WO2023077927A1 - 牵引变流器 - Google Patents

牵引变流器 Download PDF

Info

Publication number
WO2023077927A1
WO2023077927A1 PCT/CN2022/115123 CN2022115123W WO2023077927A1 WO 2023077927 A1 WO2023077927 A1 WO 2023077927A1 CN 2022115123 W CN2022115123 W CN 2022115123W WO 2023077927 A1 WO2023077927 A1 WO 2023077927A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
traction converter
assembly
component
cavity
Prior art date
Application number
PCT/CN2022/115123
Other languages
English (en)
French (fr)
Inventor
裴建红
司军民
宁波
魏兴
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2023077927A1 publication Critical patent/WO2023077927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output

Definitions

  • the present application relates to the field of electrical appliances, in particular to a traction converter.
  • the traction converter is one of the key components of the driving equipment. Its main function is to convert the electric energy between DC and AC, and convert the high-voltage DC from the catenary to the AC of the required voltage, and realize it through voltage regulation and frequency modulation control. It controls the starting, braking and speed regulation of the AC traction motor.
  • the arrangement of electrical components inside the relevant traction converter is unreasonable and the internal wiring is inconvenient.
  • the present application provides a traction converter, which is used to solve the technical problem of how to rationalize the arrangement of electrical components in the converter and improve the convenience of wiring inside the converter.
  • An embodiment of the present application provides a traction converter
  • the traction converter includes: a box with a hollow chamber inside; a cooling assembly located in the chamber; a power assembly with two and are located in the housing cavity, and the two power components are symmetrically arranged on both sides of the cooling component along the first direction; the output contactor has two and at least partially protrudes from the The two output contactors are arranged symmetrically on both sides of the cooling assembly along the first direction; wherein, in the first direction, the two output contactors located on the same side of the cooling assembly The output contactor and the power assembly are interconnected.
  • the output contactor and the power assembly are arranged on the same side of the box; wherein, the second direction is substantially perpendicular to the first direction.
  • the traction converter further includes: a baffle, and two baffles are arranged at intervals in the accommodation chamber along the first direction, so as to divide the accommodation chamber into a first sealed chamber, a second sealed chamber, and a second sealed chamber.
  • Two sealed chambers and a ventilated chamber are located between the first sealed chamber and the second sealed chamber in the first direction; wherein, the first sealed chamber is used to accommodate one of the power At least part of the component, the second sealed cavity is used to accommodate at least part of another power component, the cooling component includes a cooling fan, the ventilation cavity is used to accommodate the fan, and the box is provided with The air inlet and the air outlet connected to the ventilation chamber.
  • the power assembly includes: an inverter element, the inverter elements of the two power assemblies are respectively located in the first sealed cavity and the second sealed cavity; The inverter element is connected and extends into the ventilation cavity.
  • the air inlet and the air outlet are arranged symmetrically with respect to the cooling assembly.
  • the traction converter further includes: a hoisting structure fixedly connected to the box body, and in the vertical direction, the hoisting structure extends above the top of the box body; wherein, The air inlet and the air outlet are arranged on the top of the box.
  • the traction converter further includes a pre-charging component located in the first sealed chamber and connected to the power component; wherein, in the second direction, the The pre-charging component and the power component are arranged on opposite sides.
  • the traction converter further includes a reactance element, the reactance element is located in the ventilation cavity, and is used for connecting the pre-charging component and the power component.
  • the pre-charging component and the reactance component are located on the same side of the power component.
  • the traction converter further includes a control assembly, the control assembly is located in the second sealed chamber and connected to the power assembly; wherein, in the second direction, the control assembly The assembly and the power assembly are arranged on opposite sides.
  • An embodiment of the present application provides a traction converter.
  • the traction converter includes a box body with an accommodating cavity inside, a cooling assembly located in the accommodating cavity, two power components located in the accommodating cavity, and a quantity of There are two output contactors that at least partly protrude from the cavity; the two power assemblies are symmetrically arranged on both sides of the cooling assembly along the first direction, and the two output contactors are symmetrically arranged on both sides of the cooling assembly along the first direction. side; wherein, in the first direction, the output contactor located on the same side of the cooling assembly is connected to the power assembly.
  • the mass of the traction converter is distributed symmetrically in the first direction, so that the center of gravity of the traction converter is closer to the traction The middle part of the converter, so that when the traction converter is fixedly connected with the driving equipment, the bending moment caused by the uneven distribution of gravity on the traction converter is reduced to make the installation of the traction converter more stable, that is,
  • the power assembly and the output contactor symmetrically with respect to the cooling assembly in the first direction, the distribution of electrical components in the traction converter is more reasonable, so that the fixing of the traction converter and the driving equipment is more stable.
  • the distance between the output contactor and the power assembly to be connected is closer, thereby shortening the The length of the wires connecting the output contactor and the corresponding power components is reduced, and the possibility of crossing wires is also reduced, thereby making the wiring in the traction converter more convenient.
  • Fig. 1 is a schematic structural diagram of a traction converter provided in an embodiment of the present application
  • Fig. 2 is a schematic diagram of the assembly of the first type of box and the first type of cooling assembly in the traction converter provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the assembly of the case and the second type of cooling assembly in the traction converter provided by the embodiment of the present application;
  • Fig. 4 is a schematic diagram of the assembly of a box, a partition, a power assembly and a cooling assembly in the traction converter provided by the embodiment of the present application;
  • Fig. 5 is a schematic structural diagram of another traction converter provided in the embodiment of the present application.
  • Fig. 6 is an exploded view of a power assembly and a partition in the traction converter provided by the embodiment of the present application;
  • Fig. 7 is a schematic diagram of assembly of a box and hoisting structure in the traction converter provided by the embodiment of the present application;
  • Fig. 8 is a schematic structural diagram of another traction converter provided by the embodiment of the present application.
  • Traction converter 10. Box body; 11. Accommodating cavity; 111. First sealing cavity; 112. Second sealing cavity; 113. Ventilation cavity; 12. Air inlet; 13. Air outlet; 10A, first 12A, air inlet; 13A, air outlet; 20, cooling assembly; 20A, the first type of cooling assembly; 20B, the second type of cooling assembly; 21B, circulation pipeline; 22B, evaporation 23B, condenser; 30, power assembly; 30A, first power assembly; 30B, second power assembly; 31, inverter element; 32, heat sink; 33, seal; 40, output contactor; 40A, The first output contactor; 40B, the second output contactor; 50, the partition; 51, the installation port; 60, the hoisting structure; 70, the pre-charging component; Charging contactor; 74, line contactor; 80, reactance parts; 90, control components.
  • first ⁇ second ⁇ are used only to distinguish different objects, and do not mean that there are similarities or connections among the objects. It should be understood that the orientation descriptions “above”, “below”, “outside” and “inside” are all orientations in the normal use state, and the directions of "left” and “right” represent the specific corresponding schematic diagrams. The indicated left and right directions may or may not be the left and right directions in a normal use state.
  • connection includes both direct connection and indirect connection or electrical connection unless otherwise specified.
  • the traction converter can be applied to traction any running equipment driven by electric energy.
  • the running equipment can be a trackless electric bus, a subway train, or a high-speed rail train.
  • the structure of the traction converter is exemplified below by taking the train whose driving equipment is a subway as an example. The type of driving equipment used by the traction converter for traction does not have any impact on the structure of the traction converter .
  • the traction converter 1 includes: a box body 10 , a cooling assembly 20 , a power assembly 30 and an output contactor 40 .
  • the box body 10 is fixedly connected with the running equipment.
  • the box body 10 is fixed on the bottom of the running equipment.
  • the side beams at the bottom of the train are fixedly connected.
  • the box body 10 has a hollow accommodating cavity 11 for accommodating the cooling assembly 20 and the power assembly 30 .
  • the cooling assembly 20 is located in the accommodating cavity 11 and is used to reduce the temperature of the power assembly 30 to reduce the possibility of damage to the power assembly 30 due to excessive temperature.
  • the structure of the cooling component 20 and the principle of reducing the temperature of the power component 30 will be described in detail in subsequent embodiments, so they will not be repeated here.
  • the power assembly 30 is used to convert the high-voltage direct current obtained by the traction converter 1 into an alternating current meeting the driving requirements.
  • the two The power components 30 are respectively referred to as a first power component 30A and a second power component 30B.
  • the first power assembly 30A and the second power assembly 30B are symmetrically arranged on both sides of the cooling assembly 20 along the first direction (the first direction is shown by the solid arrow in FIG.
  • a power component 30A and a second power component 30B are arranged on both sides of the cooling component 20 respectively, and the distance between the first power component 30A and the cooling component 20 is the same as the distance between the second power component 30B and the cooling component 20 .
  • the two output contactors 40 are referred to as the first output contactor 40A and the second output contactor 40B respectively below.
  • the first output contactor 40A and the second output contactor 40B are symmetrically arranged on both sides of the cooling assembly 20 along the first direction. It can be understood that the distance between the first output contactor 40A and the cooling assembly 20 in the first direction The distance is equal to the distance between the second output contactor 40B and the cooling assembly 20 .
  • the mass of the traction converter 1 can be distributed symmetrically in the first direction, so that the traction converter
  • the center of gravity of the traction converter 1 is closer to the middle of the traction converter 1, so that when the traction converter 1 is fixedly connected to the driving equipment, the bending moment caused by the uneven distribution of gravity on the traction converter 1 is reduced to make the traction converter 1
  • the installation of flow device 1 is more stable.
  • the distribution of electrical components in the traction converter 1 is more reasonable, so that the traction converter 1 and the driving equipment The fixation is more stable.
  • the output contactor 40 located on the same side of the cooling assembly 20 is connected to the power assembly 30, specifically, in the first direction, the first power assembly 30A and the first output contactor 40A are located at the cooling The same side of the component 20, and the first power component 30A is connected to the first output contactor 40A; the second power component 30B and the second output contactor 40B are located on the same side of the cooling component 20, and the second power component 30B and the second Output contactor 40B is connected. It should be noted that the first output contactor 40A is connected to the first power component 30A, and the second output contactor 40B is connected to the second power component 30B.
  • first output contactor 40A is connected to the first power component through wires 30A is connected to output the AC power of the first power component 30A
  • second output contactor 40B is connected to the second power component 30B through wires to output the AC power of the second power component 30B.
  • the output contactor 40 protrudes from the accommodating cavity 11, so as to connect the output contactor 40 with the electrical equipment connected to the traction converter 1, so that the traction converter 1 can supply power to the electrical equipment,
  • the electric consumer can be, for example, a traction motor of a train.
  • An embodiment of the present application provides a traction converter.
  • the traction converter includes a box body with an accommodating cavity inside, a cooling assembly located in the accommodating cavity, two power components located in the accommodating cavity, and a quantity of There are two output contactors that at least partly protrude from the cavity; the two power assemblies are symmetrically arranged on both sides of the cooling assembly along the first direction, and the two output contactors are symmetrically arranged on both sides of the cooling assembly along the first direction. side; wherein, in the first direction, the output contactor located on the same side of the cooling assembly is connected to the power assembly.
  • the mass of the traction converter is distributed symmetrically in the first direction, so that the center of gravity of the traction converter is closer to the traction The middle part of the converter, so that when the traction converter is fixedly connected with the driving equipment, the bending moment caused by the uneven distribution of gravity on the traction converter is reduced to make the installation of the traction converter more stable, that is,
  • the power assembly and the output contactor symmetrically with respect to the cooling assembly in the first direction, the distribution of electrical components in the traction converter is more reasonable, so that the fixing of the traction converter and the driving equipment is more stable.
  • the distance between the output contactor and the power assembly to be connected is closer, thereby shortening the The length of the wires connecting the output contactor and the corresponding power components is reduced, and the possibility of crossing wires is also reduced, thereby making the wiring in the traction converter more convenient.
  • the cooling assembly 20 can be any structure capable of reducing the temperature of the power assembly 30.
  • the specific structure of the cooling assembly 20 and the principle of cooling the cooling assembly 20 to reduce the temperature of the power assembly 30 are illustrated below in conjunction with FIG. 2 and FIG. 3 sexual description. Those skilled in the art should understand that the cooling assembly 20 may also have other structures than those shown in FIG. 2 and FIG. 3 .
  • the first type of cooling assembly 20A includes a cooling fan, and the first type of box 10A is provided with an air inlet 12A and an air outlet 13A.
  • the cooling fan (the first type of cooling assembly 20A) drives the air into the housing cavity 11 through the air inlet 12A, flows through the power assembly 30, and then flows out of the housing chamber 11 through the air outlet 13A.
  • the heat of the power component 30 can be taken away, thereby reducing the temperature of the power component 30 .
  • the second type of cooling assembly 20B includes: a circulation pipeline 21B, an evaporating element 22B and a condensing element 23B.
  • the evaporating element 22B and the condensing element 23B are arranged in the circulation pipeline 21B, and the circulation pipeline 21B contains a heat transfer medium so that the heat transfer medium can circulate between the evaporator 22B and the condensing element 23B.
  • the evaporator 22B is connected to the power assembly 30 Adjacent, the condensing member 23B is adjacent to the inner wall of the housing cavity 11 .
  • the heat transfer medium in the circulation line 21B flows into the evaporator 22B in the form of liquid, and the heat transfer medium in the evaporator 22B absorbs the heat of the power component 30 and converts from liquid to gas to reduce the temperature of the power component 30; the gaseous heat transfer medium circulates along the The pipeline 21B flows into the condensing element 23B, and the condensing element 23B exchanges heat with the external air outside the accommodating cavity 11 through the inner wall of the accommodating cavity 11 to release heat to the air outside the accommodating cavity 11, thereby converting the gaseous heat transfer medium into In liquid state, the heat transfer medium circulates between the evaporator 22B and the condensing element 23B along the circulation line 21B and changes between the gaseous state and the liquid state, thereby continuously absorbing the heat of the power assembly 30 and continuously reducing the temperature of the power assembly 30 .
  • the output contactor 40 and the power component 30 are arranged on the same side of the box body 10, so that The distance between the output contactor 40 and the power assembly 30 is further shortened in the second direction, thereby further shortening the wires used to connect the output contactor 40 and the power assembly 30, and further reducing the convenience of wiring inside the traction converter 1 .
  • the second direction is substantially perpendicular to the first direction, it can be understood that the difference between the angle between the first direction and the second direction and 90 degrees is less than the preset angle threshold, and the exemplary angle threshold is 5 degrees, the angle between the first direction and the second direction is between 85 degrees and 95 degrees.
  • the traction converter 1 further includes partitions 50 , and two partitions 50 are disposed in the accommodation chamber 11 at intervals along the first direction, so as to divide the accommodation chamber 11 into first The sealed cavity 111 , the second sealed cavity 112 and the ventilation cavity 113 , the ventilation cavity 113 is located between the first sealed cavity 111 and the second sealed cavity 112 in the first direction.
  • the first sealed chamber 111 is used to accommodate at least part of the first power assembly 30A
  • the second sealed chamber 112 is used to accommodate at least part of the second power assembly 30B
  • the cooling assembly 20 includes a cooling fan 21
  • the ventilation chamber 113 is used to accommodate fan 21
  • the box body 10 is provided with an air inlet 12 and an air outlet 13 communicating with the ventilation cavity 113 .
  • the power assembly 30 extends from the first sealed cavity 111 or the second sealed cavity 112 into the ventilation cavity 113, driven by the cooling fan 21, the air outside the housing cavity 11 flows into the ventilation cavity 113 from the air inlet 12, and The air flows through the part of the power component 30 protruding into the ventilation cavity 113 and flows out of the accommodating cavity 11 through the air outlet.
  • the air takes away the heat of the power component 30 to reduce The temperature of the power assembly 30, that is, by extending the part of the first power assembly 30A from the first sealed cavity 111 into the ventilation cavity 113 and extending the part of the second power component 30B from the second sealed cavity 112 into the ventilation cavity 113, by The first sealed chamber 111 and the second sealed chamber 112 protect the part of the power assembly 30 to reduce the possibility of dust and other impurities in the external air entering the power assembly 30 and causing damage to the power assembly 30, while improving the performance of the fan assembly 21.
  • the heat dissipation speed of the power assembly 30 is, by extending the part of the first power assembly 30A from the first sealed cavity 111 into the ventilation cavity 113 and extending the part of the second power component 30B from the second sealed cavity 112 into the ventilation cavity 113, by The first sealed chamber 111 and the second sealed chamber 112 protect the part of the power assembly 30 to reduce the possibility of dust and other impurities in the external air entering the power assembly 30 and causing damage to the power assembly 30,
  • the first power component 30A is housed in the first sealed cavity 111 and the second power component 30B is housed in the second sealed cavity 112, and the first power component 30A and the second power component are connected to the ventilation through heat conduction or heat radiation.
  • the air in the chamber 113 performs heat exchange. Driven by the cooling fan 21, the air outside the housing chamber 11 enters the ventilation chamber 113 through the air inlet 12 and flows out of the housing chamber 11 through the air outlet 13.
  • the air in the ventilation chamber 113 exchanges heat with the air outside the housing chamber 11 through heat convection, thereby reducing the temperature of the air in the housing chamber 113 , so that the power component 30 can continuously perform heat exchange with the air in the housing chamber 113 , thereby continuously
  • the temperature of the power assembly 30 is lowered. While the temperature of the power assembly 30 can be lowered by the cooling fan 21, the power assembly 30 can be protected by the first sealed cavity 111 and the second sealed cavity 112, so as to reduce dust and other impurities in the external air from entering the power assembly 30 and causing the power assembly 30 to possibility of damage.
  • the air inlet 12 and the air outlet 13 are arranged symmetrically with respect to the cooling assembly 20, so that the mass distribution of the traction converter 1 in the first direction is symmetrical, so that The center of gravity of the traction converter 1 is made closer to the middle of the traction converter 1 , so that the fixing of the traction converter and the driving equipment is more stable.
  • the power assembly 30 (the power assembly in FIG. 6 represents any one of the first power assembly 30A and the second power assembly 30B) includes: an inverter element 31 and a heat sink 32 .
  • the inverter elements 31 of the two power assemblies 30 are respectively located in the first sealed cavity 111 and the second sealed cavity 112 , and the heat sink 32 is connected with the inverter elements 31 and protrudes into the ventilation cavity 113 .
  • the partition 50 is provided with an installation opening 51 , and the inverter element 31 abuts against the partition 50 and covers the installation opening 51 to close the first sealed cavity 111 or the second sealed cavity 112 .
  • the cooling element 32 is used to exchange heat with the air in the ventilation chamber 113 to reduce the temperature of the inverter element 31 .
  • the cooling element 32 includes a plurality of cooling fins arranged at intervals to increase the contact area between the cooling element 32 and the air in the ventilation cavity 113, thereby accelerating the heat exchange rate between the cooling element 32 and the air in the ventilation cavity 113, and further The cooling speed of the inverter element 31 by the heat sink 32 is accelerated.
  • the first sealed cavity 111 or the second sealed cavity 112 By setting the inverter element 31 in the first sealed cavity 111 or the second sealed cavity 112, and extending the heat sink 32 connected with the inverter element 31 into the ventilation cavity 113, the first sealed cavity 111 or the second sealed cavity
  • the cavity 112 protects the electrical part of the power assembly 30 , that is, the inverter element 31 , and at the same time extends the non-electrical part of the power assembly 30 , that is, the heat sink 32 into the ventilation cavity 131 to speed up the cooling of the inverter element 31 .
  • the power assembly 30 further includes a seal 33, which is fixed to the surface of the inverter element 31 on which the heat sink 32 is provided, and the seal 33 is used to abut against the installation port 51 to seal
  • the gap between the inverter element 31 and the inner wall of the installation port 51 so that when the inverter element 31 is located in the first sealed cavity 111 or the second sealed cavity 112 and the heat sink 32 extends into the ventilation cavity 113, the second can be improved.
  • the airtightness of the first sealed chamber 111 or the second sealed chamber 112 further reduces the possibility of damage to the inverter element 31 .
  • the traction converter 1 further includes a hoisting structure 60 , which is fixedly connected to the box body 10 , and in the vertical direction, the hoisting structure 60 extends to the top of the box body 10
  • the top of the box body 10 and the bottom of the traveling equipment can be separated by a preset distance through the hoisting structure 60 and the bottom of the traveling equipment. Arranged in the space between the bottoms.
  • the air inlet 12 and the air outlet 13 are arranged on the top of the box body 10, and the top of the box body 10 is spaced from the bottom of the running equipment by a preset distance, so that the air inlet can be ventilated and radiated through the top of the box body 10.
  • the distance between the air outlet 12 and the air outlet 13 and the power assembly 30 is smaller, thereby improving the cooling effect on the power assembly 30 in FIG. 1 .
  • at least part of the hoisting structure 60 extends in the horizontal direction, and when the traction converter 1 is fixed to the bottom of the subway train, it is possible to change the size of the box body 10 and Under the premise of the structure, the box traction converter 1 can be directly fixed to the side beam at the bottom of the train through the hoisting structure 60, and there is no need to set a cross beam.
  • the traction converter 1 further includes a pre-charging component 70 located in the first sealed chamber 111 and connected to the power component 30 for receiving high-voltage direct current from the outside and The high voltage direct current is transmitted to the power assembly 30 .
  • the pre-charging assembly 70 and the power assembly 30 are arranged on opposite sides, so as to make the mass distribution of the traction converter 1 more uniform in the second direction, thereby making the traction converter 1 more stable
  • the ground is fixed to the running equipment, and at the same time, the pre-charging assembly 70 and the power assembly 30 are arranged on opposite sides, the distance between the power assembly 30 and the pre-charging assembly 70 can also be increased, and the high-voltage alternating current output by the power assembly 30 can be reduced. Effects of Radiation on Electrical Components in Pre-Charge Assembly 70 .
  • the pre-charging assembly 70 includes: a grid line side current sensor 71, a charging resistor 72, a pre-charging contact 73, line contactor 74 and voltage sensor 75.
  • the pre-charging contactor 73 is used to connect with the pantograph of the train to receive high-voltage direct current; the charging resistor 72 is connected to the pre-charging contactor 73 to control the charging speed.
  • the induced current is conducted to the charging resistor 72 to convert the kinetic energy of the train into the internal energy of the charging resistor 72; the line contactor 74 is connected to the charging resistor 72, and the line contactor 74 is connected to the power assembly 30 through a wire for conducting high-voltage direct current to The power assembly 30 ; the wire-side current sensor 71 and the voltage sensor 75 are all connected to the pre-charging contactor 73 for detecting the current and voltage of the obtained high-voltage direct current.
  • the traction converter 1 further includes a reactance element 80 located in the ventilation cavity 113 for connecting the pre-charging component 70 and the power component 30 to suppress the Higher harmonics in high voltage direct current.
  • the reactance element 80 has a large mass and is easy to generate heat.
  • the reactance element 80 is arranged in the ventilation chamber 113 between the first sealed cavity 111 and the second sealed cavity 112. While the reactance element 80 can be cooled, It is also possible to arrange the reactance element 80 in the middle of the box body 10 in the first direction, so that the mass distribution of the traction converter 1 is more symmetrical in the first direction.
  • the pre-charging component 70 and the reactance component 80 are located on the same side of the power component 30, so as to make the mass distribution of the traction converter 1 more accurate in the second direction. symmetry.
  • the traction converter 1 further includes a control assembly 90, which is located in the second sealed chamber 112 and connected to the power assembly 30, for receiving low-voltage control AC power, and according to the received
  • the received low-voltage control alternating current controls the output state of the power assembly 30
  • the state of the power assembly 30 may include, for example, the output voltage of the power assembly 30 and the temperature of the power assembly 30 .
  • the control assembly 90 and the power assembly 30 are arranged on opposite sides, and while making the mass distribution of the traction converter 1 more symmetrical in the second direction, the distance between the control assembly 90 and the power assembly 30 is increased. To reduce the influence of the electromagnetic radiation generated by the high-voltage alternating current output by the power component 30 on the electrical components in the control component 90 .
  • the power assembly 30 is movably connected to the box body 10.
  • the power assembly 30 is slidably connected to the box body 10, and the power assembly 30 can be pulled out from the accommodating cavity 11, or the power The assembly 30 is inserted into the accommodation cavity 11 to facilitate inspection and maintenance of the power assembly 30 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

提供一种牵引变流器,涉及电气领域,该牵引变流器包括:箱体(10),内部具有中空的容纳腔(11);冷却组件(20),位于容纳腔(11)内;功率组件(30),功率组件(30)具有两个且均位于容纳腔(11)内,且两个功率组件沿第一方向对称地设置于冷却组件(20)的两侧;输出接触器(40),输出接触器(40)具有两个且至少部分伸出容纳腔(11),且两个输出接触器沿第一方向对称地设置于冷却组件(20)的两侧;其中,在第一方向上,位于冷却组件(20)的同一侧的输出接触器(40)和功率组件(30)相互连接。牵引变流器内的电气元件布置更加合理且内部接线更加便利。

Description

牵引变流器
相关申请的交叉引用
本申请要求于2021年11月05日提交的中国申请202122699932.8的优先权,其内容通过全文引用并入本文。
技术领域
本申请涉及电器领域,尤其涉及一种牵引变流器。
背景技术
牵引变流器是行驶设备的关键部件之一,其主要功能是转换直流制和交流之间的电能量,把来自接触网上的高压直流电转换为所需电压的交流电,并通过调压调频控制实现对交流牵引电动机起动、制动、调速控制。相关的牵引变流器内部的电器元件布置不合理且内部接线不便。
发明内容
本申请提供一种牵引变流器,用于解决如何合理化变流器内的电器元件布置并提高变流器内部接线便利性的技术问题。
本申请实施例提供一种牵引变流器,该牵引变流器包括:箱体,内部具有中空的容纳腔;冷却组件,位于所述容纳腔内;功率组件,所述功率组件具有两个且均位于所述容纳腔内,且两个所述功率组件沿第一方向对称地设置于所述冷却组件的两侧;输出接触器,所述输出接触器具有两个且至少部分伸出所述容纳腔,且两个所述输出接触器沿所述第一方向对称地设置于所述冷却组件的两侧;其中,在所述第一方向上,位于所述冷却组件的同一侧的所述输出接触器和所述功率组件相互连接。
进一步的,在第二方向上,所述输出接触器和所述功率组件设置于所述箱体的同一侧;其中,所述第二方向与所述第一方向基本垂直。
进一步的,所述牵引变流器还包括:隔板,两个所述隔板沿所述第一方向间隔设置于所述容纳腔内,以将所述容纳腔分隔为第一密封腔、第二密封腔和通风腔;在所述第一方向上所述通风腔位于所述第一密封腔和所述第二密封腔之间;其中,所述第一密封腔用于容纳一个所述功率组件的至少部分,第二密封腔用于容纳另一个所述功率组件的至少部分,所述冷却组件包括冷却风机,所述通风腔用于容纳所述风机,且所述箱体设置有与所述通风腔连通的进风口和出风口。
在一些实施例中,所述功率组件包括:逆变元件,两个所述功率组件的所述逆变元件分别位于所述第一密封腔和所述第二密封腔内;散热件,与所述逆变元件连接并伸入所述通风腔内。
在一些实施例中,在所述第一方向上,所述进风口和所述出风口相对所述冷却组件对称设置。
在一些实施例中,所述牵引变流器还包括:吊装结构,与所述箱体固定连接,且在竖直方向上,所述吊装结构延伸至所述箱体的顶部的上方;其中,所述进风口和所述出风口设置于箱体的顶部。
在一些实施例中,所述牵引变流器还包括预充电组件,所述预充电组件位于所述第一密封腔内且与所述功率组件连接;其中,在所述第二方向上,所述预充电组件和所述功率组件设置于相对的两侧。
在一些实施例中,所述牵引变流器还包括电抗件,所述电抗件位于所述通风腔内,用于连接所述预充电组件和所述功率组件。
在一些实施例中,在所述第二方向上,所述预充电组件和所述电抗件位于所述功率组件的同一侧。
在一些实施例中,所述牵引变流器还包括控制组件,所述控制组件位 于所述第二密封腔内并与所述功率组件连接;其中,在所述第二方向上,所述控制组件和所述功率组件设置于相对的两侧。
本申请实施例提供一种牵引变流器,该牵引变流器包括内部具有容纳腔的箱体,位于容纳腔内的冷却组件,数量为两个且均位于容纳腔内的功率组件,以及数量为两个且至少部分伸出容纳腔的输出接触器;两个功率组件沿第一方向对称地设置于冷却组件的两侧,两个输出接触器沿第一方向对称地设置于冷却组件的两侧;其中,在第一方向上,位于冷却组件的同一侧的输出接触器与功率组件相互连接。通过在第一方向上,将功率组件和输出接触器对称地设置于冷却组件的两侧,使牵引变流器的质量在第一方向上对称分布,以使牵引变流器的重心更加靠近牵引变流器的中部,从而在将牵引变流器与行驶设备固定连接的状态下,减小牵引变流器受到的重力分布不均产生的弯矩使牵引变流器的安装更加稳固,即,通过在第一方向上将功率组件和输出接触器相对于冷却组件对称设置,使牵引变流器中的电器元件的分布更加合理,从而使牵引变流器与行驶设备的固定更加稳固。同时,通过设置两个输出接触器,并将在第一方向上位于冷却组件的同一侧的输出接触器与功率组件相互连接,使输出接触器与需要连接的功率组件的距离更近,从而缩短了连接输出接触器与对应的功率组件的导线的长度,也减小了导线交叉布置的可能性,进而使牵引变流器内的接线更加方便。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种牵引变流器的结构示意图;
图2为本申请实施例提供的牵引变流器中的第一种类型的箱体与第一种类型的冷却组件的装配示意图;
图3为本申请实施例提供的牵引变流器中的箱体与第二种类型的冷却组件的装配示意图;
图4为本申请实施例提供的牵引变流器中的一种箱体、隔板、功率组件和冷却组件的装配示意图;
图5为本申请实施例提供的另一种牵引变流器的结构示意图;
图6为本申请实施例提供的牵引变流器中的一种功率组件与隔板的***图;
图7为本申请实施例提供的牵引变流器中的一种箱体与吊装结构的装配示意图;
图8为本申请实施例提供的另一种牵引变流器的结构示意图。
附图标记说明
1、牵引变流器;10、箱体;11、容纳腔;111、第一密封腔;112、第二密封腔;113、通风腔;12、进风口;13、出风口;10A、第一种类型的箱体;12A、入风口;13A、吹风口;20、冷却组件;20A、第一种类型的冷却组件;20B、第二种类型的冷却组件;21B、循环管路;22B、蒸发件;23B、冷凝件;30、功率组件;30A、第一功率组件;30B、第二功率组件;31、逆变元件;32、散热件;33、密封件;40、输出接触器;40A、第一输出接触器;40B、第二输出接触器;50、隔板;51、安装口;60、吊装结构;70、预充电组件;71、网线侧电流传感器;72、充电电阻;73、预充电接触器;74、线路接触器;80、电抗件;90、控制组件。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本申请,并不用于限定本申请。
在具体实施例中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如通过不同的具体技术特征的组合可以形成不同的实施例和技术方案。为了避免不必要的重复,本申请中各个具体技术特征的各种可能的组合方式不再另行说明。
在以下的描述中,所涉及的术语“第一\第二\...”仅仅是区别不同的对象,不表示各对象之间具有相同或联系之处。应该理解的是,所涉及的方位描述“上方”、“下方”、“外”、“内”均为正常使用状态时的方位,“左”、“右”方向表示在具体对应的示意图中所示意的左右方向,可以为正常使用状态的左右方向也可以不是。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。术语“连接”在未特别说明的情况下,既包括直接连接也包括间接连接或者包括电连接。
在具体实施方式中,牵引变流器可以应用于牵引任何通过电能驱动的行驶设备,示例性的,该行驶设备例如可以为无轨电动公交,也可以为地铁的列车,还可以为高铁的列车。为了便于说明,以下均以该行驶设备为地铁的列车为例,对牵引变流器的结构进行示例性说明,牵引变流器用于牵引的行驶设备的类型不对牵引变流器的结构造成任何影响。
在一些实施例中,如图1所示,牵引变流器1包括:箱体10、冷却组件20、功率组件30和输出接触器40。箱体10与行驶设备固定连接,示例性的,箱体10固定于行驶设备的底部,在行驶设备为地铁的列车的情况下, 箱体10与该列车的底部的横梁固定连接,或与该列车的底部的边梁固定连接。箱体10内具有中空的容纳腔11,容纳腔11用于容纳冷却组件20和功率组件30。冷却组件20位于容纳腔11内,用于降低功率组件30的温度,以减小功率组件30由于温度过高导致损坏的可能性。其中,冷却组件20的结构以及降低功率组件30的温度的原理在后续实施例中进行详细说明,故不在此赘述。
功率组件30用于将牵引变流器1获取的高压直流电转化为满足驱动要求的交流电,功率组件30的数量为两个,以提高牵引变流器1的可靠性,为了便于说明,下面将两个功率组件30分别称为第一功率组件30A和第二功率组件30B。第一功率组件30A和第二功率组件30B沿第一方向(第一方向如图1中实线箭头所示)对称地设置于冷却组件20的两侧,可以理解为,在第一方向上第一功率组件30A和第二功率组件30B分别设置于冷却组件20的两侧,且第一功率组件30A与冷却组件20之间的距离,与第二功率组件30B与冷却组件20之间的距离相同。输出接触器40具有两个且两个输出接触器40至少部分伸出容纳腔11,为了便于说明,以下将两个输出接触器40分别称为第一输出接触器40A和第二输出接触器40B。第一输出接触器40A和第二输出接触器40B沿第一方向对称地设置于冷却组件20的两侧,可以理解为,在第一方向上第一输出接触器40A与冷却组件20之间的距离和第二输出接触器40B与冷却组件20之间的距离相等。通过将两个功率组件30和两个输出接触器40在第一方向上相对于冷却组件20对称设置,能够使牵引变流器1的质量在第一方向上对称分布,以使牵引变流器1的重心更加靠近牵引变流器1的中部,从而在将牵引变流器1与行驶设备固定连接的状态下,减小牵引变流器1受到的重力分布不均产生的弯矩使牵引变流器1的安装更加稳固。即,通过在第一方向上将功率组件30和输出接触器40相对于冷却组件20对称设置,使牵引变流器1中的电器 元件的分布更加合理,从而使牵引变流器1与行驶设备的固定更加稳固。
其中,在第一方向上,位于冷却组件20的同一侧的输出接触器40与功率组件30相互连接,具体的,在第一方向上,第一功率组件30A和第一输出接触器40A位于冷却组件20的同一侧,且第一功率组件30A和第一输出接触器40A连接;第二功率组件30B和第二输出接触器40B位于冷却组件20的同一侧,且第二功率组件30B和第二输出接触器40B连接。需要说明的是,第一输出接触器40A与第一功率组件30A连接,第二输出接触器40B与第二功率组件30B连接,可以理解为,第一输出接触器40A通过导线与第一功率组件30A连接以输出第一功率组件30A的交流电,第二输出接触器40B通过导线与第二功率组件30B连接以输出第二功率组件30B的交流电。通过设置两个输出接触器40,并将在第一方向上位于冷却组件20的同一侧的输出接触器40与功率组件30连接,使输出接触器40与需要连接的功率组件30的距离更近,从而缩短了连接输出接触器40与对应的功率组件30的导线的长度,也减小了导线交叉布置的可能性,进而使牵引变流器1内的接线更加方便。同时,输出接触器40的至少部分伸出容纳腔11,以便于将输出接触器40与牵引变流器1连接的用电设备连接,从而使牵引变流器1能够向该用电设备供电,该用电设备例如可以为列车的牵引电机。
本申请实施例提供一种牵引变流器,该牵引变流器包括内部具有容纳腔的箱体,位于容纳腔内的冷却组件,数量为两个且均位于容纳腔内的功率组件,以及数量为两个且至少部分伸出容纳腔的输出接触器;两个功率组件沿第一方向对称地设置于冷却组件的两侧,两个输出接触器沿第一方向对称地设置于冷却组件的两侧;其中,在第一方向上,位于冷却组件的同一侧的输出接触器与功率组件相互连接。通过在第一方向上,将功率组件和输出接触器对称地设置于冷却组件的两侧,使牵引变流器的质量在第 一方向上对称分布,以使牵引变流器的重心更加靠近牵引变流器的中部,从而在将牵引变流器与行驶设备固定连接的状态下,减小牵引变流器受到的重力分布不均产生的弯矩使牵引变流器的安装更加稳固,即,通过在第一方向上将功率组件和输出接触器相对于冷却组件对称设置,使牵引变流器中的电器元件的分布更加合理,从而使牵引变流器与行驶设备的固定更加稳固。同时,通过设置两个输出接触器,并将在第一方向上位于冷却组件的同一侧的输出接触器与功率组件相互连接,使输出接触器与需要连接的功率组件的距离更近,从而缩短了连接输出接触器与对应的功率组件的导线的长度,也减小了导线交叉布置的可能性,进而使牵引变流器内的接线更加方便。
在一些实施例中,冷却组件20可以为任何能够降低功率组件30的温度的结构,下面结合图2和图3对冷却组件20的具体结构以及冷却组件20降低功率组件30的温度的原理进行示例性说明。本领域技术人员应当理解,冷却组件20还可以为除图2和图3所示之外的其他结构。
如图2所示,第一种类型的冷却组件20A包括冷却风机,第一种类型的箱体10A设置有入风口12A和吹风口13A。冷却风机(第一种类型的冷却组件20A)驱动空气由入风口12A进入容纳腔11内,并流经功率组件30后由吹风口13A流出容纳腔11,在空气流经功率组件30的过程中能够带走功率组件30的热量,从而降低功率组件30的温度。
如图3所示,第二种类型的冷却组件20B包括:循环管路21B、蒸发件22B和冷凝件23B。蒸发件22B和冷凝件23B设置于循环管路21B中,循环管路21B内容纳由导热介质以使导热介质能够在蒸发件22B和冷凝件23B之间循环流动,蒸发件22B与功率组件30相邻,冷凝件23B与容纳腔11的内壁相邻。循环管路21B中的导热介质以液态的形式流入蒸发件22B,蒸发件22B内的导热介质吸收功率组件30的热量并由液态转化为气态以降 低功率组件30的温度;气态的导热介质沿循环管路21B流入冷凝件23B,冷凝件23B通过容纳腔11的内壁与容纳腔11外部的外部空气进行热交换以将热量释放至容纳腔11的外部的空气中,从而使气态的导热介质转化为液态,导热介质沿循环管路21B在蒸发件22B和冷凝件23B之间循环流动并在气态和液态之间循环变化,从而持续吸收功率组件30的热量,从而持续降低功率组件30的温度。
在一些实施例中,如图1所示,在第二方向上(第二方向如图1中的虚线箭头所示),输出接触器40和功率组件30设置于箱体10的同一侧,从而在第二方向上进一步缩短输出接触器40和功率组件30的间距,从而进一步缩短用于连接输出接触器40与功率组件30的导线,进而进一步减小牵引变流器1内部的接线的便利性。其中,第二方向与第一方向基本垂直,可以理解为,第一方向和第二方向之间的夹角与90度之间的差值小于预设的角度阈值,示例性的该角度阈值为5度,第一方向和第二方向之间的夹角在85度至95度之间。
在一些实施例中,结合图4和图5,牵引变流器1还包括隔板50,两个隔板50沿第一方向间隔设置于容纳腔11内,以将容纳腔11分隔为第一密封腔111、第二密封腔112和通风腔113,在第一方向上通风腔113位于第一密封腔111和第二密封腔112之间。其中,第一密封腔111用于容纳第一功率组件30A的至少部分,第二密封腔112用于容纳第二功率组件30B的至少部分,冷却组件20包括冷却风机21,通风腔113用于容纳风机21,且箱体10设置有与通风腔113连通的进风口12和出风口13。
可选的,功率组件30由第一密封腔111或第二密封腔112伸入通风腔113内,在冷却风机21的驱动下,容纳腔11外部的空气由进风口12流入通风腔113,并流经功率组件30伸入通风腔113内的部分并由出风口流出容纳腔11,在空气流经通风腔113内的功率组件30的部分的过程中,空气 带走功率组件30的热量从而降低功率组件30的温度,即,通过将第一功率组件30A的部分由第一密封腔111伸入通风腔113并将第二功率组件30B的部分由第二密封腔112伸入通风腔113,通过第一密封腔111和第二密封腔112对功率组件30的部分进行保护,以减小外部空气中的灰尘等杂质进入功率组件30导致功率组件30损坏的可能性的同时,提高风机组件21对功率组件30的散热速度。
可选的,第一功率组件30A容纳于第一密封腔111内且第二功率组件30B容纳于第二密封腔112,第一功率组件30A和第二功率组件通过热传导或热辐射的形式与通风腔113内的空气进行热交换,在冷却风机21的驱动下容纳腔11外部的空气由进风口12进入通风腔113并由出风口13流出容纳腔11,在空气流经通风腔113的过程中通风腔113中的空气通过热对流与容纳腔11外部的空气进行热交换,从而降低容纳腔113内的空气的温度,使功率组件30能够与容纳腔113内的空气持续进行热交换,进而持续降低功率组件30的温度。在通过冷却风机21能够降低功率组件30的温度的同时,能够通过第一密封腔111和第二密封腔112对功率组件30进行保护,降低外部空气的灰尘等杂质进入功率组件30导致功率组件30损坏的可能性。
在一些实施例中,如图5所示,在第一方向上,进风口12和出风口13相对冷却组件20对称设置,以使牵引变流器1在第一方向上的质量对称分布,从而使牵引变流器1的重心更加靠近牵引变流器1的中部,从而使牵引变流器与行驶设备的固定更加稳固。
在一些实施例中,结合图4和图6,功率组件30(图6中的功率组件表示第一功率组件30A和第二功率组件30B中的任意一个)包括:逆变元件31和散热件32。两个功率组件30的逆变元件31分别位于第一密封腔111和第二密封腔112内,散热件32与逆变元件31连接并伸入通风腔113 内。示例性的,隔板50设置有安装口51,逆变元件31与隔板50抵接并覆盖安装口51以封闭第一密封腔111或第二密封腔112,同时散热件32由安装口51伸入通风腔113内,散热件32用于通过与通风腔113内的空气之间进行热交换从而降低逆变元件31的温度。可选的,散热件32包括多个间隔设置的散热片,以增加散热件32与通风腔113内的空气的接触面积,从而加快散热件32与通风腔113内的空气的换热速度,进而加快散热件32对逆变元件31的冷却速度。通过将逆变元件31设置于第一密封腔111或第二密封腔112内,并将与逆变元件31连接的散热件32伸入通风腔113,在通过第一密封腔111或第二密封腔112对功率组件30的电器部分,即逆变元件31进行保护的同时,将功率组件30的非电器部分,即散热件32伸入通风腔131内,以加快逆变元件31的冷却速度。可选的,如图6所示,功率组件30还包括密封件33,密封件33固定于逆变元件31的设置有散热件32的面,密封件33用于与安装口51抵接以密封逆变元件31与安装口51的内壁之间的间隙,从而在在逆变元件31位于第一密封腔111或第二密封腔112且散热件32伸入通风腔113内的状态下,提高第一密封腔111或第二密封腔112的密封性,进一步减小逆变元件31损坏的可能性。
在一些实施例中,如图7所示,牵引变流器1还包括吊装结构60,吊装结构60与箱体10固定连接,且在竖直方向上,吊装结构60延伸至箱体10的顶部的上方,通过吊装结构60与行驶设备的下方能够使箱体10的顶部与行驶设备的底部之间间隔预设的距离,牵引变流器1的线路可以在箱体10的顶部与行驶设备的底部之间的空间内布置。同时,进风口12和出风口13设置于箱体10的顶部,箱体10的顶部与行驶设备的底部间隔预设的距离,从而可以在通过箱体10的顶部进行通风散热的同时,使进风口12和出风口13与功率组件30的距离更小,进而提高对图1中的功率组件30的冷却效果。在一些实施例中,如图7所示,吊装结构60的至少部分沿水 平方向延伸,在牵引变流器1固定于地铁的列车的底部的情况下,能够在无需改变箱体10的尺寸和结构的前提下,使箱体牵引变流器1能够通过吊装结构60直接固定于列车底部的边梁,且无需设置横梁。
在一些实施例中,如图8所示,牵引变流器1还包括预充电组件70,预充电组件70位于第一密封腔111内且与功率组件30连接,用于从外部接收高压直流电并将高压直流电传输至功率组件30。其中,在第二方向上,预充电组件70和功率组件30设置于相对的两侧,以在第二方向上使牵引变流器1的质量分布更加均匀,从而使牵引变流器1更稳固地与行驶设备固定,同时,将预充电组件70和功率组件30设置于相对的两侧,还能够增大功率组件30和预充电组件70的间距,减小功率组件30输出的高压交流电产生电磁辐射对预充电组件70中的电器元件的影响。
下面对预充电组件70的结构进行示例性说明,在牵引变流器1固定于地铁的列车的底部的情况下,预充电组件70包括:网线侧电流传感器71、充电电阻72、预充电接触器73、线路接触器74和电压传感器75。预充电接触器73用于与列车的受电弓连接以接收高压直流电;充电电阻72与预充电接触器73连接以控制充电的速度,同时,在列车制动的过程中反拖牵引电机产生的感应电流传导至充电电阻72以将列车的动能转化为充电电阻72的内能;线路接触器74与充电电阻72连接,线路接触器74通过导线与功率组件30连接,用于将高压直流电传导至功率组件30;网线侧电流传感器71和电压传感器75均与预充电接触器73连接,用于检测获取的高压直流电的电流和电压的大小。
在一些实施例中,如图8所示,牵引变流器1还包括电抗件80,电抗件80位于通风腔113内,用于连接预充电组件70和功率组件30,以通过电抗件80抑制高压直流电中的高次谐波。电抗件80具有较大的质量且容易产生热量,将电抗件80设置于位于第一密封腔111和第二密封腔112之 间的通风腔113内,在能够对电抗件80进行冷却的同时,还能够在第一方向上将电抗件80设置于箱体10的中部,使牵引变流器1的质量分布在第一方向上更加对称。在一些实施例中,如图8所示,在第二方向上,预充电组件70和电抗件80位于功率组件30的同一侧,以在第二方向上使牵引变流器1的质量分布更加对称。
在一些实施例中,如图8所示,牵引变流器1还包括控制组件90,控制组件90位于第二密封腔112内并与功率组件30连接,用于接收低压控制交流电,并根据接收到的低压控制交流电对功率组件30输出的状态进行控制,功率组件30的状态例如可以包括功率组件30输出的电压大小和功率组件30的温度。其中,在第二方向上,控制组件90和功率组件30设置于相对的两侧,在第二方向上使牵引变流器1的质量分布更加对称的同时,增加控制组件90与功率组件30的距离,减小功率组件30输出的高压交流电产生电磁辐射对控制组件90中的电器元件的影响。
在一些实施例中,功率组件30与箱体10可活动地连接,示例性的,功率组件30与箱体10可滑动地连接,可以将功率组件30从容纳腔11内抽出,也可以将功率组件30***容纳腔11内,以便于对功率组件30进行检修和维护。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。

Claims (10)

  1. 一种牵引变流器,所述牵引变流器包括:
    箱体,内部具有中空的容纳腔;
    冷却组件,位于所述容纳腔内;
    功率组件,所述功率组件具有两个且均位于所述容纳腔内,且两个所述功率组件沿第一方向对称地设置于所述冷却组件的两侧;
    输出接触器,所述输出接触器具有两个且至少部分伸出所述容纳腔,且两个所述输出接触器沿所述第一方向对称地设置于所述冷却组件的两侧;
    其中,在所述第一方向上,位于所述冷却组件的同一侧的所述输出接触器和所述功率组件相互连接。
  2. 根据权利要求1所述的牵引变流器,在第二方向上,所述输出接触器和所述功率组件设置于所述箱体的同一侧;其中,所述第二方向与所述第一方向基本垂直。
  3. 根据权利要求2所述的牵引变流器,所述牵引变流器还包括:隔板,两个所述隔板沿所述第一方向间隔设置于所述容纳腔内,以将所述容纳腔分隔为第一密封腔、第二密封腔和通风腔;在所述第一方向上所述通风腔位于所述第一密封腔和所述第二密封腔之间;
    其中,所述第一密封腔用于容纳一个所述功率组件的至少部分,第二密封腔用于容纳另一个所述功率组件的至少部分,所述冷却组件包括冷却风机,所述通风腔用于容纳所述风机,且所述箱体设置有与所述通风腔连通的进风口和出风口。
  4. 根据权利要求3所述的牵引变流器,所述功率组件包括:
    逆变元件,两个所述功率组件的所述逆变元件分别位于所述第一密封 腔和所述第二密封腔内;
    散热件,与所述逆变元件连接并伸入所述通风腔内。
  5. 根据权利要求3所述的牵引变流器,在所述第一方向上,所述进风口和所述出风口相对所述冷却组件对称设置。
  6. 根据权利要求3至5中任一项所述的牵引变流器,所述牵引变流器还包括:
    吊装结构,与所述箱体固定连接,且在竖直方向上,所述吊装结构延伸至所述箱体的顶部的上方;
    其中,所述进风口和所述出风口设置于箱体的顶部。
  7. 根据权利要求3所述的牵引变流器,所述牵引变流器还包括预充电组件,所述预充电组件位于所述第一密封腔内且与所述功率组件连接;
    其中,在所述第二方向上,所述预充电组件和所述功率组件设置于相对的两侧。
  8. 根据权利要求7所述的牵引变流器,所述牵引变流器还包括电抗件,所述电抗件位于所述通风腔内,用于连接所述预充电组件和所述功率组件。
  9. 根据权利要求8所述的牵引变流器,在所述第二方向上,所述预充电组件和所述电抗件位于所述功率组件的同一侧。
  10. 根据权利要求3所述牵引变流器,所述牵引变流器还包括控制组件,所述控制组件位于所述第二密封腔内并与所述功率组件连接;
    其中,在所述第二方向上,所述控制组件和所述功率组件设置于相对的两侧。
PCT/CN2022/115123 2021-11-05 2022-08-26 牵引变流器 WO2023077927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122699932.8 2021-11-05
CN202122699932.8U CN216794826U (zh) 2021-11-05 2021-11-05 牵引变流器

Publications (1)

Publication Number Publication Date
WO2023077927A1 true WO2023077927A1 (zh) 2023-05-11

Family

ID=82003017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115123 WO2023077927A1 (zh) 2021-11-05 2022-08-26 牵引变流器

Country Status (2)

Country Link
CN (1) CN216794826U (zh)
WO (1) WO2023077927A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216794826U (zh) * 2021-11-05 2022-06-21 中车永济电机有限公司 牵引变流器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005462A1 (de) * 2015-07-08 2017-01-12 Robert Bosch Gmbh Leistungshalbleiterbauteil mit einer kühlvorrichtung
CN206212552U (zh) * 2016-11-28 2017-05-31 株洲中车时代电气股份有限公司 一种用于轨道交通的牵引变流器
CN208623553U (zh) * 2018-06-28 2019-03-19 西安中车永电捷通电气有限公司 永磁牵引逆变器
CN212412507U (zh) * 2020-07-31 2021-01-26 西安中车永电捷通电气有限公司 集成式牵引高压箱
CN215528890U (zh) * 2021-08-18 2022-01-14 中车青岛四方车辆研究所有限公司 一种永磁牵引变流器
CN216794826U (zh) * 2021-11-05 2022-06-21 中车永济电机有限公司 牵引变流器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005462A1 (de) * 2015-07-08 2017-01-12 Robert Bosch Gmbh Leistungshalbleiterbauteil mit einer kühlvorrichtung
CN206212552U (zh) * 2016-11-28 2017-05-31 株洲中车时代电气股份有限公司 一种用于轨道交通的牵引变流器
CN208623553U (zh) * 2018-06-28 2019-03-19 西安中车永电捷通电气有限公司 永磁牵引逆变器
CN212412507U (zh) * 2020-07-31 2021-01-26 西安中车永电捷通电气有限公司 集成式牵引高压箱
CN215528890U (zh) * 2021-08-18 2022-01-14 中车青岛四方车辆研究所有限公司 一种永磁牵引变流器
CN216794826U (zh) * 2021-11-05 2022-06-21 中车永济电机有限公司 牵引变流器

Also Published As

Publication number Publication date
CN216794826U (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
ES2376525T3 (es) Pila de accionamiento de gran potencia modular con fluido dieléctrico vaporizable.
KR100272807B1 (ko) 전기차용전력변환장치
JP5504219B2 (ja) 電力変換装置
CN103907278B (zh) Dc‑dc转换器装置和电力转换装置
WO2023077927A1 (zh) 牵引变流器
BR102013007321B1 (pt) permutador de calor, módulo de potência e conversor de tração
CA2688583A1 (en) Electric power converting apparatus
WO2013136877A1 (ja) 電力変換装置
KR20070095220A (ko) 향상된 장착성을 갖는 다중 전력공급장치
JP2014072939A (ja) 電力変換装置
JP5975675B2 (ja) 電力変換装置
CN109311376A (zh) 用于车辆的电气轴驱动器
CN106329948B (zh) 一种矿用电动轮自卸车牵引变流器
KR20200065295A (ko) 배터리 모듈의 다중 적층 구조에 냉각 도구를 구비하는 배터리 팩
JP2018030450A (ja) 電力機器ユニット
WO2015198616A1 (ja) 電力変換装置および車両用制御装置
JPH09219904A (ja) 電気車用電力変換装置
JP2011019305A (ja) 鉄道車両電動機駆動用インバータ装置
JP2014008802A (ja) 鉄道車両用制御装置
US20200298707A1 (en) Power converter and railroad vehicle
JP7520259B2 (ja) 電子機器
JP2021197831A (ja) 電気ユニット
US20240206132A1 (en) Electronic device
JP2013154758A (ja) 車両用制御装置
WO2023199445A1 (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE