WO2023074714A1 - Film and multilayer film - Google Patents

Film and multilayer film Download PDF

Info

Publication number
WO2023074714A1
WO2023074714A1 PCT/JP2022/039810 JP2022039810W WO2023074714A1 WO 2023074714 A1 WO2023074714 A1 WO 2023074714A1 JP 2022039810 W JP2022039810 W JP 2022039810W WO 2023074714 A1 WO2023074714 A1 WO 2023074714A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polycarbonate resin
less
clay mineral
layered clay
Prior art date
Application number
PCT/JP2022/039810
Other languages
French (fr)
Japanese (ja)
Inventor
恵夢 小坂
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2023506128A priority Critical patent/JP7257596B1/en
Publication of WO2023074714A1 publication Critical patent/WO2023074714A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to films and multilayer films.
  • Polycarbonate resin is used in various applications because it has excellent transparency, workability and impact resistance compared to glass.
  • applications as various films are known, and are described in Patent Document 1, for example.
  • films are sometimes required to have slidability to the extent that they do not stack, and to suppress adhesion between films (anti-blocking properties).
  • anti-blocking means that films can be easily peeled off even if they are in close contact with each other.
  • the film may be laminated with another substrate and heated.
  • Such films are often produced industrially by roll-to-roll. It is preferably used from the viewpoint of prevention and the like.
  • An object of the present invention is to solve such problems, and to provide a film and a multilayer film that are excellent in slidability and that can suppress the generation of air bubbles when heated while being laminated with another base material. for the purpose.
  • the present inventors conducted studies and found that the above-mentioned problem was solved by using a layered clay mineral and adjusting the surface roughness Sa of the film within a predetermined range. Specifically, the above problems have been solved by the following means.
  • ⁇ 1> A film containing 0.005 to 0.5 parts by mass of a layered clay mineral with respect to 100 parts by mass of a polycarbonate resin, wherein the surface roughness Sa of the film is 10 to 100 nm, and the thickness of the film is A film that is between 50 and 200 ⁇ m.
  • ⁇ 3> The film according to ⁇ 1> or ⁇ 2>, wherein the layered clay mineral has a refractive index of 1.55 to 1.63.
  • ⁇ 4> The film according to any one of ⁇ 1> to ⁇ 3>, wherein the layered clay mineral contains mica.
  • ⁇ 5> The film according to any one of ⁇ 1> to ⁇ 4>, wherein the film has a haze of 2% or less under a D65 light source of 10° field of view.
  • ⁇ 6> The film according to any one of ⁇ 1> to ⁇ 5>, which is a substrate for a protective film.
  • ⁇ 7> A multilayer film comprising the film according to any one of ⁇ 1> to ⁇ 6> and another layer.
  • ⁇ 8> The multilayer film according to ⁇ 7>, wherein the other layer has an adhesive layer.
  • ⁇ 9> A transparent conductive film having a protective layer, an adhesive layer, a substrate, and an electrode layer in this order, wherein the protective layer is any one of ⁇ 1> to ⁇ 6> A transparent conductive film, which is the film described.
  • the present invention it has become possible to provide a film and a multilayer film that have excellent slidability and that can suppress the generation of air bubbles when they are laminated to other substrates and heated.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the notations that do not describe substituted and unsubstituted are preferably unsubstituted.
  • the term "process” includes not only an independent process, but also when the intended action of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the term “film” refers to a generally flat molded body that is thin in thickness relative to its length and width.
  • the term “film” in this specification is intended to include “sheet”.
  • the "film” may be a single layer or multiple layers. If the measurement methods, etc. described in the standards shown in this specification differ from year to year, they shall be based on the standards as of January 1, 2021 unless otherwise stated.
  • the film of the present embodiment contains 0.005 to 0.5 parts by mass of layered clay mineral with respect to 100 parts by mass of polycarbonate resin, has a surface roughness Sa of 10 to 100 nm, and has a thickness of 50 to 200 ⁇ m. It is characterized by With such a configuration, it is possible to provide a film, a multilayer body, and a protective film that are excellent in slidability and that can suppress the generation of air bubbles when the film is laminated to another base material and heated.
  • Sa is selected as an index representing the unevenness of the surface on which air is difficult to collect
  • Sa as an index that comprehensively indicates the number, density, and height or depth of unevenness on the film surface. examined carefully. As a result, it was found that generation of air bubbles can be effectively suppressed by adjusting Sa to 10 to 100 nm. As a result, it has become possible to provide a film that has excellent slidability and that can suppress the generation of air bubbles. Furthermore, in the present embodiment, by forming unevenness using a layered clay mineral, slidability can be imparted more effectively.
  • the layered clay mineral which is a particle with a relatively sharp shape, it is easier to form sharper irregularities than when spherical particles are used, effectively imparting a coefficient of dynamic friction, and sliding. Mobility tends to improve. Further, for example, when there are high convex portions locally, it is difficult to improve the slidability, and it is necessary that the entire surface of the film is provided with moderate unevenness. Details of the present embodiment will be described below.
  • Sa is 10 to 100 nm.
  • at least one surface should satisfy Sa, but both surfaces may satisfy Sa.
  • the Sa on one side and the Sa on the other side may be the same or different.
  • Sa is an index that comprehensively indicates the number, density, and height or depth of unevenness on the film surface.
  • a film when a film is produced by roll-to-roll, it can be adjusted by adjusting the temperature, the surface hardness of the roll, the speed of the roll, the amount of discharge during extrusion, and the like.
  • Sa may be adjusted by combining two or more of these means.
  • the lower limit of Sa is preferably 20 nm or more, more preferably 25 nm or more, still more preferably 27 nm or more, still more preferably 30 nm or more, and even more preferably 40 nm or more.
  • it is more preferably 50 nm or more.
  • the upper limit of Sa is preferably 90 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, and even more preferably 60 nm or less. By making it below the said upper limit, generation
  • the film of this embodiment has a thickness of 50 to 200 ⁇ m.
  • the thickness of the film of the present embodiment is preferably 60 ⁇ m or more, more preferably 70 ⁇ m or more, still more preferably 80 ⁇ m, and even more preferably 90 ⁇ m.
  • the thickness of a film is the average value of five arbitrary places.
  • the dynamic friction coefficient of at least one surface with respect to a film having a root mean square roughness of 0.093 ⁇ m is preferably 2.00 or less, more preferably 1.80 or less. It is preferably 1.50 or less, even more preferably 1.20 or less, and may be 1.00 or less.
  • the coefficient of dynamic friction is 2.00 or less, the slidability tends to be excellent.
  • the lower limit is not particularly defined, it is, for example, 0.10 or more, and may be 0.20 or more, 0.30 or more, 0.40 or more, or 0.50 or more.
  • the coefficient of dynamic friction is a value measured under the conditions of a thread of 100 mm/min and a load cell of 10 N. Specifically, it is measured by the method described in the examples below.
  • the film of the present embodiment preferably has a total light transmittance of 86.0% or more, more preferably 87.0% or more, and more preferably 89.0% or more under the condition of D65 light source 10° field of view. It is more preferably 90.0% or more.
  • the upper limit of the light transmittance is ideally 100%, but even if it is 95.0% or less, the required performance is sufficiently satisfied.
  • the total light transmittance is measured by the method described in Examples below.
  • the film of the present embodiment preferably has a haze of 2.0% or less, more preferably 1.8% or less, and may be 1.5% or less under the condition of a D65 light source of 10° field of view. It may be 1.0% or less. As for the lower limit, 0% is ideal, but even 0.1% or more is a practical level. Haze is measured by the method described in Examples below.
  • the film of this embodiment contains a polycarbonate resin.
  • a film having excellent transparency can be obtained by using a polycarbonate resin.
  • the polycarbonate resin is preferably an aromatic polycarbonate resin, more preferably a polycarbonate resin having a bisphenol skeleton.
  • polycarbonate resin having a bisphenol skeleton By using such a polycarbonate resin, better heat resistance and toughness can be achieved.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 10,000 or more, more preferably 12,000 or more, still more preferably 15,000 or more, and still more preferably 18,000. That's it.
  • the upper limit of the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 50,000 or less, more preferably 40,000 or less, and even more preferably 30,000 or less. When the content is equal to or less than the above upper limit, the moldability of the substrate tends to be further improved.
  • the viscosity-average molecular weight (Mv) is determined by using methylene chloride as a solvent and using an Ubbelohde viscometer to determine the intrinsic viscosity [ ⁇ ] (unit: dL/g) at a temperature of 25°C. 1.23 ⁇ 10 ⁇ 4 ⁇ Mv 0.83 means a value calculated from. When two or more polycarbonate resins are used, the viscosity-average molecular weight of the mixture is used.
  • the refractive index of the polycarbonate resin is preferably 1.56 or more, more preferably 1.58 or more, and preferably 1.63 or less, more preferably 1.60 or less. preferable.
  • the difference in refractive index from the layered clay mineral tends to be small and the transparency tends to be improved.
  • the difference in refractive index between the polycarbonate resin and the layered clay mineral is preferably 0.05 or less, more preferably 0.04 or less, even more preferably 0.03 or less, and further preferably 0.05 or less.
  • the refractive index difference is zero.
  • the refractive index of polycarbonate resin can be measured according to the JIS K7142A method.
  • the content of the polycarbonate resin in the film of the present embodiment is preferably 95% by mass or more, more preferably 97% by mass or more, and may be 99% by mass or more of the entire film.
  • the upper limit of the polycarbonate resin content is a value at which the total content of the polycarbonate resin and the layered clay mineral is 100% by mass of the entire film.
  • the film of the present embodiment may contain only one type of polycarbonate resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • a first embodiment of the polycarbonate resin in this embodiment is a polycarbonate resin having a structural unit represented by formula (A-1), and a typical example thereof is a bisphenol A type polycarbonate resin.
  • X 1 represents the following structure. * in the formula represents a binding position. At least one of R 5 and R 6 is preferably a methyl group, more preferably both are methyl groups.
  • Formula (A-1) is preferably represented by the following formula (A-2).
  • the content of the structural unit represented by formula (A-1) is preferably 70 mol% or more, 80 mol% or more, of all structural units excluding terminal groups. and more preferably 90 mol % or more.
  • the upper limit is not particularly limited, and 100 mol % may be the structural unit represented by formula (A-1).
  • the polycarbonate resin may have other structural units. Examples of dihydroxy compounds that constitute such other structural units include aromatic dihydroxy compounds described in paragraph 0014 of JP-A-2018-154819, the contents of which are incorporated herein. .
  • a second embodiment of the polycarbonate resin in this embodiment is a polycarbonate resin containing a structural unit represented by formula (A-3), and a typical example thereof is a bisphenol AP type polycarbonate resin.
  • R 11 to R 14 each independently represent a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3 carbon atoms), and 6 carbon atoms.
  • -12 (preferably 6-10) aryl group, 1-5 (preferably 1-3) alkoxy group, 2-5 (preferably 2 or 3) alkenyl group or 7-17 carbon atoms represents an aralkyl group (preferably 7 to 11).
  • l represents an integer of 0 to 5 (preferably 0 or 1, more preferably 0).
  • m and n each independently represent an integer of 0 to 4 (preferably 0 or 1, more preferably 0). * in the formula represents the bonding position with other structural units or terminal groups.
  • the structural unit represented by formula (A-3) is preferably a structural unit represented by formula (A-4) below. * in the formula represents the bonding position with other structural units or terminal groups.
  • R 11 , R 12 , R 13 , R 14 , l, m and n have the same meanings as defined in formula (A-3).
  • the structural unit represented by formula (A-4) is preferably a structural unit represented by formula (A-5) below. * in the formula represents the bonding position with other structural units or terminal groups.
  • the content of the structural unit represented by formula (A-3) is preferably 70 mol% or more, 80 mol% or more, of all structural units excluding terminal groups. and more preferably 90 mol % or more.
  • the upper limit is not particularly limited, and 100 mol % may be the structural unit represented by formula (A-3).
  • the polycarbonate resin may have other structural units. Examples of other structural units include structural units represented by the above formula (A-1) and structural units derived from aromatic dihydroxy compounds described in paragraph 0014 of JP-A-2018-154819. The contents are incorporated herein.
  • a third embodiment of the polycarbonate resin in the present embodiment is a polycarbonate resin having a structural unit represented by the following formula (A-6), and representative examples thereof include bisphenol Z-type polycarbonate resin and bisphenol TMC. type polycarbonate resin.
  • R 8 each independently represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3), 6 to 12 carbon atoms ( an aryl group having preferably 6 to 10), an alkoxy group having 1 to 5 carbon atoms (preferably 1 to 3), an alkenyl group having 2 to 5 carbon atoms (preferably 2 or 3) or 7 to 17 carbon atoms (preferably 7 to 11) represents an aralkyl group.
  • R 8 is each independently preferably an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3 carbon atoms), more preferably a methyl group.
  • the structural unit represented by formula (A-6) is preferably a structural unit represented by formula (A-7) below. * in the formula represents the bonding position with other structural units or terminal groups.
  • R 8 has the same definition as R 8 in formula (A-6), and the preferred range is also the same.
  • Another preferred form of the structural unit represented by formula (A-6) is that q is 0.
  • the content of the structural unit represented by formula (A-6) is preferably 70 mol% or more, 80 mol% or more, of all structural units excluding terminal groups. and more preferably 90 mol % or more.
  • the upper limit is not particularly limited, and 100 mol % may be the structural unit represented by formula (A-6).
  • the polycarbonate resin may have other structural units.
  • Other structural units include structural units represented by the above formula (A-1), structural units represented by the above formula (A-3), and aromatic compounds described in paragraph 0014 of JP-A-2018-154819. Building blocks derived from dihydroxy compounds can be mentioned, the contents of which are incorporated herein.
  • a fourth embodiment of the polycarbonate resin in this embodiment is a polycarbonate resin having a terminal structure represented by formula (A-8).
  • R 21 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
  • R 22 represents a halogen atom or an alkyl group having 1 to 20 carbon atoms.
  • n2 is an integer of 0 to 4.
  • R 21 is preferably an alkyl or alkenyl group having 12 or more carbon atoms, more preferably an alkyl or alkenyl group having 14 or more carbon atoms.
  • R 21 is preferably an alkyl or alkenyl group having 22 or less carbon atoms, more preferably an alkyl or alkenyl group having 18 or less carbon atoms.
  • R 21 is preferably an alkyl group.
  • R 22 is preferably a fluorine atom, a chlorine atom, a methyl group, an ethyl group or a phenyl group, preferably a fluorine atom, a chlorine atom or a methyl group.
  • n2 is preferably an integer of 0 to 2, more preferably 0 or 1, even more preferably 0.
  • the terminal structure represented by formula (A-8) can be added to the polycarbonate resin by using a terminal terminator.
  • the polycarbonate resin of the fourth embodiment is preferably an aromatic polycarbonate resin, more preferably a polycarbonate resin having a bisphenol skeleton, more preferably a polycarbonate resin having a structural unit represented by the above formula (A-1), and bisphenol A type polycarbonate resins are more preferred. By using such a polycarbonate resin, better heat resistance and toughness can be achieved.
  • 90 mol % or more of all structural units excluding terminal structures are preferably structural units having a bisphenol skeleton.
  • the method for manufacturing the polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, a solid-phase transesterification method of a prepolymer, and the like.
  • the film of this embodiment contains 0.005 to 0.5 parts by mass of the layered clay mineral with respect to 100 parts by mass of the polycarbonate resin.
  • the Sa of the film surface can be adjusted appropriately, the slidability is achieved, and air bubbles generated when the film is laminated to another base material and heated can be effectively suppressed. can.
  • the layered clay mineral which is a particle with a relatively sharp shape, it is easier to form sharper irregularities than when spherical particles are used, effectively imparting a coefficient of dynamic friction and sliding. Mobility tends to improve.
  • the layered clay mineral in this embodiment is a layered silicate formed from a magnesium silicate layer or an aluminum silicate layer, and cations are adsorbed between the layers.
  • Cations are typically metal ions such as sodium ions, potassium ions, calcium ions. Examples include smectite, montmorillonite, hectorite, saponite, vermiculite, talc, virophyllite, mica, mica, magadiite, islarite, and kanemite, and both natural and synthetic materials can be used.
  • talc, mica, and mica are preferred, talc and mica are more preferred, and mica is even more preferred.
  • the difference in refractive index from polycarbonate resin is small, and transparency can be improved.
  • the layered clay mineral is mica
  • the mica is exemplified by white mica and gold mica, preferably white mica.
  • the average value (A) of the long side and short side of the layered clay mineral is preferably 2.0 ⁇ m to 9.0 ⁇ m.
  • the average value of the long side and short side (A) was obtained by randomly extracting 100 layered clay minerals observed with a scanning electron microscope, and measuring the length of the surface forming the layer for each particle, that is, the surface with the maximum area.
  • the average value (B) of the sides and short sides is measured, and the average value (A) is calculated from the average values (B) of 100 long sides and short sides.
  • surface used herein is meant to include what is regarded as one surface of the layered clay mineral in the technical field of the present invention, in addition to the geometric meaning of the "surface”.
  • the long side is the side corresponding to the major axis when the surface of the particle is approximated to an ellipse
  • the short side is the side corresponding to the minor axis when the surface of the particle is approximated to be elliptical.
  • the average value of the long side and short side of the layered clay mineral is preferably 2.0 ⁇ m or more, more preferably 2.5 ⁇ m or more, further preferably 3.0 ⁇ m or more, and 4.0 or more. is more preferable. When the content is equal to or higher than the above lower limit, there is an effect of further enhancing the slidability of the film.
  • the average value of the long side and the short side of the layered clay mineral is preferably 9.0 ⁇ m or less, more preferably 8.5 ⁇ m or less.
  • the film of the present embodiment may contain only one type of layered clay mineral, or may contain two or more types. When two or more types are included, it is preferable that the average value (A) of the long side and the short side when measured as a mixture by the above method falls within the above range.
  • the thickness of the layered clay mineral is preferably 0.1 ⁇ m or more, and may be 0.3 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more. It may be 5 ⁇ m or more. Further, it is preferably 9.0 ⁇ m or less, may be 7.0 ⁇ m or less, may be 5.0 ⁇ m or less, may be 3.0 ⁇ m or less, or may be 2.0 ⁇ m or less. .
  • the layered clay mineral preferably has a refractive index of 1.55 to 1.63. This tends to improve the transparency of the resulting film.
  • the refractive index is preferably 1.56 or more, more preferably 1.57 or more, and even more preferably 1.58 or more.
  • the refractive index is preferably 1.62 or less, more preferably 1.61 or less, even more preferably 1.60 or less, and even more preferably 1.59 or less. , 1.58 or less.
  • the refractive index is measured by the method described in Examples below.
  • the content of the layered clay mineral is 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the polycarbonate resin. Sliding property can be achieved by making it more than the said lower limit. Further, by setting the thickness to the above upper limit or less, it is possible to effectively suppress the generation of air bubbles when heating is performed while bonding to another base material. Furthermore, the transparency can be further improved.
  • the content of the layered clay mineral is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more, and 0.03 parts by mass or more with respect to 100 parts by mass of the polycarbonate resin. It may be 0.04 parts by mass or more.
  • the content of the layered clay mineral is preferably 0.40 parts by mass or less, more preferably 0.30 parts by mass or less, and 0.20 parts by mass or less with respect to 100 parts by mass of the polycarbonate resin. , more preferably 0.10 parts by mass or less, and even more preferably 0.08 parts by mass or less.
  • the content of the layered clay mineral is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and 0.02% by mass or more relative to the total mass of the film. is more preferable, and may be 0.03% by mass or more, or may be 0.04% by mass or more.
  • the content of the layered clay mineral is preferably 0.40% by mass or less, more preferably 0.30% by mass or less, and 0.20% by mass or less, relative to the total mass of the film. Certain things are more preferable, and 0.10% by mass or less is more preferable, and 0.08% by mass or less is even more preferable.
  • the film of the present embodiment may contain only one type of layered clay mineral, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the film of the present embodiment may or may not contain particles (organic particles and inorganic particles) other than the layered clay mineral. It is preferable that the layered clay mineral does not substantially contain particles other than the layered clay mineral.
  • the term "substantially free of particles other than the layered clay mineral” means that the content of particles other than the layered clay mineral is 10% by mass or less of the content of the layered clay mineral used in the present embodiment. It is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less, and even more preferably 0.1% by mass or less.
  • the film of the present embodiment may contain other components in addition to the polycarbonate resin and the layered clay mineral within the scope of the present invention. Specifically, release agents, antioxidants, transesterification inhibitors, heat stabilizers, flame retardants, flame retardant aids, ultraviolet absorbers, colorants, antistatic agents, fluorescent brighteners, antifogging agents, Fluidity improvers, plasticizers, dispersants, antibacterial agents, antiblocking agents, impact modifiers, sliding modifiers, hue modifiers, acid trapping agents and the like may also be included. These components may be used alone or in combination of two or more. Moreover, the film of the present embodiment may have a structure that does not substantially contain resin components other than the polycarbonate resin. “Substantially free” means that the content of resin components other than the polycarbonate resin is less than 1 part by mass in 100 parts by mass of the resin components contained in the film of the present embodiment.
  • the release agent described in paragraph 0032 of JP-A-2017-226848 and paragraph 0056 of JP-A-2018-199745 can be used, the contents of which are incorporated herein.
  • Details of the antioxidant can be referred to paragraphs 0057 to 0061 of JP-A-2017-031313, the contents of which are incorporated herein.
  • Details of the transesterification inhibitor can be referred to paragraphs 0035 to 0039 of International Publication No. 2015/190162, paragraph 0037 of JP-A-2019-002023, and paragraph 0041 of JP-A-2018-199745. The contents are incorporated herein.
  • ⁇ Film manufacturing method> A known manufacturing method can be adopted as the method for manufacturing the film of the present embodiment. For example, after melt-kneading the polycarbonate resin, the layered clay mineral, and other ingredients blended as necessary, the mixture may be extruded in the form of a film. Furthermore, roll-to-roll manufacturing is preferred.
  • the film of the present embodiment can be a wound body wound around a core material.
  • the film of the present embodiment can be controlled to have a take-up tension of 200 N, for example, and can be wound on a paper tube with an inner diameter of 3 inches for 30 m or more without using a masking film.
  • the film of the present embodiment may be a single layer film or a multilayer film composed of a plurality of resin layers.
  • the film of this embodiment can be used as a multilayer film containing the above film and at least one other layer.
  • a known layer can be employed as the other layer.
  • the unevenness of the surface of the film can be properly maintained.
  • As the other layer a known layer can be adopted, and an adhesive layer is exemplified. That is, as an example of application of the film of the present embodiment, there is an adhesive sheet for lamination having the film of the present embodiment and an adhesive layer.
  • the multilayer film of this embodiment may or may not have a hard coat layer.
  • the multilayer film of the present embodiment preferably does not have a hard coat layer.
  • the multi-layer film of the present embodiment is highly valuable in that a film with high slidability can be achieved even without a hard coat layer.
  • the type of adhesive layer is not particularly limited, but it preferably contains at least one of an acrylic adhesive, a silicone adhesive and a urethane adhesive. By using these adhesives, higher adhesiveness and, for example, moderate adhesion to the primer layer can be achieved.
  • the adhesive layer may have re-peelability, and the adhesive layer having re-peelability can be re-adhered even if it is once peeled from the pasting material. Details of the adhesive layer can be referred to paragraphs 0046 to 0051 of WO 2021/029283, the contents of which are incorporated herein.
  • the acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive containing an acrylic polymer, and specific examples thereof include DIC's Fine Tack (CT-3088, CT-3850, CT-6030, CT-5020, CT-5030), Quick Master (SPS-900-IV, Quickmaster SPS-1040NT-25), and the adhesive Oripine manufactured by Toyochem.
  • a silicone pressure-sensitive adhesive is a pressure-sensitive adhesive containing a silicone-based polymer, and specific examples thereof include polymers manufactured by Shin-Etsu Chemical Co., Ltd. KR-3700 (main agent) and CAT-PL-50T (platinum catalyst). mentioned.
  • a urethane adhesive is an adhesive containing a urethane-based polymer, and specific examples thereof include the adhesive Oripine manufactured by Toyochem Co., Ltd., and the like.
  • a polymer means a compound having a number average molecular weight of 1,000 or more, preferably 2,000 or more.
  • the adhesive layer in addition to the above, within the scope of the present invention, the adhesive layer described in paragraphs 0026 to 0053 of JP 2017-200975, paragraphs 0056 to 0060 of JP 2013-020130
  • the adhesive layer described in, the adhesive sheet of International Publication No. 2016/158827, the adhesive layer of paragraphs 0031 to 0032 of JP-A-2016-182791, the rubber-based adhesive of paragraphs 0057 to 0084 of JP-A-2015-147837 Agent layers can also be employed, the contents of which are incorporated herein.
  • the thickness of the adhesive layer is not particularly limited, it is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, even more preferably 25 ⁇ m or more, and may be 28 ⁇ m or more. Also, the thickness of the adhesive layer is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less. By setting it within the above range, more appropriate adhesive properties and adhesive strength are achieved.
  • the adhesive sheet of the present invention may have a primer layer as described above.
  • the primer layer is provided between the base material layer and the adhesive layer, and has the effect of increasing the adhesion between the adhesive layer and the base material layer. In addition, it is possible to suppress chemical cracks in the base material due to the solvent used when forming the adhesive layer.
  • the primer layer preferably contains a urethane (meth)acrylate resin. By using a urethane (meth)acrylate resin, a pressure-sensitive adhesive sheet with more excellent heat resistance can be obtained. Details of the primer layer can be referred to in paragraphs 0052 to 0070 of WO2021/029283, the contents of which are incorporated herein.
  • the pressure-sensitive adhesive sheet can be produced using the base material (film) containing the above-described polycarbonate, for example, by a method including a primer layer forming step and an adhesive layer forming step, as described below.
  • a primer coating (primer liquid) is applied onto the surface of the substrate and cured to form a primer layer.
  • an adhesive is applied to the surface of the formed primer layer opposite to the side in contact with the base material and cured to form an adhesive layer. Techniques such as photocuring and heat curing can be employed as techniques for curing the primer paint or adhesive.
  • the adhesive sheet for lamination of the present embodiment can be used for image display devices such as mobile phone terminals, smartphones, portable electronic playground equipment, personal digital assistants, tablet devices, mobile personal computers, wearable terminals, liquid crystal televisions, liquid crystal monitors, desktop personal computers, cars, etc. It can be used as a constituent material for various elements such as navigation devices, automobile instruments, and installation-type display devices. In particular, it can be suitably used as a transparent conductive film of the liquid crystal member, a substrate material for various elements, and a protective material. More specifically, the film of this embodiment is preferably used as a masking film. More preferably, it is used as an antiblocking film. It is also preferably used as a protective film for transparent conductive films.
  • a transparent conductive film having a protective layer, an adhesive layer, a substrate, and an electrode layer in this order, wherein at least one of the substrate and the protective layer (preferably at least the protective layer) It is preferably used as a transparent conductive film, which is a film of the form.
  • the transparent conductive film the description in JP-A-2018-152187 can be referred to, and the contents thereof are incorporated herein.
  • the transparent conductive film is preferably used as a transparent conductive film used for film sensors of touch panels, electronic paper, dye-sensitized solar cells, touch sensors, and the like.
  • the film of the present embodiment is preferably used as a substrate for a protective film because it has excellent slidability and can suppress the generation of air bubbles when it is attached to another substrate and heated. Furthermore, since the film of the present embodiment is also excellent in transparency, it can be preferably used in a case where an in-line defect inspection is performed with a protective film attached. In addition to the above, the film of the present embodiment is preferably used as a film for applications that require slidability and suppression of bubble generation.
  • Raw material polycarbonate resin A1 Bisphenol A type polycarbonate resin Iupilon E-2000 manufactured by Mitsubishi Engineering-Plastics, viscosity average molecular weight: 27000, refractive index: 1.59
  • Layered clay mineral B1 Mearlmica SV, mica, manufactured by BASF, average value of long and short sides (A): 8.0 ⁇ m, refractive index: 1.58 B2: Mearlmica FF, mica, manufactured by BASF, average value of long side and short side (A): 4.2 ⁇ m, refractive index: 1.58 B3: Mearlmica CF, mica, manufactured by BASF, average value of long side and short side (A): 21 ⁇ m, refractive index: 1.58 B4: R-11, talc, manufactured by Matsumura Sangyo Co., Ltd., average value of long and short sides (A): 2.6 ⁇ m, refractive index: 1.57 Organic particles C1: Techpolymer SBX-17, styrene particles, manufactured by Sekisui Plastics Co., Ltd., number average particle size: 9.1 ⁇ m, refractive index: 1.59
  • the average value of the long side and short side (A) was obtained by randomly extracting 100 layered clay minerals observed with a scanning electron microscope, and measuring the length of the surface forming the layer for each particle, that is, the surface with the maximum area.
  • the average value (B) of the sides and short sides was measured, and the average value (A) was calculated from the average values (B) of 100 long sides and short sides.
  • the long side is the side corresponding to the major axis when the maximum area of the particle is approximated by an ellipse
  • the short side is the side corresponding to the minor axis when the maximum area of the particle is approximated by the ellipse.
  • ⁇ Measurement of refractive index of layered clay mineral> The refractive indices of layered clay minerals and organic particles were measured according to JIS K7142 B method.
  • the refractometer used was “Abbe Refractometer 2T” manufactured by Atago Co., Ltd., and the microscope used was “Small Measuring Microscope STM5-311” manufactured by Olympus Co., Ltd.
  • Field of view CCD camera for single field measurement: 1/3 inch Objective lens: ⁇ 5 Observation area: 935.267 ⁇ 701.502 ⁇ m 2 Field of view size: 640 x 480 pixels Measurement mode: wave mode Wavelength filter: 530 nm White Observation conditions Interpolation conditions: Perfectly interpolated surface correction conditions: Fourth-order polynomial approximation As a scanning white light interference microscope, "VS1550" manufactured by Hitachi High-Tech Co., Ltd. was used.
  • the dynamic friction coefficient of the film was measured as the dynamic friction coefficient against a film having a root-mean-square roughness of 0.093 ⁇ m.
  • a film having a root-mean-square roughness of 0.093 ⁇ m and the film obtained above are placed so that they overlap each other, and under the conditions of a thread of 100 mm / min and a load cell of 10 N, the film having a root-mean-square roughness of 0.093 ⁇ m , and the resulting film was slid to measure the dynamic friction coefficient.
  • the friction coefficient measuring machine used was manufactured by Toyo Seiki Seisakusho Co., Ltd. (“Friction Tester”).
  • a film having a root-mean-square roughness of 0.093 ⁇ m was a bisphenol A polycarbonate resin film with a masking film on one side (FE-2000, thickness 100 ⁇ m, manufactured by Mitsubishi Gas Chemical Company, Inc.).
  • the bisphenol A polycarbonate resin film with a single-sided masking film was fixed to the right end of the test table with a tape so that the masked side of the film was peeled off and the long axis coincided with the long axis of the test table, and the thickness was 63 mm.
  • the resulting film was attached to the underside of a 63 mm, 200 g thread, placed so that the polycarbonate resin film and the resulting film overlapped, and the resulting film was slid as described above to measure the dynamic friction coefficient. bottom.
  • suitable irregularities could not be formed on the surface, the films stuck to each other, and the dynamic friction coefficient could not be measured.
  • the surface roughness of the film having a root-mean-square roughness of 0.093 ⁇ m used for the measurement of the dynamic friction coefficient was measured using a surface roughness measuring machine.
  • the detector of the measuring machine was made "integrated type", and the driving part of the detector was equipped with a "standard drive unit”.
  • the film was fixed on a glass plate with tape, and the surface roughness measuring machine was placed on the film so as not to move. After that, the measurement conditions were standard "JIS B 0601-2001", the measurement speed was 0.5 mm/s, the cutoff value was 0.8, and the number of sections was 3, and the root mean square roughness Rq was measured.
  • the root-mean-square roughness Rq was measured three times at different locations on the film and taken as the average value.
  • "SJ-210" manufactured by Mitutoyo Corporation was used as a measuring machine.
  • the second roll speed is adjusted so that the film has a predetermined thickness, and the take-up tension of the film winder is controlled to 200 N, and a masking film is used.
  • the appearance of the film was evaluated when the film was wound on a paper tube having an inner diameter of 3 inches for 30 m. Five experts evaluated and made a majority decision.
  • C could not be wound along the paper tube.
  • a projected image of the obtained film was obtained by irradiating with a high-intensity light source. Specifically, a white paper is pasted on the wall, a high-intensity light source is installed at a position 120 cm away from the white paper, and a film placed between the wall and the light source, that is, at a position 60 cm from the wall is irradiated. A projection image of the film was obtained on a white paper attached to the wall. "S-Light" manufactured by Nippon Gijutsu Center Co., Ltd. was used as a high-intensity light source. A: The image can be clearly seen. B: The image is blurred.
  • the films obtained in Examples 1 to 3 were each subjected to adhesive coating by the following method to produce an adhesive sheet.
  • the film obtained by the above method is coated with a silicone pressure-sensitive adhesive described later using a bar coater so that the thickness of the dry coating film becomes 30 ⁇ m, and a hot air circulation dryer (manufactured by Yamato Scientific Co., Ltd., "DNF611") is applied. and dried at 130° C. for 1 minute to form an adhesive layer.
  • the adhesive layer was laminated to the side of the film that would contact the second roll. It was confirmed that it functions properly as a film with an adhesive layer.
  • composition of the adhesive used is as follows. Silicone adhesive: X-40-3229, manufactured by Shin-Etsu Chemical Co., Ltd., 100 parts by mass Catalyst: CAT-PL-50T, manufactured by Shin-Etsu Chemical Co., Ltd., 0.5 parts by mass Diluting solvent: Toluene, 50 parts by mass
  • the resulting pressure-sensitive adhesive sheet was laminated to a bisphenol A polycarbonate resin film (manufactured by Mitsubishi Gas Chemical Co., Ltd., FE-2000, thickness 100 ⁇ m) having a root-mean-square roughness of 0.093 ⁇ m. DKN402) at 140° C. for 1 hour. After heating, the appearance of the film was evaluated. Five experts evaluated and made a majority decision. A: No air bubbles were generated. B: Air bubbles were observed in a portion of the film. C: Air bubbles were generated on the entire surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a film and a multilayer film that have excellent slidability and can suppress the generation of bubbles when being bonded to another base material and heated. The film contains 0.005 to 0.5 parts by mass of a layered clay mineral with respect to 100 parts by mass of a polycarbonate resin. The surface roughness Sa of the film is 10-100 nm, and the thickness of the film is 50-200 μm.

Description

フィルム、および、多層フィルムFilms and multilayer films
 本発明は、フィルム、および、多層フィルムに関する。 The present invention relates to films and multilayer films.
 ポリカーボネート樹脂は、透明性に優れることに加え、ガラスと比較して加工性、耐衝撃性に優れ、各種用途に使用されている。その一例として、各種フィルムとしての用途が知られており、例えば、特許文献1に記載がある。 Polycarbonate resin is used in various applications because it has excellent transparency, workability and impact resistance compared to glass. As an example thereof, applications as various films are known, and are described in Patent Document 1, for example.
 フィルムには、搬送性の向上や巻きジワ防止の観点から、スタックしない程度の摺動性、さらには、フィルム同士の密着の抑制(アンチブロッキング性)が求められる場合がある。ここで、アンチブロッキングとは、フィルム同士が密着しても容易に剥離できるようにすることをいう。フィルムに摺動性を付与するには、フィルムの表面に微細な凹凸を設けることが考えられる。このようにフィルムの表面に微細な凹凸を設けると、フィルム同士の接触面積が減り、高い摺動性が達成される。 From the viewpoint of improving transportability and preventing winding wrinkles, films are sometimes required to have slidability to the extent that they do not stack, and to suppress adhesion between films (anti-blocking properties). Here, anti-blocking means that films can be easily peeled off even if they are in close contact with each other. In order to impart slidability to the film, it is conceivable to provide fine unevenness on the surface of the film. By forming fine irregularities on the surface of the film in this manner, the contact area between the films is reduced, and high slidability is achieved.
国際公開第2020/241671号WO2020/241671
 一方、フィルムは、他の基材と貼り合わせ加熱する場合がある。このようなフィルムは、工業的にはロールトゥロールで製造されることが多いが、この際、表面に微細な凹凸有する、すなわち高い摺動性を有するフィルムは、フィルムの搬送性向上や巻きジワ防止などの観点から好適に用いられている。しかしながら、表面に微細な凹凸を有すると、他の基材と貼り合わせ加熱する際、気泡が発生してしまう場合があることが分かった。
 本発明はかかる課題を解決することを目的とするものであって、摺動性に優れ、かつ、他の基材と貼り合わせ加熱の際に気泡の発生を抑制できるフィルム、多層フィルムを提供することを目的とする。
On the other hand, the film may be laminated with another substrate and heated. Such films are often produced industrially by roll-to-roll. It is preferably used from the viewpoint of prevention and the like. However, it has been found that if the surface has fine irregularities, air bubbles may be generated when the substrate is bonded to another base material and heated.
An object of the present invention is to solve such problems, and to provide a film and a multilayer film that are excellent in slidability and that can suppress the generation of air bubbles when heated while being laminated with another base material. for the purpose.
 上記課題のもと、本発明者らが検討を行った結果、層状粘土鉱物を用い、フィルムの表面粗さSaを所定の範囲に調整することにより上記課題は解決された。
 具体的には、下記手段により、上記課題は解決された。
<1>ポリカーボネート樹脂100質量部に対して、層状粘土鉱物を0.005~0.5質量部含むフィルムであって、前記フィルムの表面粗さSaが10~100nmであり、前記フィルムの厚みが50~200μmである、フィルム。
<2>層状粘土鉱物の長辺と短辺の平均値が2.0μm~9.0μmである、<1>に記載のフィルム。
<3>層状粘土鉱物の屈折率が1.55~1.63である、<1>または<2>に記載のフィルム。
<4>層状粘土鉱物がマイカを含む、<1>~<3>のいずれか1つに記載のフィルム。
<5>前記フィルムのD65光源10°視野の条件におけるヘイズが2%以下である、<1>~<4>のいずれか1つに記載のフィルム。
<6>保護フィルム用基材である、<1>~<5>のいずれか1つに記載のフィルム。
<7><1>~<6>のいずれか1つに記載のフィルムと、他の層を有する多層フィルム。
<8>前記他の層が粘着層を有する、<7>に記載の多層フィルム。
<9>保護層と、粘着層と、基材と、電極層とをこの順で有する、透明導電性フィルムであって、前記保護層が、<1>~<6>のいずれか1つに記載のフィルムである、透明導電性フィルム。
Based on the above-mentioned problem, the present inventors conducted studies and found that the above-mentioned problem was solved by using a layered clay mineral and adjusting the surface roughness Sa of the film within a predetermined range.
Specifically, the above problems have been solved by the following means.
<1> A film containing 0.005 to 0.5 parts by mass of a layered clay mineral with respect to 100 parts by mass of a polycarbonate resin, wherein the surface roughness Sa of the film is 10 to 100 nm, and the thickness of the film is A film that is between 50 and 200 μm.
<2> The film according to <1>, wherein the layered clay mineral has an average long side and short side of 2.0 μm to 9.0 μm.
<3> The film according to <1> or <2>, wherein the layered clay mineral has a refractive index of 1.55 to 1.63.
<4> The film according to any one of <1> to <3>, wherein the layered clay mineral contains mica.
<5> The film according to any one of <1> to <4>, wherein the film has a haze of 2% or less under a D65 light source of 10° field of view.
<6> The film according to any one of <1> to <5>, which is a substrate for a protective film.
<7> A multilayer film comprising the film according to any one of <1> to <6> and another layer.
<8> The multilayer film according to <7>, wherein the other layer has an adhesive layer.
<9> A transparent conductive film having a protective layer, an adhesive layer, a substrate, and an electrode layer in this order, wherein the protective layer is any one of <1> to <6> A transparent conductive film, which is the film described.
 本発明により、摺動性に優れ、かつ、他の基材と貼り合わせ加熱する際に気泡の発生を抑制できるフィルム、および、多層フィルムを提供可能になった。 According to the present invention, it has become possible to provide a film and a multilayer film that have excellent slidability and that can suppress the generation of air bubbles when they are laminated to other substrates and heated.
本実施形態の多層フィルムの一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of the multilayer film of this embodiment.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。本明細書では、置換および無置換を記していない表記は、無置換の方が好ましい。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書における「フィルム」とは、長さと幅に対して、厚さが薄く、概ね、平らな成形体をいう。また、本明細書における「フィルム」には、「シート」も含む趣旨である。また、「フィルム」は、単層であっても多層であってもよい。
 本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2021年1月1日時点における規格に基づくものとする。
EMBODIMENT OF THE INVENTION Hereinafter, the form (only henceforth "this embodiment") for implementing this invention is demonstrated in detail. In addition, the following embodiment is an example for explaining the present invention, and the present invention is not limited only to this embodiment.
In this specification, the term "~" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
In this specification, various physical property values and characteristic values are at 23° C. unless otherwise specified.
In the description of a group (atomic group) in the present specification, a description that does not describe substitution or unsubstituted includes a group (atomic group) having no substituent as well as a group (atomic group) having a substituent. For example, an "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). In this specification, the notations that do not describe substituted and unsubstituted are preferably unsubstituted.
As used herein, the term "process" includes not only an independent process, but also when the intended action of the process is achieved even if it cannot be clearly distinguished from other processes. .
As used herein, the term "film" refers to a generally flat molded body that is thin in thickness relative to its length and width. In addition, the term "film" in this specification is intended to include "sheet". Also, the "film" may be a single layer or multiple layers.
If the measurement methods, etc. described in the standards shown in this specification differ from year to year, they shall be based on the standards as of January 1, 2021 unless otherwise stated.
 本実施形態のフィルムは、ポリカーボネート樹脂100質量部に対して、層状粘土鉱物を0.005~0.5質量部含み、表面粗さSaが10~100nmであり、厚さが50~200μmであることを特徴とする。
 このような構成とすることにより、摺動性に優れ、かつ、他の基材と貼り合わせ加熱する際に気泡の発生を抑制できるフィルム、多層体、保護フィルムを提供可能になる。
The film of the present embodiment contains 0.005 to 0.5 parts by mass of layered clay mineral with respect to 100 parts by mass of polycarbonate resin, has a surface roughness Sa of 10 to 100 nm, and has a thickness of 50 to 200 μm. It is characterized by
With such a configuration, it is possible to provide a film, a multilayer body, and a protective film that are excellent in slidability and that can suppress the generation of air bubbles when the film is laminated to another base material and heated.
 他の基材と貼り合わせる際に発生する気泡は、フィルム表面の凹凸よって形成される空間に存在する空気に由来すると推測される。一定以上の大きさのある空間には貼り合せた際に空気が入り込む領域が生まれやすく、このような空間が集中すると、その領域が起点となり、空気が集まることで気泡が発生すると推察される。このことから、例えば、小さい凹凸が多く存在している場合、小さい凹凸によって形成される空間には空気が入り込みにくいため、気泡が形成される起点にはなりにくいと考えられる。本実施形態では、空気が集まりにくい表面の凹凸を表す指標として、フィルム表面の凹凸の数、密度、および、その高さ、あるいは深さを総合的に示す指標としてSaを選択し、その数値を精密に検討した。その結果、Saを10~100nmとすることによって、気泡の発生が効果的に抑制されることを見出した。これにより、摺動性に優れ、かつ、気泡の発生が抑制できるフィルムを提供可能となった。
 さらに、本実施形態では層状粘土鉱物を用いて凹凸を形成することで、より効果的に摺動性を付与することができる。すなわち、比較的尖った形状の粒子である層状粘土鉱物を用いることで、球状の粒子を用いた場合と比較して、よりシャープな凹凸が形成されやすく、効果的に動摩擦係数が付与され、摺動性がより向上する傾向にある。また、例えば局所的に高い凸部がある場合では摺動性が向上しにくく、フィルム表面全体に適度に凹凸が設けられている必要がある。
 以下、本実施形態の詳細について説明する。
It is presumed that air bubbles generated when the film is laminated to other substrates originate from the air present in the space formed by the unevenness of the film surface. Spaces larger than a certain size tend to create regions where air enters when they are laminated, and when such spaces concentrate, it is speculated that these regions become starting points, and air bubbles are generated as air gathers. From this, it is considered that, for example, when there are many small unevennesses, it is difficult for air to enter the space formed by the small unevennesses, and therefore, it is unlikely to become a starting point for the formation of air bubbles. In the present embodiment, Sa is selected as an index representing the unevenness of the surface on which air is difficult to collect, Sa as an index that comprehensively indicates the number, density, and height or depth of unevenness on the film surface. examined carefully. As a result, it was found that generation of air bubbles can be effectively suppressed by adjusting Sa to 10 to 100 nm. As a result, it has become possible to provide a film that has excellent slidability and that can suppress the generation of air bubbles.
Furthermore, in the present embodiment, by forming unevenness using a layered clay mineral, slidability can be imparted more effectively. That is, by using the layered clay mineral, which is a particle with a relatively sharp shape, it is easier to form sharper irregularities than when spherical particles are used, effectively imparting a coefficient of dynamic friction, and sliding. Mobility tends to improve. Further, for example, when there are high convex portions locally, it is difficult to improve the slidability, and it is necessary that the entire surface of the film is provided with moderate unevenness.
Details of the present embodiment will be described below.
<表面粗さSa>
 本実施形態のフィルムにおいて、Saは10~100nmである。本実施形態のフィルムにおいて、少なくとも一方の表面が前記Saを満たしていればよいが、両面が前記Saを満たしていてもよい。両面が前記Saを満たす場合、一方の面のSaと他方の面のSaは同一であってもよいし、異なっていてもよい。
 Saはフィルム表面の凹凸の数、密度、および、その高さ、あるいは深さを総合的に示す指標である。Saを10~100nmに調整することで摺動性に優れ、かつ、他の基材と貼り合わせる際に気泡の発生を抑制できるフィルムが得られる。
 Saは層状粘土鉱物の大きさや添加量、フィルムの厚みを調整することに加え、製造条件などによっても調整することができる。特に、ロールトゥロールでフィルムを製造する場合は、温度、ロールの表面硬さやロールの速度、押し出しの際の吐出量などによって調整できる。なお、Saはこれらの手段の2つ以上の手段を組合せることによって、調整してもよい。
 Saは、下限値が20nm以上であることが好ましく、25nm以上であることがより好ましく、27nm以上であることがさらに好ましく、30nm以上であることがより一層好ましく、40nm以上であることがさらに一層好ましく、50nm以上であることが特に一層好ましい。前記下限値以上とすることで、フィルム表面に適度な凹凸を設けることができ、摺動性がより向上する傾向にある。また、前記Saの上限値は90nm以下であることが好ましく、80nm以下であることがより好ましく、70nm以下であることがさらに好ましく、60nm以下であることがより一層好ましい。前記上限値以下とすることにより、気泡の発生を効果的に抑制することができる。
 Saは後述する実施例に記載の方法で測定される。
<Surface roughness Sa>
In the film of this embodiment, Sa is 10 to 100 nm. In the film of the present embodiment, at least one surface should satisfy Sa, but both surfaces may satisfy Sa. When both sides satisfy the above Sa, the Sa on one side and the Sa on the other side may be the same or different.
Sa is an index that comprehensively indicates the number, density, and height or depth of unevenness on the film surface. By adjusting Sa to 10 to 100 nm, it is possible to obtain a film that has excellent slidability and that can suppress the generation of air bubbles when bonded to another substrate.
Sa can be adjusted not only by adjusting the size and amount of the layered clay mineral and the thickness of the film, but also by adjusting the manufacturing conditions. In particular, when a film is produced by roll-to-roll, it can be adjusted by adjusting the temperature, the surface hardness of the roll, the speed of the roll, the amount of discharge during extrusion, and the like. Note that Sa may be adjusted by combining two or more of these means.
The lower limit of Sa is preferably 20 nm or more, more preferably 25 nm or more, still more preferably 27 nm or more, still more preferably 30 nm or more, and even more preferably 40 nm or more. Preferably, it is more preferably 50 nm or more. By making it more than the said lower limit, it can provide moderate unevenness|corrugation in the film surface, and there exists a tendency for a slidability to improve more. The upper limit of Sa is preferably 90 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, and even more preferably 60 nm or less. By making it below the said upper limit, generation|occurrence|production of a bubble can be suppressed effectively.
Sa is measured by the method described in Examples below.
<フィルムの厚み>
 本実施形態のフィルムは、厚みが50~200μmである。厚みを200μm以下にすることで、層状粘土鉱物が表面に露出しやすくなり、摺動性を達成できる。さらに、フィルムの巻取性を向上させることができる。また、厚みを50μm以上とすることで、層状粘土鉱物が表面に露出しすぎず、フィルムの透明性が高くなる効果がある。
 本実施形態のフィルムの厚みは、60μm以上であることが好ましく、70μm以上であることがより好ましく、80μmであることがさらに好ましく、90μmであることがより一層好ましい。また、180μm以下であることが好ましく、150μm以下であることがより好ましく、120μm以下であることがさらに好ましい。
 特に、上記厚さのフィルムとしたとき、巻き取り性に優れる。
 フィルムの厚さは、任意の5ヶ所の平均値とする。
<Film thickness>
The film of this embodiment has a thickness of 50 to 200 μm. By setting the thickness to 200 μm or less, the layered clay mineral is easily exposed on the surface, and slidability can be achieved. Furthermore, the windability of the film can be improved. Further, by setting the thickness to 50 μm or more, the layered clay mineral is not exposed too much on the surface, and the effect of increasing the transparency of the film is obtained.
The thickness of the film of the present embodiment is preferably 60 μm or more, more preferably 70 μm or more, still more preferably 80 μm, and even more preferably 90 μm. Also, it is preferably 180 μm or less, more preferably 150 μm or less, and even more preferably 120 μm or less.
In particular, when a film having the above thickness is formed, it is excellent in windability.
Let the thickness of a film be the average value of five arbitrary places.
<フィルムの他の特性>
 本実施形態のフィルムは、また、少なくとも一方の表面の、二乗平均平方根粗さが0.093μmのフィルムに対する動摩擦係数が、2.00以下であることが好ましく、1.80以下であることがより好ましく、1.50以下であることがさらに好ましく、1.20以下であることがより一層好ましく、1.00以下であってもよい。動摩擦係数が2.00以下であることにより、摺動性に優れる傾向にある。下限値は、特に定めるものではないが、例えば、0.10以上であり、さらには、0.20以上、0.30以上、0.40以上、0.50以上であってもよい。
 動摩擦係数は、スレッド100mm/分、ロードセル10Nの条件で測定した値であり、具体的には、後述する実施例に記載の方法で測定される。
<Other properties of the film>
In the film of the present embodiment, the dynamic friction coefficient of at least one surface with respect to a film having a root mean square roughness of 0.093 μm is preferably 2.00 or less, more preferably 1.80 or less. It is preferably 1.50 or less, even more preferably 1.20 or less, and may be 1.00 or less. When the coefficient of dynamic friction is 2.00 or less, the slidability tends to be excellent. Although the lower limit is not particularly defined, it is, for example, 0.10 or more, and may be 0.20 or more, 0.30 or more, 0.40 or more, or 0.50 or more.
The coefficient of dynamic friction is a value measured under the conditions of a thread of 100 mm/min and a load cell of 10 N. Specifically, it is measured by the method described in the examples below.
 本実施形態のフィルムは、D65光源10°視野の条件における全光線透過率が、86.0%以上であることが好ましく、87.0%以上であることがより好ましく、89.0%以上であることがさらに好ましく、90.0%以上であることが一層好ましい。前記光線透過率の上限は100%が理想であるが、95.0%以下であっても十分に要求性能を満たすものである。
 全光線透過率は、後述する実施例に記載の方法で測定される。
The film of the present embodiment preferably has a total light transmittance of 86.0% or more, more preferably 87.0% or more, and more preferably 89.0% or more under the condition of D65 light source 10° field of view. It is more preferably 90.0% or more. The upper limit of the light transmittance is ideally 100%, but even if it is 95.0% or less, the required performance is sufficiently satisfied.
The total light transmittance is measured by the method described in Examples below.
 本実施形態のフィルムは、D65光源10°視野の条件におけるヘイズが2.0%以下あることが好ましく、1.8%以下であることがより好ましく、1.5%以下であってもよく、1.0%以下であってもよい。下限値については、0%が理想であるが、0.1%以上であっても実用レベルである。
 ヘイズは、後述する実施例に記載の方法で測定される。
The film of the present embodiment preferably has a haze of 2.0% or less, more preferably 1.8% or less, and may be 1.5% or less under the condition of a D65 light source of 10° field of view. It may be 1.0% or less. As for the lower limit, 0% is ideal, but even 0.1% or more is a practical level.
Haze is measured by the method described in Examples below.
 <ポリカーボネート樹脂>
 本実施形態のフィルムは、ポリカーボネート樹脂を含む。ポリカーボネート樹脂を用いることにより、透明性に優れたフィルムが得られる。
 本実施形態で用いるポリカーボネート樹脂は、分子主鎖中に炭酸エステル結合を含む-[O-R-OC(=O)]-単位(Rが、炭化水素基、具体的には、脂肪族基、芳香族基、または、脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つもの)を含むものであれば、特に限定されない。本実施形態においては、ポリカーボネート樹脂は、芳香族ポリカーボネート樹脂が好ましく、ビスフェノール骨格を有するポリカーボネート樹脂がより好ましい。このようなポリカーボネート樹脂を用いることにより、より優れた耐熱性と靱性が達成される。本実施形態においては、ビスフェノール骨格を有するポリカーボネート樹脂は、全構成単位の90モル%以上がビスフェノール骨格を有する構成単位であることが好ましい。
<Polycarbonate resin>
The film of this embodiment contains a polycarbonate resin. A film having excellent transparency can be obtained by using a polycarbonate resin.
The polycarbonate resin used in the present embodiment is a -[OR-OC(=O)]-unit containing a carbonate bond in the molecular main chain (R is a hydrocarbon group, specifically an aliphatic group, It is not particularly limited as long as it contains an aromatic group, or a group containing both an aliphatic group and an aromatic group, or a group having a linear or branched structure. In the present embodiment, the polycarbonate resin is preferably an aromatic polycarbonate resin, more preferably a polycarbonate resin having a bisphenol skeleton. By using such a polycarbonate resin, better heat resistance and toughness can be achieved. In the present embodiment, it is preferable that 90 mol % or more of all structural units in the polycarbonate resin having a bisphenol skeleton are structural units having a bisphenol skeleton.
 また、ポリカーボネート樹脂の粘度平均分子量(Mv)は、10,000以上であることが好ましく、より好ましくは、12,000以上であり、さらに好ましくは15,000以上であり、一層好ましくは18,000以上である。前記下限値以上とすることにより、基材の耐久性がより向上する傾向にある。前記ポリカーボネート樹脂の粘度平均分子量(Mv)の上限値は、50,000以下であることが好ましく、より好ましくは40,000以下であり、さらに好ましくは30,000以下である。前記上限値以下とすることにより、基材の成形加工性がより向上する傾向にある。
 粘度平均分子量(Mv)は、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度25℃での極限粘度[η](単位dL/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4×Mv0.83、から算出される値を意味する。
 2種以上のポリカーボネート樹脂を用いる場合は、混合物の粘度平均分子量とする。
Further, the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 10,000 or more, more preferably 12,000 or more, still more preferably 15,000 or more, and still more preferably 18,000. That's it. When the content is at least the above lower limit, the durability of the substrate tends to be further improved. The upper limit of the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 50,000 or less, more preferably 40,000 or less, and even more preferably 30,000 or less. When the content is equal to or less than the above upper limit, the moldability of the substrate tends to be further improved.
The viscosity-average molecular weight (Mv) is determined by using methylene chloride as a solvent and using an Ubbelohde viscometer to determine the intrinsic viscosity [η] (unit: dL/g) at a temperature of 25°C. 1.23×10 −4 ×Mv 0.83 means a value calculated from.
When two or more polycarbonate resins are used, the viscosity-average molecular weight of the mixture is used.
 前記ポリカーボネート樹脂の屈折率は、1.56以上であることが好ましく、1.58以上であることがより好ましく、また、1.63以下であることが好ましく、1.60以下であることがより好ましい。前記下限値以上とすることにより、層状粘土鉱物との屈折率差が小さくなり、透明性が向上する傾向にある。前記上限値以下とすることにより、層状粘土鉱物との屈折率差が小さくなり、透明性が向上する傾向にある。
 また、前記ポリカーボネート樹脂と層状粘土鉱物の屈折率の差は、0.05以下であることが好ましく、0.04以下であることがより好ましく、0.03以下であることがさらに好ましく、0.02以下であることがより一層好ましく、0.015であることがさらに一層好ましく、0.012以下であることが特に一層好ましく、0.01以下であることがより特に一層好ましい。屈折率の差は、0であることが理想的である。屈折率の差を小さくすることにより、本実施形態のフィルムの透明性をより向上させることができる。
 ポリカーボネート樹脂の屈折率は、JIS K7142A法に従い測定できる。
The refractive index of the polycarbonate resin is preferably 1.56 or more, more preferably 1.58 or more, and preferably 1.63 or less, more preferably 1.60 or less. preferable. When the content is at least the above lower limit, the difference in refractive index from the layered clay mineral tends to be small and the transparency tends to be improved. By making it equal to or less than the above upper limit, there is a tendency that the difference in refractive index from the layered clay mineral becomes small and the transparency is improved.
The difference in refractive index between the polycarbonate resin and the layered clay mineral is preferably 0.05 or less, more preferably 0.04 or less, even more preferably 0.03 or less, and further preferably 0.05 or less. 02 or less is even more preferable, 0.015 is even more preferable, 0.012 or less is particularly preferable, and 0.01 or less is even more preferable. Ideally, the refractive index difference is zero. By reducing the difference in refractive index, the transparency of the film of the present embodiment can be further improved.
The refractive index of polycarbonate resin can be measured according to the JIS K7142A method.
 本実施形態のフィルムにおけるポリカーボネート樹脂の含有量は、フィルム全体の95質量%以上であることが好ましく、97質量%以上であることがより好ましく、99質量%以上であってもよい。ポリカーボネート樹脂の含有量の上限値は、ポリカーボネート樹脂と層状粘土鉱物の合計がフィルム全体の100質量%となる値である。
 本実施形態のフィルムはポリカーボネート樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of the polycarbonate resin in the film of the present embodiment is preferably 95% by mass or more, more preferably 97% by mass or more, and may be 99% by mass or more of the entire film. The upper limit of the polycarbonate resin content is a value at which the total content of the polycarbonate resin and the layered clay mineral is 100% by mass of the entire film.
The film of the present embodiment may contain only one type of polycarbonate resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
 本実施形態におけるポリカーボネート樹脂の第一の実施形態は、式(A-1)で表される構成単位を有しているポリカーボネート樹脂であり、代表例としては、ビスフェノールA型ポリカーボネート樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(A-1)中、Xは下記構造を表す。式中の*は結合位置を表す。
Figure JPOXMLDOC01-appb-C000002
 RおよびRは、少なくとも一方がメチル基であることが好ましく、両方がメチル基であることがより好ましい。
 式(A-1)は下記式(A-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000003
A first embodiment of the polycarbonate resin in this embodiment is a polycarbonate resin having a structural unit represented by formula (A-1), and a typical example thereof is a bisphenol A type polycarbonate resin.
Figure JPOXMLDOC01-appb-C000001
In formula (A-1), X 1 represents the following structure. * in the formula represents a binding position.
Figure JPOXMLDOC01-appb-C000002
At least one of R 5 and R 6 is preferably a methyl group, more preferably both are methyl groups.
Formula (A-1) is preferably represented by the following formula (A-2).
Figure JPOXMLDOC01-appb-C000003
 第一の実施形態のポリカーボネート樹脂における、式(A-1)で表される構成単位の含有量は、末端基を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(A-1)で表される構成単位であってもよい。
 上記ポリカーボネート樹脂は、他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。
In the polycarbonate resin of the first embodiment, the content of the structural unit represented by formula (A-1) is preferably 70 mol% or more, 80 mol% or more, of all structural units excluding terminal groups. and more preferably 90 mol % or more. The upper limit is not particularly limited, and 100 mol % may be the structural unit represented by formula (A-1).
The polycarbonate resin may have other structural units. Examples of dihydroxy compounds that constitute such other structural units include aromatic dihydroxy compounds described in paragraph 0014 of JP-A-2018-154819, the contents of which are incorporated herein. .
 本実施形態におけるポリカーボネート樹脂の第二の実施形態は、式(A-3)で表される構成単位を含むポリカーボネート樹脂であり、代表例としては、ビスフェノールAP型ポリカーボネート樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(A-3)中、R11~R14は、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~9(好ましくは1~3)のアルキル基、炭素数6~12(好ましくは6~10)のアリール基、炭素数1~5(好ましくは1~3)のアルコキシ基、炭素数2~5(好ましくは2または3)のアルケニル基または炭素数7~17(好ましくは7~11)のアラルキル基を表す。lは0~5の整数(好ましくは0または1、より好ましくは0)を表す。mおよびnはそれぞれ独立に0~4の整数(好ましくは0または1、より好ましくは0)を表す。式中の*は他の構成単位や末端基との結合位置を表す。
A second embodiment of the polycarbonate resin in this embodiment is a polycarbonate resin containing a structural unit represented by formula (A-3), and a typical example thereof is a bisphenol AP type polycarbonate resin.
Figure JPOXMLDOC01-appb-C000004
In formula (A-3), R 11 to R 14 each independently represent a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3 carbon atoms), and 6 carbon atoms. -12 (preferably 6-10) aryl group, 1-5 (preferably 1-3) alkoxy group, 2-5 (preferably 2 or 3) alkenyl group or 7-17 carbon atoms represents an aralkyl group (preferably 7 to 11). l represents an integer of 0 to 5 (preferably 0 or 1, more preferably 0). m and n each independently represent an integer of 0 to 4 (preferably 0 or 1, more preferably 0). * in the formula represents the bonding position with other structural units or terminal groups.
 式(A-3)で表される構成単位は、下記式(A-4)で表される構成単位であることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000005
 R11、R12、R13、R14、l、m、nは、式(A-3)で定義したものと同義である。
The structural unit represented by formula (A-3) is preferably a structural unit represented by formula (A-4) below. * in the formula represents the bonding position with other structural units or terminal groups.
Figure JPOXMLDOC01-appb-C000005
R 11 , R 12 , R 13 , R 14 , l, m and n have the same meanings as defined in formula (A-3).
 式(A-4)で表される構成単位は、下記式(A-5)で表される構成単位であることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000006
The structural unit represented by formula (A-4) is preferably a structural unit represented by formula (A-5) below. * in the formula represents the bonding position with other structural units or terminal groups.
Figure JPOXMLDOC01-appb-C000006
 第二の実施形態のポリカーボネート樹脂における、式(A-3)で表される構成単位の含有量は、末端基を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(A-3)で表される構成単位であってもよい。
 上記ポリカーボネート樹脂は、他の構成単位を有していてもよい。他の構成単位としては、上記式(A-1)で表される構成単位、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物由来の構成単位を挙げることができ、これらの内容は本明細書に組み込まれる。
In the polycarbonate resin of the second embodiment, the content of the structural unit represented by formula (A-3) is preferably 70 mol% or more, 80 mol% or more, of all structural units excluding terminal groups. and more preferably 90 mol % or more. The upper limit is not particularly limited, and 100 mol % may be the structural unit represented by formula (A-3).
The polycarbonate resin may have other structural units. Examples of other structural units include structural units represented by the above formula (A-1) and structural units derived from aromatic dihydroxy compounds described in paragraph 0014 of JP-A-2018-154819. The contents are incorporated herein.
 本実施形態におけるポリカーボネート樹脂の第三の実施形態は、下記式(A-6)で表される構成単位を有しているポリカーボネート樹脂であり、代表例としては、ビスフェノールZ型ポリカーボネート樹脂およびビスフェノールTMC型ポリカーボネート樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式(A-6)中、Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~9(好ましくは1~3)のアルキル基、炭素数6~12(好ましくは6~10)のアリール基、炭素数1~5(好ましくは1~3)のアルコキシ基、炭素数2~5(好ましくは2または3)のアルケニル基または炭素数7~17(好ましくは7~11)のアラルキル基を表す。qは0~5の整数(好ましくは1~3の整数)を表し、1~3の整数が好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
 Rは、それぞれ独立に、炭素数1~9(好ましくは1~3)のアルキル基が好ましく、メチル基がより好ましい。
A third embodiment of the polycarbonate resin in the present embodiment is a polycarbonate resin having a structural unit represented by the following formula (A-6), and representative examples thereof include bisphenol Z-type polycarbonate resin and bisphenol TMC. type polycarbonate resin.
Figure JPOXMLDOC01-appb-C000007
In formula (A-6), R 8 each independently represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3), 6 to 12 carbon atoms ( an aryl group having preferably 6 to 10), an alkoxy group having 1 to 5 carbon atoms (preferably 1 to 3), an alkenyl group having 2 to 5 carbon atoms (preferably 2 or 3) or 7 to 17 carbon atoms (preferably 7 to 11) represents an aralkyl group. q represents an integer of 0-5 (preferably an integer of 1-3), preferably an integer of 1-3. * in the formula represents the bonding position with other structural units or terminal groups.
R 8 is each independently preferably an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3 carbon atoms), more preferably a methyl group.
 式(A-6)で表される構成単位は、下記式(A-7)で表される構成単位であることが好ましい。式中の*は他の構成単位や末端基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000008
 式(A-7)中、Rは式(A-6)におけるRと同義であり、好ましい範囲も同様である。
 また、式(A-6)で表される構成単位の他の好ましい形態としては、qが0であること挙げられる。
The structural unit represented by formula (A-6) is preferably a structural unit represented by formula (A-7) below. * in the formula represents the bonding position with other structural units or terminal groups.
Figure JPOXMLDOC01-appb-C000008
In formula (A-7), R 8 has the same definition as R 8 in formula (A-6), and the preferred range is also the same.
Another preferred form of the structural unit represented by formula (A-6) is that q is 0.
 第三の実施形態のポリカーボネート樹脂における、式(A-6)で表される構成単位の含有量は、末端基を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(A-6)で表される構成単位であってもよい。
 上記ポリカーボネート樹脂は、他の構成単位を有していてもよい。他の構成単位としては、上記式(A-1)で表される構成単位、上記式(A-3)で表される構成単位、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物由来の構成単位を挙げることができ、これらの内容は本明細書に組み込まれる。
In the polycarbonate resin of the third embodiment, the content of the structural unit represented by formula (A-6) is preferably 70 mol% or more, 80 mol% or more, of all structural units excluding terminal groups. and more preferably 90 mol % or more. The upper limit is not particularly limited, and 100 mol % may be the structural unit represented by formula (A-6).
The polycarbonate resin may have other structural units. Other structural units include structural units represented by the above formula (A-1), structural units represented by the above formula (A-3), and aromatic compounds described in paragraph 0014 of JP-A-2018-154819. Building blocks derived from dihydroxy compounds can be mentioned, the contents of which are incorporated herein.
 本実施形態におけるポリカーボネート樹脂の第四の実施形態は、式(A-8)で表される末端構造を有するポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000009
(式(A-8)中、R21は、炭素数8~36のアルキル基、または、炭素数8~36のアルケニル基を表し、R22は、ハロゲン原子、炭素数1~20のアルキル基、または、炭素数6~12のアリール基を表し、n2は0~4の整数である。)
A fourth embodiment of the polycarbonate resin in this embodiment is a polycarbonate resin having a terminal structure represented by formula (A-8).
Figure JPOXMLDOC01-appb-C000009
(In formula (A-8), R 21 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms, and R 22 represents a halogen atom or an alkyl group having 1 to 20 carbon atoms. , or represents an aryl group having 6 to 12 carbon atoms, and n2 is an integer of 0 to 4.)
 R21は、炭素数12以上のアルキル基またはアルケニル基であることが好ましく、14以上のアルキル基またはアルケニル基であることがより好ましい。また、R21は、炭素数22以下のアルキル基またはアルケニル基であることが好ましく、18以下のアルキル基またはアルケニル基であることがより好ましい。R21は、アルキル基であることが好ましい。
 R22は、フッ素原子、塩素原子、メチル基、エチル基、または、フェニル基であることが好ましく、フッ素原子、塩素原子またはメチル基であることが好ましい。
 n2は、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることがさらに好ましい。
R 21 is preferably an alkyl or alkenyl group having 12 or more carbon atoms, more preferably an alkyl or alkenyl group having 14 or more carbon atoms. R 21 is preferably an alkyl or alkenyl group having 22 or less carbon atoms, more preferably an alkyl or alkenyl group having 18 or less carbon atoms. R 21 is preferably an alkyl group.
R 22 is preferably a fluorine atom, a chlorine atom, a methyl group, an ethyl group or a phenyl group, preferably a fluorine atom, a chlorine atom or a methyl group.
n2 is preferably an integer of 0 to 2, more preferably 0 or 1, even more preferably 0.
 式(A-8)で表される末端構造は、末端停止剤を用いることによって、ポリカーボネート樹脂に付加することができる。これらの詳細は、特開2019-002023号公報の段落0022~0030の記載を参酌でき、これらの内容は本明細書に組み込まれる。 The terminal structure represented by formula (A-8) can be added to the polycarbonate resin by using a terminal terminator. These details can be referred to paragraphs 0022 to 0030 of Japanese Patent Application Laid-Open No. 2019-002023, and the contents thereof are incorporated herein.
 第四の実施形態のポリカーボネート樹脂における分子主鎖は、-[O-R-OC(=O)]-単位(Rが、炭化水素基、具体的には、脂肪族基、芳香族基、または、脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つもの)を含むものであれば、特に限定されない。第四の実施形態のポリカーボネート樹脂は、芳香族ポリカーボネート樹脂が好ましく、ビスフェノール骨格を有するポリカーボネート樹脂がより好ましく、上記式(A-1)で表される構成単位を有するポリカーボネート樹脂がさらに好ましく、ビスフェノールA型ポリカーボネート樹脂が一層好ましい。このようなポリカーボネート樹脂を用いることにより、より優れた耐熱性と靱性が達成される。ビスフェノール骨格を有するポリカーボネート樹脂は、末端構造を除く全構成単位の90モル%以上がビスフェノール骨格を有する構成単位であることが好ましい。 The molecular main chain in the polycarbonate resin of the fourth embodiment comprises -[OR-OC(=O)]-units (R is a hydrocarbon group, specifically an aliphatic group, an aromatic group, or , those containing both an aliphatic group and an aromatic group, and those having a linear or branched structure) are not particularly limited. The polycarbonate resin of the fourth embodiment is preferably an aromatic polycarbonate resin, more preferably a polycarbonate resin having a bisphenol skeleton, more preferably a polycarbonate resin having a structural unit represented by the above formula (A-1), and bisphenol A type polycarbonate resins are more preferred. By using such a polycarbonate resin, better heat resistance and toughness can be achieved. In the polycarbonate resin having a bisphenol skeleton, 90 mol % or more of all structural units excluding terminal structures are preferably structural units having a bisphenol skeleton.
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。 The method for manufacturing the polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, a solid-phase transesterification method of a prepolymer, and the like.
<層状粘土鉱物>
 本実施形態のフィルムは、ポリカーボネート樹脂100質量部に対し、層状粘土鉱物を0.005~0.5質量部の割合で含む。このような構成とすることにより、フィルム表面のSaを適度に調整でき、摺動性が達成され、かつ、他の基材に貼り合わせ加熱した際に発生する気泡を効果的に抑制することができる。さらに、比較的尖った形状の粒子である層状粘土鉱物を用いることで、球状の粒子を用いた場合と比較して、よりシャープな凹凸が形成されやすく、効果的に動摩擦係数が付与され、摺動性がより向上する傾向にある。
 本実施形態における層状粘土鉱物とは、ケイ酸マグネシウム層、または、ケイ酸アルミニウム層から形成される層状ケイ酸塩であり、層間に陽イオンが吸着されている。陽イオンは通常、ナトリウムイオン、カリウムイオン、カルシウムイオンなどの金属イオンである。例えば、スメクタイト、モンモリロナイト、ヘクトライト、サポナイト、バーミキュライト、タルク、バイロフィライト、雲母、マイカ、マガディアイト、アイラライト、カネマイトなどが挙げられ、天然のもの、合成品のいずれも使用できる。本実施形態において、タルク、雲母、マイカが好ましく、タルク、マイカがより好ましく、マイカがさらに好ましい。マイカを用いることで、ポリカーボネート樹脂との屈折率差が小さく、透明性を高めることができる。
 前記層状粘土鉱物がマイカである場合、マイカは白マイカおよび金マイカが例示され、白マイカであることが好ましい。
<Layered clay mineral>
The film of this embodiment contains 0.005 to 0.5 parts by mass of the layered clay mineral with respect to 100 parts by mass of the polycarbonate resin. With such a structure, the Sa of the film surface can be adjusted appropriately, the slidability is achieved, and air bubbles generated when the film is laminated to another base material and heated can be effectively suppressed. can. Furthermore, by using the layered clay mineral, which is a particle with a relatively sharp shape, it is easier to form sharper irregularities than when spherical particles are used, effectively imparting a coefficient of dynamic friction and sliding. Mobility tends to improve.
The layered clay mineral in this embodiment is a layered silicate formed from a magnesium silicate layer or an aluminum silicate layer, and cations are adsorbed between the layers. Cations are typically metal ions such as sodium ions, potassium ions, calcium ions. Examples include smectite, montmorillonite, hectorite, saponite, vermiculite, talc, virophyllite, mica, mica, magadiite, islarite, and kanemite, and both natural and synthetic materials can be used. In the present embodiment, talc, mica, and mica are preferred, talc and mica are more preferred, and mica is even more preferred. By using mica, the difference in refractive index from polycarbonate resin is small, and transparency can be improved.
When the layered clay mineral is mica, the mica is exemplified by white mica and gold mica, preferably white mica.
 前記層状粘土鉱物の長辺と短辺の平均値(A)が2.0μm~9.0μmであることが好ましい。長辺と短辺の平均値(A)は、走査電子顕微鏡で観察した層状粘土鉱物を無作為に100個抽出し、それぞれの粒子について層を形成している面、すなわち最大面積の面の長辺と短辺の平均値(B)を測定し、さらに100個の長辺と短辺の平均値(B)から平均値(A)を算出することにより求める。なお、ここでの「面」とは幾何学的な意味での「面」の他、本発明の技術分野において、層状粘土鉱物の一表面とみなされるものを含む趣旨である。また、長辺とは粒子の面を楕円に近似した際の長径相当の辺であり、短辺とは粒子の面を楕円に近似した時の短径相当の辺である。
 前記層状粘土鉱物の長辺と短辺の平均値は2.0μm以上であることが好ましく、2.5μm以上であることがより好ましく、3.0μm以上であることがさらに好ましく、4.0以上であることが一層好ましい。前記下限値以上とすることによりフィルムの摺動性をより高める効果がある。また、前記層状粘土鉱物の長辺と短辺の平均値は9.0μm以下であることが好ましく、8.5μm以下であることがより好ましい。前記上限値以下とすることにより、フィルムを他の基材と貼り合せ、加熱した際の気泡の発生をより効果的に抑制することができる。
 本実施形態のフィルムは層状粘土鉱物を1種のみ含んでもよいし、2種以上含んでいてもよい。2種以上含む場合、混合物として上記手法で測定した際の長辺と短辺の平均値(A)が上記範囲となることが好ましい。
 前記層状粘土鉱物の厚みは、0.1μm以上であることが好ましく、0.3μm以上であってもよく、0.5μm以上であってもよく、1.0μm以上であってもよく、1.5μm以上であってもよい。また9.0μm以下であることが好ましく、7.0μm以下であってもよく、5.0以下であってもよく、3.0以下であってもよく、2.0μm以下であってもよい。
The average value (A) of the long side and short side of the layered clay mineral is preferably 2.0 μm to 9.0 μm. The average value of the long side and short side (A) was obtained by randomly extracting 100 layered clay minerals observed with a scanning electron microscope, and measuring the length of the surface forming the layer for each particle, that is, the surface with the maximum area. The average value (B) of the sides and short sides is measured, and the average value (A) is calculated from the average values (B) of 100 long sides and short sides. The term "surface" used herein is meant to include what is regarded as one surface of the layered clay mineral in the technical field of the present invention, in addition to the geometric meaning of the "surface". The long side is the side corresponding to the major axis when the surface of the particle is approximated to an ellipse, and the short side is the side corresponding to the minor axis when the surface of the particle is approximated to be elliptical.
The average value of the long side and short side of the layered clay mineral is preferably 2.0 μm or more, more preferably 2.5 μm or more, further preferably 3.0 μm or more, and 4.0 or more. is more preferable. When the content is equal to or higher than the above lower limit, there is an effect of further enhancing the slidability of the film. The average value of the long side and the short side of the layered clay mineral is preferably 9.0 μm or less, more preferably 8.5 μm or less. When the thickness is equal to or less than the above upper limit, it is possible to more effectively suppress the generation of air bubbles when the film is adhered to another base material and heated.
The film of the present embodiment may contain only one type of layered clay mineral, or may contain two or more types. When two or more types are included, it is preferable that the average value (A) of the long side and the short side when measured as a mixture by the above method falls within the above range.
The thickness of the layered clay mineral is preferably 0.1 μm or more, and may be 0.3 μm or more, 0.5 μm or more, or 1.0 μm or more. It may be 5 μm or more. Further, it is preferably 9.0 μm or less, may be 7.0 μm or less, may be 5.0 μm or less, may be 3.0 μm or less, or may be 2.0 μm or less. .
 前記層状粘土鉱物の屈折率は、1.55~1.63であることが好ましい。これにより、得られるフィルムの透明性が向上する傾向にある。
 前記屈折率は、1.56以上であることが好ましく、1.57以上であることがより好ましく、1.58以上であることがさらに層好ましい。また、前記屈折率は、1.62以下であることが好ましく、1.61以下であることがより好ましく、1.60以下であることがさらに好ましく、1.59以下であることがより一層好ましく、1.58以下であることがさらに一層好ましい。
 前記屈折率は、後述する実施例に記載の方法で測定される。
The layered clay mineral preferably has a refractive index of 1.55 to 1.63. This tends to improve the transparency of the resulting film.
The refractive index is preferably 1.56 or more, more preferably 1.57 or more, and even more preferably 1.58 or more. The refractive index is preferably 1.62 or less, more preferably 1.61 or less, even more preferably 1.60 or less, and even more preferably 1.59 or less. , 1.58 or less.
The refractive index is measured by the method described in Examples below.
 前記層状粘土鉱物の含有量は、ポリカーボネート樹脂100質量部に対し、0.005~0.5質量部である。前記下限値以上とすることにより、摺動性を達成することができる。また、前記上限値以下とすることにより、他の基材に貼り合わせ加熱した際に発生する気泡を効果的に抑制することができる。さらに透明性をより向上させることができる。
 前記層状粘土鉱物の含有量は、ポリカーボネート樹脂100質量部に対し、0.01質量部以上であることが好ましく、0.02質量部以上であることがより好ましく、0.03質量部以上であってもよく、0.04質量部以上であってもよい。また、前記層状粘土鉱物の含有量は、ポリカーボネート樹脂100質量部に対し、0.40質量部以下であることが好ましく、0.30質量部以下であることがより好ましく、0.20質量部以下であることがらに好ましく、0.10質量部以下であることが一層好ましく、0.08質量部以下であることがより一層好ましい。
The content of the layered clay mineral is 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the polycarbonate resin. Sliding property can be achieved by making it more than the said lower limit. Further, by setting the thickness to the above upper limit or less, it is possible to effectively suppress the generation of air bubbles when heating is performed while bonding to another base material. Furthermore, the transparency can be further improved.
The content of the layered clay mineral is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more, and 0.03 parts by mass or more with respect to 100 parts by mass of the polycarbonate resin. It may be 0.04 parts by mass or more. In addition, the content of the layered clay mineral is preferably 0.40 parts by mass or less, more preferably 0.30 parts by mass or less, and 0.20 parts by mass or less with respect to 100 parts by mass of the polycarbonate resin. , more preferably 0.10 parts by mass or less, and even more preferably 0.08 parts by mass or less.
 前記層状粘土鉱物の含有率は、フィルムの総質量に対し、0.005質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.02質量%以上であることがさらに好ましく、0.03質量%以上であってもよく、0.04質量%以上であってもよい。また、前記層状粘土鉱物の含有量は、フィルムの総質量に対し、0.40質量%以下であることが好ましく、0.30質量%以下であることがより好ましく、0.20質量%以下であることがらに好ましく、0.10質量%以下であることが一層好ましく、0.08質量%以下であることがより一層好ましい。
 本実施形態のフィルムは層状粘土鉱物を1種のみ含んでもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of the layered clay mineral is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and 0.02% by mass or more relative to the total mass of the film. is more preferable, and may be 0.03% by mass or more, or may be 0.04% by mass or more. The content of the layered clay mineral is preferably 0.40% by mass or less, more preferably 0.30% by mass or less, and 0.20% by mass or less, relative to the total mass of the film. Certain things are more preferable, and 0.10% by mass or less is more preferable, and 0.08% by mass or less is even more preferable.
The film of the present embodiment may contain only one type of layered clay mineral, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
 本実施形態のフィルムは、前記層状粘土鉱物以外の粒子(有機粒子および無機粒子)を含んでいてもよいし、含んでいなくてもよい。前記層状粘土鉱物以外の粒子を実質的に含まないことが好ましい。前記層状粘土鉱物以外の粒子を実質的に含まないとは、前記層状粘土鉱物以外の粒子の含有量が、本実施形態で用いる層状粘土鉱物の含有量の10質量%以下であることをいい、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0.1質量%以下であることが一層好ましい。 The film of the present embodiment may or may not contain particles (organic particles and inorganic particles) other than the layered clay mineral. It is preferable that the layered clay mineral does not substantially contain particles other than the layered clay mineral. The term "substantially free of particles other than the layered clay mineral" means that the content of particles other than the layered clay mineral is 10% by mass or less of the content of the layered clay mineral used in the present embodiment. It is preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less, and even more preferably 0.1% by mass or less.
<他の成分>
 本実施形態のフィルムは、ポリカーボネート樹脂および層状粘土鉱物に加え、本発明の趣旨を逸脱しない範囲で他の成分を含んでいてもよい。具体的には、離型剤、酸化防止剤、エステル交換防止剤、熱安定剤、難燃剤、難燃助剤、紫外線吸収剤、着色剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤、アンチブロッキング剤、衝撃改良剤、摺動改良剤、色相改良剤、酸トラップ剤等を含んでいてもよい。これらの成分は、1種を用いてもよいし、2種以上を併用してもよい。
 また、本実施形態のフィルムは、ポリカーボネート樹脂以外の樹脂成分を実質的に含まない構成であってもよい。実質的に含まないとは、本実施形態のフィルムに含まれる樹脂成分100質量部のうち、ポリカーボネート樹脂以外の樹脂成分の含有量が1質量部未満であることをいう。
<Other ingredients>
The film of the present embodiment may contain other components in addition to the polycarbonate resin and the layered clay mineral within the scope of the present invention. Specifically, release agents, antioxidants, transesterification inhibitors, heat stabilizers, flame retardants, flame retardant aids, ultraviolet absorbers, colorants, antistatic agents, fluorescent brighteners, antifogging agents, Fluidity improvers, plasticizers, dispersants, antibacterial agents, antiblocking agents, impact modifiers, sliding modifiers, hue modifiers, acid trapping agents and the like may also be included. These components may be used alone or in combination of two or more.
Moreover, the film of the present embodiment may have a structure that does not substantially contain resin components other than the polycarbonate resin. “Substantially free” means that the content of resin components other than the polycarbonate resin is less than 1 part by mass in 100 parts by mass of the resin components contained in the film of the present embodiment.
 離型剤の詳細は、特開2017-226848号公報の段落0032、特開2018-199745号公報の段落0056に記載の離型剤を用いることができ、この内容は本明細書に組み込まれる。
 酸化防止剤の詳細は、特開2017-031313号公報の段落0057~0061の記載を参酌でき、これらの内容は本明細書に組み込まれる。
エステル交換防止剤の詳細は、国際公開第2015/190162号の段落0035~0039、特開2019-002023号公報の段落0037、特開2018-199745号公報の段落0041の記載を参酌でき、これらの内容は本明細書に組み込まれる。
For details of the release agent, the release agent described in paragraph 0032 of JP-A-2017-226848 and paragraph 0056 of JP-A-2018-199745 can be used, the contents of which are incorporated herein.
Details of the antioxidant can be referred to paragraphs 0057 to 0061 of JP-A-2017-031313, the contents of which are incorporated herein.
Details of the transesterification inhibitor can be referred to paragraphs 0035 to 0039 of International Publication No. 2015/190162, paragraph 0037 of JP-A-2019-002023, and paragraph 0041 of JP-A-2018-199745. The contents are incorporated herein.
<フィルムの製造方法>
 本実施形態のフィルムの製造方法は公知の製造方法を採用できる。例えば、ポリカーボネート樹脂および層状粘土鉱物、ならびに、必要に応じ配合される他の成分を溶融混練した後、フィルム状に押し出すことが挙げられる。さらに、ロールトゥロールで製造されることが好ましい。
<Film manufacturing method>
A known manufacturing method can be adopted as the method for manufacturing the film of the present embodiment. For example, after melt-kneading the polycarbonate resin, the layered clay mineral, and other ingredients blended as necessary, the mixture may be extruded in the form of a film. Furthermore, roll-to-roll manufacturing is preferred.
<巻取体>
 本実施形態のフィルムは、芯材に巻き取った巻取体とすることができる。本実施形態のフィルムは、例えば、引き取り張力が200Nになるように制御し、マスキングフィルムを使用せず、内径3インチの紙管に30m以上巻き取ることができるものとすることができる。
<Wound body>
The film of the present embodiment can be a wound body wound around a core material. The film of the present embodiment can be controlled to have a take-up tension of 200 N, for example, and can be wound on a paper tube with an inner diameter of 3 inches for 30 m or more without using a masking film.
<多層フィルム>
 本実施形態のフィルムは、単層フィルムであっても、複数の樹脂層で構成される多層フィルムであってもよい。本実施形態のフィルムは、前記フィルムと、少なくとも1層の他の層とを含む、多層フィルムとして用いることができる。前記他の層としては、公知の層を採用できる。
 単層フィルムを製造してから、他の層を積層することにより、フィルムの表面の凹凸を適切に維持できる。前記他の層としては、公知の層を採用でき、粘着層が例示される。すなわち、本実施形態のフィルムの利用例の一例として、本実施形態のフィルムと粘着層を有する貼り合わせ用粘着シートが挙げられる。
 本実施形態の多層フィルムはハードコート層を有していてもよいし、有していなくてもよい。本実施形態の多層フィルムにおいては、ハードコート層を有さないことが好ましい。本実施形態の多層フィルムにおいては、ハードコート層を有さなくても、摺動性の高いフィルムを達成できる点で価値が高い。
<Multilayer film>
The film of the present embodiment may be a single layer film or a multilayer film composed of a plurality of resin layers. The film of this embodiment can be used as a multilayer film containing the above film and at least one other layer. A known layer can be employed as the other layer.
By manufacturing a single-layer film and then laminating other layers, the unevenness of the surface of the film can be properly maintained. As the other layer, a known layer can be adopted, and an adhesive layer is exemplified. That is, as an example of application of the film of the present embodiment, there is an adhesive sheet for lamination having the film of the present embodiment and an adhesive layer.
The multilayer film of this embodiment may or may not have a hard coat layer. The multilayer film of the present embodiment preferably does not have a hard coat layer. The multi-layer film of the present embodiment is highly valuable in that a film with high slidability can be achieved even without a hard coat layer.
<粘着層>
 粘着層の種類は、特に制限はないが、アクリル粘着剤、シリコーン粘着剤およびウレタン粘着剤の少なくとも1種を含むことが好ましい。これらの粘着剤を用いることにより、より高い粘着性と、例えば、プライマー層に対する適度な密着性を実現できる。
 また、粘着層は、再剥離性を有していてもよく、再剥離性を有する粘着層は、一度、貼り付け材から剥離させても再度、粘着させることができる。
 粘着層の詳細は国際公開第2021/029283号の段落0046~0051の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<Adhesive layer>
The type of adhesive layer is not particularly limited, but it preferably contains at least one of an acrylic adhesive, a silicone adhesive and a urethane adhesive. By using these adhesives, higher adhesiveness and, for example, moderate adhesion to the primer layer can be achieved.
In addition, the adhesive layer may have re-peelability, and the adhesive layer having re-peelability can be re-adhered even if it is once peeled from the pasting material.
Details of the adhesive layer can be referred to paragraphs 0046 to 0051 of WO 2021/029283, the contents of which are incorporated herein.
 アクリル粘着剤は、アクリル系高分子を含む粘着剤であり、具体例として、DIC社製のファインタック(CT-3088、CT-3850、CT-6030、CT-5020、CT-5030)、クイックマスター(SPS-900-IV、クイックマスターSPS-1040NT-25)、および、トーヨーケム社製の粘着剤オリパイン等が挙げられる。
 シリコーン粘着剤は、シリコーン系高分子を含む粘着剤であり、具体例として、信越化学工業社製のKR-3700(主剤)とCAT-PL-50T(白金触媒)とにより製造されるポリマー等が挙げられる。
 ウレタン粘着剤は、ウレタン系高分子を含む粘着剤であり、具体例として、トーヨーケム社製の粘着剤オリパイン等が挙げられる。
 本明細書では、高分子とは、数平均分子量が1000以上の化合物をいい、好ましくは2000以上の化合物を意味する。
The acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive containing an acrylic polymer, and specific examples thereof include DIC's Fine Tack (CT-3088, CT-3850, CT-6030, CT-5020, CT-5030), Quick Master (SPS-900-IV, Quickmaster SPS-1040NT-25), and the adhesive Oripine manufactured by Toyochem.
A silicone pressure-sensitive adhesive is a pressure-sensitive adhesive containing a silicone-based polymer, and specific examples thereof include polymers manufactured by Shin-Etsu Chemical Co., Ltd. KR-3700 (main agent) and CAT-PL-50T (platinum catalyst). mentioned.
A urethane adhesive is an adhesive containing a urethane-based polymer, and specific examples thereof include the adhesive Oripine manufactured by Toyochem Co., Ltd., and the like.
As used herein, a polymer means a compound having a number average molecular weight of 1,000 or more, preferably 2,000 or more.
 粘着層としては、上記の他、本発明の趣旨を逸脱しない範囲で、特開2017-200975号公報の段落0026~0053に記載の粘着剤層、特開2013-020130号公報の段落0056~0060に記載の粘着層、国際公開第2016/158827号の粘着シート、特開2016-182791号公報の段落の0031~0032の粘着層、特開2015-147837号公報の段落0057~0084のゴム系粘着剤層を採用することもでき、これらの内容は本明細書に組み込まれる。 As the adhesive layer, in addition to the above, within the scope of the present invention, the adhesive layer described in paragraphs 0026 to 0053 of JP 2017-200975, paragraphs 0056 to 0060 of JP 2013-020130 The adhesive layer described in, the adhesive sheet of International Publication No. 2016/158827, the adhesive layer of paragraphs 0031 to 0032 of JP-A-2016-182791, the rubber-based adhesive of paragraphs 0057 to 0084 of JP-A-2015-147837 Agent layers can also be employed, the contents of which are incorporated herein.
 粘着層の厚みは、特に制限はないが、10μm以上であることが好ましく、20μm以上であることがより好ましく、25μm以上であることがさらに好ましく、28μm以上であってもよい。また、粘着層の厚みは、70μm以下であることが好ましく、60μm以下であることがより好ましい。上記範囲内とすることで、より適切な粘着特性および粘着強度が達成される。 Although the thickness of the adhesive layer is not particularly limited, it is preferably 10 μm or more, more preferably 20 μm or more, even more preferably 25 μm or more, and may be 28 μm or more. Also, the thickness of the adhesive layer is preferably 70 μm or less, more preferably 60 μm or less. By setting it within the above range, more appropriate adhesive properties and adhesive strength are achieved.
<プライマー層>
 本発明の粘着シートは、上述の通り、プライマー層を有していてもよい。プライマー層は基材層と粘着層の間に設けられており、粘着層と基材層の接着性を高める効果を有する。また、粘着層形成時に使用される溶剤による基材へのケミカルクラックなどを抑制することが可能となる。
 プライマー層は、ウレタン(メタ)アクリレート樹脂を含むことが好ましい。ウレタン(メタ)アクリレート樹脂を用いることにより、より耐熱性に優れた粘着シートが得られる。
 プライマー層の詳細は国際公開第2021/029283号の段落0052~0070の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<Primer layer>
The adhesive sheet of the present invention may have a primer layer as described above. The primer layer is provided between the base material layer and the adhesive layer, and has the effect of increasing the adhesion between the adhesive layer and the base material layer. In addition, it is possible to suppress chemical cracks in the base material due to the solvent used when forming the adhesive layer.
The primer layer preferably contains a urethane (meth)acrylate resin. By using a urethane (meth)acrylate resin, a pressure-sensitive adhesive sheet with more excellent heat resistance can be obtained.
Details of the primer layer can be referred to in paragraphs 0052 to 0070 of WO2021/029283, the contents of which are incorporated herein.
<粘着シートの製造方法>
 粘着シートの製造においては、まず、基材(フィルム)が形成されることが好ましい。
 粘着シートは、上述のポリカーボネートを含む基材(フィルム)を用いて、例えば、以下のように、プライマー層形成工程と、粘着層形成工程とを含む製法により製造可能である。 
 プライマー層形成工程においては、基材の表面上に、プライマー塗料(プライマー液)を塗布し、硬化させて、プライマー層を形成する。
 また、粘着層形成工程においては、形成されたプライマー層における、基材と接している側とは反対側の表面上に、粘着剤を塗布して硬化させて粘着層を形成する。 
 プライマー塗料または粘着剤を硬化させる手法としては、光硬化、および熱硬化などの手法が採用され得る。
<Method for manufacturing adhesive sheet>
In the production of the pressure-sensitive adhesive sheet, it is preferred that the substrate (film) is formed first.
The pressure-sensitive adhesive sheet can be produced using the base material (film) containing the above-described polycarbonate, for example, by a method including a primer layer forming step and an adhesive layer forming step, as described below.
In the primer layer forming step, a primer coating (primer liquid) is applied onto the surface of the substrate and cured to form a primer layer.
In the adhesive layer forming step, an adhesive is applied to the surface of the formed primer layer opposite to the side in contact with the base material and cured to form an adhesive layer.
Techniques such as photocuring and heat curing can be employed as techniques for curing the primer paint or adhesive.
 本実施形態の貼り合わせ用粘着シートは、携帯電話端末、スマートフォン、携帯型電子遊具、携帯情報端末、タブレット機器、モバイルパソコン、ウェアラブル端末などの画像表示装置、液晶テレビ、液晶モニター、デスクトップパソコン、カーナビゲーション、自動車計器など設置型ディスプレイデバイス等の各種素子の構成材料として用いることができる。特に、前記液晶部材の透明導電膜や各種素子の基板材料や保護材料として好適に用いることができる。
 本実施形態のフィルムは、より具体的には、マスキングフィルムとして好ましく用いられる。より好ましくは、アンチブロッキングフィルムとして用いられる。また、透明導電性フィルムの保護フィルムとしても好ましく用いられる。特に、保護層と、粘着層と、基材と、電極層とをこの順で有する、透明導電性フィルムであって、基材および保護層の少なくとも一方(好ましくは少なくとも保護層)が、本実施形態のフィルムである、透明導電性フィルムとして好ましく用いられる。透明導電性フィルムとしては、特開2018-152187号公報などの記載を参酌でき、この内容は本明細書に組み込まれる。
 また、上記透明導電性フィルムは、タッチパネルのフィルムセンサー、電子ペーパーや色素増感型太陽電池、タッチセンサー等に用いる透明導電性フィルムとして好ましく用いられる。
The adhesive sheet for lamination of the present embodiment can be used for image display devices such as mobile phone terminals, smartphones, portable electronic playground equipment, personal digital assistants, tablet devices, mobile personal computers, wearable terminals, liquid crystal televisions, liquid crystal monitors, desktop personal computers, cars, etc. It can be used as a constituent material for various elements such as navigation devices, automobile instruments, and installation-type display devices. In particular, it can be suitably used as a transparent conductive film of the liquid crystal member, a substrate material for various elements, and a protective material.
More specifically, the film of this embodiment is preferably used as a masking film. More preferably, it is used as an antiblocking film. It is also preferably used as a protective film for transparent conductive films. In particular, a transparent conductive film having a protective layer, an adhesive layer, a substrate, and an electrode layer in this order, wherein at least one of the substrate and the protective layer (preferably at least the protective layer) It is preferably used as a transparent conductive film, which is a film of the form. As for the transparent conductive film, the description in JP-A-2018-152187 can be referred to, and the contents thereof are incorporated herein.
Moreover, the transparent conductive film is preferably used as a transparent conductive film used for film sensors of touch panels, electronic paper, dye-sensitized solar cells, touch sensors, and the like.
<用途>
 本実施形態のフィルムは、摺動性に優れ、かつ、他の基材と貼り合わせ加熱する際に気泡の発生が抑制できることから、保護フィルム用基材として好ましく用いられる。さらに、本実施形態のフィルムは透明性にも優れることから、保護フィルムが貼りついた状態で、インライン欠点検査が行われるような場合においても好ましく用いることができる。
 また本実施形態のフィルムは、上記以外でも、摺動性と気泡発生の抑制が求められる用途のフィルムに好ましく用いられる。
<Application>
The film of the present embodiment is preferably used as a substrate for a protective film because it has excellent slidability and can suppress the generation of air bubbles when it is attached to another substrate and heated. Furthermore, since the film of the present embodiment is also excellent in transparency, it can be preferably used in a case where an in-line defect inspection is performed with a protective film attached.
In addition to the above, the film of the present embodiment is preferably used as a film for applications that require slidability and suppression of bubble generation.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
EXAMPLES The present invention will be described more specifically with reference to examples below. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the scope of the present invention is not limited to the specific examples shown below.
If the measuring instruments and the like used in the examples are discontinued and difficult to obtain, other instruments having equivalent performance can be used for measurement.
1.原料
ポリカーボネート樹脂
A1:ビスフェノールA型ポリカーボネート樹脂
三菱エンジニアリングプラスチックス社製、ユーピロンE-2000、粘度平均分子量:27000、屈折率:1.59
1. Raw material polycarbonate resin A1: Bisphenol A type polycarbonate resin Iupilon E-2000 manufactured by Mitsubishi Engineering-Plastics, viscosity average molecular weight: 27000, refractive index: 1.59
層状粘土鉱物
B1:Mearlmica SV、マイカ、BASF社製、長辺と短辺の平均値(A):8.0μm、屈折率:1.58
B2:Mearlmica FF、マイカ、BASF社製、長辺と短辺の平均値(A):4.2μm、屈折率:1.58
B3:Mearlmica CF、マイカ、BASF社製、長辺と短辺の平均値(A):21μm、屈折率:1.58
B4:R-11、タルク、松村産業社製、長辺と短辺の平均値(A):2.6μm、屈折率:1.57
有機粒子
C1:テクポリマー SBX-17、スチレン粒子、積水化成品工業社製、数平均粒子径:9.1μm、屈折率:1.59
Layered clay mineral B1: Mearlmica SV, mica, manufactured by BASF, average value of long and short sides (A): 8.0 μm, refractive index: 1.58
B2: Mearlmica FF, mica, manufactured by BASF, average value of long side and short side (A): 4.2 μm, refractive index: 1.58
B3: Mearlmica CF, mica, manufactured by BASF, average value of long side and short side (A): 21 μm, refractive index: 1.58
B4: R-11, talc, manufactured by Matsumura Sangyo Co., Ltd., average value of long and short sides (A): 2.6 μm, refractive index: 1.57
Organic particles C1: Techpolymer SBX-17, styrene particles, manufactured by Sekisui Plastics Co., Ltd., number average particle size: 9.1 μm, refractive index: 1.59
<層状粘土鉱物の長辺と短辺の平均値(A)の測定>
 長辺と短辺の平均値(A)は、走査電子顕微鏡で観察した層状粘土鉱物を無作為に100個抽出し、それぞれの粒子について層を形成している面、すなわち最大面積の面の長辺と短辺の平均値(B)を測定し、さらに100個の長辺と短辺の平均値(B)から平均値(A)を算出した。また、長辺とは粒子の最大面積を楕円に近似した際の長径相当の辺であり、短辺とは粒子の最大面積を楕円で近似した際の短径相当の辺である。
<Measurement of average value (A) of long side and short side of layered clay mineral>
The average value of the long side and short side (A) was obtained by randomly extracting 100 layered clay minerals observed with a scanning electron microscope, and measuring the length of the surface forming the layer for each particle, that is, the surface with the maximum area. The average value (B) of the sides and short sides was measured, and the average value (A) was calculated from the average values (B) of 100 long sides and short sides. The long side is the side corresponding to the major axis when the maximum area of the particle is approximated by an ellipse, and the short side is the side corresponding to the minor axis when the maximum area of the particle is approximated by the ellipse.
<層状粘土鉱物の屈折率の測定>
 層状粘土鉱物および有機粒子の屈折率はJIS K7142 B法に従い測定した。
 屈折計はアタゴ社製の「アッベ屈折計2T」を、顕微鏡はオリンパス社製の「小型測定顕微鏡 STM5-311」を使用した。
<Measurement of refractive index of layered clay mineral>
The refractive indices of layered clay minerals and organic particles were measured according to JIS K7142 B method.
The refractometer used was “Abbe Refractometer 2T” manufactured by Atago Co., Ltd., and the microscope used was “Small Measuring Microscope STM5-311” manufactured by Olympus Co., Ltd.
2.実施例1~3、比較例1~5
<ペレットの製造>
 上記に記載した各成分を、それぞれ表1に記載の添加量となるように計量した。表1の各成分は質量部で示している。その後、タンブラーにて10分間混合した後、スクリュー径32mmのベント付二軸押出機(日本製鋼所社製「TEX30α」)により、シリンダー温度300℃で溶融混練し、ストランドカットによりペレットを得た。
2. Examples 1-3, Comparative Examples 1-5
<Production of pellets>
Each component described above was weighed so that the addition amount described in Table 1 was obtained. Each component in Table 1 is shown in parts by mass. Then, after mixing for 10 minutes in a tumbler, melt-kneading was performed at a cylinder temperature of 300° C. with a vented twin-screw extruder ("TEX30α" manufactured by Japan Steel Works, Ltd.) with a screw diameter of 32 mm, and pellets were obtained by strand cutting.
<フィルムの製造>
 得られたペレットを用いて、以下の方法でフィルムを製造した。
 上記で得られたペレットを、バレル直径32mm、スクリューのL/D=31.5のベント付き二軸押出機(日本製鋼所社製、「TEX30α」)からなるTダイ溶融押出機を用いて、吐出10Kg/h、スクリュー回転数166rpmの条件で溶融状に押し出し、第二ロールで冷却固化し、フィルムを作製した。シリンダー温度・ダイヘッド温度は300℃で行った。
 最終的に得られるフィルム厚さの調整は、表1に記載の値となるように、第二ロールのロール速度を変更して行った。
<Film production>
Using the obtained pellets, a film was produced by the following method.
Using a T-die melt extruder consisting of a twin-screw extruder with a barrel diameter of 32 mm and a vented screw L/D = 31.5 (manufactured by Japan Steel Works, Ltd., "TEX30α"), The melt was extruded under the conditions of a discharge rate of 10 kg/h and a screw rotation speed of 166 rpm, and cooled and solidified by a second roll to prepare a film. Cylinder temperature and die head temperature were 300°C.
The thickness of the film finally obtained was adjusted by changing the roll speed of the second roll so as to obtain the values shown in Table 1.
 用いた第二ロールの詳細は以下の通りである。
・第二ロール:JSW社製、金属剛体ロール(表面:ハードクロム処理)
 芯金径:外径250mm×幅600mm
 ロール温度:140℃
Details of the second roll used are as follows.
・Second roll: Made by JSW, metal rigid roll (surface: hard chrome treatment)
Core metal diameter: outer diameter 250 mm x width 600 mm
Roll temperature: 140°C
<表面粗さSaの測定>
 得られたフィルムの凹凸形状を有する表面について走査型白色干渉顕微鏡を用いてISO25718-2:2012に規定されるSaを測定した。任意の3か所について測定および解析を行い、平均値を採用した。Saの単位はnmで示した。
 測定条件は以下の通りとした。
視野:単視野
測定用CCDカメラ:1/3インチ
対物レンズ:×5
観察面積:935.267×701.502μm
視野サイズ:640×480pixcels
測定モード:waveモード
波長フィルタ:530nmWhite
観察条件
補間条件:完全補間
面補正条件:4次多項式近似
 走査型白色干渉顕微鏡は、日立ハイテク社製、「VS1550」を用いた。
<Measurement of surface roughness Sa>
Sa defined in ISO25718-2:2012 was measured on the uneven surface of the obtained film using a scanning white light interference microscope. Measurements and analyzes were performed at three arbitrary locations, and the average value was adopted. The unit of Sa is nm.
The measurement conditions were as follows.
Field of view: CCD camera for single field measurement: 1/3 inch Objective lens: ×5
Observation area: 935.267×701.502 μm 2
Field of view size: 640 x 480 pixels
Measurement mode: wave mode Wavelength filter: 530 nm White
Observation conditions Interpolation conditions: Perfectly interpolated surface correction conditions: Fourth-order polynomial approximation As a scanning white light interference microscope, "VS1550" manufactured by Hitachi High-Tech Co., Ltd. was used.
<全光線透過率およびヘイズの測定>
 D65光源10°視野の条件にて、得られたフィルムの全光線透過率(単位:%)、および、ヘイズ(単位:%)を測定した。
 測定に際し、ヘイズメーター(村上色彩技術研究所社製「HM-150」)を用いた。
<Measurement of total light transmittance and haze>
The total light transmittance (unit: %) and haze (unit: %) of the obtained film were measured under the condition of D65 light source and 10° field of view.
A haze meter (“HM-150” manufactured by Murakami Color Research Laboratory) was used for the measurement.
<動摩擦係数の測定>
 フィルムの動摩擦係数は、二乗平均平方根粗さが0.093μmのフィルムに対する動摩擦係数として測定した。
 二乗平均平方根粗さが0.093μmのフィルムと上記で得られたフィルムが重なるように設置し、スレッド100mm/分、ロードセル10Nの条件で、前記二乗平均平方根粗さが0.093μmのフィルム上を、得られたフィルムを滑らせて、動摩擦係数を測定した。
 摩擦係数測定機は、東洋精機製作所社製(「フリクションテスター」)を用いた。
 二乗平均平方根粗さが0.093μmのフィルムは、片面マスキングフィルム付きビスフェノールA型ポリカーボネート樹脂フィルム(三菱ガス化学社製、FE-2000、厚さ100μm品)を用いた。本実施例では、片面マスキングフィルム付きビスフェノールA型ポリカーボネート樹脂フィルムのマスキングを剥がした面を上面にし、長軸が試験テーブルの長軸に一致するように、テープで試験テーブルの右端に固定し、63mm×63mm、200gのスレッドの下側に、得られたフィルムを貼り付け、ポリカーボネート樹脂フィルムと得られたフィルムが重なるように設置し、上述の通り、得られたフィルムを滑らせて動摩擦係数を測定した。
 比較例3~5は、表面に適度な凹凸を形成できず、フィルム同士が貼りついてしまい、動摩擦係数が測定できなかった。
<Measurement of dynamic friction coefficient>
The dynamic friction coefficient of the film was measured as the dynamic friction coefficient against a film having a root-mean-square roughness of 0.093 μm.
A film having a root-mean-square roughness of 0.093 μm and the film obtained above are placed so that they overlap each other, and under the conditions of a thread of 100 mm / min and a load cell of 10 N, the film having a root-mean-square roughness of 0.093 μm , and the resulting film was slid to measure the dynamic friction coefficient.
The friction coefficient measuring machine used was manufactured by Toyo Seiki Seisakusho Co., Ltd. (“Friction Tester”).
A film having a root-mean-square roughness of 0.093 μm was a bisphenol A polycarbonate resin film with a masking film on one side (FE-2000, thickness 100 μm, manufactured by Mitsubishi Gas Chemical Company, Inc.). In this example, the bisphenol A polycarbonate resin film with a single-sided masking film was fixed to the right end of the test table with a tape so that the masked side of the film was peeled off and the long axis coincided with the long axis of the test table, and the thickness was 63 mm. The resulting film was attached to the underside of a 63 mm, 200 g thread, placed so that the polycarbonate resin film and the resulting film overlapped, and the resulting film was slid as described above to measure the dynamic friction coefficient. bottom.
In Comparative Examples 3 to 5, suitable irregularities could not be formed on the surface, the films stuck to each other, and the dynamic friction coefficient could not be measured.
<二乗平均平方根粗さRqの測定>
 動摩擦係数の測定に用いた二乗平均平方根粗さが0.093μmのフィルムの表面粗さの測定は表面粗さ測定機を用いて測定した。
 測定機の検出器を「一体型」にして、検出器の駆動部には「標準駆動ユニット」を装着した。ガラス板状にテープでフィルムを固定し、その上で表面粗さ測定機が動かないように設置した。その後、測定条件を規格「JIS B 0601-2001」、測定速度0.5mm/s、カットオフ値0.8、区間数3で測定を行い、二乗平均平方根粗さRqを測定した。二乗平均平方根粗さRqはフィルムの場所を変えて、3回測定して、その平均値とした。
 測定機は、ミツトヨ社製、「SJ-210」を用いた。
<Measurement of root mean square roughness Rq>
The surface roughness of the film having a root-mean-square roughness of 0.093 μm used for the measurement of the dynamic friction coefficient was measured using a surface roughness measuring machine.
The detector of the measuring machine was made "integrated type", and the driving part of the detector was equipped with a "standard drive unit". The film was fixed on a glass plate with tape, and the surface roughness measuring machine was placed on the film so as not to move. After that, the measurement conditions were standard "JIS B 0601-2001", the measurement speed was 0.5 mm/s, the cutoff value was 0.8, and the number of sections was 3, and the root mean square roughness Rq was measured. The root-mean-square roughness Rq was measured three times at different locations on the film and taken as the average value.
As a measuring machine, "SJ-210" manufactured by Mitutoyo Corporation was used.
<巻姿の評価>
 上記フィルムの製造において、フィルムの厚さが所定の厚さになるように第二ロール速度を調整し、かつ、フィルム巻き取り機の引き取り張力が200Nになるように制御し、マスキングフィルムを使用せず、内径3インチの紙管に30m巻き取った際のフィルム外観を評価した。5人の専門家が評価し多数決とした。
A:皺が発生せず良好な外観で巻取りができた。
B:上記AおよびC以外、例えば、巻き取りは可能だが、スタックが発生し、巻ジワが発生した等であった。
C:紙管に沿って巻くことができなかった。
<Evaluation of rolled appearance>
In the production of the film, the second roll speed is adjusted so that the film has a predetermined thickness, and the take-up tension of the film winder is controlled to 200 N, and a masking film is used. First, the appearance of the film was evaluated when the film was wound on a paper tube having an inner diameter of 3 inches for 30 m. Five experts evaluated and made a majority decision.
A: Winding was possible with good appearance without wrinkles.
B: Other than the above A and C, for example, winding was possible, but stacking occurred, winding wrinkles occurred, and the like.
C: Could not be wound along the paper tube.
<投影の評価>
得られたフィルムの投影像を高輝度光源で照射することで得た。
 具体的には、壁に白い紙を貼り、前記白い紙から120cm離れた位置に高輝度光源を設置し、壁と光源の中間、すなわち壁から60cmの位置に設置したフィルムを照射することで、壁に貼られた白色の紙にフィルムの投影像を得た。
 高輝度光源として日本技術センター社製の「S-Light」を用いた。
A:像が鮮明に見える。
B:像がぼやける。
<Evaluation of projection>
A projected image of the obtained film was obtained by irradiating with a high-intensity light source.
Specifically, a white paper is pasted on the wall, a high-intensity light source is installed at a position 120 cm away from the white paper, and a film placed between the wall and the light source, that is, at a position 60 cm from the wall is irradiated. A projection image of the film was obtained on a white paper attached to the wall.
"S-Light" manufactured by Nippon Gijutsu Center Co., Ltd. was used as a high-intensity light source.
A: The image can be clearly seen.
B: The image is blurred.
<粘着剤の塗工>
 実施例1~3で得られたフィルムについて、それぞれ、以下の方法で粘着塗工を行い、粘着シート製造した。
 前記の方法で得られたフィルムに後述のシリコーン粘着剤をバーコーターを用いて乾燥塗膜の厚さが30μmになるように塗工し、熱風循環乾燥機(ヤマト科学社製、「DNF611」)にて130℃で1分乾燥し、粘着層を形成した。粘着層はフィルムの第二ロールに接触する面に積層した。 粘着層付フィルムとして適切に機能することを確認した。
<Coating of adhesive>
The films obtained in Examples 1 to 3 were each subjected to adhesive coating by the following method to produce an adhesive sheet.
The film obtained by the above method is coated with a silicone pressure-sensitive adhesive described later using a bar coater so that the thickness of the dry coating film becomes 30 μm, and a hot air circulation dryer (manufactured by Yamato Scientific Co., Ltd., "DNF611") is applied. and dried at 130° C. for 1 minute to form an adhesive layer. The adhesive layer was laminated to the side of the film that would contact the second roll. It was confirmed that it functions properly as a film with an adhesive layer.
 用いた粘着剤の組成は以下の通りである。
 シリコーン粘着剤:X-40-3229、信越化学工業社製、100質量部
 触媒:CAT-PL-50T、信越化学工業社製、0.5質量部
 希釈溶剤:トルエン、50質量部
The composition of the adhesive used is as follows.
Silicone adhesive: X-40-3229, manufactured by Shin-Etsu Chemical Co., Ltd., 100 parts by mass Catalyst: CAT-PL-50T, manufactured by Shin-Etsu Chemical Co., Ltd., 0.5 parts by mass Diluting solvent: Toluene, 50 parts by mass
<加熱後の気泡発生の評価>
 得られた粘着シートを、二乗平均平方根粗さが0.093μmのビスフェノールA型ポリカーボネート樹脂フィルム(三菱ガス化学社製、FE-2000、厚さ100μm)に貼り合わせ、送風定温恒温機(ヤマト科学社製、DKN402)にて140℃で1時間加熱処理を行った。加熱後、フィルムの外観を評価した。5人の専門家が評価し多数決とした。
A:気泡の発生がなかった
B:気泡の発生がフィルムの一部分に確認された
C:気泡が全面に発生した
<Evaluation of bubble generation after heating>
The resulting pressure-sensitive adhesive sheet was laminated to a bisphenol A polycarbonate resin film (manufactured by Mitsubishi Gas Chemical Co., Ltd., FE-2000, thickness 100 μm) having a root-mean-square roughness of 0.093 μm. DKN402) at 140° C. for 1 hour. After heating, the appearance of the film was evaluated. Five experts evaluated and made a majority decision.
A: No air bubbles were generated. B: Air bubbles were observed in a portion of the film. C: Air bubbles were generated on the entire surface.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
1:フィルム
2:粘着層
1: Film 2: Adhesive layer

Claims (9)

  1. ポリカーボネート樹脂100質量部に対して、層状粘土鉱物を0.005~0.5質量部含むフィルムであって、
    前記フィルムの表面粗さSaが10~100nmであり、
    前記フィルムの厚みが50~200μmである、フィルム。
    A film containing 0.005 to 0.5 parts by mass of a layered clay mineral with respect to 100 parts by mass of a polycarbonate resin,
    The film has a surface roughness Sa of 10 to 100 nm,
    A film having a thickness of 50 to 200 μm.
  2. 層状粘土鉱物の長辺と短辺の平均値が2.0μm~9.0μmである、請求項1に記載のフィルム。 2. The film according to claim 1, wherein the layered clay mineral has an average long side and short side of 2.0 μm to 9.0 μm.
  3. 層状粘土鉱物の屈折率が1.55~1.63である、請求項1または2に記載のフィルム。 3. The film according to claim 1, wherein the layered clay mineral has a refractive index of 1.55 to 1.63.
  4. 層状粘土鉱物がマイカを含む、請求項1~3のいずれか1項に記載のフィルム。 The film of any one of claims 1-3, wherein the layered clay mineral comprises mica.
  5. 前記フィルムのD65光源10°視野の条件におけるヘイズが2%以下である、請求項1~4のいずれか1項に記載のフィルム。 The film according to any one of claims 1 to 4, wherein the film has a haze of 2% or less under 10° field of view conditions with a D65 light source.
  6. 保護フィルム用基材である、請求項1~5のいずれか1項に記載のフィルム。 The film according to any one of claims 1 to 5, which is a substrate for protective films.
  7. 請求項1~6のいずれか1項に記載のフィルムと、他の層を有する多層フィルム。 A multilayer film comprising the film according to any one of claims 1 to 6 and another layer.
  8. 前記他の層が粘着層を有する、請求項7に記載の多層フィルム。 8. The multilayer film of Claim 7, wherein said other layer comprises an adhesive layer.
  9. 保護層と、
    粘着層と、
    基材と、
    電極層とをこの順で有する、透明導電性フィルムであって、
    前記保護層が、請求項1~6のいずれか1項に記載のフィルムである、透明導電性フィルム。
    a protective layer;
    an adhesive layer;
    a substrate;
    A transparent conductive film having an electrode layer in this order,
    A transparent conductive film, wherein the protective layer is the film according to any one of claims 1 to 6.
PCT/JP2022/039810 2021-10-28 2022-10-26 Film and multilayer film WO2023074714A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506128A JP7257596B1 (en) 2021-10-28 2022-10-26 Films and multilayer films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-176662 2021-10-28
JP2021176662 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023074714A1 true WO2023074714A1 (en) 2023-05-04

Family

ID=86157982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039810 WO2023074714A1 (en) 2021-10-28 2022-10-26 Film and multilayer film

Country Status (1)

Country Link
WO (1) WO2023074714A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243659A (en) * 1999-12-21 2001-09-07 Teijin Ltd Plastic film roll and method of manufacturing optical disk
JP2006176566A (en) * 2004-12-21 2006-07-06 Asahi Kasei Chemicals Corp Light-shielding molding having light reflection function
JP2006277914A (en) * 2005-03-02 2006-10-12 Teijin Chem Ltd Film for light transmission layer of optical disk and manufacturing method of polycarbonate film
WO2015159813A1 (en) * 2014-04-14 2015-10-22 三菱瓦斯化学株式会社 Reinforced aromatic polycarbonate resin sheet or film
WO2020031968A1 (en) * 2018-08-08 2020-02-13 三菱瓦斯化学株式会社 Laminate for molding
JP6941209B1 (en) * 2020-08-18 2021-09-29 三菱瓦斯化学株式会社 Resin sheets, multi-layers, and cards

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243659A (en) * 1999-12-21 2001-09-07 Teijin Ltd Plastic film roll and method of manufacturing optical disk
JP2006176566A (en) * 2004-12-21 2006-07-06 Asahi Kasei Chemicals Corp Light-shielding molding having light reflection function
JP2006277914A (en) * 2005-03-02 2006-10-12 Teijin Chem Ltd Film for light transmission layer of optical disk and manufacturing method of polycarbonate film
WO2015159813A1 (en) * 2014-04-14 2015-10-22 三菱瓦斯化学株式会社 Reinforced aromatic polycarbonate resin sheet or film
WO2020031968A1 (en) * 2018-08-08 2020-02-13 三菱瓦斯化学株式会社 Laminate for molding
JP6941209B1 (en) * 2020-08-18 2021-09-29 三菱瓦斯化学株式会社 Resin sheets, multi-layers, and cards

Similar Documents

Publication Publication Date Title
WO2011093478A1 (en) Film
JP6571528B2 (en) Transparent resin laminate
WO2014061817A1 (en) Laminate
WO2013051712A1 (en) Substrate-less double-sided pressure-sensitive adhesive sheet
TW201634599A (en) Active energy ray-curable resin composition, hard coat laminated film formed from the same, and transparent resin laminate
JP5752522B2 (en) Laminated film for supporting optical functional member and method for producing the same, sheet and method for producing the same, prism sheet
JP6508330B2 (en) Laminate
JP5983158B2 (en) Optical laminated film
TW201607754A (en) Laminate film
US9802395B2 (en) Synthetic resin laminate
US11845842B2 (en) Window cover film and flexible display panel including the same
WO2014080715A1 (en) Substrate-less double-sided adhesive sheet
KR20210018123A (en) Laminate
JP2023073287A (en) Optical diffusive barrier film
WO2016006589A1 (en) Synthetic resin laminate
WO2016136518A1 (en) Multilayer film and method for producing same
JP7257596B1 (en) Films and multilayer films
WO2023074714A1 (en) Film and multilayer film
JP7456389B2 (en) Adhesive film and method for manufacturing the adhesive film
KR20140047548A (en) Optical film and method for producing the same, polarizing plate, and liquid crystal display device
JP2011126066A (en) Easy adhesive polyester film
JP2017052948A (en) Adhesive composition and adhesive sheet using the same
JP6587901B2 (en) Uniaxially stretched multi-layer easily adhesive film and optical member using the same
JP6565573B2 (en) Laminated body and manufacturing method thereof
JP2022182086A (en) Film, multilayer body, and transparent conductive film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023506128

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887040

Country of ref document: EP

Kind code of ref document: A1