and the PLMN indication (the first Two indication information); FIG. 7 takes the MSISDN containing the called terminal as an example.
  • Step 703 the SCP in the source network sends a discovery request to the NRF in the source network.
  • the discovery request contains NF type: MNP, which means requesting to discover MNP, that is, requesting to obtain the address of MNP.
  • the discovery request may also include part or all of the information contained in the above-mentioned first request.
  • Step 704 the NRF in the source network forwards the discovery request to the NRF in the contracting network.
  • Step 705 the NRF in the contracted network sends a discovery response to the NRF in the source network, which contains the address of the MNP registered in the number segment holding network.
  • Step 706 the NRF in the source network forwards the discovery response to the SCP in the source network.
  • the discovery request may also include part or all of the parameters included in the routing request in step 702 .
  • Step 707 the SCP in the source network sends a query request to the MNP in the contracted network, the query request includes the MSISDN of the called terminal, so as to request to obtain the identifier of the PLMN to which the called terminal belongs.
  • Step 708 The MNP in the contracted network sends an inquiry response to the SCP in the source network, and the inquiry response includes the identifier of the target PLMN, that is, the identifier of the PLMN to which the called terminal belongs.
  • the MNP may search for the identifier of the PLMN to which the called terminal belongs according to the MSISDN of the called terminal.
  • the PLMN to which the called terminal belongs is the network holding the number segment of the called terminal.
  • Steps 709 to 715 are similar to steps 607 to 613 in the foregoing embodiments, and will not be repeated here.
  • FIG. 8 exemplarily provides an SMS flow, wherein the SCP executes the addressing method in the foregoing embodiment.
  • the information of the contracted terminal of the local network is not configured in the SCP, the called terminal belongs to a different PLMN from the calling terminal, and the called terminal has had number portability before.
  • the PLMN to which the calling terminal belongs is referred to as the source network
  • the PLMN to which the called terminal belongs is referred to as the contracted network
  • the PLMN to which the called terminal belongs before porting the number to the network is referred to as the number segment holding network
  • MNP is not deployed on the source network
  • MNP is deployed on the network holding the number segment.
  • the process may include the following steps:
  • Step 801 the MNP in the number segment holding network registers with the NRF in the number segment holding network.
  • Step 802 the SMS-GMSC in the source network sends a routing request to the SCP in the source network.
  • the routing request is the first request in the foregoing embodiment, and the first request includes NF type: UDM (ie, the first indication information in the foregoing embodiment). Further, the first request may also include one or more of the following parameters: service name (Service name): routing information (RoutingInfo), the MSISDN of the called terminal, and the PLMN indication (the first Two indication information); Figure 8 takes the MSISDN containing the called terminal as an example.
  • Step 803 the SCP in the source network sends a discovery request to the NRF in the source network.
  • the discovery request contains NF type: MNP, which means requesting to discover MNP, that is, requesting to obtain the address of MNP.
  • the discovery request may also include part or all of the information contained in the above-mentioned first request.
  • Step 804 the NRF in the source network forwards the above discovery request to the NRF in the number segment holding network.
  • Step 805 the NRF in the number segment holding network sends a discovery response to the NRF in the source network, and the discovery response includes the address of the MNP registered in the number segment holding network.
  • Step 806 the NRF in the source network forwards the discovery response to the SCP in the source network.
  • Step 807 the SCP in the source network sends a query request to the MNP in the network holding the number segment, the query request includes the MSISDN of the called terminal, so as to request to obtain the identifier of the PLMN to which the called terminal belongs. Further, the discovery request may also include part or all of the parameters included in the routing request in step 802 .
  • Step 808 the MNP in the network holding the number segment sends an inquiry response to the SCP in the source network, and the inquiry response includes the identifier of the target PLMN, that is, the identifier of the PLMN to which the called terminal belongs.
  • the MNP may search for the identifier of the PLMN to which the called terminal belongs according to the MSISDN of the called terminal.
  • the PLMN to which the called terminal belongs is not the network holding the number segment of the called terminal.
  • Step 809 the SCP in the source network sends a discovery request to the NRF in the source network, the discovery request includes NF type: UDM and the identification of the PLMN to which the called terminal belongs, indicating that it requests to obtain information about the UDM in the PLMN corresponding to the PLMN identification . Further, the discovery request may also include part or all of the parameters included in the routing request in step 802 .
  • Step 810 the NRF in the source network forwards the sending request in step 809 to the NRF in the contracting network.
  • the NRF in the source network determines the NRF in the PLMN to which the called terminal belongs according to the identifier of the PLMN to which the called terminal belongs, and forwards the discovery request in step 809 to the NRF in the PLMN to which the called terminal belongs.
  • Step 811 the NRF in the contracted network sends a discovery response to the NRF in the source network, and the discovery response includes the address of the UDM in the contracted network.
  • Step 812 the NRF in the source network forwards the discovery response in step 811 to the SCP in the source network.
  • Step 813 the SCP in the source network sends a routing request to the UDM in the contracted network, and the routing request includes the MSISDN of the called terminal. Further, the discovery request may also include part or all of the parameters included in the routing request in step 802 .
  • Step 814 the UDM in the contracted network sends a routing response to the SCP in the source network, and the routing response includes the routing information of the called terminal.
  • Step 815 the SCP sends a routing response to the SMS-GMSC.
  • the response includes routing information of the called terminal.
  • Fig. 9 exemplarily provides an SMS flow, wherein the addressing method in the foregoing embodiment is executed by the NRF.
  • the information of the contracted terminal of the local network is not configured in the NRF, and the called terminal is the subscribed terminal of the local network.
  • the PLMN to which the calling terminal belongs is called a source network, and an MNP is deployed in the source network.
  • the process can include the following steps:
  • Step 901 the MNP registers with the NRF.
  • Step 902 the MS-GMSC sends a routing request to the SCP.
  • the routing request is the first request in the foregoing embodiment, and the first request includes NF type: UDM (ie, the first indication information in the foregoing embodiment). Further, the first request may also include one or more of the following parameters: service name (Service name): routing information (RoutingInfo), the MSISDN of the called terminal, and the PLMN indication (the first Two indication information); FIG. 9 takes the MSISDN containing the called terminal as an example.
  • Step 903 the SCP sends a discovery request to the NRF.
  • the discovery request includes NF type: UDM, and the MSISDN of the called terminal, indicating that the address of the UDM that can provide the routing information of the called terminal is requested to be discovered.
  • the discovery request may also include part or all of the information contained in the above-mentioned first request.
  • step 904 the NRF sends a query request to the MNP, the query request includes the MSISDN of the called terminal, so as to request to obtain the identifier of the PLMN to which the called terminal belongs.
  • step 905 the MNP sends an inquiry response to the NRF, and the inquiry response includes the identifier of the target PLMN, that is, the identifier of the PLMN to which the called terminal belongs.
  • the MNP may search for the identifier of the PLMN to which the called terminal belongs according to the MSISDN of the called terminal.
  • the MNP determines that the called terminal is a contracted terminal of the local network, that is, the called terminal belongs to the same PLMN as the calling terminal, MS-GMSC, SCP, and NRF.
  • step 906 the NRF sends a discovery response to the SCP, and the discovery response includes the address of the UDM.
  • the NRF determines the address of the UDM in the local network according to the stored information, and sends the address of the UDM to the SCP.
  • Step 907 the SCP sends a routing request to the UDM, and the routing request includes the MSISDN of the called terminal. Further, the discovery request may also include part or all of the parameters included in the routing request in step 902 .
  • step 908 the UDM sends a routing response to the SCP, and the routing response includes the routing information of the called terminal.
  • Step 909 the SCP sends a routing response to the SMS-GMSC.
  • the response includes routing information of the called terminal.
  • Fig. 10 exemplarily provides an SMS flow, wherein the addressing method in the foregoing embodiment is executed by the NRF.
  • the NRF is not configured with the information of the contracted terminal of the local network, and the called terminal belongs to a different PLMN from the calling terminal.
  • the PLMN to which the calling terminal belongs is called a source network
  • the MNP is deployed in the source network
  • the PLMN to which the called terminal belongs is called a contracted network.
  • the process can include the following steps:
  • Steps 1001 to 1005 are consistent with steps 901 to 905 in the foregoing embodiments, and will not be repeated here.
  • Step 1006 the NRF in the source network sends a discovery request to the NRF in the contracted network, and the discovery request includes NF type: UDM, indicating that it requests to obtain information about UDM in the contracted network.
  • NF type UDM
  • the NRF in the source network sends a discovery request to the NRF in the PLMN corresponding to the identifier according to the obtained identifier of the PLMN to which the called terminal belongs. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1002 .
  • Step 1007 the NRF in the contracted network sends a discovery response to the NRF in the source network, and the discovery response includes the address of the UDM in the contracted network.
  • Step 1008 the NRF in the source network sends a discovery response to the SCP, and the discovery response includes the address of the UDM in the contracted network.
  • Step 1009 the SCP in the source network sends a routing request to the UDM in the contracted network, and the routing request includes the MSISDN of the called terminal. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1002 .
  • Step 1010 the UDM in the contracted network sends a routing response to the SCP in the source network, and the routing response includes the routing information of the called terminal.
  • Step 1011 the SCP in the source network sends a routing response to the SMS-GMSC in the source network.
  • the response includes routing information of the called terminal.
  • Fig. 11 exemplarily provides an SMS flow, wherein the addressing method in the foregoing embodiment is executed by the NRF.
  • the NRF is not configured with the information of the contracted terminal of the local network, and the called terminal belongs to a different PLMN from the calling terminal.
  • the PLMN to which the calling terminal belongs is referred to as the source network, and no MNP is deployed in the source network, and the called terminal has not sent a number portability transfer network, so the network with the number segment of the called terminal is the called network.
  • the PLMN that the terminal currently belongs to, the number segment holds the network and the MNP is deployed.
  • Step 1101 the MNP in the number segment holding network registers with the NRF in the number segment holding network.
  • Step 1102 the SMS-GMSC in the source network sends a routing request to the SCP in the source network.
  • the routing request is the first request in the foregoing embodiment, and the first request includes NF type: UDM (ie, the first indication information in the foregoing embodiment). Further, the first request may also include one or more of the following parameters: service name (Service name): routing information (RoutingInfo), the MSISDN of the called terminal, and the PLMN indication (the first Two indication information); FIG. 11 takes the MSISDN containing the called terminal as an example.
  • Step 1103 the SCP in the source network sends a discovery request to the NRF in the source network.
  • the discovery request contains NF type: UDM, indicating that the UDM that can provide the routing information of the called terminal is requested to be discovered. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1102 .
  • Step 1104 the NRF in the source network sends a query request to the NRF in the number segment holding network, and the query request includes the MSISDN of the called terminal, so as to request the NRF in the code segment holding network to query the called terminal's ownership through the MNP. PLMN identification. Further, the discovery request may also include part or all of the parameters contained in the routing request in step 1102.
  • Step 1105 the NRF in the number segment holding network sends a query request to the MNP in the number segment holding network, the query request includes the MSISDN of the called terminal, so as to request to obtain the identifier of the PLMN to which the called terminal belongs. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1102 .
  • Step 1106 the MNP in the number segment holding network sends a query response to the NRF in the number segment holding network, and the query response includes the identifier of the PLMN to which the called terminal belongs.
  • the MNP may search for the identifier of the PLMN to which the called terminal belongs according to the MSISDN of the called terminal.
  • the PLMN to which the called terminal belongs is the network holding the number segment of the called terminal.
  • Step 1107 the NRF in the number segment holding network sends an inquiry response to the NRF in the source network, and the inquiry response includes the identifier of the PLMN to which the called terminal belongs.
  • Step 1108 the NRF in the source network sends a discovery request to the NRF in the number segment holding network, and the discovery request includes NF type: UDM, indicating that it requests to obtain information about UDM in the contracted network.
  • NF type UDM
  • the NRF in the source network sends a discovery request to the NRF in the PLMN corresponding to the identifier according to the obtained identifier of the PLMN to which the called terminal belongs. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1102 .
  • Step 1109 the NRF in the number segment holding network sends a discovery response to the NRF in the source network, and the discovery response includes the address of the UDM in the contracted network.
  • Step 1110 the NRF in the source network sends a discovery response to the SCP, and the discovery response includes the address of the UDM in the contracted network.
  • Step 1111 the SCP in the source network sends a routing request to the UDM in the network where the number segment is held, and the routing request includes the MSISDN of the called terminal. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1102 .
  • Step 1112 the UDM in the network holding the number segment sends a routing response to the SCP in the source network, and the routing response includes the routing information of the called terminal.
  • Step 1113 the SCP in the source network sends a routing response to the SMS-GMSC in the source network.
  • the response includes routing information of the called terminal.
  • step 1107 to step 1109 can be simplified as follows: after receiving the PLMN identifier of the called terminal sent by the MNP, the NRF in the number segment holding network determines that the called terminal The PLMN to which it belongs holds the network for the number segment, and the NRF in the number segment holding network determines the address of the UDM in the number segment holding network, and then sends a query response to the NRF in the source network, which contains the number The segment holds the address of the UDM in the network.
  • Fig. 12 exemplarily provides an SMS flow, wherein the addressing method in the foregoing embodiment is executed by the NRF.
  • the NRF is not configured with the information of the contracted terminal of the local network, the called terminal belongs to a different PLMN from the calling terminal, and the called terminal has been transferred to another network through number portability.
  • the PLMN to which the calling terminal belongs is referred to as the source network
  • the PLMN to which the called terminal belongs is referred to as the contracted network
  • the PLMN to which the called terminal belongs before porting the number to the network is referred to as the number segment holding network
  • MNP is not deployed on the source network
  • MNP is deployed on the network holding the number segment.
  • the process may include the following steps:
  • Step 1201 the MNP in the number segment holding network registers with the NRF in the number segment holding network.
  • Step 1202 the SMS-GMSC in the source network sends a routing request to the SCP in the source network.
  • the routing request is the first request in the foregoing embodiment, and the first request includes NF type: UDM (ie, the first indication information in the foregoing embodiment). Further, the first request may also include one or more of the following parameters: service name (Service name): routing information (RoutingInfo), the MSISDN of the called terminal, and the PLMN indication (the first Two indication information); FIG. 12 takes the MSISDN containing the called terminal as an example.
  • Step 1203 the SCP in the source network sends a discovery request to the NRF in the source network.
  • the discovery request includes NF type: UDM, and the MSISDN of the called terminal, indicating that the address of the UDM that can provide the routing information of the called terminal is requested to be discovered.
  • the discovery request may also include part or all of the information contained in the above-mentioned first request.
  • Step 1204 the NRF in the source network sends a query request to the NRF in the network that holds the number segment.
  • the query request includes the MSISDN of the called terminal, so as to request the NRF in the code segment holding network to query the identity of the PLMN to which the called terminal belongs through the MNP.
  • the discovery request may also include part or all of the parameters included in the routing request in step 1202 .
  • Step 1205 the NRF in the number segment holding network sends a query request to the MNP in the number segment holding network, the query request includes the MSISDN of the called terminal, so as to request to obtain the identifier of the PLMN to which the called terminal belongs. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1202 .
  • Step 1206 the MNP in the number segment holding network sends a query response to the NRF in the number segment holding network, and the query response includes the identifier of the PLMN to which the called terminal belongs.
  • the MNP may search for the identifier of the PLMN to which the called terminal belongs according to the identifier of the called terminal.
  • the PLMN to which the called terminal belongs is not the network holding the number segment of the called terminal.
  • Step 1207 the NRF in the number segment holding network sends an inquiry response to the NRF in the source network, and the inquiry response includes the identifier of the PLMN to which the called terminal belongs.
  • Step 1208 the NRF in the source network sends a discovery request to the NRF in the contracted network, the discovery request includes NF type: UDM and the identification of the PLMN to which the called terminal belongs, indicating that it requests to obtain information about the UDM in the PLMN corresponding to the PLMN identification . Further, the discovery request may also include part or all of the parameters included in the routing request in step 1202 .
  • the NRF in the source network determines the NRF in the PLMN to which the called terminal belongs according to the identifier of the PLMN to which the called terminal belongs, and sends a discovery request for discovering UDM to it.
  • Step 1209 the NRF in the contracted network sends a discovery response to the NRF in the source network, and the discovery response includes the address of the UDM in the contracted network.
  • Step 1210 the NRF in the source network sends a discovery response to the SCP in the source network, and the discovery response includes the address of the UDM in the contracted network.
  • Step 1211 the SCP in the source network sends a routing request to the UDM in the contracted network, and the routing request includes the MSISDN of the called terminal. Further, the discovery request may also include part or all of the parameters included in the routing request in step 1202 .
  • Step 1212 the UDM in the contracted network sends a routing response to the SCP in the source network, and the routing response includes the routing information of the called terminal.
  • Step 1213 the SCP in the source network sends a routing response to the SMS-GMSC in the source network.
  • the response includes routing information of the called terminal.
  • FIG. 13 is a schematic diagram of a communication device provided according to an embodiment of the present application.
  • the communication device includes a transceiver module 1301 and a processing module 1302 .
  • the transceiver module 1301 is used for information sending and receiving processing, and the processing module 1302 is used for implementing data processing by the communication device.
  • the processing module 1302 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component (or called a processing circuit), and the transceiver module 1301 may be implemented by a transceiver or a transceiver-related circuit component.
  • the communication device may be a communication device device, and may also be a chip applied in the communication device device or other combined devices, components, etc. having the functions of the above communication device device.
  • the transceiver module 1301 may be configured to receive a first request, where the first request includes first indication information, and the first indication information is used to instruct the communication device to discover the UDM in the PLMN to which the called terminal belongs.
  • the processing module 1302 may be configured to acquire the identifier of the PLMN to which the called terminal belongs; and acquire the address of the UDM of the PLMN according to the identifier of the PLMN.
  • the above modules can also be used to support other processes performed by the proxy network element in the embodiments shown in FIG. 4 to FIG. 12 .
  • the above modules can also be used to support other processes performed by the proxy network element in the embodiments shown in FIG. 4 to FIG. 12 .
  • the communication device may also be an SCP.
  • the transceiver module 1301 may send a first request to the proxy network element, and the first indication information is used to instruct the proxy network element to discover the unified data management UDM in the public land mobile network PLMN to which the called terminal belongs; The address of the UDM sent by the proxy network element.
  • the processing module 1302 may be configured to acquire the routing information of the called terminal from the UDM according to the address of the UDM.
  • the above modules can also be used to support other processes executed by the SCP in the embodiments shown in FIGS. 9 to 12 .
  • the above modules can also be used to support other processes executed by the SCP in the embodiments shown in FIGS. 9 to 12 .
  • FIG. 14 is a schematic diagram of another communication device provided according to an embodiment of the present application.
  • the communication device includes: a processor 1401 , a communication interface 1402 , and further, a memory 1403 and a communication bus 1404 .
  • the processor 1401, the communication interface 1402 and the memory 1403 can be connected to each other through the communication bus 1404;
  • the communication bus 1404 can be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above-mentioned communication bus 1404 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one line is used in FIG. 14 , but it does not mean that there is only one bus or one type of bus.
  • the processor 1401 may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include hardware chips.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • Memory 1403 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • the processor 1401 may be configured to: receive a first request through the communication interface 1402, the first request includes first indication information, and the first indication information is used to instruct the proxy network element to discover that the called The UDM in the PLMN to which the terminal belongs; obtaining the identifier of the PLMN to which the called terminal belongs; obtaining the address of the UDM of the PLMN according to the PLMN identifier.
  • the above modules can also be used to support other processes performed by the proxy network element in the embodiments shown in FIG. 4 to FIG. 12 .
  • the above modules can also be used to support other processes performed by the proxy network element in the embodiments shown in FIG. 4 to FIG. 12 .
  • the communication device may also be an SCP.
  • the processor 1401 may be configured to: send a first request to the proxy network element through the communication interface 1402, and the first indication information is used to instruct the proxy network element to discover that the called terminal belongs to the public land mobile network PLMN. receive the address of the UDM sent by the proxy network element through the communication interface 1402; obtain the routing information of the called terminal from the UDM according to the address of the UDM.
  • the above modules can also be used to support other processes executed by the SCP in the embodiments shown in FIGS. 9 to 12 .
  • the above modules can also be used to support other processes executed by the SCP in the embodiments shown in FIGS. 9 to 12 .
  • An embodiment of the present application provides a computer-readable storage medium storing a computer program, where the computer program includes instructions for executing the foregoing method embodiments.
  • Embodiments of the present application provide a computer program product containing instructions, which, when run on a computer, enable the above method embodiments to be executed.
  • An embodiment of the present application provides a computer-readable storage medium storing a computer program, where the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiment of the present application provides a computer program product including instructions, which when run on a computer, causes the computer to execute the above method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种寻址方法、装置及设备。该方法中,代理网元接收第一请求,所述第一请求中包含第一指示信息,所述第一指示信息用于指示所述代理网元发现被叫终端所属PLMN中的UDM;所述代理网元获取所述被叫终端所属PLMN的标识;所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址。上述方法为适用于eSBA架构中通信模式D的寻址方法,通过代理网元进行PLMN、UDM的查询,减少了短消息网关与核心网网元之间的多次交互,有助于简化短消息服务流程。且上述方案利用了已经定义和广泛使用的发现服务,使得上述方案的实现较为容易。

Description

一种寻址方法、装置及设备
相关申请的交叉引用
本申请要求在2021年11月05日提交中国专利局、申请号为202111308305.5、申请名称为“一种寻址方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种寻址方法、装置及设备。
背景技术
3GPP标准中已定义了支持短消息业务(short message service,SMS)的网络架构,如图1所示,短消息服务功能(short message service function,SMSF)用于支持与短消息网关(SMS-GMSC)/具有短信功能移动交换中心(IWMSC)/SMS路由器(SMS router)之间的交互,并通过接入和移动管理功能(access and mobility management function,AMF)实现与用户设备(user equipment,UE)之间的主叫(MO)/被叫(MT)短消息业务。SMSF可以用于支持基于网络附属存储(network attached storage,NAS)的SMS,主要用于管理用户数据检查并进行SMS传递。
在第五代移动通信***(5th generation,5G)中,核心网采用服务化架构(service based architecture,SBA),网元之间采用服务化接口(service based interface,SBI)进行通信。3GPP R16提出了SBA增强架构,即eSBA架构,在该架构中引入了服务通信代理(service communication proxy,SCP),并定义了如表1所示的4种通信模式。
表1
Figure PCTCN2022127324-appb-000001
Figure PCTCN2022127324-appb-000002
其中,在模式A场景下,不需要网络仓库功能(network repository function,NRF)和SCP参与,网络功能消费者(NF Consumer)本地配置有网络功能生产者(NF Producer)的网络概述(NF Profile)数据,可以本地查询到对端NF(即NF生产者)后直接发起通信,不需要通过NRF和SCP来发现对端。
模式B场景,即通过NRF进行服务发现获取到对端NF信息,但是获取到对端信息后可以直接向对端发消息,不需要经过SCP转发。
模式C场景,即NF消费者通过NRF发现对端NF,并将消息发送给SCP进行路由。如果NF消费者在发送给SCP的消息中携带的目的NF地址信息指向一个NF集,SCP需要通过NRF进一步查询目标NF。
模式D场景,即NF消费者需要查询发现对端信息,将请求消息发给SCP,由SCP与NRF交互进行发现和选择,并将消息路由给最终选择的NF Producer。
发明内容
本申请实施例提供一种寻址方法、装置及设备,用于解决获取被叫终端路由信息时需要短消息网关与核心网网元频繁交互的问题。
第一方面,本申请实施例提供一种通信方法,包括:代理网元接收第一请求,所述第一请求中包含第一指示信息,所述第一指示信息用于指示所述代理网元发现被叫终端所属公共陆地移动网PLMN中的统一数据管理UDM;所述代理网元获取所述被叫终端所属PLMN的标识;所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址。
在一种可能的实现方式中,所述被叫终端所属PLMN,是所述被叫终端当前签约的PLMN。
在一种可能的实现方式中,所述代理网元获取所述被叫终端所属PLMN的标识,包括:所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识;或者,所述代理网元根据所述代理网元本地的配置的移动用户号码信息,确定所述被叫终端与所述代理网元属于相同的PLMN,确定所述被叫终端所属PLMN的标识为所述代理网元所属PLMN的标识。
在一种可能的实现方式中,所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识,包括:所述代理网元根据所述第一请求中的第二指示信息,从MNP获取所述被叫终端所属PLMN的标识,所述第二指示信息用于指示所述代理网元获取所述被叫终端所属PLMN的标识;或者,所述代理网元中未配置移动用户号码信息,所述代理网元从MNP获取所述被叫终端所属PLMN的标识;或者,所述代理网元根据本地配置的移动用户号码信息,确定所述被叫终端的移动号码持有PLMN与所述代理网元所属的PLMN不同。
在一种可能的实现方式中,所述代理网元为服务通信代理网元SCP,或者网络仓库功 能网元NRF。
在一种可能的实现方式中,所述代理网元接收第一请求,包括:所述SCP接收短消息网关发送的第一路由请求,所述第一路由请求用于获取所述被叫终端的路由信息;在所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址之后,所述方法还包括:所述SCP根据所述UDM的地址,向所述UDM发送第一路由请求,所述第一路由请求用于获取所述被叫终端的路由信息;所述SCP接收所述UDM发送的所述被叫终端的路由信息,并将所述终端的路由信息发送给所述短消息网关。
在一种可能的实现方式中,所述代理网元为SCP;所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识,包括:所述SCP向网络仓库功能网元NRF发送第一发现请求,用于请求获取MNP的地址;所述SCP接收所述NRF发送的第一发现响应,所述第一发现响应包括所述MNP的地址;所述SCP根据所述MNP地址,向所述MNP发送查询请求,所述查询请求中包含所述被叫终端的标识;所述SCP接收所述MNP发送的所述被叫终端所属PLMN的标识。
在一种可能的实现方式中,所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址,包括:所述SCP向NRF发送第二发现请求,所述第二发现请求用于获取所述PLMN的UDM的地址;所述代理网元接收所述NRF发送的第二发现响应,所述第二发现响应包含所述UDM的地址。
在一种可能的实现方式中,所述代理网元接收第一请求,包括:所述NRF接收SCP发送的第一请求;在所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址之后,所述方法还包括:所述NRF向所述SCP发送所述UDM的地址。
在一种可能的实现方式中,所属代理网元为NRF;所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识,包括:所述NRF从已在所述NRF注册的MNP获取所述被叫终端所属PLMN的标识;或者,所述NRF向其他PLMN中NRF发送查询请求,所述查询请求用于获取所述被叫终端所属PLMN的标识,以使所述其他PLMN中的NRF从已注册的MNP获取所述被叫终端所属PLMN的标识;所述NRF接收所述其他PLMN中的NRF发送的查询响应,所述查询响应中包含所述被叫终端所属PLMN的标识。
在一种可能的实现方式中,所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址,包括:所述NRF根据所述PLMN标识,向所述PLMN中的NRF发送第三发现请求,所述第三发现请求用于获取所述PLMN中UDM的地址;所述NRF接收所述PLMN中的NRF发送的所述UDM的地址;或者,所述PLMN标识为所述NRF所属PLMN的标识,所述NRF确定所述NRF所属PLMN中UDM的地址。
第二方面,本申请实施例提供一种寻址方法,包括服务通信代理网元SCP向代理网元发送第一请求,所述第一指示信息用于指示所述代理网元发现被叫终端所属公共陆地移动网PLMN中的统一数据管理UDM;所述SCP接收所述代理网元发送的所述UDM的地址;所述SCP根据所述UDM的地址从所述UDM获取所述被叫终端的路由信息。
在一种可能的实现方式中,在SCP向代理网元发送第一请求之前,所述方法还包括:所述SCP接收短消息网关发送的路由请求,所述路由请求用于获取所述被叫终端的路由信息;在所述SCP根据所述UDM的地址从所述UDM获取所述被叫终端的路由信息之后,所述方法还包括:所述SCP向所述短消息网关发送所述被叫终端的路由信息。
第三方面,本申请实施例提供一种通信装置,所述装置包括执行上述第一方面以及第 一方面的任意一种可能实现方式的方法的模块/单元;这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
示例性的,该通信装置可以包括收发模块和处理模块,收发模块可以用于执行上述第一方面的各个设计方案中的信息收发处理,比如接收第一请求,所述处理模块用于获取所述被叫终端所属PLMN的标识、根据所述PLMN标识获取所述PLMN的UDM的地址等。
第四方面,本申请实施例提供一种通信装置,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口用于与其他设备进行通信;所述处理器用于运行所述存储器内的指令或程序,通过所述通信接口执行如第一方面、第二方面以及任意一种可能实现方式的方法。
第五方面,本申请实施例中提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如第一方面、第二方面以及其中任一种可能实现方式所述的方法被执行。
第六方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得如第一方面、第二方面以及其中任一种可能实现方式所述的方法被执行。
上述第二方面至第六方面中任一方面中的任一可能设计可以带来的技术效果,可以参照上述第一方面中的任一可能设计可以带来的技术效果描述,这里不再重复赘述。
附图说明
图1为本申请实施例提供的SMS网络架构示意图;
图2一种基于服务化的SMS流程示意图;
图3为本申请实施例提供的适用于本申请的网络架构示意图;
图4为本申请实施例提供的一种寻址方法流程示意图;
图5为本申请实施例提供的又一种寻址方法流程示意图;
图6为本申请实施例提供的又一种寻址方法流程示意图;
图7为本申请实施例提供的又一种寻址方法流程示意图;
图8为本申请实施例提供的又一种寻址方法流程示意图;
图9为本申请实施例提供的又一种寻址方法流程示意图;
图10为本申请实施例提供的又一种寻址方法流程示意图;
图11为本申请实施例提供的又一种寻址方法流程示意图;
图12为本申请实施例提供的又一种寻址方法流程示意图;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
在当前的协议中,被叫(MT)短消息需要根据短消息接收者的国际移动设备身份码(mobile subscriber international ISDN/PSTN number,MSISDN)或通用公共用户标识(generic public subscription identifier,GPSI)的路由短消息进行发送。具体的,短消息网关(SMS-GMSC)需要识别目标PLMN,即被叫终端所签约的PLMN,并向目标PLMN的UDM查询短消息的路由信息,如需要将短消息发往SMSF、服务GPRS支持节点(serving  GPRS support node,SGSN)、移动管理实体(mobility management entity,MME)等。
3GPP CT4工作组正在对短消息网络的服务化进行改造,即,除短消息中心(SMS-SC)外,其他短消息网元都改造为NF和服务化接口。这就使得SMS-GMSC与核心网网元需要进行多次交互,才能够获取目标PLMN及目标PLMN的UDM地址信息,实现从目标PLMN的UDM查询短消息的路由信息。
具体的,基于服务化的SMS流程可以如图2所示,其中,源网络表示主叫终端的签约PLMN,签约网络(subscription network)表示被叫终端的签约PLMN,号码段持有者网络(number range holder network)表示最初持有被叫终端MSISDN的PLMN,例如,若被叫终端的MSISDN曾经发生携号转网,则其对应的签约PLMN与最初持有该MSISDN的PLMN不同。如图2所示,SMS流程包括以下步骤:
步骤201、移动号码携带(Mobile Number Portability,MNP)注册至NRF。
步骤202、SMS-GMSC向NRF发送发现请求(Nnrf_NFDiscovery)。该发现请求中的目标发现类型(target-nf-type)为MNP,表示请求获取MNP的信息。
步骤203、NRF向SMS-GMSC发送发现响应(Nnrf_NFDiscovery_Response)。该响应中包括MNP实例的信息。
步骤204、SMS-GMSC向MNP发送查询请求(Nmnp_NPStatus GET)。该查询请求中包含有被叫终端的MSISDN,以请求获取被叫终端签约的PLMN的标识。
步骤205、MNP根据MSISDN查找与之对应的PLMN标识。
步骤206、MNP向SMS-GMSC发送查询响应(Nmnp_NPStatue response)。该查询响应中包含有目标PLMN的标识(target PLMN ID),即被叫终端签约的PLMN的标识。
若SMS-GMSC获取到的PLMN标识表示被叫终端与主叫终端签约的PLMN相同,则执行步骤207a至步骤210a。步骤207a、SMS-GMSC向NRF发送发现请求(Nnrf_NFDiscovery)。该发现请求中的目标发现类型(target-nf-type)为UDM,该发现请求中还包含有目标PLMN的标识,即源网络的PLMN标识,表示请求获取目标PLMN的UDM的信息。
步骤208a、NRF向SMS-GMSC发送发现响应。该响应中包含有目标PLMN的UDM实例的信息。
步骤209a、SMS-GMSC向源网络中的UDM发送路由请求(Nudm routing info query)。该路由请求中包含有被叫终端的MSISDN,以请求获取被叫终端的路由信息。
步骤210a、源网络中的UDM向SMS-GMSC发送路由响应(Nudm routing info response)。该响应中包含有被叫终端的路由信息。
若SMS-GMSC获取到的PLMN标识表示被叫终端与主叫终端签约的PLMN不同,则执行步骤207b至步骤210b。
步骤207b、SMS-GMSC向NRF发送发现请求(Nnrf_NFDiscovery)。该发现请求中的目标发现类型(target-nf-type)为UDM,该发现请求中还包含有目标PLMN的标识,即图中所示的签约网络的PLMN标识,表示请求获取目标PLMN的UDM的信息。
NRF在接收到该发现请求后,确认目标PLMN非源PLMN,则向目标PLMN中的NRF发送发现请求,以请求获取目标PLMN中UDM的信息。
步骤208b、源网络的NRF接收目标PLMN中的NRF发送的发现响应,并向SMS-GMSC转发该发现响应。该发现响应中包含有目标PLMN的UDM实例的信息。
步骤209b、SMS-GMSC向目标PLMN中的UDM发送路由请求(Nudm routing info query)。该路由请求中包含有被叫终端的MSISDN,以请求获取被叫终端的路由信息。
步骤210b、目标PLMN中的UDM向SMS-GMSC发送路由响应(Nudm routing info response)。该响应中包含有被叫终端的路由信息。
由此可见,目前的SMS流程需要SMS-GMSC与核心网网元进行频繁交互,才能够获取到被叫终端的路由信息。
在新提出的eSBA架构中,引入了SCP,并定义了如表1所示的四种通信模式。然而,对于通信模式D,虽然提出了可以由SCP或NRF获取被叫终端的PLMN标识以及UDM信息,但并未明确如何获取相关信息。
有鉴于此,本申请实施例提供了一种寻址方法,用于实现SCP或NRF获取与被叫终端相关的PLMN标识以及UDM信息。
图3示例性的提供了一种本申请实施例能够适用的网络架构。如图3所示,该网络架构可以包括终端设备、无线接入网(radio access network,RAN)、接入与移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、用户面功能(user plane function,UPF)、应用功能(application function,AF)、策略控制功能(policy control function,PCF)、UDM、SCP、NRF、数据网络(data network,DN)、网络开放功能(network exposure function,NEF)、网络切片选择功能(network slice selection function,NSSF)、NSSAAF、NSACF、证服务器功能(authentication server function,AUSF)等。
其中,终端设备,是一种具有无线收发功能的设备。终端设备通过无线方式与无线接入网相连,从而接入到通信***中。终端设备也可以称为终端、UE、移动台、移动终端等(图中以UE进行示意)。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、或智慧家庭中的无线终端等等。本申请实施例对终端设备所采用的具体技术和具体设备形态不作限定。作为示例而非限定,终端设备还可以是可穿戴设备,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。为了方便描述,本申请下述实施例对将终端设备简称为“终端”。
RAN又可称为接入网设备或基站,用于将终端设备接入到无线网络。所述无线接入网可以是基站(base station)、LTE***或演进的LTE***(LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNodeB)、5G通信***中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)、未来移动通信***中的基站或WiFi***中的接入节点等。无线接入网也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),或者分布式单元(distributed unit,DU)。本申请实施例对无线接入网所采用的具体技术和具体设备形态不作限定。例如,在一种网络结构中,无线接入网可以为CU节 点、或DU节点、或为包括CU节点和DU节点的无线接入网。具体的,CU节点用于支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU节点用于支持无线链路控制(radio link control,RLC)层协议、媒体接入控制(medium access control,MAC)层协议和物理层协议。
接入与移动性管理功能网元,主要用于移动网络中的终端设备的附着、移动性管理、跟踪区更新流程等。在5G通信***中,接入与移动性管理功能网元可以称为AMF,在未来的通信***(如6G通信***)中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
会话管理功能网元,主要用于移动网络中的会话管理,如会话建立、修改、释放。具体功能如为终端分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面网元等。在5G通信***中,会话管理功能网元可以称为SMF,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
用户面功能网元,主要用于对用户报文进行处理,如转发、计费、合法监听等。在5G通信***中,用户面功能网元可以称为UPF,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
策略控制功能网元,包含用户签约数据管理功能、策略控制功能、计费策略控制功能、服务质量(quality of service,QoS)控制等。在5G通信***中,策略控制功能网元可以称为PCF,在未来的通信***,也可以是具有上述功能的其他名称的网元,本申请并不限定。
网络切片选择功能网元,主要用于为终端设备的业务选择合适的网络切片。在5G通信***中,网络切片选择功能网元可以称为NSSF,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
网络仓库功能网元,主要用于提供网元或网元所提供服务的注册和发现功能。在5G通信***中,网络仓库功能网元可以称为NRF,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
统一数据管理网元,主要用于管理终端设备的签约信息。在5G通信***中,统一数据管理网元可以称为UDM,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
认证服务功能网元,主要用于对终端设备进行安全认证。在5G通信***中,认证服务功能网元可以称为AUSF,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
网络开放功能网元,可以将网络的部分功能有控制地暴露给应用。在5G通信***中,网络开放功能网元可以称为NEF,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
服务通信代理网元,用于支持间接通信,即服务调用网元和服务提供网元之间的消息中转和路由,服务提供网元的选择和发现等。在5G通信***中,服务通信代理网元可以称为SCP,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
应用功能网元,可以向运营商的通信网络的控制面网元提供各类应用的服务数据,或者从通信网络的控制面网元获得网络的数据信息和控制信息。在5G通信***中,应用功 能网元可以称为AF,在未来的通信***中,也可以是具有上述功能的其他名称的网元,本申请对此并不限定。
数据网络,主要用于为终端设备提供数据传输服务。数据网络可以是私有网络,如局域网,也可以是公用数据网(public data network,PDN)网络,如因特网(Internet),还可以是运营商共同部署的专有网络,如配置的IP多媒体网络子***(IP multimedia core network subsystem,IMS)服务。
上述网络架构中介绍的网元既可以作为服务调用网元(即NF消费者),也可以作为服务提供网元(即NF生产者),如AMF可以作为服务提供网元,提供服务给SMF,而AMF也可以作为服务调用网元,调用SMF提供的服务。
应当理解,图1、图3仅为适用的网络架构的一种示例,实际应用的网络架构可以包括比图1、图3更多或更少的网元。
在本申请实施例中,终端所属的PLMN,可以指终端当前签约的PLMN。例如,若终端曾经办理过携号转网,则将其转网后的签约PLMN作为该终端所属的PLMN,而手机号(即MSISDN)的号码段持有网络,即转网前的PLMN,不再是其所属的PLMN。
参见图4,为本申请实施例提供一种寻址方法的流程示意图,如图所示,该方法可以包括以下步骤:
步骤401、代理网元接收第一请求,该第一请求中包含第一指示信息,该第一指示信息用于指示代理网元发现被叫终端的所属PLMN中的UDM。
其中,代理网元可以是SCP,则其接收到的第一请求可以为短消息网关发送的路由请求,该路由请求用于获取被叫终端的路由信息。该路由请求中可以包含有用于指示获取被叫终端所属PLMN中UDM的信息。例如,路由请求(Nudm_RoutingInfo_GetRequest)中的HTTP自定义头(HTTP custom header)中包含如下参数:网络功能发现类型(NF type):UDM(即第一指示信息),服务名称(Service name):路由信息(RoutingInfo);此外,该路由请求中可以包含被叫终端的MSISDN或GPSI等;上述参数表示请求发现能够获取被叫终端路由信息的UDM并获取被叫终端的路由信息。
或者,代理网元也可以是NRF,则其接收到的第一请求可以为SCP发送的发现请求,该发现请求用于请求发现存储有被叫终端签约信息的UDM。例如,发现请求(Nnrf_NFDiscovery)中包含有网络功能发现类型(NF type):UDM,被叫终端的标识(如MSISDN或GPSI)等;上述参数表示请求发现能够获取被叫终端路由信息的UDM。
步骤402、代理网元获取被叫终端所属PLMN的标识。
被叫终端所属PLMN中的UDM能够提供被叫终端路由信息的UDM,因此,发现该UDM需要先确定该UDM所在的PLMN,即被叫终端所属的PLMN。
进一步的,代理网元接收到的第一请求中还可以包含有第二指示信息,第二指示信息用于指示代理网元获取被叫终端所属PLMN的标识,以便于代理网元更加明确其需要获取被叫终端所属PLMN标识。例如,发送第一请求的网元可以先根据被叫终端的标识确定被叫终端是否为本网(即发送第一请求的网元、代理网元所属的PLMN)的签约终端,若被叫终端不是本网的签约终端,则在第一请求中携带第二指示信息,以指示代理网元从MNP获取被叫终端所属PLMN的标识。又例如,发送第一请求的网元也可以不对被叫终端是否为本网的签约终端进行判断,第二指示信息仅用于指示代理网元需要获取被叫终端所属PLMN的标识,代理网元如何获取由代理网元自行决定。
上述第二指示信息可以添加至第一请求的HTTP自定义头中,例如,在第一请求的HTTP自定义头中添加MSISDN-PLMN字段;或者,也可以添加至第一请求的其他字段中,本申请实施例对此不做限定。
在一些实施例中,代理网元中可以预先配置有本网签约终端的信息,如移动用户号码信息(例如MSISDN)或GPSI,在这种情况下,代理网元可以先根据配置信息和被叫终端的标识,确定被叫终端是否为本网的签约终端。若被叫终端为本网的签约终端,则代理网元确定被叫终端所属PLMN的标识,即为本网的PLMN标识。
然而,目前大多数的代理网元(SCP或NRF)中未配置有本网签约终端的信息,此时,代理网元可以从MNP获取被叫终端所属PLMN的标识。或者,虽然代理网元中配置了本网签约终端的信息,当代理网元根据被叫终端的标识以及配置的本网签约终端信息,确定被叫终端并非本网签约的终端,此时,代理网元也可以通过MNP获取被叫终端所述PLMN的标识。
此外,代理网元在从MNP获取被叫终端所属PLMN的标识时,可以进一步获取被叫终端的号码可移植性。号码可移植性,指用户可在可移植性群集范围内保持其旧电话号码从而保持易接触性的业务,即日常所说的“携号转网”。或者,代理网元也可以根据被叫终端的标识(如MSISDN或GPSI)查询被叫终端号码持有网络以及其号码可移植性。
步骤403、代理网元根据获取到的PLMN标识获取被叫终端所属PLMN中UDM的地址。
代理网元在获取到被叫终端所述PLMN的标识后,即可通过发现服务获取被叫终端所属PLMN中的UDM的地址。
在本申请上述实施例提供了一种适用于eSBA架构中通信模式D的寻址方法,由代理网元执行查询被叫终端所属的PLMN,并执行被叫终端所属PLMN中UDM的发现流程,进而实现从UDM获取被叫终端的路由信息完成短消息的发送。通过代理网元进行PLMN、UDM的查询,减少了短消息网关与核心网网元之间的多次交互,有助于简化短消息服务流程。且上述方案利用了已经定义和广泛使用的发现服务,使得上述方案的实现较为容易。
如前所述,上述代理网元可以为SCP,若SCP在步骤401中接收到短消息网关发送的第一请求,为包含有第一指示信息的用于获取被叫终端路由信息的请求,那么SCP在获取到被叫终端所属PLMN中UDM地址后,SCP可以根据获取到的UDM的地址,向被叫终端所属PLMN中的UDM发送第一路由请求,以请求获取被叫终端的路由信息。在接收到被叫终端的路由信息后,将被叫终端的路由信息发送给短消息网关,以使短消息网关根据被叫终端的路由信息进行短消息发送。
代理网元若为SCP,那么SCP在执行上述步骤402时,SCP可以从MNP获取被叫终端所属PLMN的标识,或者,在SCP中配置有本网签约终端信息且被叫终端为本网签约终端时,确定被叫终端所属PLMN的标识为本网PLMN标识。
若SCP需要从MNP获取被叫终端所属PLMN标识,在一种可能的设计中,SCP可以向本网中的NRF发送第一发现请求,该第一发现请求用于请求获取MNP的地址。相应地,本网中的NRF在接收到第一发现请求后,可以根据已在NRF中完成注册的MNP的信息,将MNP的地址携带在第一发现响应中发送给SCP。进一步的,若SCP在此前的通信中已经获取到MNP的地址,那么SCP可以根据已存储的MNP的地址直接与MNP进行通信,不必再通过NRF重复获取MNP的地址。
之后,SCP可以向MNP发送请求以获取被叫终端所述PLMN的标识。例如,SCP向MNP发送请求(如Nmnp_NPStatus消息),该请求中包含有被叫终端的标识(如MSISDN或GPSI);MNP根据被叫终端的标识确定被叫终端所属的PLMN,并将被叫终端所属的PLMN的标识发送给SCP。
代理网元若为SCP,那么SCP在执行上述步骤403时,SCP可以根据获取到的PLMN的标识获取被叫终端所属PLMN中UDM的地址。具体的,SCP可以向本网NRF发送第二发现请求,以请求获取被叫终端所属PLMN中UDM的地址。例如,第二发现请求(如Nnrf_NFDiscovery消息)中包含有上述PLMN的标识,以及NF type:UDM参数,表示请求发现所述PLMN标识对应的PLMN中UDM。若该第二发现请求中的PLMN标识为本网的PLMN标识,则本网NRF可以根据已配置的信息确定出本网中的UDM的地址,并将本网UDM的地址携带在第二发现响应中发送给SCP。若第二发现请求中的PLMN标识非本网的PLMN标识,本网NRF根据第二请求中的PLMN标识,向该标识对应的PLMN(即目标PLMN)中的NRF发送发现请求,该发现请求中也包含有NF type:UDM参数,以请求获取目标PLMN中UDM的信息。目标PLMN中的NRF向本网中的NRF发送发现响应,该响应中包含有目标PLMN中UDM的地址;然后本网NRF向SCP发送第二发现响应,该第二发现响应中包含有目标PLMN中UDM的地址。
或者,若SCP在此前的通信中已经获取到该PLMN中UDM的地址,那么SCP可以根据已存储的UDM的地址直接与UDM进行通信,而不必再通过NRF重新获取UDM的地址。
如前所述,该代理网元还可以为NRF,那么NRF在执行完上述步骤403后,可以将获取到的被叫终端所属PLMN中UDM地址发送给SCP,以使SCP能够根据被叫终端所属PLMN中UDM地址,从该UDM获取被叫终端的路由信息。
NRF在执行上述步骤402时,可以从MNP获取被叫终端所属PLMN的标识,或者,在NRF中配置有本网签约终端信息且被叫终端为本网签约终端时,NRF也可以根据被叫终端的标识(如MSISDN或GPSI)确定被叫终端为本网的签约终端,即被叫终端所属PLMN的标识为本网PLMN标识。进一步的,在执行本申请实施例之前,MNP可以在NRF完成注册,从而使得NRF在需要从MNP获取被叫终端所属PLMN的标识时,能够根据注册信息确定MNP的地址,并向MNP发送获取被叫终端所属PLMN标识的请求。例如,NRF向MNP发送请求(如Nmnp_NPStatus消息),该请求中包含有被叫终端的标识(如MSISDN或GPSI);MNP根据被叫终端的标识确定被叫终端所属的PLMN,并将被叫终端所属的PLMN的标识发送给NRF。
NRF在执行上述步骤403时,若获取到的被叫终端所属PLMN的标识为本网PLMN标识,则NRF可以根据预配置的信息直接获取到本网中UDM的地址。若获取到的被叫终端所属PLMN的标识非本网PLMN标识,那么本网中的NRF可以根据被叫终端所属PLMN的标识,向该标识对应的PLMN(即目标PLMN)中的NRF发送发现请求,该发现请求中包含有NF type:UDM参数,以请求获取目标PLMN中UDM的信息。进一步的,该发现请求中还可以包括第一请求中所携带了其他参数,如服务名称(Service name)、终端标识(如MSISDN或GPSI)中的一项或多项。目标PLMN中的NRF向本网中的NRF发送发现响应,该响应中包含有目标PLMN中UDM的地址。
为了更加清楚理解本申请上述实施例,下面结合图5至图12进行详细的举例说明。 在以下实施例中,终端标识均以MSISDN进行举例,应当理解,下述实施例中的MSISDN也可以替换为GPSI或其他终端标识。
图5示例性的提供了一种SMS流程,其中,由SCP执行上述实施例中的寻址方法。在图5所示的具体实施例中,SCP中未配置有本网签约终端的信息,且被叫终端为本网签约终端。在该实施例中,将主叫终端所属的PLMN称为源网络,且源网络中部署有MNP。如图所示,该流程可以包括以下步骤:
步骤501、MNP在NRF进行注册。
步骤502、SMS-GMSC向SCP发送路由请求。该路由请求即为前述实施例中的第一请求,该第一请求中包含有NF type:UDM(即前述实施例中的第一指示信息)。进一步的,第一请求中还可以包含有以下参数中的一项或多项:服务名称(Service name):路由信息(RoutingInfo),被叫终端的标识以及PLMN指示(前述实施例中的第二指示信息)。
步骤503、SCP向NRF发送发现请求。该发现请求中包含有NF type(发现类型):MNP,表示请求发现MNP,即请求获取MNP地址。
进一步的,该发现请求中还可以包括上述第一请求中所包含的部分或全部信息。
步骤504、NRF向SCP发送发现响应,该发现响应中包含有MNP的地址。
具体的,MNP的地址可以是MNP的全限定域名(fully qualified domain name,FQDN)地址或IP地址。
步骤505、SCP向MNP发送查询请求,该查询请求中包含有被叫终端的MSISDN,以请求获取被叫终端所属的PLMN的标识。
步骤506、MNP向SCP发送查询响应,该查询响应中包含有目标PLMN的标识,即被叫终端所属PLMN的标识。
具体的,MNP可以根据被叫终端的MSISDN查找被叫终端所属PLMN的标识。在图5所示的具体实施例中,MNP确定被叫终端为本网的签约终端,即,被叫终端与主叫终端、MS-GMSC、SCP、NRF属于相同的PLMN。
步骤507、SCP向NRF发送发现请求,该发现请求中包含有NF type:UDM以及目标PLMN的标识(ID),表示请求获取目标PLMN的UDM的信息。进一步的,该发现请求还可以包括步骤502中路由请求所包含参数中的部分或全部。
步骤508、NRF向SCP发送发现响应,该发现响应中包含有UDM的地址。
由于目标PLMN即为本网,因此,NRF根据已存储的信息确定出的本网中UDM的地址,并将本网中UDM的地址发送给SCP。
步骤509、SCP向UDM发送路由请求,该路由请求中包含被叫终端的MSISDN。进一步的,该发现请求还可以包括步骤502中路由请求所包含参数中的部分或全部。
步骤510、UDM向SCP发送路由响应,该路由响应中包含被叫终端的路由信息。
步骤511、SCP向SMS-GMSC发送路由响应。该响应中包含有被叫终端的路由信息。
图6示例性的提供了一种SMS流程,其中,由SCP执行上述实施例中的寻址方法。在图6所示的具体实施例中,SCP中未配置有本网签约终端的信息,且被叫终端为与主叫终端属于不同的PLMN。在该实施例中,将主叫终端所属的PLMN称为源网络,源网络中部署有MNP,将被叫终端所属的PLMN称为签约网络(Subscription Network)。
如图6所示,该流程可以包括以下步骤:
步骤601~步骤605与步骤501~步骤505类似,此次不再赘述。
步骤606、MNP向SCP发送查询响应,该查询响应中包含有目标PLMN的标识,即被叫终端所属PLMN的标识。
具体的,MNP可以根据被叫终端的MSISDN查找被叫终端所属PLMN的标识。在图6所示的具体实施例中,MNP确定被叫终端与主叫终端属于不同的PLMN,图中将被叫终端所属的PLMN称为签约网络。
在图6所示的实施例中,被叫终端可以是发生过携号转网的终端,即被叫终端的号码段持有网络并非当前的签约网络;或者,被叫终端也可以是没有发生过携号转网的终端,即签约网络就是被叫终端的号码段持有网络。
步骤607、SCP向本网中的NRF发送发现请求,该发现请求中包含有NF type:UDM以及被叫终端所属PLMN的标识,表示请求获取该PLMN标识对应的PLMN中UDM的信息。进一步的,该发现请求还可以包括步骤602中路由请求所包含参数中的部分或全部。
步骤608、本网中的NRF将步骤607中的发送请求转发至签约网络中的NRF。
具体的,本网中的NRF根据被叫终端所属PLMN的标识,确定被叫终端所属PLMN中的NRF,并将步骤607中的发现请求转发至被叫终端所属PLMN中的NRF。
步骤609、签约网络中的NRF向本网中的NRF发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤610、本网中的NRF将步骤609中的发现响应转发至SCP。
步骤611、SCP向签约网络中的UDM发送路由请求,该路由请求中包含被叫终端的MSISDN。进一步的,该发现请求还可以包括步骤602中路由请求所包含参数中的部分或全部。
步骤612、签约网络中的UDM向SCP发送路由响应,该路由响应中包含被叫终端的路由信息。
步骤613、SCP向SMS-GMSC发送路由响应。该响应中包含有被叫终端的路由信息。
图7示例性的提供了一种SMS流程,其中,由SCP执行上述实施例中的寻址方法。在图7所示的具体实施例中,SCP中未配置有本网签约终端的信息,被叫终端为与主叫终端属于不同的PLMN。在该实施例中,将主叫终端所属的PLMN称为源网络,且源网络中未部署MNP,被叫终端未发生过携号转网,故被叫终端号码段持有网络即为被叫终端当前所属的PLMN,即被叫终端号码段持有网络即为被叫终端的签约网络,被叫终端网络中部署有MNP。
步骤701、签约网络中的MNP在签约网络中的NRF进行注册。
步骤702、源网络中的SMS-GMSC向源网络中的SCP发送路由请求。该路由请求即为前述实施例中的第一请求,该第一请求中包含有NF type:UDM(即前述实施例中的第一指示信息)。进一步的,第一请求中还可以包含有以下参数中的一项或多项:服务名称(Service name):路由信息(RoutingInfo),被叫终端的MSISDN,以及PLMN指示(前述实施例中的第二指示信息);图7中以包含被叫终端的MSISDN为例。
步骤703、源网络中的SCP向源网络中的NRF发送发现请求。该发现请求中包含有NF type:MNP,表示请求发现MNP,即请求获取MNP地址。
进一步的,该发现请求中还可以包括上述第一请求中所包含的部分或全部信息。
步骤704、源网络中的NRF向签约网络中的NRF转发上述发现请求。
步骤705、签约网络中的NRF向源网络中的NRF发送发现响应,该发现响应中包含 有在号码段持有网络中注册的MNP的地址。
步骤706、源网络中的NRF将上述发现响应转发给源网络中的SCP。进一步的,该发现请求还可以包括步骤702中路由请求所包含参数中的部分或全部。
步骤707、源网络中的SCP向签约网络中的MNP发送查询请求,该查询请求中包含有被叫终端的MSISDN,以请求获取被叫终端所属的PLMN的标识。
步骤708、签约网络中的MNP向源网络中的SCP发送查询响应,该查询响应中包含有目标PLMN的标识,即被叫终端所属PLMN的标识。
具体的,MNP可以根据被叫终端的MSISDN查找被叫终端所属PLMN的标识。在图7所示的具体实施例中,由于被叫终端没有发生过携号转网,因此,被叫终端所属的PLMN即为被叫终端号码段持有网络。
步骤709~步骤715与前述实施例中的步骤607~步骤613类似,此处不再赘述。
图8示例性的提供了一种SMS流程,其中,由SCP执行上述实施例中的寻址方法。在图8所示的具体实施例中,SCP中未配置有本网签约终端的信息,被叫终端为与主叫终端属于不同的PLMN,且被叫终端曾发生过携号转网。在该实施例中,将主叫终端所属的PLMN称为源网络,将被叫终端所属的PLMN称为签约网络,将被叫终端携号转网之前所属的PLMN称为号码段持有网络;源网络中未部署MNP,号码段持有网络中部署有MNP。
如8图所示,该流程可以包括以下步骤:
步骤801、号码段持有网络中的MNP在号码段持有网络中的NRF进行注册。
步骤802、源网络中的SMS-GMSC向源网络中的SCP发送路由请求。该路由请求即为前述实施例中的第一请求,该第一请求中包含有NF type:UDM(即前述实施例中的第一指示信息)。进一步的,第一请求中还可以包含有以下参数中的一项或多项:服务名称(Service name):路由信息(RoutingInfo),被叫终端的MSISDN,以及PLMN指示(前述实施例中的第二指示信息);图8中以包含被叫终端的MSISDN为例。
步骤803、源网络中的SCP向源网络中的NRF发送发现请求。该发现请求中包含有NF type:MNP,表示请求发现MNP,即请求获取MNP地址。
进一步的,该发现请求中还可以包括上述第一请求中所包含的部分或全部信息。
步骤804、源网络中的NRF向号码段持有网络中的NRF转发上述发现请求。
步骤805、号码段持有网络中的NRF向源网络中的NRF发送发现响应,该发现响应中包含有在号码段持有网络中注册的MNP的地址。
步骤806、源网络中的NRF将上述发现响应转发给源网络中的SCP。
步骤807、源网络中的SCP向号码段持有网络中的MNP发送查询请求,该查询请求中包含有被叫终端的MSISDN,以请求获取被叫终端所属的PLMN的标识。进一步的,该发现请求还可以包括步骤802中路由请求所包含参数中的部分或全部。
步骤808、号码段持有网络中的MNP向源网络中的SCP发送查询响应,该查询响应中包含有目标PLMN的标识,即被叫终端所属PLMN的标识。
具体的,MNP可以根据被叫终端的MSISDN查找被叫终端所属PLMN的标识。在图8所示的具体实施例中,由于被叫终端发生过携号转网,因此,被叫终端所属的PLMN并非被叫终端号码段持有网络。
步骤809、源网络中的SCP向源网络中的NRF发送发现请求,该发现请求中包含有NF type:UDM以及被叫终端所属PLMN的标识,表示请求获取该PLMN标识对应的PLMN 中UDM的信息。进一步的,该发现请求还可以包括步骤802中路由请求所包含参数中的部分或全部。
步骤810、源网络中的NRF将步骤809中的发送请求转发至签约网络中的NRF。
具体的,源网络中的NRF根据被叫终端所属PLMN的标识,确定被叫终端所属PLMN中的NRF,并将步骤809中的发现请求转发至被叫终端所属PLMN中的NRF。
步骤811、签约网络中的NRF向源网络中的NRF发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤812、源网络中的NRF将步骤811中的发现响应转发至源网络中的SCP。
步骤813、源网络中的SCP向签约网络中的UDM发送路由请求,该路由请求中包含被叫终端的MSISDN。进一步的,该发现请求还可以包括步骤802中路由请求所包含参数中的部分或全部。
步骤814、签约网络中的UDM向源网络中的SCP发送路由响应,该路由响应中包含被叫终端的路由信息。
步骤815、SCP向SMS-GMSC发送路由响应。该响应中包含有被叫终端的路由信息。
图9示例性的提供了一种SMS流程,其中,由NRF执行上述实施例中的寻址方法。在图9所示的具体实施例中,NRF中未配置有本网签约终端的信息,且被叫终端为本网签约终端。在该实施例中,将主叫终端所属的PLMN称为源网络,且源网络中部署有MNP。如图所示,该流程可以包括以下步骤:
步骤901、MNP在NRF进行注册。
步骤902、MS-GMSC向SCP发送路由请求。该路由请求即为前述实施例中的第一请求,该第一请求中包含有NF type:UDM(即前述实施例中的第一指示信息)。进一步的,第一请求中还可以包含有以下参数中的一项或多项:服务名称(Service name):路由信息(RoutingInfo),被叫终端的MSISDN,以及PLMN指示(前述实施例中的第二指示信息);图9中以包含被叫终端的MSISDN为例。
步骤903、SCP向NRF发送发现请求。该发现请求中包含有NF type:UDM,以及被叫终端的MSISDN,表示请求发现能够提供被叫终端路由信息的UDM的地址。
进一步的,该发现请求中还可以包括上述第一请求中所包含的部分或全部信息。
步骤904、NRF向MNP发送查询请求,该查询请求中包含有被叫终端的MSISDN,以请求获取被叫终端所属的PLMN的标识。
步骤905、MNP向NRF发送查询响应,该查询响应中包含有目标PLMN的标识,即被叫终端所属PLMN的标识。
具体的,MNP可以根据被叫终端的MSISDN查找被叫终端所属PLMN的标识。在图9所示的具体实施例中,MNP确定被叫终端为本网的签约终端,即,被叫终端与主叫终端、MS-GMSC、SCP、NRF属于相同的PLMN。
步骤906、NRF向SCP发送发现响应,该发现响应中包含有UDM的地址。
由于被叫终端所属PLMN即为源网络,因此,NRF根据已存储的信息确定出的本网中UDM的地址,并将UDM的地址发送给SCP。
步骤907、SCP向UDM发送路由请求,该路由请求中包含被叫终端的MSISDN。进一步的,该发现请求还可以包括步骤902中路由请求所包含参数中的部分或全部。
步骤908、UDM向SCP发送路由响应,该路由响应中包含被叫终端的路由信息。
步骤909、SCP向SMS-GMSC发送路由响应。该响应中包含有被叫终端的路由信息。
图10示例性的提供了一种SMS流程,其中,由NRF执行上述实施例中的寻址方法。在图10所示的具体实施例中,NRF中未配置有本网签约终端的信息,且被叫终端为与主叫终端属于不同的PLMN。在该实施例中,将主叫终端所属的PLMN称为源网络,源网络中部署有MNP,将被叫终端所属的PLMN称为签约网络。如图所示,该流程可以包括以下步骤:
步骤1001~步骤1005与前述实施例中的步骤901~步骤905一致,此处不再赘述。
步骤1006、源网络中的NRF向签约网络中的NRF发送发现请求,该发现请求中包含有NF type:UDM,表示请求获取签约网络中UDM的信息。
具体的,源网络中的NRF根据获取到的被叫终端所属PLMN的标识,向该标识对应的PLMN中的NRF发送发现请求。进一步的,该发现请求还可以包括步骤1002中路由请求所包含参数中的部分或全部。
步骤1007、签约网络中的NRF向源网络中的NRF发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤1008、源网络中的NRF向SCP发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤1009、源网络中的SCP向签约网络中的UDM发送路由请求,该路由请求中包含被叫终端的MSISDN。进一步的,该发现请求还可以包括步骤1002中路由请求所包含参数中的部分或全部。
步骤1010、签约网络中的UDM向源网络中的SCP发送路由响应,该路由响应中包含被叫终端的路由信息。
步骤1011、源网络中的SCP向源网络中的SMS-GMSC发送路由响应。该响应中包含有被叫终端的路由信息。
图11示例性的提供了一种SMS流程,其中,由NRF执行上述实施例中的寻址方法。在图11所示的具体实施例中,NRF中未配置有本网签约终端的信息,被叫终端为与主叫终端属于不同的PLMN。在该实施例中,将主叫终端所属的PLMN称为源网络,且源网络中未部署MNP,被叫终端未发送过携号转网,故被叫终端号码段持有网络即为被叫终端当前所属的PLMN,号码段持有网络中部署有MNP。
步骤1101、号码段持有网络中的MNP在号码段持有网络中的NRF进行注册。
步骤1102、源网络中的SMS-GMSC向源网络中的SCP发送路由请求。该路由请求即为前述实施例中的第一请求,该第一请求中包含有NF type:UDM(即前述实施例中的第一指示信息)。进一步的,第一请求中还可以包含有以下参数中的一项或多项:服务名称(Service name):路由信息(RoutingInfo),被叫终端的MSISDN,以及PLMN指示(前述实施例中的第二指示信息);图11中以包含被叫终端的MSISDN为例。
步骤1103、源网络中的SCP向源网络中的NRF发送发现请求。该发现请求中包含有NF type:UDM,表示请求发现能够提供被叫终端路由信息的UDM。进一步的,该发现请求还可以包括步骤1102中路由请求所包含参数中的部分或全部。
步骤1104、源网络中的NRF向号码段持有网络中的NRF发送查询请求,该查询请求中包含有被叫终端的MSISDN,以请求码段持有网络中的NRF通过MNP查询被叫终端所属PLMN标识。进一步的,该发现请求还可以包括步骤1102中路由请求所包含参数中的 部分或全部。
步骤1105、号码段持有网络中的NRF向号码段持有网络中的MNP发送查询请求,该查询请求中包含有被叫终端的MSISDN,以请求获取被叫终端所属的PLMN的标识。进一步的,该发现请求还可以包括步骤1102中路由请求所包含参数中的部分或全部。
步骤1106、号码段持有网络中的MNP向号码段持有网络中的NRF发送查询响应,该查询响应中包含有被叫终端所属PLMN的标识。
具体的,MNP可以根据被叫终端的MSISDN查找被叫终端所属PLMN的标识。在图11所示的具体实施例中,由于被叫终端没有发生过携号转网,因此,被叫终端所属的PLMN即为被叫终端号码段持有网络。
步骤1107、号码段持有网络中的NRF向源网络中的NRF发送查询响应,该查询响应中包含有被叫终端所属PLMN的标识。
步骤1108、源网络中的NRF向号码段持有网络中的NRF发送发现请求,该发现请求中包含有NF type:UDM,表示请求获取签约网络中UDM的信息。
具体的,源网络中的NRF根据获取到的被叫终端所属PLMN的标识,向该标识对应的PLMN中的NRF发送发现请求。进一步的,该发现请求还可以包括步骤1102中路由请求所包含参数中的部分或全部。
步骤1109、号码段持有网络中的NRF向源网络中的NRF发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤1110、源网络中的NRF向SCP发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤1111、源网络中的SCP向号码段持有网络中的UDM发送路由请求,该路由请求中包含被叫终端的MSISDN。进一步的,该发现请求还可以包括步骤1102中路由请求所包含参数中的部分或全部。
步骤1112、号码段持有网络中的UDM向源网络中的SCP发送路由响应,该路由响应中包含被叫终端的路由信息。
步骤1113、源网络中的SCP向源网络中的SMS-GMSC发送路由响应。该响应中包含有被叫终端的路由信息。
可选的,为了进一步减少信令交互流程,可以将上述步骤1107~步骤1109进行如下简化:号码段持有网络中的NRF在接收MNP发送的被叫终端所属PLMN标识后,若确定被叫终端所属的PLMN为该号码段持有网络,则号码段持有网络中的NRF确定该号码段持有网络中UDM的地址,然后向源网络中的NRF发送查询响应,该查询响应中包含有号码段持有网络中UDM的地址。
图12示例性的提供了一种SMS流程,其中,由NRF执行上述实施例中的寻址方法。在图12所示的具体实施例中,NRF中未配置有本网签约终端的信息,被叫终端为与主叫终端属于不同的PLMN,且被叫终端曾发生过携号转网。在该实施例中,将主叫终端所属的PLMN称为源网络,将被叫终端所属的PLMN称为签约网络,将被叫终端携号转网之前所属的PLMN称为号码段持有网络;源网络中未部署MNP,号码段持有网络中部署有MNP。
如12图所示,该流程可以包括以下步骤:
步骤1201、号码段持有网络中的MNP在号码段持有网络中的NRF进行注册。
步骤1202、源网络中的SMS-GMSC向源网络中的SCP发送路由请求。该路由请求即为前述实施例中的第一请求,该第一请求中包含有NF type:UDM(即前述实施例中的第一指示信息)。进一步的,第一请求中还可以包含有以下参数中的一项或多项:服务名称(Service name):路由信息(RoutingInfo),被叫终端的MSISDN,以及PLMN指示(前述实施例中的第二指示信息);图12中以包含被叫终端的MSISDN为例。
步骤1203、源网络中的SCP向源网络中的NRF发送发现请求。该发现请求中包含有NF type:UDM,以及被叫终端的MSISDN,表示请求发现能够提供被叫终端路由信息的UDM的地址。
进一步的,该发现请求中还可以包括上述第一请求中所包含的部分或全部信息。
步骤1204、源网络中的NRF向号码段持有网络中的NRF发送查询请求。该查询请求中包含有被叫终端的MSISDN,以请求码段持有网络中的NRF通过MNP查询被叫终端所属PLMN标识。进一步的,该发现请求还可以包括步骤1202中路由请求所包含参数中的部分或全部。
步骤1205、号码段持有网络中的NRF向号码段持有网络中的MNP发送查询请求,该查询请求中包含有被叫终端的MSISDN,以请求获取被叫终端所属的PLMN的标识。进一步的,该发现请求还可以包括步骤1202中路由请求所包含参数中的部分或全部。
步骤1206、号码段持有网络中的MNP向号码段持有网络中的NRF发送查询响应,该查询响应中包含有被叫终端所属PLMN的标识。
具体的,MNP可以根据被叫终端的标识查找被叫终端所属PLMN的标识。在图12所示的具体实施例中,由于被叫终端发生过携号转网,因此,被叫终端所属的PLMN并非被叫终端号码段持有网络。
步骤1207、号码段持有网络中的NRF向源网络中的NRF发送查询响应,该查询响应中包含有被叫终端所属PLMN的标识。
步骤1208、源网络中的NRF向签约网络中的NRF发送发现请求,该发现请求中包含有NF type:UDM以及被叫终端所属PLMN的标识,表示请求获取该PLMN标识对应的PLMN中UDM的信息。进一步的,该发现请求还可以包括步骤1202中路由请求所包含参数中的部分或全部。
具体的,源网络中的NRF根据被叫终端所属PLMN的标识,确定被叫终端所属PLMN中的NRF,并向其发送用于发现UDM的发现请求。
步骤1209、签约网络中的NRF向源网络中的NRF发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤1210、源网络中的NRF向源网络中的SCP发送发现响应,该发现响应中包含有签约网络中UDM的地址。
步骤1211、源网络中的SCP向签约网络中的UDM发送路由请求,该路由请求中包含被叫终端的MSISDN。进一步的,该发现请求还可以包括步骤1202中路由请求所包含参数中的部分或全部。
步骤1212、签约网络中的UDM向源网络中的SCP发送路由响应,该路由响应中包含被叫终端的路由信息。
步骤1213、源网络中的SCP向源网络中的SMS-GMSC发送路由响应。该响应中包含有被叫终端的路由信息。
基于相同的技术构思,本申请实施例还提供一种通信装置,用于实现方式方法实施例。图13为根据本申请实施例提供的一种通信装置的示意图,该通信装置包括收发模块1301、和处理模块1302。收发模块1301用于信息收发处理,处理模块1302用于实现通信装置对数据的处理。应理解,本申请实施例中的处理模块1302可以由处理器或处理器相关电路组件(或者,称为处理电路)实现,收发模块1301可以由收发器或收发器相关电路组件实现。
示例性地,通信装置可以是通信装置设备,也可以是应用于通信装置设备中的芯片或者其他具有上述通信装置设备功能的组合器件、部件等。
具体的,收发模块1301可以用于接收第一请求,所述第一请求中包含第一指示信息,所述第一指示信息用于指示所述通信装置发现被叫终端所属PLMN中的UDM。处理模块1302可以用于获取所述被叫终端所属PLMN的标识;根据所述PLMN标识获取所述PLMN的UDM的地址。
此外,上述各个模块还可以用于支持图4至图12所示实施例中代理网元所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
或者,当上述方法实施例中的代理网元为NRF时,该通信装置也可以是SCP。相应的,收发模块1301可以向代理网元发送第一请求,所述第一指示信息用于指示所述代理网元发现被叫终端所属公共陆地移动网PLMN中的统一数据管理UDM;接收所述代理网元发送的所述UDM的地址。处理模块1302可以用于根据所述UDM的地址从所述UDM获取所述被叫终端的路由信息。
此外,上述各个模块还可以用于支持图9至图12所示实施例中SCP所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
基于相同的技术构思,本申请实施例还提供一种通信设备,用于实现方式方法实施例。图14为根据本申请实施例提供的另一种通信装置的示意图,该通信装置包括:处理器1401、通信接口1402,进一步的,还可以包括存储器1403和通信总线1404。其中,处理器1401、通信接口1402以及存储器1403可以通过通信总线1404相互连接;通信总线1404可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述通信总线1404可以分为地址总线、数据总线和控制总线等。为便于表示,图14中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。处理器1401可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。存储器1403可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
具体的,处理器1401可以用于:通过所述通信接口1402接收第一请求,所述第一请求中包含第一指示信息,所述第一指示信息用于指示所述代理网元发现被叫终端所属PLMN中的UDM;获取所述被叫终端所属PLMN的标识;根据所述PLMN标识获取所述PLMN的UDM的地址。
此外,上述各个模块还可以用于支持图4至图12所示实施例中代理网元所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
或者,当上述方法实施例中的代理网元为NRF时,该通信设备也可以是SCP。相应的,处理器1401可以用于:通过所述通信接口1402向代理网元发送第一请求,所述第一指示信息用于指示所述代理网元发现被叫终端所属公共陆地移动网PLMN中的统一数据管理UDM;通过所述通信接口1402接收所述代理网元发送的所述UDM的地址;根据所述UDM的地址从所述UDM获取所述被叫终端的路由信息。
此外,上述各个模块还可以用于支持图9至图12所示实施例中SCP所执行的其它过程。有益效果可参考前面的描述,此处不再赘述。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例被执行。
本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机 程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (16)

  1. 一种寻址方法,其特征在于,包括:
    代理网元接收第一请求,所述第一请求中包含第一指示信息,所述第一指示信息用于指示所述代理网元发现被叫终端所属公共陆地移动网PLMN中的统一数据管理UDM;
    所述代理网元获取所述被叫终端所属PLMN的标识;
    所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址。
  2. 根据权利要求1所述的方法,其特征在于,所述被叫终端所属PLMN,是所述被叫终端当前签约的PLMN。
  3. 根据权利要求1或2所述的方法,其特征在于,所述代理网元获取所述被叫终端所属PLMN的标识,包括:
    所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识;或者
    所述代理网元根据所述代理网元本地的配置的移动用户号码信息,确定所述被叫终端与所述代理网元属于相同的PLMN,确定所述被叫终端所属PLMN的标识为所述代理网元所属PLMN的标识。
  4. 根据权利要求3所述的方法,其特征在于,所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识,包括:
    所述代理网元根据所述第一请求中的第二指示信息,从MNP获取所述被叫终端所属PLMN的标识,所述第二指示信息用于指示所述代理网元获取所述被叫终端所属PLMN的标识;
    或者,所述代理网元中未配置移动用户号码信息,所述代理网元从MNP获取所述被叫终端所属PLMN的标识;
    或者,所述代理网元根据本地配置的移动用户号码信息,确定所述被叫终端的移动号码持有PLMN与所述代理网元所属的PLMN不同。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述代理网元为服务通信代理网元SCP,或者网络仓库功能网元NRF。
  6. 根据权利要求5所述的方法,其特征在于,所述代理网元接收第一请求,包括:
    所述SCP接收短消息网关发送的第一路由请求,所述第一路由请求用于获取所述被叫终端的路由信息;
    在所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址之后,所述方法还包括:
    所述SCP根据所述UDM的地址,向所述UDM发送第一路由请求,所述第一路由请求用于获取所述被叫终端的路由信息;
    所述SCP接收所述UDM发送的所述终端的路由信息,并将所述终端的路由信息发送给所述短消息网关。
  7. 根据权利要求3或4所述的方法,其特征在于,所述代理网元为SCP;
    所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识,包括:
    所述SCP向网络仓库功能网元NRF发送第一发现请求,用于请求获取MNP的地址;
    所述SCP接收所述NRF发送的第一发现响应,所述第一发现响应包括所述MNP的地址;
    所述SCP根据所述MNP地址,向所述MNP发送查询请求,所述查询请求中包含所述被叫终端的标识;
    所述SCP接收所述MNP发送的所述被叫终端所属PLMN的标识。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址,包括:
    所述SCP向NRF发送第二发现请求,所述第二发现请求用于获取所述PLMN的UDM的地址;
    所述代理网元接收所述NRF发送的第二发现响应,所述第二发现响应包含所述UDM的地址。
  9. 根据权利要求5所述的方法,其特征在于,所述代理网元接收第一请求,包括:
    所述NRF接收SCP发送的第一请求;
    在所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址之后,所述方法还包括:
    所述NRF向所述SCP发送所述UDM的地址。
  10. 根据权利要求3或4所述的方法,其特征在于,所属代理网元为NRF;
    所述代理网元从移动号码携带MNP获取所述被叫终端所属PLMN的标识,包括:
    所述NRF从已在所述NRF注册的MNP获取所述被叫终端所属PLMN的标识;
    或者,所述NRF向其他PLMN中NRF发送查询请求,所述查询请求用于获取所述被叫终端所属PLMN的标识,以使所述其他PLMN中的NRF从已注册的MNP获取所述被叫终端所属PLMN的标识;所述NRF接收所述其他PLMN中的NRF发送的查询响应,所述查询响应中包含所述被叫终端所属PLMN的标识。
  11. 根据权利要求5、9、10中任一项所述的方法,其特征在于,所述代理网元根据所述PLMN标识获取所述PLMN的UDM的地址,包括:
    所述NRF根据所述PLMN标识,向所述PLMN中的NRF发送第三发现请求,所述第三发现请求用于获取所述PLMN中UDM的地址;所述NRF接收所述PLMN中的NRF发送的所述UDM的地址;
    或者,所述PLMN标识为所述NRF所属PLMN的标识,所述NRF确定所述NRF所属PLMN中UDM的地址。
  12. 一种寻址方法,其特征在于,所述方法包括:
    服务通信代理网元SCP向代理网元发送第一请求,所述第一指示信息用于指示所述代理网元发现被叫终端所属公共陆地移动网PLMN中的统一数据管理UDM;
    所述SCP接收所述代理网元发送的所述UDM的地址;
    所述SCP根据所述UDM的地址从所述UDM获取所述被叫终端的路由信息。
  13. 根据权利要求12所述的方法,其特征在于,在SCP向代理网元发送第一请求之前,所述方法还包括:
    所述SCP接收短消息网关发送的路由请求,所述路由请求用于获取所述被叫终端的路由信息;
    在所述SCP根据所述UDM的地址从所述UDM获取所述被叫终端的路由信息之后,所述方法还包括:
    所述SCP向所述短消息网关发送所述被叫终端的路由信息。
  14. 一种通信装置,其特征在于,包括处理模块和收发模块,所述处理模块和所述收发模块用于执行如权利要求1-13任一项所述的方法。
  15. 一种通信设备,其特征在于,包括:处理器,以及分别与所述处理器耦合的存储器和通信接口;所述通信接口,用于与其他设备进行通信;所述处理器,用于运行所述存储器内的指令或程序,通过所述通信接口执行如权利要求1-13任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-13任一项所述的方法。
PCT/CN2022/127324 2021-11-05 2022-10-25 一种寻址方法、装置及设备 WO2023078126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111308305.5 2021-11-05
CN202111308305.5A CN116095618A (zh) 2021-11-05 2021-11-05 一种寻址方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023078126A1 true WO2023078126A1 (zh) 2023-05-11

Family

ID=86210627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127324 WO2023078126A1 (zh) 2021-11-05 2022-10-25 一种寻址方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116095618A (zh)
WO (1) WO2023078126A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021047554A1 (en) * 2019-09-12 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for service management
WO2021140051A1 (en) * 2020-01-09 2021-07-15 Nokia Technologies Oy Queries in a network
EP3871397A1 (en) * 2018-10-25 2021-09-01 Telefonaktiebolaget Lm Ericsson (Publ) A method, and nodes, for discovering services in a telecommunication network provided by a network function, nf, in a service based architecture, sba, based telecommunication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3871397A1 (en) * 2018-10-25 2021-09-01 Telefonaktiebolaget Lm Ericsson (Publ) A method, and nodes, for discovering services in a telecommunication network provided by a network function, nf, in a service based architecture, sba, based telecommunication network
WO2021047554A1 (en) * 2019-09-12 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for service management
WO2021140051A1 (en) * 2020-01-09 2021-07-15 Nokia Technologies Oy Queries in a network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Solution to select the target PLMN based on GPSI when using SBI", 3GPP DRAFT; C4-210202, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG4, no. E-Meeting; 20210125 - 20210129, 29 January 2021 (2021-01-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975771 *

Also Published As

Publication number Publication date
CN116095618A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US11528770B2 (en) Session management method, apparatus, and system
CN109792598B (zh) 支持网络分片的漫游环境中用于终端附接和创建归属路由pdu会话的方法和设备
US11778035B2 (en) Selecting a user plane function (UPF) for layer 2 networks
WO2019091228A1 (zh) 通信方法和网络设备
US20200351767A1 (en) Access Control in Communications Network Comprising Slices
US20220264258A1 (en) Communications Method and Apparatus, and Device
CN113115480A (zh) 地址信息发送方法、获取方法、装置、设备及介质
JP6982100B2 (ja) Ipバージョンの選択
JP2022544488A (ja) ネットワーク機能サービスディスカバリのための方法および装置
CN111835802B (zh) 一种通信方法及装置
EP3445072B1 (en) Mobile radio communication network and method for associating a mobile radio terminal device to a network slice instance of a mobile radio communication network
US20220104075A1 (en) Pdu session establishment accept handling for ma pdu sessions
WO2023072054A1 (zh) 切片服务获取方法及相关装置
US11838969B2 (en) Method for accessing local network, and related device
WO2021047454A1 (zh) 位置信息获取、位置服务配置方法和通信设备
CN117177266A (zh) 一种地址获取方法及装置
WO2011050724A1 (zh) 基于wcdma核心网实现移动通信的***及终端接入方法
WO2023125168A1 (zh) 通信方法和装置
WO2023078126A1 (zh) 一种寻址方法、装置及设备
WO2022033526A1 (zh) 一种通信方法及装置
CN117596583A (zh) 动态发现核心网络中服务网络节点的方法、网络节点和介质
TWI843376B (zh) 用於無線通訊的方法及使用者設備
WO2023143212A1 (zh) 一种通信方法及装置
US20240154870A1 (en) Rsd parameters handling for pdn legged ma pdu session
WO2023020046A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889151

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022889151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022889151

Country of ref document: EP

Effective date: 20240605