WO2023074950A1 - Solar cell battery-integrated device and light absorption storage layer for solar cell battery-integrated device - Google Patents

Solar cell battery-integrated device and light absorption storage layer for solar cell battery-integrated device Download PDF

Info

Publication number
WO2023074950A1
WO2023074950A1 PCT/KR2021/015338 KR2021015338W WO2023074950A1 WO 2023074950 A1 WO2023074950 A1 WO 2023074950A1 KR 2021015338 W KR2021015338 W KR 2021015338W WO 2023074950 A1 WO2023074950 A1 WO 2023074950A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated device
carbonyl compound
solar cell
group
cell battery
Prior art date
Application number
PCT/KR2021/015338
Other languages
French (fr)
Korean (ko)
Inventor
박노창
김진철
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2023074950A1 publication Critical patent/WO2023074950A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell-battery integrated device, and more particularly, to a solar cell-battery integrated device having a structure in which a solar cell and a battery are integrated with improved efficiency.
  • Korean Patent No. 10-2003-0081250 discloses a photovoltaic rechargeable battery in which a photovoltaic panel and a rechargeable battery are integrated.
  • the photovoltaic panel and the rechargeable battery are individually configured, and since the photovoltaic panel and the rechargeable battery are not substantially integrated, miniaturization is difficult and efficiency is low.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a solar cell battery-integrated device capable of miniaturization and improving efficiency.
  • a photorechargeable battery includes a first electrode; a second electrode facing the first electrode; an electrolyte interposed between the first and second electrodes; and a photoactive material formed on the first electrode to absorb light and store/release cations, wherein the photoactive material is a compound having a perovskite structure including a carbonyl compound.
  • the electrolyte is provided with any one of a solid electrolyte and a liquid electrolyte, and when the electrolyte is a liquid electrolyte, the electrolyte further includes a separator separating the first electrode and the second electrode.
  • the photoactive material is characterized in that it satisfies Formula I below.
  • Formula I ANA'1-NBX3 (In Formula I, N is a real number of 0 ⁇ N ⁇ 1, A is an organic ammonium ion, B is a metal ion, X is a halide ion, and A' is It is a carbonyl compound substituted with the above A.)
  • the photoactive material is characterized in that it satisfies Formula II below.
  • Formula II (A')2(A)n-1BnX3n+1 (In Formula II, N is a real number of 0 ⁇ N ⁇ 1, A is an organoammonium ion, B is a metal ion, X is It is a halide ion, and A' is a carbonyl compound substituted with A.)
  • the A is methylammonium, formamidinium, phenylamine (PA), phenylmethylamine (PMA), phenylethylamine (PEA) and cesium (Cesium, Cs) and a material selected from the group consisting of mixtures thereof, wherein B is lead (Pb2+), tin (Sn2+), germanium (Ge2+), copper (Cu2+), nickel (Ni2+), cobalt (Co2+) , iron (Fe2+), manganese (Mn2+), chromium (Cr2+), palladium (Pd2+), cadmium (Cd2+), ytterbium (Yb2+), and a material selected from the group consisting of mixtures thereof, wherein X is iodine (I It is characterized in that it is a material selected from the group consisting of -), bromine (Br-), chlorine (Cl-), and mixtures thereof.
  • B is lead (Pb2
  • the carbonyl compound may be selected from the group consisting of carboxylates, imides, anhydrides, quinones, ketones, and mixtures thereof.
  • the carbonyl compound includes a carboxylate selected from Formulas (1) to (12) below.
  • the carbonyl compound includes an anhydrate selected from Chemical Formulas (13) to (15).
  • the carbonyl compound includes an imide selected from Chemical Formulas (16) to (30).
  • the carbonyl compound includes a quinone selected from Chemical Formulas (31) to (37).
  • the carbonyl compound includes a ketone selected from Chemical Formulas (38) to (43).
  • the carbonyl compound further includes at least one functional group selected from an ammonium group, an amino group, a hydroxyl group, and a cyano group.
  • the solar cell-battery-integrated device can generate power when light is irradiated, and can store power by itself, so that it can be reduced in weight and size.
  • the cation storage capacity can be improved by replacing all or part of A in the perovskite structure ABX3 with a carbonyl compound.
  • FIG. 1A and 1B are views for explaining a solar cell-battery integrated device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an operation during charging and discharging of the solar cell battery-integrated device shown in FIG. 1A.
  • FIG. 3A is a view for explaining the (A′) 2 (A) n-1 B n X 3n+1 structure of the light absorption and storage layer shown in FIG. 1A
  • FIG. 3B is the light absorption and storage layer shown in FIG. 1A. It is a diagram for explaining the A N A' 1-N BX 3 structure of
  • FIG. 4 is a view for explaining a carboxylate applied to the perovskite of the light absorption and storage layer of FIG. 1A.
  • FIG. 5 is a view for explaining an anhydride applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • 6A and 6B are views for explaining an imide applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • FIG. 7 is a view for explaining quinone applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • FIG. 8 is a view for explaining ketones applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • FIG. 1A and 1B are cross-sectional views of a solar cell-battery-integrated device according to an embodiment of the present invention
  • FIG. 2 is a diagram for explaining an operation of the solar cell-battery-integrated device during charging and discharging.
  • the electrolyte 140 is provided as a liquid electrolyte or a solid electrolyte.
  • the electrolyte 150 in FIG. 1A is a liquid electrolyte and includes a separator 140 to pass positive ions and block electrons.
  • the electrolyte 150 in FIG. 1B is a solid electrolyte, and the solid electrolyte includes both the function of the liquid electrolyte and the function of the separator 140 in FIG. 1A.
  • the solar battery-integrated device 100 includes a substrate 110, a first electrode 120, a second electrode 130, a separator 140, an electrolyte 150, and a light absorption and storage layer 160.
  • the electrolyte 150 is a liquid electrolyte.
  • the solar battery-integrated device 100 includes a substrate 110, a first electrode 120, a second electrode 130, an electrolyte 150, and a light absorption and storage layer 160.
  • the electrolyte 150 is a solid electrolyte and includes a separator function.
  • a solar battery-integrated device having a liquid electrolyte as an electrolyte will be described with reference to FIG. 1A.
  • the solid electrolyte includes both the function of the liquid electrolyte and the function of the separator 140 and the description is redundant, the description of the solid electrolyte will be omitted.
  • the substrate 110 supports the entire device and transmits light.
  • a first electrode 120, a light absorption storage layer 160, a separator 140, and a second electrode 120 are sequentially stacked on the substrate 110, and an electrolyte 150 is placed between the first electrode and the second electrode. ) is interposed.
  • the substrate 110 includes a material capable of transmitting light.
  • the light transmitted through the substrate 110 is provided to the light absorption and storage layer 160 .
  • the substrate 110 includes any one material of glass, plastic, and plastic film capable of transmitting light.
  • the plastic film may be formed of a material having high chemical stability, mechanical strength, transparency, and flexibility.
  • Plastic films include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), polypropylene (PP), polyimide (PI), polyethylene sulfonate (PES), and polyocene. It may include at least one material of simethylene (POM), polyether ether ketone (PEEK), polyether sulfone (PES), and polyetherimide (PEI).
  • POM polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PS polystyrene
  • PP polypropylene
  • PI polyimide
  • PES polyethylene sulfonate
  • POM polyocene
  • It may include at least one material of simethylene (POM), polyether ether ketone (PEEK), polyether sulfone (PE
  • the first electrode 120 is formed on the substrate 110 and participates in electron transfer of the light absorption and storage layer 160 .
  • the first electrode 120 includes a transparent conductive metal oxide so that light transmitted through the substrate 110 reaches the light absorption and storage layer 160 .
  • Transparent conductive metal oxides include indium tin oxide (ITO), fluorine doped tin oxide (FTO), aluminum doped zink oxide (AZO), and indium zinc oxide (IZO). , ZnO-Ga2O3, ZnOAl2O3 and antimony tin oxide (ATO).
  • the second electrode 130 may be a positive electrode or a negative electrode of a rechargeable secondary battery.
  • the charging electrode is a positive electrode
  • lithium metal or oxides containing lithium (LiCoO2, LiNiCoMnO2, LiMnO2, LiFeO4) capable of providing positive ions are used as the second electrode 130. It may include, and may include graphite (graphite) in the case of a negative electrode.
  • the separator 140 physically separates the first electrode 120 and the second electrode 130, allows positive ions to pass therethrough, and blocks the movement of electrons.
  • the electrolyte 150 allows positive ions to move between the light absorption storage layer 160 and the second electrode 130 .
  • the electrolyte may include any one of a known liquid electrolyte, a gel polymer electrolyte, and a solid electrolyte, and in the case of a solid electrolyte, a separator may be omitted.
  • the electrolyte may include light scattering particles.
  • the light-scattering particles include a transparent material, scatter light that passes through the light absorption and storage layer 160 and reaches the electrolyte 150, and returns some of the scattered light to the light absorption and storage layer 160, thereby returning the solar cell to the solar cell. Efficiency of the battery-integrated device may be increased.
  • the light absorption storage layer 160 absorbs light to generate an unpaired electron pair, provides electrons to the second electrode 130 through a conducting wire, and stores positive ions provided from the second electrode 130 through the separator 140. Alternatively, it serves to provide positive ions to the second electrode 130 through the separator 140 .
  • the light absorption and storage layer not only absorbs light to cause a photoelectric effect, but also has a storage capability through storage and release of positive ions, so that a separate battery is not required.
  • the light absorption and storage layer 160 absorbs light to generate an unpaired electron pair and provides electrons to the second electrode 130 through a wire.
  • the light absorption storage layer 160 emits lithium cations (Li+) and supplies the released lithium cations (Li+) to the second electrode 130 through the electrolyte 150.
  • Lithium cations (Li+) supplied to the second electrode 130 are reduced to lithium (Li).
  • the cation is described as lithium cation (Li+), but is not limited thereto.
  • the light absorption and storage layer 160 transfers holes to the first electrode 120 during discharge and connects a wire from the second electrode 130 to the first electrode 120 . binds to electrons provided through In addition, the light absorption storage layer 160 absorbs and stores lithium cations (Li+) emitted from the second electrode 130 and passed through the electrolyte 150 .
  • Li+ lithium cations
  • the wavelength range of light absorbed by the light absorption and storage layer 160 is 750 to 1000 nm, and includes at least one of infrared rays, visible rays, and ultraviolet rays.
  • the light absorption and storage layer 160 includes a photoactive material, a conductive material, and a binder.
  • the conductive material is graphite, vapor grown carbon fibers, Ketjen black, Denka black, acetylene black, carbon black, carbon nanotube, multi-walled carbon nanotube -Walled Carbon Nanotube) and mesoporous carbon (Ordered Mesoporous Carbon).
  • the binder is polyvinyl acetate, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polyvinylidene fluoride (PVDF), polyhexafluoropropylene-polyvinylidene fluoride copolymer , polyethyl acrylate, polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile and carboxylmethylcellulose (CMC), thermoplastic polyester resins, and mixtures thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxylmethylcellulose
  • the photoactive material includes a perovskite material having a cation storage function and a photoelectric conversion function.
  • FIG. 3A is a view for explaining the (A′) 2 (A) n ⁇ 1 B n X 3n+1 structure of the light absorption and storage layer shown in FIG. 1A.
  • FIG. 3B is a view for explaining the A N A ′ 1-N BX 3 structure of the light absorption and storage layer shown in FIG. 1A.
  • the perovskite material can be formed by arranging the first electrode 120 in a layered structure and overlapping the two-dimensional structure again. there is.
  • perovskite is widely used in solar cells, but considering the characteristics of solar cells without energy storage capability, perovskite used in solar cells has nothing to do with the storage of lithium cations.
  • a N A' 1-N BX 3 shown in FIG. is a real number of 0 ⁇ N ⁇ 1) or has a structure of (A′) 2 (A) n ⁇ 1 B n X 3n+1 (where n is an integer) as shown in FIG. 3B.
  • the carbonyl compound of A' includes a double bond between carbon and oxygen, and due to the nature of carbonyl, the oxygen moiety can be well bonded to Li cations. Therefore, when part or all of A in the perovskite structure is substituted with the carbonyl compound A', the storage efficiency of lithium cations can be further increased compared to the case where the carbonyl compound is not present.
  • the perovskite may have a quasi 2D structure or 2D structure.
  • 2D structured perovskite may have reduced electron mobility compared to quasi-2D and 3D structures, resulting in poor solar cell performance. Compared to the 2D structure and the 3D structure, battery performance can be improved.
  • the perovskite structure in terms of solar cell performance, the perovskite structure is improved in terms of 2D structure, Quasi-2D structure, and 3D structure.
  • the perovskite structure in terms of battery performance, the perovskite structure is gradually improved in 3D structure, Quasi-2D structure, and 2D structure.
  • N is a real number of 0 ⁇ N ⁇ 1
  • A is an organic ammonium ion
  • B is a metal ion
  • X is a halide ion
  • A' is a carbonyl compound substituted with A.
  • A is methylammonium, formamidinium, phenylamine (Phenylamine, PA), phenylmethylamine (PMA), phenylethylamine (PEA) and cesium (Cesium, Cs) and these It is a material selected from the group consisting of mixtures of.
  • B is lead (Pb2+), tin (Sn2+), germanium (Ge2+), copper (Cu2+), nickel (Ni2+), cobalt (Co2+), iron (Fe2+), manganese (Mn2+), chromium (Cr2+), palladium (Pd2+) ), cadmium (Cd2+), ytterbium (Yb2+), and a material selected from the group consisting of mixtures thereof.
  • X is a material selected from the group consisting of iodine (I-), bromine (Br-), chlorine (Cl-), and mixtures thereof.
  • the carbonyl compound may be selected from the group consisting of all carboxylates, imides, anhydrides, quinones, ketones, and mixtures thereof.
  • FIG. 4 is a view for explaining a carboxylate applied to the perovskite of the light absorption and storage layer of FIG. 1A.
  • FIG. 5 is a view for explaining an anhydride applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • anhydride may be selected from (13) PMDA, (14) NTCDA, and (15) PTCDA groups.
  • 6A and 6B are views for explaining an imide applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • the imide is (16)Na2PMDI, (17)PTCDI, (18-21)PIs, (22-27)PAQI, (28-29) PIs with a three-dimensional 3D crosslinked network, (30) It can be selected from the PTCDA-derived PI group.
  • FIG. 7 is a view for explaining quinone applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • quinones are (31) Na2DBQ, (32) PAQS, (33) PBQS, (34) Na2PDS, (35) encapsulating anthraquinone, (36) immobilizing Juglone, (37) C6RO2 (where R is F, selected from CL) group.
  • FIG. 8 is a view for explaining ketone applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
  • ketones are (38) DSR, (39) CADS, (40) TSAA, (41) TSAQ. It can be selected from (42) indigo carmine and (43) natural polymer humic acid group.
  • the functional group 162 capable of electrostatically attractive bonding with cations when included in the layered structure of the light absorption storage layer 160, the storage of positive ions in the light absorption storage layer 160 Efficiency can be further increased.
  • the functional group may be selected from at least one of an ammonium group (NH4+), an amino group (NH2-), a hydroxyl group (OH-), and a cyano group (CN-).
  • a first electrode and a light absorption and storage layer are formed on a substrate, and a charging electrode is separately formed on the second electrode, and then a separator is placed, and ion Recharge electrolytes for movement.
  • sealing and encapsulation steps may be performed to block the inflow of external moisture or oxygen.
  • the solar cell-battery-integrated device can generate power when light is irradiated, and can store power by itself, so that it can be reduced in weight and size.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell battery-integrated device, which comprises: a first electrode; a second electrode facing the first electrode; an electrolyte interposed between the first and second electrodes; and a photoactive material formed on the first electrode to absorb light and store/release positive ions, wherein the photoactive material is a compound having a perovskite structure including a carbonyl compound.

Description

태양전지 배터리 일체형 디바이스 및 태양전지 배터리 일체형 디바이스용 광흡수저장층Light absorption storage layer for solar cell battery integrated device and solar cell battery integrated device
본 발명은 태양전지 배터리 일체형 디바이스에 관한 것으로, 상세하게는 효율성을 향상시킨 태양전지와 배터리가 일체화된 구조의 태양전지-배터리 일체형 디바이스에 관한 것이다The present invention relates to a solar cell-battery integrated device, and more particularly, to a solar cell-battery integrated device having a structure in which a solar cell and a battery are integrated with improved efficiency.
근래의 고용량 소형 배터리 기술의 필요에 따라, 에너지 밀도가 높은 2차전지의 사용이 증대되고, 그에 따라 2 차전지의 성능 개선을 위한 다양한 연구가 개발되고 있다. 이러한 2차전지를 전원 공급을 위해 주기적으로 소정 시간 동안 충전을 해주어야 하는 불편함을 가진다. In accordance with the recent need for high-capacity small battery technology, the use of secondary batteries with high energy density is increasing, and accordingly, various researches for improving the performance of secondary batteries are being developed. It is inconvenient to periodically charge such a secondary battery for a predetermined time to supply power.
이러한 이유로, 대한민국특허 제10-2003-0081250호는 광전지 패널과 충전배터리를 일체화한 광전지 충전배터리를 개시한다. 하지만 광전지 충전배터리는 광전지 패널과 충전배터리는 개별적으로 구성되며, 광전지 패널과 충전배터리가 실질적으로 일체화되어 있지 않아 소형화가 어렵고 효율성이 떨어진다. For this reason, Korean Patent No. 10-2003-0081250 discloses a photovoltaic rechargeable battery in which a photovoltaic panel and a rechargeable battery are integrated. However, in the photovoltaic rechargeable battery, the photovoltaic panel and the rechargeable battery are individually configured, and since the photovoltaic panel and the rechargeable battery are not substantially integrated, miniaturization is difficult and efficiency is low.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명은 소형화가 가능하며, 효율성을 향상시킨 태양전지 배터리 일체형 디바이스를 제공하는 것에 목적이 있다. The present invention has been made to solve the above problems, and an object of the present invention is to provide a solar cell battery-integrated device capable of miniaturization and improving efficiency.
본 발명의 실시예에 따른 광충전 가능한 배터리는, 제1 전극; 상기 제1 전극에 대향하는 제2 전극; 상기 제1 및 제2 전극 사이에 개재된 전해질; 및 상기 제1 전극 상에 형성되어 광을 흡수하고, 양이온을 저장/방출하는 광활성물질을 포함하고, 상기 광활성물질은 카르보닐 화합물을 포함하는 페로브스카이트 구조의 화합물인 것을 특징으로 한다. A photorechargeable battery according to an embodiment of the present invention includes a first electrode; a second electrode facing the first electrode; an electrolyte interposed between the first and second electrodes; and a photoactive material formed on the first electrode to absorb light and store/release cations, wherein the photoactive material is a compound having a perovskite structure including a carbonyl compound.
또한 실시예에 있어서, 상기 전해질은, 고체전해질 및 액체전해질 중 어느 하나로 구비되고, 상기 전해질이 액체전해질인 경우, 상기 제1 전극 및 상기 제2 전극 사이를 분리하는 세퍼레이터를 더 포함한다.In an embodiment, the electrolyte is provided with any one of a solid electrolyte and a liquid electrolyte, and when the electrolyte is a liquid electrolyte, the electrolyte further includes a separator separating the first electrode and the second electrode.
또한 실시예에 있어서, 상기 광활성물질은 하기 화학식I을 만족하는 것을 특징으로 한다. (화학식 I) ANA'1-NBX3 (상기 화학식 I에서, N은 0<N<1 인 실수이며, 상기 A는 유기암모늄이온, 상기 B는 금속이온, 상기 X는 할라이드이온이고, 상기 A'는 상기 A와 치환된 카르보닐화합물이다.)In another embodiment, the photoactive material is characterized in that it satisfies Formula I below. (Formula I) ANA'1-NBX3 (In Formula I, N is a real number of 0<N<1, A is an organic ammonium ion, B is a metal ion, X is a halide ion, and A' is It is a carbonyl compound substituted with the above A.)
또한 실시예에 있어서, 상기 광활성물질은 하기 화학식 II를 만족하는 것을 특징으로 한다. (화학식 II) (A')2(A)n-1BnX3n+1 (상기 화학식 II에서, N은 0<N<1 인 실수이며, 상기 A는 유기암모늄이온, 상기 B는 금속이온, 상기 X는 할라이드이온이고, 상기 A'는 상기 A와 치환된 카르보닐화합물이다.)In another embodiment, the photoactive material is characterized in that it satisfies Formula II below. (Formula II) (A')2(A)n-1BnX3n+1 (In Formula II, N is a real number of 0<N<1, A is an organoammonium ion, B is a metal ion, X is It is a halide ion, and A' is a carbonyl compound substituted with A.)
또한 실시예에 있어서, 상기 A는 메틸암모늄(Methylammonium), 포르마미디늄(Formamidinium), 페닐아민(Phenylamine, PA), 페닐메틸아민(Phenylmethylamine, PMA), 페닐에틸아민(Phenylethylamine, PEA) 및 세슘(Cesium, Cs) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이고, 상기 B는 납(Pb2+), 주석(Sn2+), 게르마늄(Ge2+), 구리(Cu2+), 니켈(Ni2+), 코발트(Co2+), 철(Fe2+), 망간(Mn2+), 크로뮴(Cr2+), 팔라듐(Pd2+), 카드뮴(Cd2+), 이터븀(Yb2+) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이고, 상기 X는 요오드(I-), 브롬(Br-), 염소(Cl-) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질인 것을 특징으로 한다.In another embodiment, the A is methylammonium, formamidinium, phenylamine (PA), phenylmethylamine (PMA), phenylethylamine (PEA) and cesium (Cesium, Cs) and a material selected from the group consisting of mixtures thereof, wherein B is lead (Pb2+), tin (Sn2+), germanium (Ge2+), copper (Cu2+), nickel (Ni2+), cobalt (Co2+) , iron (Fe2+), manganese (Mn2+), chromium (Cr2+), palladium (Pd2+), cadmium (Cd2+), ytterbium (Yb2+), and a material selected from the group consisting of mixtures thereof, wherein X is iodine (I It is characterized in that it is a material selected from the group consisting of -), bromine (Br-), chlorine (Cl-), and mixtures thereof.
또한 실시예에 있어서, 카르보닐화합물은 카르복실레이트, 이미드, 안하이드라이드, 퀴논, 케톤 및 이들의 혼합물로 이루어지는 군으로 선택될 수 있다. In addition, in embodiments, the carbonyl compound may be selected from the group consisting of carboxylates, imides, anhydrides, quinones, ketones, and mixtures thereof.
또한 실시예에 있어서, 상기 카르보닐화합물은 하기의 화학식 (1) 내지 (12)에서 선택되는 카르복실레이트를 포함한다. In addition, in an embodiment, the carbonyl compound includes a carboxylate selected from Formulas (1) to (12) below.
또한 실시예에 있어서, 상기 카르보닐화합물은 화학식 (13) 내지 (15)에서 선택되는 안하이드레이트를 포함한다.In another embodiment, the carbonyl compound includes an anhydrate selected from Chemical Formulas (13) to (15).
또한 실시예에 있어서, 상기 카르보닐화합물은 화학식 (16) 내지 (30)에서 선택되는 이미드를 포함한다.Also, in an embodiment, the carbonyl compound includes an imide selected from Chemical Formulas (16) to (30).
또한 실시예에 있어서, 상기 카르보닐화합물은 화학식 (31) 내지 (37)에서 선택되는 퀴논을 포함한다.In another embodiment, the carbonyl compound includes a quinone selected from Chemical Formulas (31) to (37).
또한 실시예에 있어서, 상기 카르보닐화합물은 화학식 (38) 내지 (43)에서 선택되는 케톤을 포함한다.In another embodiment, the carbonyl compound includes a ketone selected from Chemical Formulas (38) to (43).
또한 실시예에 있어서, 상기 카르보닐 화합물은 암모늄기, 아미노기, 히드록시기 및 시아노기에서 선택되는 적어도 하나의 관능기를 더 포함한다. In some embodiments, the carbonyl compound further includes at least one functional group selected from an ammonium group, an amino group, a hydroxyl group, and a cyano group.
본 발명에 따르면, 태양전지 배터리 일체형 디바이스는 광 조사시 전력생산이 가능하며, 전력을 자체적으로 저장할 수 있어 경량화 및 소형화가 가능하다. According to the present invention, the solar cell-battery-integrated device can generate power when light is irradiated, and can store power by itself, so that it can be reduced in weight and size.
본 발명에 따르면, 페로브스카이트 구조 ABX3에서 A의 전부 또는 일부를 카르보닐 화합물로 치환함으로써 양이온 저장능력을 향상시킬 수 있다. According to the present invention, the cation storage capacity can be improved by replacing all or part of A in the perovskite structure ABX3 with a carbonyl compound.
도 1a 및 도 1b는 본 발명의 실시예에 따른 태양전지 배터리 일체형 디바이스를 설명하기 위한 도면이다. 1A and 1B are views for explaining a solar cell-battery integrated device according to an embodiment of the present invention.
도 2는 도 1a에 도시된 태양전지 배터리 일체형 디바이스의 충방전시의 동작을 설명하기 위한 도면이다.FIG. 2 is a diagram for explaining an operation during charging and discharging of the solar cell battery-integrated device shown in FIG. 1A.
도 3a는 도 1a에 도시된 광흡수저장층의 (A')2(A)n-1BnX3n+1 구조를 설명하기 위한 도면이고, 도 3b는 도 1a에 도시된 광흡수저장층의 ANA'1-NBX3 구조를 설명하기 위한 도면이다.FIG. 3A is a view for explaining the (A′) 2 (A) n-1 B n X 3n+1 structure of the light absorption and storage layer shown in FIG. 1A, and FIG. 3B is the light absorption and storage layer shown in FIG. 1A. It is a diagram for explaining the A N A' 1-N BX 3 structure of
도 4은 도 1a의 광흡수저장층의 페로브스카이트에 적용되는 카르복실레이트를 설명하기 위한 도면이다. 4 is a view for explaining a carboxylate applied to the perovskite of the light absorption and storage layer of FIG. 1A.
도 5는 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 안하이드레이트를 설명하기 위한 도면이다.5 is a view for explaining an anhydride applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
도 6a 및 도 6b는 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 이미드를 설명하기 위한 도면이다.6A and 6B are views for explaining an imide applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
도 7는 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 퀴논을 설명하기 위한 도면이다.7 is a view for explaining quinone applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
도 8는 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 케톤을 설명하기 위한 도면이다.FIG. 8 is a view for explaining ketones applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시 형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention can be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. In the accompanying drawings, there may be components that are shown to have a specific pattern or have a predetermined thickness, but this is for convenience of description or distinction, so even if they have a specific pattern and predetermined thickness, the present invention is a feature of the illustrated components It is not limited to only
도 1a 및 도 1b는 본 발명의 일실시예에 따른 태양전지 배터리 일체형 디바이스의 단면도이고, 도 2는 태양전지 배터리 일체형 디바이스의 충방전시의 동작을 설명하기 위한 도면이다.1A and 1B are cross-sectional views of a solar cell-battery-integrated device according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining an operation of the solar cell-battery-integrated device during charging and discharging.
본 발명의 태양전지 배터리 일체형 디바이스에서 전해질(140)은 액체전해질 또는 고체전해질로 구비된다. 도 1a에서의 전해질(150)은 액체전해질이며, 양이온을 통과시키고 전자를 차단하기 위해 세퍼레이터(140)를 포함한다. 한편 도 1b에서의 전해질(150)은 고체전해질이며, 고체전해질은 도 1a에서의 액체전해질의 기능 및 세퍼레이터(140)의 기능을 모두 포함한다. In the solar battery-integrated device of the present invention, the electrolyte 140 is provided as a liquid electrolyte or a solid electrolyte. The electrolyte 150 in FIG. 1A is a liquid electrolyte and includes a separator 140 to pass positive ions and block electrons. Meanwhile, the electrolyte 150 in FIG. 1B is a solid electrolyte, and the solid electrolyte includes both the function of the liquid electrolyte and the function of the separator 140 in FIG. 1A.
도 1a을 참조하면, 태양전지 배터리 일체형 디바이스(100)는 기판(110), 제1 전극(120), 제2 전극(130), 세퍼레이터(140), 전해질(150), 광흡수저장층(160)을 포함한다. 여기서 전해질(150)은 액체전해질이다.Referring to FIG. 1A , the solar battery-integrated device 100 includes a substrate 110, a first electrode 120, a second electrode 130, a separator 140, an electrolyte 150, and a light absorption and storage layer 160. ). Here, the electrolyte 150 is a liquid electrolyte.
그리고 도 1b를 참조하면, 태양전지 배터리 일체형 디바이스(100)는 기판(110), 제1 전극(120), 제2 전극(130), 전해질(150), 광흡수저장층(160)을 포함한다. 여기서 전해질(150)은 고체전해질이며 세퍼레이터의 기능을 포함한다.Referring to FIG. 1B , the solar battery-integrated device 100 includes a substrate 110, a first electrode 120, a second electrode 130, an electrolyte 150, and a light absorption and storage layer 160. . Here, the electrolyte 150 is a solid electrolyte and includes a separator function.
이하 도 1a를 참조하여 전해질이 액체전해질을 전해질로 갖는 태양전지 배터리 일체형 디바이스에 대해 설명한다. 그리고 고체전해질은 액체전해질의 기능 및 세퍼레이터(140)의 기능을 모두 포함하여 설명이 중복되므로, 고체전해질인 경우는 설명을 생략한다. Hereinafter, a solar battery-integrated device having a liquid electrolyte as an electrolyte will be described with reference to FIG. 1A. In addition, since the solid electrolyte includes both the function of the liquid electrolyte and the function of the separator 140 and the description is redundant, the description of the solid electrolyte will be omitted.
기판(110)은 디바이스 전체를 지지하며, 광을 투과시키는 기능을 수행한다. The substrate 110 supports the entire device and transmits light.
기판(110) 상에 제1 전극(120), 광흡수저장층(160), 세퍼레이터(140), 제2 전극(120)이 순차적으로 적층되며, 제1 전극과 제2 전극 사이에는 전해질(150)이 개재된다. A first electrode 120, a light absorption storage layer 160, a separator 140, and a second electrode 120 are sequentially stacked on the substrate 110, and an electrolyte 150 is placed between the first electrode and the second electrode. ) is interposed.
기판(110)은 광을 투과시킬 수 있는 소재를 포함한다. 기판(110)을 투과한 광은 광흡수저장층(160)에 제공된다. The substrate 110 includes a material capable of transmitting light. The light transmitted through the substrate 110 is provided to the light absorption and storage layer 160 .
기판(110)은 광의 투과가 가능한 유리, 플라스틱, 플라스틱 필름 중 어느 하나의 소재를 포함한다. The substrate 110 includes any one material of glass, plastic, and plastic film capable of transmitting light.
이때 플라스틱 필름은 화학정안정성, 기계적강도, 투명도, 유연성이 높은 소재로 형성될 수 있다. 플라스틱 필름은, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리카보네이트(PC), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리이미드(PI), 폴리에틸렌설포네이트(PES), 폴리옥 시메틸렌(POM), 폴리에테르에테르케톤(PEEK), 폴리에테르설폰(PES) 및 폴리에테르이미드(PEI) 중 적어도 어느 하나의 소재를 포함할 수 있다. In this case, the plastic film may be formed of a material having high chemical stability, mechanical strength, transparency, and flexibility. Plastic films include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), polypropylene (PP), polyimide (PI), polyethylene sulfonate (PES), and polyocene. It may include at least one material of simethylene (POM), polyether ether ketone (PEEK), polyether sulfone (PES), and polyetherimide (PEI).
제1 전극(120)은 기판(110) 상에 형성되며, 광흡수저장층(160)의 전자이동에 관여한다. 제1 전극(120)은 기판(110)을 투과한 광이 광흡수저장층(160)에 도달되도록 투명한 전도성 금속산화물을 포함한다. The first electrode 120 is formed on the substrate 110 and participates in electron transfer of the light absorption and storage layer 160 . The first electrode 120 includes a transparent conductive metal oxide so that light transmitted through the substrate 110 reaches the light absorption and storage layer 160 .
투명한 전도성 금속산화물은 산화주석인듐(indium tin oxide, ITO), 불소함유 산화주석 (fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드(aluminium doped zink oxide, AZO), IZO (indium zinc oxide), ZnO-Ga2O3, ZnOAl2O3 및 ATO (antimony tin oxide) 등이 될 수 있다.Transparent conductive metal oxides include indium tin oxide (ITO), fluorine doped tin oxide (FTO), aluminum doped zink oxide (AZO), and indium zinc oxide (IZO). , ZnO-Ga2O3, ZnOAl2O3 and antimony tin oxide (ATO).
제2 전극(130)은 충전가능한 이차전지의 양극 또는 음극이 될 수 있으며, 충전극이 양극인 경우, 양이온을 제공할 수 있는 리튬금속이나 리튬을 포함한 산화물(LiCoO2, LiNiCoMnO2, LiMnO2, LiFeO4)을 포함할 수 있고, 음극일 경우 흑연(graphite)을 포함할 수 있다.The second electrode 130 may be a positive electrode or a negative electrode of a rechargeable secondary battery. When the charging electrode is a positive electrode, lithium metal or oxides containing lithium (LiCoO2, LiNiCoMnO2, LiMnO2, LiFeO4) capable of providing positive ions are used as the second electrode 130. It may include, and may include graphite (graphite) in the case of a negative electrode.
세퍼레이터(140)는 제1 전극(120) 및 제2 전극(130)을 물리적으로 분리하며, 양이온을 통과시키고, 전자의 이동을 차단한다.The separator 140 physically separates the first electrode 120 and the second electrode 130, allows positive ions to pass therethrough, and blocks the movement of electrons.
전해질(150)은 광흡수저장층(160)과 제2 전극(130) 사이에서 양이온이 이동할 수 있게 한다. 전해질은 공지의 액체전해질, 겔폴리머 전해질, 고체전해질 중 어느 하나로 구비될 수 있으며, 고체전해질의 경우, 세퍼레이터는 생략될 수 있다. The electrolyte 150 allows positive ions to move between the light absorption storage layer 160 and the second electrode 130 . The electrolyte may include any one of a known liquid electrolyte, a gel polymer electrolyte, and a solid electrolyte, and in the case of a solid electrolyte, a separator may be omitted.
한편 전해질의 경우, 광산란입자를 포함할 수 있다. 광산란입자는 투명한 재질을 포함하며, 광흡수저장층(160)에 흡수되지 못하고 투과하여 전해질(150)에 도달한 광을 산란시켜 산란된 광의 일부를 광흡수저장층(160)으로 되돌림으로써 태양전지 배터리 일체형 디바이스의 효율을 증가시킬 수 있다.Meanwhile, the electrolyte may include light scattering particles. The light-scattering particles include a transparent material, scatter light that passes through the light absorption and storage layer 160 and reaches the electrolyte 150, and returns some of the scattered light to the light absorption and storage layer 160, thereby returning the solar cell to the solar cell. Efficiency of the battery-integrated device may be increased.
광흡수저장층(160)은 광을 흡수하여 홀전자쌍을 생성하여 도선을 통해 전자를 제2 전극(130)에 제공하며, 제2 전극(130)으로부터 세퍼레이터(140)을 통해 제공되는 양이온을 저장하거나 세퍼레이터(140)를 통해 제2 전극(130)에 양이온을 제공하는 기능을 수행한다. The light absorption storage layer 160 absorbs light to generate an unpaired electron pair, provides electrons to the second electrode 130 through a conducting wire, and stores positive ions provided from the second electrode 130 through the separator 140. Alternatively, it serves to provide positive ions to the second electrode 130 through the separator 140 .
일반적으로 태양전지의 경우, 발전능력은 있지만 저장능력이 없어서, 광충전에 의해 발생한 전력을 저장할 별도의 배터리가 필요하다. 본 발명의 경우, 광흡수저장층이 광을 흡수하여 광전효과를 일으킬 뿐만 아니라 양이온의 저장 및 방출을 통해 저장능력도 구비함으로써 별도의 배터리가 필요하지 않게 된다.In general, in the case of a solar cell, a separate battery is required to store the power generated by photocharging because it has power generation capability but no storage capability. In the case of the present invention, the light absorption and storage layer not only absorbs light to cause a photoelectric effect, but also has a storage capability through storage and release of positive ions, so that a separate battery is not required.
도 2의 (a)를 참조하면, 광흡수저장층(160)은 광을 흡수하여 홀전자쌍을 생성하고, 전자를 도선을 통해 제2 전극(130)에 제공한다. 이와 동시에 광흡수저장층(160)은 리튬양이온(Li+)을 방출하고 방출된 리튬양이온(Li+)을 전해질(150)을 통해 제2 전극(130)에 제공한다. 제2 전극(130)에 제공된 리튬양이온(Li+)은 리튬(Li)으로 환원된다. 도 2에서 양이온이 리튬양이온(Li+)으로 설명되었지만, 이에 제한되는 것은 아니다.Referring to (a) of FIG. 2 , the light absorption and storage layer 160 absorbs light to generate an unpaired electron pair and provides electrons to the second electrode 130 through a wire. At the same time, the light absorption storage layer 160 emits lithium cations (Li+) and supplies the released lithium cations (Li+) to the second electrode 130 through the electrolyte 150. Lithium cations (Li+) supplied to the second electrode 130 are reduced to lithium (Li). In FIG. 2, the cation is described as lithium cation (Li+), but is not limited thereto.
도 2의 (b)를 참조하면, 광흡수저장층(160)은, 방전시, 제1 전극(120)에 홀을 전달하고, 제2 전극(130)으로부터 제1 전극(120)으로 도선을 통해 제공되는 전자에 결합한다. 또한 광흡수저장층(160)은 제2 전극(130)으로부터 방출되어 전해질(150)을 통과해온 리튬양이온(Li+)을 흡수하여 저장한다. Referring to (b) of FIG. 2 , the light absorption and storage layer 160 transfers holes to the first electrode 120 during discharge and connects a wire from the second electrode 130 to the first electrode 120 . binds to electrons provided through In addition, the light absorption storage layer 160 absorbs and stores lithium cations (Li+) emitted from the second electrode 130 and passed through the electrolyte 150 .
광흡수저장층(160)이 흡수하는 광의 파장영역대는 750 내지 1000nm 파장으로서 적외선영역, 가시광선, 자외선 중 적어도 하나를 포함한다. The wavelength range of light absorbed by the light absorption and storage layer 160 is 750 to 1000 nm, and includes at least one of infrared rays, visible rays, and ultraviolet rays.
다시 도 1a를 참조하면, 광흡수저장층(160)은 광활성물질, 도전재 및 바인더를 포함한다. Referring back to FIG. 1A , the light absorption and storage layer 160 includes a photoactive material, a conductive material, and a binder.
도전재는 흑연, 기상탄화탄소섬유(Vapor Grown Carbon fibers), 케첸 블랙(Ketjen black), 덴카 블랙(Denka black), 아세틸렌 블랙, 카본 블랙, 탄소나노튜브(Carbon Nanotube), 다중벽탄소나노튜브(Multi-Walled Carbon Nanotube), 메조기공탄소(Ordered Mesoporous Carbon)로 이루어진 군에서 선택된다. The conductive material is graphite, vapor grown carbon fibers, Ketjen black, Denka black, acetylene black, carbon black, carbon nanotube, multi-walled carbon nanotube -Walled Carbon Nanotube) and mesoporous carbon (Ordered Mesoporous Carbon).
바인더는 폴리비닐아세테이트, 폴리비닐알콜, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 폴리비닐에테르, 폴리메틸메타아크릴레이트, 폴리비닐리덴플루오라이드(PVDF), 폴리헥사플루오르프로필렌-폴리비닐리덴플루오라이드 코폴리머, 폴리에틸아크릴레이트, 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴 및 카르복실메틸셀룰로오스(CMC), 열가소성 폴리에스테르 수지 및 이들의 혼합물로 이루어지는 군으로부터 선택될 수 있다. The binder is polyvinyl acetate, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polyvinylidene fluoride (PVDF), polyhexafluoropropylene-polyvinylidene fluoride copolymer , polyethyl acrylate, polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile and carboxylmethylcellulose (CMC), thermoplastic polyester resins, and mixtures thereof.
광활성물질은 양이온 저장기능 및 광전변환기능을 갖는 페로브스카이트 소재를 포함한다.The photoactive material includes a perovskite material having a cation storage function and a photoelectric conversion function.
도 3a는 도 1a에 도시된 광흡수저장층의 (A')2(A)n-1BnX3n+1 구조를 설명하기 위한 도면이다. 도 3b는 도 1a에 도시된 광흡수저장층의 ANA'1-NBX3 구조를 설명하기 위한 도면이다.FIG. 3A is a view for explaining the (A′) 2 (A) n−1 B n X 3n+1 structure of the light absorption and storage layer shown in FIG. 1A. FIG. 3B is a view for explaining the A N A ′ 1-N BX 3 structure of the light absorption and storage layer shown in FIG. 1A.
도 3a를 참조하면, 광흡수저장층(160)이 층상구조인 경우, 세퍼레이터(140)를 통과한 양이온은 광전극(130)의 층간에서 저장/방출될 수 있다. 광흡수저장층(160)이 3차원 구조인 페로브스카이트 소재를 포함하는 경우, 페로브스카이트 소재를 제1 전극(120)에 층상구조로 배열하여 다시 2차원 구조를 중첩하여 형성할 수 있다. Referring to FIG. 3A , when the light absorption and storage layer 160 has a layered structure, positive ions passing through the separator 140 may be stored/released between layers of the photoelectrode 130 . When the light absorption and storage layer 160 includes a three-dimensional perovskite material, the perovskite material can be formed by arranging the first electrode 120 in a layered structure and overlapping the two-dimensional structure again. there is.
한편, 페로브스카이트는 태양전지에 널리 사용되고 있으나, 에너지 저장능력이 없는 태양전지의 특성을 고려해 볼 때, 태양전지에 사용되는 페로브스카이트는 리튬양이온의 저장과는 전혀 관련이 없다. On the other hand, perovskite is widely used in solar cells, but considering the characteristics of solar cells without energy storage capability, perovskite used in solar cells has nothing to do with the storage of lithium cations.
도 3a 및 도 3b를 참조하면, 본 발명에서는, 페로브스카이트 소재 ABX3에서 A의 일부 또는 전부가 카르보닐화합물로 치환된 도 3a에 도시된 ANA'1-NBX3 (여기서 N은 0<N<1 인 실수)의 구조를 갖거나 또는 도 3b와 같은 (A')2(A)n-1BnX3n+1(여기서 n은 정수)구조를 갖는다. 3a and 3b, in the present invention, in the perovskite material ABX 3 , some or all of A is substituted with a carbonyl compound A N A' 1-N BX 3 shown in FIG. is a real number of 0<N<1) or has a structure of (A′) 2 (A) n−1 B n X 3n+1 (where n is an integer) as shown in FIG. 3B.
A'인 카르보닐화합물은 탄소와 산소의 이중결합을 포함하며, 카르보닐의 특성상 산소 부분이 Li양이온과 잘 결합될 수 있다. 따라서 페르보스카이트 구조에서 A의 일부 또는 전부가 카르보닐화합물 A'로 치환되는 경우, 리튬양이온의 저장효율을 카르보닐화합물이 없는 경우에 비해 더욱 증가시킬 수 있다. The carbonyl compound of A' includes a double bond between carbon and oxygen, and due to the nature of carbonyl, the oxygen moiety can be well bonded to Li cations. Therefore, when part or all of A in the perovskite structure is substituted with the carbonyl compound A', the storage efficiency of lithium cations can be further increased compared to the case where the carbonyl compound is not present.
3D구조를 이루는 페로브스카이트에서 A의 일부 또는 전부를 카르보닐화합물 A'로 대체하는 경우, 페로브스카이트는 유사(Quasi) 2D구조 또는 2D구조를 갖을 수 있다. In the case of replacing part or all of A in perovskite having a 3D structure with carbonyl compound A', the perovskite may have a quasi 2D structure or 2D structure.
페로브스카이트 구조에서 A가 카르보닐 화합물 A'로 전부 치환되는 경우, 2D구조의 페로브스카이트가 될 확률이 높아진다. 그리고 페로브스카이트 구조에서 A의 일부가 카르보닐화합물 A'로 대체된 유사(Quasi-) 2D구조의 페로브스카이트가 될 확률이 높아진다.When all of A in the perovskite structure is substituted with the carbonyl compound A', the probability of becoming a 2D perovskite increases. And in the perovskite structure, a part of A is replaced with carbonyl compound A', and the probability of becoming a quasi- 2D perovskite structure increases.
2D구조의 페로브스카이트는, Quasi-2D구조 및 3D구조에 비해 전자이동도가 감소하여 태양전지 성능이 떨어질 수 있으나, 금속양이온을 흡수하기 위한 카르보닐화합물 A'이 다수 포함되어 있기 때문에 Quasi-2D구조 및 3D구조에 비해 배터리 성능은 향상될 수 있다. 2D structured perovskite may have reduced electron mobility compared to quasi-2D and 3D structures, resulting in poor solar cell performance. Compared to the 2D structure and the 3D structure, battery performance can be improved.
즉, 태양전지 성능면에서 페로브스카이트 구조는, 2D구조, Quasi-2D구조, 3D구조로 갈수로 향상된다. 한편 배터리 성능면에서 페로브스카이트 구조는 3D구조, Quasi-2D구조, 2D구조로 갈수록 향상된다.In other words, in terms of solar cell performance, the perovskite structure is improved in terms of 2D structure, Quasi-2D structure, and 3D structure. On the other hand, in terms of battery performance, the perovskite structure is gradually improved in 3D structure, Quasi-2D structure, and 2D structure.
즉, 상기 화학식 ANA'1-N(여기서 N은 0<N<1 인 실수)와 BX3(A')2(A)n-1BnX3n+1(여기서 n은 정수)에서 N 또는 n을 조절함으로써, 배터리의 성능과 태양전지의 성능을 조율하여 태양전지 배터리 일체형 디바이스의 성능을 조절할 수 있게 된다. That is, in the formula A N A' 1-N (where N is a real number of 0 <N <1) and BX 3 (A') 2 (A) n-1 B n X 3n + 1 (where n is an integer) By adjusting N or n, it is possible to adjust the performance of the solar cell-battery integrated device by adjusting the performance of the battery and the performance of the solar cell.
A는 유기암모늄이온, B는 금속이온, X는 할라이드이온이고, A'는 A와 치환된 카르보닐화합물이다. A is an organic ammonium ion, B is a metal ion, X is a halide ion, and A' is a carbonyl compound substituted with A.
A는 메틸암모늄(Methylammonium), 포르마미디늄(Formamidinium), 페닐아민(Phenylamine, PA), 페닐메틸아민(Phenylmethylamine, PMA), 페닐에틸아민(Phenylethylamine, PEA) 및 세슘(Cesium, Cs) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이다.A is methylammonium, formamidinium, phenylamine (Phenylamine, PA), phenylmethylamine (PMA), phenylethylamine (PEA) and cesium (Cesium, Cs) and these It is a material selected from the group consisting of mixtures of.
B는 납(Pb2+), 주석(Sn2+), 게르마늄(Ge2+), 구리(Cu2+), 니켈(Ni2+), 코발트(Co2+), 철(Fe2+), 망간(Mn2+), 크로뮴(Cr2+), 팔라듐(Pd2+), 카드뮴(Cd2+), 이터븀(Yb2+) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이다.B is lead (Pb2+), tin (Sn2+), germanium (Ge2+), copper (Cu2+), nickel (Ni2+), cobalt (Co2+), iron (Fe2+), manganese (Mn2+), chromium (Cr2+), palladium (Pd2+) ), cadmium (Cd2+), ytterbium (Yb2+), and a material selected from the group consisting of mixtures thereof.
X는 요오드(I-), 브롬(Br-), 염소(Cl-) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이다.X is a material selected from the group consisting of iodine (I-), bromine (Br-), chlorine (Cl-), and mixtures thereof.
카르보닐 화합물은, 전카르복실레이트, 이미드, 안하이드라이드, 퀴논, 케톤 및 이들의 혼합물로 이루어지는 군으로 선택될 수 있다.The carbonyl compound may be selected from the group consisting of all carboxylates, imides, anhydrides, quinones, ketones, and mixtures thereof.
도 4는 도 1a의 광흡수저장층의 페로브스카이트에 적용되는 카르복실레이트를 설명하기 위한 도면이다. 4 is a view for explaining a carboxylate applied to the perovskite of the light absorption and storage layer of FIG. 1A.
도 4를 참조하면, 카르복실레이트의 경우, (1)Na2TP, (2)R-Na2TP (여기서 R은 NO2 -, Br-, NH2 -, F-) (3)(COONa)-Na2TP (4)monosodium terephthalate (5) terephthalate acid (6)Na2BPDC (7)NaHBPDC (8)NaPTCDA (9)SSDC (10)Ca2BTEC (11) Ag2TP (12)Na4DHTPA의 군에서 선택될 수 있다.Referring to Figure 4, in the case of carboxylate, (1) Na 2 TP, (2) R-Na 2 TP (where R is NO 2 - , Br - , NH 2 - , F - ) (3) (COONa )-Na 2 TP (4)monosodium terephthalate (5) terephthalate acid (6)Na2BPDC (7)NaHBPDC (8)NaPTCDA (9)SSDC (10)Ca 2 BTEC (11) Ag 2 TP (12)Na 4 of DHTPA can be selected from the group.
도 5는 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 안하이드레이트를 설명하기 위한 도면이다.5 is a view for explaining an anhydride applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
도 5를 참조하면, 안하이드레이트는 (13)PMDA, (14)NTCDA, (15)PTCDA 군에서 선택될 수 있다. Referring to FIG. 5 , anhydride may be selected from (13) PMDA, (14) NTCDA, and (15) PTCDA groups.
도 6a 및 도 6b는 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 이미드를 설명하기 위한 도면이다.6A and 6B are views for explaining an imide applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
도 6a 및 도 6b를 참조하면, 이미드는 (16)Na2PMDI, (17)PTCDI, (18-21)PIs, (22-27)PAQI, (28-29) PIs with a three-dimensional 3D crosslinked network, (30)PTCDA-derived PI 군에서 선택될 수 있다.6a and 6b, the imide is (16)Na2PMDI, (17)PTCDI, (18-21)PIs, (22-27)PAQI, (28-29) PIs with a three-dimensional 3D crosslinked network, (30) It can be selected from the PTCDA-derived PI group.
도 7는 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 퀴논을 설명하기 위한 도면이다.7 is a view for explaining quinone applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
도 7을 참조하면, 퀴논은 (31)Na2DBQ, (32)PAQS, (33)PBQS, (34)Na2PDS, (35) encapsulating anthraquinone, (36)immobilizing Juglone, (37)C6RO2 (여기서 R은 F, CL에서 선택됨)군에서 선택될 수 있다. Referring to FIG. 7, quinones are (31) Na2DBQ, (32) PAQS, (33) PBQS, (34) Na2PDS, (35) encapsulating anthraquinone, (36) immobilizing Juglone, (37) C6RO2 (where R is F, selected from CL) group.
도 8은 도 1a에 도시된 광흡수저장층의 페로브스카이트에 적용되는 케톤을 설명하기 위한 도면이다.FIG. 8 is a view for explaining ketone applied to the perovskite of the light absorption and storage layer shown in FIG. 1A.
도 8을 참조하면, 케톤은 (38)DSR, (39)CADS, (40)TSAA, (41)TSAQ. (42)indigo carmine, (43)natural polymer humic acid 군에서 선택될 수 있다.Referring to Figure 8, ketones are (38) DSR, (39) CADS, (40) TSAA, (41) TSAQ. It can be selected from (42) indigo carmine and (43) natural polymer humic acid group.
다시 도 3a를 참조하면, 도 3a와 같이, 광흡수저장층(160)의 층상구조 내부에 양이온과 정전기적 인력결합 가능한 관능기(162)가 포함되면, 광흡수저장층(160)의 양이온의 저장효율을 추가적으로 더 높일 수 있다. 이때 관능기로는 암모늄기(NH4+), 아미노기(NH2-), 히드록시기(OH-), 시아노기(CN-)에서 적어도 하나로 선택될 수 있다.Referring back to FIG. 3A, as shown in FIG. 3A, when the functional group 162 capable of electrostatically attractive bonding with cations is included in the layered structure of the light absorption storage layer 160, the storage of positive ions in the light absorption storage layer 160 Efficiency can be further increased. At this time, the functional group may be selected from at least one of an ammonium group (NH4+), an amino group (NH2-), a hydroxyl group (OH-), and a cyano group (CN-).
본 발명에 따른 태양전지 배터리 일체형 디바이스를 제조하기 위하여, 먼저 기판 상에 제1전극, 광흡수저장층을 형성하고, 이와 별도로 제2전극 상에 충전극을 형성한 후, 세퍼레이터를 위치시키고, 이온이동을 위해 전해질을 충전한다. 추가로, 외부의 수분이나 산소유입을 차단하기 위하여 실링 및 인캡슐레이션 단계를 수행할 수 있다. In order to manufacture the solar cell battery-integrated device according to the present invention, first, a first electrode and a light absorption and storage layer are formed on a substrate, and a charging electrode is separately formed on the second electrode, and then a separator is placed, and ion Recharge electrolytes for movement. In addition, sealing and encapsulation steps may be performed to block the inflow of external moisture or oxygen.
본 발명에 따르면, 태양전지 배터리 일체형 디바이스는 광 조사시 전력생산이 가능하며, 전력을 자체적으로 저장할 수 있어 경량화 및 소형화가 가능하다. According to the present invention, the solar cell-battery-integrated device can generate power when light is irradiated, and can store power by itself, so that it can be reduced in weight and size.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범 위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.Although the embodiments of the present invention have been described above, those skilled in the art can add, change, delete, or add components within the scope not departing from the spirit of the present invention described in the claims. Various modifications and changes may be made to the present invention, which will also be included within the scope of the present invention.

Claims (21)

  1. 제1 전극; a first electrode;
    상기 제1 전극에 대향하는 제2 전극;a second electrode facing the first electrode;
    상기 제1 및 제2 전극 사이에 배치된 전해질; 및an electrolyte disposed between the first and second electrodes; and
    상기 제1 전극 상에 형성되어 광을 흡수하고, 양이온을 저장/방출하는 광활성물질을 포함하고, A photoactive material formed on the first electrode to absorb light and store/release positive ions;
    상기 광활성물질은 카르보닐 화합물을 포함하는 페로브스카이트 구조의 화합물인 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The photoactive material is a solar battery integrated device, characterized in that the compound of the perovskite structure containing a carbonyl compound.
  2. 제1항에 있어서,According to claim 1,
    상기 전해질은, 고체전해질 및 액체전해질 중 어느 하나로 구비되고,The electrolyte is provided with any one of a solid electrolyte and a liquid electrolyte,
    상기 전해질이 액체전해질인 경우, 상기 제1 전극 및 상기 제2 전극 사이를 분리하는 세퍼레이터를 더 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.When the electrolyte is a liquid electrolyte, the solar battery-integrated device further comprises a separator separating the first electrode and the second electrode.
  3. 제1항에 있어서, According to claim 1,
    상기 광활성물질은 하기 화학식I 및 II 중 어느 하나를 만족하는 것을 특징으로 하는 배터리 일체형 디바이스.The photoactive material is a battery-integrated device, characterized in that it satisfies any one of the following formulas I and II.
    (화학식 I)(Formula I)
    ANA'1-NBX3 A N A' 1-N BX 3
    (상기 화학식 I에서, N은 0<N<1 인 실수이며, 상기 A는 유기암모늄이온, 상기 B는 금속이온, 상기 X는 할라이드이온이고, 상기 A'는 상기 A와 치환된 카르보닐화합물이다.)(In Formula I, N is a real number with 0<N<1, A is an organic ammonium ion, B is a metal ion, X is a halide ion, and A' is a carbonyl compound substituted with A .)
    (화학식II)(Formula II)
    (A')2(A)n-1BnX3n+1 (A') 2 (A) n-1 B n X 3n+1
    (상기 화학식 II에서, N은 0<n<1 인 정수이며, 상기 A는 유기암모늄이온, 상기 B는 금속이온, 상기 X는 할라이드이온이고, 상기 A'는 상기 A와 치환된 카르보닐화합물이다.)(In Formula II, N is an integer of 0<n<1, A is an organic ammonium ion, B is a metal ion, X is a halide ion, and A' is a carbonyl compound substituted with A .)
  4. 제3항에 있어서,According to claim 3,
    상기 A는 메틸암모늄(Methylammonium), 포르마미디늄(Formamidinium), 페닐아민(Phenylamine, PA), 페닐메틸아민(Phenylmethylamine, PMA), 페닐에틸아민(Phenylethylamine, PEA), 세슘(Cesium, Cs) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이고,A is methylammonium, formamidinium, phenylamine (PA), phenylmethylamine (PMA), phenylethylamine (PEA), cesium (Cs) and A material selected from the group consisting of mixtures thereof,
    상기 B는 납(Pb2+), 주석(Sn2+), 게르마늄(Ge2+), 구리(Cu2+), 니켈(Ni2+), 코발트(Co2+), 철(Fe2+), 망간(Mn2+), 크로뮴(Cr2+), 팔라듐(Pd2+), 카드뮴(Cd2+), 이터븀(Yb2+) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이고, B is lead (Pb2+), tin (Sn2+), germanium (Ge2+), copper (Cu2+), nickel (Ni2+), cobalt (Co2+), iron (Fe2+), manganese (Mn2+), chromium (Cr2+), palladium ( Pd2+), cadmium (Cd2+), ytterbium (Yb2+), and a material selected from the group consisting of mixtures thereof,
    상기 X는 요오드(I-), 브롬(Br-), 염소(Cl-) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질인 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery integrated device, characterized in that X is a material selected from the group consisting of iodine (I-), bromine (Br-), chlorine (Cl-) and mixtures thereof.
  5. 제1항에 있어서,According to claim 1,
    카르보닐화합물은 카르복실레이트, 이미드, 안하이드라이드, 퀴논, 케톤 및 이들의 혼합물로 이루어지는 군으로 선택되는 태양전지 배터리 일체형 디바이스.The carbonyl compound is a solar battery-integrated device selected from the group consisting of carboxylates, imides, anhydrides, quinones, ketones, and mixtures thereof.
  6. 제5항에 있어서, According to claim 5,
    상기 카르보닐화합물은 하기의 화학식 (1) 내지 (12)에서 선택되는 카르복실레이트를 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound comprises a carboxylate selected from the following formulas (1) to (12).
    Figure PCTKR2021015338-appb-I000001
    Figure PCTKR2021015338-appb-I000001
  7. 제5항에 있어서, According to claim 5,
    상기 카르보닐화합물은 하기의 화학식 (13) 내지 (15)에서 선택되는 안하이드레이트를 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound comprises an anhydride selected from the following formulas (13) to (15).
    Figure PCTKR2021015338-appb-I000002
    Figure PCTKR2021015338-appb-I000002
  8. 제5항에 있어서, According to claim 5,
    상기 카르보닐화합물은 하기의 화학식 (16) 내지 (30)에서 선택되는 이미드를 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound includes an imide selected from the following formulas (16) to (30).
    Figure PCTKR2021015338-appb-I000003
    Figure PCTKR2021015338-appb-I000003
    Figure PCTKR2021015338-appb-I000004
    Figure PCTKR2021015338-appb-I000004
  9. 제5항에 있어서, According to claim 5,
    상기 카르보닐화합물은 하기의 화학식 (31) 내지 (37)에서 선택되는 퀴논을 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery integrated device, characterized in that the carbonyl compound comprises a quinone selected from the following formulas (31) to (37).
    Figure PCTKR2021015338-appb-I000005
    Figure PCTKR2021015338-appb-I000005
  10. 제5항에 있어서, According to claim 5,
    상기 카르보닐화합물은 하기의 화학식 (38) 내지 (43)에서 선택되는 케톤을 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound includes a ketone selected from the following formulas (38) to (43).
    Figure PCTKR2021015338-appb-I000006
    Figure PCTKR2021015338-appb-I000006
  11. 제5항에 있어서,According to claim 5,
    상기 카르보닐 화합물은 암모늄기, 아미노기, 히드록시기 및 시아노기에서 선택되는 적어도 하나의 관능기를 더 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The carbonyl compound further comprises at least one functional group selected from an ammonium group, an amino group, a hydroxyl group and a cyano group.
  12. 태양전지 배터리 일체형 디바이스용 광활성물질에 있어서,In the photoactive material for solar cell battery integrated device,
    상기 광활성물질은 카르보닐 화합물을 포함하는 페로브스카이트 구조의 화합물인 것을 특징으로 하는 태양전지 배터리 일체형 디바이스용 광활성물질.The photoactive material is a photoactive material for a solar battery integrated device, characterized in that the compound of the perovskite structure containing a carbonyl compound.
  13. 제12항에 있어서, According to claim 12,
    상기 광활성물질은 하기 화학식I 및 II 중 어느 하나를 만족하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스용 광활성물질.The photoactive material is a photoactive material for a solar cell battery-integrated device, characterized in that it satisfies any one of formulas I and II below.
    (화학식 I)(Formula I)
    ANA'1-NBX3 A N A' 1-N BX 3
    (상기 화학식 I에서, N은 0<N<1 인 실수이며, 상기 A는 유기암모늄이온, 상기 B는 금속이온, 상기 X는 할라이드이온이고, 상기 A'는 상기 A와 치환된 카르보닐화합물이다.)(In Formula I, N is a real number with 0<N<1, A is an organic ammonium ion, B is a metal ion, X is a halide ion, and A' is a carbonyl compound substituted with A .)
    (화학식 II)(Formula II)
    (A')2(A)n-1BnX3n+1 (A') 2 (A) n-1 B n X 3n+1
    (상기 화학식 II에서, N은 0<n<1 인 정수이며, 상기 A는 유기암모늄이온, 상기 B는 금속이온, 상기 X는 할라이드이온이고, 상기 A'는 상기 A와 치환된 카르보닐화합물이다.)(In Formula II, N is an integer of 0<n<1, A is an organic ammonium ion, B is a metal ion, X is a halide ion, and A' is a carbonyl compound substituted with A .)
  14. 제13항에 있어서,According to claim 13,
    상기 A는 메틸암모늄(Methylammonium), 포르마미디늄(Formamidinium), 페닐아민(Phenylamine, PA), 페닐메틸아민(Phenylmethylamine, PMA), 페닐에틸아민(Phenylethylamine, PEA), 세슘(Cesium, Cs) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이고,A is methylammonium, formamidinium, phenylamine (PA), phenylmethylamine (PMA), phenylethylamine (PEA), cesium (Cs) and A material selected from the group consisting of mixtures thereof,
    상기 B는 납(Pb2+), 주석(Sn2+), 게르마늄(Ge2+), 구리(Cu2+), 니켈(Ni2+), 코발트(Co2+), 철(Fe2+), 망간(Mn2+), 크로뮴(Cr2+), 팔라듐(Pd2+), 카드뮴(Cd2+), 이터븀(Yb2+) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질이고, B is lead (Pb2+), tin (Sn2+), germanium (Ge2+), copper (Cu2+), nickel (Ni2+), cobalt (Co2+), iron (Fe2+), manganese (Mn2+), chromium (Cr2+), palladium ( Pd2+), cadmium (Cd2+), ytterbium (Yb2+), and a material selected from the group consisting of mixtures thereof,
    상기 X는 요오드(I-), 브롬(Br-), 염소(Cl-) 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 물질인 것을 특징으로 하는 태양전지 배터리 일체형 디바이스용 광활성물질.Wherein X is a photoactive material for a solar battery integrated device, characterized in that a material selected from the group consisting of iodine (I-), bromine (Br-), chlorine (Cl-) and mixtures thereof.
  15. 제12항에 있어서,According to claim 12,
    카르보닐화합물은 카르복실레이트, 이미드, 안하이드라이드, 퀴논, 케톤 및 이들의 혼합물로 이루어지는 군으로 선택되는 태양전지 배터리 일체형 디바이스용 광활성물질.A photoactive material for solar cell battery-integrated devices in which the carbonyl compound is selected from the group consisting of carboxylates, imides, anhydrides, quinones, ketones, and mixtures thereof.
  16. 제15항에 있어서, According to claim 15,
    상기 카르보닐화합물은 하기의 화학식 (1) 내지 (12)에서 선택되는 카르복실레이트를 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound comprises a carboxylate selected from the following formulas (1) to (12).
    Figure PCTKR2021015338-appb-I000007
    Figure PCTKR2021015338-appb-I000007
  17. 제15항에 있어서, According to claim 15,
    상기 카르보닐화합물은 하기의 화학식 (13) 내지 (15)에서 선택되는 안하이드레이트를 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound comprises an anhydride selected from the following formulas (13) to (15).
    Figure PCTKR2021015338-appb-I000008
    Figure PCTKR2021015338-appb-I000008
  18. 제15항에 있어서, According to claim 15,
    상기 카르보닐화합물은 하기의 화학식 (16) 내지 (30)에서 선택되는 이미드를 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound includes an imide selected from the following formulas (16) to (30).
    Figure PCTKR2021015338-appb-I000009
    Figure PCTKR2021015338-appb-I000009
    Figure PCTKR2021015338-appb-I000010
    Figure PCTKR2021015338-appb-I000010
  19. 제15항에 있어서, According to claim 15,
    상기 카르보닐화합물은 하기의 화학식 (31) 내지 (37)에서 선택되는 퀴논을 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The carbonyl compound comprises a quinone selected from Formulas (31) to (37) below.
    Figure PCTKR2021015338-appb-I000011
    Figure PCTKR2021015338-appb-I000011
  20. 제15항에 있어서, According to claim 15,
    상기 카르보닐화합물은 하기의 화학식 (38) 내지 (43)에서 선택되는 케톤을 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The solar cell battery-integrated device, characterized in that the carbonyl compound includes a ketone selected from the following formulas (38) to (43).
    Figure PCTKR2021015338-appb-I000012
    Figure PCTKR2021015338-appb-I000012
  21. 제15항에 있어서,According to claim 15,
    상기 카르보닐 화합물은 암모늄기, 아미노기, 히드록시기 및 시아노기에서 선택되는 적어도 하나의 관능기를 더 포함하는 것을 특징으로 하는 태양전지 배터리 일체형 디바이스.The carbonyl compound further comprises at least one functional group selected from an ammonium group, an amino group, a hydroxyl group and a cyano group.
PCT/KR2021/015338 2021-10-28 2021-10-28 Solar cell battery-integrated device and light absorption storage layer for solar cell battery-integrated device WO2023074950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0145641 2021-10-28
KR1020210145641A KR102596109B1 (en) 2021-10-28 2021-10-28 Photo-rechargeable battery and light absobing layer for photo-rechargeable battery

Publications (1)

Publication Number Publication Date
WO2023074950A1 true WO2023074950A1 (en) 2023-05-04

Family

ID=86158166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015338 WO2023074950A1 (en) 2021-10-28 2021-10-28 Solar cell battery-integrated device and light absorption storage layer for solar cell battery-integrated device

Country Status (2)

Country Link
KR (1) KR102596109B1 (en)
WO (1) WO2023074950A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067586A (en) * 2007-01-16 2008-07-21 에스케이에너지 주식회사 Dye sensitized solar cell with separation membrane and method thereof
JP2014049551A (en) * 2012-08-30 2014-03-17 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
JP2017069533A (en) * 2015-09-30 2017-04-06 国立大学法人九州大学 Blend, functional layer, photoelectric conversion element and perovskite stabilizer
KR102080729B1 (en) * 2018-09-20 2020-02-24 한국에너지기술연구원 Method of manufacturing uniform perovskite layer and solar cell with the perovskite layer and the same using
KR102231326B1 (en) * 2020-09-07 2021-03-24 한국전자기술연구원 Photo-rechargeable battery and method of fabricating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067586A (en) * 2007-01-16 2008-07-21 에스케이에너지 주식회사 Dye sensitized solar cell with separation membrane and method thereof
JP2014049551A (en) * 2012-08-30 2014-03-17 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
JP2017069533A (en) * 2015-09-30 2017-04-06 国立大学法人九州大学 Blend, functional layer, photoelectric conversion element and perovskite stabilizer
KR102080729B1 (en) * 2018-09-20 2020-02-24 한국에너지기술연구원 Method of manufacturing uniform perovskite layer and solar cell with the perovskite layer and the same using
KR102231326B1 (en) * 2020-09-07 2021-03-24 한국전자기술연구원 Photo-rechargeable battery and method of fabricating the same

Also Published As

Publication number Publication date
KR20230061637A (en) 2023-05-09
KR102596109B1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
Luo et al. Recent progress on integrated energy conversion and storage systems
US20090146604A1 (en) Complex lithium secondary battery and electronic device employing the same
Zhao et al. Nanogenerator-based self-charging energy storage devices
WO2015152637A1 (en) Battery pack comprising tension bar
WO2012033313A2 (en) Battery pack with high output and large capacity
WO2012099321A1 (en) Electrolyte for an electrochemical device, method for manufacturing same, and electrochemical device including same
WO2016032092A1 (en) Battery module
WO2011159083A2 (en) Electrolyte for an electrochemical device, method for preparing same, and electrochemical device comprising same
WO2014137112A1 (en) Battery cell comprising stepped structure
WO2015141920A1 (en) Battery cell having asymmetric and indented structure
KR102231326B1 (en) Photo-rechargeable battery and method of fabricating the same
WO2017213344A1 (en) Battery module comprising buffering and cooling member having porous structure
WO2018097455A1 (en) Electrode for secondary battery including electrode protection layer
WO2016056776A1 (en) Battery cell including battery case formed in shape corresponding to electrode assembly having step structure
WO2023074950A1 (en) Solar cell battery-integrated device and light absorption storage layer for solar cell battery-integrated device
WO2015105303A1 (en) Battery cell comprising electrode assembly coated with inert particles
WO2020171376A1 (en) Unit cell and manufacturing method therefor
WO2018030835A1 (en) Rechargeable battery
WO2021075832A1 (en) Cylindrical battery and method for manufacturing cylindrical battery
WO2021066360A1 (en) Cylindrical battery and battery pack including same
WO2021177681A1 (en) Electrode assembly and method for manufacturing same
JP7161504B2 (en) cell unit
WO2019009637A1 (en) Portable charger
KR102556551B1 (en) Photo-rechargeable battery and hole and electron transfer layer for photo-rechargeable battery
KR102653690B1 (en) Photo-rechargeable battery and method of fabricating the same