WO2023074030A1 - 触媒劣化診断装置 - Google Patents

触媒劣化診断装置 Download PDF

Info

Publication number
WO2023074030A1
WO2023074030A1 PCT/JP2022/020740 JP2022020740W WO2023074030A1 WO 2023074030 A1 WO2023074030 A1 WO 2023074030A1 JP 2022020740 W JP2022020740 W JP 2022020740W WO 2023074030 A1 WO2023074030 A1 WO 2023074030A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
ratio level
value
catalyst
Prior art date
Application number
PCT/JP2022/020740
Other languages
English (en)
French (fr)
Inventor
哲志 市橋
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023074030A1 publication Critical patent/WO2023074030A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a catalyst deterioration diagnosis device for diagnosing deterioration of a catalyst of a catalytic converter provided in an exhaust pipe of an internal combustion engine.
  • Patent Document 2 describes another method for diagnosing the state of deterioration of a catalytic converter.
  • the state quantity correlated with the downstream exhaust air-fuel ratio is detected by the exhaust sensor while periodically varying the exhaust air-fuel ratio on the upstream side of the catalyst around a reference value near the stoichiometric air-fuel ratio. That is, the result of varying the air-fuel ratio given from the internal combustion engine to the catalyst in a specific pattern is used as a reference, and in a dedicated operation mode for finding a transient response to this, for example, as a diagnostic condition, a vehicle equipped with an internal combustion engine is operated at a speed of 60 km/h. During steady running at about h, predetermined air-fuel ratio manipulation is performed and diagnosis is performed.
  • the deterioration of the catalytic ability is diagnosed, and the deterioration of the oxygen storage capacity of the catalyst is diagnosed on the basis of the lean side amplitude.
  • Patent Document 1 which compares the reactions of exhaust sensors installed upstream and downstream of the catalyst
  • Patent Document 2 which examines the exhaust gas given to the catalyst.
  • the diagnosis is made from the reaction of the downstream exhaust air-fuel ratio as a result of manipulating the air-fuel ratio.
  • An object of the present invention is to provide a catalyst deterioration diagnosis device that can detect the degree of deterioration of a catalyst of a catalytic converter without any problems using a single oxygen concentration sensor.
  • the catalyst deterioration diagnosis device of the present invention is The air-fuel ratio feedback control of the internal combustion engine is performed based on the detected value of an oxygen concentration sensor that detects the oxygen concentration in the exhaust gas in the exhaust pipe downstream of the catalytic converter interposed in the exhaust pipe connected to the exhaust port of the internal combustion engine.
  • a torque calculation unit that calculates a torque value of the internal combustion engine; a fuel injection amount capture unit that captures the fuel injection amount supplied for one combustion of the internal combustion engine; a downstream air-fuel ratio level counting unit that counts the number of times the output signal of the oxygen concentration sensor passes the stoichiometric air-fuel ratio level; an air-fuel ratio level setting unit that virtually sets an air-fuel ratio level in the exhaust port based on the torque value and the fuel injection amount; an upstream air-fuel ratio level counting unit that counts the number of times the air-fuel ratio level has passed the stoichiometric air-fuel ratio level; and a catalyst deterioration diagnosis section for diagnosing deterioration of the catalyst based on the count values of the upstream air-fuel ratio level counting section and the downstream air-fuel ratio level counting section.
  • the pseudo air-fuel ratio level in the exhaust port is obtained based on the torque value calculated by the torque calculation section and the fuel injection amount captured by the fuel injection amount capturing section. That is, assuming that an oxygen concentration sensor is provided on the upstream side of the catalytic converter, the signal (air-fuel ratio level) corresponding to the output signal of the oxygen concentration sensor can be obtained without using the oxygen concentration sensor. Pseudo-generated based on Catalyst deterioration is diagnosed by comparing the change in the pseudo air-fuel ratio level with the change in the actual air-fuel ratio level obtained from the output signal of the oxygen concentration sensor downstream of the catalytic converter.
  • the degree of deterioration of the catalyst in the catalytic converter can be diagnosed using a single oxygen concentration sensor without adversely affecting emissions or drivability and without any restrictions.
  • the cost of the system can be reduced, and a resistive (titania) type oxygen concentration sensor whose amplitude on the rich or lean side of the output signal varies depending on the temperature can be used.
  • the air-fuel ratio level setting section may set the air-fuel ratio level to a value higher than the stoichiometric air-fuel ratio level when the fuel injection amount is equal to or less than a predetermined value.
  • a pseudo air-fuel ratio level in the exhaust port can be obtained, for example, by dividing the torque value of the internal combustion engine by the opening time of the fuel injection valve.
  • the air-fuel ratio level to a value greater than the stoichiometric air-fuel ratio level when the valve opening time becomes, for example, zero (fuel cut)
  • an error caused by dividing the torque value by zero is avoided. can do.
  • data for sorting the set air-fuel ratio level based on an exhaust volume setting formula for sequentially setting the volume of the exhaust gas entering the exhaust pipe, and the exhaust gas volume, which is a variable of the exhaust volume setting formula further having a sorting unit,
  • the data selection unit When the set air-fuel ratio level passes the stoichiometric air-fuel ratio level, the exhaust volume is initialized, the exhaust volume entering the exhaust pipe after the initialization is integrated, and the integrated volume is integrated. If the initialization is performed while the exhaust volume does not exceed the predetermined value, the present value of the set air-fuel ratio level is checked to determine whether the air-fuel ratio level has passed the stoichiometric air-fuel ratio level. may be selected as an unused value that is not used for .
  • the data selection unit initializes the exhaust volume when the set air-fuel ratio level passes the stoichiometric air-fuel ratio level. be done. Even if it is determined that the air-fuel ratio level has passed the stoichiometric air-fuel ratio level, if the initialization is performed in a state in which the integrated exhaust volume does not exceed the predetermined value, the air-fuel ratio level used for the determination is The current value of is sorted as an unused value that is not used in determining whether it has been passed. Therefore, the increment of the count value of the number of transitions is suspended until the cumulative exhaust volume reaches a certain value. As a result, it is possible to prevent excessive counting of the number of transitions.
  • FIG. 1 is a schematic diagram schematically showing the configuration of a main part of an internal combustion engine equipped with a catalyst deterioration diagnostic device according to one embodiment of the present invention
  • FIG. 2 is a block diagram showing the main configuration of an ECU of the internal combustion engine of FIG. 1
  • FIG. 4 is a block circuit diagram showing a circuit model for calculating a pseudo fuel ratio level ParLAM
  • FIG. FIG. 2 is a timing chart showing how the ECU of the internal combustion engine of FIG. 1 diagnoses the state of deterioration of the catalyst of the catalytic converter;
  • FIG. 4 is a flow chart showing the first half of upstream count processing by an air-fuel ratio level setting section, a data selection section, and an upstream air-fuel ratio level counting section in the catalyst deterioration diagnosis device;
  • FIG. 6 is a flowchart showing the second half of the upstream counting process in FIG. 5;
  • FIG. 4 is a flow chart showing downstream side counting processing by a downstream air-fuel ratio level counting section of the catalyst deterioration diagnosis device;
  • FIG. 1 shows the configuration of the main parts of a four-cycle internal combustion engine equipped with a catalyst deterioration diagnosis device according to one embodiment of the present invention.
  • This internal combustion engine has a function of performing air-fuel ratio feedback control based on the deviation between the excess air ratio obtained based on the oxygen concentration in the exhaust gas of the internal combustion engine and a target excess air ratio.
  • the catalyst deterioration diagnostic device has a function of diagnosing the deterioration state of the catalyst of the catalytic converter provided in the internal combustion engine.
  • an engine body 1 of this internal combustion engine includes an intake pipe 2 provided at an intake port, and an air cleaner 4 provided in the intake pipe 2 and supplied from an air cleaner 4 to the intake port. and a throttle valve 3 that adjusts according to
  • the throttle valve 3 is provided with a throttle sensor 5 that detects the opening degree of the throttle valve 3 .
  • a fuel injection valve 6 for injecting fuel is provided near the intake port of the intake pipe 2 . Fuel is pressure-fed from a fuel tank (not shown) to the fuel injection valve 6 by a fuel pump.
  • the intake pipe 2 is provided with an intake pressure sensor 7 that detects the intake pressure in the intake pipe 2 and an intake air temperature sensor 8 that detects the temperature of the intake air in the intake pipe 2 .
  • An exhaust pipe 10 connected to an exhaust port of the engine body 1 is provided with a catalytic converter 11 that reduces unburned components in the exhaust of the exhaust pipe 10 and an oxygen concentration sensor 12 that detects the oxygen concentration in the exhaust.
  • the oxygen concentration sensor 12 detects the oxygen concentration in the exhaust gas in the exhaust pipe 10 on the downstream side of the catalytic converter 11 interposed in the exhaust pipe 10 .
  • a spark plug 13 connected to an ignition device 14 is fixed to the engine body 1 .
  • an ECU (electronic control unit) 15 issues an ignition timing command to an ignition device 14 , spark discharge occurs in a cylinder combustion chamber of the engine body 1 .
  • the ECU 15 receives analog voltages indicating detection values of the throttle sensor 5, the intake pressure sensor 7, the intake air temperature sensor 8, the oxygen concentration sensor 12, the cooling water temperature sensor 17, and the atmospheric pressure sensor 20 for detecting the atmospheric pressure. be.
  • the fuel injection valve 6 is also connected to the ECU 15 .
  • a signal indicating the rotation angle position of the crankshaft 18 from the crank angle sensor 19 is also input to the ECU 15 . That is, the crank angle sensor 19 has a plurality of projections arranged at intervals of a predetermined angle (for example, 15 degrees) on the outer circumference of the rotor 19a that rotates in conjunction with the crankshaft 18, near the outer circumference of the rotor 19a. It is magnetically or optically detected by the pickup 19b, and a pulse (crank signal) is generated from the pickup 19b each time the crankshaft 18 rotates by a predetermined angle.
  • a predetermined angle for example, 15 degrees
  • crank angle sensor 19 outputs a signal indicating a reference angle to the ECU 15 every time the piston 9 reaches top dead center or every time the crankshaft 18 rotates 360 degrees.
  • FIG. 2 shows the main configuration of the ECU 15.
  • an oxygen concentration sensor 12 that supplies a detection signal of the oxygen concentration in the exhaust gas to the ECU 15 is provided so as to be in contact with the exhaust gas of an internal combustion engine having exhaust pulsation, and detects the oxygen concentration in the exhaust gas.
  • a sensor element 12a as a unit and a sensor heater 12b adjacent to the sensor element 12a for heating the sensor element 12a.
  • the sensor element 12a has a resistance value that changes substantially stepwise when the oxygen concentration of the exhaust gas from the internal combustion engine is in the vicinity of the stoichiometric. It presents a pulse waveform with a crest value corresponding to .
  • a titania-type sensor element which is a resistive oxygen sensor whose resistance value changes according to the oxygen concentration, is used.
  • the ECU 15 includes a heater controller 22 that controls the sensor heater 12b, a temperature calculator 23 that calculates a temperature value T indicating the temperature of the sensor element 12a, and a temperature calculator 23 that calculates the temperature value T indicating the temperature of the sensor element 12a. and a voltage calculator 24 for converting to a voltage value VHG as a detected value indicating the oxygen concentration.
  • the control of the temperature of the sensor heater 12b by the heater controller 22 is performed by pulse width modulation (PWM) control by the ECU 15 of the amount of current I supplied to the sensor heater 12b from a power source (storage battery) (not shown). Further, the calculation of the temperature value T by the temperature calculation unit 23 is performed by, for example, obtaining the resistance value of the sensor heater 12b by reading each value of the heater voltage and the energized current amount I applied to the sensor heater 12b by the ECU 15, and calculating the resistance value of the sensor heater 12b. is converted by table data or a calculation formula prepared in advance in the ECU 15 showing the correspondence between the heater resistance value and the temperature value T. The calculation results of the temperature calculation unit 23 and the voltage calculation unit 24 are supplied to the substitute value calculation unit 26 of the excess ratio calculation unit 25, which will be described later.
  • PWM pulse width modulation
  • the ECU 15 also includes a rotation speed calculation unit 27 that calculates the rotation speed NE and the angular speed NETC of the internal combustion engine based on the detection result of the crank angle sensor 19, a temperature value T from the temperature calculation unit 23, and a temperature value T from the voltage calculation unit 24. and an excess air ratio calculation unit 25 for calculating an excess air ratio ⁇ based on the voltage value VHG and the angular velocity NETC from the rotation speed calculation unit 27 .
  • the ECU 15 calculates a target excess air ratio ⁇ cmd based on an estimated value of the amount of oxygen stored in the catalyst of the catalytic converter 11, a rotation speed NE from the rotation speed calculation unit 27, and A basic injection amount calculator 29 that calculates a basic injection amount BJ based on the pressure PM in the intake pipe 2 from the intake pressure sensor 7, and an excess air ratio ⁇ calculated by the excess ratio calculator 25 is used as a target excess air ratio ⁇ cmd.
  • a feedback coefficient calculation unit 30 for obtaining a feedback coefficient k for correcting the basic fuel injection amount BJ calculated by the basic injection amount calculation unit 29, and a fuel injection amount based on the feedback coefficient k and the basic injection amount BJ
  • An injection amount calculation unit 31 that calculates Ti and operates the fuel injection valve 6 is provided.
  • the injection amount calculation unit 31 functions as a fuel injection amount capturing unit that captures the fuel injection amount Ti supplied for one combustion of the internal combustion engine.
  • the feedback coefficient calculation unit 30 performs PID control based on the deviation between the excess air ratio ⁇ and the target excess air ratio ⁇ cmd to calculate the feedback coefficient k. Based on the fuel injection amount Ti calculated by the injection amount calculator 31 based on the feedback coefficient k and the basic injection amount BJ, the fuel injection valve 6 is opened for the time corresponding to this. Thus, an amount of fuel is injected into the cylinder combustion chamber of the engine body 1 according to the feedback coefficient k of the PID control based on the comparison between the excess air ratio ⁇ and the target excess air ratio ⁇ cmd.
  • the excess ratio calculation unit 25 linearizes the voltage value VHG with respect to the excess air ratio while compensating for the temperature characteristics.
  • the excess air ratio ⁇ of the exhaust gas is calculated using the data LD. However, this calculation is applied when the voltage value VHG is equal to or less than the lean-side conversion limit value (lean-side threshold value LREF described later), and when the voltage value VHG is greater than this conversion limit value, the air is converted by another method described later. An excess ratio ⁇ is determined.
  • the excess ratio calculation unit 25 includes a torque calculation unit 32 that calculates the torque value TQ of the internal combustion engine by the method described in, for example, Japanese Patent No. 06254633 based on the crank angular velocity NETC of the internal combustion engine, and a conversion limit for the linearize conversion described above.
  • a limit threshold value setting unit 33 for setting a threshold value for setting a threshold value
  • an alternative value calculation unit 26 for calculating the alternative value R.
  • the limit threshold setting unit 33 sets, as conversion limit thresholds, a lean side threshold LREF that is a lean side conversion limit threshold and a rich side threshold RREF that is a rich side conversion limit value for the voltage value VHG from the voltage calculation unit 24. set.
  • a lean side threshold LREF that is a lean side conversion limit threshold
  • a rich side threshold RREF that is a rich side conversion limit value for the voltage value VHG from the voltage calculation unit 24. set.
  • the conversion limit threshold is changed according to the temperature value T from the temperature calculator 23 .
  • the storage unit 34 stores an execution time Ti1 of fuel injection by the fuel injection valve 6, a torque value TQ1, The excess air ratio ⁇ b relating to the lean side threshold value LREF is stored.
  • the excess ratio calculation unit 25 substitutes the alternative value R for the exhaust air ratio instead of the excess air ratio ⁇ as the linearized data LD.
  • the excess ratio ⁇ is described in detail in Japanese Patent Application No. 2020-179511.
  • the ECU 15 further counts the number of times the voltage value VHG, which is the output signal of the oxygen concentration sensor 12 obtained via the voltage calculation unit 24, exceeds the stoichiometric air-fuel ratio level.
  • the catalytic converter 11 is based on the count values Count-Front and Count-Rear of the upstream air-fuel ratio level counting unit 37 that counts the number of times the level has been passed, and the count values Count-Front and Count-Rear of the upstream air-fuel ratio level counting unit 37 and the downstream air-fuel ratio level counting unit 35. and a catalyst deterioration diagnosis unit 38 for diagnosing deterioration of the catalyst.
  • the downstream air-fuel ratio level counting unit 35 detects when the voltage value VHG, which is the output signal of the oxygen concentration sensor 12 that detects the air-fuel ratio in the exhaust gas in the exhaust pipe 10 on the downstream side of the catalytic converter 11, exceeds the stoichiometric air-fuel ratio level. count the number of times
  • ParLAM Acquisition of the air-fuel ratio level ParLAM by the air-fuel ratio level setting unit 36 can be performed using the following equation (2) based on the torque TQ and the fuel injection amount Ti described above.
  • ParLAM adjk ⁇ (TQ/Ti) ⁇ #1.0 (2)
  • the coefficient adjk is a retrieved value of a conversion coefficient table Tb, which is a lookup table showing the coefficient adjk in correspondence with the fuel injection amount Ti.
  • FIG. 3 shows a control model of the air-fuel ratio level setting section 36 for acquiring the air-fuel ratio level ParLAM.
  • the coefficient adjk corresponding to the Ti value input from the input In2 on the lower side in FIG. is multiplied by the parameter (TQ/Ti) of the air-fuel ratio level ParLAM in the calculator Ca based on the torque TQ input from the input In1, and #1.0 is subtracted to calculate the air-fuel ratio level ParLAM.
  • This embodiment utilizes the fact that the basic torque and the fuel injection amount are in a proportional relationship and are equivalent during operation in the stoichiometric region. If it is on the Rich side, it takes a negative value.
  • the processing unit Sp that performs zero division prohibition processing and the upper and lower limit value limit processing for when the denominator becomes minimum A processor Lp is added. That is, the air-fuel ratio level setting section 36, as the above-described zero division prohibition process, sets the air-fuel ratio level ParLAM to A value larger than the level, that is, the air-fuel ratio level on the lean side is forcibly set.
  • the catalyst deterioration diagnosis by the catalyst deterioration diagnosis unit 38 is based on the count value Count-Front of the upstream air-fuel ratio level counting unit 37 and the count value Count-Rear of the downstream air-fuel ratio level counting unit 35, for example, using the following equation (3). performed using (Count-Front/Count-Rear) ⁇ 100[%] ⁇ Th (3)
  • Th is a deterioration determination threshold that serves as a criterion for determining whether the catalyst is functioning effectively.
  • the count value Count-Front >the count value Count-Rear.
  • the count value Count-Front and the count value Count-Rear match, it can be said that the oxidation-reduction reaction of the exhaust gas does not occur in the catalyst. That is, the deterioration rate of the catalyst can be known based on the ratio of the count values Count-Front and Count-Rear.
  • the air-fuel ratio level ParLAM In order to count the number of times the air-fuel ratio level ParLAM ( ⁇ torque value TQ/fuel injection amount Ti) has passed the theoretical air-fuel ratio level, the air-fuel ratio level ParLAM must be either rich or lean. It is necessary to sequentially determine whether or not there is During this sequential rich/lean determination, if the air-fuel ratio level ParLAM behaves like a spike noise near the time of transition, the number of times of transition may be counted excessively.
  • the ECU 15 controls the exhaust gas volume GasVol, which is an estimated value of the amount of exhaust gas entering the exhaust pipe 10, the exhaust gas volume Vthru set from the exhaust gas volume GasVol and the above-described air-fuel ratio level ParLAM, and the exhaust gas volume Vthru. Selection of whether or not the current value of the air-fuel ratio level ParLAM set by the air-fuel ratio level setting unit 36 can be used for rich/lean determination based on the integrated exhaust volume GasVolSum obtained from the integration of the exhaust volume Vthru It further has a data selection unit 39 that performs
  • the data selection unit 39 initializes the accumulated exhaust volume GasVolSum to zero, and after the initialization, the accumulated exhaust volume GasVolSum is integrated with the exhaust volume Vthru to the exhaust pipe 10, and when the initialization is performed in a state where the integrated exhaust volume GasVolSum does not exceed a predetermined value, the set air-fuel ratio level ParLAM is reduced.
  • the current value is selected as an unused value that is not used to determine whether the air-fuel ratio level ParLAM has passed the stoichiometric air-fuel ratio level.
  • FIG. 4 is a timing chart showing how the ECU 15 diagnoses deterioration of the catalyst of the catalytic converter 11 .
  • curves 40 and 41 show changes in the torque value TQ and the fuel injection amount Ti of the internal combustion engine, respectively.
  • F_ParLAM is a flag having a flag value of either Lean (#1) or Rich (#0).
  • This flag value is the air-fuel ratio level ParLAM obtained by the air-fuel ratio level setting unit 36 from the above-described formula (2) from the torque value TQ and the fuel injection amount Ti that change as shown by the curves 40 and 41.
  • the stoichiometric air-fuel ratio It is obtained by determining whether the level has a value on the lean side or the rich side, and binarizing this determination result.
  • this flag F_ParLAM has intervals T1 and T2 in which the result of determining whether the flag value is Lean or Rich behaves like spike noise. If the number of times the air-fuel ratio level ParLAM passes the theoretical air-fuel ratio level is counted by the upstream air-fuel ratio level counting unit 37, the count value Count-Front will be the actual value understood from the curves 40 and 41 as described above. becomes an excessive value than the frequency of the fuel injection amount Ti. In order to prevent this, the data selection unit 39 selects the air-fuel ratio level ParLAM as described below.
  • GasVolSum in FIG. 4 is the integrated exhaust volume obtained by integrating the exhaust volume Vthru described above. As shown in FIG. 4, each time the air-fuel ratio level ParLAM passes the stoichiometric air-fuel ratio level (see the flag F_ParLAM), the accumulated exhaust gas volume GasVolSum is initialized to zero, and after the initialization, the accumulated exhaust gas volume GasVolSum increases. Integration of the exhaust volume Vthru is started.
  • the exhaust volume Vthru is obtained by multiplying the exhaust gas volume GasVol by the air-fuel ratio level ParLAM (equation (5)). Therefore, in this embodiment, when the air-fuel ratio level ParLAM is on the Lean side (positive value), integration is performed in the positive direction, and when it is Rich (negative value), integration is performed in the negative direction.
  • the current air-fuel ratio level ParLAM is The value is screened so as not to be used in counting in the upstream air-fuel ratio level counting section 37 .
  • the exhaust gas volume GasVol is obtained using a simple calculation model.
  • the exhaust gas volume GasVol is calculated by the following equation (4).
  • GasVol Vbdc ⁇ (EgT/EgTbdc) ⁇ (TQ/maxTQ) ⁇ (NE/120) (4)
  • Vbdc is the exhaust gas volume at the bottom dead center (BDC), which is set, for example, from the internal cylinder volume of the internal combustion engine.
  • EgT is the exhaust gas temperature (K) downstream of the catalyst
  • EgTbdc is the exhaust gas temperature (K) at the bottom dead center (BDC). It is estimated based on the value T, known specification values of the exhaust pipe 10, and the like.
  • maxTQ is the maximum value of the torque TQ calculated by the torque calculator 32 described above
  • NE is the rotational speed of the internal combustion engine described above.
  • the exhaust volume Vthru inherits the sign of "+" on the lean side and "-" on the rich side of the air-fuel ratio level ParLAM described above. Therefore, the integrated exhaust gas volume GasVolSum in FIG. 4, which is the integrated value of the exhaust gas volume Vthru, increases upward in FIG. is "-" on the rich side, it is subtracted downward in FIG.
  • the air-fuel ratio level ParLAM passes the stoichiometric air-fuel ratio level (see flag F_ParLAM)
  • the accumulated exhaust gas volume GasVolSum is initialized to zero
  • integration of the exhaust volume Vthru is started.
  • the initialization to zero is performed in a state in which the integrated exhaust gas volume GasVolSum does not exceed the "+" side threshold Lt or the "-" side threshold Rt
  • the fuel ratio level ParLAM is selected so as not to be used in counting in the upstream air-fuel ratio level counting section 37 .
  • the upstream air-fuel ratio level counting unit 37 changes the count value Count-Front to # Increment by one.
  • the air-fuel ratio level ParLAM in the above-described sections T1 and T2 which behaves like spike noise, is prevented from contributing to the counting up of the count value Count-Front, and the selection of the air-fuel ratio level ParLAM is achieved. become.
  • the downstream air-fuel ratio level counting section 35 counts the number of times the output signal VHG passes the stoichiometric air-fuel ratio level based on the output signal VHG of the oxygen concentration sensor 12 indicated by VHG in FIG. to count.
  • the catalyst deterioration diagnosis unit 38 uses equation (3) as described above. It is possible to determine whether or not the catalyst of the catalytic converter 11 is deteriorated.
  • step S1 the air-fuel ratio level setting section 36 acquires the torque value TQ from the torque calculation section 32 and the fuel injection amount Ti from the injection amount calculation section 31 . Further, at this time, the downstream counting process shown in FIG. 7, which will be described later, is performed (step S1). Next, in step S2, it is determined whether or not the fuel injection amount Ti is equal to or less than a predetermined lower limit value #TiMin.
  • step S2 If the fuel injection amount Ti is greater than the predetermined lower limit #TiMin in step S2, the torque injection amount ratio TQ/Ti is obtained by dividing the torque value TQ by the fuel injection amount Ti (step S3).
  • step S4 a pseudo air-fuel ratio level ParLAM is acquired using the above equation (2).
  • step S2 If the fuel injection amount Ti is equal to or less than the predetermined lower limit value #TiMin in step S2, the arithmetic processing of dividing the torque value TQ by the fuel injection amount Ti is not performed, and the torque injection amount ratio TQ/Ti is calculated.
  • a value of #TQ/TiMAX which is a predetermined torque injection amount ratio, is set (step S5), and a predetermined pseudo air-fuel ratio level ParLAM is set as the pseudo air-fuel ratio level ParLAM # A value of ParLAMMAX is set (step S6). This avoids errors caused by division by zero.
  • #ParLAMMAX is set to a positive value indicating that the air-fuel ratio is on the lean side.
  • step S7 the value of the exhaust gas volume GasVol calculated using the above equation (4) is obtained.
  • step S8 the exhaust volume Vthru is calculated using the above equation (5).
  • step S9 the value of the flag F_ParLAM, which will be described later, is set to the flag F_ParLAMpre.
  • step S11 the threshold value Lt when the cumulative exhaust gas volume GasVolSum is integrated in the positive direction and the threshold value Rt when the cumulative exhaust gas volume GasVolSum is integrated in the negative direction are obtained.
  • the thresholds Lt and Rt are obtained as variable variables that are dynamically set according to, for example, the rotational speed value of the internal combustion engine.
  • step S12 it is determined whether or not the oxygen concentration sensor 12 is in an active state, in which the oxygen concentration sensor 12 is sufficiently warmed by exhaust heat, heater heat, or the like. This determination can be made depending on whether the later-described activity flag F_VHGACT is "1" (active) or "0" (inactive).
  • step S12 if the oxygen concentration sensor 12 is inactive, the process proceeds to step S13 to set the flag value of the flag F_ ⁇ front to the same flag value as the above-described flag F_ParLAM. GasVolSum is set to a value of zero and the upstream counting process is terminated.
  • step S12 If the oxygen concentration sensor 12 is in the active state in step S12, the process proceeds to step S15, where the flag F_ParLAMpre acquired in step S9 and the flag F_ParLAM acquired in step S10 have the same value. Determine whether or not there is Here, if the flag F_ParLAMpre and the flag F_ParLAM are different, it indicates that the air-fuel ratio level ParLAM has passed the stoichiometric air-fuel ratio level and the sign (+ or -) of the air-fuel ratio level ParLAM has been inverted. The flow advances to step S14 in FIG. 6 to set the integrated exhaust gas volume GasVolSum to zero, and the upstream counting process ends.
  • step S15 when the flag F_ParLAMpre and the flag F_ParLAM have the same value, the process proceeds to step S16 in FIG. 6, where the exhaust volume Vthru obtained in step S8 is added (integrated) to the integrated exhaust volume GasVolSum. Subsequently, in step S17, it is determined whether the flag F_ParLAM is #1 (lean side) or #0 (rich side). If the flag F_ParLAM is #0 (rich side) in step S17, the process proceeds to step S18 to determine whether the flag F_ ⁇ front is #1 (lean side) or #0 (rich side).
  • step S19 the process proceeds to step S19 to confirm whether or not the cumulative exhaust gas volume GasVolSum is equal to or less than the threshold value Rt described above (step S11). If the integrated exhaust gas volume GasVolSum is a negative value equal to or less than the threshold value Rt, the process proceeds to step S20 to set the flag F_ ⁇ front to #0 (rich side), and the count value Count-Front is incremented in the subsequent step S21. Thus, the upstream counting process ends.
  • step S17 If the flag F_ParLAM is #1 (lean side) in step S17, the process proceeds to step S22 to determine whether the flag F_ ⁇ front is #1 (lean side) or #0 (rich side). When the flag F_ ⁇ front is on the rich side (#0) in step S22, the process proceeds to step S23 to confirm whether or not the integrated exhaust gas volume GasVolSum is equal to or greater than the threshold value Lt described above (step S11). When the integrated exhaust gas volume GasVolSum is a positive value equal to or greater than the threshold value Lt, the process proceeds to step S24, where the flag F_ ⁇ front is set to "1", where the upstream counting process is performed without incrementing the count value Count-Front. is terminated.
  • FIG. 7 shows the downstream counting process in the downstream air-fuel ratio level counting section 35 of the catalyst deterioration diagnosis device. This process is performed at the same timing as the upstream count process described above.
  • the downstream counting process is started, first, in step S25, the value of the flag F_ ⁇ rear is set to the flag F_ ⁇ rearpre.
  • the output signal of the oxygen concentration sensor 12 is obtained as the voltage value VHG via the voltage calculator 24 (step S26). Also, the temperature T of the detection portion (sensor element 12a) of the oxygen concentration sensor 12 is obtained via the temperature calculation portion 23 (step S27).
  • step S28 it is determined whether or not the oxygen concentration sensor 12 is in an active state after being warmed by exhaust heat, heater heat, or the like. If it is determined in step S28 that the oxygen concentration sensor 12 is inactive, the activity flag F_VHGACT is set to "0" and the process proceeds to step S30 via step S29. It is reset to zero, and the processing of FIG. 7 ends.
  • step S28 If it is determined in step S28 that the oxygen concentration sensor 12 is in an active state, the activity flag F_VHGACT is set to "1", the process proceeds to step S31 via step S29, and the voltage value VHG and the temperature T of the detection unit Based on this, the excess air ratio ⁇ rear downstream of the catalyst is obtained.
  • step S32 it is determined whether or not the excess air ratio ⁇ rear downstream of the catalyst is equal to or higher than the theoretical air-fuel ratio level (excess air ratio ⁇ is #1.0).
  • the value of the flag F_ ⁇ rear is set to Lean (#1) in step S33, and the processing of FIG. 7 is performed without incrementing the count value Count-Rear. is terminated.
  • step S34 When it is determined in step S32 that the excess air ratio ⁇ rear downstream of the catalyst is less than the stoichiometric air-fuel ratio level, in step S34 the flag F_ ⁇ rear is set to Rich (#0).
  • step S35 it is determined whether or not the value of the flag F_ ⁇ rear set in step S34 matches the value of the flag F_ ⁇ rearpre set in step S25. #0), or whether the flag value set in the flag F_ ⁇ rear at the time of the previous control cycle is Lean (#1) (whether F_ ⁇ rear reversed from the Lean side to the Rich side). judge.
  • the count value Count-Front counted by the upstream air-fuel ratio level counting unit 37 and the count value Count-Rear counted by the downstream air-fuel ratio level counting unit 35 are obtained, so that the catalyst deterioration diagnosis unit 38 calculates the above-described formula ( 3) can be used to diagnose deterioration of the catalyst.
  • the number of times the output signal of the oxygen concentration sensor 12 on the downstream side of the catalytic converter 11 passes the theoretical air-fuel ratio (excess air ratio ⁇ is #1.0) level is counted.
  • the deterioration of the catalytic converter 11 is determined based on the value Count-Rear, the count value Count-Front of the number of times the pseudo air-fuel ratio level ParLAM in the exhaust port has passed the theoretical air-fuel ratio level, and the deterioration determination threshold value Th. is diagnosed. Therefore, the degree of deterioration of the catalyst in the catalytic converter 11 can be diagnosed with the single oxygen concentration sensor 12 without adversely affecting emissions and drivability, and without increasing the cost of the device or complicating the device. be able to.
  • the air-fuel ratio level setting unit 36 sets the air-fuel ratio level ParLAM to is set to the predetermined value #ParLAMMAX, which is a positive value indicating that is a value on the lean side. Errors caused by dividing the torque TQ by a zero fuel injection quantity Ti when calculating the air-fuel ratio level ParLAM in 2) can be avoided.
  • the data selector 39 determines that the accumulated exhaust gas volume GasVolSum is less than the predetermined threshold value Lt or Rt. If the value is close to , the air-fuel ratio level ParLAM value is selected as an unused value that is not used for determining whether or not the stoichiometric air-fuel ratio level has been exceeded. As a result, when the air-fuel ratio level ParLAM passes the stoichiometric air-fuel ratio level, it is possible to prevent the count value Count-Front from being excessively counted up due to behavior like spike noise.
  • the present invention is not limited to the above-described embodiments, and can be implemented with appropriate modifications.
  • the count value Count-Front and the count value Count-Rear are incremented (count up), but the present invention is not limited to this.
  • each increment of the count value Count-Front and the count value Count-Rear may be performed at the time of reversal from the Rich side to the Lean side.
  • Rotational speed calculation unit 28... Target value calculation unit, 29... Basic injection amount calculation unit, 30... Feedback coefficient calculation unit, 31... Injection amount calculation unit, 32... Torque calculation unit, 33 Limit threshold value setting unit 34 Storage unit 35 Downstream air-fuel ratio level counting unit 36 Air-fuel ratio level setting unit 37 Upstream air-fuel ratio level counting unit 38 Catalyst deterioration diagnosis unit 39 Data selection unit , Ca... calculator, In1, In2... input, Tb... conversion factor table, Lp, Sp... processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

触媒の劣化度合いを1つの酸素濃度センサで支障なく検出できる触媒劣化診断装置を提供する。触媒劣化診断装置は、触媒下流の酸素濃度センサ(12)の出力信号VHGが理論空燃比レベルを渡過した回数をカウントする下流空燃比レベルカウント部(35)と、トルク値TQ及び燃料噴射量Tiに基づいて排気ポート内での空燃比レベルParLAMを疑似的に設定する空燃比レベル設定部(36)と、空燃比レベルParLAMが理論空燃比レベルを渡過した回数をカウントする上流空燃比レベルカウント部(37)と、上流空燃比レベルカウント部(37)及び下流空燃比レベルカウント部(35)のカウント値に基づいて触媒の劣化状況を診断する触媒劣化診断部(38)とを備える。

Description

触媒劣化診断装置
 本発明は、内燃機関の排気管に設けられる触媒コンバータの触媒の劣化状況を診断する触媒劣化診断装置に関する。
 従来、内燃機関の排気管に設けられる触媒コンバータの触媒の劣化状況を診断する方法として、触媒の上流側と下流側で検出した排気ガス中の酸素濃度変動値の標準的な散らばり具合を比較することにより、触媒の劣化状況を診断する方法が知られている(例えば、特許文献1参照)。
 特許文献1の方法においては、触媒層反応雰囲気が空燃比リッチ状態にあると判定したときに、触媒の上流側と下流側に設けられた酸素濃度検出手段からそれぞれ出力される酸素濃度信号に基づいて、酸素濃度変動値の標準的な散らばり具合を示す標準偏差が算出される。この標準偏差に基づいて得られる触媒劣化指標値(IDX)を所定の閾値と比較することにより、触媒の劣化状況が診断される。
 また、触媒コンバータの劣化状況を診断する別の方法が特許文献2に記載されている。この方法では、触媒の上流側の排気空燃比を理論空燃比近傍の基準値を中心に周期的に変動させながら、下流側の排気空燃比に相関する状態量が排気センサで検出される。すなわち、特定のパターンで内燃機関から触媒に与える空燃比を変動操作した結果をリファレンスとし、これに対する過渡応答を見出すための専用運転モード時、例えば診断条件として、内燃機関を搭載した車両の60km/h程度での定常走行時に、既定の空燃比操作を行い、診断が実行される。
 そして、基準値に対するリッチ側の振幅の評価、もしくはリッチ側、リーン側の振幅の相対評価に基づいて触媒の能力低下状態が診断され、リーン側振幅によって触媒の酸素吸蔵能力の低下が診断される。
特許第5800298号公報 特開2002-30922号公報
 触媒コンバータの劣化状況を診断する方法は、上述の特許文献1のように触媒の上流と下流に設置した排気センサの反応の対比によって診断を行うものと、特許文献2のように触媒に与える排気の空燃比を操作した結果としての下流の排気空燃比の反応から診断を行うものとの2種類に大別される。
 しかしながら、前者の場合には、リファレンス(診断基準)となる触媒の上流側のセンサと、触媒反応を検出する触媒の下流側のセンサの少なくとも2つのセンサが必要となるので、コストが高くなるとともにシステムが複雑になるという問題がある。
 また、後者の場合は、特定の運転モード時に既定の空燃比操作を行い、診断を実行する必要があるので、エミッションやドライバビリティが悪化する懸念がある。また、その診断実行条件が限定的であるため、内燃機関の実際の可動時における触媒診断の実行率を向上させるのが難しいという側面がある。
 本発明の目的は、かかる従来技術の課題に鑑み、触媒コンバータの触媒の劣化度合いを1つの酸素濃度センサで支障なく検出できる触媒劣化診断装置を提供することにある。
 本発明の触媒劣化診断装置は、
 内燃機関の排気ポートに連なる排気管に介装された触媒コンバータより下流側の前記排気管内の排気中における酸素濃度を検出する酸素濃度センサの検出値に基づいて前記内燃機関の空燃比フィードバック制御を実行する該内燃機関に設けられ、前記触媒コンバータの触媒の劣化状況を診断する触媒劣化診断装置において、
 前記内燃機関のトルク値を算出するトルク演算部と、
 前記内燃機関の1回の燃焼のために供給される燃料噴射量を捕捉する燃料噴射量捕捉部と、
 前記酸素濃度センサの出力信号に基づいて、該出力信号が理論空燃比レベルを渡過した回数をカウントする下流空燃比レベルカウント部と、
 前記トルク値及び前記燃料噴射量に基づいて前記排気ポート内での空燃比レベルを疑似的に設定する空燃比レベル設定部と、
 前記空燃比レベルが理論空燃比レベルを渡過した回数をカウントする上流空燃比レベルカウント部と、
 前記上流空燃比レベルカウント部及び前記下流空燃比レベルカウント部のカウント値に基づいて前記触媒の劣化状況を診断する触媒劣化診断部とを備えることを特徴とする。
 この構成において、触媒コンバータより下流側の酸素濃度センサの出力信号が理論空燃比レベルを渡過した回数のカウント値と、排気ポート内での疑似的な空燃比レベルが理論空燃比レベルを渡過した回数のカウント値とに基づいて、触媒コンバータの劣化が診断される。
 そして、排気ポート内での疑似的な空燃比レベルは、トルク演算部により算出されるトルク値と、燃料噴射量捕捉部により捕捉される燃料噴射量とに基づいて得られる。すなわち、触媒コンバータ上流側に酸素濃度センサが設けられていたと仮定した場合にその出力信号に相当する信号(空燃比レベル)は、その酸素濃度センサを使用せずに、上記トルク値及び燃料噴射量に基づき疑似的に生成される。この疑似的な空燃比レベルの変化と、触媒コンバータ下流側の酸素濃度センサの出力信号から得られる実際の空燃比レベルの変化とを比較することにより触媒劣化診断が行われる。
 したがって、本発明によれば、触媒コンバータにおける触媒の劣化度合いについて、1つの酸素濃度センサにより、エミッションやドライバビリティに悪影響を及ぼすことなく、かつ何らの制限を受けることなく診断を行うことができる。これにより、システムのコストダウンを図るとともに、出力信号のリッチ又はリーン側の振幅について温度に依存して特性が変動する抵抗(チタニア)型の酸素濃度センサによっても対応することができる。
 本発明において、前記空燃比レベル設定部は、前記燃料噴射量が所定値以下である場合には、前記空燃比レベルを理論空燃比レベルよりも大きい値に設定するようにしてもよい。
 排気ポート内での疑似的な空燃比レベルは、例えば内燃機関のトルク値を燃料噴射弁の開弁時間で除すことにより得られる。この場合、開弁時間が例えばゼロ(燃料カット)になったときに、空燃比レベルを理論空燃比レベルよりも大きい値に設定することにより、トルク値をゼロで除算することにより生じるエラーを回避することができる。
 本発明において、前記排気管内に進入する排気体積を逐次設定する排気体積設定式と、該排気体積設定式の変数である排気ガスボリュームに基づいて、前記設定された空燃比レベルの選別を行うデータ選別部をさらに有し、
 前記データ選別部は、
 前記設定された空燃比レベルが理論空燃比レベルを渡過した時点で前記排気体積を初期化し、かつ、該初期化以降に前記排気管内に進入する前記排気体積を積算し、この積算された積算排気体積が所定値を超えない状態で前記初期化が行われた場合には、前記設定された空燃比レベルの現在値を、該空燃比レベルが理論空燃比レベルを渡過したかどうかの判定には使用しない不使用値として選別するようにしてもよい。
 上流空燃比レベルカウント部において、疑似的な空燃比レベル(≒トルク値÷燃料噴射量)に基づき、空燃比レベルが理論空燃比レベルを渡過した回数をカウントするに当たり、この渡過に際して空燃比レベルがスパイクノイズ的に振舞うことにより、カウント数を過剰に計数してカウント値が所定の上限(例えば、16進数での符号なし2byte値=65535)をオーバフローするという不都合が憂慮される。
 これを回避すべく、上記データ選別部においては、設定された空燃比レベルが理論空燃比レベルを渡過した時点で排気体積が初期化され、初期化以降に排気管内に進入する排気体積が積算される。そして、空燃比レベルが理論空燃比レベルを渡過したと判定されても、積算排気体積が所定値を超えない状態で初期化が行われた場合には、その判定に際して使用された空燃比レベルの現在値は、渡過したかどうかの判定には使用されない不使用値として選別される。したがって、積算排気体積がある程度の値に達するまで、渡過回数のカウント値のインクリメントが保留される。これにより、渡過回数の過剰計数を防止することができる。

本発明の一実施形態に係る触媒劣化診断装置を備える内燃機関の主要部の構成を模式的に示す模式図である。 図1の内燃機関のECUにおける主要構成を示すブロック図である。 疑似燃比レベルParLAMを算出するための回路モデルを示すブロック回路図である。 図1の内燃機関のECUにおいて触媒コンバータの触媒の劣化状況を診断する様子を示すタイミングチャートである。 前記触媒劣化診断装置における空燃比レベル設定部、データ選別部、及び上流空燃比レベルカウント部による上流側カウント処理の前半を示すフローチャートである。 図5の上流側カウント処理の後半を示すフローチャートである。 前記触媒劣化診断装置の下流空燃比レベルカウント部による下流側カウント処理を示すフローチャートである。
 以下、図面を用いて本発明の実施形態を説明する。図1は、本発明の一実施形態に係る触媒劣化診断装置を備える4サイクル形式の内燃機関の主要部の構成を示す。この内燃機関は、内燃機関の排気中の酸素濃度に基づいて得られる空気過剰率と、目標空気過剰率との偏差に基づいて空燃比フィードバック制御を行う機能を有する。そして、触媒劣化診断装置は、内燃機関に設けられた触媒コンバータの触媒の劣化状況を診断する機能を有する。
 同図に示すように、この内燃機関の機関本体1は、吸入ポートに設けられた吸気管2と、吸気管2内に設けられてエアクリーナ4から吸入ポートに供給される吸気の量を開度に応じて調整するスロットル弁3とを備える。
 スロットル弁3には、スロットル弁3の開度を検出するスロットルセンサ5が設けられる。吸気管2の吸入ポート近傍には、燃料を噴射する燃料噴射弁6が設けられる。燃料噴射弁6には、図示しない燃料タンクから燃料ポンプによって燃料が圧送される。
 吸気管2には、吸気管2における吸気圧を検出する吸気圧センサ7及び吸気管2内の吸入空気の温度を検出する吸気温センサ8が設けられる。機関本体1の排気ポートに連結された排気管10内には、排気管10の排気中の未燃焼成分を低減させる触媒コンバータ11及び排気中の酸素濃度を検出する酸素濃度センサ12が設けられる。酸素濃度センサ12は、排気管10に介装された触媒コンバータ11より下流側の排気管10内の排気中における酸素濃度を検出するものである。
 機関本体1には、点火装置14に接続された点火プラグ13が固着される。ECU(電子制御ユニット)15が点火装置14に対して点火タイミングの指令を発することにより、機関本体1のシリンダ燃焼室内で火花放電が生じる。
 ECU15には、スロットルセンサ5、吸気圧センサ7、吸気温センサ8、酸素濃度センサ12、冷却水温センサ17、及び大気圧を検出する大気圧センサ20のそれぞれの検出値を示すアナログ電圧が入力される。また、ECU15には、上記の燃料噴射弁6が接続される。
 ECU15には、さらに、クランク角度センサ19からのクランク軸18の回転角度位置を示す信号が入力される。すなわち、クランク角度センサ19は、クランク軸18に連動して回転するロータ19aの外周に所定角度(例えば、15度)毎に設けられた複数の凸部を、ロータ19aの外周近傍に配置されたピックアップ19bによって磁気的あるいは光学的に検出し、ピックアップ19bからクランク軸18の所定角度の回転毎にパルス(クランク信号)を発生する。
 具体的には、クランク角度センサ19は、ピストン9が上死点に至る毎に、又はクランク軸18が360度回転する毎に基準角度を示す信号をECU15に出力する。
 図2は、ECU15における主要な構成を示す。同図に示すように、ECU15に排気中の酸素濃度の検出信号を供給する酸素濃度センサ12は、排気脈動を有する内燃機関の排気に接するように設けられて排気中の酸素濃度を検出する検出部としてのセンサ素子12aと、センサ素子12aに隣接してセンサ素子12aを加熱するセンサヒータ12bとを備える。
 センサ素子12aは、内燃機関の排気がストイキメトリック近傍の酸素濃度である際に略ステップ状に変化する抵抗値を有し、該抵抗値から求める検出値がセンサ素子12aの温度と前記排気脈動とに応じた波高値を有するパルス波状を呈する。センサ素子12aとしては、本実施形態では、酸素濃度に応じて抵抗値が変化する抵抗型酸素センサであるチタニア型のセンサ素子が用いられる。
 ECU15は、センサヒータ12bを制御するヒータ制御器22と、センサ素子12aの温度を示す温度値Tを算出する温度読取部としての温度算出部23と、センサ素子12aの出力信号を、排気中の酸素濃度を示す検出値としての電圧値VHGに変換する電圧算出部24とを備える。
 ヒータ制御器22によるセンサヒータ12bの温度の制御は、不図示の電源(蓄電池)からセンサヒータ12bに供給される通電電流量IをECU15でパルス幅変調(PWM)制御することにより行われる。また、温度算出部23による温度値Tの算出は、たとえば、センサヒータ12bに印加されたヒータ電圧及び通電電流量Iの各値をECU15で読み取ってセンサヒータ12bの抵抗値を求め、該抵抗値を、ECU15に予め準備されたヒータ抵抗値及び温度値T間の対応関係を示すテーブルデータあるいは計算式によって換算することにより行われる。温度算出部23及び電圧算出部24における算出結果は、後述する過剰率算出部25の代替値演算部26に供給される。
 また、ECU15は、クランク角度センサ19の検出結果に基づいて内燃機関の回転速度NE及び角速度NETCを算出する回転速度演算部27と、温度算出部23からの温度値T、電圧算出部24からの電圧値VHG、及び回転速度演算部27からの角速度NETCに基づいて空気過剰率λを算出する過剰率算出部25とを備える。
 さらに、ECU15は、目標とする空気過剰率λcmdを触媒コンバータ11の触媒における貯蔵酸素量の推定値等に基づいて算出する目標値演算部28と、回転速度演算部27からの回転速度NE、及び吸気圧センサ7からの吸気管2内の圧力PMに基づいて基本噴射量BJを算出する基本噴射量演算部29と、過剰率算出部25により算出された空気過剰率λを目標空気過剰率λcmdに一致させるべく、基本噴射量演算部29が算出した基本燃料噴射量BJを補正するためのフィードバック係数kを求めるフィードバック係数演算部30と、フィードバック係数k及び基本噴射量BJに基づいて燃料噴射量Tiを算出するとともに、燃料噴射弁6を作動させる噴射量演算部31とを備える。この噴射量演算部31は、内燃機関の1回の燃焼のために供給される燃料噴射量Tiを捕捉する燃料噴射量捕捉部として機能する。
 フィードバック係数演算部30においては、空気過剰率λと目標空気過剰率λcmdとの偏差に基づいたPID制御が行われてフィードバック係数kが演算される。噴射量演算部31によりフィードバック係数k及び基本噴射量BJに基づいて算出される燃料噴射量Tiに基づき、これに対応する時間だけ、燃料噴射弁6が開弁される。而して、機関本体1のシリンダ燃焼室内には空気過剰率λと目標空気過剰率λcmdとの比較に基づいた上記PID制御のフィードバック係数kに応じた量の燃料が噴射される。
 過剰率算出部25は、温度算出部23からの電圧値VHG及び温度算出部23からの温度値Tに基づき、電圧値VHGを、その温度特性を補償しつつ空気過剰率に対してリニアライズ変換したデータLDを用いて排気の空気過剰率λを算出するものである。ただし、この算出は、電圧値VHGがリーン側の変換限界値(後述のリーン側閾値LREF)以下の場合に適用され、電圧値VHGがこの変換限界値より大きいときには、後述の別の方法で空気過剰率λが求められる。
 過剰率算出部25は、内燃機関のクランク角速度NETCに基づき、例えば特許06254633号公報に記載の方法で内燃機関のトルク値TQを算出するトルク演算部32と、上述のリニアライズ変換についての変換限界閾値を設定する限界閾値設定部33と、空気過剰率λの代替値Rを算出するのに必要なデータやテーブルを記憶する記憶部34と、代替値Rを算出する代替値演算部26とを備える。
 限界閾値設定部33は、変換限界閾値として、リーン側の変換限界域値であるリーン側閾値LREF及びリッチ側の変換限界値であるリッチ側閾値RREFを、電圧算出部24からの電圧値VHGについて設定する。ただし、チタニア型のセンサ素子12aは、温度が変化すると、出力値のダイナミックレンジ(センサ出力電圧の線形領域の最小値と最大値の各値)が変化する。このため、変換限界閾値は、温度算出部23からの温度値Tに応じて変更される。
 記憶部34は、代替値Rの算出に必要なデータとして、電圧算出部24からの電圧値VHGがリーン側閾値LREF以下のとき、燃料噴射弁6による燃料噴射の実行時間Ti1、トルク値TQ1、リーン側閾値LREFに関する空気過剰率λbを記憶する。
 代替値演算部26は、電圧値VHGがリーン側閾値LREFを超えているとき、直前の燃料噴射の実行時間をTi2、直前のトルク値をTQ2として、次式(1)により代替値Rを算出する。
 R=((Ti1÷Ti2)÷(TQ1÷TQ2))×λb   (1)
 そして、過剰率算出部25は、電圧値VHGがリーン側閾値LREFを超えている場合には、上述のリニアライズ変換したデータLDとしての空気過剰率λに代えて、代替値Rを排気の空気過剰率λとみなす。なお、以上の内燃機関の空燃比フィードバック制御については、特願2020-179511号において詳述されている。
 ECU15は、さらに、電圧算出部24を介して得られる酸素濃度センサ12の出力信号である電圧値VHGに基づいて、該電圧値VHGが理論空燃比レベルを渡過した回数をカウントする下流空燃比レベルカウント部35と、上述のトルク値TQ及び燃料噴射量Tiに基づいて排気ポート内での疑似的な空燃比レベルParLAMを設定する空燃比レベル設定部36と、空燃比レベルParLAMが理論空燃比レベルを渡過した回数をカウントする上流空燃比レベルカウント部37と、上流空燃比レベルカウント部37及び下流空燃比レベルカウント部35の各カウント値Count-Front及びCount-Rearに基づいて触媒コンバータ11における触媒の劣化を診断する触媒劣化診断部38とを備える。
 下流空燃比レベルカウント部35は、触媒コンバータ11より下流側の排気管10内の排気中における空燃比を検出する酸素濃度センサ12の出力信号である電圧値VHGが、理論空燃比レベルを渡過した回数をカウントする。
 空燃比レベル設定部36による空燃比レベルParLAMの取得は、上述のトルクTQ及び燃料噴射量Tiに基づき、次式(2)を用いて行うことができる。
 ParLAM=adjk×(TQ/Ti)-#1.0     (2)
 ここで、係数adjkは、この係数adjkを燃料噴射量Tiへの対応関係を付けて示すルックアップテーブルである換算係数テーブルTbの検索値である。
 図3は、空燃比レベルParLAMを取得するための空燃比レベル設定部36の制御モデルを示す。この制御モデル内では、図3において下側の入力In2から入力されるTi値に対応する係数adjkを、上記入力In2から入力されたTi値により上記換算係数テーブルTbで検索して取得し、これを、入力In1から入力されるトルクTQに基づき、演算器Caにおいて空燃比レベルParLAMのパラメータ(TQ/Ti)に乗じたうえで#1.0を減じ、空燃比レベルParLAMを算出している。この実施の形態では、ストイキ領域での運転では基本トルクと燃料噴射量は比例関係にあり、等価となることを利用しているため、空燃比レベルParLAMは、Lean(リーン;希薄)側であれば正の値、Rich(リッチ;濃い)側であれば負の値を取る。
 ただし、この制御モデルでは、トルクTQをTi値から算出した等価トルクで除するため、ゼロ割禁止処理を行う処理器Spと、分母が極小となったときのために上下限値のリミット処理を行う処理器Lpを追加している。すなわち、空燃比レベル設定部36は、上記ゼロ割禁止処理として、燃料噴射量Tiが所定値以下、例えば噴射時間がゼロ(燃料カット)である場合には、空燃比レベルParLAMを、理論空燃比レベルよりも大きい値、すなわちリーン側の空燃比レベルに強制的に設定する。
 触媒劣化診断部38による触媒の劣化診断は、上流空燃比レベルカウント部37のカウント値Count-Front、及び下流空燃比レベルカウント部35のカウント値Count-Rearに基づき、例えば次式(3)を用いて行われる。
 (Count-Front/Count-Rear)×100[%]≧Th          (3)
 ここで、Thは、触媒が有効に機能しているか否かの判断基準となる劣化判断閾値である。触媒コンバータ11の触媒が有効に機能している場合は、カウント値Count-Front>カウント値Count-Rearとなる。また、カウント値Count-Frontとカウント値Count-Rearとが一致する場合には、触媒内における排気の酸化還元反応が生じていない状態と言える。つまり、カウント値Count-FrontとCount-Rearの比率に基づいて触媒の劣化率がわかる。したがって、劣化判断閾値Thを適切に設定し、(Count-Front/Count-Rear)×100[%]の値が劣化判断閾値Th以上か否かに基づいて、触媒の劣化有無を診断することができる。
 ただし、空燃比レベルParLAM(≒トルク値TQ÷燃料噴射量Ti)が理論空燃比レベルを渡過した渡過回数をカウントするには、空燃比レベルParLAMがリッチ・リーンのいずれの側の値を有するかを逐次判定する必要がある。この逐次のリッチ・リーン判定に際し、渡過時の近傍で空燃比レベルParLAMがスパイクノイズ的に振舞うと、渡過回数を過剰にカウントする恐れがある。
 これを回避するためには、空燃比レベルParLAMが理論空燃比レベルを渡過したことが判定された場合でも、ただちにカウントはせず、渡過したことが確実であることが判明するまでカウントを保留する必要がある。この目的のために、渡過したことが判定された場合でも、ある程度の排気流量が触媒を通過するまで、リッチ・リーン判定に基づく渡過回数のカウントが保留される。
 具体的には、ECU15は、排気管10内に進入する排気ガス量の推定値である排気ガスボリュームGasVolと、この排気ガスボリュームGasVol及び上述の空燃比レベルParLAMから設定する排気体積Vthruと、該排気体積Vthruの積算から求められる積算排気体積GasVolSumとに基づいて、空燃比レベル設定部36により設定された空燃比レベルParLAMの現在値が、リッチ・リーン判定に使用できるものであるかどうかの選別を行うデータ選別部39をさらに有する。
 データ選別部39は、空燃比レベル設定部36が設定した空燃比レベルParLAMが理論空燃比レベルを渡過した時点で積算排気体積GasVolSumをゼロに初期化し、かつ、該初期化以降に積算排気体積GasVolSumに排気管10への排気体積Vthruを積算し、この積算された積算排気体積GasVolSumが所定値を超えない状態で前記初期値化が行われた場合には、設定された空燃比レベルParLAMの現在値を、空燃比レベルParLAMが理論空燃比レベルを渡過したかどうかの判定には使用しない不使用値として選別する。
 図4は、ECU15において触媒コンバータ11の触媒の劣化を診断する様子を示すタイミングチャートである。
 図4において、曲線40及び41は、それぞれ内燃機関のトルク値TQ及び燃料噴射量Tiの変化を示す。F_ParLAMは、Lean(#1)又はRich(#0)いずれかのフラグ値を有するフラグである。このフラグ値は、上記曲線40及び41のように変化するトルク値TQ及び燃料噴射量Tiから、空燃比レベル設定部36により上述の式(2)で得られる空燃比レベルParLAMが、理論空燃比レベルのリーン側又はリッチ側のいずれの値を有するかを判定し、この判定結果を2値化することによって得られる。
 ただし、このフラグF_ParLAMには、Lean又はRichのいずれのフラグ値を有するかの判定結果がスパイクノイズ的に振舞う区間T1やT2が存在する。このまま、上流空燃比レベルカウント部37で空燃比レベルParLAMが理論空燃比レベルを渡過した回数をカウントすると、上述のように、カウント値Count-Frontが、上記曲線40及び41から理解される実際の燃料噴射量Tiの振動数よりも過剰な値になる。これを防止するため、データ選別部39では、次に述べるようにして、上述の空燃比レベルParLAMについての選別が行われる。
 図4中のGasVolSumは、上述の排気体積Vthruを積算した積算排気体積である。図4のように、空燃比レベルParLAMが理論空燃比レベルを通過した各時点(フラグF_ParLAM参照)で積算排気体積GasVolSumは、ゼロに初期化され、該初期化以降に、積算排気体積GasVolSumへの排気体積Vthruの積算が開始される。
 なお、後述するように、排気体積Vthruは排気ガスボリュームGasVolに空燃比レベルParLAMを乗じて求められる(式(5))。したがって、この実施の形態で空燃比レベルParLAMがLean側(正の値)である場合には正方向に積算され、Rich(負の値)である場合には負方向に積算されてゆく。
 そして、積算排気体積GasVolSumが正方向に積算される際の閾値Lt又は負方向に積算される際の閾値Rtを超えない状態で前記初期値化が行われる場合には、空燃比レベルParLAMの現在値は、上流空燃比レベルカウント部37におけるカウントにおいて使用しないように選別される。
 具体的には、まず、簡易的な算出モデルを用いて排気ガスボリュームGasVolが求められる。この算出モデルでは、次式(4)により排気ガスボリュームGasVolが算出される。
 GasVol=Vbdc×(EgT/EgTbdc)×(TQ/maxTQ)×(NE/120)      (4)
 ここで、Vbdcは下死点(BDC:Bottom dead center)での排ガス容積であり、たとえば内燃機関のシリンダ内容積から設定される。EgTは触媒下流での排ガス温度(K)であり、EgTbdcは下死点(BDC)での排ガス温度(K)であり、これら排ガス温度(K)は、たとえば上述の温度算出部23からの温度値Tや排気管10の既知の諸元値等に基づいて推定される。maxTQは上述のトルク演算部32で算出されるトルクTQの最大値であり、NEは上述の内燃機関の回転速度である。
 そして、触媒を通過する排気体積Vthruが、次式(5)により算出される。
 Vthru=GasVol×ParLAM          (5)
 式(5)から諒解されるように、排気体積Vthruは上述の空燃比レベルParLAMのリーン側の「+」とリッチ側の「-」としての符号を継承する。したがって、排気体積Vthruの積算値である図4中の積算排気体積GasVolSumは、空燃比レベルParLAMがリーン側の「+」である場合には図4において上方向へと増加され、空燃比レベルParLAMがリッチ側の「-」である場合には図4において下方向へと減算されている。
 上述の空燃比レベルParLAMについての選別を行うために、図4のように、空燃比レベルParLAMが理論空燃比レベルを通過した時点(フラグF_ParLAM参照)で積算排気体積GasVolSumがゼロに初期化され、該初期化以降に排気体積Vthruの積算が開始される。そして、上述のように、積算排気体積GasVolSumが「+」側の閾値Lt又は「-」側の閾値Rtを超えない状態で前記ゼロに初期化が行われた場合には、その時点での空燃比レベルParLAMは、上流空燃比レベルカウント部37におけるカウントにおいて使用しないように選別される。
 この選別を行うために、積算値GasVolSumが閾値Lt又は閾値Rtに到達した時点で、それぞれ空燃比レベルParLAMの値がリーン側の値である場合には、その旨を示すフラグ値としてLean(#1)を設定し、リッチ側の値である場合には、その旨を示すフラグ値としてRich(#0)を設定する。これにより、図4中のフラグ信号F_λfrontが得られる。
 このフラグ信号F_λfrontに基づき、上流空燃比レベルカウント部37は、フラグ信号F_λfrontがLeanからRichへと変化する毎に、カウント値Count-Frontを、図4中の折線42で示されるように、#1ずつインクリメントする。これにより、スパイクノイズ的に振舞う上述の区間T1やT2における空燃比レベルParLAMについては、カウント値Count-Frontのカウントアップに寄与するのが防止され、空燃比レベルParLAMについての選別が達成されることになる。
 一方、これと並行して、下流空燃比レベルカウント部35は、図4中のVHGで示される酸素濃度センサ12の出力信号VHGに基づいて、出力信号VHGが理論空燃比レベルを渡過した回数をカウントする。
 すなわち、出力信号VHGが、空気過剰率λ=1.0以上のリーン側の電圧値である場合には、その旨を示すフラグ値としてLean(#1)を設定し、リッチ側の電圧値である場合には、その旨を示すフラグ値としてRich(#0)を設定する。これにより、図4中のフラグF_λrearが生成される。
 そして、このフラグ信号F_λrearがLeanからRichへと変化する毎に、カウント値Count-Rearを、図4中の折線43で示されるように、#1ずつインクリメントする。
 触媒劣化診断部38は、上流空燃比レベルカウント部37からのカウント値Count-Front及び下流空燃比レベルカウント部35からのカウント値Count-Rearに基づき、上述のように、式(3)を用いて触媒コンバータ11の触媒について劣化有無の判定を行うことができる。
 図5及び図6は、触媒劣化診断装置における空燃比レベル設定部36、データ選別部39、及び上流空燃比レベルカウント部37による上流側カウント処理を示す。なお、上流側カウント処理は、所定時間間隔を置いたタイミングごとに実施される。上流側カウント処理が開始されると、まず、空燃比レベル設定部36は、トルク演算部32からのトルク値TQ及び噴射量演算部31からの燃料噴射量Tiを取得する。また、このとき後述図7の下流側カウント処理が行われる(ステップS1)。次に、ステップS2では、燃料噴射量Tiが所定の下限値#TiMin以下であるか否かを判定する。
 ステップS2において燃料噴射量Tiが所定の下限値#TiMinよりも大である場合には、トルク値TQを燃料噴射量Tiにより除してトルク噴射量比TQ/Tiを取得する(ステップS3)。次に、ステップS4では、疑似的な空燃比レベルParLAMを、上述の式(2)を用いて取得する。
 なお、ステップS2において燃料噴射量Tiが所定の下限値#TiMin以下である場合には、上述のトルク値TQを燃料噴射量Tiにより除する演算処理は行われず、トルク噴射量比TQ/Tiの値として、あらかじめ定められたトルク噴射量比である#TQ/TiMAXの値が設定(ステップS5)され、疑似的な空燃比レベルParLAMにはあらかじめ定められた疑似的な空燃比レベルParLAMである#ParLAMMAXの値が設定される(ステップS6)。これにより、ゼロで除算することにより生じるエラーを回避することができる。なお、この実施の形態においては、#ParLAMMAXには空燃比がリーン側の値であることを示す正の値が設定されている。
 次に、ステップS7では、上述の式(4)を用いて算出された排気ガスボリュームGasVolの値を取得する。ステップS8では、排気体積Vthruを上述の式(5)を用いて算出する。ステップS9では、後述するフラグF_ParLAMの値をフラグF_ParLAMpreに設定する。
 ステップS10では、取得された空燃比レベルParLAMが、理論空燃比レベルのリーン側又はリッチ側の値かどうかを判定する。すなわち、空燃比レベルParLAMがリーン側の値であることを示す正の値である場合には、フラグF_ParLAMの値としてLean(=#1)を設定し、空燃比レベルParLAMがリッチ側の値であることを示す負の値である場合には、フラグF_ParLAMの値としてRich(=#0)を設定する。斯くして、図4に示されるようなフラグF_ParLAMが得られる。
 ステップS11では、積算排気体積GasVolSumが正方向に積算される際の閾値Lt及び、負方向に積算される際の閾値Rtを取得する。この実施の形態においては、閾値Lt及びRtは、たとえば内燃機関の回転速度値などに応じて動的に設定される、可変変数として取得される。
 ステップS12では、酸素濃度センサ12が排気熱やヒータ熱等によって充分に暖められた状態である、活性状態となっているか否かを判定する。この判定は、後述する活性フラグF_VHGACTが「1」(活性)であるか又は「0」(不活性)であるかによって行うことができる。ステップS12において、酸素濃度センサ12が不活性状態である場合、ステップS13に進んでフラグF_λfrontのフラグ値として上述のフラグF_ParLAMと同一のフラグ値を設定し、続く図6のステップS14において積算排気体積GasVolSumにゼロの値が設定され、上流側カウント処理が終了される。
 また、ステップS12において、酸素濃度センサ12が活性状態である場合は、ステップS15に進んで、上述のステップS9で取得されたフラグF_ParLAMpreと、ステップS10で取得されたフラグF_ParLAMとが同一の値であるか否かを判定する。ここで、フラグF_ParLAMpreとフラグF_ParLAMとが異なっている場合には、空燃比レベルParLAMが理論空燃比レベルを通過して空燃比レベルParLAMの符号(+又は-)が反転したことを示すので、続く図6のステップS14に進んで積算排気体積GasVolSumにゼロの値が設定され、上流側カウント処理が終了される。
 ステップS15において、フラグF_ParLAMpreとフラグF_ParLAMとが同一値である場合には、続く図6のステップS16に進み、積算排気体積GasVolSumにステップS8で取得された排気体積Vthruが加算(積算)される。続いてステップS17に進み、フラグF_ParLAMが#1(リーン側)であるか#0(リッチ側)であるかを判定する。ステップS17においてフラグF_ParLAMが#0(リッチ側)である場合には、ステップS18に進み、フラグF_λfrontが#1(リーン側)であるか#0(リッチ側)であるかを判定する。ここで、フラグF_λfrontが#1(リーン側)である場合にはさらにステップS19に進み、積算排気体積GasVolSumが上述(ステップS11)の閾値Rt以下であるか否かを確認する。積算排気体積GasVolSumが閾値Rt以下のマイナス値である場合には、ステップS20に進んでフラグF_λfrontを#0(リッチ側)に設定するとともに、続くステップS21でカウント値Count-Frontをインクリメントする。かくして上流側カウント処理が終了される。
 ステップS17においてフラグF_ParLAMが#1(リーン側)である場合には、ステップS22に進み、フラグF_λfrontが#1(リーン側)であるか#0(リッチ側)であるかを判定する。ステップS22においてフラグF_λfrontがリッチ側(#0)である場合には、ステップS23に進み、積算排気体積GasVolSumが上述(ステップS11)の閾値Lt以上であるか否かを確認する。積算排気体積GasVolSumが閾値Lt以上のプラス値である場合には、ステップS24に進んでフラグF_λfrontが「1」に設定され、ここでは、カウント値Count-Frontをインクリメントすることなく上流側カウント処理が終了される。
 図7は、触媒劣化診断装置の下流空燃比レベルカウント部35における下流側カウント処理を示す。この処理は、上述の上流側カウント処理と同じタイミングごとに実施される。下流側カウント処理が開始されると、まず、ステップS25において、フラグF_λrearの値をフラグF_λrearpreに設定する。酸素濃度センサ12の出力信号を、電圧算出部24を介し、電圧値VHGとして取得する(ステップS26)。また、温度算出部23を介し、酸素濃度センサ12の検出部(センサ素子12a)の温度Tを取得する(ステップS27)。
 次に、ステップS28において、酸素濃度センサ12が排気熱やヒータ熱等により暖められた後の状態である活性状態となっているか否かを判定する。ステップS28において、酸素濃度センサ12が不活性状態であると判定された場合、活性フラグF_VHGACTが「0」に設定され、ステップS29を介してステップS30に進み、このステップS30ではフラグF_λrearの値がゼロにリセットされ、これにて図7の処理が終了される。
 ステップS28において、酸素濃度センサ12が活性状態であると判定された場合は活性フラグF_VHGACTが「1」に設定され、ステップS29を介してステップS31に進み、電圧値VHGおよび検出部の温度Tに基づき、触媒下流の空気過剰率λrearを取得する。
 次に、ステップS32において、この触媒下流の空気過剰率λrearが理論空燃比レベル(空気過剰率λが#1.0のレベル)以上であるか否かを判定する。そして、理論空燃比レベル以上であると判定した場合には、ステップS33で、フラグF_λrearの値をLean(#1)に設定し、そのまま、カウント値Count-Rearをインクリメントすることなく図7の処理が終了される。
 ステップS32において、触媒下流の空気過剰率λrearが理論空燃比レベル未満と判定した場合には、ステップS34で、フラグF_λrearをRich(#0)に設定する。
 次に、ステップS35において、ステップS34で設定したフラグF_λrearの値が上述のステップS25で設定したフラグF_λrearpreの値と一致するか否か、すなわち、今回ステップS34で設定したフラグF_λrearの値がRich(#0)であるのに対して、前回の制御周期時点でフラグF_λrearに設定したフラグ値がLean(#1)であるのか否か(F_λrearがLean側からRich側に反転したか否か)を判定する。そして、フラグF_λrearpreとフラグF_λrearが相違しており、触媒下流の空気過剰率λrearがLean(#1)側からRich(#0)側に反転したと判定した場合には、ステップS36においてカウント値Count-Rearをインクリメントしてから図7の処理を終了し、フラグF_λrearpreとフラグF_λrearが一致し触媒下流の空気過剰率λrearがLean側からRich側に反転しなかったと判定した場合には、そのまま、カウント値Count-Rearをインクリメントすることなく図7の処理を終了する。
 かくして、上流空燃比レベルカウント部37がカウントするカウント値Count-Front及び下流空燃比レベルカウント部35がカウントするカウント値Count-Rearが取得されることにより、触媒劣化診断部38は上述の式(3)を用いて触媒の劣化を診断することができる。
 以上説明したように、本実施形態によれば、触媒コンバータ11より下流側の酸素濃度センサ12の出力信号が理論空燃比(空気過剰率λが#1.0)レベルを渡過した回数のカウント値Count-Rearと、排気ポート内での疑似的な空燃比レベルParLAMが理論空燃比レベルを渡過した回数のカウント値Count-Frontと、劣化判断閾値Thとに基づいて、触媒コンバータ11の劣化が診断される。このため、触媒コンバータ11における触媒の劣化度合いを、エミッションやドライバビリティに悪影響を及ぼすことなく、かつ装置コストの上昇や装置の複雑化などを招来することなく、1つの酸素濃度センサ12により診断することができる。
 また、空燃比レベル設定部36は、燃料噴射量Tiが所定の下限値#TiMin以下である場合には、空燃比レベルParLAMを、上述の式(2)での演算を介さずに、空燃比がリーン側の値であることを示す正の値が設定された所定値#ParLAMMAXに設定するので、燃料噴射弁6の開弁時間が例えばゼロ(燃料カット)になったとき、上述の式(2)での空燃比レベルParLAMの算出時にゼロの燃料噴射量TiでトルクTQを除算することによって生じるエラーを回避することができる。
 また、空燃比レベルParLAMが理論空燃比レベルを渡過したかどうかに基づいてカウント値Count-Frontをカウントするに際し、データ選別部39により、積算排気体積GasVolSumが所定の閾値LtまたはRtよりもゼロに近い値である場合には、空燃比レベルParLAM値を、理論空燃比レベルを渡過したかどうかの判定には使用しない不使用値として選別する。これにより、空燃比レベルParLAMが理論空燃比レベルを渡過する際にスパイクノイズ的に振舞うことによりカウント値Count-Frontを過剰にカウントアップするのを防止することができる。
 なお、本発明は、上述の実施形態に限定されず、適宜変形して実施することができる。例えば、この実施の形態においてカウント値Count-Front及びカウント値Count-Rearは、空気過剰率レベル又は触媒下流の空気過剰率がLean側からRich側に反転したと判定した場合に、各インクリメント(カウントアップ)が成されるように構成されているが、本発明はこれに限定されない。例えば、上記とは逆に、Rich側からLean側へと反転した時点でカウント値Count-Front及びカウント値Count-Rearの各インクリメントを行うようにしてもよい。
 1…機関本体、2…吸気管、3…スロットル弁、4…エアクリーナ、5…スロットルセンサ、6…燃料噴射弁、7…吸気圧センサ、8…吸気温センサ、9…ピストン、10…排気管、11…触媒コンバータ、12…酸素濃度センサ、12a…センサ素子(検出部)、12b…センサヒータ、13…点火プラグ、14…点火装置、15…ECU(電子制御ユニット)、17…冷却水温センサ、18…クランク軸、19…クランク角度センサ、19a…ロータ、19b…ピックアップ、20…大気圧センサ、22…ヒータ制御器、23…温度算出部、24…電圧算出部、25…過剰率算出部、26…代替値演算部、27…回転速度演算部、28…目標値演算部、29…基本噴射量演算部、30…フィードバック係数演算部、31…噴射量演算部、32…トルク演算部、33…限界閾値設定部、34…記憶部、35…下流空燃比レベルカウント部、36…空燃比レベル設定部、37…上流空燃比レベルカウント部、38…触媒劣化診断部、39…データ選別部、Ca…演算器、In1、In2…入力、Tb…換算係数テーブル、Lp、Sp…処理器。
 

Claims (3)

  1.  内燃機関の排気ポートに連なる排気管に介装された触媒コンバータより下流側の前記排気管内の排気中における酸素濃度を検出する酸素濃度センサの検出値に基づいて前記内燃機関の空燃比フィードバック制御を実行する該内燃機関に設けられ、前記触媒コンバータの触媒の劣化状況を診断する触媒劣化診断装置において、
     前記内燃機関のトルク値を算出するトルク演算部と、
     前記内燃機関の1回の燃焼のために供給される燃料噴射量を捕捉する燃料噴射量捕捉部と、
     前記酸素濃度センサの出力信号に基づいて、該出力信号が理論空燃比レベルを渡過した回数をカウントする下流空燃比レベルカウント部と、
     前記トルク値及び前記燃料噴射量に基づいて前記排気ポート内での空燃比レベルを疑似的に設定する空燃比レベル設定部と、
     前記空燃比レベルが理論空燃比レベルを渡過した回数をカウントする上流空燃比レベルカウント部と、
     前記上流空燃比レベルカウント部及び前記下流空燃比レベルカウント部のカウント値に基づいて前記触媒の劣化状況を診断する触媒劣化診断部とを備えることを特徴とする触媒劣化診断装置。
  2.  前記空燃比レベル設定部は、前記燃料噴射量が所定値以下である場合には、前記空燃比レベルを理論空燃比レベルよりも大きい値に設定するものであることを特徴とする請求項1に記載の触媒劣化診断装置。
  3.  前記排気管内に進入する排気体積を逐次設定する排気体積設定式と、該排気体積設定式の変数である排気ガスボリュームに基づいて、前記設定された空燃比レベルの選別を行うデータ選別部をさらに有し、
     前記データ選別部は、
     前記設定された空燃比レベルが理論空燃比レベルを渡過した時点で前記排気体積を初期化し、かつ、該初期化以降に前記排気管内に進入する前記排気体積を積算し、この積算された積算排気体積が所定値を超えない状態で前記初期化が行われた場合には、前記設定された空燃比レベルの現在値を、該空燃比レベルが理論空燃比レベルを渡過したかどうかの判定には使用しない不使用値として選別するものであることを特徴とする請求項1又は2に記載の触媒劣化診断装置。
PCT/JP2022/020740 2021-11-01 2022-05-18 触媒劣化診断装置 WO2023074030A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-178516 2021-11-01
JP2021178516A JP2023067362A (ja) 2021-11-01 2021-11-01 触媒劣化診断装置

Publications (1)

Publication Number Publication Date
WO2023074030A1 true WO2023074030A1 (ja) 2023-05-04

Family

ID=86159724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020740 WO2023074030A1 (ja) 2021-11-01 2022-05-18 触媒劣化診断装置

Country Status (2)

Country Link
JP (1) JP2023067362A (ja)
WO (1) WO2023074030A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288106A (ja) * 1992-04-09 1993-11-02 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
JPH06159048A (ja) * 1992-11-20 1994-06-07 Toyota Motor Corp 触媒劣化度検出装置
JP2002030922A (ja) * 2000-07-17 2002-01-31 Mitsubishi Motors Corp 排気浄化触媒の劣化状態診断装置
JP2002256856A (ja) * 2001-03-06 2002-09-11 Mitsubishi Motors Corp 排気浄化触媒の劣化検出装置
JP2003214240A (ja) * 2002-01-25 2003-07-30 Toyota Motor Corp 内燃機関の排気浄化装置
JP5800298B2 (ja) * 2011-10-07 2015-10-28 独立行政法人交通安全環境研究所 広域走行下における触媒劣化診断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288106A (ja) * 1992-04-09 1993-11-02 Nissan Motor Co Ltd 内燃機関の空燃比制御装置
JPH06159048A (ja) * 1992-11-20 1994-06-07 Toyota Motor Corp 触媒劣化度検出装置
JP2002030922A (ja) * 2000-07-17 2002-01-31 Mitsubishi Motors Corp 排気浄化触媒の劣化状態診断装置
JP2002256856A (ja) * 2001-03-06 2002-09-11 Mitsubishi Motors Corp 排気浄化触媒の劣化検出装置
JP2003214240A (ja) * 2002-01-25 2003-07-30 Toyota Motor Corp 内燃機関の排気浄化装置
JP5800298B2 (ja) * 2011-10-07 2015-10-28 独立行政法人交通安全環境研究所 広域走行下における触媒劣化診断方法

Also Published As

Publication number Publication date
JP2023067362A (ja) 2023-05-16

Similar Documents

Publication Publication Date Title
JP4130800B2 (ja) エンジンの制御装置
US7874285B2 (en) Method and device for monitoring an exhaust gas probe
US7103467B2 (en) Device for detecting response characteristics of sensor
JP2893308B2 (ja) 内燃機関の空燃比制御装置
US7499792B2 (en) Diagnostic method for an exhaust gas probe and diagnostic device for an exhaust gas probe
US7681565B2 (en) Air/fuel ratio control system for internal combustion engine
KR101369788B1 (ko) 배기 가스 프로브 모니터링 장치 및 방법
JP4320778B2 (ja) 空燃比センサの異常診断装置
US7962277B2 (en) Method and device for operating an internal combustion engine
JP5765350B2 (ja) 多気筒内燃機関の気筒間空燃比インバランス検出装置
US7389683B2 (en) Method and device for detecting a combustion misfire
JP4193869B2 (ja) 排ガス浄化触媒の劣化診断装置
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
US6944531B2 (en) Air flow sensor failure determination apparatus and method
US7894972B2 (en) Method and device for operating an internal combustion engine
JP2004069457A (ja) 空燃比検出装置の劣化検出装置
US5956940A (en) Method and apparatus for monitoring deterioration of internal combustion engine exhaust gas purifier
JP4129221B2 (ja) エンジンの制御装置
JP2008185035A (ja) エンジンの制御装置
WO2023074030A1 (ja) 触媒劣化診断装置
JPH08218917A (ja) エンジン制御装置
JP2008180225A (ja) エンジンの制御装置
JP2014181650A (ja) 多気筒型内燃機関の異常検出装置
JPH07293315A (ja) 空燃比検出方法
US20120116644A1 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection apparatus for multi-cylinder internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE