WO2023074172A1 - 固体電解コンデンサ素子および固体電解コンデンサ - Google Patents

固体電解コンデンサ素子および固体電解コンデンサ Download PDF

Info

Publication number
WO2023074172A1
WO2023074172A1 PCT/JP2022/034551 JP2022034551W WO2023074172A1 WO 2023074172 A1 WO2023074172 A1 WO 2023074172A1 JP 2022034551 W JP2022034551 W JP 2022034551W WO 2023074172 A1 WO2023074172 A1 WO 2023074172A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte layer
electrolytic capacitor
layer
capacitor element
Prior art date
Application number
PCT/JP2022/034551
Other languages
English (en)
French (fr)
Inventor
孝拓 吉井
兄 廣田
博美 小澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023556186A priority Critical patent/JPWO2023074172A1/ja
Priority to CN202280071333.6A priority patent/CN118140289A/zh
Publication of WO2023074172A1 publication Critical patent/WO2023074172A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation

Definitions

  • the present disclosure relates to solid electrolytic capacitor elements and solid electrolytic capacitors.
  • a solid electrolytic capacitor includes, for example, a solid electrolytic capacitor element, an exterior body that seals the solid electrolytic capacitor element, and external electrodes that are electrically connected to the solid electrolytic capacitor element.
  • a solid electrolytic capacitor element includes an anode body, a dielectric layer formed on the surface of the anode body, and a cathode portion covering at least a portion of the dielectric layer.
  • the cathode section has a solid electrolyte layer containing a conductive polymer covering at least a portion of the dielectric layer.
  • Patent Document 1 discloses an anode, a dielectric layer provided on the surface of the anode, a first conductive polymer layer provided on the dielectric layer, and the first conductive polymer layer. a second conductive polymer layer provided thereon; a third conductive polymer layer provided on the second conductive polymer layer; a cathode layer provided, wherein the first conductive polymer layer comprises a conductive polymer film formed by polymerizing pyrrole or a derivative thereof; The polymer layer comprises a conductive polymer film formed by polymerizing thiophene or a derivative thereof, and the third conductive polymer layer is a conductive polymer formed by polymerizing pyrrole or a derivative thereof.
  • a solid electrolytic capacitor characterized by being made of a film is proposed.
  • the solid electrolytic capacitor element is usually sealed with an exterior body or the like.
  • the resin composition provided around the solid electrolytic capacitor element is molded into a predetermined shape, or the resin composition is injected between the solid electrolytic capacitor and the exterior body and solidified.
  • Another aspect of the present disclosure relates to a solid electrolytic capacitor including at least one of the solid electrolytic capacitor elements described above and an exterior body that seals the solid electrolytic capacitor element.
  • Leakage current can be reduced in solid electrolytic capacitors.
  • FIG. 1 is a cross-sectional schematic diagram of a solid electrolytic capacitor according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a cross-sectional schematic diagram of a solid electrolytic capacitor according to another embodiment of the present disclosure
  • the solid electrolytic capacitor element is sealed with an outer package.
  • the solid electrolytic capacitor element In the case of a resin-made outer package, for example, the solid electrolytic capacitor element is surrounded by a resin composition and then compression-molded, or the resin composition is cured by heating to be sealed with the resin outer package. be.
  • the solid electrolytic capacitor element is sealed by filling the space between the solid electrolytic capacitor element and the exterior body with a resin composition and solidifying it. Therefore, stress due to molding, curing, filling or solidification of the resin composition is applied to the solid electrolytic capacitor element.
  • the present inventors have found that stress during sealing is applied to the solid electrolyte layer, causing cracks and leakage current. Leakage current is considered to be caused by damage to the dielectric layer when cracks occur in the solid electrolyte layer.
  • the breaking strength of the solid electrolyte layer is within the above range, even if stress is applied to the solid electrolyte layer when sealing the solid electrolytic capacitor element with the outer package, the occurrence of cracks can be reduced. . Therefore, damage to the dielectric layer is reduced. As a result, leakage current in the solid electrolytic capacitor can be reduced. Also, an increase in leakage current due to sealing can be suppressed.
  • the present disclosure also includes a solid electrolytic capacitor including at least one solid electrolytic capacitor element according to any one of (1) to (4) above and an exterior body that seals the solid electrolytic capacitor element. subsumed.
  • a solid electrolytic capacitor including at least one solid electrolytic capacitor element according to any one of (1) to (4) above and an exterior body that seals the solid electrolytic capacitor element. subsumed.
  • the high breaking strength of the solid electrolyte layer reduces cracks caused by stress when sealing the solid electrolytic capacitor element and reduces damage to the dielectric layer, thereby reducing leakage. Current is reduced. Also, an increase in leakage current due to sealing can be suppressed.
  • the solid electrolytic capacitor may include a laminate of two or more solid electrolytic capacitor elements.
  • the anode body has a first end and a second end opposite to the first end.
  • the cathode portion is formed through a dielectric at a portion of the anode body on the second end side.
  • a portion of the anode body on the second end side where the cathode portion is formed is sometimes called a cathode forming portion.
  • a portion on the first end side where the cathode portion is not formed is sometimes called anode lead portion.
  • An anode lead terminal is connected to the anode lead-out portion.
  • the dielectric layer is formed to cover at least part of the anode body.
  • a dielectric layer is an insulating layer that functions as a dielectric.
  • the dielectric layer is formed by anodizing the valve action metal on the surface of the anode body by chemical conversion treatment or the like.
  • the surface of the dielectric layer has fine irregularities according to the shape of the surface of the porous portion.
  • the dielectric layer may be formed of a material that functions as a dielectric layer.
  • the dielectric layer includes, for example, oxides of valve metals as such materials.
  • the dielectric layer contains Ta 2 O 5 when tantalum is used as the valve metal, and the dielectric layer contains Al 2 O 3 when aluminum is used as the valve metal.
  • the dielectric layer is not limited to these specific examples.
  • the solid electrolyte layer contains a conductive polymer.
  • Conductive polymers include, for example, conjugated polymers and dopants.
  • the solid electrolyte layer may further contain additives as needed.
  • Conjugated polymers include known conjugated polymers used in solid electrolytic capacitors, such as ⁇ -conjugated polymers.
  • Conjugated polymers include, for example, polymers having polypyrrole, polythiophene, polyaniline, polyfuran, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, and polythiophenevinylene as a basic skeleton.
  • polymers having a basic skeleton of polypyrrole, polythiophene, or polyaniline are preferred.
  • the above polymer may contain at least one type of monomer unit that constitutes the basic skeleton.
  • the monomer units also include monomer units having substituents.
  • the above polymers include homopolymers and copolymers of two or more monomers.
  • polythiophenes include poly(3,4-ethylenedioxythiophene) and the like.
  • the pyrrole compound may have a substituent at, for example, at least one of the 3- and 4-positions of the pyrrole ring.
  • the thiophene compound may have a substituent at, for example, at least one of the 3- and 4-positions of the thiophene ring.
  • the 3-position substituent and the 4-position substituent may be linked to form a ring condensed to a pyrrole ring or a thiophene ring.
  • the pyrrole compound includes, for example, pyrrole optionally having a substituent at at least one of the 3- and 4-positions.
  • substituents include alkyl groups (C 1-4 alkyl groups such as methyl group and ethyl group), alkoxy groups (C 1-4 alkoxy groups such as methoxy group and ethoxy group), hydroxy groups, hydroxyalkyl groups ( hydroxy C 1-4 alkyl groups such as hydroxymethyl groups) and the like are preferred, but not limited thereto.
  • substituents include alkyl groups (C 1-4 alkyl groups such as methyl group and ethyl group), alkoxy groups (C 1-4 alkoxy groups such as methoxy group and ethoxy group), hydroxy groups, hydroxyalkyl groups ( hydroxy C 1-4 alkyl groups such as hydroxymethyl groups) and the like are preferred, but not limited thereto.
  • each substituent may be the same or different.
  • a conjugated polymer containing at least a monomer unit corresponding to pyrrole, or a conjugated polymer containing at least a monomer unit corresponding to a 3,4-ethylenedioxythiophene compound (such as 3,4-ethylenedioxythiophene (EDOT)) (such as PEDOT) may also be used.
  • the conjugated polymer containing at least a monomer unit corresponding to pyrrole may contain only a monomer unit corresponding to pyrrole, and in addition to the monomer unit, a monomer corresponding to a pyrrole compound other than pyrrole (such as pyrrole having a substituent) May contain units.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC). GPC is usually measured using a polystyrene gel column and water/methanol (volume ratio 8/2) as a mobile phase.
  • dopants include at least one selected from the group consisting of anions and polyanions.
  • the amount of the dopant contained in the solid electrolyte layer is, for example, 10 parts by mass or more and 1000 parts by mass or less, or 20 parts by mass or more and 500 parts by mass or less, or 50 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of the conjugated polymer. It may be less than or equal to parts by mass.
  • the breaking strength of the solid electrolyte layer is increased, and the thickness of the solid electrolyte layer can be increased and variations in thickness can be easily reduced. Therefore, the effect of reducing leakage current is further enhanced. Moreover, it is also advantageous in terms of increasing pressure resistance.
  • the second layer preferably contains a water-soluble polymer.
  • the first layer may or may not contain a water-soluble polymer.
  • copolymerizable monomers examples include acrylic acid esters (alkyl esters, hydroxyalkyl esters, etc.), methacrylic acid esters (alkyl esters, hydroxyalkyl esters, etc.), vinyl compounds (vinyl cyanide, olefins, aromatic vinyl compounds etc.), polycarboxylic acids having a polymerizable unsaturated bond (maleic acid, fumaric acid, etc.) or acid anhydrides thereof.
  • the copolymer may contain one type or two or more types of monomer units derived from other copolymerizable monomers.
  • the Mw of the water-soluble polymer is, for example, 100 or more and 5 million or less (or 1 million or less), and may be 400 or more and 5 million or less (or 1 million or less).
  • the content of the water-soluble polymer in the solid electrolyte layer is, for example, 10% by mass or more and 70% by mass or less, may be 25% by mass or more and 70% by mass or less, or is 30% by mass or more and 70% by mass or less. There may be.
  • the breaking strength of the solid electrolyte layer can be easily increased, and the effect of reducing leakage current is enhanced.
  • the content of the water-soluble polymer in the solid electrolyte layer can be determined using a sample of the solid electrolyte layer (hereinafter referred to as sample A) taken from the cross section of the sample for measuring the breaking strength described later. can. More specifically, the solid electrolyte layer is scraped off from the cross section, a predetermined amount of sample A is sampled, and the mass is measured.
  • sample A a sample of the solid electrolyte layer
  • the solid electrolyte layer is scraped off from the cross section, a predetermined amount of sample A is sampled, and the mass is measured.
  • a water-soluble polymer is extracted from sample A with water at 20°C to 40°C. Extracts are concentrated and water-soluble macromolecules are identified by liquid chromatography-mass spectrometry (LC-MS) or gas chromatography-mass spectrometry (GC-MS). Determine the concentration of water-soluble polymer in the extract by calibration curve method. From this concentration and the mass of sample A, the content (mass
  • the breaking strength of the solid electrolyte layer is 0.55 MPa or more. Since the solid electrolyte layer has such a high breaking strength, it is possible to reduce the occurrence of cracks in the solid electrolyte layer even if stress is generated when the capacitor element is sealed with the outer package, and it is possible to keep the leakage current low. can. From the viewpoint of further increasing the effect of reducing the leakage current in the solid electrolytic capacitor, the breaking strength of the solid electrolyte layer may be 0.59 MPa or more. The breaking strength of the solid electrolyte layer is 45 MPa or less. In this case, stress is easily dispersed when the anode lead-out portions of a plurality of capacitor elements are bundled.
  • the breaking strength of the solid electrolyte layer may be 15 MPa or less, 5 MPa or less, or 2 MPa or less. When the breaking strength is within such a range, a high stress dispersion effect can be easily obtained, and leakage current can be further suppressed. These lower and upper limits can be combined arbitrarily.
  • the breaking strength of the solid electrolyte layer may be, for example, 0.55 MPa or more and 45 MPa or less (or 15 MPa or less), or may be 0.55 MPa or more and 5 MPa or less (or 2 MPa or less).
  • the solid electrolyte layer having the breaking strength as described above is formed by electrolytic polymerization. By adjusting the conditions of the electrolytic polymerization, a denser and more uniform solid electrolyte layer can be formed and high breaking strength can be secured.
  • the breaking strength is measured by the nanoindentation method in accordance with ISO 14577 using a sample in which the cross section of the solid electrolyte layer is exposed.
  • a nanoindenter for example, TI950 Triboindenter manufactured by Hygitron
  • a diamond indenter is pressed in the indenter mode of the nanoindenter to measure the strength when the solid electrolyte layer breaks. Measurements are made at 20 points, and the median value is obtained. Let this median value be the breaking strength of the solid electrolyte layer.
  • a sample for measurement is prepared by embedding a solid electrolytic capacitor in an acrylic resin, cutting it in a direction parallel to the length direction at the center of the capacitor element in the width direction, exposing the cross section, and polishing it.
  • a sample for measurement is prepared in the same manner as described above except that the capacitor element is used instead of the solid electrolytic capacitor.
  • the length direction of the capacitor element is a direction parallel to the direction from the first end to the second end of the anode body.
  • the direction from the first end to the second end of the anode body is also referred to as the lengthwise direction of the anode body.
  • the direction from the first end portion to the second end portion of the anode body is the center of the end surface of the anode body on the first end side and the center of the end surface on the second end side when the anode body is not bent. is the direction connecting
  • the length direction of the capacitor element is parallel to the length direction of the cathode portion or the solid electrolyte layer.
  • the width direction of the capacitor element is parallel to the width direction of the cathode portion or the solid electrolyte.
  • the width direction of the capacitor element is a direction perpendicular to both the length direction and the thickness direction of the capacitor element (or the stacking direction of the layers forming the capacitor element).
  • indicators of the strength or hardness of a resin molded product include, for example, tensile strength, bending strength, indentation hardness, scratch hardness, rebound hardness, and the like.
  • the leakage current in the solid electrolytic capacitor tends to increase according to the degree of cracking in the solid electrolyte layer.
  • Hardness indentation hardness, scratch hardness, etc. evaluates the trace when a given pressure is applied (in other words, it evaluates the degree of deformation within the range of plastic deformation), so it occurs beyond the range of plastic deformation. Correlation with cracks that occur is low.
  • the breaking strength of the solid electrolyte layer has a high correlation with the generation of cracks in the solid electrolyte layer.
  • the minimum thickness of the solid electrolyte layer is, for example, 1 ⁇ m or more, and may be 1.3 ⁇ m or more.
  • the minimum thickness is in this range, the rigidity of the solid electrolyte layer is improved, and damage to the dielectric layer can be further reduced. Therefore, the effect of reducing the occurrence of cracks is enhanced.
  • the minimum thickness of the solid electrolyte layer is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more or 8.9 ⁇ m or more. From the viewpoint of ensuring high capacity, the minimum thickness of the solid electrolyte layer is, for example, 20 ⁇ m or less.
  • the solid electrolyte layer may have a first portion filled in the voids of the porous portion of the anode body having the dielectric layer and a second portion protruding from the main surface of the anode body having the dielectric layer. good.
  • the minimum thickness of the solid electrolyte layer is the minimum thickness of the second portion.
  • the thickness of the solid electrolyte layer is measured using a cross-sectional image of a sample prepared in the same manner as the sample for measuring breaking strength. More specifically, in the cross-sectional image of the solid electrolyte layer of the sample, the distance from the main surface of the anode body having the dielectric layer to the surface of the solid electrolyte layer (in other words, the interface between the solid electrolyte layer and the cathode extraction layer) is measured as the thickness of the solid electrolyte layer. The thickness of the solid electrolyte layer is measured at a plurality of arbitrary locations (eg, 5 locations), and the minimum value of these measured values is taken as the minimum thickness of the solid electrolyte layer. A cross-sectional image of the sample is captured using, for example, a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the solid electrolyte layer is formed by chemical polymerization or electrolytic polymerization, or by using a liquid composition containing a conductive polymer.
  • a liquid composition containing a conductive polymer it is difficult to control the polymerization conditions, and the thickness of the solid electrolyte layer tends to vary.
  • the liquid composition is a dispersion liquid, and the liquid composition is applied and Since it is necessary to repeat the drying process several times, the thickness of the solid electrolyte layer tends to vary.
  • a dense solid electrolyte layer is formed by adjusting the conditions of electrolytic polymerization and the like in order to increase the breaking strength. Therefore, variations in the thickness of the solid electrolyte layer are reduced, and the thickness of the solid electrolyte layer can be made relatively large even in the vicinity of the ends. Therefore, when the capacitor element is sealed with the outer package, the concentration of stress in the portion where the thickness of the solid electrolyte layer is small is suppressed, the stress is dispersed throughout the solid electrolyte layer, and the stress is easily alleviated. As a result, the durability of the solid electrolyte layer is improved, and the occurrence of cracks is further suppressed. Since damage to the dielectric layer can be further reduced, the effect of reducing leakage current is further enhanced.
  • the ratio t n /t c may be, for example, 0.5 or more (or 0.75 or more) and 1.8 or less, or 0.5 or more (or 0.75 or more) and 1.5 or less. good.
  • the electrolytic polymerization of the solid electrolyte layer is performed by applying a polymerization voltage while the anode foil having the dielectric layer is in contact with (for example, immersed in) a polymerization liquid (liquid composition) containing a conductive polymer precursor. It can be carried out. Application of the superimposing voltage is performed via a power supply.
  • the anode body is usually provided with an insulation region in a predetermined region between the first end and the second end from the viewpoint of ensuring insulation between the cathode portion and the anode lead-out portion.
  • the liquid composition contains a conductive polymer precursor.
  • the conductive polymer precursor includes at least a conjugated polymer precursor and optionally includes a dopant.
  • precursors of conjugated polymers include starting monomers for conjugated polymers, oligomers and prepolymers in which a plurality of molecular chains of starting monomers are linked.
  • One type of precursor may be used, or two or more types may be used in combination.
  • At least one selected from the group consisting of monomers and oligomers (particularly, monomers) is used as the precursor from the viewpoint of facilitating the formation of a dense solid electrolyte layer and the higher orientation of the conjugated polymer. is preferred.
  • a liquid composition usually contains a solvent.
  • Solvents include, for example, at least one selected from the group consisting of water and organic solvents.
  • At least one of the Mw of the water-soluble polymer used and the concentration of the water-soluble polymer in the liquid composition may be adjusted.
  • the viscosity of the liquid mixture is moderately increased by the water-soluble polymer, and the electropolymerization proceeds slowly to obtain a dense solid electrolyte layer. It is thought that the presence of such a structure increases the strength.
  • the type of metal is not particularly limited. It is preferable to use a valve action metal (aluminum, tantalum, niobium, etc.) or an alloy containing a valve action metal for the metal foil. If necessary, the surface of the metal foil may be roughened. The surface of the metal foil may be provided with a chemical conversion coating, or may be provided with a coating of a metal (dissimilar metal) different from the metal constituting the metal foil (dissimilar metal) or a non-metal coating. Examples of dissimilar metals and non-metals include metals such as titanium and non-metals such as carbon (such as conductive carbon).
  • one end of the cathode lead terminal is electrically connected to the cathode extraction layer.
  • One end of the anode lead terminal is electrically connected to the first portion of the anode foil.
  • the other end of the anode lead terminal and the other end of the cathode lead terminal are pulled out from the exterior body.
  • the other end of each lead terminal exposed from the outer package is used for solder connection with a board on which the solid electrolytic capacitor is to be mounted.
  • a lead wire or a lead frame may be used as each lead terminal.
  • the capacitor element may be housed in an exterior body, and a resin material (for example, a resin composition containing an uncured thermosetting resin and a filler) may be injected and solidified between the exterior body and the capacitor element.
  • a resin material for example, a resin composition containing an uncured thermosetting resin and a filler
  • the capacitor element is housed in a bottomed case so that the anode lead terminal portion on the other end side and the cathode lead terminal portion on the other end side are located on the opening side of the bottomed case, and the resin material is applied to the case.
  • a solid electrolytic capacitor may be formed by injecting the solid electrolytic capacitor into the interior, sealing the opening of the bottomed case with a sealing body, and solidifying the resin material.
  • a silver paste containing silver particles and a binder resin (epoxy resin) is applied to the surface of the carbon layer 11, and the binder resin is cured by heating at 150° C. for 30 minutes to form a metal-containing layer (metal paste layer). 12 was formed.
  • the cathode lead layer 10 composed of the carbon layer 11 and the metal paste layer 12 was formed, and the cathode portion 8 composed of the solid electrolyte layer 9 and the cathode lead layer 10 was formed.
  • a plurality of capacitor elements 22 were produced as described above.
  • leakage current For the solid electrolytic capacitor, connect a resistor of 1 k ⁇ in series, measure the leakage current (initial leakage current) ( ⁇ A) after applying a rated voltage of 25 V for 1 minute with a DC power supply, and measure 20 solid electrolytic capacitors. An average value was obtained. The initial leakage current was measured for the capacitor elements in the same manner as for the solid electrolytic capacitor, and the average value of 20 capacitor elements was obtained. These average values are shown in Table 1 below as LC for the capacitor and LC for the capacitor element, respectively.
  • the leakage current in the capacitor element was 7.6 ⁇ A or less, which is much smaller than that of R1, and the leakage current in the solid electrolytic capacitor was also very small, 28.3 ⁇ A or less.
  • the high breaking strength of the solid electrolyte layer reduces the occurrence of cracks when the capacitor element is sealed with the resin sheath, thereby reducing damage to the dielectric layer.
  • the larger the minimum value of the thickness of the solid electrolyte layer or the thickness of the second portion the smaller the leakage current in the solid electrolytic capacitor (comparison between R1 and E4 and E1 to E3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

固体電解コンデンサは、少なくとも1つのコンデンサ素子と、前記コンデンサ素子を封止する外装体とを含む。前記コンデンサ素子は、第1端部および前記第1端部とは反対側の第2端部を有する陽極体と、前記陽極体の少なくとも一部を覆う誘電体層と、前記陽極体の前記第2端部側の部分において、前記誘電体層の少なくとも一部を覆う陰極部と、を含む。前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を含む。前記固体電解質層の破断強度は、0.55MPa以上45MPa以下である。

Description

固体電解コンデンサ素子および固体電解コンデンサ
 本開示は、固体電解コンデンサ素子および固体電解コンデンサに関する。
 固体電解コンデンサは、例えば、固体電解コンデンサ素子と、固体電解コンデンサ素子を封止する外装体と、固体電解コンデンサ素子に電気的に接続される外部電極とを備える。固体電解コンデンサ素子は、陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部とを備える。陰極部は、誘電体層の少なくとも一部を覆う導電性高分子を含む固体電解質層を備えている。
 特許文献1は、陽極と、前記陽極の表面上に設けられる誘電体層と、前記誘電体層の上に設けられる第1の導電性高分子層と、前記第1の導電性高分子層の上に設けられる第2の導電性高分子層と、前記第2の導電性高分子層の上に設けられる第3の導電性高分子層と、前記第3の導電性高分子層の上に設けられる陰極層とを備える固体電解コンデンサであって、前記第1の導電性高分子層がピロールまたはその誘導体を重合することにより形成される導電性高分子膜からなり、前記第2の導電性高分子層がチオフェンまたはその誘導体を重合することにより形成される導電性高分子膜からなり、前記第3の導電性高分子層がピロールまたはその誘導体を重合することにより形成される導電性高分子膜からなることを特徴とする固体電解コンデンサを提案している。
特開2010-278423号公報
 固体電解コンデンサでは、通常、外装体などで固体電解コンデンサ素子が封止される。封止する際には、固体電解コンデンサ素子の周囲に供された樹脂組成物を所定形状に成形したり、固体電解コンデンサと外装体との間に樹脂組成物を注入して固化させたりすることがある。このような場合、封止の際に固体電解コンデンサ素子に応力が加わるため、固体電解質層にクラックが生じ、誘電体層が損傷して、漏れ電流が生じることがある。
 本開示の一側面は、第1端部および前記第1端部とは反対側の第2端部を有する陽極体と、前記陽極体の少なくとも一部を覆う誘電体層と、前記陽極体の前記第2端部側の部分において、前記誘電体層の少なくとも一部を覆う陰極部と、を含み、
 前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を含み、
 前記固体電解質層の破断強度は、0.55MPa以上45MPa以下である、固体電解コンデンサ素子に関する。
 本開示の他の側面は、少なくとも1つの上記の固体電解コンデンサ素子と、前記固体電解コンデンサ素子を封止する外装体とを含む、固体電解コンデンサに関する。
 固体電解コンデンサにおいて、漏れ電流を低減することができる。
本開示の一実施形態に係る固体電解コンデンサの断面模式図である。 本開示の他の実施形態に係る固体電解コンデンサの断面模式図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 固体電解コンデンサ素子は、外装体で封止される。樹脂製の外装体の場合には、例えば、固体電解コンデンサ素子を樹脂組成物で取り囲んで、圧縮成形したり、加熱して樹脂組成物を硬化させたりすることによって、樹脂外装体で封止される。また、固体電解コンデンサ素子と外装体との間の空間に、樹脂組成物を充填して、固化されることで固体電解コンデンサ素子が封止される場合もある。そのため、成形、樹脂組成物の硬化、充填または固化などによる応力が固体電解コンデンサ素子に加わる。本発明者らは、封止の際の応力が固体電解質層に加わり、クラックが発生すること、および漏れ電流が生じることを見出した。漏れ電流は、固体電解質層にクラックが発生する際に、誘電体層が損傷することによるものと考えられる。
 上記に鑑み、(1)本開示の一側面に係る固体電解コンデンサ素子では、第1端部および第1端部とは反対側の第2端部を有する陽極体と、陽極体の少なくとも一部を覆う誘電体層と、陽極体の第2端部側の部分において、誘電体層の少なくとも一部を覆う陰極部と、を含む。陰極部は、誘電体層の少なくとも一部を覆う固体電解質層を含む。そして、固体電解質層の破断強度が0.55MPa以上45MPa以下である。
 本開示では、固体電解質層の破断強度が上記のような範囲であることで、外装体で固体電解コンデンサ素子を封止する際に固体電解質層に応力が加わっても、クラックの発生を低減できる。よって、誘電体層へのダメージが軽減される。その結果、固体電解コンデンサにおける漏れ電流を低減することができる。また、封止に伴う漏れ電流の増加を低く抑えることができる。
(2)上記(1)において、固体電解質層の厚さの最小値は、1μm以上であってもよい。
(3)上記(1)または(2)において、第2端部における固体電解質層の厚さの平均値をtとし、第1端部から第2端部に向かう方向に平行な方向における固体電解質層の中央の厚さの平均値をtとするとき、tのtに対する比:t/tは、0.5以上1.8以下であってもよい。
(4)上記(1)~(3)のいずれか1つにおいて、固体電解質層は、共役系高分子と、ドーパントと、水溶性高分子とを含んでもよい。
(5)本開示には、少なくとも1つの上記(1)~(4)のいずれか1つに記載の固体電解コンデンサ素子と、固体電解コンデンサ素子を封止する外装体とを含む固体電解コンデンサも包含される。このような固体電解コンデンサでは、固体電解質層の破断強度が高いことで、固体電解コンデンサ素子を封止する際の応力によって生じるクラックが低減され、誘電体層へのダメージが軽減されるため、漏れ電流が低減される。また、封止に伴う漏れ電流の増加を低く抑えることができる。
(6)上記(5)において、外装体は樹脂を含んでもよい。
(7)上記(5)または(6)において、固体電解コンデンサは、2つ以上の固体電解コンデンサ素子の積層体を含んでもよい。
 以下、必要に応じて図面を参照しながら、上記(1)~(7)を含めて、本開示の固体電解コンデンサ素子および固体電解コンデンサについて、構成要素ごとに、より具体的に説明する。技術的に矛盾のない範囲で、上記(1)~(7)の少なくとも1つと、以下に記載する要素の少なくとも1つとを組み合わせてもよい。以下、固体電解コンデンサ素子を、単にコンデンサ素子と称することがある。
[コンデンサ素子]
(陽極体)
 コンデンサ素子に含まれる陽極体は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含むことができる。陽極体は、これらの材料を一種含んでもよく、二種以上を組み合わせて含んでもよい。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが好ましく使用される。
 陽極体は、少なくとも表層に多孔質部を有していてもよい。表層が多孔質である陽極体は、例えば、エッチングなどにより弁作用金属を含む基材(シート状(例えば、箔状、板状)の基材など)の表面を粗面化することで得られる。粗面化は、例えば、エッチング処理などにより行うことができる。また、陽極体は、弁作用金属を含む粒子の成形体またはその焼結体でもよい。なお、成形体および焼結体のそれぞれは、陽極体全体が、多孔質構造を有する。成形体および焼結体のそれぞれは、シート状の形状であってもよく、直方体、立方体またはこれらに類似の形状などであってもよい。陽極体がシート状の場合には、成形体または焼結体の場合に比べて、誘電体層が応力によりダメージを受け易い。このような場合であっても、本開示によれば、固体電解質層の破断強度が上記の範囲であることで、漏れ電流の増加を低く抑えることができる。
 陽極体は、第1端部および第1端部とは反対側の第2端部を有する。陰極部は、陽極体の第2端部側の部分において誘電体を介して形成される。陰極部が形成される陽極体の第2端部側の部分は、陰極形成部と呼ばれることがある。陰極部が形成されない第1端部側の部分は、陽極引出部と呼ばれることがある。陽極引出部には、陽極リード端子が接続される。
 (誘電体層)
 誘電体層は、陽極体の少なくとも一部を覆うように形成されている。誘電体層は、誘電体として機能する絶縁性の層である。誘電体層は、陽極体の表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。多孔質部を有する陽極体の表面に形成される誘電体層では、誘電体層の表面は、多孔質部の表面の形状に応じて微細な凹凸形状を有する。
 誘電体層は、誘電体層として機能する材料で形成してもよい。誘電体層は、このような材料として、例えば、弁作用金属の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTa25を含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAl23を含む。しかし、誘電体層は、これらの具体例に限定されない。
(陰極部)
 陰極部は、誘電体層の少なくとも一部を覆う固体電解質層を少なくとも含む。固体電解質層は、陽極体の第2端部側の部分において、誘電体層を介して形成されている。陰極部は、通常、固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを含む。以下、固体電解質層および陰極引出層について説明する。
 (固体電解質層)
 固体電解質層は、導電性高分子を含む。導電性高分子は、例えば、共役系高分子およびドーパントを含んでいる。固体電解質層は、必要に応じて、さらに、添加剤を含んでもよい。
 共役系高分子としては、固体電解コンデンサに使用される公知の共役系高分子、例えば、π共役系高分子が挙げられる。共役系高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、およびポリチオフェンビニレンを基本骨格とする高分子が挙げられる。これらのうち、ポリピロール、ポリチオフェン、またはポリアニリンを基本骨格とする高分子が好ましい。上記の高分子は、基本骨格を構成する少なくとも一種のモノマー単位を含んでいればよい。モノマー単位には、置換基を有するモノマー単位も含まれる。上記の高分子には、単独重合体、二種以上のモノマーの共重合体も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
 共役系高分子のうち、ピロール化合物、チオフェン化合物、およびアニリン化合物からなる群より選択される少なくとも一種に対応するモノマー単位を含む共役系高分子が好ましい。ピロール化合物としては、ピロール環を有し、対応するモノマー単位の繰り返し構造を形成可能な化合物が挙げられる。チオフェン化合物としては、チオフェン環を有し、対応するモノマー単位の繰り返し構造を形成可能な化合物が挙げられる。これらの化合物は、ピロール環またはチオフェン環の2位および5位で連結してモノマー単位の繰り返し構造を形成することができる。アニリン化合物としては、ベンゼン環とこのベンゼン環に結合した少なくとも1つ(好ましくは1つ)のアミノ基とを有し、対応するモノマー単位の繰り返し構造を形成可能な化合物が挙げられる。アニリン化合物は、例えば、アミノ基とこのアミノ基に対してp-位のCH基(ベンゼン環を構成するCH基)の部分で連結してモノマー単位の繰り返し構造を形成することができる。
 ピロール化合物は、例えば、ピロール環の3位および4位の少なくとも一方に置換基を有していてもよい。チオフェン化合物は、例えば、チオフェン環の3位および4位の少なくとも一方に置換基を有していてもよい。3位の置換基と4位の置換基とは連結してピロール環またはチオフェン環に縮合する環を形成していてもよい。ピロール化合物としては、例えば、3位および4位の少なくとも一方に置換基を有していてもよいピロールが挙げられる。チオフェン化合物としては、例えば、3位および4位の少なくとも一方に置換基を有していてもよいチオフェン、アルキレンジオキシチオフェン化合物(エチレンジオキシチオフェン化合物などのC2-4アルキレンジオキシチオフェン化合物など)が挙げられる。アルキレンジオキシチオフェン化合物には、アルキレン基の部分に置換基を有するものも含まれる。アニリン化合物としては、例えば、アミノ基に対して、o-位およびp-位の少なくとも一方に置換基を有していてもよいアニリンが挙げられる。
 置換基としては、アルキル基(メチル基、エチル基などのC1-4アルキル基など)、アルコキシ基(メトキシ基、エトキシ基などのC1-4アルコキシ基など)、ヒドロキシ基、ヒドロキシアルキル基(ヒドロキシメチル基などのヒドロキシC1-4アルキル基など)などが好ましいが、これらに限定されない。ピロール化合物、チオフェン化合物、およびアニリン化合物のそれぞれが、2つ以上の置換基を有する場合、それぞれの置換基は同じであってもよく、異なってもよい。
 少なくともピロールに対応するモノマー単位を含む共役系高分子、または少なくとも3,4-エチレンジオキシチオフェン化合物(3,4-エチレンジオキシチオフェン(EDOT)など)に対応するモノマー単位を含む共役系高分子(PEDOTなど)を用いてもよい。少なくともピロールに対応するモノマー単位を含む共役系高分子は、ピロールに対応するモノマー単位のみを含んでもよく、当該モノマー単位に加え、ピロール以外のピロール化合物(置換基を有するピロールなど)に対応するモノマー単位を含んでもよい。少なくともEDOTに対応するモノマー単位を含む共役系高分子は、EDOTに対応するモノマー単位のみを含んでもよく、当該モノマー単位に加え、EDOT以外のチオフェン化合物に対応するモノマー単位を含んでもよい。
 固体電解質層は、共役系高分子を、一種含んでもよく、二種以上組み合わせて含んでもよい。
 共役系高分子の重量平均分子量(Mw)は、特に限定されないが、例えば1,000以上1,000,000以下である。
 なお、本明細書中、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の値である。なお、GPCは、通常は、ポリスチレンゲルカラムと、移動相としての水/メタノール(体積比8/2)とを用いて測定される。
 ドーパントとしては、例えば、アニオンおよびポリアニオンからなる群より選択される少なくとも一種が挙げられる。
 アニオンとしては、例えば、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、有機スルホン酸イオン、カルボン酸イオンなどが挙げられるが、特に制限されない。スルホン酸イオンを生成するドーパントとしては、例えば、ベンゼンスルホン酸、p-トルエンスルホン酸、およびナフタレンスルホン酸などが挙げられる。
 ポリアニオンとしては、ポリマーアニオンなどが挙げられる。固体電解質層は、例えば、チオフェン化合物に対応するモノマー単位を含む共役系高分子と、ポリマーアニオンとを含んでもよい。
 ポリマーアニオンとしては、例えば、複数のアニオン性基を有するポリマーが挙げられる。このようなポリマーとしては、アニオン性基を有するモノマー単位を含むポリマーが挙げられる。アニオン性基としては、スルホン酸基、カルボキシ基などが挙げられる。ポリマーアニオンは少なくともスルホン酸基を有することが好ましい。
 固体電解質層において、ドーパントのアニオン性基は、遊離の形態、アニオンの形態、または塩の形態で含まれていてもよく、共役系高分子と結合または相互作用した形態で含まれていてもよい。本明細書中、これらの全ての形態を含めて、単に「アニオン性基」、「スルホン酸基」、または「カルボキシ基」などと称することがある。
 スルホン酸基を有するポリマーアニオンとしては、例えば、高分子タイプのポリスルホン酸が挙げられる。ポリマーアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸(共重合体および置換基を有する置換体なども含む)、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリエステルスルホン酸(芳香族ポリエステルスルホン酸など)、フェノールスルホン酸ノボラック樹脂が挙げられる。ただし、ポリマーアニオンは、これらの具体例に限定されない。
 固体電解質層に含まれるドーパントの量は、共役系高分子100質量部に対して、例えば、10質量部以上1000質量部以下であり、20質量部以上500質量部以下、または50質量部以上200質量部以下であってもよい。
 固体電解質層は、単層であってもよく、複数の層で構成してもよい。固体電解質層が複数層で構成される場合、各層に含まれる導電性高分子は同じであってもよく、異なっていてもよい。また、各層に含まれるドーパントは同じであってもよく、異なっていてもよい。誘電体層と固体電解質層との間には、密着性を高める層などを介在させてもよい。
 添加剤としては、固体電解質層に添加される公知の添加剤(例えば、カップリング剤、シラン化合物)、導電性高分子以外の公知の導電性材料、および水溶性高分子が挙げられる。固体電解質層(または固体電解質層を構成する各層)は、これらの添加剤を一種含んでもよく、二種以上組み合わせて含んでもよい。固体電解質層が複数層で構成される場合、各層に含まれる添加剤は同じであってもよく、異なってもいてもよい。
 添加剤としての導電性材料としては、例えば、二酸化マンガンなどの導電性無機材料、およびTCNQ錯塩からなる群より選択される少なくとも一種が挙げられる。
 水溶性高分子としては、例えば、親水性基を主鎖または側鎖に有する水溶性の高分子化合物が挙げられる。高分子タイプのドーパントは、水溶性高分子にも包含される。水溶性高分子が有する親水性基としては、ポリオキシアルキレン鎖、ヒドロキシ基、酸基(カルボキシ基、スルホン酸基など)などが挙げられる。水溶性高分子としては、通常、ドーパントよりも電子求引性が低い成分が用いられる。このような水溶性高分子としては、例えば、カルボキシ基、ヒドロキシ基、およびポリオキシアルキレン鎖からなる群より選択される少なくとも一種を有する水溶性高分子が挙げられる。スルホン酸基を含まない水溶性高分子を用いてもよい。ポリオキシアルキレン鎖としては、ポリオキシC2-3アルキレン鎖などが挙げられる。ポリオキシアルキレン鎖は、少なくともポリオキシエチレン鎖を含んでもよい。水溶性高分子としては、ポリアルキレングリコール化合物、水溶性ポリウレタン、水溶性ポリアミド、水溶性ポリイミド、水溶性アクリル樹脂、およびポリビニルアルコールからなる群より選択される少なくとも一種が挙げられる。水溶性高分子は、複数のカルボキシ基を少なくとも有することが好ましい。このような水溶性高分子としては、高分子タイプのポリカルボン酸、複数のカルボキシ基が導入された樹脂(水溶性ポリウレタン樹脂、水溶性ポリアミド、水溶性ポリイミド、水溶性アクリル樹脂など)などが挙げられる。水溶性高分子を用いると、固体電解質層の破断強度が高まるとともに、固体電解質層の厚さを大きくしたり、厚さのばらつきを低減したりし易い。よって、漏れ電流を低減する効果が更に高まる。また、耐圧性を高める上でも有利である。このような観点から、固体電解質層が複数層で構成される場合、第2層が水溶性高分子を含むことが好ましい。第1層は、水溶性高分子を含んでもよく、含まなくてもよい。
 水溶性アクリル樹脂には、例えば、アクリル系の高分子タイプのポリカルボン酸も包含される。このような高分子タイプのポリカルボン酸としては、例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸およびメタクリル酸の少なくとも一方を用いた共重合体(アクリル酸-メタクリル酸共重合体、アクリル酸およびメタクリル酸からなる群より選択される少なくとも一種と他の共重合性モノマーとの共重合体など)が挙げられる。他の共重合性モノマーとしては、例えば、アクリル酸エステル(アルキルエステル、ヒドロキシアルキルエステルなど)、メタクリル酸エステル(アルキルエステル、ヒドロキシアルキルエステルなど)、ビニル化合物(シアン化ビニル、オレフィン、芳香族ビニル化合物など)、重合性不飽和結合を有するポリカルボン酸(マレイン酸、フマル酸など)またはその酸無水物が挙げられる。共重合体は、他の共重合性モノマーに由来するモノマー単位を一種含んでいてもよく、二種以上含んでいてもよい。
 水溶性高分子が有するカルボキシ基およびスルホン酸基のそれぞれは、ドーパントの場合と同じように、遊離の形態、アニオンの形態、または塩の形態で固体電解質層(または固体電解質層を構成する各層)に含まれていてもよい。また、カルボキシ基およびスルホン酸基のそれぞれの一部は共役系高分子と結合または相互作用した形態で固体電解質層(または固体電解質層を構成する各層)に含まれていてもよい。本明細書中、これらの全ての形態のカルボキシ基を含めて単に「カルボキシ基」と称し、これらの全ての形態のスルホン酸基を含めて単に「スルホン酸基」と称することがある。
 水溶性高分子のMwは、例えば、100以上500万以下(または100万以下)であり、400以上500万以下(または100万以下)であってもよい。
 固体電解質層中の水溶性高分子の含有率は、例えば、10質量%以上70質量%以下であり、25質量%以上70質量%以下であってもよく、30質量%以上70質量%以下であってもよい。固体電解質層中の水溶性高分子の含有率がこのような範囲である場合、固体電解質層の破断強度をより高め易く、漏れ電流を低減する効果が高まる。
 なお、固体電解質層中の水溶性高分子の含有率は、後述の破断強度を測定するためのサンプルの断面から採取した固体電解質層の試料(以下、試料Aと称する)を用いて求めることができる。より具体的には、断面から固体電解質層を掻き取り、所定量の試料Aを採取して、質量を測定する。試料Aから20℃~40℃の水で水溶性高分子を抽出する。抽出物を濃縮し、液体クロマトグラフィー質量分析(LC-MS)またはガスクロマトグラフィー質量分析法(GC-MS)によって水溶性高分子を同定する。検量線法で、抽出物中の水溶性高分子の濃度を求める。この濃度と試料Aの質量とから、固体電解質層中の水溶性高分子の含有量(質量)を求める。
 本開示では、固体電解質層の破断強度は、0.55MPa以上である。固体電解質層がこのような高い破断強度を有することで、外装体でコンデンサ素子を封止する際に応力が生じても、固体電解質層におけるクラックの発生を軽減でき、漏れ電流を低く抑えることができる。固体電解コンデンサにおける漏れ電流を低減する効果がさらに高まる観点からは、固体電解質層の破断強度は、0.59MPa以上であってもよい。固体電解質層の破断強度は、45MPa以下である。この場合、複数のコンデンサ素子の陽極引出部を束ねる場合に応力が分散されやすい。固体電解質層の破断強度は、15MPa以下または5MPa以下であってもよく、2MPa以下であってもよい。破断強度がこのような範囲である場合、応力の高い分散効果が得られ易く、漏れ電流をさらに抑制することができる。これらの下限値と上限値とは任意に組み合わせることができる。固体電解質層の破断強度は、例えば、0.55MPa以上45MPa以下(または15MPa以下)であってもよく、0.55MPa以上5MPa以下(または2MPa以下)であってもよい。
 上記のような破断強度を有する固体電解質層は、電解重合によって形成される。電解重合の条件を調節することによって、緻密でより均一な固体電解質層が形成され、高い破断強度を確保することができる。
 破断強度は、固体電解質層の断面が露出したサンプルを用いて、ISO 14577に準拠して、ナノインデンテーション法によって測定される。測定には、ナノインデンター(例えば、ハイジトロン社製のTI950 Triboindenter)が用いられる。より具体的には、サンプルの固体電解質層の断面において、ナノインデンターの圧子モードで、ダイアモンド圧子を押し込み、固体電解質層が破断するときの強度を測定する。測定は、20点について行い、中央値を求める。この中央値を固体電解質層の破断強度とする。測定用のサンプルは、固体電解コンデンサをアクリル樹脂に埋め込み、コンデンサ素子の幅方向の中央で、長さ方向に平行な方向に切断して断面を露出させ、研磨することによって準備される。コンデンサ素子の状態の固体電解質層の破断強度を求めるときは、固体電解コンデンサに代えて、コンデンサ素子を用いること以外は上記と同様にして測定用のサンプルが準備される。
 コンデンサ素子の長さ方向とは、陽極体の第1端部から第2端部に向かう方向と平行な方向である。陽極体の第1端部から第2端部に向かう方向は、陽極体の長さ方向とも称する。陽極体の第1端部から第2端部に向かう方向は、陽極体が折り曲げられていない状態で、陽極体の第1端部側の端面の中心と第2端部側の端面の中心とを結ぶ方向である。コンデンサ素子の長さ方向は、陰極部または固体電解質層の長さ方向と平行である。コンデンサ素子の幅方向は、陰極部または固体電解質の幅方向と平行である。コンデンサ素子の幅方向は、コンデンサ素子の長さ方向および厚さ方向(またはコンデンサ素子を構成する層の積層方向)の双方と垂直な方向である。
 一般に、樹脂成形品の強度または硬度との指標としては、例えば、引張強度、曲げ強度、押し込み硬さ、引っかき硬さ、反発硬さなどが挙げられる。本開示において、固体電解コンデンサにおける漏れ電流は、固体電解質層のクラックの発生の程度に応じて大きくなる傾向がある。硬度(押し込み硬さや引っかき硬さなど)では、所定の圧力を加えたときの痕跡を評価する(換言すると、塑性変形の範囲における変形の程度を評価する)ため、塑性変形の範囲を超えて発生するクラックとの相関性は低い。引張強度または曲げ強度などは固体電解コンデンサの製造過程で固体電解質層に加わる応力とはほとんど関係しない。それに対し、破断強度の評価では、固体電解コンデンサの製造過程で固体電解質層に加わる応力と類似の影響を再現し易いと考えられる。よって固体電解質層の破断強度は、固体電解質層のクラックの発生との相関性が高いと考えられる。
 本開示において、固体電解質層の厚さの最小値は、例えば、1μm以上であり、1.3μm以上であってもよい。厚さの最小値がこのような範囲である場合、固体電解質層の剛性が向上し、誘電体層へのダメージをさらに軽減できる。よって、クラックの発生を低減する効果が高まる。クラックの発生をさらに低減する観点からは、固体電解質層の厚さの最小値は、5μm以上が好ましく、8μm以上または8.9μm以上がより好ましい。高容量を確保する観点からは、固体電解質層の厚さの最小値は、例えば、20μm以下である。
 固体電解質層は、誘電体層を有する陽極体の多孔質部の空隙内に充填された第1部分と、誘電体層を有する陽極体の主面からはみ出した第2部分とを有してもよい。この場合、固体電解質層の厚さの最小値は、第2部分の厚さの最小値である。
 固体電解質層の厚さは、上記破断強度の測定用サンプルと同様の手順で準備されるサンプルの断面画像を用いて測定される。より具体的には、サンプルの固体電解質層の断面画像において、誘電体層を有する陽極体の主面から固体電解質層の表面(換言すると、固体電解質層と陰極引出層との界面)までの距離を固体電解質層の厚さとして計測する。任意の複数箇所(例えば、5箇所)について固体電解質層の厚さを計測し、これらの計測値の最小値を、固体電解質層の厚さの最小値とする。サンプルの断面画像は、例えば、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いて撮影される。
 一般に、固体電解質層は、化学重合または電解重合で形成されたり、導電性高分子を含む液状組成物を用いて形成されたりする。重合の場合には、重合条件の制御が難しく、固体電解質層の厚さにばらつきが生じ易い。導電性高分子を含む液状組成物を用いる場合には、液状組成物に含まれるドーパントおよび共役系高分子が高分子量であったり、液状組成物が分散液であったり、液状組成物の付与と乾燥とを複数回繰り返す必要があったりすることで、固体電解質層の厚さにばらつきが生じ易い。固体電解質層の形成方法によって、陽極体の第1端部側の固体電解質層の端部近傍または陽極体の第2端部側の固体電解質層の端部近傍では、固体電解質層の厚さが、陰極部の長さ方向の中央部における固体電解質層の厚さに比べて小さくなり易い。
 本開示では、破断強度を高めるために電解重合の条件などを調節して、緻密な固体電解質層を形成する。そのため、固体電解質層における厚さのばらつきが軽減され、上記の端部近傍でも固体電解質層の厚さを比較的大きくすることができる。よって、外装体でコンデンサ素子を封止する際に、固体電解質層の厚さが小さい部分に応力が集中することが抑制され、固体電解質層全体で応力が分散され、応力が緩和され易い。その結果、固体電解質層の耐久性が向上し、クラックの発生がさらに抑制される。誘電体層へのダメージをさらに軽減することができるため、漏れ電流を低減する効果がさらに高まる。
 第2端部における固体電解質層の厚さの平均値をtとし、固体電解質層の長さ方向の中央における固体電解質層の厚さの平均値をtとする。このとき、tのtに対する比:t/tは、例えば、0.5以上であり、0.75以上であってもよく、0.9以上または0.97以上であってもよい。比t/tは、例えば、1.8以下であり、1.5以下が好ましい。比t/tがこのような範囲である場合、固体電解質層に加わる応力に対する高い耐久性が得られ易く、固体電解コンデンサにおける漏れ電流の増加を抑制する効果が高まる。これらの下限値と上限値とは任意に組み合わせることができる。比t/tは、例えば、0.5以上(または0.75以上)1.8以下であってもよく、0.5以上(または0.75以上)1.5以下であってもよい。
 固体電解質層の厚さtおよびtのそれぞれは、上記破断強度の測定用サンプルと同様の手順で準備されるサンプルの断面画像を用いて、上述の固体電解質層の厚さの場合に準じて求められる。第2端部における厚さtは、陽極体の第2端部側の端面からこの端面からの距離が0.9mmまでの部分に形成された固体電解質層の厚さを複数箇所(例えば、5箇所)で測定し、平均化することによって求められる。中央部における厚さtは、固体電解質層の長さ方向の中央から第1端部側に0.9mmの位置と第2端部側に0.9mmの位置との間の部分において、陽極体の主面上に形成された固体電解質層の厚さを複数箇所(例えば、5箇所)で計測し、平均化することによって求められる。固体電解コンデンサが複数のコンデンサ素子を含む場合、各コンデンサ素子について、第2端部および中央における固体電解質層の厚さを、それぞれ上記と同様に複数箇所で測定し、全てのコンデンサ素子について平均化することによってtおよびtが求められる。
 なお、固体電解質層が第1部分と第2部分とを有する場合、第1部分と第2部分とで、固体電解質層の組成および膜質の少なくとも一方が異なっていてもよく、組成および膜質の双方が同じであってもよい。固体電解質層が複数の層で構成される場合、第1部分が第1層であり、第2部分が第2層であってもよい。この場合、第1層と第2層とで組成および膜質の少なくとも一方が異なっていてもよく、組成および膜質の双方が同じであってもよい。
 固体電解質層の電解重合は、誘電体層を有する陽極箔が導電性高分子の前駆体を含む重合液(液状組成物)に接触(例えば、浸漬)した状態で、重合電圧を印加することによって行うことができる。重合電圧の印加は、給電体を介して行われる。陽極体には、通常、陰極部と陽極引出部との絶縁を確保する観点から、第1端部と第2端部との間において、所定の領域に絶縁領域が設けられる。絶縁領域は、例えば、絶縁テープを陽極体の表面に貼付したり、多孔質部に絶縁性材料(絶縁性樹脂など)を含浸させたり、これらを組み合わせたりすることによって形成される。給電体は、このような絶縁領域に接続され、重合電圧が印加される。
 液状組成物は、導電性高分子の前駆体を含む。導電性高分子の前駆体は、少なくとも共役系高分子の前駆体を含み、必要に応じてドーパントを含む。共役系高分子の前駆体としては、共役系高分子の原料モノマー、原料モノマーの複数の分子鎖が連なったオリゴマーおよびプレポリマーなどが挙げられる。前駆体は一種を用いてもよく、二種以上を組み合わせて用いてもよい。共役系高分子のより高い配向性が得られ易く、緻密な固体電解質層が形成され易い観点から、前駆体としては、モノマーおよびオリゴマーからなる群より選択される少なくとも一種(特に、モノマー)を用いることが好ましい。
 液状組成物は、通常、溶媒を含む。溶媒としては、例えば、水、および有機溶媒からなる群より選択される少なくとも一種が挙げられる。
 ドーパント、他の導電性材料、添加剤などを用いる場合には、液状組成物に添加してもよい。液状組成物中のドーパントの濃度を調節することで、固体電解質層中の共役系高分子の配向性を高め易くなり、緻密な固体電解質層が得られ易くなる。添加剤として、上述の水溶性高分子を含む液状組成物を用いると、破断強度を高め、固体電解質層の厚さのばらつきを低減できるため、漏れ電流をさらに低減する上で有利である。電解重合に先立って、誘電体層の表面に導電性材料を含むプレコート層を形成してもよい。
 使用する水溶性高分子のMwおよび液状組成物中の水溶性高分子の濃度の少なくとも一方を調節してもよい。この場合、水溶性高分子により液状混合物の粘度が適度に高まり、電解重合がゆっくりと進行して緻密な固体電解質層が得られるとともに、水溶性高分子自体が固体電解質層において重合膜を支える骨格のように存在することで強度が高まると考えられる。
 液状組成物中の水溶性高分子の濃度は、例えば、1質量%以上30質量%以下であってもよく、1.5質量%以上15質量%以下であってもよく、2質量%以上15質量%以下(または10質量%以下)であってもよい。水溶性高分子の濃度がこのような範囲である場合、固体電解質層のより高い破断強度が得られ易く、固体電解質層の厚さのばらつきをより低減し易い。
 液状組成物は、必要に応じて、酸化剤を含んでもよい。また、酸化剤は、誘電体層を有する陽極箔に液状組成物を接触させる前または後に、陽極箔に塗布してもよい。このような酸化剤としては、Fe3+を生成可能な化合物(硫酸第二鉄など)、過硫酸塩(過硫酸ナトリウム、過硫酸アンモニウムなど)、過酸化水素が例示できる。酸化剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。
 電解重合において、重合電圧は、0.90V未満とすることが好ましく、0.87V以下または0.85V以下がより好ましい。重合電圧がこのような範囲である場合、重合がゆっくりと進行し、共役系高分子の配向性が高まり易く、緻密な固体電解質層が形成され易い。よって、高い破断強度を確保し易い。重合電圧は、0.6V以上であってもよい。重合電圧は、参照電極(銀/塩化銀電極(Ag/Ag))に対する給電体の電位である。
 電解重合は、表面に誘電体層が形成された陽極体を陽極とし、この陽極と対電極との2つの電極を用いる2極式によって行ってもよいが、3極式で行うことが好ましい。3極式の電解重合は、表面に誘電体層が形成された陽極体を陽極とし、この陽極と対電極と参照電極との3つの電極を用いて行われる。3極式の電解重合では、参照電極を利用することで、対電極の自然電位の変化に影響されずに陽極の電位を精密に制御することができる。3極式の場合には、2極式の場合に比べて、電解重合反応がより精密に制御されるため、電解重合により形成される共役系高分子の配向性が高まり、より緻密な固体電解質層が形成される。よって、破断強度を高める上で有利である。また、固体電解質層の厚さのばらつきを低減し易い。
 3極式の電解重合は、液状組成物に、陽極体と、対電極と、参照電極とを浸漬した状態で行われる。対電極としては、例えば、Ti電極が用いられるがこれに限定されない。参照電極としては、銀/塩化銀電極(Ag/Ag)を用いることが好ましい。
 電解重合を行う温度は、例えば、5℃以上60℃以下であり、15℃以上35℃以下であってもよい。
 (陰極引出層)
 陰極引出層は、固体電解質層と接触するとともに固体電解質層の少なくとも一部を覆う第3層を少なくとも備えていればよく、第3層と第3層を覆う第4層とを備えていてもよい。第3層としては、例えば、導電性粒子を含む層、金属箔などが挙げられる。導電性粒子としては、例えば、導電性カーボンおよび金属粉から選択される少なくとも一種が挙げられる。例えば、第3層としての導電性カーボンを含む層(カーボン層とも称する)と、第4層としての金属含有層(例えば、金属粉を含む層または金属箔)とで陰極引出層を構成してもよい。第3層として金属箔を用いる場合には、この金属箔で陰極引出層を構成してもよい。
 導電性カーボンとしては、例えば、黒鉛(人造黒鉛、天然黒鉛など)が挙げられる。
 第4層としての金属粉を含む層は、例えば、金属粉を含む組成物を第3層の表面に積層することにより形成できる。このような第4層としては、例えば、銀粒子などの金属粉と樹脂(バインダ樹脂)とを含む組成物を用いて形成される金属ペースト層が挙げられる。樹脂としては、熱可塑性樹脂を用いることもできるが、イミド系樹脂、エポキシ樹脂などの熱硬化性樹脂を用いることが好ましい。
 第3層として金属箔を用いる場合、金属の種類は特に限定されない。金属箔には、弁作用金属(アルミニウム、タンタル、ニオブなど)または弁作用金属を含む合金を用いることが好ましい。必要に応じて、金属箔の表面を粗面化してもよい。金属箔の表面には、化成皮膜が設けられていてもよく、金属箔を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタンのような金属やカーボン(導電性カーボンなど)のような非金属などを挙げることができる。
 上記の異種金属または非金属(例えば、導電性カーボン)の被膜を第3層として、上記の金属箔を第4層としてもよい。
(セパレータ)
 金属箔を陰極引出層に用いる場合、金属箔と陽極箔との間にはセパレータを配置してもよい。セパレータとしては、特に制限されず、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。
(その他)
 コンデンサ素子は、例えば、巻回型であってもよく、積層型であってもよく、チップ型であってもよい。コンデンサ素子の構成は、固体電解コンデンサのタイプに応じて、選択すればよい。
[固体電解コンデンサ]
 固体電解コンデンサは、少なくとも1つのコンデンサ素子と、コンデンサ素子を封止する外装体とを含む。固体電解コンデンサは、複数のコンデンサ素子を含んでもよい。固体電解コンデンサは、巻回型であってもよく、チップ型または積層型のいずれであってもよい。
 コンデンサ素子において、陰極引出層には、陰極リード端子の一端部が電気的に接続される。陽極箔の第1部分には、陽極リード端子の一端部が電気的に接続される。陽極リード端子の他端部および陰極リード端子の他端部は、それぞれ外装体から引き出される。外装体から露出した各リード端子の他端部は、固体電解コンデンサを搭載すべき基板との半田接続などに用いられる。各リード端子としては、リード線を用いてもよく、リードフレームを用いてもよい。
 外装体は、樹脂外装体であってもよく、それ以外の外装体であってもよい。外装体とコンデンサ素子との間に樹脂組成物が注入され、固化することによってコンデンサ素子を封止してもよい。樹脂外装体によって、または外装体とコンデンサ素子との間に樹脂組成物が注入され、固化されることによって、コンデンサ素子が封止される場合、コンデンサ素子に応力が加わり、固体電解質層にクラックが発生し易い。本開示ではこのような場合であっても、固体電解質層の破断強度が高いため、クラックの発生が低減され、漏れ電流を低く抑えることができる。
 固体電解コンデンサは、例えば、2つ以上のコンデンサ素子の積層体を備えていてもよい。積層体では、各コンデンサ素子の陽極引出部が束ねられた状態で、リード端子と接続される。複数のコンデンサ素子を積層した状態で、陽極引出部を束ねると、束ねることにより生じた応力が、固体電解質層の第1端部側の端部近傍に加わる。そのため、固体電解質層の第1端部側の端部近傍では、クラックが生じ易く、誘電体層へのダメージも生じ易い。この状態のコンデンサ素子の積層体を外装体で封止すると、クラックが増加し、誘電体層の損傷が増加し易いため、固体電解コンデンサにおいて漏れ電流が増加し易い。本開示では、このような場合であっても、各コンデンサ素子の固体電解質層の破断強度が高いことで、クラックの発生が低減される。よって、漏れ電流を効果的に低減することができる。
 積層体は、例えば、2つ以上のコンデンサ素子を含んでいる。コンデンサ素子の数が増加すると、固体電解質層の第1端部側の端部近傍に応力が加わり易い。このような場合でも、本開示によれば、固体電解コンデンサにおける漏れ電流を低く抑えることができる。
 コンデンサ素子は、外装体を用いて封止される。樹脂外装体を利用する場合、例えば、コンデンサ素子および外装体の材料樹脂(例えば、未硬化の熱硬化性樹脂およびフィラーを含む樹脂組成物)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子を樹脂外装体で封止してもよい。このとき、コンデンサ素子から引き出された、陽極リード端子の他端部側の部分および陰極リード端子の他端部側の部分を、それぞれ金型から露出させる。また、コンデンサ素子を、外装体に収容し、外装体とコンデンサ素子との間に、樹脂材料(例えば、未硬化の熱硬化性樹脂およびフィラーを含む樹脂組成物)を注入し、固化させてもよい。例えば、コンデンサ素子を、陽極リード端子の他端部側の部分および陰極リード端子の他端部側の部分が有底ケースの開口側に位置するように有底ケースに収納し、樹脂材料をケース内に注入して、封止体で有底ケースの開口を封口し、樹脂材料を固化させることにより固体電解コンデンサを形成してもよい。
 図1は、本開示の一実施形態に係る固体電解コンデンサの構造を概略的に示す断面図である。図1は、固体電解コンデンサの、コンデンサ素子2の長さ方向および厚さ方向の双方に平行な方向の断面模式図である。図1に示すように、固体電解コンデンサ1は、コンデンサ素子2と、コンデンサ素子2を封止する樹脂外装体3と、樹脂外装体3の外部にそれぞれ少なくともその一部が露出する陽極リード端子4および陰極リード端子5と、を備えている。陽極リード端子4および陰極リード端子5は、例えば銅または銅合金などの金属で構成することができる。樹脂外装体3は、ほぼ直方体の外形を有しており、固体電解コンデンサ1もほぼ直方体の外形を有している。
 コンデンサ素子2は、陽極体6と、陽極体6を覆う誘電体層7と、誘電体層7を覆う陰極部8とを備える。陰極部8は、誘電体層7を覆う固体電解質層9と、固体電解質層9を覆う陰極引出層10とを備えている。陰極引出層10は、固体電解質層9を覆う第3層としてのカーボン層11と、カーボン層11を覆う第4層としての金属含有層12とを含む。本開示では、固体電解質層9の破断強度が高いため、樹脂外装体3でコンデンサ素子2を封止する際に応力が加わっても、固体電解質層9におけるクラックの発生を低減でき、誘電体層へのダメージを低減できる。よって、漏れ電流を低く抑えることができる。
 陽極体6は、陰極部8と対向する領域と、対向しない領域とを含む。陽極体6の陰極部8と対向しない領域のうち、陰極部8に隣接する部分には、陽極体6の表面を帯状に覆うように絶縁性の分離部(絶縁領域)13が形成され、陰極部8と陽極体6との接触が規制されている。陽極体6の陰極部8と対向しない領域のうち、他の一部は、陽極リード端子4と、溶接により電気的に接続されている。陰極リード端子5は、導電性接着剤により形成される接着層14を介して、陰極部8と電気的に接続している。
 図2は、本開示の他の実施形態に係る固体電解コンデンサの断面模式図である。固体電解コンデンサ21は、複数のコンデンサ素子22の積層体Lと、積層体Lを封止する樹脂外装体3と、樹脂外装体3の外部にそれぞれ少なくともその一部が露出する陽極リード端子4および陰極リード端子5とを備える。なお、図2は、コンデンサ素子22の長さ方向および厚さ方向(積層方向)Dに平行な方向における固体電解コンデンサ21の断面模式図である。
 積層体Lにおいて、各コンデンサ素子22に含まれる陽極体6の一方の第1端部e1は束ねられた状態で、陽極リード端子4の一端部と溶接により電気的に接続されている。陰極リード端子5の一端部は、導電性接着剤で形成された接着層14を介して、積層体Lの最も外側(図では下端部)に配置されたコンデンサ素子22の陰極部と電気的に接続している。陽極リード端子4の他端部側の一部および陰極リード端子5の他端部側の一部は、それぞれ、樹脂外装体3の別の主面から外部に引き出されている。これら以外の図2の構成については、図1の説明を参照できる。なお、図2では、コンデンサ素子22の構成は、省略している。固体電解コンデンサ21がコンデンサ素子22の積層体を含む場合に、図2のように陽極体6の第1端部同士を束ねた状態にすることがある。この場合、束ねた際の応力がコンデンサ素子22の固体電解質層の第1端部e1側の端部近傍に加わって、クラックが生じ易い。このような場合であっても、本開示では、固体電解質層の破断強度が高いことで、クラックの発生を抑制でき、樹脂外装体3で積層体Lを封止する際にクラックが顕著になることを抑制できる。よって漏れ電流の増加を低減できる。
 なお、陽極体6またはコンデンサ素子22の長さ方向とは、陽極体6が折り曲げられていない状態で第1端部e1から第2端部e2に向かう方向と平行な方向である。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されない。
《固体電解コンデンサE1~E4およびR1》
 下記の要領で、図2に示すようなコンデンサ素子22の積層体Lを含む固体電解コンデンサ(固体電解コンデンサE1~E4およびR1)を作製し、その特性を評価した。ただし、積層体Lは、7個のコンデンサ素子22の積層体とした。コンデンサ素子22の構成は図1のコンデンサ素子2の構成と同じである。
 (1)陽極体6の準備
 基材としてのアルミニウム箔(厚み:100μm)の両方の表面をエッチングにより粗面化することで、陽極体6を作製した。
 (2)誘電体層7の形成
 陽極体6の陰極形成部を、化成液に浸漬し、70Vの直流電圧を、20分間印加して、酸化アルミニウムを含む誘電体層7を形成した。
 (3)固体電解質層9の形成
 誘電体層7が形成された陽極体6の、固体電解質層を形成する領域と固体電解質層を形成しない領域との間に、絶縁性のレジストテープを貼り付けることにより、分離部13を形成した。分離部13が形成された陽極体6を、導電性材料を含む液状組成物に浸漬し、取り出して乾燥することにより、プレコート層(図示せず)を形成した。
 ピロール(共役系高分子のモノマー)と、ナフタレンスルホン酸(ドーパント)と、水とを含む重合液を調製した。得られた重合液を用いて3極式で電解重合を行った。より具体的には、重合液中に、プレコート層が形成された陽極体6と、対電極と、参照電極(銀/塩化銀参照電極)とを浸漬した。参照電極に対する陽極体6の電位が表1に示す重合電圧の値となるように陽極体6に電圧を印加して、25℃で電解重合を行い、固体電解質層9を形成した。電解重合では、重合電圧とともに、必要に応じて、対極の面積およびナフタレンスルホン酸の添加量の少なくとも一方を調節した。また、実施例では、重合液に水溶性高分子(高分子タイプのポリカルボン酸)を表1に示す濃度で添加した。
 (4)陰極引出層10の形成
 上記(3)で得られた陽極体6を、黒鉛粒子を水に分散した分散液に浸漬し、分散液から取り出し後、乾燥することにより、少なくとも固体電解質層9の表面にカーボン層11を形成した。乾燥は、150℃で30分間行った。
 次いで、カーボン層11の表面に、銀粒子とバインダ樹脂(エポキシ樹脂)とを含む銀ペーストを塗布し、150℃で30分間加熱することでバインダ樹脂を硬化させ、金属含有層(金属ペースト層)12を形成した。こうして、カーボン層11と金属ペースト層12とで構成される陰極引出層10を形成し、固体電解質層9と陰極引出層10とで構成される陰極部8を形成した。
 上記のようにして、複数のコンデンサ素子22を作製した。
 (5)固体電解コンデンサの組み立て
 上記(4)で得られたコンデンサ素子22のうち、7個を導電性接着剤の接着層14を介して積層することによって、積層体Lを作製した。積層体Lの積層方向における端部に配置されたコンデンサ素子22の陰極部8と、陰極リード端子5の一端部とを導電性接着剤の接着層14で接合した。積層体Lの各コンデンサ素子22から突出した陽極体6の一端部(換言すると、陽極引出部の端部)同士を束ねて、陽極リード端子4の一端部とレーザー溶接により接合した。このような積層体Lを合計20個作製した。
 次いで、モールド成形により、各積層体Lの周囲に、絶縁性樹脂で形成された樹脂外装体3を形成した。このとき、陽極リード端子4の他端部と、陰極リード端子5の他端部とは、樹脂外装体3から引き出した状態とした。
 このようにして、合計20個の固体電解コンデンサを完成させた。
[評価]
 上記で得られたコンデンサ素子または固体電解コンデンサを用いて、下記の評価を行った。なお、漏れ電流については、固体電解コンデンサについて評価を行うとともに、上記(4)で得られたコンデンサ素子22に陰極リード端子5および陽極リード端子4を上記(5)の場合に準じて接合した状態について評価を行った。
 (a)破断強度
 固体電解コンデンサを用いて、既述の手順で、固体電解質層の破断強度(MPa)を求めた。
 (b)固体電解質層の厚さ
 固体電解コンデンサを用いて、既述の手順で、固体電解質層の厚さの最小値、固体電解質層の厚さの平均値の比t/tを求めた。
 (c)漏れ電流(LC)
 固体電解コンデンサについて、1kΩの抵抗を直列につなぎ、直流電源にて25Vの定格電圧を1分間印加した後の漏れ電流(初期の漏れ電流)(μA)を測定し、20個の固体電解コンデンサの平均値を求めた。固体電解コンデンサの場合に準じて、コンデンサ素子についても、初期の漏れ電流を測定し、20個のコンデンサ素子の平均値を求めた。これらの平均値を、以下の表1中には、それぞれ、コンデンサのLCおよびコンデンサ素子のLCとして示す。
 評価結果を表1に示す。E1~E4は実施例であり、R1は参考例である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、固体電解質層の破断強度が、0.55MPa未満では、コンデンサ素子および固体電解コンデンサの双方において漏れ電流が大きい。コンデンサ素子における漏れ電流が69.2μAであるのに対し、固体電解コンデンサにおいては、994.9μAと格段に漏れ電流が大きくなる。これは、コンデンサ素子を樹脂のモールド成形で封止して樹脂外装体3を形成する際に加わる応力の大きさに耐えきれずに、固体電解質層にクラックが生じ、その結果、誘電体層が損傷したためと考えられる。R1の固体電解コンデンサを、透過X線CT(Computed Tomography)で測定したところ、固体電解質層に比較的大きなクラックが複数形成されていることが確認された。透過X線CTとしては、Zeiss社製のXradia 520 Versaを用いた。
 それに対し、E1~E4では、コンデンサ素子における漏れ電流も7.6μA以下とR1に比べて格段に小さく、固体電解コンデンサにおける漏れ電流も28.3μA以下と非常に小さかった。これは、固体電解質層の破断強度が高いことで、樹脂外装体でコンデンサ素子を封止する際のクラックの発生が低減され、誘電体層へのダメージが軽減されたためと考えられる。また、固体電解質層の厚さまたは第2部分の厚さの最小値が大きい方が、固体電解コンデンサにおける漏れ電流を低く抑えることができる(R1およびE4とE1~E3との比較)。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示によれば、漏れ電流が低減された固体電解コンデンサ素子および固体電解コンデンサが提供される。よって、固体電解コンデンサ素子および固体電解コンデンサは、高い信頼性が求められる様々な用途に用いることができる。
1,21:固体電解コンデンサ
2,22:コンデンサ素子
3:樹脂外装体
4:陽極リード端子
5:陰極リード端子
6:陽極体
7:誘電体層
8:陰極部
9:固体電解質層
10:陰極引出層
11:カーボン層
12:金属含有層(金属ペースト層)
13:分離部(絶縁領域)
14:接着層
L:積層体
e1:陽極体6の第1端部
e2:陽極体6の第2端部
:コンデンサ素子の厚さ(または積層方向)
:コンデンサ素子の長さ方向
 

Claims (7)

  1.  第1端部および前記第1端部とは反対側の第2端部を有する陽極体と、前記陽極体の少なくとも一部を覆う誘電体層と、前記陽極体の前記第2端部側の部分において、前記誘電体層の少なくとも一部を覆う陰極部と、を含み、
     前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を含み、
     前記固体電解質層の破断強度は、0.55MPa以上45MPa以下である、固体電解コンデンサ素子。
  2.  前記固体電解質層の厚さの最小値は、1μm以上である、請求項1に記載の固体電解コンデンサ素子。
  3.  前記第2端部における前記固体電解質層の厚さの平均値をtとし、前記第1端部から前記第2端部に向かう方向に平行な方向における前記固体電解質層の中央の厚さの平均値をtとするとき、tのtに対する比:t/tは、0.5以上1.8以下である、請求項1または2に記載の固体電解コンデンサ素子。
  4.  前記固体電解質層は、共役系高分子と、ドーパントと、水溶性高分子とを含む、請求項1~3のいずれか1項に記載の固体電解コンデンサ素子。
  5.  少なくとも1つの請求項1~4のいずれか1項に記載の固体電解コンデンサ素子と、前記固体電解コンデンサ素子を封止する外装体とを含む、固体電解コンデンサ。
  6.  前記外装体は樹脂を含む、請求項5に記載の固体電解コンデンサ。
  7.  2つ以上の前記固体電解コンデンサ素子の積層体を含む、請求項5または6に記載の固体電解コンデンサ。
PCT/JP2022/034551 2021-10-26 2022-09-15 固体電解コンデンサ素子および固体電解コンデンサ WO2023074172A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023556186A JPWO2023074172A1 (ja) 2021-10-26 2022-09-15
CN202280071333.6A CN118140289A (zh) 2021-10-26 2022-09-15 固体电解电容器元件及固体电解电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-174959 2021-10-26
JP2021174959 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023074172A1 true WO2023074172A1 (ja) 2023-05-04

Family

ID=86157845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034551 WO2023074172A1 (ja) 2021-10-26 2022-09-15 固体電解コンデンサ素子および固体電解コンデンサ

Country Status (3)

Country Link
JP (1) JPWO2023074172A1 (ja)
CN (1) CN118140289A (ja)
WO (1) WO2023074172A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216795A (ja) * 2010-04-02 2011-10-27 Nec Tokin Corp 積層固体電解コンデンサ及びその製造方法
JP2012049574A (ja) * 2007-03-15 2012-03-08 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法及び固体電解コンデンサ
WO2012144477A1 (ja) * 2011-04-19 2012-10-26 イーメックス株式会社 フェノール化合物含有導電性高分子
WO2021132223A1 (ja) * 2019-12-24 2021-07-01 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049574A (ja) * 2007-03-15 2012-03-08 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法及び固体電解コンデンサ
JP2011216795A (ja) * 2010-04-02 2011-10-27 Nec Tokin Corp 積層固体電解コンデンサ及びその製造方法
WO2012144477A1 (ja) * 2011-04-19 2012-10-26 イーメックス株式会社 フェノール化合物含有導電性高分子
WO2021132223A1 (ja) * 2019-12-24 2021-07-01 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
CN118140289A (zh) 2024-06-04
JPWO2023074172A1 (ja) 2023-05-04

Similar Documents

Publication Publication Date Title
US20230253163A1 (en) Electrolytic capacitor and manufacturing method thereof
JP2009170897A (ja) 固体電解コンデンサ
US10347431B2 (en) Solid electrolytic capacitor with porous sintered body as an anode body and manufacturing thereof
WO2016174818A1 (ja) 電解コンデンサおよびその製造方法
WO2018123525A1 (ja) 電解コンデンサ
WO2023074172A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2022085747A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP3252800B2 (ja) 積層型コンデンサおよびその製造方法
US20230245836A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
WO2021085350A1 (ja) 電解コンデンサおよびその製造方法
WO2021132220A1 (ja) コンデンサ素子および電解コンデンサ、ならびにこれらの製造方法
WO2022185999A1 (ja) 固体電解コンデンサおよびその製造方法
WO2022158350A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2022181607A1 (ja) 固体電解コンデンサおよびその製造方法
WO2024004721A1 (ja) 固体電解コンデンサ
WO2023162904A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ、固体電解コンデンサ素子の製造方法
WO2023127251A1 (ja) 固体電解コンデンサ
WO2021172123A1 (ja) 電解コンデンサおよび電解コンデンサの導電層形成用ペースト
JP2022156883A (ja) 固体電解コンデンサ用導電性ペースト、固体電解コンデンサおよびその製造方法
WO2023119843A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2023189924A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ、ならびに固体電解コンデンサ素子の製造方法
WO2023032603A1 (ja) 固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ
WO2021193330A1 (ja) 電解コンデンサおよびコンデンサ素子
WO2024070142A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
US11915884B2 (en) Electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886506

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023556186

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE