WO2023074923A1 - Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same - Google Patents

Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same Download PDF

Info

Publication number
WO2023074923A1
WO2023074923A1 PCT/KR2021/015048 KR2021015048W WO2023074923A1 WO 2023074923 A1 WO2023074923 A1 WO 2023074923A1 KR 2021015048 W KR2021015048 W KR 2021015048W WO 2023074923 A1 WO2023074923 A1 WO 2023074923A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
robot
metal layer
high rigidity
laminated
Prior art date
Application number
PCT/KR2021/015048
Other languages
French (fr)
Korean (ko)
Inventor
남정수
김태곤
김성현
이석우
신강우
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2023074923A1 publication Critical patent/WO2023074923A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/0055Cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/02Boring bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0019End effectors other than grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0008Balancing devices
    • B25J19/0016Balancing devices using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers

Definitions

  • the present invention relates to a robot spindle adapter for high rigidity and vibration damping, and more particularly, a robot spindle adapter for high rigidity and vibration damping, which is manufactured to enhance rigidity and prevent vibration of robot tool work, and machine work having the same It's about robots.
  • machine tools are used for the purpose of processing metal workpieces into desired shapes and dimensions using appropriate tools by various cutting or non-cutting processing methods, such as CNC (Computerized Numerical Control) lathes or semi-automatic machines.
  • CNC Computerized Numerical Control
  • Semi-automatic machines There are types such as NC machines or machining centers.
  • the articulated robot has the advantage of being able to operate flexibly, it has the disadvantage of lower absolute accuracy and repetition accuracy than machine tools. Structural vibration of the tool by the cutting force of
  • An object of the present invention to solve the above problems is to provide a structural response using 3D printing technology to the end effector of an articulated robot to reduce vibration and strengthen structure during cutting, so that it can be applied to high-speed machining It is possible to provide a high-rigidity and vibration-damping robot spindle adapter capable of increasing cutting precision, stability, and productivity, and a machining robot equipped with the same.
  • the adapter body to which the spindle of the robot arm is coupled and a metal-laminated damper located at a central portion of the adapter body and in contact with the spindle, the metal-laminated damper being provided by stacking metal, wherein the metal-laminated damper is formed by 3D printing.
  • the metal-laminated damping unit may be provided in a disk or spherical shape.
  • the metal-laminated damping unit may include a first metal layer inclined outward from a central portion; and a second metal layer coupled to the first metal layer, and the first metal layer and the second metal layer may be alternately disposed.
  • the first metal layer includes a plurality of inclined bars arranged radially inclined from a central portion
  • the second metal layer includes an edge bar interconnecting outer sides of the inclined bars.
  • a connection bar vertically interconnecting the central portions of the metal layers and the second metal layers may be further included.
  • the metal-laminated damper may include at least one of a honeycomb structure and a stacked organic structure.
  • the metal-laminated damping unit may have a negative Poisson's ratio that contracts when compressed and expands when stretched.
  • a non-metal layer surrounding the metal-laminated damping unit may be further included.
  • the non-metal layer may include a graphene-carbon nanotube structure.
  • the effect of the present invention according to the configuration as described above is applicable to high-speed machining by providing a structural response using 3D printing technology to the end effector of an articulated robot to reduce vibration and strengthen the structure generated during cutting, To provide a high-rigidity and vibration-damping robot spindle adapter capable of increasing cutting precision, stability, and productivity, and a machining robot equipped with the same.
  • FIG. 1 is a front view of a robot spindle adapter for high rigidity and vibration damping installed on a robot arm according to an embodiment of the present invention.
  • Figure 2 is a right side view of Figure 1;
  • FIG. 3 is a metal-laminated attenuator of FIG. 2 and is an exemplary view of a spherical three-dimensional Oggetic structure.
  • FIG. 4 is a detailed view of the metal-laminated damper of FIG. 3 .
  • FIG. 5 is a front view in which a non-metal layer is disposed in the metal-laminated attenuator of FIG. 2;
  • FIG. 6 is a graph showing a change in vibration frequency before and after application of a robot spindle adapter for high stiffness and vibration damping according to an embodiment of the present invention.
  • the adapter body to which the spindle of the robot arm is coupled and a metal-laminated damper located at a central portion of the adapter body and in contact with the spindle, the metal-laminated damper being provided by stacking metal, wherein the metal-laminated damper is formed by 3D printing.
  • FIG. 1 is a front view of a robot spindle adapter for high rigidity and vibration damping according to an embodiment of the present invention installed on a robot arm
  • FIG. 2 is a right side view of FIG. 1
  • FIG. 3 is a metal laminated damping unit of FIG. It is an exemplary diagram of a spherical three-dimensional organic structure.
  • a robot spindle adapter 110 for high rigidity and vibration damping includes an adapter body 111 to which a spindle 101 of a robot arm 100 is coupled, and a metal-laminated attenuator 120 located at the center of the adapter body 111, in contact with the spindle 101, and provided by stacking metal.
  • An adapter 110 is installed in a spindle 101 to which a cutting tool for machining is fixed to an end portion of the robot arm 100 of the machining robot.
  • the robot arm 100 has a structure that has flexibility in movement compared to machine tools, and is easily affected by vibration and shock generated from a cutting tool during machining.
  • the adapter 110 serves to block or attenuate shock and vibration generated from the cutting tool from being transferred to the end of the robot arm 100.
  • the adapter body 111 attenuates vibration transmitted from the spindle 101 to the robot arm 100 side or vice versa by providing a metal-laminated damping unit 120 for damping vibration at the center where the spindle 101 is coupled and brought into contact.
  • a porous net structure formed by 3D printing may be used as the metal laminate damping unit 120 .
  • the porous net structure of the metal-laminated damping unit 120 absorbs vibrations generated by the cutting tool internally, converts them into heat, and releases them, thereby canceling them out.
  • the metal-laminated damping unit 120 may be provided in a disk or spherical shape.
  • the metal-laminated damping unit 120 is accommodated in the adapter body 111 and has a structure in contact with the inner wall of the adapter body 111 in a circular or spherical shape.
  • the circular or spherical contact creates a uniform contact structure of the metal-laminated damping unit 120 with the inner wall of the adapter body 111 and provides a structure for canceling micro-vibration of the opposite direction on the inner wall of the circular contact.
  • FIG. 4 is a detailed view of the metal-laminated damper of FIG. 3 .
  • the metal-laminated damping unit 120 is a spherical three-dimensional Oggetic structure, the first metal layer 121 inclined outward from the central portion, and coupled to the first metal layer 121. It includes a second metal layer 125, and the first metal layer 121 and the second metal layer 125 may be alternately disposed.
  • the first metal layer 121 and the second metal layer 125 have an isotropic structure and may have a honeycomb structure or an organic structure.
  • the first metal layer 121 when provided in an oggetic structure, looking at the enlarged structure, the first metal layer 121 includes a plurality of slanted bars 122 radially inclined from the central portion, and the second metal layer 125 is slanted.
  • a rim bar 126 interconnecting outer sides of the bars 122 may be included, and central portions of the first metal layers 121 and the second metal layer 125 may be connected vertically by a connecting bar 128.
  • the organic structure of the metal-laminated damping unit 120 may be implemented to provide a negative Poisson's ratio, which contracts when compressed and expands when stretched. This negative Poisson's ratio is used to increase the performance of vibration damping by providing elastic deformation opposite to the general structure.
  • a negative Poisson's ratio structure refers to a structure in which a material contracts in a direction perpendicular to a load when placed in a contraction condition and expands in a tension condition due to the characteristics of the structural shape, not the physical properties of the material. Since this negative Poisson's ratio structure was proposed by Lakes (1987), it has been developed in various forms.
  • the Oggetic structure not only improves overall stiffness by increasing the amount of strain energy absorbed per unit mass, but also increases the area of the connection line to alleviate stress concentration, which can be expected to increase durability. As it forms a three-dimensional structure, it is more It may provide improved spring and damping.
  • FIG. 5 is a front view in which a non-metal layer is disposed in the metal-laminated attenuator of FIG. 2;
  • the adapter 110 may further include a non-metal layer 130 surrounding the metal-laminated damping unit 120 .
  • the non-metal layer 130 is an outer shell structure that blocks transmission of vibration between the inner wall portion of the adapter body 111 and the metal-laminated damping portion 120, and may include a graphene-carbon nanotube structure.
  • a graphene-carbon nanotube nanostructure is a composite material of graphene and carbon nanotubes, and has advantages of both carbon nanotubes and graphene.
  • Such a graphene-carbon nanotube nanostructure can further improve damping efficiency by rapidly transferring heat generated in the structure to the outside while additional bending and shear stresses are generated in the structure where vibration occurs. That is, since the graphene-carbon nanotube structure forms a three-dimensional structure, it can provide more improved spring and damping.
  • the graphene-carbon nanotube structure may be made of a composition mixed with polyurethane, coated or adhered to the inside of the adapter body 111, and may also be provided by being coated on the outer surface of the metal-laminated damping unit 120.
  • FIG. 6 is a graph showing a change in vibration frequency before and after application of a robot spindle adapter for high stiffness and vibration damping according to an embodiment of the present invention.
  • the line expressing the decibels according to the frequency before application of the spindle 101 of the vibration reducing spindle adapter 110 is TF1
  • the line expressing the decibels according to the frequency after application of the spindle 101 of the vibration reducing spindle adapter 110 The line is TF2.
  • TF1 is located above TF2 at 0 decibels and 0 hertz from the origin.
  • TF1 clearly shows a higher decibel than TF2 up to 1000 Hz as the vibration increases. Moreover, the difference in decibels representing the level of noise between 100Hz and 1000Hz vibrations appears larger.
  • a robot arm 100 and the above-described robot spindle adapter 110 for high rigidity and vibration damping installed at the end of the robot arm 100 are included.
  • a machining robot that does may be provided.
  • the above-mentioned robot spindle 101 adapter 110 for vibration damping is mounted between the spindle 101 and the end part of the robot arm 100, and vibration reduction and structural reinforcement generated during cutting are achieved. It can be applied to high-speed machining by providing it, and has the advantage of increasing cutting precision, stability, and productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

One embodiment of the present invention provides a robot spindle adapter for high rigidity and vibration damping. A robot spindle adapter for high rigidity and vibration damping, according to an embodiment of the present invention, comprises: an adapter body to which a spindle of a robot arm is coupled; and a metal-laminated damping unit provided in the central portion of the adapter body and in contact with the spindle, the metal-laminated damping unit being formed by laminating a metal, wherein the metal-laminated damping unit is formed by means of 3D printing.

Description

고강성 및 진동 감쇠용 로봇 스핀들 어댑터 및 이를 구비한 기계 공작 로봇Robot spindle adapter for high rigidity and vibration damping and machining robot equipped with the same
본 발명은 고강성 및 진동 감쇠용 로봇 스핀들 어댑터에 관한 것으로, 더욱 상세하게는, 로봇 공구 작업의 강성 강화 및 진동 방지가 가능하게 제작되는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터 및 이를 구비한 기계 공작 로봇에 관한 것이다.The present invention relates to a robot spindle adapter for high rigidity and vibration damping, and more particularly, a robot spindle adapter for high rigidity and vibration damping, which is manufactured to enhance rigidity and prevent vibration of robot tool work, and machine work having the same It's about robots.
일반적으로, 공작 기계는 각종 절삭 가공방법 또는 비절삭 가공방법으로 금속의 공작물을 적당한 공구를 이용하여 원하는 형상 및 치수로 가공할 목적으로 사용하는 것으로서, 수치제어(CNC, Computerized Numerical Control) 선반이나 반자동 타입인 NC머신 또는 머시닝 센터 등이 있다.In general, machine tools are used for the purpose of processing metal workpieces into desired shapes and dimensions using appropriate tools by various cutting or non-cutting processing methods, such as CNC (Computerized Numerical Control) lathes or semi-automatic machines. There are types such as NC machines or machining centers.
최근에는 일반적인 공작 기계를 대신하여 로봇 암의 엔드부에 절삭 공구를 설치한 다관절 로봇이 등장하고 있다. 이러한 다관절 로봇은 엔드 이펙터로서 절삭 공구를 사용하게 되므로, 더 복잡한 형상이나 세밀한 부분 및 여러 부분을 유연하게 가공 처리할 수 있는 장점이 있다. Recently, an articulated robot in which a cutting tool is installed at the end of a robot arm instead of a general machine tool has appeared. Since such an articulated robot uses a cutting tool as an end effector, it has the advantage of being able to flexibly process more complex shapes, detailed parts, and various parts.
그러나, 다관절 로봇은 유연하게 동작할 수 있는 장점이 있지만, 공작 기계에 비해 절대적 정확도와 반복 정확도가 떨어지는 단점이 있으며, 특히 다관절 작동 구조가 공작 기계에 비해 강성이 매우 낮아서 가공 중에 발생하는 공구의 절삭력에 의한 공구의 구조적인 진동이 발생한다.However, although the articulated robot has the advantage of being able to operate flexibly, it has the disadvantage of lower absolute accuracy and repetition accuracy than machine tools. Structural vibration of the tool by the cutting force of
<선행기술문헌><Prior art literature>
대한한국 등록특허 제10-1917269호Korean Registered Patent No. 10-1917269
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 3D 프린팅 기술을 적용한 구조적인 대응을 다관절 로봇의 엔드 이펙터에 마련하여 절삭 가공 중에 발생하는 진동 저감 및 구조 강화를 제공함으로써 고속 가공에 적용이 가능하며, 절삭 정밀도와 안정성 및 생산성을 높일 수 있는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터 및 이를 구비한 기계 공작 로봇을 제공하는 것이다.An object of the present invention to solve the above problems is to provide a structural response using 3D printing technology to the end effector of an articulated robot to reduce vibration and strengthen structure during cutting, so that it can be applied to high-speed machining It is possible to provide a high-rigidity and vibration-damping robot spindle adapter capable of increasing cutting precision, stability, and productivity, and a machining robot equipped with the same.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the above-mentioned technical problem, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. There will be.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은, 로봇 암의 스핀들이 결합되는 어댑터 본체; 및 상기 어댑터 본체의 중앙부에 위치하여 상기 스핀들과 접촉되되, 금속이 적층되어 마련되는 금속적층 감쇠부를 포함하되, 상기 금속적층 감쇠부는, 3D 프린팅으로 형성되는 것을 특징으로 한다.The configuration of the present invention for achieving the above object, the adapter body to which the spindle of the robot arm is coupled; and a metal-laminated damper located at a central portion of the adapter body and in contact with the spindle, the metal-laminated damper being provided by stacking metal, wherein the metal-laminated damper is formed by 3D printing.
본 발명의 실시 예에 있어서, 상기 금속적층 감쇠부는, 원판 또는 구형으로 마련될 수 있다.In an embodiment of the present invention, the metal-laminated damping unit may be provided in a disk or spherical shape.
본 발명의 실시 예에 있어서, 상기 금속적층 감쇠부는, 중앙부에서 외측으로 경사진 제1 금속층; 및 상기 제1 금속층에 상에 결합되는 제2 금속층을 포함하며, 상기 제1 금속층과 제2 금속층이 교대로 배치될 수 있다.In an embodiment of the present invention, the metal-laminated damping unit may include a first metal layer inclined outward from a central portion; and a second metal layer coupled to the first metal layer, and the first metal layer and the second metal layer may be alternately disposed.
본 발명의 실시 예에 있어서, 상기 제1 금속층은 중앙부에서 방사상으로 경사 배치된 복수의 경사 바들을 포함하며, 상기 제2 금속층은 상기 경사 바들의 외측을 상호 연결하는 테두리 바를 포함하되, 상기 제1 금속층들의 중앙부와 제2 금속층들을 상하로 상호 연결하는 연결 바를 더 포함할 수 있다.In an embodiment of the present invention, the first metal layer includes a plurality of inclined bars arranged radially inclined from a central portion, and the second metal layer includes an edge bar interconnecting outer sides of the inclined bars. A connection bar vertically interconnecting the central portions of the metal layers and the second metal layers may be further included.
본 발명의 실시 예에 있어서, 상기 금속적층 감쇠부는, 허니컴 및 적층된 오그제틱 구조 중 하나 이상을 포함할 수 있다.In an embodiment of the present invention, the metal-laminated damper may include at least one of a honeycomb structure and a stacked organic structure.
본 발명의 실시 예에 있어서, 상기 금속적층 감쇠부는, 압축시 수축하며 인장시 팽창하는 음의 포아송비를 가질 수 있다.In an embodiment of the present invention, the metal-laminated damping unit may have a negative Poisson's ratio that contracts when compressed and expands when stretched.
본 발명의 실시 예에 있어서, 상기 금속적층 감쇠부를 감싸는 비금속층을 더 포함할 수 있다.In an embodiment of the present invention, a non-metal layer surrounding the metal-laminated damping unit may be further included.
본 발명의 실시 예에 있어서, 상기 비금속층은 그래핀-탄소나노튜브 구조체를 포함할 수 있다.In an embodiment of the present invention, the non-metal layer may include a graphene-carbon nanotube structure.
본 발명의 다른 구성은, 로봇 암; 및 상기 로봇 암의 엔드부에 설치되는 전술한 상기 고강성 및 진동 감쇠용 로봇 스핀들 어댑터를 포함하는 것을 특징으로 한다.Another configuration of the present invention, the robot arm; and the above-described robot spindle adapter for high rigidity and vibration damping installed at an end portion of the robot arm.
상기와 같은 구성에 따른 본 발명의 효과는, 3D 프린팅 기술을 적용한 구조적인 대응을 다관절 로봇의 엔드 이펙터에 마련하여 절삭 가공 중에 발생하는 진동 저감 및 구조 강화를 제공함으로써 고속 가공에 적용이 가능하며, 절삭 정밀도와 안정성 및 생산성을 높일 수 있는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터 및 이를 구비한 기계 공작 로봇을 제공한다.The effect of the present invention according to the configuration as described above is applicable to high-speed machining by providing a structural response using 3D printing technology to the end effector of an articulated robot to reduce vibration and strengthen the structure generated during cutting, To provide a high-rigidity and vibration-damping robot spindle adapter capable of increasing cutting precision, stability, and productivity, and a machining robot equipped with the same.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the detailed description of the present invention or the configuration of the invention described in the claims.
도 1은 본 발명의 일 실시 예에 따른 고강성 및 진동 감쇠용 로봇 스핀들 어댑터가 로봇 암에 설치된 정면도이다.1 is a front view of a robot spindle adapter for high rigidity and vibration damping installed on a robot arm according to an embodiment of the present invention.
도 2는 도 1의 우측면도이다.Figure 2 is a right side view of Figure 1;
도 3은 도 2의 금속적층 감쇠부로서, 구형상 3차원 오그제틱 구조의 예시도이다.FIG. 3 is a metal-laminated attenuator of FIG. 2 and is an exemplary view of a spherical three-dimensional Oggetic structure.
도 4는 도 3의 금속적층 감쇠부의 상세도이다.FIG. 4 is a detailed view of the metal-laminated damper of FIG. 3 .
도 5는 도 2의 금속적층 감쇠부에 비금속층이 배치된 정면도이다.FIG. 5 is a front view in which a non-metal layer is disposed in the metal-laminated attenuator of FIG. 2;
도 6은 본 발명의 일 실시 예에 따른 고강성 및 진동 감쇠용 로봇 스핀들 어댑터의 적용 전과 적용 후의 진동 주파수 변화를 나타낸 그래프이다.6 is a graph showing a change in vibration frequency before and after application of a robot spindle adapter for high stiffness and vibration damping according to an embodiment of the present invention.
본 발명에 따른 가장 바람직한 일 실시예는, 로봇 암의 스핀들이 결합되는 어댑터 본체; 및 상기 어댑터 본체의 중앙부에 위치하여 상기 스핀들과 접촉되되, 금속이 적층되어 마련되는 금속적층 감쇠부를 포함하되, 상기 금속적층 감쇠부는, 3D 프린팅으로 형성되는 것을 특징으로 한다.One most preferred embodiment according to the present invention, the adapter body to which the spindle of the robot arm is coupled; and a metal-laminated damper located at a central portion of the adapter body and in contact with the spindle, the metal-laminated damper being provided by stacking metal, wherein the metal-laminated damper is formed by 3D printing.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시 예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention can be implemented in many different forms, and therefore is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다. Throughout the specification, when a part is said to be "connected (connected, contacted, combined)" with another part, this is not only "directly connected", but also "indirectly connected" with another member in between. "Including cases where In addition, when a part "includes" a certain component, it means that it may further include other components without excluding other components unless otherwise stated.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as "include" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
이하 첨부된 도면을 참고하여 본 발명에 대하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시 예에 따른 고강성 및 진동 감쇠용 로봇 스핀들 어댑터가 로봇 암에 설치된 정면도이며, 도 2는 도 1의 우측면도이고, 도 3은 도 2의 금속적층 감쇠부로서, 구형상 3차원 오그제틱 구조의 예시도이다.1 is a front view of a robot spindle adapter for high rigidity and vibration damping according to an embodiment of the present invention installed on a robot arm, FIG. 2 is a right side view of FIG. 1, and FIG. 3 is a metal laminated damping unit of FIG. It is an exemplary diagram of a spherical three-dimensional organic structure.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 고강성 및 진동 감쇠용 로봇 스핀들 어댑터(110)는, 로봇 암(100)의 스핀들(101)이 결합되는 어댑터 본체(111), 및 어댑터 본체(111)의 중앙부에 위치하여 스핀들(101)과 접촉되며 금속이 적층되어 마련되는 금속적층 감쇠부(120)를 포함한다.1 to 3, a robot spindle adapter 110 for high rigidity and vibration damping according to an embodiment of the present invention includes an adapter body 111 to which a spindle 101 of a robot arm 100 is coupled, and a metal-laminated attenuator 120 located at the center of the adapter body 111, in contact with the spindle 101, and provided by stacking metal.
기계 공작 로봇의 로봇 암(100)의 엔드부에는 기계 가공을 위한 절삭 공구가 고정되는 스핀들(101)이 어댑터(110)가 설치된다.An adapter 110 is installed in a spindle 101 to which a cutting tool for machining is fixed to an end portion of the robot arm 100 of the machining robot.
로봇 암(100)은 공작기계에 비해 움직임의 유연성이 있는 구조로서, 기계 가공 시에 절삭 공구에서 발생되는 진동 및 충격에 의한 영향을 쉽게 받게 된다.The robot arm 100 has a structure that has flexibility in movement compared to machine tools, and is easily affected by vibration and shock generated from a cutting tool during machining.
본 실시 예에 따른 어댑터(110)는 절삭 공구에서 발생되는 충격과 진동이 로봇 암(100)의 엔드부 측으로 전달되는 것을 차단하거나 감쇠하는 역할을 하게 된다.The adapter 110 according to the present embodiment serves to block or attenuate shock and vibration generated from the cutting tool from being transferred to the end of the robot arm 100.
어댑터 본체(111)는 진동을 감쇠하기 위한 금속적층 감쇠부(120)를 스핀들(101)이 결합되어 접촉되는 중앙부에 구비함으로써 스핀들(101)에서 로봇 암(100) 측으로 또는 반대로 전달되는 진동을 감쇠하게 된다.The adapter body 111 attenuates vibration transmitted from the spindle 101 to the robot arm 100 side or vice versa by providing a metal-laminated damping unit 120 for damping vibration at the center where the spindle 101 is coupled and brought into contact. will do
금속적층 감쇠부(120)로는, 3D 프린팅으로 형성되는 다공성 그물구조가 사용될 수 있다.A porous net structure formed by 3D printing may be used as the metal laminate damping unit 120 .
금속적층 감쇠부(120)의 다공성 그물 구조는 절삭 공구에서 발생되는 진동을 자체적으로 내부에서 흡수하여 열로 변환시켜 방출함으로써 상쇄하게 된다.The porous net structure of the metal-laminated damping unit 120 absorbs vibrations generated by the cutting tool internally, converts them into heat, and releases them, thereby canceling them out.
금속적층 감쇠부(120)는, 원판 또는 구형으로 마련될 수 있다.The metal-laminated damping unit 120 may be provided in a disk or spherical shape.
금속적층 감쇠부(120)는 어댑터 본체(111)의 수용 배치되어 어댑터 본체(111)의 내벽에 원형 또는 구형으로 접촉되는 구조이다. 원형 또는 구형 접촉은 어댑터 본체(111)의 내벽으로 금속적층 감쇠부(120)의 균일한 접촉 구조를 만들면서 원형 접촉의 내벽부에서 방향이 반대되는 미세 진동을 상쇄시키는 구조를 제공하게 된다.The metal-laminated damping unit 120 is accommodated in the adapter body 111 and has a structure in contact with the inner wall of the adapter body 111 in a circular or spherical shape. The circular or spherical contact creates a uniform contact structure of the metal-laminated damping unit 120 with the inner wall of the adapter body 111 and provides a structure for canceling micro-vibration of the opposite direction on the inner wall of the circular contact.
도 4는 도 3의 금속적층 감쇠부의 상세도이다.FIG. 4 is a detailed view of the metal-laminated damper of FIG. 3 .
도 3과 도 4를 참조하면, 금속적층 감쇠부(120)는 구형상 3차원 오그제틱 구조로서, 중앙부에서 외측으로 경사진 제1 금속층(121), 및 제1 금속층(121)에 상에 결합되는 제2 금속층(125)을 포함하며, 제1 금속층(121)과 제2 금속층(125)이 교대로 배치될 수 있다.Referring to FIGS. 3 and 4, the metal-laminated damping unit 120 is a spherical three-dimensional Oggetic structure, the first metal layer 121 inclined outward from the central portion, and coupled to the first metal layer 121. It includes a second metal layer 125, and the first metal layer 121 and the second metal layer 125 may be alternately disposed.
이러한 제1 금속층(121)과 제2 금속층(125)은 등방성 구조로서, 허니컴 구조 또는 오그제틱 구조일 수 있다.The first metal layer 121 and the second metal layer 125 have an isotropic structure and may have a honeycomb structure or an organic structure.
예를 들어, 오그제틱 구조로 마련되는 경우, 확대 구조를 보면, 제1 금속층(121)은 중앙부에서 방사상으로 경사 배치된 복수의 경사 바(122)들을 포함하며, 제2 금속층(125)은 경사 바(122)들의 외측을 상호 연결하는 테두리 바(126)를 포함하고, 제1 금속층(121)들의 중앙부와 제2 금속층(125)들은 연결 바(128)에 의해 상하로 상호 연결될 수 있다.For example, when provided in an oggetic structure, looking at the enlarged structure, the first metal layer 121 includes a plurality of slanted bars 122 radially inclined from the central portion, and the second metal layer 125 is slanted. A rim bar 126 interconnecting outer sides of the bars 122 may be included, and central portions of the first metal layers 121 and the second metal layer 125 may be connected vertically by a connecting bar 128.
금속적층 감쇠부(120)의 오그제틱 구조는, 압축시 수축하며 인장시 팽창하는 음의 포아송비를 제공하도록 구현될 수 있다. 이러한 음의 포아송비는 일반적인 구조와 반대적인 탄성 변형을 제공하여 진동 감쇠의 성능을 높이는데 사용된다.The organic structure of the metal-laminated damping unit 120 may be implemented to provide a negative Poisson's ratio, which contracts when compressed and expands when stretched. This negative Poisson's ratio is used to increase the performance of vibration damping by providing elastic deformation opposite to the general structure.
양의 포아송 비를 갖는 일반적인 재료의 경우, 수축상태에서는 하중에 수직한 방향으로 재료가 팽창하고, 인장상태에서는 그 반대의 현상이 관찰된다. In the case of a general material with a positive Poisson's ratio, the material expands in the direction perpendicular to the load in the contraction state, and the opposite phenomenon is observed in the tension state.
음의 포아송 비(negative poisson's ratio) 구조는 재료의 물성치가 아닌 구조 형상의 특성으로 인하여 재료가 수축 상황에 놓였을 때 하중에 수직한 방향으로 수축하며, 인장 상황에서 팽창하게 되는 구조를 말한다. 이러한 음의 포아송비 구조는 Lakes(1987)에 의해 제안된 이래로 다양한 형태로 개발되어 왔다.A negative Poisson's ratio structure refers to a structure in which a material contracts in a direction perpendicular to a load when placed in a contraction condition and expands in a tension condition due to the characteristics of the structural shape, not the physical properties of the material. Since this negative Poisson's ratio structure was proposed by Lakes (1987), it has been developed in various forms.
오그제틱 구조는 단위 질량당 변형 에너지 흡수량을 높여 전반적인 강성을 개선시킬 뿐만 아니라, 연결선의 면적을 증대하여 응력 집중현상을 완화하여 내구성의 증가를 기대할 수 있는 구조로서, 3차원적 구조를 형성하므로 더욱 향상된 스프링(spring) 및 댐핑(damping)을 제공할 수 있다.The Oggetic structure not only improves overall stiffness by increasing the amount of strain energy absorbed per unit mass, but also increases the area of the connection line to alleviate stress concentration, which can be expected to increase durability. As it forms a three-dimensional structure, it is more It may provide improved spring and damping.
도 5는 도 2의 금속적층 감쇠부에 비금속층이 배치된 정면도이다.FIG. 5 is a front view in which a non-metal layer is disposed in the metal-laminated attenuator of FIG. 2;
도 5를 참조하면, 본 실시 예에 따른 어댑터(110)는 금속적층 감쇠부(120)를 감싸는 비금속층(130)을 더 포함할 수 있다.Referring to FIG. 5 , the adapter 110 according to the present embodiment may further include a non-metal layer 130 surrounding the metal-laminated damping unit 120 .
비금속층(130)은 어댑터 본체(111)의 내벽부와 금속적층 감쇠부(120) 사이의 진동 전달을 차단하는 외피 구조로서, 그래핀-탄소나노튜브 구조체를 포함할 수 있다.The non-metal layer 130 is an outer shell structure that blocks transmission of vibration between the inner wall portion of the adapter body 111 and the metal-laminated damping portion 120, and may include a graphene-carbon nanotube structure.
그래핀-탄소나노튜브 나노구조체는 그래핀과 탄소나노튜브의 복합 재료로, 탄소나노튜브와 그래핀의 장점을 모두 갖는다.A graphene-carbon nanotube nanostructure is a composite material of graphene and carbon nanotubes, and has advantages of both carbon nanotubes and graphene.
이러한 그래핀-탄소나노튜브 나노구조체는 진동이 발생하고 있는 구조에서 추가의 굽힙 및 전단 응력이 발생함과 동시에 구조체에서 발생되는 열을 외부로 빠르게 전달하여 감쇠 효율을 더욱 향상시킬 수 있다. 즉, 그래핀-탄소나노튜브 구조체는, 3차원적 구조를 형성하므로 더욱 향상된 스프링(spring) 및 댐핑(damping)을 제공할 수 있다.Such a graphene-carbon nanotube nanostructure can further improve damping efficiency by rapidly transferring heat generated in the structure to the outside while additional bending and shear stresses are generated in the structure where vibration occurs. That is, since the graphene-carbon nanotube structure forms a three-dimensional structure, it can provide more improved spring and damping.
그래핀-탄소나노튜브 구조체는 폴리우레탄과 혼합된 조성물로 마련되어 어댑터 본체(111)의 내부에 코팅되거나 접착될 수 있으며, 또한 금속적층 감쇠부(120)의 외면부에 코팅되어 제공될 수 있다.The graphene-carbon nanotube structure may be made of a composition mixed with polyurethane, coated or adhered to the inside of the adapter body 111, and may also be provided by being coated on the outer surface of the metal-laminated damping unit 120.
도 6은 본 발명의 일 실시 예에 따른 고강성 및 진동 감쇠용 로봇 스핀들 어댑터의 적용 전과 적용 후의 진동 주파수 변화를 나타낸 그래프이다.6 is a graph showing a change in vibration frequency before and after application of a robot spindle adapter for high stiffness and vibration damping according to an embodiment of the present invention.
도 6에서 진동 저감형 스핀들 어댑터(110)의 스핀들(101) 적용 전 주파수에 따른 데시벨을 표현한 라인은 TF1이며, 진동 저감형 스핀들 어댑터(110)의 스핀들(101) 적용 후 주파수에 따른 데시벨을 표현한 라인은 TF2이다. TF1은 TF2보다 0데시벨과 0헤르쯔인 원점에서 위에 위치한다.In FIG. 6, the line expressing the decibels according to the frequency before application of the spindle 101 of the vibration reducing spindle adapter 110 is TF1, and the line expressing the decibels according to the frequency after application of the spindle 101 of the vibration reducing spindle adapter 110 The line is TF2. TF1 is located above TF2 at 0 decibels and 0 hertz from the origin.
도 6을 참조하면, TF1은 진동이 커짐에 따른 1000Hz까지 TF2보다 높은 데시벨을 뚜렷하게 나타낸다. 더욱이 100Hz ~ 1000Hz 진동의 소음 정도를 나타내는 데시벨의 차이가 더 크게 나타난다.Referring to FIG. 6, TF1 clearly shows a higher decibel than TF2 up to 1000 Hz as the vibration increases. Moreover, the difference in decibels representing the level of noise between 100Hz and 1000Hz vibrations appears larger.
도 6에 도시된 바와 같이, TF1과 TF2을 비교해서 보면, 본 실시 예에 따른 진동 저감형 스핀들 어댑터(110)가 스핀들(101)에 적용된 후에는, 스핀들(101)이 주로 가동되는 고속 주파수 범위에서 스핀들(101)의 작동에 따른 진동 및 소음이 뚜렷하게 감소됨을 수 있다.As shown in FIG. 6, when comparing TF1 and TF2, after the vibration reducing spindle adapter 110 according to the present embodiment is applied to the spindle 101, the high-speed frequency range in which the spindle 101 is mainly operated Vibration and noise according to the operation of the spindle 101 can be significantly reduced.
한편, 도 1을 참조하면, 본 발명의 다른 실시예 따르면, 로봇 암(100), 및 로봇 암(100)의 엔드부에 설치되는 전술한 고강성 및 진동 감쇠용 로봇 스핀들 어댑터(110)를 포함하는 기계 공작 로봇이 제공될 수 있다.On the other hand, referring to FIG. 1, according to another embodiment of the present invention, a robot arm 100, and the above-described robot spindle adapter 110 for high rigidity and vibration damping installed at the end of the robot arm 100 are included. A machining robot that does may be provided.
이러한 기계 공작 로봇은 전술한 진동 감쇠용 로봇 스핀들(101) 어댑터(110)가 스핀들(101)과 로봇 암(100)의 엔드부 사이에 장착된 것으로서, 절삭 가공 중에 발생하는 진동 저감 및 구조 강화를 제공함으로써 고속 가공에 적용이 가능하며, 절삭 정밀도와 안정성 및 생산성을 높일 수 있는 장점이 있다.In such a machining robot, the above-mentioned robot spindle 101 adapter 110 for vibration damping is mounted between the spindle 101 and the end part of the robot arm 100, and vibration reduction and structural reinforcement generated during cutting are achieved. It can be applied to high-speed machining by providing it, and has the advantage of increasing cutting precision, stability, and productivity.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. The above description of the present invention is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.
<부호의 설명><Description of codes>
100: 로봇 암100: robot arm
101: 스핀들101: spindle
110: 어댑터110: adapter
111: 어댑터 본체111: adapter body
120: 금속적층 감쇠부120: metal laminated attenuator
121: 제1 금속층121: first metal layer
122: 경사 바122: inclined bar
125: 제2 금속층125: second metal layer
126: 테두리 바126: border bar
128: 연결 바128: connecting bar
130: 비금속층130: non-metal layer

Claims (9)

  1. 로봇 암의 스핀들이 결합되는 어댑터 본체; 및An adapter body to which the spindle of the robot arm is coupled; and
    상기 어댑터 본체의 중앙부에 위치하여 상기 스핀들과 접촉되되, 금속이 적층되어 마련되는 금속적층 감쇠부를 포함하되,A metal-laminated damping portion located in the central portion of the adapter body and in contact with the spindle, wherein metal is laminated and provided;
    상기 금속적층 감쇠부는, 3D 프린팅으로 형성되는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.The metal-laminated damping part is a robot spindle adapter for high rigidity and vibration damping, characterized in that formed by 3D printing.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 금속적층 감쇠부는, 원판 또는 구형으로 마련되는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.The metal-laminated damping unit is a robot spindle adapter for high rigidity and vibration damping, characterized in that provided in a disc or spherical shape.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 금속적층 감쇠부는,The metal-laminated damping part,
    중앙부에서 외측으로 경사진 제1 금속층; 및a first metal layer inclined outward from the central portion; and
    상기 제1 금속층에 상에 결합되는 제2 금속층을 포함하며,And a second metal layer coupled to the first metal layer,
    상기 제1 금속층과 제2 금속층이 교대로 배치되는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.Robot spindle adapter for high rigidity and vibration damping, characterized in that the first metal layer and the second metal layer are alternately arranged.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 제1 금속층은 중앙부에서 방사상으로 경사 배치된 복수의 경사 바들을 포함하며,The first metal layer includes a plurality of inclined bars radially inclined at a central portion,
    상기 제2 금속층은 상기 경사 바들의 외측을 상호 연결하는 테두리 바를 포함하되,The second metal layer includes an edge bar interconnecting outer sides of the inclined bars,
    상기 제1 금속층들의 중앙부와 제2 금속층들을 상하로 상호 연결하는 연결 바를 더 포함하는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.The robot spindle adapter for high rigidity and vibration damping, characterized in that it further comprises a connecting bar interconnecting the central portion of the first metal layer and the second metal layer vertically.
  5. 청구항 2에 있어서,The method of claim 2,
    상기 금속적층 감쇠부는, 허니컴 및 적층된 오그제틱 구조 중 하나 이상을 포함하는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.The robot spindle adapter for high rigidity and vibration damping, characterized in that the metal laminate damping unit includes at least one of a honeycomb and a laminated organic structure.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 금속적층 감쇠부는, 압축시 수축하며 인장시 팽창하는 음의 포아송비를 갖는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.The metal-laminated damping part has a negative Poisson's ratio that contracts during compression and expands during tension. The robot spindle adapter for high rigidity and vibration damping.
  7. 청구항 1에 있어서,The method of claim 1,
    상기 금속적층 감쇠부를 감싸는 비금속층을 더 포함하는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.Robot spindle adapter for high rigidity and vibration damping, characterized in that it further comprises a non-metallic layer surrounding the metal-laminated damping unit.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 비금속층은 그래핀-탄소나노튜브 구조체를 포함하는 것을 특징으로 하는 고강성 및 진동 감쇠용 로봇 스핀들 어댑터.The non-metal layer is a graphene-carbon nanotube structure, characterized in that the robot spindle adapter for high rigidity and vibration damping.
  9. 로봇 암; 및robot arm; and
    상기 로봇 암의 엔드부에 설치되는 청구항 1 내지 7 항 중 어느 한 항에 따른 고강성 및 진동 감쇠용 로봇 스핀들 어댑터를 포함하는 것을 특징으로 하는 기계 공작 로봇.A machining robot comprising a robot spindle adapter for high rigidity and vibration damping according to any one of claims 1 to 7 installed at an end portion of the robot arm.
PCT/KR2021/015048 2021-10-25 2021-10-25 Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same WO2023074923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210142339A KR102587555B1 (en) 2021-10-25 2021-10-25 Robot spindle adapter for high rigidity and vibration damping and machine tool robot including the same
KR10-2021-0142339 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023074923A1 true WO2023074923A1 (en) 2023-05-04

Family

ID=86158111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015048 WO2023074923A1 (en) 2021-10-25 2021-10-25 Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same

Country Status (2)

Country Link
KR (1) KR102587555B1 (en)
WO (1) WO2023074923A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009340A (en) * 2015-06-03 2018-01-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Method and apparatus for introducing a borehole into the surface of a fixedly mounted workpiece using a boring tool attached to a multi-jointed arm robot
KR20180040270A (en) * 2016-10-12 2018-04-20 두산공작기계 주식회사 Tool spindle and machine tool inclduing the same
US20190143511A1 (en) * 2017-11-16 2019-05-16 Industrial Technology Research Institute Robot arm processing system and method thereof
KR20200064187A (en) * 2018-11-19 2020-06-08 한국생산기술연구원 Manufacturing method of flexible guide mechanism made of metal and cfrp, and flexible guide mechansim manufactured by the manufacturing method
KR20210004372A (en) * 2019-07-04 2021-01-13 한국과학기술원 Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4340145B2 (en) 2003-12-26 2009-10-07 株式会社日立製作所 Anti-vibration tool holder
SE535054C2 (en) * 2010-03-17 2012-03-27 Sandvik Intellectual Property Milling tools for cutting machining with damping means arranged in the tool body
JP6282210B2 (en) * 2013-11-08 2018-02-21 株式会社神戸製鋼所 Tool holder with anti-vibration means
KR101917269B1 (en) 2017-06-14 2018-11-13 한국항공우주산업주식회사 High speed spindle including flushing device
KR101998163B1 (en) * 2017-10-24 2019-07-10 한국생산기술연구원 Rotary Cutting Tool Having Weight Member
EP3758873B1 (en) * 2018-02-28 2022-04-06 Maq Ab Cutting tool with mass damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009340A (en) * 2015-06-03 2018-01-26 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. Method and apparatus for introducing a borehole into the surface of a fixedly mounted workpiece using a boring tool attached to a multi-jointed arm robot
KR20180040270A (en) * 2016-10-12 2018-04-20 두산공작기계 주식회사 Tool spindle and machine tool inclduing the same
US20190143511A1 (en) * 2017-11-16 2019-05-16 Industrial Technology Research Institute Robot arm processing system and method thereof
KR20200064187A (en) * 2018-11-19 2020-06-08 한국생산기술연구원 Manufacturing method of flexible guide mechanism made of metal and cfrp, and flexible guide mechansim manufactured by the manufacturing method
KR20210004372A (en) * 2019-07-04 2021-01-13 한국과학기술원 Auxetic Porous Structure Based on Graphene and Method of Preparing the Same for Vibration and Shock Energy Dissipation

Also Published As

Publication number Publication date
KR20230059853A (en) 2023-05-04
KR102587555B1 (en) 2023-10-13

Similar Documents

Publication Publication Date Title
CN100464958C (en) Rope-driven redundancy mechanical arm
WO2023074923A1 (en) Robot spindle adapter for high rigidity and vibration damping, and machining robot equipped with same
WO2015122568A1 (en) High load vibration arrestor
WO2018070698A1 (en) Tool spindle and machine tool including same
CN209774704U (en) Buffer device of carrying manipulator
WO2023074922A1 (en) Lightweight tool holder capable of vibration damping, and machine tool having same
CN107044542A (en) Mechanical dust guard pollution abatement equipment
WO2014104431A1 (en) Support pad for drill for processing deep hole
WO2022173122A1 (en) Crane having anti-vibration function
JP3038114B2 (en) Automatic drill change method for drilling machine
CN206958238U (en) Mechanical dust guard pollution abatement equipment
JPWO2004083092A1 (en) Elevator rope grip structure
CN211890912U (en) Damping and buffering device of manipulator
WO2018120095A1 (en) Balancing system for use in industrial robot and industrial robot
CN220719389U (en) Manipulator shock attenuation mount pad
JPS63256389A (en) Oil film damper
CN204628328U (en) A kind of axle fixed mechanism of boring lathe
CN220408466U (en) Vertical workbench tool
WO2017099312A1 (en) Vehicle suspension system
CN215920537U (en) Comprehensive test platform of robot additional shaft system
CN216447330U (en) Coupler for reducing impact force
JPS60172491A (en) Hand device for industrial robot
CN210819628U (en) Industrial robot rotation axis
CN215433759U (en) Combined mounting seat for mechanical arm
CN213575311U (en) Damping base for machining coupler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962549

Country of ref document: EP

Kind code of ref document: A1