WO2023074730A1 - 炭素材料組成物 - Google Patents

炭素材料組成物 Download PDF

Info

Publication number
WO2023074730A1
WO2023074730A1 PCT/JP2022/039891 JP2022039891W WO2023074730A1 WO 2023074730 A1 WO2023074730 A1 WO 2023074730A1 JP 2022039891 W JP2022039891 W JP 2022039891W WO 2023074730 A1 WO2023074730 A1 WO 2023074730A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon material
polyvinyl acetal
acetal resin
material composition
Prior art date
Application number
PCT/JP2022/039891
Other languages
English (en)
French (fr)
Inventor
遼 坂本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202280068023.9A priority Critical patent/CN118076695A/zh
Priority to JP2022568871A priority patent/JPWO2023074730A1/ja
Priority to KR1020247011568A priority patent/KR20240088799A/ko
Publication of WO2023074730A1 publication Critical patent/WO2023074730A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon material composition having excellent fibrous carbon material dispersibility and capable of reducing electrode resistance.
  • fibrous carbon materials such as carbon nanotubes and VGCF are expected to be put to practical use in a wide range of fields such as electronics, because they exhibit excellent electrical properties. For example, it is being studied to add it as a conductive aid to electrodes for secondary batteries and transparent electrodes.
  • a composition dispersed in water or an organic solvent is generally used as the fibrous carbon material.
  • the fibrous carbon material has low solubility and dispersibility, and has a problem that it cannot maintain a stable dispersed state in a solvent.
  • fibrous carbon materials have excellent electrical, thermal, and mechanical properties, they tend to get entangled due to their extremely large aspect ratios, making it difficult to obtain high-performance composite materials that take full advantage of these properties. There is a problem.
  • Patent Document 1 discloses that carbon nanotubes are dispersed by using a carbon nanotube dispersion containing bundled carbon nanotubes, a dispersion medium, and a polyvinyl butyral resin having a weight average molecular weight of more than 50,000. It is stated that the performance can be improved. However, even with such a dispersion, the effect of improving the dispersibility is insufficient, and there is a problem that the conductive properties cannot be sufficiently improved.
  • An object of the present invention is to provide a carbon material composition that is excellent in dispersibility of a fibrous carbon material and capable of reducing electrode resistance.
  • the present disclosure (1) includes a fibrous carbon material, an aqueous solvent, and a polyvinyl acetal resin, wherein the polyvinyl acetal resin has an acetal group content of 40.0 mol% or less, and is measured by NMR.
  • the carbon material composition has a hydrophobic group blocking property of 0.35 or more and 0.80 or less.
  • the present disclosure (2) is the carbon material composition of the present disclosure (1), wherein the polyvinyl acetal resin is an acetalized product of a polyvinyl alcohol resin having a saponification degree of 70.0 mol% or more and 99.9 mol% or less. .
  • the present disclosure (3) is the carbon material composition of the present disclosure (1) or (2), wherein the polyvinyl acetal resin has an average degree of polymerization of 200 or more and 4000 or less.
  • the present disclosure (4) is a carbon material composition in any combination with any of the present disclosures (1) to (3), wherein the polyvinyl acetal resin has an acetal group content of 5.0 mol % or more.
  • the present disclosure (5) is a ratio of the content of the fibrous carbon material, the average fiber diameter of the fibrous carbon material, and the content of the polyvinyl acetal resin (content of the polyvinyl acetal resin / (of the fibrous carbon material A carbon material composition in any combination with any one of (1) to (4) of the present disclosure, wherein the average fiber diameter/content of fibrous carbon material)) is 0.01 or more and 7.00 or less.
  • the present invention will be described in detail below.
  • the present inventors have found that by using a combination of a fibrous carbon material, an aqueous solvent, and a polyvinyl acetal resin having specific properties, the fibrous carbon material has excellent dispersibility and electrode resistance is reduced.
  • the inventors have found that a carbon material composition capable of achieving this can be obtained, and have completed the present invention.
  • a carbon material composition of the present invention contains a fibrous carbon material. By containing the fibrous carbon material, the conductive properties can be improved.
  • Examples of the fibrous carbon material include carbon fibers and carbon nanotubes.
  • Examples of the carbon fiber include PAN-based carbon fiber, pitch-based carbon fiber, cellulose-based carbon fiber, and vapor grown carbon fiber (VGCF).
  • the carbon nanotube is a cylindrical carbon material, and examples thereof include single-walled carbon nanotubes, multi-walled carbon nanotubes, and the like.
  • the average fiber diameter of the fibrous carbon material is preferably 0.40 nm or more, more preferably 0.50 nm or more, preferably 200.0 nm or less, and preferably 150.0 nm or less. more preferred.
  • the average fiber diameter can be measured, for example, by Raman spectroscopy (Raman).
  • the average fiber length of the fibrous carbon material is preferably 0.10 ⁇ m or more, more preferably 0.50 ⁇ m or more, preferably 25.0 ⁇ m or less, and preferably 20.0 ⁇ m or less. more preferred.
  • the average fiber length can be measured, for example, by Raman spectroscopy (Raman).
  • the specific gravity of the fibrous carbon material is preferably 1.0 or more, more preferably 1.3 or more, preferably 2.5 or less, and more preferably 2.3 or less. .
  • the specific gravity can be measured using an electronic hydrometer or the like.
  • the aspect ratio (average fiber length/average fiber diameter) of the fibrous carbon material is preferably 50 or more, more preferably 80 or more, preferably 5000 or less, and preferably 4000 or less. more preferred.
  • the specific surface area of the fibrous carbon material is preferably 8 m 2 /g or more, more preferably 13 m 2 /g or more, preferably 1500 m 2 /g or less, and 1200 m 2 /g or less. It is more preferable to have The specific surface area can be measured, for example, by using a specific surface area measuring device ("ASAP-2000" manufactured by Shimadzu Corporation).
  • the number of layers is preferably 15 or less. Although the lower limit is not particularly limited, one or more layers is preferable. The above number of layers can be confirmed with a transmission electron microscope (TEM) or the like.
  • the ratio of the peak intensity of the G band to the peak intensity of the D band (G/D ratio) of the fibrous carbon material is preferably 60 or less. Although the lower limit is not particularly limited, it is preferably 0.4 or more.
  • the G/D ratio can be measured using Raman spectroscopy.
  • the content of the fibrous carbon material in the carbon material composition of the present invention is preferably 0.05% by weight or more, more preferably 0.10% by weight or more, and 10.0% by weight or less. It is preferably 7.0% by weight or less, more preferably 7.0% by weight or less.
  • the carbon material composition of the present invention contains an aqueous solvent.
  • the aqueous solvent include water, a mixed solvent of water and a hydrophilic solvent, and the like.
  • water or a mixed solvent of water and a hydrophilic solvent such as ethyl alcohol or isopropyl alcohol can be used.
  • the aqueous solvent is a mixed solvent of water and a hydrophilic solvent
  • the content of water in the mixed solvent is preferably 50% by weight or more, more preferably 70% by weight or more, and 90% by weight or less. is preferably
  • the content of the aqueous solvent in the carbon material composition of the present invention is preferably 60.0% by weight or more, more preferably 70.0% by weight or more, and 99.9% by weight or less. is preferred.
  • the carbon material composition of the present invention contains a polyvinyl acetal resin.
  • the polyvinyl acetal resin has an acetal group content of 40.0 mol % or less and a hydrophobic group blocking property measured by NMR of 0.35 or more and 0.80 or less.
  • the polyvinyl acetal resin includes at least a structural unit having an acetal group represented by the following formula (1-1), a structural unit having a hydroxyl group represented by the following formula (1-2), and a structural unit having a hydroxyl group represented by the following formula (1-3) ) preferably has an acetyl group-containing structural unit.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 1 is an alkyl group having 1 to 20 carbon atoms
  • examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group and n-butyl group.
  • the content of the structural unit having an acetal group represented by the formula (1-1) (hereinafter also referred to as "acetal group content”) is 40.0 mol% or less.
  • acetal group content is preferably 5.0 mol % or more, more preferably 7.0 mol % or more, and preferably 35.0 mol % or less.
  • the acetal group of the polyvinyl acetal resin is obtained by acetalizing two hydroxyl groups, so a method of counting two acetalized hydroxyl groups is adopted. to calculate the acetal group weight.
  • the amount of acetal groups can be measured, for example, by NMR.
  • the content of the structural unit having a hydroxyl group represented by the formula (1-2) is preferably 40.0 mol% or more, and 50 It is more preferably 0.0 mol % or more, preferably 94.9 mol % or less, and more preferably 90.0 mol % or less.
  • hydroxyl group content is preferably 40.0 mol% or more, and 50 It is more preferably 0.0 mol % or more, preferably 94.9 mol % or less, and more preferably 90.0 mol % or less.
  • the amount of hydroxyl groups can be measured, for example, by NMR.
  • the content of the structural unit having an acetyl group represented by the formula (1-3) is preferably 0.1 mol% or more. , is more preferably 5.0 mol % or more, preferably 30.0 mol % or less, and more preferably 25.0 mol % or less.
  • acetyl group content is preferably 0.1 mol% or more.
  • the amount of acetyl groups can be measured, for example, by NMR.
  • the above-mentioned polyvinyl acetal resin has a block property of hydrophobic groups of 0.35 or more and 0.80 or less as measured by NMR.
  • the blocking property of the hydrophobic group is preferably 0.35 or more, more preferably 0.40 or more, preferably 0.80 or less, and more preferably 0.75 or less.
  • the blocking property of the hydrophobic group is the total of the peak intensity near 5.1 ppm indicating the degree of randomness of the hydrophobic group measured by NMR and the peak intensity near 4.8 ppm indicating the degree of blocking of the hydrophobic group. It can be obtained from the ratio of peak intensities around 4.8 ppm (peak intensity around 4.8 ppm/[(peak intensity around 5.1 ppm) + (peak intensity around 4.8 ppm)]). NMR can be measured by the method described in Examples below.
  • the hydrophobic group means an acetyl group.
  • the blocking property of the hydrophobic group can be controlled by selecting, for example, polyvinyl alcohol resin as a raw material.
  • a polyvinyl alcohol resin having a hydroxyl group half width of 340 cm ⁇ 1 or more and 380 cm ⁇ 1 or less As the half-value width of the hydroxyl group increases, the blocking property of the hydroxyl group increases, and thus the hydrophobic group blocking property of the resulting polyvinyl acetal resin tends to increase. Further, the half width of the hydroxyl group is more preferably 345 cm ⁇ 1 or more, and more preferably 375 cm ⁇ 1 or less.
  • the half value width of the hydroxyl group of the polyvinyl alcohol resin can be obtained by measuring the peak width at 1/2 of the peak height appearing around 3500 cm ⁇ 1 by IR measurement. The above IR measurement is absorption spectrum measurement by infrared absorption spectroscopy, and can be measured, for example, with an IR measuring instrument.
  • the polyvinyl acetal resin may have a structural unit having an acid-modified group.
  • the acid-modified group include carboxyl group, sulfonic acid group, maleic acid group, sulfinic acid group, sulfenic acid group, phosphoric acid group, phosphonic acid group, amino group, amide group and salts thereof. Among them, a carboxyl group, a sulfonic acid group, and an amide group are preferred.
  • the modified polyvinyl acetal resin has the structural unit having the acid-modified group, the compatibility with the epoxy resin can be improved, and high mechanical strength can be realized.
  • the structural unit having an acid-modifying group may have a structure in which an acid-modifying group as a side chain is directly bonded to the carbon constituting the main chain, and the carbon constituting the main chain is an acid-modifying group via an alkylene group.
  • the structural unit having the acid-modifying group may have a three-dimensional structure in which two acid-modifying groups are bonded to the same carbon constituting the main chain, and one acid-modifying group is bonded to the carbon constituting the main chain. It may be a three-dimensional structure. In addition, it may be a steric structure in which one acid-modifying group is bonded to adjacent carbons constituting the main chain, and a steric structure in which an acid-modifying group is bonded to only one of the adjacent carbons constituting the main chain.
  • a steric structure in which two acid-modifying groups are bonded to the same carbon constituting the main chain or a steric structure in which one acid-modifying group is bonded to adjacent carbons constituting the main chain.
  • the network structure of the cured product obtained by combining with the epoxy resin can be widened, and as a result, the flexibility of the cured product obtained can be improved.
  • the structural unit having an acid-modifying group may have a steric structure in which the acid-modifying groups are bonded in the same direction to the carbons constituting the main chain. It may have a steric structure that is a syndiotactic configuration in which acid-modified groups are alternately bonded on opposite sides. Furthermore, it may have a steric structure of an atactic configuration in which the acid-modified groups are randomly bonded.
  • the alkylene group is an alkylene group having 1 to 10 carbon atoms. is preferred, an alkylene group having 1 to 5 carbon atoms is more preferred, and an alkylene group having 1 to 3 carbon atoms is even more preferred.
  • the content of the structural unit having the acid-modified group in the polyvinyl acetal resin is preferably 0.1 mol% or more, more preferably 0.5 mol% or more, and 5 mol% or less. preferably 3 mol % or less.
  • the content of structural units having acid-modified groups means the ratio of structural units having acid-modified groups to the total amount of structural units constituting the polyvinyl acetal resin, and can be measured, for example, by NMR.
  • Examples of the alkylene group having 1 to 10 carbon atoms include a linear alkylene group, a branched alkylene group, and a cyclic alkylene group.
  • Examples of the linear alkylene group include methylene group, vinylene group, n-propylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group and decamethylene group.
  • Examples of the branched alkylene group include a methylmethylene group, a methylethylene group, a 1-methylpentylene group and a 1,4-dimethylbutylene group.
  • cyclic alkylene group examples include a cyclopropylene group, a cyclobutylene group, and a cyclohexylene group.
  • a linear alkylene group is preferred, a methylene group, vinylene group and n-propylene group are more preferred, and a methylene group and vinylene group are still more preferred.
  • the structural unit having a carboxyl group includes a structural unit represented by the following formula (2-1), a structural unit represented by the following formula (2-2), and a structural unit represented by the following formula (2-2). Examples thereof include structural units represented by (2-3).
  • R 2 and R 3 each independently represent an alkylene group having 0 to 10 carbon atoms
  • X 1 and X 2 each independently represent a hydrogen atom, a metal atom or a methyl group.
  • the preferred lower limit for the number of carbon atoms in the alkylene group represented by R 2 and R 3 is 0, the preferred upper limit is 5, the more preferred lower limit is 1, and the more preferred upper limit is 3.
  • R 2 and R 3 may be the same or different, but are preferably different. Moreover, at least one of them is preferably a single bond.
  • alkylene group having 0 to 10 carbon atoms examples include linear alkylene groups such as a single bond, methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group and decamethylene group.
  • linear alkylene groups such as a single bond, methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, octamethylene group and decamethylene group.
  • branched chain alkylene groups such as methylmethylene group, methylethylene group, 1-methylpentylene group and 1,4-dimethylbutylene group
  • cyclic alkylene groups such as cyclopropylene group, cyclobutylene group and cyclohexylene group; mentioned.
  • a single bond, a methylene group, an ethylene group, an n-propylene group, and a linear alkylene group such as an n-butylene group are preferred, and a single bond, a methylene group, and an ethylene group are more preferred.
  • X 1 and X 2 when at least one of X 1 and X 2 is a metal atom, examples of the metal atom include a sodium atom, a lithium atom, and a potassium atom. Among them, a sodium atom is preferred.
  • the structural unit represented by formula (2-1) is preferably derived from an ⁇ -dicarboxy monomer.
  • ⁇ -dicarboxy monomers include dicarboxylic acids having radically polymerizable unsaturated double bonds such as methylenemalonic acid, itaconic acid, 2-methyleneglutaric acid, 2-methyleneadipic acid and 2-methylenesebacic acid, and their metal salts or their methyl esters. Among them, itaconic acid, its metal salt, or its methyl ester are preferably used.
  • the ⁇ -dicarboxy monomer represents a monomer having two carboxyl groups at the ⁇ -position carbon.
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 7 is an alkylene group having 0 to 10 carbon atoms. and X3 represents a hydrogen atom, a metal atom or a methyl group.
  • the preferred lower limit for the number of carbon atoms in the alkyl group represented by R 4 , R 5 and R 6 is 1, the preferred upper limit is 5, and the more preferred upper limit is 3.
  • R 4 , R 5 and R 6 may be the same or different, but are more preferably the same. Also, R 4 , R 5 and R 6 are preferably hydrogen atoms.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, n-butyl group, n-pentyl group, n-heptyl group, n-octyl group, n-nonyl group, n- linear alkyl groups such as decyl group, isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, 2,2-dimethylpropyl group, 1,1,3,3-tetramethylbutyl group, Examples include branched chain alkyl groups such as 2-ethylhexyl group, cycloalkyl groups such as cyclopropyl group, cyclopropylmethyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group. Among them, straight-chain alkyl groups such as methyl group, ethyl group, propyl group
  • R 7 in the above formula (2-2) examples include the same as those exemplified for R 2 and R 3 in the above formula (2-1), especially a single bond, a methylene group, ethylene
  • a linear alkylene group such as a group, a trimethylene group and a tetramethylene group is preferred, a single bond, a methylene group and an ethylene group are more preferred, and a single bond is even more preferred.
  • X 3 is a metal atom
  • examples of the metal atom include sodium atom, lithium atom, potassium atom and the like. Among them, a sodium atom is preferred.
  • the structural unit represented by formula (2-2) is preferably derived from a monocarboxy monomer.
  • monocarboxy monomers include monocarboxylic acids having a radically polymerizable unsaturated double bond such as acrylic acid, crotonic acid, methacrylic acid, and oleic acid, metal salts thereof, methyl esters thereof, and the like. Among them, crotonic acid, its metal salt, or its methyl ester is preferably used.
  • R 8 and R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 9 and R 11 are an alkylene group having 0 to 10 carbon atoms
  • X 4 and X 5 each represent a hydrogen atom, a metal atom or a methyl group.
  • the preferred lower limit for the number of carbon atoms in the alkyl group represented by R 8 and R 10 is 1, the preferred upper limit is 5, and the more preferred upper limit is 3.
  • R 8 and R 10 may be the same or different, but are more preferably the same.
  • R 8 and R 10 in the above formula (2-3) include the same as those exemplified for R 4 , R 5 and R 6 in the above formula (2-2). Atoms are preferred.
  • R 9 and R 11 in the above formula (2-3) include those exemplified for R 2 and R 3 in the above formula (2-1).
  • a linear alkylene group such as a group, an ethylene group, a trimethylene group and a tetramethylene group is preferred, a single bond, a methylene group and an ethylene group are more preferred, and a single bond is even more preferred.
  • X 4 and X 5 are metal atoms
  • examples of the metal atoms include sodium atom, lithium atom, potassium atom and the like. Among them, a sodium atom is preferred.
  • structural units having the sulfonic acid group include structural units represented by the following formula (3).
  • R 12 represents an alkylene group having 0 to 10 carbon atoms
  • X 6 represents a hydrogen atom, a metal atom or a methyl group.
  • R 12 in the above formula (3) examples include the same as those exemplified for R 2 and R 3 in the above formula (2-1).
  • a straight-chain alkylene group such as a trimethylene group or a tetramethylene group is preferred, a single bond, a methylene group or an ethylene group is more preferred, and a single bond or a methylene group is even more preferred.
  • X 6 is a metal atom
  • examples of the metal atom include sodium atom, lithium atom, potassium atom and the like. Among them, a sodium atom is preferred.
  • structural units having the amide group include structural units represented by the following formula (4).
  • R 13 represents an alkyl group having 1 to 10 carbon atoms.
  • R 13 in the above formula (4) examples include the same as those exemplified for R 4 , R 5 and R 6 in the above formula (2-2), especially a hydrogen atom, a methyl group, A linear alkyl group such as an ethyl group, a propyl group, or an n-butyl group is preferable, and a hydrogen atom, a methyl group, or an ethyl group is more preferable.
  • the average degree of polymerization of the polyvinyl acetal resin is preferably 200 or more, more preferably 250 or more, preferably 4000 or less, and more preferably 3700 or less. When the average degree of polymerization is within the above range, good dispersibility is achieved.
  • the polyvinyl acetal resin is preferably an acetalized product of a polyvinyl alcohol resin having a degree of saponification of 70.0 mol % or more and 99.9 mol % or less.
  • the glass transition temperature of the polyvinyl acetal resin is preferably 70° C. or higher, more preferably 71° C. or higher, preferably 95° C. or lower, and more preferably 91° C. or lower.
  • the glass transition temperature can be measured using a dynamic viscoelasticity measuring device (DMA).
  • DMA dynamic viscoelasticity measuring device
  • the polyvinyl acetal resin preferably has a specific gravity of 1.02 or more and preferably 1.08 or less in a 25% by weight aqueous solution.
  • the specific gravity can be measured using a glass Baume meter under the condition that the temperature of the aqueous resin solution is 20°C.
  • the content of the polyvinyl acetal resin in the carbon material composition of the present invention is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and 20.0% by weight or less. is preferred, and 15.0% by weight or less is more preferred.
  • the ratio of the content of the polyvinyl acetal resin to the content of the fibrous carbon material in the carbon material composition of the present invention is 0.05 or more. preferably 10.0 or less.
  • content of polyvinyl acetal resin/content of fibrous carbon material is 0.05 or more. preferably 10.0 or less.
  • the fibrous carbon material has good dispersibility and facilitates the formation of conductive paths. As a result, the surface resistance value becomes much more excellent.
  • the fibrous carbon material that imparts conductivity is sufficiently present, and the surface resistance value is further excellent.
  • the content ratio is more preferably 0.10 or more, and more preferably 8.00 or less.
  • the ratio of the content of the fibrous carbon material (unit: g), the average fiber diameter of the fibrous carbon material (unit: nm), and the content of the polyvinyl acetal resin (unit: g) in the carbon material composition of the present invention is preferably 0.01 or more, more preferably 0.02 or more. It is preferably 0.00 or less, more preferably 6.40 or less.
  • a polyvinyl acetate resin obtained by polymerizing a monomer such as vinyl acetate is saponified by adding an acid or an alkali, and purified to contain Na ions.
  • a method of acetalizing a polyvinyl alcohol resin whose amount is adjusted, and the like can be mentioned.
  • polyvinyl alcohol resin for example, conventionally known polyvinyl alcohol resins such as resins produced by saponifying polyvinyl acetate resin with alkali, acid, aqueous ammonia or the like can be used.
  • the above polyvinyl alcohol resin may be completely saponified, but it must be completely saponified if at least one unit has at least one unit having two consecutive hydroxyl groups with respect to the meso- and racemo-positions in the main chain. It may be a partially saponified polyvinyl alcohol resin instead.
  • polyvinyl alcohol resin copolymers of vinyl alcohol and monomers copolymerizable with vinyl alcohol, such as ethylene-vinyl alcohol copolymer resins and partially saponified ethylene-vinyl alcohol copolymer resins, may also be used. can be done.
  • polyvinyl acetate-based resin examples include ethylene-vinyl acetate copolymers.
  • the polyvinyl alcohol resin preferably has a saponification degree of 70.0 mol % or more and 99.9 mol % or less, more preferably 85.0 mol % or more and 95.0 mol % or less.
  • a known method can be used for the acetalization, and it is preferably carried out in an aqueous solvent, in a mixed solvent of water and an organic solvent compatible with water, or in an organic solvent.
  • an organic solvent compatible with water for example, an alcohol-based organic solvent can be used.
  • the organic solvent include alcohol-based organic solvents, aromatic organic solvents, aliphatic ester-based solvents, ketone-based solvents, lower paraffin-based solvents, ether-based solvents, amide-based solvents, and amine-based solvents.
  • the alcohol-based organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol and the like.
  • Examples of the aromatic organic solvent include xylene, toluene, ethylbenzene, and methyl benzoate.
  • Examples of the aliphatic ester solvent include methyl acetate, ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl acetoacetate, and ethyl acetoacetate.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, benzophenone, and acetophenone.
  • Examples of the lower paraffin solvents include hexane, pentane, octane, cyclohexane, and decane.
  • Examples of the ether solvent include diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol diethyl ether and the like.
  • Examples of the amide solvent include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and acetanilide.
  • amine solvent examples include ammonia, trimethylamine, triethylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, aniline, N-methylaniline, N,N-dimethylaniline and pyridine. These solvents can be used alone, or two or more of them can be used as a mixture. Among these, ethanol, n-propanol, isopropanol, and tetrahydrofuran are particularly preferred from the viewpoints of solubility in resins and ease of purification.
  • the acetalization is preferably carried out in the presence of an acid catalyst.
  • the acid catalyst is not particularly limited, and includes mineral acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, carboxylic acids such as formic acid, acetic acid and propionic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid and paratoluenesulfone. sulfonic acids such as acids.
  • These acid catalysts may be used alone or in combination of two or more compounds. Among them, hydrochloric acid, nitric acid and sulfuric acid are preferred, and hydrochloric acid is particularly preferred.
  • Aldehydes used in the acetalization include aldehydes having a chain aliphatic group, a cycloaliphatic group or an aromatic group having 1 to 10 carbon atoms. Conventionally known aldehydes can be used as these aldehydes.
  • the aldehyde used in the acetalization reaction is not particularly limited, and examples thereof include aliphatic aldehydes and aromatic aldehydes.
  • Examples of the aliphatic aldehyde include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, n-hexylaldehyde, 2-ethylbutyraldehyde, 2-ethylhexylaldehyde, n-heptylaldehyde, n- octylaldehyde, octeraldehyde, n-nonylaldehyde, n-decylaldehyde, amylaldehyde and the like.
  • aromatic aldehyde examples include aromatic aldehydes such as benzaldehyde, cinnamaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde and ⁇ -phenylpropionaldehyde. etc.
  • cyclic multimers such as paraldehyde and metaldehyde can be used. These aldehydes may be used individually by 1 type, and may use 2 or more types together.
  • aldehydes formaldehyde, acetaldehyde, butyraldehyde, 2-ethylhexylaldehyde, 2-ethylhexylaldehyde, etc., which are excellent in acetalization reactivity, bring about a sufficient internal plasticizing effect on the resin to be produced, and as a result impart good flexibility.
  • n-nonylaldehyde and paraldehyde are preferred. More preferred are formaldehyde, acetaldehyde, butyraldehyde, and paraldehyde, since an adhesive composition having particularly excellent impact resistance and adhesion to metal can be obtained.
  • the amount of the aldehyde to be added can be appropriately set according to the amount of acetal groups in the desired polyvinyl acetal resin. In particular, 60 to 95 mol %, preferably 65 to 90 mol %, relative to 100 mol % of the polyvinyl alcohol resin is preferable because the acetalization reaction is efficiently carried out and unreacted aldehyde is easily removed.
  • the carbon material composition of the present invention may further contain additives such as other binders, conductive aids, flame retardant aids, antifoaming agents, leveling agents, adhesion imparting agents, etc., to the extent that the effects of the present invention are not impaired. may contain.
  • the method for producing the carbon material composition of the present invention is not particularly limited, and examples thereof include a method of adding a polyvinyl acetal resin obtained by acetalizing raw material polyvinyl alcohol and a fibrous carbon material to an aqueous solvent and mixing them. be done.
  • Examples of the mixing method include a method using various mixers such as a ball mill, blender mill, and three rolls.
  • a lithium secondary battery electrode composition can be obtained by adding an active material to the carbon material composition of the present invention.
  • the active material include a positive electrode active material and a negative electrode active material.
  • the positive electrode active material include lithium nickel oxide (e.g., LiNiO 2 ), lithium cobalt oxide (e.g., LiCoO 2 ), lithium manganese oxide (e.g., LiMn 2 O 4 ), and composites thereof (e.g., LiNi 0.5Mn1.5O4 , LiNi1 / 3Co1 / 3Mn1/ 3O2 ), and the like . particles.
  • Particles of phosphate containing lithium and a transition metal element as constituent metal elements such as lithium manganese phosphate (LiMnPO 4 ) and lithium iron phosphate (LiFePO 4 ), are also included. In addition, these may be used independently and may use 2 or more types together.
  • the negative electrode active material for example, materials conventionally used as negative electrode active materials for lithium secondary batteries can be used, for example, carbon materials such as graphite, natural graphite, graphite carbon, amorphous carbon, lithium transition metals Silicon compounds such as oxides, lithium transition metal nitrides, silicon, silicon oxide, and the like are included.
  • the method for producing the lithium secondary battery electrode composition is not particularly limited. A method of mixing using various mixers such as three rolls can be used.
  • a lithium secondary battery electrode is formed by, for example, applying the composition for a lithium secondary battery electrode to a conductive substrate and drying the composition.
  • various coating methods such as an extrusion coater, a reverse roller, a doctor blade, and an applicator can be employed.
  • the carbon-material composition which is excellent in the dispersibility of a fibrous carbon material and can reduce electrode resistance can be provided.
  • Example 1 (Production of polyvinyl acetal resin) 500 g of polyvinyl alcohol resin (degree of saponification: 88 mol %, average degree of polymerization: 200, half width of hydroxyl group: 360 cm ⁇ 1 ) was added to 2500 g of pure water and dissolved by stirring at 90° C. for 2 hours. This solution was cooled to 40° C., 10 g of hydrochloric acid having a concentration of 35% by weight was added thereto, the liquid temperature was lowered to 5° C., 75 g of acetaldehyde was added, and the acetalization reaction was carried out while maintaining this temperature. The liquid temperature was kept at 65° C.
  • the obtained polyvinyl acetal resin was measured for acetal group content, hydroxyl group content, acetyl group content, and hydrophobic group blocking property using 1 H-NMR (nuclear magnetic resonance spectrum). Met. 1 H-NMR measurements used heavy DMSO as a solvent. Furthermore, the glass transition temperature of the obtained polyvinyl acetal resin was measured using a dynamic viscoelasticity measuring device (DMA), and the results are shown in Table 1. Further, the specific gravity of the obtained polyvinyl acetal resin was measured using a glass Baume meter with a 25 wt % aqueous solution at 20° C. The results are shown in Table 1.
  • DMA dynamic viscoelasticity measuring device
  • Example 2 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that a polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 600, half width of hydroxyl group: 360 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 3 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that a polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 1250, half width of hydroxyl group: 360 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 4 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 2000, half width of hydroxyl group: 360 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 5 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 4000, half width of hydroxyl group: 340 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 6 In (Preparation of polyvinyl acetal resin), the procedure was the same as in Example 1, except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 200, half width of hydroxyl group: 345 cm ⁇ 1 ) was used, and 56 g of acetaldehyde was used. A polyvinyl acetal resin was obtained. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 7 In (Preparation of polyvinyl acetal resin), polyvinyl alcohol resin (degree of saponification 88 mol%, average degree of polymerization 200, half width of hydroxyl group 340 cm ⁇ 1 ) was used, and 16 g of n-butyraldehyde was used. A polyvinyl acetal resin was obtained in the same manner. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 8 A polyvinyl acetal resin was obtained in the same manner as in Example 1, except that a polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 200, half width of hydroxyl group: 370 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 9 A polyvinyl acetal resin was obtained in the same manner as in Example 6, except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 200, half width of hydroxyl group: 370 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 10 A polyvinyl acetal resin was obtained in the same manner as in Example 7 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 200, half width: 365 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin).
  • a carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 11 Using single-walled carbon nanotubes (SW, manufactured by OCSIAL, average fiber diameter 1.2 nm, average fiber length 4 ⁇ m or more, specific gravity 1.3, specific surface area 390 m 2 /g, G/D ratio 32) as a fibrous carbon material A carbon material composition was obtained in the same manner as in Example 1, except that the mixture was mixed according to the formulation shown in Table 1.
  • SW single-walled carbon nanotubes
  • Example 12 A carbon material composition was obtained in the same manner as in Example 11, except that the polyvinyl acetal resin obtained in Example 6 was used.
  • Example 13 A polyvinyl acetal resin was obtained in the same manner as in Example 2 except that 16 g of acetaldehyde was used in (Preparation of polyvinyl acetal resin). A carbon material composition was obtained in the same manner as in Example 11, except that the obtained polyvinyl acetal resin was used.
  • Example 14 A carbon material composition was obtained in the same manner as in Example 11, except that the polyvinyl acetal resin obtained in Example 8 was used.
  • Example 15 A polyvinyl acetal resin was obtained in the same manner as in Example 6 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 300, half width of hydroxyl group: 360 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 11, except that the obtained polyvinyl acetal resin was used.
  • Example 16 A polyvinyl acetal resin was obtained in the same manner as in Example 7 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 600, half width of hydroxyl group: 340 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 11, except that the obtained polyvinyl acetal resin was used.
  • Example 17 A polyvinyl acetal resin was obtained in the same manner as in Example 6 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 600, half width of hydroxyl group: 350 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. Using the obtained polyvinyl acetal resin, a vapor-grown carbon fiber (VGCF, manufactured by Showa Denko K.K., average fiber diameter 150 nm, average fiber length 15 ⁇ m, specific gravity 2.1, specific surface area 13 m 2 /g) was used as a fibrous carbon material. , G/D ratio 5.4) was used, and a carbon material composition was obtained in the same manner as in Example 1, except that the mixture was mixed according to the formulation shown in Table 1.
  • VGCF vapor-grown carbon fiber
  • Example 18 In (Preparation of polyvinyl acetal resin), polyvinyl alcohol resin (degree of saponification: 75 mol%, average degree of polymerization: 600, half width of hydroxyl group: 370 cm ⁇ 1 ) was used, and 61 g of acetaldehyde was used in the same manner as in Example 1. A polyvinyl acetal resin was obtained. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 19 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that a polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 150, half width of hydroxyl group: 360 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 20 In (Production of polyvinyl acetal resin), polyvinyl alcohol resin (degree of saponification 88 mol%, average degree of polymerization 4500, half width of hydroxyl group 340 cm ⁇ 1 ) was used, and 66 g of acetaldehyde was used in the same manner as in Example 1. A polyvinyl acetal resin was obtained. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 21 In (Preparation of polyvinyl acetal resin), polyvinyl alcohol resin (degree of saponification 88 mol%, average degree of polymerization 600, half width of hydroxyl group 340 cm ⁇ 1 ) was used, and 9 g of acetaldehyde was used in the same manner as in Example 1. A polyvinyl acetal resin was obtained. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 22 In (Preparation of polyvinyl acetal resin), polyvinyl alcohol resin having a structural unit having a carboxyl group (degree of saponification 88 mol%, average degree of polymerization 600, half width of hydroxyl group 350 cm -1 , content of structural unit having a carboxyl group 1.2 mol %) was used in the same manner as in Example 1 to obtain a polyvinyl acetal resin.
  • the structural unit having a carboxyl group is a structural unit represented by the above formula (2-1) (in formula (2-1), R 2 is a single bond, R 3 is a methylene group, X 1 and X 2 is a hydrogen atom).
  • a carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 23 In (Preparation of polyvinyl acetal resin), a polyvinyl alcohol resin having a structural unit having a sulfonic acid group (degree of saponification 88 mol%, average degree of polymerization 600, half width of hydroxyl group 350 cm ⁇ 1 , structural unit having a sulfonic acid group A polyvinyl acetal resin was obtained in the same manner as in Example 1, except that the content was 1.0 mol %.
  • the structural unit having a sulfonic acid group was a structural unit represented by the formula (3) (wherein R 12 is a methylene group and X 6 is a sodium atom).
  • a carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 24 In (Preparation of polyvinyl acetal resin), a polyvinyl alcohol resin having a structural unit having an amide group (degree of saponification 88 mol%, average degree of polymerization 600, half width of hydroxyl group 350 cm ⁇ 1 , content of structural unit having an amide group 1.3 mol %) was used in the same manner as in Example 1 to obtain a polyvinyl acetal resin.
  • the amide group-containing structural unit was a structural unit represented by the above formula (4) (in which R 13 is a methyl group).
  • a carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Multi-walled carbon nanotubes (MW, manufactured by Sigma-Aldrich Co., Ltd., average fiber diameter 9 nm, average fiber length 13 ⁇ m, specific gravity 1.8, specific surface area 200 m 2 /g) were used as the fibrous carbon material and mixed according to the formulation shown in Table 2.
  • a carbon material composition was obtained in the same manner as in Example 2 except for the above.
  • Example 26 Single-walled carbon nanotubes (SW, manufactured by OCSIAL, average fiber diameter 1.2 nm, average fiber length 4 ⁇ m or more, specific gravity 1.3) were used as the fibrous carbon material, and mixed according to the formulation shown in Table 2. A carbon material composition was obtained in the same manner as in 2.
  • Example 27 In (Preparation of polyvinyl acetal resin), polyvinyl alcohol resin (degree of saponification: 99.9 mol%, average degree of polymerization: 600, half width of hydroxyl group: 370 cm ⁇ 1 ) was used, and 85 g of acetaldehyde was used. to obtain a polyvinyl acetal resin. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 28 In (Preparation of polyvinyl acetal resin), polyvinyl alcohol resin (degree of saponification: 65 mol%, average degree of polymerization: 600, half width of hydroxyl group: 355 cm ⁇ 1 ) was used, and 70 g of acetaldehyde was used in the same manner as in Example 1. A polyvinyl acetal resin was obtained. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 1 A carbon material composition was obtained in the same manner as in Example 1 except that a polyvinyl alcohol resin (degree of saponification: 12 mol %, average degree of polymerization: 600, half width of hydroxyl group: 325 cm ⁇ 1 ) was used instead of the polyvinyl acetal resin.
  • a polyvinyl alcohol resin degree of saponification: 12 mol %, average degree of polymerization: 600, half width of hydroxyl group: 325 cm ⁇ 1
  • Example 2 A carbon material composition was obtained in the same manner as in Example 1, except that polyvinylpyrrolidone (average degree of polymerization: 10000) was used instead of the polyvinyl acetal resin.
  • Example 3 A carbon material composition was prepared in the same manner as in Example 2 except that acetylene black (manufactured by Denka Co., Ltd., average particle size 35 nm, specific surface area 68 m 2 /g) was used instead of the fibrous carbon material and mixed according to the formulation shown in Table 2. got stuff
  • Example 4 A carbon material composition was obtained in the same manner as in Example 17, except that graphene (manufactured by Sigma-Aldrich, average particle size 5 ⁇ m) was used instead of the fibrous carbon material.
  • Example 8 In (Preparation of polyvinyl acetal resin), the procedure of Example 1 was repeated except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 150, half width of hydroxyl group: 370 cm ⁇ 1 ) was used, and 93 g of acetaldehyde was used. A polyvinyl acetal resin was obtained. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 9 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that 93 g of acetaldehyde was used in (Preparation of polyvinyl acetal resin). A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 12 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 600, half width of hydroxyl group: 325 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Example 13 A polyvinyl acetal resin was obtained in the same manner as in Example 1 except that polyvinyl alcohol resin (degree of saponification: 88 mol%, average degree of polymerization: 600, half width of hydroxyl group: 380 cm ⁇ 1 ) was used in (Preparation of polyvinyl acetal resin). rice field. A carbon material composition was obtained in the same manner as in Example 1, except that the obtained polyvinyl acetal resin was used.
  • Dispersibility (1-1) Particle size distribution The obtained carbon material composition was stirred for 10 minutes with an ultrasonic disperser (“US-303” manufactured by SND). Then, the particle size distribution was measured using a laser diffraction particle size distribution meter (“KA-910” manufactured by Horiba Ltd.) to measure the D50 particle size. In addition, the D50 particle size after standing at 23° C. for one week was also measured in the same manner. Further, the rate of change in D50 particle size was calculated and evaluated according to the following criteria. A: The rate of change was less than 30%. B: The rate of change was 30% or more and less than 60%. C: The rate of change was 60% or more and less than 80%. D: The rate of change was 80% or more. When the rate of change in particle size distribution is small, it can be said that the dispersibility and storage stability are excellent.
  • B 100 mPa ⁇ s or more and less than 200 mPa ⁇ s.
  • C 200 mPa ⁇ s or more and less than 300 mPa ⁇ s.
  • D 300 mPa ⁇ s or more. It can be said that when the rheological properties are good, the stability over time and slurry handling properties are excellent.
  • the electrode resistance value of the obtained sheet was measured using an electrode resistance measuring device (manufactured by Hioki Electric Co., Ltd.) and evaluated according to the following criteria.
  • the carbon-material composition which is excellent in the dispersibility of a fibrous carbon material and can reduce electrode resistance can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

本発明は、繊維状炭素材料の分散性に優れ、電極抵抗を低減することが可能である炭素材料組成物を提供する。 本発明は、繊維状炭素材料と、水系溶媒と、ポリビニルアセタール樹脂とを含み、前記ポリビニルアセタール樹脂は、アセタール基量が40.0モル%以下であり、かつ、NMRにより測定される疎水基のブロック性が0.35以上0.80以下である、炭素材料組成物である。

Description

炭素材料組成物
本発明は、繊維状炭素材料の分散性に優れ、電極抵抗を低減することが可能である炭素材料組成物に関する。
近年、カーボンナノチューブやVGCF等の繊維状炭素材料は、優れた電気特性を示すことから、エレクトロニクス分野などの幅広い分野へ実用化が期待されている。例えば、二次電池用電極や、透明電極において、導電助剤として添加すること等が研究されている。
繊維状炭素材料は、水中又は有機溶媒中に分散させた組成物が一般的に用いられている。
しかしながら、繊維状炭素材料は、溶解性及び分散性が低く、溶媒中で安定した分散状態を保持できないという問題がある。また、繊維状炭素材料は、優れた電気的、熱的、機械的特性を有する半面、アスペクト比が非常に大きいため絡まりやすく、その特性を充分に活かした高性能の複合材料を得ることが難しいという問題がある。
このような問題に対して、特許文献1には、バンドル型カーボンナノチューブ、分散媒、及び、重量平均分子量が5万超過のポリビニルブチラール樹脂を含むカーボンナノチューブ分散液を用いることで、カーボンナノチューブの分散性を向上できることが記載されている。
しかしながら、このような分散液であっても、分散性向上の効果が不充分であり、導電特性を充分に向上できないという問題がある。
特表2018-535284号公報
本発明は、繊維状炭素材料の分散性に優れ、電極抵抗を低減することが可能である炭素材料組成物を提供することを目的とする。
本開示(1)は、繊維状炭素材料と、水系溶媒と、ポリビニルアセタール樹脂とを含み、前記ポリビニルアセタール樹脂は、アセタール基量が40.0モル%以下であり、かつ、NMRにより測定される疎水基のブロック性が0.35以上0.80以下である、炭素材料組成物である。
本開示(2)は、ポリビニルアセタール樹脂はケン化度が70.0モル%以上99.9モル%以下であるポリビニルアルコール樹脂のアセタール化物である、本開示(1)の炭素材料組成物である。
本開示(3)は、ポリビニルアセタール樹脂は平均重合度が200以上4000以下である、本開示(1)又は(2)の炭素材料組成物である。
本開示(4)は、ポリビニルアセタール樹脂はアセタール基量が5.0モル%以上である、本開示(1)~(3)のいずれかとの任意の組み合わせの炭素材料組成物である。
本開示(5)は、上記繊維状炭素材料の含有量と、繊維状炭素材料の平均繊維径と、ポリビニルアセタール樹脂の含有量との比(ポリビニルアセタール樹脂の含有量/(繊維状炭素材料の平均繊維径/繊維状炭素材料の含有量))が0.01以上7.00以下である、本開示(1)~(4)のいずれかとの任意の組み合わせの炭素材料組成物である。
以下に本発明を詳述する。
本発明者は、鋭意検討の結果、繊維状炭素材料と、水系溶媒と、特定の特性を有するポリビニルアセタール樹脂を組み合わせて用いることにより、繊維状炭素材料の分散性に優れ、電極抵抗を低減することが可能な炭素材料組成物が得られることを見出し、本発明を完成させるに至った。
本発明の炭素材料組成物は、繊維状炭素材料を含有する。
繊維状炭素材料を含有することで、導電特性を向上させることができる。
上記繊維状炭素材料としては、例えば、炭素繊維、カーボンナノチューブ等が挙げられる。
上記炭素繊維としては、PAN系炭素繊維、ピッチ系炭素繊維、セルロース系炭素繊維、気相成長系炭素繊維(VGCF)等が挙げられる。
上記カーボンナノチューブは、筒状の炭素材料であり、単層カーボンナノチューブ、多層カーボンナノチューブ等が挙げられる。
上記繊維状炭素材料の平均繊維径は、0.40nm以上であることが好ましく、0.50nm以上であることがより好ましく、200.0nm以下であることが好ましく、150.0nm以下であることがより好ましい。
上記平均繊維径は、例えば、ラマン分光法(Raman)により測定することができる。
上記繊維状炭素材料の平均繊維長は、0.10μm以上であることが好ましく、0.50μm以上であることがより好ましく、25.0μm以下であることが好ましく、20.0μm以下であることがより好ましい。
上記平均繊維長は、例えば、ラマン分光法(Raman)により測定することができる。
上記繊維状炭素材料の比重は、1.0以上であることが好ましく、1.3以上であることがより好ましく、2.5以下であることが好ましく、2.3以下であることがより好ましい。
上記比重は、電子比重計等を用いて測定することができる。
上記繊維状炭素材料のアスペクト比(平均繊維長/平均繊維径)は、50以上であることが好ましく、80以上であることがより好ましく、5000以下であることが好ましく、4000以下であることがより好ましい。
上記繊維状炭素材料の比表面積は、8m/g以上であることが好ましく、13m/g以上であることがより好ましく、1500m/g以下であることが好ましく、1200m/g以下であることがより好ましい。
上記比表面積は、例えば、比表面積測定装置(島津製作所社製「ASAP-2000」)を用いること等により測定することができる。
上記繊維状炭素材料がカーボンナノチューブである場合、層数が15層以下であることが好ましい。また、下限は特に限定されないが、1層以上が好ましい。
上記層数は、透過型電子顕微鏡(TEM)等により確認することができる。
上記繊維状炭素材料のGバンドのピーク強度とDバンドのピーク強度との比(G/D比)は60以下であることが好ましい。また、下限は特に限定されないが、0.4以上が好ましい。
上記G/D比は、ラマン分光法を用いて測定することができる。
本発明の炭素材料組成物における上記繊維状炭素材料の含有量は、0.05重量%以上であることが好ましく、0.10重量%以上であることがより好ましく、10.0重量%以下であることが好ましく、7.0重量%以下であることがより好ましい。
本発明の炭素材料組成物は、水系溶媒を含有する。
上記水系溶媒としては、水、水と親水性溶媒との混合溶媒等が挙げられる。
具体的には、例えば、水や、エチルアルコール、イソプロピルアルコール等の親水性溶媒と水との混合溶媒等が挙げられる。
上記水系溶媒が水と親水性溶媒との混合溶媒である場合、混合溶媒における水の含有量は50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以下であることが好ましい。
本発明の炭素材料組成物における上記水系溶媒の含有量は、60.0重量%以上であることが好ましく、70.0重量%以上であることがより好ましく、99.9重量%以下であることが好ましい。
本発明の炭素材料組成物は、ポリビニルアセタール樹脂を含有する。
上記ポリビニルアセタール樹脂は、アセタール基量が40.0モル%以下、かつ、NMRにより測定される疎水基のブロック性が0.35以上0.80以下である。
上記ポリビニルアセタール樹脂を含有することで、繊維状炭素材料の分散性を向上させることができ、その結果、得られるシートの表面抵抗値、平均表面粗さが優れるものとなる。
上記ポリビニルアセタール樹脂は、少なくとも下記式(1-1)で表されるアセタール基を有する構成単位、下記式(1-2)で表される水酸基を有する構成単位、及び、下記式(1-3)で表されるアセチル基を有する構成単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
上記式(1-1)中、Rは水素原子又は炭素数1~20のアルキル基を表す。
上記式(1-1)中、Rが炭素数1~20のアルキル基である場合、該アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基等が挙げられる。なかでも、メチル基、n-プロピル基が好ましい。
上記ポリビニルアセタール樹脂において、上記式(1-1)で表されるアセタール基を有する構成単位の含有量(以下、「アセタール基量」ともいう)は、40.0モル%以下である。
上記アセタール基量が40.0モル%以下であることにより、繊維状炭素材料の分散性を充分に高めることができる。その結果、得られるシートの表面抵抗値、平均表面粗さが優れるものとなる。
上記アセタール基量は、5.0モル%以上であることが好ましく、7.0モル%以上であることがより好ましく、35.0モル%以下であることが好ましい。
なお、本明細書において、上記アセタール基量の計算方法としては、ポリビニルアセタール樹脂のアセタール基が2個の水酸基をアセタール化して得られることから、アセタール化された2個の水酸基を数える方法を採用してアセタール基量を計算する。
上記アセタール基量は、例えば、NMRにより測定することができる。
上記ポリビニルアセタール樹脂において、上記式(1-2)で表される水酸基を有する構成単位の含有量(以下、「水酸基量」ともいう)は、40.0モル%以上であることが好ましく、50.0モル%以上であることがより好ましく、94.9モル%以下であることが好ましく、90.0モル%以下であることがより好ましい。
上記水酸基量が上記範囲であると水系溶媒に溶解し易く、繊維状炭素材料の分散性により一層優れるという利点がある。
上記水酸基量は、例えば、NMRにより測定することができる。
上記ポリビニルアセタール樹脂において、上記式(1-3)で表されるアセチル基を有する構成単位の含有量(以下、「アセチル基量」ともいう)は、0.1モル%以上であることが好ましく、5.0モル%以上であることがより好ましく、30.0モル%以下であることが好ましく、25.0モル%以下であることがより好ましい。
上記アセチル基量が上記範囲であると増粘を抑制するという利点がある。
上記アセチル基量は、例えば、NMRにより測定することができる。
上記ポリビニルアセタール樹脂は、NMRにより測定される疎水基のブロック性が0.35以上0.80以下である。
上記疎水基のブロック性が上記範囲であることにより、繊維状炭素材料の分散性を充分に高めることができる。その結果、得られるシートの表面抵抗値、平均表面粗さが優れるものとなる。
上記疎水基のブロック性は0.35以上であることが好ましく、0.40以上であることがより好ましく、0.80以下であることが好ましく、0.75以下であることがより好ましい。
上記疎水基のブロック性は、NMRにより測定される疎水基のランダム度を示す5.1ppm付近のピーク強度と疎水基のブロック度を示す4.8ppm付近のピーク強度との合計に対する疎水基のブロック度を示す4.8ppm付近のピーク強度の比(4.8ppm付近のピーク強度/[(5.1ppm付近のピーク強度)+(4.8ppm付近のピーク強度)])により求めることができる。なお、NMRは後述する実施例に記載の方法で測定することができる。また、本明細書中、上記疎水基はアセチル基を意味する。
上記疎水基のブロック性は、例えば、原料となるポリビニルアルコール樹脂を選定することで制御することができる。より具体的には、例えば水酸基の半値幅が340cm-1以上380cm-1以下であるポリビニルアルコール樹脂を用いることが好ましい。水酸基の半値幅が大きい程、水酸基のブロック性が高くなるため、得られるポリビニルアセタール樹脂の疎水基のブロック性も高くなる傾向にある。また、上記水酸基の半値幅は、345cm-1以上であることがより好ましく、375cm―1以下であることがより好ましい。
なお、上記ポリビニルアルコール樹脂の水酸基の半値幅は、IR測定により3500cm-1付近に現れるピーク高さの1/2でのピーク幅を測定することで求めることができる。また、上記IR測定は赤外吸収分光法による吸収スペクトルの測定であり、例えば、IR測定計により測定することができる。
上記ポリビニルアセタール樹脂は、酸変性基を有する構成単位を有していてもよい。
上記酸変性基としては、カルボキシル基、スルホン酸基、マレイン酸基、スルフィン酸基、スルフェン酸基、リン酸基、ホスホン酸基、アミノ基、アミド基、及び、それらの塩等が挙げられる。なかでも、カルボキシル基、スルホン酸基、アミド基が好ましい。
上記変性ポリビニルアセタール樹脂が上記酸変性基を有する構成単位を有することにより、エポキシ樹脂との相溶性を向上させて、高い機械的強度を実現することができる。
上記酸変性基を有する構成単位は、主鎖を構成する炭素に側鎖としての酸変性基が直接結合した構造であってもよく、主鎖を構成する炭素にアルキレン基を介して酸変性基が結合した構造であってもよい。
上記酸変性基を有する構成単位は、主鎖を構成する同一の炭素に2つの酸変性基が結合した立体構造であってもよく、主鎖を構成する炭素に酸変性基が1つ結合した立体構造であってもよい。また、主鎖を構成する隣り合う炭素に酸変性基が1つずつ結合した立体構造であってもよく、主鎖を構成する隣り合う炭素のどちらか一方のみに酸変性基が結合した立体構造であってもよい。なかでも、主鎖を構成する同一の炭素に2つの酸変性基が結合した立体構造、又は、主鎖を構成する隣り合う炭素に酸変性基が1つずつ結合した立体構造を有することが好ましい。更に、立体障害を大きくして、エポキシ樹脂との組み合わせにより得られる硬化物の網目構造を広くすることができ、その結果、得られる硬化物の柔軟性を向上できることから、主鎖を構成する同一の炭素に2つの酸変性基が結合した立体構造であることが好ましい。
また、上記酸変性基を有する構成単位は、主鎖を構成する炭素に酸変性基が同一方向に結合したイソタクチック配置である立体構造を有するものであってもよく、主鎖を構成する炭素に酸変性基が交互に反対側に結合したシンジオタクチック配置である立体構造を有するものであってもよい。更に、上記酸変性基がランダムに結合したアタクチック配置である立体構造を有するものであってもよい。
上記酸変性基を有する構成単位が、主鎖を構成する炭素にアルキレン基を介して酸変性基が結合した構造を有する場合、上記アルキレン基としては、炭素数1~10のアルキレン基であることが好ましく、炭素数1~5のアルキレン基であることがより好ましく、炭素数1~3のアルキレン基であることが更に好ましい。
上記ポリビニルアセタール樹脂における、上記酸変性基を有する構成単位の含有量は、0.1モル%以上であることが好ましく、0.5モル%以上であることがより好ましく、5モル%以下であることが好ましく、3モル%以下であることがより好ましい。
上記酸変性基を有する構成単位の含有量は、ポリビニルアセタール樹脂を構成する各構成単位の総量に対する酸変性基を有する構成単位の割合を意味し、例えば、NMRにより測定することができる。
上記炭素数1~10のアルキレン基としては、直鎖状アルキレン基、分岐鎖状アルキレン基、環状アルキレン基が挙げられる。
上記直鎖状アルキレン基としては、メチレン基、ビニレン基、n-プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等が挙げられる。
上記分岐鎖状アルキレン基としては、メチルメチレン基、メチルエチレン基、1-メチルペンチレン基、1,4-ジメチルブチレン基等が挙げられる。
上記環状アルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロヘキシレン基等が挙げられる。
なかでも、直鎖状アルキレン基が好ましく、メチレン基、ビニレン基、n-プロピレン基がより好ましく、メチレン基、ビニレン基が更に好ましい。
上記酸変性基がカルボキシル基である場合、カルボキシル基を有する構成単位としては、下記式(2-1)で表される構成単位、下記式(2-2)で表される構成単位、下記式(2-3)で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
上記式(2-1)中、R及びRは、それぞれ独立し、炭素数0~10のアルキレン基を表し、X及びXは、それぞれ独立し、水素原子、金属原子又はメチル基を表す。
上記式(2-1)中、R及びRで表されるアルキレン基の炭素数の好ましい下限は0、好ましい上限は5、より好ましい下限は1、より好ましい上限は3である。
上記R及びRは、同一のものでもよく、異なるものでもよいが、異なるものが好ましい。また少なくとも何れかが単結合であることが好ましい。
上記炭素数0~10のアルキレン基としては、例えば、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等の直鎖状アルキレン基、メチルメチレン基、メチルエチレン基、1-メチルペンチレン基、1,4-ジメチルブチレン基等の分岐鎖状アルキレン基、シクロプロピレン基、シクロブチレン基、シクロヘキシレン基等の環状アルキレン基等が挙げられる。なかでも、単結合、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましい。
上記(2-1)中、X及びXのうち少なくとも何れかが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記式(2-1)で表される構成単位は、α-ジカルボキシモノマーに由来するものであることが好ましい。α-ジカルボキシモノマーとしては、例えば、メチレンマロン酸、イタコン酸、2-メチレングルタル酸、2-メチレンアジピン酸、2-メチレンセバシン酸等のラジカル重合性不飽和二重結合を有するジカルボン酸やその金属塩又はそのメチルエステルが挙げられる。なかでも、イタコン酸やその金属塩又はそのメチルエステルが好ましく用いられる。
なお、本明細書中、α-ジカルボキシモノマーとは、α位炭素に2つのカルボキシル基を有するモノマーを表す。
上記式(2-2)中、R、R及びRは、それぞれ独立して、水素原子又は炭素数1~10のアルキル基を表し、Rは、炭素数0~10のアルキレン基を表し、Xは、水素原子、金属原子又はメチル基を表す。
上記式(2-2)中、R、R及びRで表されるアルキル基の炭素数の好ましい下限は1、好ましい上限は5、より好ましい上限は3である。
、R、Rは、同一のものでもよく、異なるものでもよいが、同一のものがより好ましい。また、R、R及びRは水素原子であることが好ましい。
上記炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、n-ペンチル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖状アルキル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、2,2-ジメチルプロピル基、1,1,3,3-テトラメチルブチル基、2-エチルヘキシル基等の分岐鎖状アルキル基、シクロプロピル基、シクロプロピルメチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基等が挙げられる。なかでも、メチル基、エチル基、プロピル基、n-ブチル基等の直鎖状アルキル基が好ましく、メチル基、エチル基がより好ましい。
上記式(2-2)中のRとしては、上記式(2-1)中のR及びRで例示したものと同様のものが挙げられ、なかでも、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましく、単結合が更に好ましい。
上記式(2-2)中、Xが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記式(2-2)で表される構成単位はモノカルボキシモノマーに由来するものが好ましい。モノカルボキシモノマーとしては、例えば、アクリル酸、クロトン酸、メタクリル酸、オレイン酸等のラジカル重合性不飽和二重結合を有するモノカルボン酸やその金属塩又はそのメチルエステル等が挙げられる。なかでも、クロトン酸やその金属塩又はそのメチルエステルが好ましく用いられる。
上記式(2-3)中、R及びR10は、それぞれ独立して、水素原子又は炭素数1~10のアルキル基を表し、R及びR11は、炭素数0~10のアルキレン基を表し、X及びXは、水素原子、金属原子又はメチル基を表す。
上記式(2-3)中、R及びR10で表されるアルキル基の炭素数の好ましい下限は1、好ましい上限は5、より好ましい上限は3である。
上記R及びR10は、同一のものでもよく、異なるものでもよいが、同一のものがより好ましい。
上記式(2-3)中のR及びR10としては、上記式(2-2)中のR、R及びRで例示したものと同様のものが挙げられ、なかでも、水素原子が好ましい。
上記式(2-3)中のR及びR11としては、上記式(2-1)中のR及びRで例示したものと同様のものが挙げられ、なかでも、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましく、単結合が更に好ましい。
上記式(2-3)中、X及びXが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記酸変性基がスルホン酸基である場合、上記スルホン酸基を有する構成単位としては、下記式(3)で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
式(3)中、R12は、炭素数0~10のアルキレン基を表し、Xは、水素原子、金属原子又はメチル基を表す。
上記式(3)中のR12としては、上記式(2-1)中のR及びRで例示したものと同様のものが挙げられ、なかでも、単結合、メチレン基、エチレン基、トリメチレン基、テトラメチレン基等の直鎖状アルキレン基が好ましく、単結合、メチレン基、エチレン基がより好ましく、単結合、メチレン基が更に好ましい。
上記式(3)中、Xが金属原子である場合、該金属原子としては、例えば、ナトリウム原子、リチウム原子、カリウム原子等が挙げられる。なかでも、ナトリウム原子が好ましい。
上記酸変性基がアミド基である場合、上記アミド基を有する構成単位としては、下記式(4)で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
上記式(4)中、R13は、炭素数1~10のアルキル基を表す。
上記式(4)中のR13としては、上記式(2-2)中のR、R及びRで例示したものと同様のものが挙げられ、なかでも、水素原子、メチル基、エチル基、プロピル基、n-ブチル基等の直鎖状アルキル基が好ましく、水素原子、メチル基、エチル基がより好ましい。
上記ポリビニルアセタール樹脂の平均重合度は、200以上であることが好ましく、250以上であることがより好ましく、4000以下であることが好ましく、3700以下であることがより好ましい。
上記平均重合度が上記範囲内であると、分散性が良好となる。
上記ポリビニルアセタール樹脂は、ケン化度が70.0モル%以上99.9モル%以下であるポリビニルアルコール樹脂のアセタール化物であることが好ましい。
上記ポリビニルアセタール樹脂とすることで、繊維状炭素材料の分散性をより高めることができる。
上記ポリビニルアセタール樹脂は、ガラス転移温度が70℃以上であることが好ましく、71℃以上であることがより好ましく、95℃以下であることが好ましく、91℃以下であることがより好ましい。
上記ガラス転移温度は、動的粘弾性測定装置(DMA)を用いて測定することができる。
上記ポリビニルアセタール樹脂は、25重量%水溶液の比重が1.02以上であることが好ましく、1.08以下であることが好ましい。
上記比重は、樹脂水溶液の温度20℃の条件でガラス製のボーメ計を用いて測定することができる。
本発明の炭素材料組成物における上記ポリビニルアセタール樹脂の含有量は、0.1重量%以上であることが好ましく、0.5重量%以上であることがより好ましく、20.0重量%以下であることが好ましく、15.0重量%以下であることがより好ましい。
本発明の炭素材料組成物における上記ポリビニルアセタール樹脂の含有量と上記繊維状炭素材料の含有量との比(ポリビニルアセタール樹脂の含有量/繊維状炭素材料の含有量)は0.05以上であることが好ましく、10.0以下であることが好ましい。
上記含有量の比が上記下限以上であると、繊維状炭素材料の分散性が良好となり、導電パスを形成しやすくなる。結果、表面抵抗値がより一層優れるものとなる。一方、上記上限以下であると、導電性を付与する繊維状炭素材料が充分に存在し、表面抵抗値がより一層優れるものとなる。
上記含有量の比は、0.10以上であることがより好ましく、8.00以下であることがより好ましい。
本発明の炭素材料組成物における上記繊維状炭素材料の含有量(単位g)と、繊維状炭素材料の平均繊維径(単位nm)と、ポリビニルアセタール樹脂の含有量(単位g)との比(ポリビニルアセタール樹脂の含有量/(繊維状炭素材料の平均繊維径/繊維状炭素材料の含有量))は、0.01以上であることが好ましく、0.02以上であることがより好ましく、7.00以下であることが好ましく、6.40以下であることがより好ましい。
上記ポリビニルアセタール樹脂を作製する方法としては、例えば、酢酸ビニル等の単量体を重合して得られたポリ酢酸ビニル樹脂を酸またはアルカリを添加してケン化し、精製すること等によりNaイオン含有量を調整したポリビニルアルコール樹脂をアセタール化する方法等が挙げられる。
上記ポリビニルアルコール樹脂としては、例えば、ポリ酢酸ビニル樹脂をアルカリ、酸、アンモニア水等によりケン化することにより製造された樹脂等の従来公知のポリビニルアルコール樹脂を用いることができる。
上記ポリビニルアルコール樹脂は、完全ケン化されていてもよいが、少なくとも主鎖の1カ所にメソ、ラセモ位に対して2連の水酸基を有するユニットが最低1ユニットあれば完全ケン化されている必要はなく、部分ケン化ポリビニルアルコール樹脂であってもよい。また、上記ポリビニルアルコール樹脂としては、エチレン-ビニルアルコール共重合体樹脂、部分ケン化エチレン-ビニルアルコール共重合体樹脂等、ビニルアルコールと共重合可能なモノマーとビニルアルコールとの共重合体も用いることができる。
上記ポリ酢酸ビニル系樹脂は、例えば、エチレン-酢酸ビニル共重合体等が挙げられる。
上記ポリビニルアルコール樹脂は、ケン化度が70.0モル%以上99.9モル%以下であることが好ましく、85.0モル%以上95.0モル%以下であることがより好ましい。
上記ポリビニルアルコール樹脂を用いることにより、繊維状炭素材料の分散性をより高めることができる。
上記アセタール化は、公知の方法を用いることができ、水系溶媒中、水と水との相溶性のある有機溶媒との混合溶媒中、あるいは有機溶媒中で行うことが好ましい。
上記水との相溶性のある有機溶媒としては、例えば、アルコール系有機溶剤を用いることができる。
上記有機溶媒としては、例えば、アルコール系有機溶剤、芳香族有機溶剤、脂肪族エステル系溶剤、ケトン系溶剤、低級パラフィン系溶剤、エーテル系溶剤、アミド系溶剤、アミン系溶剤等が挙げられる。
上記アルコール系有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール等が挙げられる。
上記芳香族有機溶剤としては、例えば、キシレン、トルエン、エチルベンゼン、安息香酸メチル等が挙げられる。
上記脂肪族エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、アセト酢酸メチル、アセト酢酸エチル等が挙げられる。
上記ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ベンゾフェノン、アセトフェノン等が挙げられる。
上記低級パラフィン系溶剤としては、ヘキサン、ペンタン、オクタン、シクロヘキサン、デカン等が挙げられる。
上記エーテル系溶剤としては、ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジエチルエーテル等が挙げられる。
上記アミド系溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、アセトアニリド等が挙げられる。
上記アミン系溶剤としては、アンモニア、トリメチルアミン、トリエチルアミン、n-ブチルアミン、ジn-ブチルアミン、トリn-ブチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ピリジン等が挙げられる。
これらは、単体で用いることもできるし、2種以上の溶媒を混合で用いることもできる。これらのなかでも、樹脂に対する溶解性及び精製時の簡易性の観点から、エタノール、n-プロパノール、イソプロパノール、テトラヒドロフランが特に好ましい。
上記アセタール化は、酸触媒の存在下において行うことが好ましい。
上記酸触媒は特に限定されず、硫酸、塩酸、硝酸、リン酸等の鉱酸や、ギ酸、酢酸、プロピオン酸等のカルボン酸や、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸等のスルホン酸が挙げられる。これらの酸触媒は、単独で用いられてもよく、2種以上の化合物を併用してもよい。なかでも、塩酸、硝酸、硫酸が好ましく、塩酸が特に好ましい。
上記アセタール化に用いられるアルデヒドとしては、炭素数1~10の鎖状脂肪族基、環状脂肪族基又は芳香族基を有するアルデヒドが挙げられる。これらのアルデヒドとしては、従来公知のアルデヒドを使用できる。上記アセタール化反応に用いられるアルデヒドは、特に限定されるものではなく、例えば、脂肪族アルデヒド、芳香族アルデヒド等が挙げられる。
上記脂肪族アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、n-ヘキシルアルデヒド、2-エチルブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ヘプチルアルデヒド、n-オクチルアルデヒドオクテルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、アミルアルデヒド等が挙げられる。
上記芳香族アルデヒドとしては、ベンズアルデヒド、シンナムアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等の芳香族アルデヒド等が挙げられる。
また、パラアルデヒド、メタアルデヒド等の環状の多量体等を用いることができる。
これらのアルデヒドは、1種を単独で使用してもよく、2種以上を併用してもよい。アルデヒドとしては、なかでも、アセタール化反応性に優れ、生成する樹脂に充分な内部可塑効果をもたらし、結果として良好な柔軟性を付与することができるホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ノニルアルデヒド、パラアルデヒドが好ましい。また、耐衝撃性及び金属との接着性に特に優れる接着剤組成物を得られることから、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、パラアルデヒドがより好ましい。
上記アルデヒドの添加量としては、目的とするポリビニルアセタール樹脂のアセタール基量にあわせて適宜設定することができる。特に、ポリビニルアルコール樹脂100モル%に対して、60~95モル%、好ましくは65~90モル%とすると、アセタール化反応が効率よく行われ、未反応のアルデヒドも除去しやすいため好ましい。
本発明の炭素材料組成物は、本発明の効果を損なわない範囲で、更に、他のバインダー、導電助剤、難燃助剤、消泡剤、レベリング剤、密着性付与剤等の添加剤を含んでいてもよい。
本発明の炭素材料組成物を作製する方法としては特に限定されず、例えば、原料ポリビニルアルコールをアセタール化したポリビニルアセタール樹脂と、繊維状炭素材料とを水系溶媒に添加して混合する方法等が挙げられる。
上記混合する方法としては、例えば、ボールミル、ブレンダーミル、3本ロール等の各種混合機を用いる方法等が挙げられる。
本発明の炭素材料組成物に活物質を添加することで、リチウム二次電池電極用組成物とすることができる。
上記活物質としては、正極活物質、負極活物質が挙げられる。
上記正極活物質としては、例えば、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムマンガン酸化物(例えばLiMn)や、これらの複合体(例えば、LiNi0.5Mn1.5、LiNi1/3Co1/3Mn1/3)等の、リチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)の粒子が挙げられる。また、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)等のリチウムと遷移金属元素とを構成金属元素として含むリン酸塩等の粒子が挙げられる。
なお、これらは単独で用いてもよく、2種以上を併用してもよい。
上記負極活物質としては、例えば、従来からリチウム二次電池の負極活物質として用いられている材料を用いることができ、例えば黒鉛、天然黒鉛、グラファイトカーボン、アモルファスカーボン等の炭素材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物、ケイ素、酸化ケイ素等のシリコン化合物等が挙げられる。
上記リチウム二次電池電極用組成物を製造する方法としては、特に限定されず、例えば、上記活物質、本発明の炭素材料組成物及び必要に応じて添加する各種添加剤をボールミル、ブレンダーミル、3本ロール等の各種混合機を用いて混合する方法が挙げられる。
上記リチウム二次電池電極用組成物は、例えば、導電性基体上に塗布し、乾燥する工程を経ることで、リチウム二次電池電極が形成される。
上記塗布方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーターなどをはじめ、各種の塗布方法を採用することができる。
本発明によれば、繊維状炭素材料の分散性に優れ、電極抵抗を低減することが可能である炭素材料組成物を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
(実施例1)
(ポリビニルアセタール樹脂の作製)
ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、水酸基の半値幅360cm-1)500gを純水2500gに加え、90℃で2時間攪拌し溶解させた。この溶液を40℃に冷却し、これに濃度35重量%の塩酸10gを添加した後、液温を5℃に下げてアセトアルデヒド75gを添加し、この温度を保持してアセタール化反応を行った。液温を65℃として、5時間保持して反応を完了させ、水酸化ナトリウム水溶液40gを加えて中和反応を行った。その後、純水5000gを加え、攪拌した後、デカンテーションにより水5000gを除去した。更に、純水5000gを加え、攪拌した後、デカンテーションにより水を除去する工程を合計3回繰り返した。その後イオン交換水を用いて樹脂の固形分率を20重量%に調整して、ポリビニルアセタール樹脂を得た。
なお、ポリビニルアルコール樹脂の水酸基の半値幅は、HORIBA FT-720(堀場製作所社製)を用いてIR測定を行うことにより測定した。
また、得られたポリビニルアセタール樹脂について、H-NMR(核磁気共鳴スペクトル)を用いてアセタール基量、水酸基量、アセチル基量、疎水基のブロック性を測定したところ、結果は表1の通りであった。H-NMR測定は、溶媒として重DMSOを用いた。
更に、得られたポリビニルアセタール樹脂について、動的粘弾性測定装置(DMA)を用いてガラス転移温度を測定したところ、結果は表1の通りであった。
また、得られたポリビニルアセタール樹脂について、ガラス製のボーメ計を用いて25重量%水溶液を20℃として比重を測定したところ、結果は表1の通りであった。
(炭素材料組成物の作製)
水97.0gに対して、得られたポリビニルアセタール樹脂1.0g、繊維状炭素材料2.0gを加えて混合し、炭素材料組成物を得た。
なお、繊維状炭素材料としては、多層カーボンナノチューブ(MW、シグマアルドリッチ社製、平均繊維径9nm、平均繊維長13μm、比重1.8、比表面積200m/g、層数8、G/D比0.6)を用いた。
(実施例2)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅360cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例3)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度1250、水酸基の半値幅360cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例4)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度2000、水酸基の半値幅360cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例5)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度4000、水酸基の半値幅340cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例6)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、水酸基の半値幅345cm-1)を用い、アセトアルデヒド56gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例7)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、水酸基の半値幅340cm-1)を用い、n-ブチルアルデヒド16gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例8)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、水酸基の半値幅370cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例9)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、水酸基の半値幅370cm-1)を用いた以外は実施例6と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例10)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、半値幅365cm-1)を用いた以外は実施例7と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例11)
繊維状炭素材料として単層カーボンナノチューブ(SW、OCSIAL社製、平均繊維径1.2nm、平均繊維長4μm以上、比重1.3、比表面積390m/g、G/D比32)を用いて、表1に示す配合で混合した以外は実施例1と同様にして炭素材料組成物を得た。
(実施例12)
実施例6で得られたポリビニルアセタール樹脂を用いた以外は実施例11と同様にして炭素材料組成物を得た。
(実施例13)
(ポリビニルアセタール樹脂の作製)において、アセトアルデヒドを16g用いた以外は実施例2と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例11と同様にして炭素材料組成物を得た。
(実施例14)
実施例8で得られたポリビニルアセタール樹脂を用いた以外は実施例11と同様にして炭素材料組成物を得た。
(実施例15)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度300、水酸基の半値幅360cm-1)を用いた以外は実施例6と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例11と同様にして炭素材料組成物を得た。
(実施例16)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅340cm-1)を用いた以外は実施例7と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例11と同様にして炭素材料組成物を得た。
(実施例17)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅350cm-1)を用いた以外は実施例6と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用い、繊維状炭素材料として気相成長系炭素繊維(VGCF、昭和電工株式会社製、平均繊維径150nm、平均繊維長15μm、比重2.1、比表面積13m/g、G/D比5.4)を用いて、表1に示す配合で混合した以外は実施例1と同様にして炭素材料組成物を得た。
(実施例18)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度75モル%、平均重合度600、水酸基の半値幅370cm-1)を用い、アセトアルデヒドを61g用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例19)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度150、水酸基の半値幅360cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例20)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度4500、水酸基の半値幅340cm-1)を用い、アセトアルデヒドを66g用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例21)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅340cm-1)を用い、アセトアルデヒドを9g用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例22)
(ポリビニルアセタール樹脂の作製)において、カルボキシル基を有する構成単位を有するポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅350cm-1、カルボキシル基を有する構成単位の含有量1.2モル%)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。なお、上記カルボキシル基を有する構成単位は、上記式(2-1)で表される構成単位(式(2-1)中、Rが単結合、Rがメチレン基、X及びXが水素原子)であった。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例23)
(ポリビニルアセタール樹脂の作製)において、スルホン酸基を有する構成単位を有するポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅350cm-1、スルホン酸基を有する構成単位の含有量1.0モル%)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。なお、上記スルホン酸基を有する構成単位は、上記式(3)で表される構成単位(式(3)中、R12はメチレン基、Xはナトリウム原子)であった。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例24)
(ポリビニルアセタール樹脂の作製)において、アミド基を有する構成単位を有するポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅350cm-1、アミド基を有する構成単位の含有量1.3モル%)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。なお、上記アミド基を有する構成単位は、上記式(4)で表される構成単位(式(4)中、R13がメチル基)であった。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例25)
繊維状炭素材料として多層カーボンナノチューブ(MW、シグマアルドリッチ社製、平均繊維径9nm、平均繊維長13μm、比重1.8、比表面積200m/g)を用いて、表2に示す配合で混合した以外は実施例2と同様にして炭素材料組成物を得た。
(実施例26)
繊維状炭素材料として単層カーボンナノチューブ(SW、OCSIAL社製、平均繊維径1.2nm、平均繊維長4μm以上、比重1.3)を用いて、表2に示す配合で混合した以外は実施例2と同様にして炭素材料組成物を得た。
(実施例27)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度99.9モル%、平均重合度600、水酸基の半値幅370cm-1)を用い、アセトアルデヒドを85g用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(実施例28)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度65モル%、平均重合度600、水酸基の半値幅355cm-1)を用い、アセトアルデヒドを70g用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例1)
ポリビニルアセタール樹脂に代えてポリビニルアルコール樹脂(ケン化度12モル%、平均重合度600、水酸基の半値幅325cm-1)を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例2)
ポリビニルアセタール樹脂に代えてポリビニルピロリドン(平均重合度10000)を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例3)
繊維状炭素材料に代えてアセチレンブラック(デンカ株式会社製、平均粒子径35nm、比表面積68m/g)を用い、表2に示す配合で混合した以外は実施例2と同様にして炭素材料組成物を得た。
(比較例4)
繊維状炭素材料に代えてグラフェン(シグマアルドリッチ社製、平均粒子径5μm)を用いた以外は実施例17と同様にして炭素材料組成物を得た。
(比較例5)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度4500、水酸基の半値幅325cm-1)を用い、アセトアルデヒド9gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例6)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度150、水酸基の半値幅385cm-1)を用い、アセトアルデヒド82gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例7)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度4500、水酸基の半値幅340cm-1)を用い、アセトアルデヒド93gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例8)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度150、水酸基の半値幅370cm-1)を用い、アセトアルデヒド93gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例9)
(ポリビニルアセタール樹脂の作製)において、アセトアルデヒドを93gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例10)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、水酸基の半値幅385cm-1)を用い、アセトアルデヒドを82g用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例11)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度200、水酸基の半値幅330cm-1)を用い、アセトアルデヒドを82gを用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例12)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅325cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
(比較例13)
(ポリビニルアセタール樹脂の作製)において、ポリビニルアルコール樹脂(ケン化度88モル%、平均重合度600、水酸基の半値幅380cm-1)を用いた以外は実施例1と同様にしてポリビニルアセタール樹脂を得た。
得られたポリビニルアセタール樹脂を用いた以外は実施例1と同様にして炭素材料組成物を得た。
<評価>
実施例及び比較例で得られた炭素材料組成物について以下の評価を行った。結果を表3及び4に示した。
(1)分散性
(1-1)粒度分布
得られた炭素材料組成物を超音波分散機(エスエヌディ社製「US-303」)にて10分間攪拌した。その後、レーザー回折式粒度分布計(堀場製作所社製「KA-910」)を用いて粒度分布測定を行い、D50粒子径を測定した。また、23℃で1週間放置した後のD50粒子径についても同様に測定した。更にD50粒子径の変化率を算出して以下の基準で評価した。
A:変化率が30%未満であった。
B:変化率が30%以上、60%未満であった。
C:変化率が60%以上、80%未満であった。
D:変化率が80%以上であった。
粒度分布の変化率が少ないと分散性と貯蔵安定性に優れているといえる。
(1-2)沈降特性
得られた炭素材料組成物の固形分率を測定後、株式会社コクサン製、遠心機H―18Fを用いて、3000rpmで30分遠心分離を行い、上澄み90Vol%を採取して固形分率を測定することにより遠心分離前との固形分率の変化率を算出して、沈降特性を以下の基準で評価した。
A:遠心分離前後で変化率が95%以上であった。
B:遠心分離前後で変化率が95%未満90%以上であった。
C:遠心分離前後で変化率が90%未満85%以上であった。
D:遠心分離前後で変化率が85%未満であった。
沈降特性が良好であると貯蔵安定性に優れているといえる。
(1-3)レオロジー
得られた炭素材料組成物について、回転レオメータ(Thermo Fisher Scientific社製;HAAKE Rheo Stress 3000)を用いて、以下の測定条件でCRフローカーブモードにて、せん断速度を0.01~100[1/s]まで一定の速さで連続的に変化させたときの粘度を測定した。
<測定条件>
回転する円盤:平板
回転する円盤の直径:35mm
ギャップ:0.5mm
剪断速度1[0.1/s]の時の粘度を比較し、レオロジー特性を以下の基準で評価した。
A:100mPa・s未満であった。
B:100mPa・s以上、200mPa・s未満であった。
C:200mPa・s以上、300mPa・s未満であった。
D:300mPa・s以上であった。
レオロジー特性が良好であると経時安定性、スラリーハンドリング性に優れているといえる。
(2)シート評価
(シートの作製)
離型処理されたポリエチレンテレフタレート(PET)フィルム上に得られた炭素材料組成物を乾燥後の膜厚が20μmとなるように塗工し、乾燥してPETフィルムから剥離してシートを作製した。
(2-1)表面抵抗値
得られたシートについて、電極抵抗測定器(日置電機株式会社製)を用いて電極抵抗値を測定し、以下の基準で評価した。
A:電極抵抗値が100Ω/sq未満であった。
B:電極抵抗値が100以上120Ω/sq未満であった。
C:電極抵抗値が120以上150Ω/sq未満であった。
D:電極抵抗値が150Ω/sq以上であった。
表面抵抗値が低い値であると電気伝導性に優れているといえる。
(2-2)平均表面粗さ
得られたシートについて、JIS B 0601(1994)に基づいて平均表面粗さRaを測定し、以下の基準で評価した。
A:Raが3μm未満であった。
B:Raが3μm以上、5μm未満であった。
C:Raが5μm以上、9μm未満であった。
D:Raが9μm以上であった。
平均表面粗さRaが低い値であると円滑性や接着性に優れているといえる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
本発明によれば、繊維状炭素材料の分散性に優れ、電極抵抗を低減することが可能である炭素材料組成物を提供することができる。

 

Claims (5)

  1. 繊維状炭素材料と、水系溶媒と、ポリビニルアセタール樹脂とを含み、
    前記ポリビニルアセタール樹脂は、アセタール基量が40.0モル%以下であり、かつ、NMRにより測定される疎水基のブロック性が0.35以上0.80以下である、炭素材料組成物。
  2. ポリビニルアセタール樹脂は、ケン化度が70.0モル%以上99.9モル%以下であるポリビニルアルコール樹脂のアセタール化物である請求項1に記載の炭素材料組成物。
  3. ポリビニルアセタール樹脂は、平均重合度が200以上4000以下である請求項1又は2に記載の炭素材料組成物。
  4. ポリビニルアセタール樹脂は、アセタール基量が5.0モル%以上である請求項1~3のいずれかに記載の炭素材料組成物。
  5. 上記繊維状炭素材料の含有量と、繊維状炭素材料の平均繊維径と、ポリビニルアセタール樹脂の含有量との比(ポリビニルアセタール樹脂の含有量/(繊維状炭素材料の平均繊維径/繊維状炭素材料の含有量))が0.01以上7.00以下である請求項1~4のいずれかに記載の炭素材料組成物。

     
PCT/JP2022/039891 2021-10-27 2022-10-26 炭素材料組成物 WO2023074730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280068023.9A CN118076695A (zh) 2021-10-27 2022-10-26 碳材料组合物
JP2022568871A JPWO2023074730A1 (ja) 2021-10-27 2022-10-26
KR1020247011568A KR20240088799A (ko) 2021-10-27 2022-10-26 탄소 재료 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-175783 2021-10-27
JP2021175783 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023074730A1 true WO2023074730A1 (ja) 2023-05-04

Family

ID=86157964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039891 WO2023074730A1 (ja) 2021-10-27 2022-10-26 炭素材料組成物

Country Status (4)

Country Link
JP (1) JPWO2023074730A1 (ja)
KR (1) KR20240088799A (ja)
CN (1) CN118076695A (ja)
WO (1) WO2023074730A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166765A (ja) * 1992-11-30 1994-06-14 Mitsubishi Rayon Co Ltd プリプレグ
JP2001049013A (ja) * 1999-05-31 2001-02-20 Toray Ind Inc プリプレグ及び炭素繊維強化複合材料
WO2009098779A1 (ja) * 2008-02-08 2009-08-13 Meijo Nano Carbon Co., Ltd. カーボンナノチューブ分散液、及びその利用
JP2014225446A (ja) * 2013-04-22 2014-12-04 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池用電極および二次電池
CN108586836A (zh) * 2018-05-03 2018-09-28 江苏通用科技股份有限公司 碳纤维基橡胶复合材料及其制备方法
JP2018535284A (ja) 2015-09-25 2018-11-29 エルジー・ケム・リミテッド カーボンナノチューブ分散液およびその製造方法
US10297741B1 (en) * 2017-12-14 2019-05-21 Eastman Kodak Company Electrically-conductive compositions
WO2019163841A1 (ja) * 2018-02-20 2019-08-29 積水化学工業株式会社 耐火樹脂組成物、耐火シート、耐火積層体、及びバッテリー
WO2020203786A1 (ja) * 2019-03-29 2020-10-08 積水化学工業株式会社 セラミックグリーンシート用樹脂組成物、セラミックグリーンシート及び積層セラミックコンデンサ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166765A (ja) * 1992-11-30 1994-06-14 Mitsubishi Rayon Co Ltd プリプレグ
JP2001049013A (ja) * 1999-05-31 2001-02-20 Toray Ind Inc プリプレグ及び炭素繊維強化複合材料
WO2009098779A1 (ja) * 2008-02-08 2009-08-13 Meijo Nano Carbon Co., Ltd. カーボンナノチューブ分散液、及びその利用
JP2014225446A (ja) * 2013-04-22 2014-12-04 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池用電極および二次電池
JP2018535284A (ja) 2015-09-25 2018-11-29 エルジー・ケム・リミテッド カーボンナノチューブ分散液およびその製造方法
US10297741B1 (en) * 2017-12-14 2019-05-21 Eastman Kodak Company Electrically-conductive compositions
WO2019163841A1 (ja) * 2018-02-20 2019-08-29 積水化学工業株式会社 耐火樹脂組成物、耐火シート、耐火積層体、及びバッテリー
CN108586836A (zh) * 2018-05-03 2018-09-28 江苏通用科技股份有限公司 碳纤维基橡胶复合材料及其制备方法
WO2020203786A1 (ja) * 2019-03-29 2020-10-08 積水化学工業株式会社 セラミックグリーンシート用樹脂組成物、セラミックグリーンシート及び積層セラミックコンデンサ

Also Published As

Publication number Publication date
JPWO2023074730A1 (ja) 2023-05-04
KR20240088799A (ko) 2024-06-20
CN118076695A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
JP6765685B2 (ja) カーボンナノチューブ分散液およびその製造方法
CN105860064B (zh) 一种聚苯胺/羧基化石墨烯复合材料的制备方法
KR20200028854A (ko) 리튬이온 전지용 바인더 수용액, 리튬이온 전지전극용 슬러리 및 그 제조방법, 리튬이온 전지전극 및 리튬이온 전지
KR20180093102A (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
WO2010090343A1 (ja) 黒鉛化炭素片分散液およびその製造方法
TW201611396A (zh) 蓄電裝置電極用黏著劑組成物、蓄電裝置電極用漿料、蓄電裝置電極、及蓄電裝置
JP6114891B1 (ja) 蓄電デバイス電極用バインダー
KR20170037454A (ko) 탄소 나노튜브 분산액 및 이의 제조방법
KR102647941B1 (ko) 축전 디바이스 전극용 바인더
WO2022210177A1 (ja) 樹脂組成物
WO2023074730A1 (ja) 炭素材料組成物
WO2021193298A1 (ja) スラリー組成物
WO2023182090A1 (ja) 二次電池電極用組成物
JP6326958B2 (ja) 燃料電池セパレーター用水系導電性ペーストの製造方法
JP2018160400A (ja) 蓄電デバイス電極用バインダー
JP2017183241A (ja) 蓄電デバイス電極用バインダー
WO2023286793A1 (ja) リチウムイオン電池電極用カーボンナノチューブ分散液
CN113880976B (zh) 乙烯马来酸酐交替共聚物及其水解产物在制备硅负极电极材料中的应用
JP6876478B2 (ja) 蓄電デバイス電極用バインダー
US20240247088A1 (en) Dispersant for power storage device positive electrode
JP2018005989A (ja) 蓄電デバイス電極用組成物
WO2022071089A1 (ja) ポリビニルアセタール樹脂
TW202208460A (zh) 改質聚乙烯縮醛樹脂、蓄電池電極用組成物、顏料組成物
CN116636049A (zh) 全固态电池用组合物
KR20180082737A (ko) 탄소 동소체용 분산제 및 이를 포함하는 도전성 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022568871

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022887055

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022887055

Country of ref document: EP

Effective date: 20240527