WO2023072673A1 - Method for switching a composite pane comprising an electrochromic functional element - Google Patents

Method for switching a composite pane comprising an electrochromic functional element Download PDF

Info

Publication number
WO2023072673A1
WO2023072673A1 PCT/EP2022/078912 EP2022078912W WO2023072673A1 WO 2023072673 A1 WO2023072673 A1 WO 2023072673A1 EP 2022078912 W EP2022078912 W EP 2022078912W WO 2023072673 A1 WO2023072673 A1 WO 2023072673A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface electrode
functional element
pane
voltage
pdlc
Prior art date
Application number
PCT/EP2022/078912
Other languages
German (de)
French (fr)
Inventor
Michael Labrot
Florence JACQUES
Laurent Maillaud
Adil JAAFAR
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CN202280005526.1A priority Critical patent/CN116368021A/en
Publication of WO2023072673A1 publication Critical patent/WO2023072673A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/1011Properties of the bulk of a glass sheet having predetermined tint or excitation purity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10183Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions
    • B32B17/10192Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions patterned in the form of columns or grids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10201Dielectric coatings
    • B32B17/10211Doped dielectric layer, electrically conductive, e.g. SnO2:F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10247Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons
    • B32B17/10256Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons created by printing techniques
    • B32B17/10266Laminated safety glass or glazing containing decorations or patterns for aesthetic reasons created by printing techniques on glass pane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • B32B17/10302Edge sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10348Specific parts of the laminated safety glass or glazing being colored or tinted comprising an obscuration band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10504Liquid crystal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • B32B17/10513Electrochromic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • E06B3/6715Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light
    • E06B3/6722Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light specially adapted for increased thermal insulation or for controlled passage of light with adjustable passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4023Coloured on the layer surface, e.g. ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • the invention relates to a method for switching a composite pane with an electrochromic functional element and such a composite pane.
  • vehicle glazing in which a sun visor is integrated in the form of a functional element with electrically controllable optical properties.
  • the functional elements are usually multi-layer foils that are laminated into a composite pane or glued to it.
  • These multilayer films generally include an active layer between two surface electrodes, with the arrangement usually being stabilized by carrier films.
  • the transmission properties of the active layer can be changed by applying a voltage to the active layer via the surface electrodes.
  • the driver can control the transmission behavior of the window himself in relation to solar radiation. This means that conventional mechanical sun visors can be dispensed with.
  • Typical electrically controllable functional elements contain, for example, electrochromic layer structures or suspended particle device (SPD) foils.
  • SPD suspended particle device
  • Other possible functional elements for the realization of an electrically controllable sun protection are so-called PDLC functional elements (polymer dispersed liquid crystal).
  • Their active layer contains liquid crystals embedded in a polymer matrix. If no voltage is applied, the liquid crystals are aligned in a disorderly manner, which leads to strong scattering of the light passing through the active layer. If a voltage is applied to the surface electrodes, the liquid crystals align in a common direction and the transmission of light through the active layer is increased.
  • the PDLC The functional element works less by reducing the overall transmission than by increasing the scatter in order to ensure glare protection. Other types of functional elements are therefore more suitable for ensuring a reduction in transmission.
  • Electrochromic functional elements advantageously reduce the transmission through the glazing and have a bluish coloring which is regarded as aesthetic, particularly in the field of automotive applications.
  • Electrochromic functional elements comprise at least one electrochemically active layer capable of reversibly storing charges. The oxidation states in the stored and stored state differ in their coloring, with one of these states being transparent. The storage reaction can be controlled via the externally applied potential difference.
  • the basic structure of the electrochromic glazing thus comprises at least one electrochromic material, such as tungsten oxide, which is in contact with both a surface electrode and a charge source, such as an ion-conductive electrolyte.
  • the electrochromic layer structure contains a counter-electrode, which is also capable of reversibly storing cations and is in contact with the ion-conductive electrolyte, as well as a further surface electrode which is connected to the counter-electrode.
  • the surface electrodes are connected to an external voltage source, which allows the voltage applied to the active layer to be regulated.
  • the migration and storage of ions takes a certain amount of time, so that the switching process of electrochromic functional elements is comparatively slow. This leads to impatience on the part of the user and possibly multiple actuation of the controls initiating the shifting process.
  • CN 212873140 U describes glazing comprising an electrochromic functional element and a PDLC functional element.
  • the present invention is therefore based on the object of making available a method that provides an improved and visually appealing switching process for a composite pane with an electrochromic functional element, and to provide such a composite pane.
  • the object of the present invention is solved by a method according to independent claim 1 .
  • Preferred embodiments emerge from the dependent claims.
  • the invention relates to a method for switching a laminated pane from a first transparent state to a second, more darkened state.
  • the composite pane comprises at least a first pane and a second pane, which are connected to one another via a thermoplastic intermediate layer, with an electrochromic functional element and a PDLC functional element being embedded in the intermediate layer.
  • the electrochromic functional element and the PDLC functional element have electrically switchable optical properties.
  • the functional elements each comprise an active layer which has controllable optical properties and overlap one another at least in sections.
  • Overlapping in sections means that in at least one partial area of the laminated pane, the light passing through the pane first passes through one functional element and then through the other functional element.
  • the active layers contain an active substance whose optical properties can be changed depending on the voltage applied to the functional element.
  • the active layer is an electrochromic layer
  • the active layer of the PDLC device is a PDLC layer.
  • the electrochromic functional element comprises a first surface electrode and a second surface electrode, between which the electrochromic layer is arranged
  • the PDLC functional element comprises a third surface electrode and a fourth surface electrode, between which the PDLC layer is located.
  • the optical properties of the electrochromic layer are thus controlled by applying a voltage between the first and the second surface electrode and the optical properties of the PDLC layer by applying a voltage between the third and the fourth surface electrode.
  • the method according to the invention comprises at least the steps of a) applying a voltage of 0 V between the third surface electrode and the fourth surface electrode, b) applying an operating voltage U2 between the first surface electrode and the second surface electrode, c) waiting for at least 2 seconds, d) increasing the voltage between the third surface electrode and the fourth surface electrode at a rate of 0.5 V/s to 3 V/s up to the operating voltage Ui of the PDLC functional element, e) periodically measuring the no-load voltage present between the first flat electrode and the second flat electrode and comparing it with a nominal value for the no-load voltage, f) lowering the voltage U2 present between the first flat electrode and the second flat electrode to a holding voltage UH, provided that the nominal value of the no-load voltage is reached , otherwise periodic repetition of step e) until the target value of the no-load voltage is reached.
  • step a) a voltage of 0 V is applied between the third surface electrode and the fourth surface electrode. This means that the voltage is no longer applied to the PDLC layer. In other words, the PDLC functional element is disabled. If no voltage is applied to the PDLC layer, the alignment of the liquid crystals contained in the layer is lost in the electric field and the liquid crystals no longer have a preferred direction. As a result, the transparency of the laminated pane decreases while the opacity of the laminated pane increases.
  • the clouding of the PDLC functional element takes place shortly after the PDLC functional element is switched off, for example the switching process of the PDLC functional element visible to the user begins within less than 2 seconds, preferably within less than 1 second. In this way, the user can see that the switching process of the laminated pane has been initiated.
  • step b which takes place at the same time as or after step a)
  • an operating voltage U2 is applied between the first surface electrode and the second surface electrode. This initiates the switching process of the electrochromic functional element.
  • the switching process of the electrochromic functional element takes some time and is therefore not immediately noticeable. For this reason, the method is paused for at least 2 seconds in step c).
  • step d the voltage between the third surface electrode and the fourth surface electrode is increased at a rate of 0.5 V/s to 3 V/s until the operating voltage Ui of the PDLC functional element is reached. Accordingly, at the PDLC functional element, a voltage applied, which causes an alignment of the liquid crystals in the electric field. The voltage is increased starting from 0 V (starting value from step a)) at the stated speed. This slow, continuous increase in voltage results in a slow and continuous switching of the PDLC functional element, which is noticeable as a slow, continuous decrease in the haze of the bonded disk.
  • the no-load voltage present between the first flat electrode and the second flat electrode is periodically measured and compared with a target value of the no-load voltage. If the target value of the no-load voltage is reached, this is an indication that the switching process of the electrochromic functional element has been completely completed.
  • the open circuit voltage is measured periodically in step e), which occurs after and/or during step d). In this way, it is determined promptly that complete switching of the electrochromic functional element has been achieved. Exceeding the target value of the no-load voltage for a longer period of time should be avoided in order to ensure the longest possible service life of the electrochromic functional element.
  • step f) of the method follows.
  • step f) after the target value of the no-load voltage of the electrochromic functional element has been reached, the voltage U2 applied between the first surface electrode and the second surface electrode is lowered to a holding voltage UH.
  • the operating voltage describes the voltage that must be applied to the surface electrodes of a functional element in order to convert the functional element from one optical state to another optical state.
  • the end states are considered in each case, ie the most transparent state that the functional element can achieve as one optical state and the most tinted or clouded state that can be achieved, depending on the type of functional element, as the other optical state.
  • the operating voltage corresponds to the maximum voltage that is applied between the surface electrodes.
  • the operating voltage Ui is the voltage that must be applied to the PDLC functional element in order to convert it from a voltage-free clouded state to a transparent state.
  • the transition from The transparent state of the PDLC element to an opaque state is achieved by disconnecting the PDLC functional element from the voltage source.
  • the operating voltage of the electrochromic functional element which must be applied between the first surface electrode and the second surface electrode in order to convert the electrochromic functional element from a transparent state to a tinted final state, is referred to as the operating voltage U2.
  • the size of the operating voltages Ui and U2 depends on the design of the functional elements. Typical operating voltages are between 30 V and 300 V, preferably between 50 V and 240 V, particularly preferably between 50 V and 150 V.
  • the voltage that is to be applied between the first surface electrode and the second surface electrode in order to keep the electrochromic functional element in a tinted optical state is described as the holding voltage.
  • the holding voltage Depending on the type of functional element, a generally very slow brightening and a corresponding transition into the transparent state can take place without applying a holding voltage. This is avoided by applying the holding voltage.
  • a holding voltage can also be dispensed with, this being 0 V.
  • the open-circuit voltage is the voltage that can be measured between the surface electrodes of the electrochromic functional element, ie between the first surface electrode and the second surface electrode.
  • the oxidation states of the ions migrating in the electric field change, as a result of which this darkening occurs.
  • the operating voltage applied between the first flat electrode and the second flat electrode is briefly interrupted, the no-load voltage is measured and the operating voltage is then applied again in order to continue the switching process.
  • Methods for measuring the no-load voltage and corresponding measuring devices are known to those skilled in the art and are commercially available.
  • a voltmeter can be integrated directly into a control unit for controlling the switching process of the laminated pane.
  • Step a) of the method is preferably initiated by a user operating an operating element, for example a switch.
  • a control element can be provided within the laminated pane itself or externally, for example integrated into other control elements of a motor vehicle.
  • the operating element is connected to a control unit, which then initiates the switching process of the laminated pane according to steps a) to f).
  • step a) of the method is initiated automatically, for example as a function of environmental influences such as the intensity of solar radiation or the position of the sun.
  • a measuring unit that monitors these environmental influences is connected to a control unit that initiates the switching process according to steps a) to f) depending on the measured values.
  • step c) is preferably paused for at least 5 seconds, particularly preferably for 5 seconds to 20 seconds, in particular 8 seconds to 15 seconds, for example 10 seconds. This has proven to be advantageous with regard to a visually appealing overall switching process of the laminated pane.
  • the voltage between the third surface electrode and the fourth surface electrode is preferably increased at a speed of 0.5 V/s to 2 V/s, particularly preferably at a speed of 0.5 V/s to 1.5 V/s. s increased.
  • This speed has proven to be particularly advantageous for adapting the duration of the switching process of the PDLC functional element to the duration of the switching process of the electrochromic functional element and thus achieving a course of the switching process of the laminated pane that is particularly appealing to the viewer.
  • the open-circuit voltage is preferably measured in step e) at a time interval of 2 seconds to 20 seconds, particularly preferably 3 seconds to 15 seconds, in particular 3 seconds to 10 seconds, this time segment corresponding to a period of the periodic measurement process.
  • step e) already takes place during step d).
  • step d) is advantageous in order to be able to modify the voltage increase occurring according to step d) in the voltage between the third surface electrode and the fourth surface electrode as a function of the no-load voltage measured in step e) between the first surface electrode and the second surface electrode.
  • step e) it is possible to adapt the speed of the switching process of the PDLC functional element as a function of the speed of the switching process of the electrochromic functional element, which can be determined via the difference between the desired value and the actual value of the no-load voltage.
  • a PDLC functional element and an electrochromic functional element are switched simultaneously in such a way that an optically appealing overall switching process of the laminated pane comprising these functional elements is produced.
  • the operating voltage Ui is present at the PDLC functional element, ie the PDLC functional element is in a transparent state.
  • the holding voltage UH is applied to the electrochromic functional element, which results in the electrochromic functional element being kept in the darkened state into which it was converted by applying the operating voltage U2 in step b).
  • the voltage present between the third surface electrode and the fourth surface electrode is reduced to 0V after step f), the PDLC functional element is therefore deactivated and thus becomes cloudy.
  • the laminated pane in a darkened state with a high degree of opacity. This additional opacity is advantageous if the user of the composite pane wants to completely prevent the view through the pane in the darkened state Z2 of the composite pane. If clouding of the laminated pane in the darkened state Z2 is desired, this is preferably initiated during the process.
  • Such clouding of the laminated pane preferably takes place by deactivating the PDLC functional element as soon as the open-circuit voltage measured in step e) has reached at least 95% of the setpoint value of the open-circuit voltage.
  • the voltage between the third surface electrode and the fourth surface electrode is reduced at a rate of 3 V/s to 15 V/s down to 0 V as soon as the open-circuit voltage measured between the first surface electrode and the second surface electrode is at least 80% in step e). , has preferably reached at least 90% of the target value of the no-load voltage. In this way, a visually particularly appealing switching process is achieved.
  • step f) is followed by a switching process from the darker second state (Z2) back to the first, more transparent state (Z1).
  • this switching process can take place through manual operation of a button by a user, or it can be controlled automatically as a function of environmental factors.
  • At least the following steps are carried out to switch the laminated pane from the darker second state Z2 back to the first transparent state Z1: g) application of the operating voltage Ui of the PDLC functional element between the third surface electrode and the fourth surface electrode, h) application of the operating voltage U3 of the electrochromic functional element between the first surface electrode and the second surface electrode.
  • step g) consists of maintaining this voltage.
  • an operating voltage U3 is applied to the electrochromic functional element between the first surface electrode and the second surface electrode.
  • the operating voltage U3 is the voltage that is required to convert the electrochromic functional element from a tinted, darkened state to a transparent state.
  • the magnitude of the operating voltage U3 generally corresponds to the magnitude of the operating voltage U2, with the two voltages having opposite signs. Accordingly, the polarity of the surface electrodes of the electrochromic functional element must be reversed in order to convert the electrochromic functional element back into the transparent state.
  • the electrochromic functional element and the PDLC functional element are both in a transparent state, as a result of which the laminated pane reaches its first more transparent state (Z1).
  • the first, more transparent state Z1 of the laminated pane has an increased transmission of light in the visible range of the spectrum compared to the second, darker state Z2 of the laminated pane.
  • the laminated pane preferably has a transmission of at least 20% of the light im visible range of the light spectrum, while the laminated pane in the darker second state Z2 has a transmission of at most 10% of the light in the visible range of the light spectrum.
  • the invention also relates to a laminated pane with a first, more transparent state and a second, more darkened state.
  • the features described for the laminated pane also apply to the method according to the invention and vice versa.
  • the composite pane comprises at least a first pane and a second pane, which are connected to one another via a thermoplastic intermediate layer, with an electrochromic functional element and a PDLC functional element being embedded in the intermediate layer.
  • the laminated pane thus has at least two functional elements which are attached essentially congruently with one another and each have an active layer.
  • the optical condition of the laminated pane is thus determined by the optical condition of these two functional elements. In the first, more transparent state of the laminated pane, the PDLC functional element and the electrochromic functional element are in a transparent state.
  • the electrochromic functional element In the second, darker state of the laminated pane, the electrochromic functional element is in a tinted state, while the PDLC functional element can be in a transparent or opaque state, at the user's choice.
  • the active layer of the electrochromic functional element is an electrochromic layer which is arranged between a first surface electrode and a second surface electrode, the optical state of the functional element being variable by applying a voltage to these surface electrodes.
  • the PDLC functional element has a PDLC layer as the active layer, which is arranged between a third surface electrode and a fourth surface electrode.
  • the functional elements have electrically controllable optical properties that can be regulated as a function of the voltage applied to the adjacent surface electrodes.
  • the PDLC functional element (polymer dispersed liquid crystal) has an active layer that contains liquid crystals embedded in a polymer matrix. If no voltage is applied to the surface electrodes, the liquid crystals are aligned in a disorderly manner, which leads to strong scattering of the light passing through the active layer. If a voltage is applied to the surface electrodes, the liquid crystals align themselves in a common direction and the transmission of light through the active layer is increased.
  • a functional element is known, for example, from DE 102008026339 A1. Accordingly, the active substance of a PDLC functional element is liquid crystals, which are dispersed in the form of liquid crystal droplets in a matrix, in this case a polymeric matrix. The polymer matrix and the liquid crystal droplets dispersed therein together form the active layer.
  • the active layer of the functional element is an electrochemically active layer.
  • the transmission of visible light depends on the degree of incorporation of ions in the active layer, with the ions being provided, for example, by an ion storage layer between the active layer and a surface electrode.
  • the transmission can be influenced by the voltage applied to the surface electrodes, which causes the ions to migrate.
  • Suitable functional layers contain, for example, at least tungsten oxide or vanadium oxide.
  • Electrochromic functional elements are known, for example, from WO 2012007334 A1, US 20120026573 A1, WO 2010147494 A1 and EP 1862849 A1.
  • the laminated pane according to the invention comprises at least one electrochromic functional element and one PDLC functional element, each comprising an active layer between two surface electrodes.
  • the active layers have the controllable optical properties, which can be controlled via the voltage applied to the surface electrodes.
  • the surface electrodes and the active layers are typically arranged essentially parallel to one another.
  • the surface electrodes can be electrically connected to an external voltage source in a manner known per se.
  • the electrical contact can be implemented by suitable connecting cables, for example foil conductors, which are optionally connected to the surface electrodes via so-called bus bars, for example strips of an electrically conductive material or electrically conductive imprints.
  • the surface electrodes are preferably each applied to a carrier film adjacent to the surface electrode.
  • the first surface electrode is arranged on a first carrier foil, the second surface electrode on a second carrier foil, the third surface electrode on a third carrier foil and the fourth surface electrode on a fourth surface electrode.
  • the layer sequence within both functional elements is such that the surface electrodes are applied to the surface of the carrier film facing the respective active layer.
  • the functional elements can thus be used in the production process in the form of a multi-layer film made of carrier films, surface electrodes and an active layer to be provided.
  • the electrochromic functional element comprises, in this order, the first carrier film, the first surface electrode, the electrochromic layer, the second surface electrode and the second carrier film.
  • the PDLC functional element comprises a third carrier film, the third surface electrode, the PDLC layer, the fourth surface electrode and the fourth carrier film.
  • the carrier foils preferably contain at least one polymer which does not melt completely in the autoclave process and has a melting point above 150.degree. C., preferably 180.degree.
  • the carrier films particularly preferably comprise polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the first, the second, the third and the fourth carrier film consist of a PET film.
  • the carrier foils are preferably transparent, but can also be tinted.
  • the thickness of the carrier films is preferably from 0.025 mm to 0.400 mm, in particular from 0.050 mm to 0.200 mm.
  • the surface electrodes are preferably arranged on a surface of the carrier film, that is to say on exactly one of the two sides of the carrier film (ie on its front side or its back side). In this case, the carrier foils are aligned in the layer stack of the multilayer foil in such a way that the surface electrodes are arranged adjacent to the active layers.
  • the films can also have different thicknesses and compositions within the
  • the carrier foils are preferably designed as a single continuous foil in the area of the entire functional element. As a result, a high optical product quality can be achieved. In contrast to this, in a functional element that is produced from a plurality of multi-layer films laid one on top of the other at a cut edge, the cut edge remains visible even after the functional element has been laminated in a pane.
  • Each flat electrode is preferably electrically conductively contacted with at least one bus bar.
  • the surface electrodes are electrically connected to an external voltage source in a manner known per se.
  • the electrical contact is realized by suitable connecting cables, for example foil conductors, which are preferably connected to the surface electrodes via busbars.
  • the surface electrodes are preferably in the form of transparent, electrically conductive layers.
  • the surface electrodes preferably contain at least one metal, a metal alloy or a transparent conducting oxide (TCO).
  • TCO transparent conducting oxide
  • the surface electrodes can, for example, be silver, gold, copper, nickel, chromium, tungsten, Indium tin oxide (ITO), gallium-doped or aluminum-doped zinc oxide and/or fluorine-doped or antimony-doped tin oxide.
  • the surface electrodes preferably have a thickness of 10 nm to 2 ⁇ m, particularly preferably from 20 nm to 1 ⁇ m, very particularly preferably from 30 nm to 500 nm.
  • the functional elements in the form of multilayer films can have other layers known per se in addition to the respective active layer and the surface electrodes, for example barrier layers, blocking layers, antireflection layers, protective layers and/or smoothing layers.
  • the functional elements are embedded in the thermoplastic intermediate layer of the laminated pane.
  • the thermoplastic intermediate layer preferably comprises at least one first thermoplastic composite film, at least one second thermoplastic composite film and at least one third thermoplastic composite film.
  • the functional elements are arranged at least in sections between these composite films.
  • the dimensions of the electrochromic functional element and the PDLC functional element can be identical or different, with the electrochromic functional element and the PDLC functional element overlapping at least in sections. In this case, a projection of the PDLC functional element in the plane of the electrochromic functional element is congruent with the electrochromic functional element in at least a partial area and vice versa.
  • the first, second, and third thermoplastic composite sheets typically have the same dimensions as the first and second panes.
  • the thermoplastic intermediate layer preferably comprises a first thermoplastic composite film that connects one of the functional elements to the first pane, a second thermoplastic composite film that connects the other functional element to the second pane, and a third thermoplastic composite film that connects one of the functional elements to the other functional element .
  • the first thermoplastic composite film connects the PDLC functional element to the first pane
  • the second thermoplastic composite film connects the electrochromic functional element to the second pane
  • the third thermoplastic composite film connects the PDLC functional element and the electrochromic functional element to one another.
  • An arrangement of the PDLC functional element adjacent to the second pane and the electrochromic functional element adjacent to the first pane is also possible.
  • the thermoplastic intermediate layer is formed by at least the first, second and third thermoplastic composite film is formed, which are arranged flat on top of each other and are laminated together, with the functional elements being inserted between the three layers.
  • the areas of the composite foils that overlap with the functional elements then form the areas that connect the functional element to the panes.
  • the thermoplastic composite films are in direct contact with one another, they can fuse during lamination in such a way that the two original layers may no longer be recognizable and instead there is a homogeneous intermediate layer.
  • the first thermoplastic composite film and the second thermoplastic composite film and optionally also other thermoplastic composite films preferably contain at least polyvinyl butyral (PVB), ethylene vinyl acetate (EVA) and/or polyurethane (PU), particularly preferably PVB.
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • PU polyurethane
  • the thickness of the first and the second thermoplastic composite film is preferably between 0.2 mm and 2 mm, particularly preferably between 0.3 mm and 1 mm, in particular from 0.3 mm to 0.8 mm, for example 0.38 mm or 0.76mm
  • the thickness of the third thermoplastic composite film is preferably between 25 ⁇ m and 200 ⁇ m, particularly preferably between 25 ⁇ m and 75 ⁇ m, for example 50 ⁇ m.
  • the first thermoplastic composite film and the second thermoplastic composite film each have a thickness of 0.38 mm, while the third thermoplastic composite film is 50 ⁇ m thick. This is advantageous in order on the one hand to achieve a secure connection of the functional elements and the panes to one another and on the other hand to achieve the smallest possible thickness of the thermoplastic intermediate layer.
  • thermoplastic composite film can be formed, for example, from a single thermoplastic film.
  • a thermoplastic composite film can also be formed from sections of different thermoplastic films whose side edges are placed against one another.
  • further thermoplastic composite films can also be present. If required, these can also be used to embed further films comprising functional layers, for example infrared-reflecting layers, UV-filtering layers or acoustically dampening layers.
  • functional layers for example infrared-reflecting layers, UV-filtering layers or acoustically dampening layers.
  • at least one of the functional elements, preferably both functional elements is surrounded all around by a thermoplastic frame film.
  • the at least one thermoplastic frame film surrounds the functional element in the form of a frame along the peripheral edge of the functional element and has approximately the same thickness as the functional element. Local thickness differences of the laminated pane, which are introduced by locally limited functional elements, are compensated for by such a frame film, so that glass breakage during lamination can be avoided.
  • the thermoplastic frame foils can be formed by thermoplastic composite foils, in which the recess has been introduced by cutting.
  • the material of the thermoplastic frame films corresponds to the materials mentioned for the thermoplastic composite films.
  • the peripheral edge of the functional element is completely or partially provided with an edge seal.
  • This can be placed around the open edge of the functional element in the form of an adhesive tape, for example, or be implemented by blocking films placed on both sides in the edge region of the functional element.
  • the edge sealing prevents plasticizers from diffusing from the thermoplastic composite films into the active layer of the functional element.
  • the first, second, and/or third thermoplastic composite sheet is tinted or colored.
  • the transmission of this range in the visible spectral range is therefore reduced compared to a layer that is not tinted or colored.
  • the tinted/colored area of the thermoplastic composite films thus reduces the transmission of the composite pane.
  • the aesthetic appeal of the PDLC device is improved because the tinting results in a more neutral appearance that is more pleasing to the viewer.
  • the tinted or colored area can be homogeneously colored or tinted, ie have a location-independent transmission.
  • the tint or coloring can also be inhomogeneous; in particular, a transmission curve can be realized.
  • a preferred sequence of layers of the laminated pane according to the invention comprises at least one above the other in this order
  • thermoplastic composite film
  • a second carrier film, and the PDLC functional element in this order includes one above the other
  • first disk and second disk arbitrarily describe two different disks.
  • the first pane can be referred to as an outer pane and the second pane as an inner pane.
  • the inner pane in the context of the invention refers to the pane (second pane) facing the interior (vehicle interior).
  • the outer pane refers to the pane facing the outer environment (first pane).
  • the invention is not restricted to this.
  • At least one of the functional elements is divided into segments by dividing lines, also referred to as isolation lines.
  • the separating lines are introduced in particular into the surface electrodes, so that the segments of the surface electrode are electrically insulated from one another.
  • At least one of the surface electrodes has at least one dividing line which divides the surface electrode into at least two segments whose electrically controllable optical properties can be switched independently of one another.
  • the individual segments are connected to the voltage source independently of one another, so that they can be controlled separately. For example, different areas of the functional elements can be switched independently.
  • the dividing lines and the segments are particularly preferably arranged horizontally in a motor vehicle roof window in the installed position, with the dividing lines between opposite doors of the motor vehicle running essentially parallel to the front edge of the roof.
  • the term "horizontal” is to be interpreted broadly here and designates a direction of propagation that runs between the side edges of the vehicle in the installed position.
  • the dividing lines do not necessarily have to be straight, but can also be slightly curved, preferably adapted to any bending of the edges of the laminated pane. Of course, vertical dividing lines are also conceivable.
  • the dividing lines have, for example, a width of 5 ⁇ m to 500 ⁇ m, in particular 20 ⁇ m to 200 ⁇ m.
  • the width of the segments ie the distance between adjacent dividing lines, can be suitably selected by a person skilled in the art according to the requirements in the individual case.
  • the separating lines can be introduced by laser ablation, mechanical cutting or etching during the production of the functional element.
  • Already laminated multi-layer foils can also be subsequently segmented using laser ablation.
  • the functional elements can also have recesses or holes, for example in the area of so-called sensor windows or camera windows. These areas are intended to be equipped with sensors or cameras whose function would be impaired by controllable functional elements in the beam path, such as rain sensors.
  • the functional elements are preferably arranged over the entire surface of the laminated pane, minus a peripheral edge area with a width of, for example, 2 mm to 20 mm.
  • the functional elements are thus encapsulated within the intermediate layer and protected from contact with the surrounding atmosphere and from corrosion.
  • the electrical control of the functional elements is carried out, for example, by means of switches, knobs or sliders that are in the vehicle's dashboard or directly in the Composite pane are integrated.
  • a control button can also be integrated into the windshield and/or into the roof surface of a motor vehicle, for example a capacitive button.
  • the functional elements can be controlled by non-contact methods, for example by recognizing gestures, or depending on the state of the pupil or eyelid determined by a camera and suitable evaluation electronics.
  • a control as a function of the state of the eyelid or pupil comes into consideration here in particular in the case of functional elements such as sun visors on a windshield.
  • the functional element can be controlled by sensors which detect incident light on the pane.
  • the first pane and the second pane are preferably made of glass, particularly preferably of soda-lime glass, as is customary for window panes.
  • the panes can also be made from other types of glass, for example quartz glass, borosilicate glass or alumino-silicate glass, or from rigid, clear plastics, for example polycarbonate or polymethyl methacrylate.
  • the first pane and/or the second pane may be thermally or chemically prestressed.
  • thin inner panes with a thickness of less than or equal to 1 mm are preferably made from chemically toughened alumino-silicate glass.
  • the discs can be clear, or even tinted or tinted. When used as a windshield, however, sufficient light transmission must be ensured in the central viewing area, preferably at least 70% in the main viewing area A in accordance with ECE-R43.
  • the first pane, the second pane and/or the thermoplastic intermediate layer can have other suitable coatings known per se, for example anti-reflection coatings, non-stick coatings, anti-scratch coatings, photocatalytic coatings or sun protection coatings or low-E coatings.
  • the thickness of the first pane and the second pane can vary widely and can thus be adapted to the requirements in the individual case.
  • the first pane and the second pane preferably have thicknesses of 0.5 mm to 5 mm, particularly preferably 1 mm to 3 mm.
  • the laminated pane can be, for example, the windshield or the roof pane of a vehicle or other vehicle glazing, for example a partition pane in a vehicle, preferably in a rail vehicle or a bus.
  • the laminated pane can be architectural glazing, for example in an exterior facade of a building, or a separating pane inside a building.
  • the composite pane according to the invention is a motor vehicle pane
  • one or more edges of the functional elements are preferably covered by an opaque masking print when viewed through the pane.
  • Windshields and skylights typically have a peripheral covering print made of an opaque enamel, which serves in particular to protect the adhesive used to install the composite pane from UV radiation and to conceal it from view.
  • This peripheral masking print is preferably used to also mask the edges of the functional elements and the required electrical connections.
  • Both the first pane used as the outer pane and the second pane used as the inner pane preferably have a masking print, so that the view from both sides is prevented.
  • the composite pane according to the invention is a windshield of a motor vehicle.
  • This includes a motor edge, which is adjacent to the hood in the installed position of the laminated pane in the vehicle body and a roof edge, which borders the vehicle roof in the installed position.
  • the edge of the motor and the edge of the roof form two opposite pane edges. Between the edge of the engine and the edge of the roof there are two opposite side edges which, when the windshield is installed, border on the so-called A-pillars of the body.
  • Windshields have a central field of vision, with high demands being placed on the optical quality.
  • the central field of view must have high light transmission (typically greater than 70%).
  • Said central field of view is in particular that field of view which is referred to as field of view B, field of view B or zone B by those skilled in the art.
  • Field of vision B and its technical requirements are specified in Regulation No. 43 of the United Nations Economic Commission for Europe (UN/ECE) (ECE-R43, "Uniform conditions for the approval of safety glazing materials and their installation in vehicles").
  • EAE-R43 Economic Commission for Europe
  • thermoplastic intermediate layer comprising the first, the second, the third thermoplastic composite film and any further polymeric films, are not tinted or colored in the central field of view of a windshield, but are clear and transparent. This ensures that the view through the central field of vision is not restricted, so that the screen can be used as a windscreen.
  • the transparent intermediate layer is present at least in field of vision A, preferably also in field of vision B according to ECE-R43.
  • the composite pane is a motor vehicle roof pane, the first pane representing the outer pane facing the vehicle surroundings and the second pane being the inner pane facing the interior of the vehicle.
  • At least the first thermoplastic composite pane, which is arranged adjacent to the outer pane, preferably has a UV-filtering function.
  • the invention is explained in more detail with reference to a drawing and exemplary embodiments.
  • the drawing is a schematic representation and not to scale. The drawing does not limit the invention in any way. Show it:
  • Figures 1a, 1b a composite pane according to the invention as a roof pane of a motor vehicle
  • FIG. 2a shows an enlarged representation of the PDLC functional element in section X according to FIG. 1b
  • FIG. 2b shows an enlarged view of the electrochromic functional element in detail X' according to FIG. 1b
  • FIG. 3 shows a schematic representation of the laminated pane according to the invention in different optical states during the method according to the invention.
  • FIGS. 1a and 1b represent an embodiment of a composite pane 100 according to the invention, which is shaped as a roof pane of a motor vehicle.
  • the roof pane includes a first pane 1 as an outer pane, a second pane 2 as an inner pane and a thermoplastic intermediate layer 3, in which a PDLC functional element 5 and an electrochromic functional element 6 are embedded, each in the form of a multilayer film.
  • FIG. 1a shows a plan view of composite pane 100 as a roof pane of a motor vehicle.
  • FIG. 1b shows a cross section through the laminated pane according to FIG. 1a along section line AA′.
  • the first pane 1 and the second pane 2 are bent congruently to each other.
  • the first pane 1 as the outer pane of the glazing is oriented towards the vehicle surroundings, while the second pane 2 as the inner pane of the laminated pane faces the vehicle interior.
  • the first pane 1 consists of clear soda-lime glass with a thickness of 2.1 mm.
  • the second pane 2 consists of soda-lime glass with a thickness of
  • the discs 1, 2 are connected via the thermoplastic intermediate layer 3 with functional elements 5, 6 inserted therein.
  • the thermoplastic intermediate layer 3 comprises the first thermoplastic composite film 4.1, the second thermoplastic composite film 4.2, the third thermoplastic composite film 4.3, the first thermoplastic frame film 7.1 and the second thermoplastic frame film 7.2.
  • the first and the second thermoplastic composite film 4.1, 4.2 each comprise a thermoplastic film made from PVB with a thickness of 0.38 mm.
  • the PDLC functional element 5 is also connected to the first pane 1 via the first thermoplastic composite film 4.1, while the second thermoplastic composite film 4.2 connects the electrochromic functional element 6 to the second pane 2.
  • the third thermoplastic composite film 4.3 consists of PVB with a thickness of 50 ⁇ m and connects the PDLC functional element 5 and the electrochromic functional element e to one another.
  • the PDLC functional element 5 is frame-shaped from a first thermoplastic frame film
  • the electrochromic functional element e is surrounded in the form of a frame by a second thermoplastic frame film 7.2, both frame films 7.1, 7.2 having a thickness of 0.38 mm and thus corresponding in thickness to the thickness of the functional elements 5, 6 designed as multilayer films.
  • the optical properties of the functional elements 5, 6 can be controlled by applying an electrical voltage.
  • the electrical leads are not shown for the sake of simplicity.
  • the functional elements 5, 6 have identical dimensions in the present exemplary embodiment, but their dimensions can also differ.
  • An edge seal 16 is provided along the peripheral edges 8 of the functional elements 5, 6, which encloses the peripheral edge 8 (shown in FIGS. 2a, 2b).
  • the edge seal 16 can be glued around the edge 8 in the form of an adhesive tape, for example.
  • a functional element 5 in the area of the peripheral edge 8 of a functional element 5, 6 barrier films (not shown), for example consisting of PET, which surround the peripheral edge 8 and serve as an edge seal.
  • the PDLC functional element 5 is preferably provided with an edge seal made of PET barrier films. Diffusion of the plasticizer from the thermoplastic intermediate layer 3 into the functional elements 5, 6 is avoided by means of the edge sealing 16.
  • the functional elements 5, 6 can be switched variably in the form of segments 14.
  • the functional elements 5, 6 are divided into three segments 14 by horizontal dividing lines 15, with the dividing lines 15 introduced in the PDLC functional element 5 and in the electrochromic functional element 6 running congruently with one another.
  • the separating lines 15, which cause the segments 14 to be electrically insulated from one another, have a width of 40 ⁇ m to 120 ⁇ m, for example. They have been incorporated into the prefabricated multi-layer films using a laser. Collector conductors (not shown) are attached between mutually adjacent separating lines 15 in the region of the opaque covering print 10 . The bus bars of the individual segments 14 each have a separate electrical connection. The segments 14 can be switched independently of one another. The thinner the dividing lines 15 are made, the less conspicuous they are.
  • the PDLC functional element 5 and the electrochromic functional element 6 can also be switched independently of one another, so that the switching processes of the method according to the invention can be carried out.
  • FIG. 2a shows an enlarged representation of the thermoplastic intermediate layer 3 with the PDLC functional element 5 in detail X according to FIG. 1b.
  • the PDLC functional element 5 is designed as a PDLC multilayer film.
  • the multilayer film consists of a PDLC layer 9.1 as an active layer between surface electrodes 12.3, 12.4 and carrier films 13.3, 13.4.
  • a third surface electrode 12.3 is attached to a third carrier film 13.3.
  • the fourth carrier film 13.4 carries the fourth surface electrode 12.4 on one surface.
  • the PDLC layer 9.1 is electrically conductively contacted between these surface electrodes.
  • the carrier foils 13.3, 13.4 consist of PET and have a thickness of, for example, 50 ⁇ m or 110 ⁇ m.
  • the carrier foils 13.3, 13.4 are provided with at least one coating made of ITO with a thickness of approximately 100 nm, facing the adjacent PDLC layer 9.1, which forms the surface electrodes 12.3, 12.4.
  • the surface electrodes 12.3, 12.4 can be connected to a voltage source via busbars (not shown, for example, formed by a silver-containing screen print) and connecting cables, not shown.
  • FIG. 2b shows an enlarged representation of the thermoplastic intermediate layer 3 with the electrochromic functional element 6 in detail X′ according to FIG. 1b.
  • the electrochromic functional element 6 is designed as an electrochromic multilayer film.
  • the multilayer film consists of an electrochromic layer 9.2 as an active layer between surface electrodes 12.1, 12.2 and carrier films 13.1, 13.2.
  • a first surface electrode 12.1 is attached to a first carrier film 13.1.
  • the second carrier film 13.2 carries the second flat electrode 12.2 on one surface.
  • the electrochromic layer 9.2 is located between these surface electrodes and is electrically conductively contacted by them.
  • the electrochromic layer comprises, adjacent to one of the surface electrodes 12.1, 12.2, in this order, a layer of an electrochromic material, an electrolyte and an ion storage layer, followed by the remaining surface electrode 12.1, 12.2.
  • the carrier films 13.1, 13.2 consist of PET and have a thickness of, for example, 125 ⁇ m to 180 ⁇ m, for example 150 ⁇ m.
  • the carrier foils 13.1, 13.2 are provided with at least one coating of ITO with a thickness of approximately 100 nm, which faces the adjacent electrochromic layer 9.2 and forms the surface electrodes 12.1, 12.2.
  • the surface electrodes 12.1, 12.2 can be connected to a voltage source via busbars (not shown, for example, formed by a silver-containing screen print) and connecting cables, not shown.
  • FIG. 3 shows a schematic representation of the laminated pane according to the invention in different optical states during the method according to the invention.
  • the structure of the laminated pane 100 essentially corresponds to that described in FIGS. 1a, 1b, with the difference being that no separating lines are introduced into the surface electrodes.
  • State A shows a first transparent state of the laminated pane 100, in which an operating voltage Ui is present at the PDLC functional element 5 and the PDLC functional element 5 thus assumes a transparent state of low turbidity.
  • the PDLC functional element 5 is then switched off, with the voltage between the third surface electrode 12.3 and the fourth surface electrode being 12.40 V.
  • the PDLC functional element 5 changes to a clouded state and optical state B) of the laminated pane results.
  • An operating voltage U2 is then applied between the first surface electrode 12.1 and the second surface electrode 12.2 on the electrochromic functional element 6, which begins to change to the toned state due to the operating voltage applied.
  • This reaction is first visible at the edges of the field of vision of the laminated pane 100, with condition C) being that according to 5 Seconds waiting time reached state is outlined. Thereafter, the voltage between the third surface electrode 12.3 and the fourth surface electrode 12.4 on the PDLC functional element 5 is increased at a rate of 1.0 V/s up to the operating voltage Ui of the PDLC functional element 5.
  • the tinting process of the electrochromic functional element 6 continues, as shown in states D) and E).
  • the no-load voltage present between the first flat electrode and the second flat electrode is measured periodically, for example at intervals of 10 seconds, and compared to a target value for the no-load voltage.
  • the tinting process of the electrochromic functional element 6 is complete, as a result of which the second, darker state Z2 of the laminated pane 100 shown as state F) is reached.
  • an operating voltage U2 is again applied to the PDLC functional element 5, so that the latter is in a transparent state of low turbidity.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Mathematical Physics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The invention relates to a method for switching, from a first, transparent state (Z1) to a second, darkened state (Z2), a composite pane at least comprising a first pane (1) and a second pane (2) which are interconnected via an intermediate layer (3), wherein an electrochromic functional element (6) having a first planar electrode (12.1), an electrochromic layer (9.2) and a second planar electrode (12.2), and a PDLC functional element (5) having a third planar electrode (12.3), a PDLC layer (9.1) and a fourth planar electrode (12.4), are embedded in the intermediate layer (3).

Description

SAINT-GOBAIN GLASS FRANCE SAINT-GOBAIN GLASS FRANCE
Verfahren zum Schalten einer Verbundscheibe mit elektrochromem Funktionselement Method for switching a laminated pane with an electrochromic functional element
Die Erfindung betrifft ein Verfahren zum Schalten einer Verbundscheibe mit elektrochromem Funktionselement und eine solche Verbundscheibe. The invention relates to a method for switching a composite pane with an electrochromic functional element and such a composite pane.
Im Fahrzeugbereich und im Baubereich werden oftmals Verbundscheiben mit elektrisch steuerbaren Funktionselementen zum Sonnenschutz oder zum Sichtschutz eingesetzt. In the vehicle sector and in the construction sector, composite panes with electrically controllable functional elements for sun protection or privacy are often used.
So sind beispielsweise Fahrzeugverglasungen bekannt, in denen eine Sonnenblende in Form eines Funktionselements mit elektrisch steuerbaren optischen Eigenschaften integriert ist. Dabei ist insbesondere die Transmission oder das Streuverhalten von elektromagnetischer Strahlung im sichtbaren Bereich elektrisch steuerbar. Die Funktionselemente sind in der Regel Mehrschichtfolien, die in eine Verbundscheibe einlaminiert oder an diese angeklebt werden. Diese Mehrschichtfolien umfassen im Allgemeinen eine aktive Schicht zwischen zwei Flächenelektroden, wobei die Anordnung meist durch Trägerfolien stabilisiert wird. Durch Anlegen einer Spannung an der aktiven Schicht über die Flächenelektroden können die Transmissionseigenschaften der aktiven Schicht verändert werden. Bei Fahrzeugscheiben kann der Fahrer das T ransmissionsverhalten der Scheibe selbst gegenüber Sonnenstrahlung steuern. So kann auf herkömmliche mechanische Sonnenblenden verzichtet werden. Dadurch kann das Gewicht des Fahrzeugs reduziert werden und es wird Platz im Dachbereich gewonnen. Darüber hinaus sind Verbundscheiben mit elektrisch schaltbaren Funktionselementen wesentlich ansprechender als mechanische Sonnenblenden. Funktionselemente zur Verschattung von Fahrzeugverglasungen als Dachscheiben sind beispielsweise in EP 2010385 B1 beschrieben. For example, vehicle glazing is known in which a sun visor is integrated in the form of a functional element with electrically controllable optical properties. In particular, the transmission or the scattering behavior of electromagnetic radiation in the visible range can be controlled electrically. The functional elements are usually multi-layer foils that are laminated into a composite pane or glued to it. These multilayer films generally include an active layer between two surface electrodes, with the arrangement usually being stabilized by carrier films. The transmission properties of the active layer can be changed by applying a voltage to the active layer via the surface electrodes. In the case of vehicle windows, the driver can control the transmission behavior of the window himself in relation to solar radiation. This means that conventional mechanical sun visors can be dispensed with. As a result, the weight of the vehicle can be reduced and space is gained in the roof area. In addition, composite panes with electrically switchable functional elements are much more appealing than mechanical sun visors. Functional elements for shading vehicle glazing as roof panes are described, for example, in EP 2010385 B1.
Typische elektrisch steuerbare Funktionselemente enthalten beispielsweise elektrochrome Schichtstrukturen oder Suspended Particle Device (SPD)-Folien. Weitere mögliche Funktionselemente zur Realisierung eines elektrisch steuerbaren Sonnenschutzes sind sogenannte PDLC-Funktionselemente (polymer dispersed liquid crystal). Deren aktive Schicht enthält Flüssigkristalle, welche in eine Polymermatrix eingelagert sind. Wird keine Spannung angelegt, so sind die Flüssigkristalle ungeordnet ausgerichtet, was zu einer starken Streuung des durch die aktive Schicht tretenden Lichts führt. Wird an die Flächenelektroden eine Spannung angelegt, so richten sich die Flüssigkristalle in einer gemeinsamen Richtung aus und die Transmission von Licht durch die aktive Schicht wird erhöht. Das PDLC- Funktionselement wirkt weniger durch Herabsetzung der Gesamttransmission, sondern durch Erhöhung der Streuung, um den Blendschutz zu gewährleisten. Um eine Herabsetzung der Transmission zu gewährleisten sind demnach andere Arten von Funktionselementen geeigneter. Typical electrically controllable functional elements contain, for example, electrochromic layer structures or suspended particle device (SPD) foils. Other possible functional elements for the realization of an electrically controllable sun protection are so-called PDLC functional elements (polymer dispersed liquid crystal). Their active layer contains liquid crystals embedded in a polymer matrix. If no voltage is applied, the liquid crystals are aligned in a disorderly manner, which leads to strong scattering of the light passing through the active layer. If a voltage is applied to the surface electrodes, the liquid crystals align in a common direction and the transmission of light through the active layer is increased. The PDLC The functional element works less by reducing the overall transmission than by increasing the scatter in order to ensure glare protection. Other types of functional elements are therefore more suitable for ensuring a reduction in transmission.
Elektrochrome Funktionselemente setzen die Transmission durch die Verglasung vorteilhaft herab und weisen eine insbesondere im Bereich der Automobilanwendungen als ästhetisch angesehene bläuliche Farbgebung. Elektrochrome Funktionselemente umfassen mindestens eine elektrochemisch aktive Schicht, die in der Lage ist, reversibel Ladungen einzulagern. Die Oxidationszustände im eingelagerten und ausgelagerten Zustand unterscheiden sich dabei in ihrer Farbgebung, wobei einer dieser Zustände transparent ist. Die Einlagerungsreaktion ist über die von außen angelegte Potentialdifferenz steuerbar. Der Grundaufbau der elektrochromen Verglasung umfasst somit mindestens ein elektrochromes Material, wie Wolframoxid, das sowohl mit einer Flächenelektrode, als auch einer Ladungsquelle, wie einem ionenleitfähigen Elektrolyten, in Kontakt steht. Darüber hinaus enthält der elektrochrome Schichtaufbau eine Gegenelektrode, die ebenfalls in der Lage ist reversibel Kationen einzulagern, und mit dem ionenleitfähigen Elektrolyten in Berührung steht, sowie eine weitere Flächenelektrode, die sich an die Gegenelektrode anschließt. Die Flächenelektroden sind mit einer externen Spannungsquelle verbunden, wodurch die an die aktive Schicht angelegte Spannung reguliert werden kann. Die Wanderung und Einlagerung von Ionen nimmt eine gewisse Zeit in Anspruch, so dass der Schaltvorgang elektrochromer Funktionselemente vergleichsweise langsam ist. Dies führt zu Ungeduld seitens des Benutzers und gegebenenfalls Mehrfachbetätigung der den Schaltvorgang einleitenden Bedienelemente. Electrochromic functional elements advantageously reduce the transmission through the glazing and have a bluish coloring which is regarded as aesthetic, particularly in the field of automotive applications. Electrochromic functional elements comprise at least one electrochemically active layer capable of reversibly storing charges. The oxidation states in the stored and stored state differ in their coloring, with one of these states being transparent. The storage reaction can be controlled via the externally applied potential difference. The basic structure of the electrochromic glazing thus comprises at least one electrochromic material, such as tungsten oxide, which is in contact with both a surface electrode and a charge source, such as an ion-conductive electrolyte. In addition, the electrochromic layer structure contains a counter-electrode, which is also capable of reversibly storing cations and is in contact with the ion-conductive electrolyte, as well as a further surface electrode which is connected to the counter-electrode. The surface electrodes are connected to an external voltage source, which allows the voltage applied to the active layer to be regulated. The migration and storage of ions takes a certain amount of time, so that the switching process of electrochromic functional elements is comparatively slow. This leads to impatience on the part of the user and possibly multiple actuation of the controls initiating the shifting process.
In CN 212873140 U werden Verglasungen umfassend ein elektrochromes Funktionselement und ein PDLC-Funktionselement beschrieben. CN 212873140 U describes glazing comprising an electrochromic functional element and a PDLC functional element.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Verfügung zu stellen, das einen verbesserten und optisch ansprechenden Schaltvorgang einer Verbundscheibe mit elektrochromem Funktionselement, und eine solche Verbundscheibe bereitzustellen. The present invention is therefore based on the object of making available a method that provides an improved and visually appealing switching process for a composite pane with an electrochromic functional element, and to provide such a composite pane.
Die Aufgabe der vorliegenden Erfindung wird durch ein Verfahren gemäß dem unabhängigen Anspruch 1 gelöst. Bevorzugte Ausführungen gehen aus den Unteransprüchen hervor. Die Erfindung betrifft ein Verfahren zum Schalten einer Verbundscheibe von einem ersten transparenten Zustand in einen zweiten abgedunkelteren Zustand. Die Verbundscheibe umfasst mindestens eine erste Scheibe und eine zweite Scheibe, die über eine thermoplastische Zwischenschicht miteinander verbunden sind, wobei ein elektrochromes Funktionselement und ein PDLC-Funktionselement in der Zwischenschicht eingelagert sind. Das elektrochrome Funktionselement und das PDLC-Funktionselement weisen elektrisch schaltbare optische Eigenschaften auf. Die Funktionselemente umfassen jeweils eine aktive Schicht, die regelbare optische Eigenschaften aufweist und zeigen eine zumindest abschnittsweise Überlappung zueinander. Abschnittsweise Überlappung bedeutet dabei, dass in mindestens einem Teilbereich der Verbundscheibe das durch die Scheibe tretende Licht zunächst das eine Funktionselement und danach das andere Funktionselement durchtritt. Die aktiven Schichten enthalten dazu eine aktive Substanz, deren optische Eigenschaften in Abhängigkeit der am Funktionselement anliegenden Spannung veränderlich ist. Bei dem elektrochromen Funktionselement ist die aktive Schicht eine elektrochrome Schicht, während die aktive Schicht des PDLC-Funktionselementes eine PDLC-Schicht ist. Das elektrochrome Funktionselement umfasst eine erste Flächenelektrode und eine zweite Flächenelektrode, zwischen denen die elektrochrome Schicht angeordnet ist, während das PDLC-Funktionselement eine dritte Flächenelektrode und eine vierte Flächenelektrode umfasst, zwischen denen sich die PDLC-Schicht befindet. Die optischen Eigenschaften der elektrochromen Schicht werden somit durch Anlegen einer Spannung zwischen der ersten und der zweiten Flächenelektrode und die optischen Eigenschaften der PDLC-Schicht durch Anlegen einer Spannung zwischen der dritten und der vierten Flächenelektrode gesteuert. The object of the present invention is solved by a method according to independent claim 1 . Preferred embodiments emerge from the dependent claims. The invention relates to a method for switching a laminated pane from a first transparent state to a second, more darkened state. The composite pane comprises at least a first pane and a second pane, which are connected to one another via a thermoplastic intermediate layer, with an electrochromic functional element and a PDLC functional element being embedded in the intermediate layer. The electrochromic functional element and the PDLC functional element have electrically switchable optical properties. The functional elements each comprise an active layer which has controllable optical properties and overlap one another at least in sections. Overlapping in sections means that in at least one partial area of the laminated pane, the light passing through the pane first passes through one functional element and then through the other functional element. For this purpose, the active layers contain an active substance whose optical properties can be changed depending on the voltage applied to the functional element. In the electrochromic device, the active layer is an electrochromic layer, while the active layer of the PDLC device is a PDLC layer. The electrochromic functional element comprises a first surface electrode and a second surface electrode, between which the electrochromic layer is arranged, while the PDLC functional element comprises a third surface electrode and a fourth surface electrode, between which the PDLC layer is located. The optical properties of the electrochromic layer are thus controlled by applying a voltage between the first and the second surface electrode and the optical properties of the PDLC layer by applying a voltage between the third and the fourth surface electrode.
Das erfindungsgemäße Verfahren umfasst mindestens die Schritte a) Anlegen einer Spannung von 0 V zwischen der dritten Flächenelektrode und der vierten Flächenelektrode, b) Anlegen einer Betriebsspannung U2 zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode, c) Warten für mindestens 2 Sekunden, d) Erhöhen der Spannung zwischen der dritten Flächenelektrode und der vierten Flächenelektrode mit einer Geschwindigkeit von 0,5 V/s bis 3 V/s bis zur Betriebsspannung Ui des PDLC-Funktionselementes, e) periodisches Messen der zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode anliegenden Leerlaufspannung und Vergleichen mit einem Sollwert der Leerlaufspannung, f) Senken der zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode anliegenden Spannung U2 auf eine Haltespannung UH, sofern der Sollwert der Leerlaufspannung erreicht ist, ansonsten periodische Wiederholung des Schritts e) bis der Sollwert der Leerlaufspannung erreicht ist.The method according to the invention comprises at least the steps of a) applying a voltage of 0 V between the third surface electrode and the fourth surface electrode, b) applying an operating voltage U2 between the first surface electrode and the second surface electrode, c) waiting for at least 2 seconds, d) increasing the voltage between the third surface electrode and the fourth surface electrode at a rate of 0.5 V/s to 3 V/s up to the operating voltage Ui of the PDLC functional element, e) periodically measuring the no-load voltage present between the first flat electrode and the second flat electrode and comparing it with a nominal value for the no-load voltage, f) lowering the voltage U2 present between the first flat electrode and the second flat electrode to a holding voltage UH, provided that the nominal value of the no-load voltage is reached , otherwise periodic repetition of step e) until the target value of the no-load voltage is reached.
Das Erreichen des Sollwertes der Leerlaufspannung zeigt dabei an, dass der zweite abgedunkelte Zustand erreicht ist. Die dann angelegte Haltespannung UH hält das elektrochrome Funktionselement in dem zu diesem Zeitpunkt erreichten Zustand. Reaching the target value of the no-load voltage indicates that the second darkened state has been reached. The holding voltage UH then applied keeps the electrochromic functional element in the state reached at this point in time.
In Schritt a) wird zwischen der dritten Flächenelektrode und der vierten Flächenelektrode eine Spannung von 0 V angelegt. Das bedeutet, dass an der PDLC-Schicht keine Spannung mehr anliegt. Anders ausgedrückt ist das PDLC-Funktionselement abgeschaltet. Liegt an der PDLC-Schicht keine Spannung an, so geht die Ausrichtung der in der Schicht enthaltenen Flüssigkristalle im elektrischen Feld verloren und die Flüssigkristalle weisen keine Vorzugsrichtung mehr auf. Infolgedessen sinkt die Transparenz der Verbundscheibe, während die Trübung der Verbundscheibe ansteigt. Die Trübung des PDLC- Funktionselementes erfolgt kurzfristig nach dem spannungsfrei schalten des PDLC- Funktionselementes, beispielsweise beginnt der für den Nutzer sichtbare Schaltvorgang des PDLC-Funktionselementes innerhalb von weniger als 2 Sekunden, vorzugsweise innerhalb von weniger als 1 Sekunde. Auf diese Weise ist für den Nutzer ersichtlich, dass der Schaltvorgang der Verbundscheibe eingeleitet ist. In step a), a voltage of 0 V is applied between the third surface electrode and the fourth surface electrode. This means that the voltage is no longer applied to the PDLC layer. In other words, the PDLC functional element is disabled. If no voltage is applied to the PDLC layer, the alignment of the liquid crystals contained in the layer is lost in the electric field and the liquid crystals no longer have a preferred direction. As a result, the transparency of the laminated pane decreases while the opacity of the laminated pane increases. The clouding of the PDLC functional element takes place shortly after the PDLC functional element is switched off, for example the switching process of the PDLC functional element visible to the user begins within less than 2 seconds, preferably within less than 1 second. In this way, the user can see that the switching process of the laminated pane has been initiated.
In einem nächsten Schritt (Schritt b), der zeitgleich oder nach Schritt a) erfolgt, wird eine Betriebsspannung U2 zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode angelegt. Dadurch wird der Schaltvorgang des elektrochromen Funktionselementes eingeleitet. Der Schaltvorgang des elektrochromen Funktionselementes benötigt einige Zeit und ist aus diesem Grund nicht unmittelbar wahrnehmbar. Aus diesem Grund erfolgt in Schritt c) ein Pausieren des Verfahrens für mindestens 2 Sekunden. In a next step (step b), which takes place at the same time as or after step a), an operating voltage U2 is applied between the first surface electrode and the second surface electrode. This initiates the switching process of the electrochromic functional element. The switching process of the electrochromic functional element takes some time and is therefore not immediately noticeable. For this reason, the method is paused for at least 2 seconds in step c).
Nach der Wartezeit in Schritt c) wird im darauffolgenden Verfahrensschritt (Schritt d) die Spannung zwischen der dritten Flächenelektrode und der vierten Flächenelektrode mit einer Geschwindigkeit von 0,5 V/s bis 3 V/s erhöht, bis die Betriebsspannung Ui des PDLC- Funktionselementes erreicht ist. Demnach wird am PDLC-Funktionselement eine Spannung angelegt, die eine Ausrichtung der Flüssigkristalle im elektrischen Feld bewirkt. Dabei wird die Spannung mit der genannten Geschwindigkeit von 0 V (Startwert aus Schritt a)) ausgehend erhöht. Diese langsame kontinuierliche Erhöhung der Spannung führt zu einer langsamen und kontinuierlichen Schaltung des PDLC-Funktionselementes, die als langsame kontinuierliche Abnahme der Trübung der Verbundscheibe wahrnehmbar ist. After the waiting time in step c), in the subsequent method step (step d), the voltage between the third surface electrode and the fourth surface electrode is increased at a rate of 0.5 V/s to 3 V/s until the operating voltage Ui of the PDLC functional element is reached. Accordingly, at the PDLC functional element, a voltage applied, which causes an alignment of the liquid crystals in the electric field. The voltage is increased starting from 0 V (starting value from step a)) at the stated speed. This slow, continuous increase in voltage results in a slow and continuous switching of the PDLC functional element, which is noticeable as a slow, continuous decrease in the haze of the bonded disk.
Als Schritt e) erfolgt daraufhin ein periodisches Messen der zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode anliegenden Leerlaufspannung und Vergleichen mit einem Sollwert der Leerlaufspannung. Ist der Sollwert der Leerlaufspannung erreicht, so ist dies ein Indiz für einen vollständig abgeschlossenen Schaltvorgang des elektrochromen Funktionselementes. Die Leerlaufspannung wird in Schritt e), der nach und/oder während Schritt d) erfolgt, periodisch gemessen. Auf diese Weise wird zeitnah festgestellt, dass eine vollständige Schaltung des elektrochromen Funktionselementes erreicht ist. Ein längerfristiges Überschreiten des Sollwertes der Leerlaufspannung ist zu vermeiden um eine möglichst lange Lebensdauer des elektrochromen Funktionselementes zu gewährleisten. Ist der Sollwert der Leerlaufspannung noch nicht erreicht, so wird weiter dies Betriebsspannung U2 zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode angelegt um im nächsten Messintervall erneut die Leerlaufspannung zu überprüfen. Sobald die Messung der Leerlaufspannung des elektrochromen Funktionselementes ergibt, dass diese den Sollwert der Leerlaufspannung erreicht, so folgt Schritt f) des Verfahrens. In Schritt f) wird, nach Erreichen des Sollwertes der Leerlaufspannung des elektrochromen Funktionselementes, die zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode anliegende Spannung U2 auf eine Haltespannung UH gesenkt. As a step e), the no-load voltage present between the first flat electrode and the second flat electrode is periodically measured and compared with a target value of the no-load voltage. If the target value of the no-load voltage is reached, this is an indication that the switching process of the electrochromic functional element has been completely completed. The open circuit voltage is measured periodically in step e), which occurs after and/or during step d). In this way, it is determined promptly that complete switching of the electrochromic functional element has been achieved. Exceeding the target value of the no-load voltage for a longer period of time should be avoided in order to ensure the longest possible service life of the electrochromic functional element. If the nominal value of the no-load voltage has not yet been reached, then this operating voltage U2 is applied between the first flat electrode and the second flat electrode in order to check the no-load voltage again in the next measuring interval. As soon as the measurement of the no-load voltage of the electrochromic functional element shows that it has reached the nominal value of the no-load voltage, step f) of the method follows. In step f), after the target value of the no-load voltage of the electrochromic functional element has been reached, the voltage U2 applied between the first surface electrode and the second surface electrode is lowered to a holding voltage UH.
Die Betriebsspannung beschreibt die Spannung, die an den Flächenelektroden eines Funktionselementes angelegt werden muss um das Funktionselement von einem optischen Zustand in einen anderen optischen Zustand zu überführen. Dabei werden jeweils die Endzustände betrachtet, das heißt als ein optischer Zustand der transparenteste Zustand den das Funktionselement erreichen kann und als der andere optische Zustand der, je nach Art des Funktionselementes, getönteste oder getrübteste Zustand der erreichbar ist. Die Betriebsspannung entspricht dabei der maximalen Spannung, die zwischen den Flächenelektroden angelegt wird. Die Betriebsspannung Ui ist die Spannung, die an dem PDLC-Funktionselement angelegt werden muss um dieses von einem spannungsfreien getrübten Zustand in einen transparenten Zustand zu überführen. Der Übergang vom transparenten Zustand des PDLC-Elementes in einen getrübten Zustand erfolgt durch Trennen des PDLC-Funktionselementes von der Spannungsquelle. Als Betriebsspannung U2 wird die Betriebsspannung des elektrochromen Funktionselementes bezeichnet, die zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode angelegt werden muss um das elektrochrome Funktionselement von einem transparenten Zustand in einen getönten Endzustand zu überführen. Um das elektrochrome Funktionselement vom getönten Endzustand in einen transparenten Endzustand zurückzuführen muss die Betriebsspannung U3 zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode angelegt werden, wobei U2 und U3 näherungsweise den gleichen Betrag haben und bevorzugt gilt U2 = - U3. Die Größe der Betriebsspannungen Ui und U2 ist von der Bauweise der Funktionselemente abhängig. Typische Betriebsspannungen liegen zwischen 30 V und 300 V, bevorzugt zwischen 50 V und 240 V, besonders bevorzugt zwischen 50 V und 150 V. The operating voltage describes the voltage that must be applied to the surface electrodes of a functional element in order to convert the functional element from one optical state to another optical state. The end states are considered in each case, ie the most transparent state that the functional element can achieve as one optical state and the most tinted or clouded state that can be achieved, depending on the type of functional element, as the other optical state. The operating voltage corresponds to the maximum voltage that is applied between the surface electrodes. The operating voltage Ui is the voltage that must be applied to the PDLC functional element in order to convert it from a voltage-free clouded state to a transparent state. The transition from The transparent state of the PDLC element to an opaque state is achieved by disconnecting the PDLC functional element from the voltage source. The operating voltage of the electrochromic functional element, which must be applied between the first surface electrode and the second surface electrode in order to convert the electrochromic functional element from a transparent state to a tinted final state, is referred to as the operating voltage U2. In order to return the electrochromic functional element from the tinted final state to a transparent final state, the operating voltage U3 must be applied between the first surface electrode and the second surface electrode, with U2 and U3 having approximately the same amount and preferably U2=−U3. The size of the operating voltages Ui and U2 depends on the design of the functional elements. Typical operating voltages are between 30 V and 300 V, preferably between 50 V and 240 V, particularly preferably between 50 V and 150 V.
Als Haltespannung wird die Spannung beschrieben, die zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode anzulegen ist um das elektrochrome Funktionselement in einem getönten optischen Zustand zu halten. Je nach Art des Funktionselementes kann ohne Anlegen einer Haltespannung eine in der Regel sehr langsame Aufhellung und ein dementsprechender Übergang in den transparenten Zustand erfolgen. Dies wird durch Anlegen der Haltespannung vermieden. Je nach Geschwindigkeit dieser Rückreaktion kann allerdings auch auf eine Haltespannung verzichtet werden, wobei diese 0 V beträgt. The voltage that is to be applied between the first surface electrode and the second surface electrode in order to keep the electrochromic functional element in a tinted optical state is described as the holding voltage. Depending on the type of functional element, a generally very slow brightening and a corresponding transition into the transparent state can take place without applying a holding voltage. This is avoided by applying the holding voltage. Depending on the speed of this reverse reaction, however, a holding voltage can also be dispensed with, this being 0 V.
Als Leerlaufspannung wird die Spannung bezeichnet, die zwischen den Flächenelektroden des elektrochromen Funktionselementes, also zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode, messbar ist. Im Laufe der Abdunklung des elektrochromen Funktionselementes ändern sich die Oxidationszustände der im elektrischen Feld wandernden Ionen, wodurch es zu eben dieser Abdunklung kommt. Dabei entsteht ein elektrisches Potential zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode, das als Leerlaufspannung messbar ist. Dazu wird die zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode angelegte Betriebsspannung kurzzeitig unterbrochen, die Leerlaufspannung gemessen und die Betriebsspannung danach wieder angelegt um den Schaltvorgang fortzuführen. Methoden zur Messung der Leerlaufspannung sowie entsprechende Messgeräte sind dem Fachmann bekannt und handelsüblich. Beispielsweise kann unmittelbar in einer Steuereinheit zur Steuerung des Schaltvorgangs der Verbundscheibe ein Spannungsmessgerät integriert sein. Schritt a) des Verfahrens wird bevorzugt eingeleitet durch bedienen eines Bedienelementes, zum Beispiel eines Schalters, durch einen Nutzer. Ein solches Bedienelement kann innerhalb der Verbundscheibe selbst oder extern vorgesehen werden, beispielsweise integriert in andere Bedienelemente eines Kraftfahrzeugs. Das Bedienelement ist an eine Steuereinheit angeschlossen, die daraufhin den Schaltvorgang der Verbundscheibe gemäß den Schritten a) bis f) einleitet. In einer weiteren bevorzugten Ausführungsform wird Schritt a) des Verfahrens automatisiert eingeleitet, beispielsweise in Abhängigkeit von Umgebungseinflüssen wie Intensität der Sonneneinstrahlung oder Sonnenstand. Eine Messeinheit, die diese Umgebungseinflüsse überwacht, ist in diesem Fall an einer Steuereinheit angeschlossen, die in Anhängigkeit der gemessenen Werte den Schaltvorgang gemäß Schritten a) bis f) einleitet. The open-circuit voltage is the voltage that can be measured between the surface electrodes of the electrochromic functional element, ie between the first surface electrode and the second surface electrode. In the course of the darkening of the electrochromic functional element, the oxidation states of the ions migrating in the electric field change, as a result of which this darkening occurs. This creates an electrical potential between the first surface electrode and the second surface electrode, which can be measured as an open-circuit voltage. For this purpose, the operating voltage applied between the first flat electrode and the second flat electrode is briefly interrupted, the no-load voltage is measured and the operating voltage is then applied again in order to continue the switching process. Methods for measuring the no-load voltage and corresponding measuring devices are known to those skilled in the art and are commercially available. For example, a voltmeter can be integrated directly into a control unit for controlling the switching process of the laminated pane. Step a) of the method is preferably initiated by a user operating an operating element, for example a switch. Such a control element can be provided within the laminated pane itself or externally, for example integrated into other control elements of a motor vehicle. The operating element is connected to a control unit, which then initiates the switching process of the laminated pane according to steps a) to f). In a further preferred embodiment, step a) of the method is initiated automatically, for example as a function of environmental influences such as the intensity of solar radiation or the position of the sun. In this case, a measuring unit that monitors these environmental influences is connected to a control unit that initiates the switching process according to steps a) to f) depending on the measured values.
Bevorzugt wird das Verfahren in Schritt c) für mindestens 5 Sekunden, besonders bevorzugt für 5 Sekunden bis 20 Sekunden, insbesondere 8 Sekunden bis 15 Sekunden, beispielsweise 10 Sekunden pausiert. Dies hat sich als vorteilhaft erwiesen hinsichtlich eines optisch ansprechenden Gesamtschaltvorgangs der Verbundscheibe. The method in step c) is preferably paused for at least 5 seconds, particularly preferably for 5 seconds to 20 seconds, in particular 8 seconds to 15 seconds, for example 10 seconds. This has proven to be advantageous with regard to a visually appealing overall switching process of the laminated pane.
In Schritt d) wird die Spannung zwischen der dritten Flächenelektrode und der vierten Flächenelektrode bevorzugt mit einer Geschwindigkeit von 0,5 V/s bis 2 V/s, besonders bevorzugt mit einer Geschwindigkeit von 0,5 V/s bis 1 ,5 V/s erhöht. Diese Geschwindigkeit hat sich als besonders vorteilhaft erwiesen um die Dauer des Schaltvorgangs des PDLC- Funktionselementes an die Dauer des Schaltvorgangs des elektrochromen Funktionselementes anzupassen uns so einen für den Betrachter besonders ansprechenden Verlauf des Schaltvorgangs der Verbundscheibe zu erreichen. In step d), the voltage between the third surface electrode and the fourth surface electrode is preferably increased at a speed of 0.5 V/s to 2 V/s, particularly preferably at a speed of 0.5 V/s to 1.5 V/s. s increased. This speed has proven to be particularly advantageous for adapting the duration of the switching process of the PDLC functional element to the duration of the switching process of the electrochromic functional element and thus achieving a course of the switching process of the laminated pane that is particularly appealing to the viewer.
Bevorzugt wird die Leerlaufspannung in Schritt e) in einem zeitlichen Abstand von 2 Sekunden bis 20 Sekunden, besonders bevorzugt 3 Sekunden bis 15 Sekunden, insbesondere 3 Sekunden bis 10 Sekunden gemessen, wobei dieser Zeitabschnitt einer Periode des periodischen Messvorgangs entspricht. The open-circuit voltage is preferably measured in step e) at a time interval of 2 seconds to 20 seconds, particularly preferably 3 seconds to 15 seconds, in particular 3 seconds to 10 seconds, this time segment corresponding to a period of the periodic measurement process.
Die Flächenelektroden und die aktiven Schichten der Funktionselemente sind typischerweise im Wesentlichen parallel zur ersten Scheibe und zweiten Scheibe der Verbundscheibe angeordnet. In einer bevorzugten Ausführungsform erfolgt Schritt e) bereits während Schritt d). Dies ist vorteilhaft um gegebenenfalls den gemäß Schritt d) erfolgenden Spannungsanstieg der Spannung zwischen der dritten Flächenelektrode und der vierten Flächenelektrode in Abhängigkeit von der in Schritt e) zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode gemessenen Leerlaufspannung modifizieren zu können. Auf diese Weise ist es möglich in Abhängigkeit der Geschwindigkeit des Schaltvorgangs des elektrochromen Funktionselementes, die über die Differenz zwischen Sollwert und Istwert der Leerlaufspannung bestimmbar ist, die Geschwindigkeit des Schaltvorgangs des PDLC- Funktionselementes anzupassen. The surface electrodes and the active layers of the functional elements are typically arranged essentially parallel to the first pane and the second pane of the composite pane. In a preferred embodiment, step e) already takes place during step d). This is advantageous in order to be able to modify the voltage increase occurring according to step d) in the voltage between the third surface electrode and the fourth surface electrode as a function of the no-load voltage measured in step e) between the first surface electrode and the second surface electrode. In this way it is possible to adapt the speed of the switching process of the PDLC functional element as a function of the speed of the switching process of the electrochromic functional element, which can be determined via the difference between the desired value and the actual value of the no-load voltage.
Im erfindungsgemäßen Verfahren werden ein PDLC-Funktionselement und ein elektrochromes Funktionselement gleichzeitig so geschaltet, dass ein optisch ansprechender Gesamtschaltvorgang der Verbundscheibe umfassend diese Funktionselemente entsteht. Nach Schritt f) des Verfahrens liegt am PDLC-Funktionselement dessen Betriebsspannung Ui an, das heißt das PDLC-Funktionselement befindet sich in einem transparenten Zustand. Am elektrochromen Funktionselement liegt nach Schritt f) die Haltespannung UH an, die dazu führt, dass das elektrochrome Funktionselement in dem abgedunkelten Zustand gehalten wird, in den es durch Anlegen der Betriebsspannung U2 in Schritt b) überführt wurde. In einer bevorzugten Ausführungsform des Verfahrens wird nach Schritt f) die zwischen der dritten Flächenelektrode und der vierten Flächenelektrode anliegende Spannung auf 0V gesenkt, das PDLC-Funktionselement wird also deaktiviert und trübt somit ein. Damit wird die Verbundscheibe in einen abgedunkelten Zustand mit hoher Trübung versetzt. Diese zusätzliche Trübung ist vorteilhaft, wenn der Nutzer der Verbundscheibe im abgedunkelteren Zustand Z2 der Verbundscheibe die Durchsicht durch die Scheibe vollständig verhindern will. Sofern eine Trübung der Verbundscheibe im abgedunkelteren Zustand Z2 gewünscht ist, so wird diese vorzugsweise bereits während des Verfahrens in die Wege geleitet. Bevorzugt erfolgt ein solches Eintrüben der Verbundscheibe durch Deaktivieren des PDLC- Funktionselementes sobald in Schritt e) die gemessene Leerlaufspannung mindestens 95% des Sollwertes der Leerlaufspannung erreicht hat. Insbesondere wird die Spannung zwischen der dritten Flächenelektrode und der vierten Flächenelektrode mit einer Geschwindigkeit von 3 V/s bis 15 V/s bis auf 0 V gesenkt, sobald in Schritt e) die gemessene Leerlaufspannung zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode mindestens 80%, bevorzugt mindestens 90% des Sollwertes der Leerlaufspannung erreicht hat. Auf diese Weise wird ein optisch besonders ansprechender Schaltvorgang erreicht. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt nach Schritt f) ein Schaltvorgang vom abgedunkelteren zweiten Zustand (Z2) zurück in den ersten transparenteren Zustand (Z1). Dieser Schaltvorgang kann, wie für Schritt a) bereits beschrieben, durch manuelle Bedienung einer Schaltfläche durch einen Benutzer oder auch automatisiert gesteuert in Anhängigkeit von Umgebungsfaktoren erfolgen. Für ein Schalten der Verbundscheibe vom abgedunkelteren zweiten Zustand Z2 zurück in den ersten transparenten Zustand Z1 werden mindestens die folgenden Schritte ausgeführt: g) Anlegen der Betriebsspannung Ui des PDLC-Funktionselementes zwischen der dritten Flächenelektrode und der vierten Flächenelektrode, h) Anlegen der Betriebsspannung U3 des elektrochromen Funktionselementes zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode. In the method according to the invention, a PDLC functional element and an electrochromic functional element are switched simultaneously in such a way that an optically appealing overall switching process of the laminated pane comprising these functional elements is produced. After step f) of the method, the operating voltage Ui is present at the PDLC functional element, ie the PDLC functional element is in a transparent state. After step f), the holding voltage UH is applied to the electrochromic functional element, which results in the electrochromic functional element being kept in the darkened state into which it was converted by applying the operating voltage U2 in step b). In a preferred embodiment of the method, the voltage present between the third surface electrode and the fourth surface electrode is reduced to 0V after step f), the PDLC functional element is therefore deactivated and thus becomes cloudy. This puts the laminated pane in a darkened state with a high degree of opacity. This additional opacity is advantageous if the user of the composite pane wants to completely prevent the view through the pane in the darkened state Z2 of the composite pane. If clouding of the laminated pane in the darkened state Z2 is desired, this is preferably initiated during the process. Such clouding of the laminated pane preferably takes place by deactivating the PDLC functional element as soon as the open-circuit voltage measured in step e) has reached at least 95% of the setpoint value of the open-circuit voltage. In particular, the voltage between the third surface electrode and the fourth surface electrode is reduced at a rate of 3 V/s to 15 V/s down to 0 V as soon as the open-circuit voltage measured between the first surface electrode and the second surface electrode is at least 80% in step e). , has preferably reached at least 90% of the target value of the no-load voltage. In this way, a visually particularly appealing switching process is achieved. In a preferred embodiment of the method according to the invention, step f) is followed by a switching process from the darker second state (Z2) back to the first, more transparent state (Z1). As already described for step a), this switching process can take place through manual operation of a button by a user, or it can be controlled automatically as a function of environmental factors. At least the following steps are carried out to switch the laminated pane from the darker second state Z2 back to the first transparent state Z1: g) application of the operating voltage Ui of the PDLC functional element between the third surface electrode and the fourth surface electrode, h) application of the operating voltage U3 of the electrochromic functional element between the first surface electrode and the second surface electrode.
Durch Anlegen der Betriebsspannung Ui des PDLC-Funktionselementes richten sich die Flüssigkristalle der PDLC-Schicht im elektrischen Feld aus, so dass das PDLC- Funktionselement in seinen transparenten Zustand übergeht. Liegt die Betriebsspannung Ui bereits vor Schritt g) am PDLC-Funktionselement an, so besteht Schritt g) darin diese Spannung aufrecht zu erhalten. When the operating voltage Ui of the PDLC functional element is applied, the liquid crystals of the PDLC layer align themselves in the electrical field, so that the PDLC functional element changes to its transparent state. If the operating voltage Ui is already present at the PDLC functional element before step g), step g) consists of maintaining this voltage.
In Schritt h) wird eine Betriebsspannung U3 am elektrochromen Funktionselement zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode angelegt. Die Betriebsspannung U3 ist die Spannung, die benötigt wird um das elektrochrome Funktionselement von einem getönten abgedunkelten Zustand in einen transparenten Zustand zu überführen. Der Betrag der Betriebsspannung U3 entspricht in der Regel dem Betrag der Betriebsspannung U2, wobei beide Spannungen ein entgegengesetztes Vorzeichen aufweisen. Demnach muss die Polarität der Flächenelektroden des elektrochromen Funktionselementes umgekehrt werden um das elektrochrome Funktionselement in den transparenten Zustand zurück zu überführen. Nach Schritt h) befinden sich das elektrochrome Funktionselement und das PDLC-Funktionselement beide in einem transparenten Zustand, wodurch die Verbundscheibe ihren ersten transparenteren Zustand (Z1) erreicht. In step h), an operating voltage U3 is applied to the electrochromic functional element between the first surface electrode and the second surface electrode. The operating voltage U3 is the voltage that is required to convert the electrochromic functional element from a tinted, darkened state to a transparent state. The magnitude of the operating voltage U3 generally corresponds to the magnitude of the operating voltage U2, with the two voltages having opposite signs. Accordingly, the polarity of the surface electrodes of the electrochromic functional element must be reversed in order to convert the electrochromic functional element back into the transparent state. After step h), the electrochromic functional element and the PDLC functional element are both in a transparent state, as a result of which the laminated pane reaches its first more transparent state (Z1).
Der erste transparentere Zustand Z1 der Verbundscheibe weist eine im Vergleich zum zweiten abgedunkelteren Zustand Z2 der Verbundscheibe erhöhte Transmission von Licht im sichtbaren Bereich des Spektrums auf. Bevorzugt verfügt die Verbundscheibe im ersten transparenten Zustand Z1 über eine Transmission von mindestens 20 % des Lichtes im sichtbaren Bereich des Lichtspektrums, während die Verbundscheibe im abgedunkelteren zweiten Zustand Z2 eine Transmission von höchstens 10 % des Lichtes im sichtbaren Bereich des Lichtspektrums aufweist. The first, more transparent state Z1 of the laminated pane has an increased transmission of light in the visible range of the spectrum compared to the second, darker state Z2 of the laminated pane. In the first transparent state Z1, the laminated pane preferably has a transmission of at least 20% of the light im visible range of the light spectrum, while the laminated pane in the darker second state Z2 has a transmission of at most 10% of the light in the visible range of the light spectrum.
Die Erfindung betrifft des Weiteren eine Verbundscheibe mit einem ersten transparenteren Zustand und einem zweiten abgedunkelteren Zustand. Die für die Verbundscheibe beschriebenen Merkmale gelten auch für das erfindungsgemäße Verfahren und umgekehrt. The invention also relates to a laminated pane with a first, more transparent state and a second, more darkened state. The features described for the laminated pane also apply to the method according to the invention and vice versa.
Die Verbundscheibe umfasst mindestens eine erste Scheibe und eine zweite Scheibe, die über eine thermoplastische Zwischenschicht miteinander verbunden sind, wobei ein elektrochromes Funktionselement und ein PDLC-Funktionselement in der Zwischenschicht eingelagert sind. Die Verbundscheibe verfügt somit über mindestens zwei, im Wesentlichen deckungsgleich miteinander angebrachte, Funktionselemente mit jeweils einer aktiven Schicht. Der optische Zustand der Verbundscheibe wird somit bestimmt durch die optischen Zustände dieser beiden Funktionselemente. Im ersten transparenteren Zustand der Verbundscheibe befinden sich das PDLC-Funktionselement und das elektrochrome Funktionselement in einem transparenten Zustand. Im zweiten abgedunkelteren Zustand der Verbundscheibe befindet sich das elektrochrome Funktionselement in einem getönten Zustand, während das PDLC-Funktionselement, nach Wahl des Nutzers, in einem transparenten oder getrübten Zustand vorliegen kann. Die aktive Schicht des elektrochromen Funktionselementes ist eine elektrochrome Schicht, die zwischen einer ersten Flächenelektrode und einer zweiten Flächenelektrode angeordnet ist, wobei der optische Zustand des Funktionselementes durch Anlegen einer Spannung an diesen Flächenelektroden veränderlich ist. Das PDLC-Funktionselement verfügt über eine PDLC- Schicht als aktive Schicht, die zwischen einer dritten Flächenelektrode und einer vierten Flächenelektrode angeordnet ist. Die Funktionselemente weisen elektrisch steuerbare optische Eigenschaften auf, die in Abhängigkeit der an den benachbarten Flächenelektroden angelegten Spannung regelbar sind. The composite pane comprises at least a first pane and a second pane, which are connected to one another via a thermoplastic intermediate layer, with an electrochromic functional element and a PDLC functional element being embedded in the intermediate layer. The laminated pane thus has at least two functional elements which are attached essentially congruently with one another and each have an active layer. The optical condition of the laminated pane is thus determined by the optical condition of these two functional elements. In the first, more transparent state of the laminated pane, the PDLC functional element and the electrochromic functional element are in a transparent state. In the second, darker state of the laminated pane, the electrochromic functional element is in a tinted state, while the PDLC functional element can be in a transparent or opaque state, at the user's choice. The active layer of the electrochromic functional element is an electrochromic layer which is arranged between a first surface electrode and a second surface electrode, the optical state of the functional element being variable by applying a voltage to these surface electrodes. The PDLC functional element has a PDLC layer as the active layer, which is arranged between a third surface electrode and a fourth surface electrode. The functional elements have electrically controllable optical properties that can be regulated as a function of the voltage applied to the adjacent surface electrodes.
Das PDLC-Funktionselement (polymer dispersed liquid crystal) weist eine aktive Schicht auf, die Flüssigkristalle enthält, welche in eine Polymermatrix eingelagert sind. Wird an die Flächenelektroden keine Spannung angelegt, so sind die Flüssigkristalle ungeordnet ausgerichtet, was zu einer starken Streuung des durch die aktive Schicht tretenden Lichts führt. Wird an die Flächenelektroden eine Spannung angelegt, so richten sich die Flüssigkristalle in einer gemeinsamen Richtung aus und die Transmission von Licht durch die aktive Schicht wird erhöht. Ein solches Funktionselement ist beispielsweise aus DE 102008026339 A 1 bekannt. Die aktive Substanz eines PDLC-Funktionselementes sind demnach Flüssigkristalle, die in Form von Flüssigkristalltröpfchen in einer Matrix, in diesem Fall einer polymeren Matrix, dispergiert sind. Die Polymermatrix sowie die darin dispergierten Flüssigkristalltröpfchen bilden gemeinsam die aktive Schicht. The PDLC functional element (polymer dispersed liquid crystal) has an active layer that contains liquid crystals embedded in a polymer matrix. If no voltage is applied to the surface electrodes, the liquid crystals are aligned in a disorderly manner, which leads to strong scattering of the light passing through the active layer. If a voltage is applied to the surface electrodes, the liquid crystals align themselves in a common direction and the transmission of light through the active layer is increased. Such a functional element is known, for example, from DE 102008026339 A1. Accordingly, the active substance of a PDLC functional element is liquid crystals, which are dispersed in the form of liquid crystal droplets in a matrix, in this case a polymeric matrix. The polymer matrix and the liquid crystal droplets dispersed therein together form the active layer.
Bei dem elektrochromen Funktionselement ist die aktive Schicht des Funktionselements eine elektrochemisch aktive Schicht. Die Transmission von sichtbarem Licht ist vom Einlagerungsgrad von Ionen in die aktive Schicht abhängig, wobei die Ionen beispielsweise durch eine lonenspeicherschicht zwischen aktiver Schicht und einer Flächenelektrode bereitgestellt werden. Die Transmission kann durch die an die Flächenelektroden angelegte Spannung, welche eine Wanderung der Ionen hervorruft, beeinflusst werden. Geeignete funktionelle Schichten enthalten beispielsweise zumindest Wolframoxid oder Vanadiumoxid. Elektrochrome Funktionselemente sind beispielsweise aus WO 2012007334 A1 , US 20120026573 A1 , WO 2010147494 A1 und EP 1862849 A1 bekannt. In the case of the electrochromic functional element, the active layer of the functional element is an electrochemically active layer. The transmission of visible light depends on the degree of incorporation of ions in the active layer, with the ions being provided, for example, by an ion storage layer between the active layer and a surface electrode. The transmission can be influenced by the voltage applied to the surface electrodes, which causes the ions to migrate. Suitable functional layers contain, for example, at least tungsten oxide or vanadium oxide. Electrochromic functional elements are known, for example, from WO 2012007334 A1, US 20120026573 A1, WO 2010147494 A1 and EP 1862849 A1.
Die erfindungsgemäße Verbundscheibe umfasst mindestens ein elektrochromes Funktionselement und ein PDLC-Funktionselement jeweils umfassend eine aktiv Schicht zwischen zwei Flächenelektroden. Die aktiven Schichten weisen die steuerbaren optischen Eigenschaften auf, welche über die an die Flächenelektroden angelegte Spannung gesteuert werden können. Die Flächenelektroden und die aktiven Schichten sind typischerweise im Wesentlichen parallel zueinander angeordnet. Die Flächenelektroden können mit einer externen Spannungsquelle auf an sich bekannte Art elektrisch verbunden werden. Die elektrische Kontaktierung kann durch geeignete Verbindungskabel, beispielsweise Folienleiter realisiert werden, welche optional über sogenannte Sammelleiter (bus bars), beispielsweise Streifen eines elektrisch leitfähigen Materials oder elektrisch leitfähige Aufdrucke, mit den Flächenelektroden verbunden sind. The laminated pane according to the invention comprises at least one electrochromic functional element and one PDLC functional element, each comprising an active layer between two surface electrodes. The active layers have the controllable optical properties, which can be controlled via the voltage applied to the surface electrodes. The surface electrodes and the active layers are typically arranged essentially parallel to one another. The surface electrodes can be electrically connected to an external voltage source in a manner known per se. The electrical contact can be implemented by suitable connecting cables, for example foil conductors, which are optionally connected to the surface electrodes via so-called bus bars, for example strips of an electrically conductive material or electrically conductive imprints.
Die Flächenelektroden sind bevorzugt jeweils auf einer der Flächenelektrode benachbarten Trägerfolie aufgebracht. Die erste Flächenelektrode ist dabei auf einer ersten Trägerfolie, die zweite Flächenelektrode auf einer zweiten Trägerfolie, die dritte Flächenelektrode auf einer dritten Trägerfolie und die vierte Flächenelektrode auf einer vierten Flächenelektrode angeordnet. Die Schichtabfolge innerhalb beider Funktionselemente ist dabei so, dass die Flächenelektroden auf der der jeweiligen aktiven Schicht zugewandten Oberfläche der Trägerfolie aufgebracht sind. Die Funktionselemente können somit im Produktionsprozess in Form einer Mehrschichtfolie aus Trägerfolien, Flächenelektroden und aktiver Schicht bereitgestellt werden. Das elektrochrome Funktionselement umfasst dabei in dieser Reihenfolge die erste Trägerfolie, die erste Flächenelektrode, die elektrochrome Schicht, die zweite Flächenelektrode und die zweite Trägerfolie. Das PDLC-Funktionselement umfasst in dieser Reihenfolge eine dritte Trägerfolie, die dritte Flächenelektrode, die PDLC-Schicht, die vierte Flächenelektrode und die vierte Trägerfolie. The surface electrodes are preferably each applied to a carrier film adjacent to the surface electrode. The first surface electrode is arranged on a first carrier foil, the second surface electrode on a second carrier foil, the third surface electrode on a third carrier foil and the fourth surface electrode on a fourth surface electrode. The layer sequence within both functional elements is such that the surface electrodes are applied to the surface of the carrier film facing the respective active layer. The functional elements can thus be used in the production process in the form of a multi-layer film made of carrier films, surface electrodes and an active layer to be provided. In this case, the electrochromic functional element comprises, in this order, the first carrier film, the first surface electrode, the electrochromic layer, the second surface electrode and the second carrier film. In this order, the PDLC functional element comprises a third carrier film, the third surface electrode, the PDLC layer, the fourth surface electrode and the fourth carrier film.
Bevorzugt enthalten die Trägerfolien zumindest ein im Autoklavprozess nicht vollständig aufschmelzendes Polymer, das einen Schmelzpunkt von oberhalb 150 °C, bevorzugt 180 °C aufweist. Besonders bevorzugt umfassen die Trägerfolien Polyethylenterephthalat (PET). Besonders bevorzugt bestehen die erste, die zweite, die dritte und die vierte Trägerfolie aus einer PET-Folie. Die T rägerfolien sind bevorzugt transparent, können jedoch auch getönt sein. Die Dicke der Trägerfolien beträgt bevorzugt von 0,025 mm bis 0,400 mm, insbesondere von 0,050 mm bis 0,200 mm. Die Flächenelektroden sind bevorzugt auf einer Oberfläche der Trägerfolie angeordnet, das heißt auf genau einer der beiden Seiten der Trägerfolie (also auf deren Vorderseite oder deren Rückseite). Die Trägerfolien sind dabei im Schichtstapel der Mehrschichtfolie so ausgerichtet, dass die Flächenelektroden benachbart zu den aktiven Schichten angeordnet sind. Die Folien können auch innerhalb der genannten Bereiche verschiedene Dicken und Zusammensetzungen aufweisen. The carrier foils preferably contain at least one polymer which does not melt completely in the autoclave process and has a melting point above 150.degree. C., preferably 180.degree. The carrier films particularly preferably comprise polyethylene terephthalate (PET). Particularly preferably, the first, the second, the third and the fourth carrier film consist of a PET film. The carrier foils are preferably transparent, but can also be tinted. The thickness of the carrier films is preferably from 0.025 mm to 0.400 mm, in particular from 0.050 mm to 0.200 mm. The surface electrodes are preferably arranged on a surface of the carrier film, that is to say on exactly one of the two sides of the carrier film (ie on its front side or its back side). In this case, the carrier foils are aligned in the layer stack of the multilayer foil in such a way that the surface electrodes are arranged adjacent to the active layers. The films can also have different thicknesses and compositions within the ranges mentioned.
Bevorzugt sind die Trägerfolien im Bereich des gesamten Funktionselementes als eine einzelne durchgängige Folie ausgeführt. Dadurch kann eine hohe optische Produktqualität erreicht werden. Im Gegensatz dazu bleibt in einem Funktionselement, das aus mehreren an einer Schnittkante aneinandergelegten Mehrschichtfolien erzeugt wird, die Schnittkante auch nach Lamination des Funktionselements in einer Scheibe sichtbar. The carrier foils are preferably designed as a single continuous foil in the area of the entire functional element. As a result, a high optical product quality can be achieved. In contrast to this, in a functional element that is produced from a plurality of multi-layer films laid one on top of the other at a cut edge, the cut edge remains visible even after the functional element has been laminated in a pane.
Bevorzugt ist jede Flächenelektrode mit mindestens einem Sammelleiter elektrisch leitend kontaktiert. Die Flächenelektroden sind mit einer externen Spannungsquelle auf an sich bekannte Art elektrisch verbunden. Die elektrische Kontaktierung ist durch geeignete Verbindungskabel, beispielsweise Folienleiter realisiert, welche bevorzugt über Sammelleiter mit den Flächenelektroden verbunden sind. Each flat electrode is preferably electrically conductively contacted with at least one bus bar. The surface electrodes are electrically connected to an external voltage source in a manner known per se. The electrical contact is realized by suitable connecting cables, for example foil conductors, which are preferably connected to the surface electrodes via busbars.
Die Flächenelektroden sind bevorzugt als transparente, elektrisch leitfähige Schichten ausgestaltet. Die Flächenelektroden enthalten bevorzugt zumindest ein Metall, eine Metalllegierung oder ein transparentes leitfähiges Oxid (transparent conducting oxide, TCO). Die Flächenelektroden können beispielsweise Silber, Gold, Kupfer, Nickel, Chrom, Wolfram, Indium-Zinnoxid (ITO), Gallium-dotiertes oder Aluminium-dotiertes Zinkoxid und / oder Fluordotiertes oder Antimon-dotiertes Zinnoxid enthalten. Die Flächenelektroden weisen bevorzugt eine Dicke von 10 nm bis 2 pm auf, besonders bevorzugt von 20 nm bis 1 pm, ganz besonders bevorzugt von 30 nm bis 500 nm. The surface electrodes are preferably in the form of transparent, electrically conductive layers. The surface electrodes preferably contain at least one metal, a metal alloy or a transparent conducting oxide (TCO). The surface electrodes can, for example, be silver, gold, copper, nickel, chromium, tungsten, Indium tin oxide (ITO), gallium-doped or aluminum-doped zinc oxide and/or fluorine-doped or antimony-doped tin oxide. The surface electrodes preferably have a thickness of 10 nm to 2 μm, particularly preferably from 20 nm to 1 μm, very particularly preferably from 30 nm to 500 nm.
Die Funktionselemente in Form von Mehrschichtfolien können außer der jeweiligen aktiven Schicht und den Flächenelektroden weitere an sich bekannte Schichten aufweisen, beispielsweise Barriereschichten, Blockerschichten, Antireflexionsschichten, Schutzschichten und/oder Glättungsschichten. The functional elements in the form of multilayer films can have other layers known per se in addition to the respective active layer and the surface electrodes, for example barrier layers, blocking layers, antireflection layers, protective layers and/or smoothing layers.
Die Funktionselemente sind in die thermoplastische Zwischenschicht der Verbundscheibe eingelagert. Die thermoplastische Zwischenschicht umfasst bevorzugt mindestens eine erste thermoplastische Verbundfolie, mindestens eine zweite thermoplastische Verbundfolie und mindestens eine dritte thermoplastische Verbundfolie. Die Funktionselemente sind zumindest abschnittsweise zwischen diesen Verbundfolien angeordnet ist. Das elektrochrome Funktionselement und das PDLC-Funktionselement können in ihren Abmaßen identisch oder verschieden sein, wobei zumindest abschnittsweise eine Überlappung des elektrochromen Funktionselementes und des PDLC-Funktionselementes vorliegt. Dabei ist eine Projektion des PDLC-Funktionselementes in die Ebene des elektrochromen Funktionselementes mit dem elektrochromen Funktionselement in zumindest einem Teilbereich deckungsgleich und umgekehrt. Die erste, die zweite und die dritte thermoplastische Verbundfolie weisen üblicherweise dieselben Abmessungen wie die erste und die zweite Scheibe auf. The functional elements are embedded in the thermoplastic intermediate layer of the laminated pane. The thermoplastic intermediate layer preferably comprises at least one first thermoplastic composite film, at least one second thermoplastic composite film and at least one third thermoplastic composite film. The functional elements are arranged at least in sections between these composite films. The dimensions of the electrochromic functional element and the PDLC functional element can be identical or different, with the electrochromic functional element and the PDLC functional element overlapping at least in sections. In this case, a projection of the PDLC functional element in the plane of the electrochromic functional element is congruent with the electrochromic functional element in at least a partial area and vice versa. The first, second, and third thermoplastic composite sheets typically have the same dimensions as the first and second panes.
Die thermoplastische Zwischenschicht umfasst bevorzugt eine erste thermoplastische Verbundfolie, die eines der Funktionselemente mit der ersten Scheibe verbindet, eine zweite thermoplastische Verbundfolie, die das andere Funktionselement mit der zweiten Scheibe verbindet und eine dritte thermoplastische Verbundfolie, die das eine der Funktionselemente mit dem anderen Funktionselement verbindet. Beispielsweise verbindet die erste thermoplastische Verbundfolie das PDLC-Funktionselement mit der ersten Scheibe, die zweite thermoplastische Verbundfolie verbindet das elektrochrome Funktionselement mit der zweiten Scheibe und die dritte thermoplastische Verbundfolie verbindet das PDLC- Funktionselement und das elektrochrome Funktionselement miteinander. Eine Anordnung des PDLC-Funktionselementes benachbart zur zweiten Scheibe und des elektrochromen Funktionselementes benachbart zur ersten Scheibe ist ebenso möglich. Typischerweise wird die thermoplastische Zwischenschicht durch mindestens die erste, die zweite und die dritte thermoplastische Verbundfolie gebildet, die flächig aufeinander angeordnet werden und miteinander laminiert werden, wobei die Funktionselemente zwischen den drei Schichten eingelegt werden. Die mit den Funktionselementen überlappenden Bereiche der Verbundfolien bilden dann die Bereiche, welche das Funktionselement mit den Scheiben verbinden. In anderen Bereichen der Scheibe, wo die thermoplastischen Verbundfolien direkten Kontakt zueinander haben, können sie beim Laminieren derart verschmelzen, dass die beiden ursprünglichen Schichten unter Umständen nicht mehr erkennbar sind und stattdessen eine homogene Zwischenschicht vorliegt. The thermoplastic intermediate layer preferably comprises a first thermoplastic composite film that connects one of the functional elements to the first pane, a second thermoplastic composite film that connects the other functional element to the second pane, and a third thermoplastic composite film that connects one of the functional elements to the other functional element . For example, the first thermoplastic composite film connects the PDLC functional element to the first pane, the second thermoplastic composite film connects the electrochromic functional element to the second pane, and the third thermoplastic composite film connects the PDLC functional element and the electrochromic functional element to one another. An arrangement of the PDLC functional element adjacent to the second pane and the electrochromic functional element adjacent to the first pane is also possible. Typically, the thermoplastic intermediate layer is formed by at least the first, second and third thermoplastic composite film is formed, which are arranged flat on top of each other and are laminated together, with the functional elements being inserted between the three layers. The areas of the composite foils that overlap with the functional elements then form the areas that connect the functional element to the panes. In other areas of the pane, where the thermoplastic composite films are in direct contact with one another, they can fuse during lamination in such a way that the two original layers may no longer be recognizable and instead there is a homogeneous intermediate layer.
Die erste thermoplastische Verbundfolie und die zweite thermoplastische Verbundfolie und gegebenenfalls auch weitere thermoplastische Verbundfolien enthalten bevorzugt zumindest Polyvinylbutyral (PVB), Ethylenvinylacetat (EVA) und / oder Polyurethan (PU), besonders bevorzugt PVB. The first thermoplastic composite film and the second thermoplastic composite film and optionally also other thermoplastic composite films preferably contain at least polyvinyl butyral (PVB), ethylene vinyl acetate (EVA) and/or polyurethane (PU), particularly preferably PVB.
Die Dicke der ersten und der zweiten thermoplastischen Verbundfolie beträgt bevorzugt jeweils zwischen 0,2 mm bis 2 mm, besonders bevorzugt zwischen 0,3 mm bis 1 mm, insbesondere von 0,3 mm bis 0,8 mm, beispielsweise 0,38 mm oder 0,76 mm. Die Dicke der dritten thermoplastischen Verbundfolie liegt bevorzugt zwischen 25 pm und 200 pm, besonders bevorzugt zwischen 25 pm und 75 pm, beispielsweise 50 pm. The thickness of the first and the second thermoplastic composite film is preferably between 0.2 mm and 2 mm, particularly preferably between 0.3 mm and 1 mm, in particular from 0.3 mm to 0.8 mm, for example 0.38 mm or 0.76mm The thickness of the third thermoplastic composite film is preferably between 25 μm and 200 μm, particularly preferably between 25 μm and 75 μm, for example 50 μm.
Besonders bevorzugt weisen die erste thermoplastische Verbundfolie und die zweite thermoplastische Verbundfolie eine Dicke von jeweils 0,38 mm auf, während die dritte thermoplastische Verbundfolie 50 pm dick ist. Dies ist vorteilhaft um einerseits eine sichere Anbindung der Funktionselemente und der Scheiben zueinander zu erreichen und andererseits eine möglichst geringe Dicke der thermoplastischen Zwischenschicht zu erzielen. Particularly preferably, the first thermoplastic composite film and the second thermoplastic composite film each have a thickness of 0.38 mm, while the third thermoplastic composite film is 50 μm thick. This is advantageous in order on the one hand to achieve a secure connection of the functional elements and the panes to one another and on the other hand to achieve the smallest possible thickness of the thermoplastic intermediate layer.
Eine thermoplastische Verbundfolie kann beispielsweise durch eine einzige thermoplastische Folie ausgebildet werden. Eine thermoplastische Verbundfolie kann auch aus Abschnitten unterschiedlicher thermoplastischer Folien gebildet werden, deren Seitenkanten aneinandergesetzt sind. Zusätzlich zu einer ersten thermoplastischen Verbundfolie oder einer zweiten thermoplastischen Verbundfolie können auch weitere thermoplastische Verbundfolien vorhanden sein. Diese können bei Bedarf auch zur Einbettung weiterer Folien umfassend funktionelle Schichten, beispielsweise infrarotreflektierender Schichten, UV- filternder Schichten oder akustisch dämpfender Schichten, genutzt werden. In einer bevorzugten Ausgestaltung der Erfindung ist mindestens eines der Funktionselemente, bevorzugt beide Funktionselemente, umlaufend von einer thermoplastischen Rahmenfolie umgeben. Die mindestens eine thermoplastische Rahmenfolie umgibt das Funktionselement rahmenförmig entlang der umlaufenden Kante des Funktionselementes und weist etwa die gleiche Dicke auf wie das Funktionselement. So werden lokale Dickenunterschiede der Verbundscheibe, die durch örtlich begrenzte Funktionselemente eingebracht werden durch eine solche Rahmenfolie kompensiert, so dass Glasbruch beim Laminieren vermieden werden kann. Die thermoplastischen Rahmenfolien können durch thermoplastische Verbundfolien gebildet werden, in welche die Aussparung durch Ausschneiden eingebracht worden ist. Das Material der thermoplastischen Rahmenfolien entspricht dem Material den für die thermoplastischen Verbundfolien genannten Materialien. A thermoplastic composite film can be formed, for example, from a single thermoplastic film. A thermoplastic composite film can also be formed from sections of different thermoplastic films whose side edges are placed against one another. In addition to a first thermoplastic composite film or a second thermoplastic composite film, further thermoplastic composite films can also be present. If required, these can also be used to embed further films comprising functional layers, for example infrared-reflecting layers, UV-filtering layers or acoustically dampening layers. In a preferred embodiment of the invention, at least one of the functional elements, preferably both functional elements, is surrounded all around by a thermoplastic frame film. The at least one thermoplastic frame film surrounds the functional element in the form of a frame along the peripheral edge of the functional element and has approximately the same thickness as the functional element. Local thickness differences of the laminated pane, which are introduced by locally limited functional elements, are compensated for by such a frame film, so that glass breakage during lamination can be avoided. The thermoplastic frame foils can be formed by thermoplastic composite foils, in which the recess has been introduced by cutting. The material of the thermoplastic frame films corresponds to the materials mentioned for the thermoplastic composite films.
Optional wird die umlaufende Kante des Funktionselementes vollständig oder teilweise mit einer Randversiegelung versehen. Diese kann beispielsweise in Form eines Klebebands um die offene Kante des Funktionselementes gelegt werden oder durch im Randbereich des Funktionselementes beidseitig aufgelegte Sperrfolien ausgeführt sein. Die Randversiegelung verhindert das Eindiffundieren von Weichmachern aus den thermoplastischen Verbundfolien in die aktive Schicht des Funktionselementes. Optionally, the peripheral edge of the functional element is completely or partially provided with an edge seal. This can be placed around the open edge of the functional element in the form of an adhesive tape, for example, or be implemented by blocking films placed on both sides in the edge region of the functional element. The edge sealing prevents plasticizers from diffusing from the thermoplastic composite films into the active layer of the functional element.
Optional ist mindestens ein Bereich der ersten, der zweiten und/oder der dritten thermoplastischen Verbundfolie getönt oder gefärbt. Die Transmission dieses Bereichs im sichtbaren Spektralbereich ist also herabgesetzt gegenüber einer nicht getönten oder gefärbten Schicht. Der getönte/gefärbte Bereich der thermoplastischen Verbundfolien erniedrigt somit die Transmission der Verbundscheibe. Insbesondere wird der ästhetische Eindruck des PDLC-Funktionselements verbessert, weil die Tönung zu einem neutraleren Erscheinungsbild führt, das auf den Betrachter angenehmer wirkt. Der getönte oder gefärbte Bereich kann homogen gefärbt oder getönt sein, das heißt eine ortsunabhängige Transmission aufweisen. Die Tönung oder Färbung kann aber auch inhomogenen sein, insbesondere kann ein Transmissionsverlauf realisiert sein. Optionally, at least a portion of the first, second, and/or third thermoplastic composite sheet is tinted or colored. The transmission of this range in the visible spectral range is therefore reduced compared to a layer that is not tinted or colored. The tinted/colored area of the thermoplastic composite films thus reduces the transmission of the composite pane. In particular, the aesthetic appeal of the PDLC device is improved because the tinting results in a more neutral appearance that is more pleasing to the viewer. The tinted or colored area can be homogeneously colored or tinted, ie have a location-independent transmission. However, the tint or coloring can also be inhomogeneous; in particular, a transmission curve can be realized.
Eine bevorzugte Schichtenfolge der erfindungsgemäßen Verbundscheibe umfasst in dieser Reihenfolge flächenmäßig übereinander angeordnet mindestens A preferred sequence of layers of the laminated pane according to the invention comprises at least one above the other in this order
- eine erste Scheibe, - eine erste thermoplastische Verbundfolie, - a first disc, - a first thermoplastic composite film,
- ein PDLC-Funktionselement rahmenförmig umgeben von einer ersten thermoplastischen Rahmenfolie, - a PDLC functional element surrounded in the form of a frame by a first thermoplastic frame film,
- eine dritte thermoplastische Verbundfolie, - a third thermoplastic composite film,
- ein elektrochromes Funktionselement rahmenförmig umgeben von einer zweiten thermoplastischen Rahmenfolie, - a frame-shaped electrochromic functional element surrounded by a second thermoplastic frame film,
- eine zweite thermoplastische Verbundfolie, - a second thermoplastic composite film,
- eine zweite Scheibe, wobei das elektrochrome Funktionselement in dieser Reihenfolge flächenmäßig übereinander umfasst - A second pane, wherein the electrochromic functional element comprises one above the other in this order in terms of surface area
- eine erste Trägerfolie, - a first carrier film,
- eine erste Flächenelektrode, - a first surface electrode,
- eine elektrochrome Schicht, - an electrochromic layer,
- eine zweite Flächenelektrode, - a second flat electrode,
- eine zweite Trägerfolie, und das PDLC- Funktionselement in dieser Reihenfolge flächenmäßig übereinander umfasst- A second carrier film, and the PDLC functional element in this order includes one above the other
- eine dritte Trägerfolie, - a third carrier film,
- eine dritte Flächenelektrode, - a third surface electrode,
- eine PDLC-Schicht, - a PDLC layer,
- eine vierte Flächenelektrode, - a fourth surface electrode,
- eine vierte Trägerfolie. - a fourth carrier film.
Die Begriffe erste Scheibe und zweite Scheibe beschreiben willkürlich zwei verschiedene Scheiben. Insbesondere kann die erste Scheibe als eine Außenscheibe und die zweite Scheibe als eine Innenscheibe bezeichnet werden. Ist die Verbundscheibe dafür vorgesehen, in einer Fensteröffnung eines Fahrzeugs oder eines Gebäudes einen Innenraum gegenüber der äußeren Umgebung abzutrennen, so wird mit Innenscheibe im Sinne der Erfindung die dem Innenraum (Fahrzeuginnenraum) zugewandte Scheibe (zweite Scheibe) bezeichnet. Mit Außenscheibe wird die der äußeren Umgebung zugewandte Scheibe (erste Scheibe) bezeichnet. Die Erfindung ist aber darauf nicht eingeschränkt. The terms first disk and second disk arbitrarily describe two different disks. In particular, the first pane can be referred to as an outer pane and the second pane as an inner pane. If the laminated pane is intended to separate an interior from the outside environment in a window opening of a vehicle or a building, the inner pane in the context of the invention refers to the pane (second pane) facing the interior (vehicle interior). The outer pane refers to the pane facing the outer environment (first pane). However, the invention is not restricted to this.
In einer Ausgestaltung der Erfindung ist mindestens eines der Funktionselemente, bevorzugt beide Funktionselemente, durch Trennlinien, auch als Isolierungslinien bezeichnet, in Segmente aufgeteilt. Die Trennlinien sind insbesondere in die Flächenelektroden eingebracht, so dass die Segmente der Flächenelektrode elektrisch voneinander isoliert sind. Mindestens eine der Flächenelektroden weist dabei mindestens eine Trennlinie auf, die die Flächenelektrode in mindestens zwei Segmente unterteilt, deren elektrisch steuerbare optische Eigenschaften unabhängig voneinander schaltbar sind. Die einzelnen Segmente sind dazu unabhängig voneinander mit der Spannungsquelle verbunden, so dass sie separat angesteuert werden können. So können beispielsweise verschiedene Bereiche der Funktionselemente unabhängig geschaltet werden. Besonders bevorzugt sind die Trennlinien und die Segmente bei einer Kraftfahrzeugdachscheibe in Einbaulage horizontal angeordnet, wobei die Trennlinien zwischen gegenüberliegenden Türen des Kraftfahrzeugs im Wesentlichen parallel zur vorderen Dachkante verlaufen. Der Begriff „horizontal“ ist hier breit auszulegen und bezeichnet eine Ausbreitungsrichtung, die in Einbaulage zwischen den Seitenkanten des Fahrzeugs verläuft. Die Trennlinien müssen nicht notwendigerweise gerade sein, sondern können auch leicht gebogen sein, bevorzugt angepasst an eine eventuelle Biegung der Kanten der Verbundscheibe. Vertikale Trennlinien sind natürlich auch denkbar. In one embodiment of the invention, at least one of the functional elements, preferably both functional elements, is divided into segments by dividing lines, also referred to as isolation lines. The separating lines are introduced in particular into the surface electrodes, so that the segments of the surface electrode are electrically insulated from one another. At least one of the surface electrodes has at least one dividing line which divides the surface electrode into at least two segments whose electrically controllable optical properties can be switched independently of one another. The individual segments are connected to the voltage source independently of one another, so that they can be controlled separately. For example, different areas of the functional elements can be switched independently. The dividing lines and the segments are particularly preferably arranged horizontally in a motor vehicle roof window in the installed position, with the dividing lines between opposite doors of the motor vehicle running essentially parallel to the front edge of the roof. The term "horizontal" is to be interpreted broadly here and designates a direction of propagation that runs between the side edges of the vehicle in the installed position. The dividing lines do not necessarily have to be straight, but can also be slightly curved, preferably adapted to any bending of the edges of the laminated pane. Of course, vertical dividing lines are also conceivable.
Die Trennlinien weisen beispielsweise eine Breite von 5 pm bis 500 pm, insbesondere 20 pm bis 200 pm auf. Die Breite der Segmente, also der Abstand benachbarten Trennlinien kann vom Fachmann gemäß den Anforderungen im Einzelfall geeignet gewählt werden. The dividing lines have, for example, a width of 5 μm to 500 μm, in particular 20 μm to 200 μm. The width of the segments, ie the distance between adjacent dividing lines, can be suitably selected by a person skilled in the art according to the requirements in the individual case.
Die Trennlinien können durch Laserablation, mechanisches Schneiden oder Ätzen während der Herstellung des Funktionselements eingebracht werden. Bereits laminierte Mehrschichtfolien können auch nachträglich noch mittels Laserablation segmentiert werden. The separating lines can be introduced by laser ablation, mechanical cutting or etching during the production of the functional element. Already laminated multi-layer foils can also be subsequently segmented using laser ablation.
Die Funktionselemente können auch Aussparungen oder Löcher aufweisen, etwa im Bereich sogenannter Sensorfenster oder Kamerafenster. Diese Bereiche sind dafür vorgesehen, mit Sensoren oder Kameras ausgestattet zu werden, deren Funktion durch regelbare Funktionselemente im Strahlengang beeinträchtigt werden würde, beispielsweise Regensensoren. The functional elements can also have recesses or holes, for example in the area of so-called sensor windows or camera windows. These areas are intended to be equipped with sensors or cameras whose function would be impaired by controllable functional elements in the beam path, such as rain sensors.
Die Funktionselemente sind bevorzugt über die gesamte Fläche der Verbundscheibe angeordnet, abzüglich eines umlaufenden Randbereichs mit einer Breite von beispielsweise 2 mm bis 20 mm. Die Funktionselemente sind so innerhalb der Zwischenschicht eingekapselt und vor Kontakt mit der umgebenden Atmosphäre und Korrosion geschützt. The functional elements are preferably arranged over the entire surface of the laminated pane, minus a peripheral edge area with a width of, for example, 2 mm to 20 mm. The functional elements are thus encapsulated within the intermediate layer and protected from contact with the surrounding atmosphere and from corrosion.
Die elektrische Steuerung der Funktionselemente erfolgt beispielsweise mittels Schaltern, Dreh- oder Schiebereglern, die in den Armaturen des Fahrzeugs oder unmittelbar in der Verbundscheibe integriert sind. Dabei kann auch eine Schaltfläche zur Reglung in die Windschutzscheibe und/oder in die Dachfläche eines Kraftfahrzeugs integriert sein, beispielsweise eine kapazitive Schaltfläche. Alternativ oder zusätzlich können die Funktionselemente durch kontaktfreie Verfahren, beispielsweise durch das Erkennen von Gesten, oder in Abhängigkeit des durch eine Kamera und geeignete Auswerteelektronik festgestellten Zustands von Pupille oder Augenlid gesteuert werden. Eine Steuerung in Abhängigkeit des Augenlid- oder Pupillenzustands kommt dabei vor allem bei Funktionselementen als Sonnenblende einer Windschutzscheibe in Frage. Alternativ oder zusätzlich kann das Funktionselement durch Sensoren, welchen einen Lichteinfall auf die Scheibe detektieren, gesteuert werden. The electrical control of the functional elements is carried out, for example, by means of switches, knobs or sliders that are in the vehicle's dashboard or directly in the Composite pane are integrated. A control button can also be integrated into the windshield and/or into the roof surface of a motor vehicle, for example a capacitive button. Alternatively or additionally, the functional elements can be controlled by non-contact methods, for example by recognizing gestures, or depending on the state of the pupil or eyelid determined by a camera and suitable evaluation electronics. A control as a function of the state of the eyelid or pupil comes into consideration here in particular in the case of functional elements such as sun visors on a windshield. Alternatively or additionally, the functional element can be controlled by sensors which detect incident light on the pane.
Die erste Scheibe und die zweite Scheibe sind bevorzugt aus Glas gefertigt, besonders bevorzugt aus Kalk-Natron-Glas, wie es für Fensterscheiben üblich ist. Die Scheiben können aber auch aus anderen Glassorten gefertigt sein, beispielsweise Quarzglas, Borosilikatglas oder Alumino-Silikat-Glas, oder aus starren klaren Kunststoffen, beispielsweise Polycarbonat oder Polymethylmethacrylat. Die erste Scheibe und oder die zweite Scheibe können thermisch oder chemisch vorgespannt sein. Insbesondere dünne Innenscheiben mit einer Dicke von kleiner oder gleich 1 mm werden bevorzugt aus chemisch vorgespanntem Alumino- Silikat-Glas gefertigt. Die Scheiben können klar sind, oder auch getönt oder gefärbt. Bei einer Verwendung als Windschutzscheibe muss jedoch im zentralen Sichtbereich eine ausreichende Lichttransmission sichergestellt werden, bevorzugt mindestens 70 % im Haupt- Durchsichtbereich A gemäß ECE-R43. The first pane and the second pane are preferably made of glass, particularly preferably of soda-lime glass, as is customary for window panes. However, the panes can also be made from other types of glass, for example quartz glass, borosilicate glass or alumino-silicate glass, or from rigid, clear plastics, for example polycarbonate or polymethyl methacrylate. The first pane and/or the second pane may be thermally or chemically prestressed. In particular, thin inner panes with a thickness of less than or equal to 1 mm are preferably made from chemically toughened alumino-silicate glass. The discs can be clear, or even tinted or tinted. When used as a windshield, however, sufficient light transmission must be ensured in the central viewing area, preferably at least 70% in the main viewing area A in accordance with ECE-R43.
Die erste Scheibe, die zweite Scheibe und/oder die thermoplastische Zwischenschicht können weitere geeignete, an sich bekannte Beschichtungen aufweisen, beispielsweise Antireflexbeschichtungen, Antihaftbeschichtungen, Antikratzbeschichtungen, photokatalytische Beschichtungen oder Sonnenschutzbeschichtungen oder Low-E- Beschichtungen. The first pane, the second pane and/or the thermoplastic intermediate layer can have other suitable coatings known per se, for example anti-reflection coatings, non-stick coatings, anti-scratch coatings, photocatalytic coatings or sun protection coatings or low-E coatings.
Die Dicke der ersten Scheibe und der zweiten Scheibe kann breit variieren und so den Erfordernissen im Einzelfall angepasst werden. Die erste Scheibe und die zweite Scheibe weisen bevorzugt Dicken von 0,5 mm bis 5 mm auf, besonders bevorzugt von 1 mm bis 3 mm. Die Verbundscheibe kann beispielsweise die Windschutzscheibe oder die Dachscheibe eines Fahrzeugs oder eine andere Fahrzeugverglasung sein, beispielsweise eine Trennscheibe in einem Fahrzeug, bevorzugt in einem Schienenfahrzeug oder einem Bus. Alternativ kann die Verbundscheibe eine Architekturverglasung, beispielsweise in einer Außenfassade eines Gebäudes oder eine Trennscheibe im Innern eines Gebäudes sein. The thickness of the first pane and the second pane can vary widely and can thus be adapted to the requirements in the individual case. The first pane and the second pane preferably have thicknesses of 0.5 mm to 5 mm, particularly preferably 1 mm to 3 mm. The laminated pane can be, for example, the windshield or the roof pane of a vehicle or other vehicle glazing, for example a partition pane in a vehicle, preferably in a rail vehicle or a bus. Alternatively, the laminated pane can be architectural glazing, for example in an exterior facade of a building, or a separating pane inside a building.
Handelt es sich bei der erfindungsgemäßen Verbundscheibe um eine Kraftfahrzeugscheibe, so werden eine oder mehrere Kanten der Funktionselemente in Durchsicht durch die Scheibe bevorzugt von einem opaken Abdeckdruck verdeckt. Windschutzscheiben und Dachscheiben weisen typischerweise einen umlaufenden peripheren Abdeckdruck aus einer opaken Emaille auf, der insbesondere dazu dient, den zum Einbau der Verbundscheibe verwendeten Kleber vor UV-Strahlung zu schützen und optisch zu verdecken. Dieser periphere Abdeckdruck wird bevorzugt dazu verwendet, auch die Kanten der Funktionselemente zu verdecken, sowie die erforderlichen elektrischen Anschlüsse. Bevorzugt weist sowohl die als Außenscheibe verwendete erste Scheibe als auch die als Innenscheibe verwendete zweite Scheibe einen Abdeckdruck auf, so dass die Durchsicht von beiden Seiten gehindert wird. If the composite pane according to the invention is a motor vehicle pane, one or more edges of the functional elements are preferably covered by an opaque masking print when viewed through the pane. Windshields and skylights typically have a peripheral covering print made of an opaque enamel, which serves in particular to protect the adhesive used to install the composite pane from UV radiation and to conceal it from view. This peripheral masking print is preferably used to also mask the edges of the functional elements and the required electrical connections. Both the first pane used as the outer pane and the second pane used as the inner pane preferably have a masking print, so that the view from both sides is prevented.
In einer möglichen Ausführungsform ist die erfindungsgemäße Verbundscheibe eine Windschutzscheibe eines Kraftfahrzeugs. Diese umfasst eine Motorkante, die in Einbaulage der Verbundscheibe in der Fahrzeugkarosserie der Motorhaube benachbart ist und eine Dachkante, die in Einbaulage an das Fahrzeugdach grenzt. Motorkante und Dachkante bilden dabei zwei einander gegenüberliegende Scheibenkanten. Zwischen Motorkante und Dachkante verlaufen zwei einander gegenüberliegende Seitenkanten, die in Einbaulage der Windschutzscheibe an die sogenannten A-Säulen der Karosserie grenzen. In one possible embodiment, the composite pane according to the invention is a windshield of a motor vehicle. This includes a motor edge, which is adjacent to the hood in the installed position of the laminated pane in the vehicle body and a roof edge, which borders the vehicle roof in the installed position. The edge of the motor and the edge of the roof form two opposite pane edges. Between the edge of the engine and the edge of the roof there are two opposite side edges which, when the windshield is installed, border on the so-called A-pillars of the body.
Windschutzscheiben weisen ein zentrales Sichtfeld auf, an dessen optische Qualität hohe Anforderungen gestellt werden. Das zentrale Sichtfeld muss eine hohe Lichttransmission aufweisen (typischerweise größer als 70%). Das besagte zentrale Sichtfeld ist insbesondere dasjenige Sichtfeld, das vom Fachmann als Sichtfeld B, Sichtbereich B oder Zone B bezeichnet wird. Das Sichtfeld B und seine technischen Anforderungen sind in der Regelung Nr. 43 der Wirtschaftskommission der Vereinten Nationen für Europa (UN/ECE) (ECE-R43, „Einheitliche Bedingungen für die Genehmigung der Sicherheitsverglasungswerkstoffe und ihres Einbaus in Fahrzeuge“) festgelegt. Dort ist das Sichtfeld B in Anhang 18 definiert. Die thermoplastische Zwischenschicht, umfassend die erste, die zweite, die dritte thermoplastische Verbundfolie und etwaige weitere polymere Folien, sind im zentralen Sichtfeld einer Windschutzscheibe nicht getönt oder gefärbt, sondern klar und transparent. Dadurch wird sichergestellt, dass die Durchsicht durch das zentrale Sichtfeld nicht eingeschränkt wird, so dass die Scheibe als Windschutzscheibe verwendet werden kann. Unter einer transparenten thermoplastischen Verbundfolie wird eine Schicht mit einer Lichttransmission im sichtbaren Spektralbereich von mindestens 70 % bevorzugt mindestens 80% bezeichnet. Die transparente Zwischenschicht liegt zumindest im Sichtfeld A, bevorzugt auch im Sichtfeld B nach ECE-R43 vor. Windshields have a central field of vision, with high demands being placed on the optical quality. The central field of view must have high light transmission (typically greater than 70%). Said central field of view is in particular that field of view which is referred to as field of view B, field of view B or zone B by those skilled in the art. Field of vision B and its technical requirements are specified in Regulation No. 43 of the United Nations Economic Commission for Europe (UN/ECE) (ECE-R43, "Uniform conditions for the approval of safety glazing materials and their installation in vehicles"). There, the field of view B is defined in Appendix 18. The thermoplastic intermediate layer, comprising the first, the second, the third thermoplastic composite film and any further polymeric films, are not tinted or colored in the central field of view of a windshield, but are clear and transparent. This ensures that the view through the central field of vision is not restricted, so that the screen can be used as a windscreen. A layer with a light transmission in the visible spectral range of at least 70%, preferably at least 80%, is referred to as a transparent thermoplastic composite film. The transparent intermediate layer is present at least in field of vision A, preferably also in field of vision B according to ECE-R43.
In einer bevorzugten Ausführungsform ist die Verbundscheibe eine Kraftfahrzeugdachscheibe, wobei die erste Scheibe die der Fahrzeugumgebung zugewandte Außenscheibe darstellt und die zweite Scheibe die dem Innenraum des Fahrzeugs zugewandte Innenscheibe ist. Bevorzugt weist zumindest die erste thermoplastische Verbundscheibe, die benachbart zur Außenscheibe angeordnet ist, eine UV-filternde Funktion auf. Dadurch kann ultraviolette Strahlung nicht oder nur in geringem Maße zu den Funktionselementen vordringen, wodurch die Lebensdauer der Funktionselemente, insbesondere des elektrochromen Funktionselementes verbessert wird. In a preferred embodiment, the composite pane is a motor vehicle roof pane, the first pane representing the outer pane facing the vehicle surroundings and the second pane being the inner pane facing the interior of the vehicle. At least the first thermoplastic composite pane, which is arranged adjacent to the outer pane, preferably has a UV-filtering function. As a result, ultraviolet radiation cannot penetrate to the functional elements, or only to a small extent, as a result of which the service life of the functional elements, in particular of the electrochromic functional element, is improved.
Die Erfindung wird anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein. Es zeigen: The invention is explained in more detail with reference to a drawing and exemplary embodiments. The drawing is a schematic representation and not to scale. The drawing does not limit the invention in any way. Show it:
Figuren 1a, 1 b eine erfindungsgemäße Verbundscheibe als Dachscheibe eines Kraftfahrzeugs, Figures 1a, 1b a composite pane according to the invention as a roof pane of a motor vehicle,
Figur 2a eine vergrößerte Darstellung des PDLC-Funktionselementes im Ausschnitt X gemäß Figur 1b, FIG. 2a shows an enlarged representation of the PDLC functional element in section X according to FIG. 1b,
Figur 2b eine vergrößerte Darstellung des elektrochromen Funktionselementes im Ausschnitt X‘ gemäß Figur 1b, FIG. 2b shows an enlarged view of the electrochromic functional element in detail X' according to FIG. 1b,
Figur 3 eine schematische Darstellung der erfindungsgemäßen Verbundscheibe in verschiedenen optischen Zuständen während des erfindungsgemäßen Verfahrens. FIG. 3 shows a schematic representation of the laminated pane according to the invention in different optical states during the method according to the invention.
Figuren 1a und 1 b stellen eine Ausführungsform einer erfindungsgemäßen Verbundscheibe 100 dar, die als Dachscheibe eines Kraftfahrzeugs ausgeformt ist. Die Dachscheibe umfasst eine erste Scheibe 1 als Außenscheibe, eine zweite Scheibe 2 als Innenscheibe und eine thermoplastische Zwischenschicht 3, in die ein PDLC-Funktionselement 5 und ein elektrochromes Funktionselement 6 jeweils in Form einer Mehrschichtfolie eingelagert sind. Figur 1a zeigt eine Draufsicht der Verbundscheibe 100 als Dachscheibe eines Kraftfahrzeugs. Figur 1 b zeigt einen Querschnitt durch die Verbundscheibe gemäß Figur 1a entlang der Schnittlinie AA‘. Die erste Scheibe 1 und die zweite Scheibe 2 sind kongruent zueinander gebogen. Die erste Scheibe 1 als Außenscheibe der Verglasung ist zur Fahrzeugumgebung orientiert, während die zweite Scheibe 2 als Innenscheibe der Verbundscheibe zum Fahrzeuginnenraum weist. Die erste Scheibe 1 besteht aus klarem Kalk-Natron-Glas mit einer Dicke von 2,1 mm. Die zweite Scheibe 2 besteht aus Kalk-Natron-Glas mit einer Dicke vonFIGS. 1a and 1b represent an embodiment of a composite pane 100 according to the invention, which is shaped as a roof pane of a motor vehicle. The roof pane includes a first pane 1 as an outer pane, a second pane 2 as an inner pane and a thermoplastic intermediate layer 3, in which a PDLC functional element 5 and an electrochromic functional element 6 are embedded, each in the form of a multilayer film. FIG. 1a shows a plan view of composite pane 100 as a roof pane of a motor vehicle. FIG. 1b shows a cross section through the laminated pane according to FIG. 1a along section line AA′. The first pane 1 and the second pane 2 are bent congruently to each other. The first pane 1 as the outer pane of the glazing is oriented towards the vehicle surroundings, while the second pane 2 as the inner pane of the laminated pane faces the vehicle interior. The first pane 1 consists of clear soda-lime glass with a thickness of 2.1 mm. The second pane 2 consists of soda-lime glass with a thickness of
2.1 mm und ist grau getönt oder klar, bevorzugt grau getönt. Die Scheiben 1 , 2 sind über die thermoplastische Zwischenschicht 3 mit darin eingelegten Funktionselementen 5, 6 verbunden. Die thermoplastische Zwischenschicht 3 umfasst die erste thermoplastische Verbundfolie 4.1 , die zweite thermoplastische Verbundfolie 4.2, die dritte thermoplastische Verbundfolie 4.3, die erste thermoplastische Rahmenfolie 7.1 und die zweite thermoplastische Rahmenfolie 7.2. Die erste und die zweite thermoplastische Verbundfolie 4.1 , 4.2 umfassen jeweils eine thermoplastische Folie aus PVB mit einer Dicke von 0,38 mm. Das PDLC- Funktionselement 5, ist ebenfalls über die erste thermoplastische Verbundfolie 4.1 an der ersten Scheibe 1 angebunden, während die zweite thermoplastische Verbundfolie 4.2 das elektrochrome Funktionselement 6 mit der zweiten Scheibe 2 verbindet. Die dritte thermoplastische Verbundfolie 4.3 besteht aus PVB mit einer Dicke von 50 pm und verbindet das PDLC-Funktionselement 5 und das elektrochrome Funktionselement e miteinander. Das PDLC-Funktionselement 5 ist rahmenförmig von einer erstes thermoplastischen Rahmenfolie2.1 mm and is gray tinted or clear, preferably gray tinted. The discs 1, 2 are connected via the thermoplastic intermediate layer 3 with functional elements 5, 6 inserted therein. The thermoplastic intermediate layer 3 comprises the first thermoplastic composite film 4.1, the second thermoplastic composite film 4.2, the third thermoplastic composite film 4.3, the first thermoplastic frame film 7.1 and the second thermoplastic frame film 7.2. The first and the second thermoplastic composite film 4.1, 4.2 each comprise a thermoplastic film made from PVB with a thickness of 0.38 mm. The PDLC functional element 5 is also connected to the first pane 1 via the first thermoplastic composite film 4.1, while the second thermoplastic composite film 4.2 connects the electrochromic functional element 6 to the second pane 2. The third thermoplastic composite film 4.3 consists of PVB with a thickness of 50 μm and connects the PDLC functional element 5 and the electrochromic functional element e to one another. The PDLC functional element 5 is frame-shaped from a first thermoplastic frame film
7.1 umgeben und das elektrochrome Funktionselement e ist rahmenförmig von einer zweiten thermoplastischen Rahmenfolie 7.2 umgeben, wobei beide Rahmenfolien 7.1 , 7.2 eine Dicke von 0,38 mm aufweisen und damit in ihrer Dicke der Dicke der als Mehrschichtfolien ausgeführten Funktionselemente 5, 6 entsprechen. Die Funktionselemente 5, 6 sind durch Anlegen einer elektrischen Spannung in ihren optischen Eigenschaften steuerbar. Die elektrischen Zuleitungen sind der Einfachheit halber nicht dargestellt. Die Funktionselemente 5, 6 weisen im vorliegenden Ausführungsbeispiel identische Abmaße auf, können sich jedoch in ihren Abmaßen auch unterscheiden. Entlang der umlaufenden Kanten 8 der Funktionselemente 5, 6 ist eine Randversiegelung 16 vorgesehen, die die umlaufende Kante 8 umschließt (gezeigt in Figuren 2a, 2b). Die Randversiegelung 16 kann beispielsweise in Form eines Klebebands um die Kante 8 geklebt werden. Alternativ dazu können im Bereich der umlaufende Kante 8 eines Funktionselementes 5, 6 Sperrfolien (nicht gezeigt), beispielsweise bestehend aus PET, aufgelegt sein, die die umlaufende Kante 8 umgeben und als Randversiegelung dienen. Das PDLC-Funktionselement 5 ist bevorzugt mit einer Randversiegelung aus PET-Sperrfolien versehen. Mittels der Randversiegelung 16 wird eine Diffusion des Weichmachers aus der thermoplastischen Zwischenschicht 3 in die Funktionselemente 5, 6 vermieden. Die Funktionselemente 5, 6 können in Form von Segmenten 14 variabel geschaltet werden. Die Funktionselemente 5, 6 ist durch horizontale Trennlinien 15 in drei Segmente 14 aufgeteilt, wobei die in dem PDLC-Funktionselement 5 und die in dem elektrochromen Funktionselement 6 eingebrachten Trennlinien 15 deckungsgleich zueinander verlaufen. Die Trennlinien 15, die eine elektrische Isolierung der Segmente 14 voneinander bewirken, weisen beispielsweise eine Breite von 40 pm bis 120 pm auf. Sie sind mittels eines Lasers in die vorgefertigten Mehrschichtfolien eingebracht worden. Zwischen einander benachbarten Trennlinien 15 sind im Bereich des opaken Abdeckdrucks 10 Sammelleiter (nicht gezeigt) angebracht. Die Sammelleiter der einzelnen Segmente 14 verfügen jeweils über einen separaten elektrischen Anschluss. So sind die Segmente 14 unabhängig voneinander schaltbar. Je dünner die Trennlinien 15 ausgeführt sind, desto unauffälliger sind sie. Das PDLC-Funktionselement 5 und das elektrochrome Funktionselement 6 sind ebenfalls unabhängig voneinander schaltbar, so dass sich die Schaltvorgänge des erfindungsgemäßen Verfahrens ausführen lassen. 7.1 and the electrochromic functional element e is surrounded in the form of a frame by a second thermoplastic frame film 7.2, both frame films 7.1, 7.2 having a thickness of 0.38 mm and thus corresponding in thickness to the thickness of the functional elements 5, 6 designed as multilayer films. The optical properties of the functional elements 5, 6 can be controlled by applying an electrical voltage. The electrical leads are not shown for the sake of simplicity. The functional elements 5, 6 have identical dimensions in the present exemplary embodiment, but their dimensions can also differ. An edge seal 16 is provided along the peripheral edges 8 of the functional elements 5, 6, which encloses the peripheral edge 8 (shown in FIGS. 2a, 2b). The edge seal 16 can be glued around the edge 8 in the form of an adhesive tape, for example. Alternatively, in the area of the peripheral edge 8 of a functional element 5, 6 barrier films (not shown), for example consisting of PET, which surround the peripheral edge 8 and serve as an edge seal. The PDLC functional element 5 is preferably provided with an edge seal made of PET barrier films. Diffusion of the plasticizer from the thermoplastic intermediate layer 3 into the functional elements 5, 6 is avoided by means of the edge sealing 16. The functional elements 5, 6 can be switched variably in the form of segments 14. The functional elements 5, 6 are divided into three segments 14 by horizontal dividing lines 15, with the dividing lines 15 introduced in the PDLC functional element 5 and in the electrochromic functional element 6 running congruently with one another. The separating lines 15, which cause the segments 14 to be electrically insulated from one another, have a width of 40 μm to 120 μm, for example. They have been incorporated into the prefabricated multi-layer films using a laser. Collector conductors (not shown) are attached between mutually adjacent separating lines 15 in the region of the opaque covering print 10 . The bus bars of the individual segments 14 each have a separate electrical connection. The segments 14 can be switched independently of one another. The thinner the dividing lines 15 are made, the less conspicuous they are. The PDLC functional element 5 and the electrochromic functional element 6 can also be switched independently of one another, so that the switching processes of the method according to the invention can be carried out.
Figur 2a zeigt eine vergrößerte Darstellung der thermoplastischen Zwischenschicht 3 mit PDLC-Funktionselement 5 im Ausschnitt X gemäß Figur 1b. Das PDLC-Funktionselement 5 ist als PDLC-Mehrschichtfolie ausgeführt. Die Mehrschichtfolie besteht aus einer PDLC- Schicht 9.1 als aktiver Schicht zwischen Flächenelektroden 12.3, 12.4 und Trägerfolien 13.3, 13.4. Auf einer dritten Trägerfolie 13.3 ist dabei eine dritte Flächenelektrode 12.3 angebracht. Die vierte Trägerfolie 13.4 trägt auf einer Oberfläche die vierte Flächenelektrode 12.4. In unmittelbarer Nachbarschaft zur dritten Flächenelektrode 12.3 und zur vierten Flächenelektrode 12.4 befindet sich zwischen diesen Flächenelektroden und von diesen elektrisch leitend kontaktiert die PDLC-Schicht 9.1. Die Trägerfolien 13.3, 13.4 bestehen aus PET und weisen eine Dicke von beispielsweise 50 pm oder 110 pm auf. Die Trägerfolien 13.3, 13.4 sind mit mindestens einer zur benachbarten PDLC-Schicht 9.1 weisenden Beschichtung aus ITO mit einer Dicke von etwa 100 nm versehen, welche die Flächenelektroden 12.3, 12.4 ausbilden. Die Flächenelektroden 12.3, 12.4 sind über nicht dargestellte Sammelleiter (beispielweise ausgebildet durch einen silberhaltigen Siebdruck) und nicht dargestellte Verbindungskabel mit einer Spannungsquelle verbindbar. Figur 2b zeigt eine vergrößerte Darstellung der thermoplastischen Zwischenschicht 3 mit elektrochromem Funktionselement 6 im Ausschnitt X‘ gemäß Figur 1 b. Das elektrochrome Funktionselement 6 ist als elektrochrome Mehrschichtfolie ausgeführt. Die Mehrschichtfolie besteht aus einer elektrochromen Schicht 9.2 als aktiver Schicht zwischen Flächenelektroden 12.1 , 12.2 und Trägerfolien 13.1 , 13.2. Auf einer ersten Trägerfolie 13.1 ist dabei eine erste Flächenelektrode 12.1 angebracht. Die zweite Trägerfolie 13.2 trägt auf einer Oberfläche die zweite Flächenelektrode 12.2. In unmittelbarer Nachbarschaft zur ersten Flächenelektrode 12.1 und zur zweiten Flächenelektrode 12.2 befindet sich zwischen diesen Flächenelektroden und von diesen elektrisch leitend kontaktiert die elektrochrome Schicht 9.2. Die elektrochrome Schicht umfasst, benachbart zu einer der Flächenelektroden 12.1 , 12.2, in dieser Reihenfolge eine Lage eines elektrochromen Materials, einen Elektrolyten und eine lonenspeicherschicht gefolgt von der verbleibenden Flächenelektrode 12.1 , 12.2. Die Trägerfolien 13.1 , 13.2 bestehen aus PET und weisen eine Dicke von beispielsweise 125 pm bis 180 pm, beispielsweise 150 pm auf. Die Trägerfolien 13.1 , 13.2 sind mit mindestens einer zur benachbarten elektrochromen Schicht 9.2 weisenden Beschichtung aus ITO mit einer Dicke von etwa 100 nm versehen, welche die Flächenelektroden 12.1 , 12.2 ausbilden. Die Flächenelektroden 12.1 , 12.2 sind über nicht dargestellte Sammelleiter (beispielweise ausgebildet durch einen silberhaltigen Siebdruck) und nicht dargestellte Verbindungskabel mit einer Spannungsquelle verbindbar. FIG. 2a shows an enlarged representation of the thermoplastic intermediate layer 3 with the PDLC functional element 5 in detail X according to FIG. 1b. The PDLC functional element 5 is designed as a PDLC multilayer film. The multilayer film consists of a PDLC layer 9.1 as an active layer between surface electrodes 12.3, 12.4 and carrier films 13.3, 13.4. A third surface electrode 12.3 is attached to a third carrier film 13.3. The fourth carrier film 13.4 carries the fourth surface electrode 12.4 on one surface. In the immediate vicinity of the third surface electrode 12.3 and the fourth surface electrode 12.4, the PDLC layer 9.1 is electrically conductively contacted between these surface electrodes. The carrier foils 13.3, 13.4 consist of PET and have a thickness of, for example, 50 μm or 110 μm. The carrier foils 13.3, 13.4 are provided with at least one coating made of ITO with a thickness of approximately 100 nm, facing the adjacent PDLC layer 9.1, which forms the surface electrodes 12.3, 12.4. The surface electrodes 12.3, 12.4 can be connected to a voltage source via busbars (not shown, for example, formed by a silver-containing screen print) and connecting cables, not shown. FIG. 2b shows an enlarged representation of the thermoplastic intermediate layer 3 with the electrochromic functional element 6 in detail X′ according to FIG. 1b. The electrochromic functional element 6 is designed as an electrochromic multilayer film. The multilayer film consists of an electrochromic layer 9.2 as an active layer between surface electrodes 12.1, 12.2 and carrier films 13.1, 13.2. A first surface electrode 12.1 is attached to a first carrier film 13.1. The second carrier film 13.2 carries the second flat electrode 12.2 on one surface. In the immediate vicinity of the first surface electrode 12.1 and the second surface electrode 12.2, the electrochromic layer 9.2 is located between these surface electrodes and is electrically conductively contacted by them. The electrochromic layer comprises, adjacent to one of the surface electrodes 12.1, 12.2, in this order, a layer of an electrochromic material, an electrolyte and an ion storage layer, followed by the remaining surface electrode 12.1, 12.2. The carrier films 13.1, 13.2 consist of PET and have a thickness of, for example, 125 μm to 180 μm, for example 150 μm. The carrier foils 13.1, 13.2 are provided with at least one coating of ITO with a thickness of approximately 100 nm, which faces the adjacent electrochromic layer 9.2 and forms the surface electrodes 12.1, 12.2. The surface electrodes 12.1, 12.2 can be connected to a voltage source via busbars (not shown, for example, formed by a silver-containing screen print) and connecting cables, not shown.
Figur 3 zeigt eine schematische Darstellung der erfindungsgemäßen Verbundscheibe in verschiedenen optischen Zuständen während des erfindungsgemäßen Verfahrens. Der Aufbau der Verbundscheibe 100 entspricht im Wesentlichen dem der in Figuren 1a, 1b beschriebenen, wobei im Unterschied dazu keine Trennlinien in die Flächenelektroden eingebracht sind. In Zustand A ist ein erster transparenter Zustand der Verbundscheibe 100 gezeigt, in dem am PDLC-Funktionselement 5 eine Betriebsspannung Ui anliegt und das PDLC-Funktionselement 5 somit einen transparenten Zustand geringer Trübung einnimmt. Daraufhin wird das PDLC-Funktionselement 5 spannungsfrei geschaltet, wobei die Spannung zwischen der dritten Flächenelektrode 12.3 und der vierten Flächenelektrode 12.40 V beträgt. Dadurch geht das PDLC-Funktionselement 5 in einen getrübten Zustand über und es ergibt sich der optische Zustand B) der Verbundscheibe. Daraufhin wird eine Betriebsspannung U2 zwischen der ersten Flächenelektrode 12.1 und der zweiten Flächenelektrode 12.2 am elektrochromen Funktionselement 6 angelegt, das durch die anliegende Betriebsspannung beginnt in den getönten Zustand überzugehen. Diese Reaktion ist an den Kanten des Sichtfeldes der Verbundscheibe 100 zuerst sichtbar, wobei als Zustand C) der nach 5 Sekunden Wartezeit erreichte Zustand skizziert ist. Danach wird die Spannung zwischen der dritten Flächenelektrode 12.3 und der vierten Flächenelektrode 12.4 am PDLC- Funktionselement 5 mit einer Geschwindigkeit von 1 ,0 V/s bis zur Betriebsspannung Ui des PDLC-Funktionselementes 5 erhöht. Währenddessen verläuft der Tönungsvorgang des elektrochromen Funktionselementes 6 weiter, wie in den Zuständen D) und E) gezeigt ist. Die zwischen der ersten Flächenelektrode und der zweiten Flächenelektrode anliegende Leerlaufspannung wird periodisch, beispielsweise in Abständen von 10 Sekunden, gemessen und mit einem Sollwert der Leerlaufspannung verglichen. Wenn die gemessene Leerlaufspannung den Sollwert erreicht hat, so ist der Tönungsvorgang des elektrochromen Funktionselementes 6 abgeschlossen, wodurch der als Zustand F) gezeigte zweite abgedunkeltere Zustand Z2 der Verbundscheibe 100 erreicht ist. Im vorliegenden Fall wird bei Erreichen des Sollwertes der Leerlaufspannung des elektrochromen Funktionselementes 6 wieder eine Betriebsspannung U2 am PDLC-Funktionselement 5 angelegt, so dass dieses in einem transparenten Zustand niedriger Trübung vorliegt. FIG. 3 shows a schematic representation of the laminated pane according to the invention in different optical states during the method according to the invention. The structure of the laminated pane 100 essentially corresponds to that described in FIGS. 1a, 1b, with the difference being that no separating lines are introduced into the surface electrodes. State A shows a first transparent state of the laminated pane 100, in which an operating voltage Ui is present at the PDLC functional element 5 and the PDLC functional element 5 thus assumes a transparent state of low turbidity. The PDLC functional element 5 is then switched off, with the voltage between the third surface electrode 12.3 and the fourth surface electrode being 12.40 V. As a result, the PDLC functional element 5 changes to a clouded state and optical state B) of the laminated pane results. An operating voltage U2 is then applied between the first surface electrode 12.1 and the second surface electrode 12.2 on the electrochromic functional element 6, which begins to change to the toned state due to the operating voltage applied. This reaction is first visible at the edges of the field of vision of the laminated pane 100, with condition C) being that according to 5 Seconds waiting time reached state is outlined. Thereafter, the voltage between the third surface electrode 12.3 and the fourth surface electrode 12.4 on the PDLC functional element 5 is increased at a rate of 1.0 V/s up to the operating voltage Ui of the PDLC functional element 5. Meanwhile, the tinting process of the electrochromic functional element 6 continues, as shown in states D) and E). The no-load voltage present between the first flat electrode and the second flat electrode is measured periodically, for example at intervals of 10 seconds, and compared to a target value for the no-load voltage. When the measured no-load voltage has reached the desired value, the tinting process of the electrochromic functional element 6 is complete, as a result of which the second, darker state Z2 of the laminated pane 100 shown as state F) is reached. In the present case, when the target value of the open circuit voltage of the electrochromic functional element 6 is reached, an operating voltage U2 is again applied to the PDLC functional element 5, so that the latter is in a transparent state of low turbidity.
Bezugszeichenliste: Reference list:
1 Innenscheibe 1 inner pane
2 Außenscheibe 2 outer pane
3 thermoplastische Zwischenschicht 3 thermoplastic interlayer
4 thermoplastische Verbundfolien 4 thermoplastic composite films
4.1 erste thermoplastische Verbundfolie 4.1 first thermoplastic composite film
4.2 zweite thermoplastische Verbundfolie4.2 second thermoplastic composite film
4.3 dritte thermoplastische Verbundscheibe4.3 third thermoplastic composite pane
5 PDLC-Funktionselement 5 PDLC functional element
6 elektrochromes Funktionselement 6 electrochromic functional element
7 thermoplastische Rahmenfolien 7 thermoplastic frame foils
7.1 erste thermoplastische Rahmenfolie 7.1 first thermoplastic frame film
7.2 zweite thermoplastische Rahmenfolie 7.2 second thermoplastic frame film
8 umlaufende Kanten der Funktionselemente8 peripheral edges of the functional elements
9 aktive Schichten der Funktionselemente9 active layers of functional elements
9.1 PDLC-Schicht 9.1 PDLC layer
9.2 elektrochrome Schicht 9.2 electrochromic layer
10 opaker Abdeckdruck 10 opaque cover print
12 Flächenelektroden der Funktionselemente12 surface electrodes of the functional elements
12.1 erste Flächenelektrode 12.1 first surface electrode
12.2 zweite Flächenelektrode 12.2 second flat electrode
12.3 dritte Flächenelektrode 12.3 third surface electrode
12.4 vierte Flächenelektrode 12.4 fourth surface electrode
13 Trägerfolien 13 carrier foils
13.1 erste Trägerfolie 13.1 first carrier film
13.2 zweite T rägerfolie 13.2 second carrier film
13.3 dritte Trägerfolie 13.3 third carrier film
13.4 vierte Trägerfolie 13.4 fourth carrier film
14 Segmente 14 segments
15 Trennlinien 15 dividing lines
16 Randversiegelung 16 edge sealing
100 Verbundscheibe Z1 erster transparenterer Zustand100 Composite Disc Z1 first more transparent state
Z2 zweiter abgedunkelterer Zustand Z2 second darker state
AA‘ Schnittlinie X, X‘ Ausschnitte AA' cutting line X, X' cutouts
I Außenseite der ersten Scheibe 1I Outside of the first pane 1
II Innenseite der ersten Scheibe 1II Inside of the first pane 1
III Innenseite der zweiten Scheibe 2 IV Außenseite der zweiten Scheibe 2 III Inside of the second pane 2 IV Outside of the second pane 2

Claims

27 27
Patentansprüche Verfahren zum Schalten einer Verbundscheibe (100) mindestens umfassend eine erste Scheibe (1) und eine zweite Scheibe (2), die über eine thermoplastische Zwischenschicht (3) miteinander verbunden sind, wobei ein elektrochromes Funktionselement (6) mit einer ersten Flächenelektrode (12.1), einer elektrochromen Schicht (9.2) und einer zweiten Flächenelektrode (12.2) und ein PDLC- Funktionselement (5) mit einer dritten Flächenelektrode (12.2), einer PDLC-Schicht (9.1) und einer vierten Flächenelektrode (12.4) zumindest abschnittsweise überlappend in der Zwischenschicht (3) eingelagert sind, von einem ersten transparenten Zustand (Z1) in einen zweiten abgedunkelteren Zustand (Z2) mindestens umfassend die Schritte a) Anlegen einer Spannung von 0 V zwischen der dritten Flächenelektrode (12.3) und der vierten Flächenelektrode (12.4), b) Anlegen einer Betriebsspannung U2 zwischen der ersten Flächenelektrode (12.1) und der zweiten Flächenelektrode (12.2), c) Warten für mindestens 2 Sekunden, d) Erhöhen der Spannung zwischen der dritten Flächenelektrode (12.3) und der vierten Flächenelektrode (12.4) mit einer Geschwindigkeit von 0,5 V/s bis 3 V/s bis zur Betriebsspannung Ui des PDLC-Funktionselementes (5), e) periodisches Messen der zwischen der ersten Flächenelektrode (12.1) und der zweiten Flächenelektrode (12.2) anliegenden Leerlaufspannung und Vergleichen mit einem Sollwert der Leerlaufspannung, f) Senken der zwischen der ersten Flächenelektrode (12.1) und der zweiten Flächenelektrode (12.Claims Method for switching a composite pane (100) at least comprising a first pane (1) and a second pane (2), which are connected to one another via a thermoplastic intermediate layer (3), wherein an electrochromic functional element (6) with a first surface electrode (12.1 ), an electrochromic layer (9.2) and a second surface electrode (12.2) and a PDLC functional element (5) with a third surface electrode (12.2), a PDLC layer (9.1) and a fourth surface electrode (12.4) overlapping at least in sections in the intermediate layer (3) are embedded, from a first transparent state (Z1) to a second darker state (Z2) at least comprising the steps a) applying a voltage of 0 V between the third surface electrode (12.3) and the fourth surface electrode (12.4), b) applying an operating voltage U2 between the first surface electrode (12.1) and the second surface electrode (12.2), c) waiting for at least 2 seconds, d) increasing the voltage between the third surface electrode (12.3) and the fourth surface electrode (12.4) with a Speed from 0.5 V/s to 3 V/s up to the operating voltage Ui of the PDLC functional element (5), e) periodically measuring the open-circuit voltage present between the first surface electrode (12.1) and the second surface electrode (12.2) and comparing it with a Target value of the no-load voltage, f) lowering the voltage between the first surface electrode (12.1) and the second surface electrode (12.
2) anliegenden Spannung U2 auf eine Haltespannung UH, sofern der Sollwert der Leerlaufspannung erreicht ist, ansonsten periodische Wiederholung des Schritts e) bis der Sollwert der Leerlaufspannung erreicht ist, wobei das Erreichen des Sollwertes der Leerlaufspannung anzeigt, dass der zweite abgedunkeltere Zustand (Z2) erreicht ist und die Haltespannung UH das elektrochrome Funktionselement (6) in dem erreichten Zustand hält und wobei die Transmission von Licht im sichtbaren Bereich des Spektrums im ersten transparenten Zustand (Z1) höher ist als im zweiten abgedunkelteren Zustand (Z2). Verfahren nach Anspruch 1 , wobei die Spannung zwischen der dritten Flächenelektrode (12.3) und der vierten Flächenelektrode (12.4) mit einer Geschwindigkeit von 0,5 V/s bis 2 V/s, bevorzugt 0,5 V/s bis 1 ,5 V/s erhöht wird. 3. Verfahren nach Anspruch 1 oder 2, wobei die zwischen der dritten Flächenelektrode2) applied voltage U2 to a holding voltage UH, provided that the target value of the open-circuit voltage is reached, otherwise periodic repetition of step e) until the target value of the open-circuit voltage is reached, with reaching the target value of the open-circuit voltage indicating that the second, darker state (Z2) is reached and the holding voltage UH keeps the electrochromic functional element (6) in the state reached and the transmission of light in the visible range of the spectrum is higher in the first transparent state (Z1) than in the second, darker state (Z2). Method according to claim 1, wherein the voltage between the third surface electrode (12.3) and the fourth surface electrode (12.4) at a speed of 0.5 V/s to 2 V/s, preferably 0.5 V/s to 1.5 V /s is increased. 3. The method according to claim 1 or 2, wherein between the third surface electrode
(12.(12.
3) und der vierten Flächenelektrode (12.4) anliegende Spannung mit einer Geschwindigkeit von 3 V/s bis 15 V/s bis auf 0 V gesenkt wird, sobald in Schritt e) die gemessene Leerlaufspannung mindestens 80%, bevorzugt mindestens 90% des Sollwertes der Leerlaufspannung erreicht hat. 3) and the fourth surface electrode (12.4) is reduced at a rate of 3 V/s to 15 V/s down to 0 V as soon as the open-circuit voltage measured in step e) is at least 80%, preferably at least 90%, of the target value of the no-load voltage has been reached.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei nach Schritt f) ein Schaltvorgang vom abgedunkelteren zweiten Zustand (Z2) in den ersten transparenteren Zustand (Z1) erfolgt, indem mindestens die folgenden Schritte ausgeführt werden g) Anlegen der Betriebsspannung Ui des PDLC-Funktionselementes (5) zwischen der dritten Flächenelektrode (12.3) und der vierten Flächenelektrode (12.4), h) Anlegen einer Betriebsspannung LL des elektrochromen Funktionselementes (6) zwischen der ersten Flächenelektrode (12.1) und der zweiten Flächenelektrode (12.2), wobei die Betriebsspannung LL des elektrochromen Funktionselementes (6) das entgegengesetzte Vorzeichen der Betriebsspannung U2 aufweist. 4. The method according to any one of claims 1 to 3, wherein after step f) a switching process from the darker second state (Z2) to the first, more transparent state (Z1) takes place by carrying out at least the following steps g) applying the operating voltage Ui of the PDLC - functional element (5) between the third surface electrode (12.3) and the fourth surface electrode (12.4), h) applying an operating voltage LL to the electrochromic functional element (6) between the first surface electrode (12.1) and the second surface electrode (12.2), the operating voltage LL of the electrochromic functional element (6) has the opposite sign of the operating voltage U2.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der erste transparente Zustand (Z1 ) eine Transmission von mindestens 20 % des Lichtes im sichtbaren Bereich des Lichtspektrums aufweist, während der abgedunkeltere zweite Zustand (Z2) eine Transmission von höchstens 10 % des Lichtes im sichtbaren Bereich des Lichtspektrums aufweist. 5. The method according to any one of claims 1 to 4, wherein the first transparent state (Z1) has a transmission of at least 20% of the light in the visible range of the light spectrum, while the darker second state (Z2) has a transmission of at most 10% of the light in the visible part of the light spectrum.
6. Verbundscheibe (100) mit einem ersten transparenteren Zustand (Z1) und einem zweiten abgedunkelteren Zustand (Z2) mindestens umfassend eine erste Scheibe (1) und eine zweite Scheibe (2), die über eine thermoplastische Zwischenschicht (3) miteinander verbunden sind, wobei ein elektrochromes Funktionselement (6) mit einer ersten Flächenelektrode (12.1), einer elektrochromen Schicht (9.2) und einer zweiten Flächenelektrode (12.2) und ein PDLC-Funktionselement (5) mit einer dritten Flächenelektrode (12.3), einer PDLC-Schicht (9.1) und einer vierten Flächenelektrode6. Laminated pane (100) with a first, more transparent state (Z1) and a second, darker state (Z2) at least comprising a first pane (1) and a second pane (2), which are connected to one another via a thermoplastic intermediate layer (3), wherein an electrochromic functional element (6) with a first surface electrode (12.1), an electrochromic layer (9.2) and a second surface electrode (12.2) and a PDLC functional element (5) with a third surface electrode (12.3), a PDLC layer (9.1 ) and a fourth flat electrode
(12.4) in der Zwischenschicht (3) eingelagert sind, wobei durch Anlegen von Spannungen zwischen der ersten Flächenelektrode (12.1) und der zweiten Flächenelektrode (12.2) sowie zwischen der dritten Flächenelektrode (12.3) und der vierten Flächenelektrode (12.4) die Verbundscheibe vom ersten transparenteren Zustand (Z1) in den zweiten abgedunkelteren Zustand (Z2) überführbar ist. Verbundscheibe (100) nach Anspruch 6, wobei das elektrochrome Funktionselement (6) in dieser Reihenfolge eine erste Trägerfolie (13.1), die erste Flächenelektrode (12.1), die elektrochrome Schicht (9.2), die zweite Flächenelektrode (12.2) und eine zweite Trägerfolie (13.2) umfasst und das PDLC-Funktionselement (5) in dieser Reihenfolge eine dritte Trägerfolie (13.3), die dritte Flächenelektrode (12.3), die PDLC-Schicht (9.1), die vierte Flächenelektrode (12.4), eine vierte Trägerfolie (13.4) umfasst, die Flächenelektroden (12.1 , 12.2, 12.3, 12.4) auf der jeweils benachbarten Trägerfolie (13.1 , 13.2, 13.3, 13.4) aufgebracht sind und die Trägerfolien (13.1 , 13.2, 13.3, 13.4) bevorzugt zumindest ein im Autoklavprozess nicht vollständig aufschmelzendes Polymer, besonders bevorzugt Polyethylenterephthalat enthalten. Verbundscheibe (100) nach Anspruch 7, wobei jede Flächenelektrode (12.1 , 12.2, 12.3, 12.4) mit mindestens einem Sammelleiter elektrisch leitend kontaktiert ist und die Flächenelektroden (12.1 , 12.2, 12.3, 12.4) über die Sammelleiter mit einer externen Spannungsquelle verbunden werden können. Verbundscheibe (100) nach einem der Ansprüche 6 bis 8, wobei die erste(12.4) are embedded in the intermediate layer (3), whereby applying voltages between the first surface electrode (12.1) and the second surface electrode (12.2) and between the third surface electrode (12.3) and the fourth surface electrode (12.4) separates the composite pane from the first more transparent state (Z1) can be converted into the second darker state (Z2). Composite pane (100) according to Claim 6, in which the electrochromic functional element (6) has, in this order, a first carrier film (13.1), the first surface electrode (12.1), the electrochromic layer (9.2), the second surface electrode (12.2) and a second carrier film ( 13.2) and the PDLC functional element (5) comprises, in this order, a third carrier film (13.3), the third surface electrode (12.3), the PDLC layer (9.1), the fourth surface electrode (12.4), a fourth carrier film (13.4). , the surface electrodes (12.1, 12.2, 12.3, 12.4) are applied to the respective adjacent carrier film (13.1, 13.2, 13.3, 13.4) and the carrier films (13.1, 13.2, 13.3, 13.4) preferably at least one polymer that does not melt completely in the autoclave process, particularly preferably contain polyethylene terephthalate. Laminated pane (100) according to claim 7, wherein each surface electrode (12.1, 12.2, 12.3, 12.4) is electrically conductively contacted with at least one busbar and the surface electrodes (12.1, 12.2, 12.3, 12.4) can be connected to an external voltage source via the busbar . Composite pane (100) according to any one of claims 6 to 8, wherein the first
Flächenelektrode (12.1), die zweite Flächenelektrode (12.2), die dritte FlächenelektrodeFlat electrode (12.1), the second flat electrode (12.2), the third flat electrode
(12.3) und/oder die vierte Flächenelektrode (12.4) zumindest ein Metall, eine(12.3) and/or the fourth surface electrode (12.4) at least one metal, one
Metalllegierung oder ein transparentes leitfähiges Oxid, bevorzugt ein transparentes leitfähiges Oxid, enthält und eine Dicke von 10 nm bis 2 pm aufweist. Verbundscheibe (100) nach einem der Ansprüche 6 bis 9, wobei die thermoplastischeMetal alloy or a transparent conductive oxide, preferably a transparent conductive oxide, and has a thickness of 10 nm to 2 pm. Laminated pane (100) according to any one of claims 6 to 9, wherein the thermoplastic
Zwischenschicht (3) mindestens eine erste thermoplastische Verbundfolie (4.1), mindestens eine zweite thermoplastische Verbundfolie (4.2) und mindestens eine dritte thermoplastische Verbundfolie (4.3) umfasst, wobei die erste thermoplastische Verbundfolie (4.1) das PDLC-Funktionselement (5) mit der ersten Scheibe (1) verbindet, die zweite thermoplastische Verbundfolie (4.2) das elektrochrome Funktionselement (6) mit der zweiten Scheibe (2) verbindet und die dritte thermoplastische Verbundfolie (4.3) das PDLC-Funktionselement (5) und das elektrochrome Funktionselement (6) verbindet. Verbundscheibe (100) nach einem der Ansprüche 6 bis 10, wobei zwischen der ersten thermoplastischen Verbundfolie (4.1) und der dritten thermoplastischen VerbundfolieIntermediate layer (3) comprises at least one first thermoplastic composite film (4.1), at least one second thermoplastic composite film (4.2) and at least one third thermoplastic composite film (4.3), the first thermoplastic composite film (4.1) combining the PDLC functional element (5) with the first Pane (1) connects, the second thermoplastic composite film (4.2) connects the electrochromic functional element (6) to the second pane (2) and the third thermoplastic composite film (4.3) connects the PDLC functional element (5) and the electrochromic functional element (6). . Laminated pane (100) according to one of claims 6 to 10, wherein between the first thermoplastic composite film (4.1) and the third thermoplastic composite film
(4.3) eine erste thermoplastische Rahmenfolie (7.1) angeordnet ist, die die umlaufende Kante (8) des PDLC-Funktionselementes (5) umgibt und/oder zwischen der dritten thermoplastischen Verbundfolie (4.3) und der zweiten thermoplastischen Verbundfolie (4.2) eine zweite thermoplastische Rahmenfolie (7.2) angeordnet ist, die die umlaufende Kante (8) des elektrochromen Funktionselementes (6) umgibt. Verbundscheibe (100) nach einem der Ansprüche 6 bis 11 , wobei die erste Flächenelektrode (12.1), die zweite Flächenelektrode (12.2), die dritte Flächenelektrode (12.3) und/oder die vierte Flächenelektrode (12.4) mittels einer oder mehrerer Trennlinien (15) in unabhängig voneinander schaltbare Segmente (14) unterteilt ist. Verbundscheibe (100) nach einem der Ansprüche 6 bis 12, wobei die Verbundscheibe (100) eine Kraftfahrzeugdachscheibe ist. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 5 zum Schalten einer Verbundscheibe (100) nach einem der Ansprüche 6 bis 13. (4.3) a first thermoplastic frame film (7.1) is arranged, the peripheral surrounds the edge (8) of the PDLC functional element (5) and/or a second thermoplastic frame film (7.2) is arranged between the third thermoplastic composite film (4.3) and the second thermoplastic composite film (4.2), which surrounds the peripheral edge (8) of the electrochromic Functional element (6) surrounds. Laminated pane (100) according to any one of claims 6 to 11, wherein the first surface electrode (12.1), the second surface electrode (12.2), the third surface electrode (12.3) and / or the fourth surface electrode (12.4) by means of one or more dividing lines (15) is divided into independently switchable segments (14). Composite pane (100) according to one of claims 6 to 12, wherein the composite pane (100) is a motor vehicle roof pane. Use of the method according to one of Claims 1 to 5 for switching a composite pane (100) according to one of Claims 6 to 13.
PCT/EP2022/078912 2021-10-28 2022-10-18 Method for switching a composite pane comprising an electrochromic functional element WO2023072673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280005526.1A CN116368021A (en) 2021-10-28 2022-10-18 Method for switching a composite glass pane having electrochromic functional elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21205371.4 2021-10-28
EP21205371 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023072673A1 true WO2023072673A1 (en) 2023-05-04

Family

ID=78414420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/078912 WO2023072673A1 (en) 2021-10-28 2022-10-18 Method for switching a composite pane comprising an electrochromic functional element

Country Status (2)

Country Link
CN (1) CN116368021A (en)
WO (1) WO2023072673A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1862849A1 (en) 2006-05-30 2007-12-05 Schefenacker Vision Systems France Electrochromic cell, its use in windowpanes and rear-view mirrors and its manufacturing method
EP2010385B1 (en) 2006-04-20 2009-08-19 Pilkington Group Limited Laminated glazing
DE102008026339A1 (en) 2008-05-31 2009-12-03 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Electrically switchable privacy glass pane for glazing of e.g. vehicle, has two transparent electrically conductive layers on either sides of liquid crystal layer, embedded between respective transparent dielectric layers
WO2010147494A1 (en) 2009-06-16 2010-12-23 Ydreams - Informática, S.A. Electrochromic device and method for producing same
WO2012007334A1 (en) 2010-07-13 2012-01-19 Saint-Gobain Glass France Electrochromic device
US20120026573A1 (en) 2010-11-08 2012-02-02 Soladigm, Inc. Electrochromic window fabrication methods
CN212873140U (en) 2020-06-12 2021-04-02 深圳市光羿科技有限公司 Multifunctional light modulation device and laminated glass, hollow glass and attached film thereof
WO2022097739A1 (en) * 2020-11-05 2022-05-12 積水化学工業株式会社 Interlayer film structure for laminated panel, and laminated panel structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2010385B1 (en) 2006-04-20 2009-08-19 Pilkington Group Limited Laminated glazing
EP1862849A1 (en) 2006-05-30 2007-12-05 Schefenacker Vision Systems France Electrochromic cell, its use in windowpanes and rear-view mirrors and its manufacturing method
DE102008026339A1 (en) 2008-05-31 2009-12-03 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Electrically switchable privacy glass pane for glazing of e.g. vehicle, has two transparent electrically conductive layers on either sides of liquid crystal layer, embedded between respective transparent dielectric layers
WO2010147494A1 (en) 2009-06-16 2010-12-23 Ydreams - Informática, S.A. Electrochromic device and method for producing same
WO2012007334A1 (en) 2010-07-13 2012-01-19 Saint-Gobain Glass France Electrochromic device
US20120026573A1 (en) 2010-11-08 2012-02-02 Soladigm, Inc. Electrochromic window fabrication methods
CN212873140U (en) 2020-06-12 2021-04-02 深圳市光羿科技有限公司 Multifunctional light modulation device and laminated glass, hollow glass and attached film thereof
WO2022097739A1 (en) * 2020-11-05 2022-05-12 積水化学工業株式会社 Interlayer film structure for laminated panel, and laminated panel structure

Also Published As

Publication number Publication date
CN116368021A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
EP3610323B1 (en) Compound glazing with a functional element with electrically driven optical properties
EP3429876B1 (en) Windshield with electrically adjustable sun visor
EP3890968B1 (en) Laminated glazing comprising a functional element with electrically controlled optical properties and concentration gradient of active substance
EP3652585B1 (en) Method for controlling a device with functional elements having electrically controllable optical properties
EP3870439A1 (en) Composite panel with functional element which can be switched in segments and has electrically controllable optical properties
EP3706997B1 (en) Laminated glass having a functional element with electrically controllable optical properties
WO2019166155A1 (en) Method for producing a composite pane having a functional element with electrically controllable optical properties
DE202019100577U1 (en) Functional element with electrically controllable optical properties and at least two independently switchable active layers
EP3802117A1 (en) Functional element having electrically controllable optical properties
WO2020083563A1 (en) Composite pane, having a functional element that can be switched in segments and that has electrically controllable optical properties
EP3802118A1 (en) Functional element having electrically controllable optical properties
WO2019166209A1 (en) Composite pane comprising functional element having electrically controllable optical properties
WO2019025178A1 (en) Functional element having electrically controllable optical properties
WO2020156773A1 (en) Laminated pane with electrically controllable optical properties, and laminated pane assembly
WO2019166210A1 (en) Composite pane having an element reflecting infrared radiation
WO2023046477A1 (en) Glazing with segmented pdlc-functional element and electrically controllable optical properties
WO2021209474A1 (en) Functional element having electrically controllable optical properties
DE202021104310U1 (en) Composite pane with electrically controllable optical properties and a blue colored intermediate layer
WO2023072673A1 (en) Method for switching a composite pane comprising an electrochromic functional element
WO2020020614A1 (en) Composite pane comprising a functional element having electrically controllable optical properties with improved edge sealing
EP3826836A1 (en) Method for producing a composite pane comprising a functional element having electrically controllable optical properties
DE202021100685U1 (en) Functional element with electrically controllable optical properties and an active layer comprising spacers
WO2023046482A1 (en) Functional element with electrically controllable optical properties
WO2022157035A1 (en) Composite pane comprising electrically controllable optical properties, and control unit
EP4326548A1 (en) Glazing unit which has electrically controllable optical properties and multiple independent switching regions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803243

Country of ref document: EP

Kind code of ref document: A1