WO2023072138A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023072138A1
WO2023072138A1 PCT/CN2022/127646 CN2022127646W WO2023072138A1 WO 2023072138 A1 WO2023072138 A1 WO 2023072138A1 CN 2022127646 W CN2022127646 W CN 2022127646W WO 2023072138 A1 WO2023072138 A1 WO 2023072138A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit block
bit
block
target
harq
Prior art date
Application number
PCT/CN2022/127646
Other languages
English (en)
French (fr)
Inventor
胡杨
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Priority to US18/111,611 priority Critical patent/US20230224114A1/en
Publication of WO2023072138A1 publication Critical patent/WO2023072138A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to a transmission method and device in a wireless communication system, especially a wireless signal transmission method and device in a wireless communication system supporting a cellular network.
  • NR Release 16 has supported various enhancements for uplink transmission.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgment, hybrid automatic repeat request confirmation
  • PUCCH Physical Uplink Control CHannel, physical uplink control channel
  • PUSCH Physical Uplink Shared CHannel , physical uplink shared channel
  • the present application discloses a solution.
  • URLLC is used as a typical application scenario or example; this application is also applicable to other scenarios, such as multi-sending and receiving node transmission, IoT (Internet of Things, Internet of Things), MBS (Multicast and Broadcast Services, multicast and broadcast services), car networking, NTN (non-terrestrial networks, non-terrestrial networks), etc., and achieved similar technical effects.
  • adopting a unified solution for different scenarios can also help reduce hardware complexity and cost, or improve performance.
  • the embodiments and features in any node of the present application can be applied to any other node.
  • the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
  • the present application discloses a method used in a first node of wireless communication, which is characterized in that it includes:
  • the first information block being used to determine whether the first signaling includes a target DAI domain
  • a target block of bits in a first physical layer channel at least the second block of bits in the first block of bits or the second block of bits being used to generate the target block of bits, the target block of bits comprising at least one bit;
  • the first signaling is used to determine the resource occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK bit, and the second bit block includes at least one HARQ-ACK bit bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first signaling includes the When the target DAI field is mentioned, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block, and any one of the HARQ-ACK bits included in the first bit block Bits belong to the target bit block; when the first signaling does not include the target DAI domain, the first bit block is used to generate a third bit block, the third bit block includes at least one bit, The number of bits included in the third bit block is equal to the first reference value, and any bit included in the third bit block belongs to the target bit block.
  • the problem to be solved in this application includes: how to reduce the negative impact of low-priority HARQ-ACK bits on the transmission reliability of high-priority HARQ-ACK bits under different configurations.
  • the problems to be solved in this application include: the inconsistency between the communication parties on the number of low-priority HARQ-ACK bits will cause the high-priority HARQ-ACK bits to be wrongly decoded on the base station side, how to enhance the communication between the two parties Understanding consistency of the number of low priority HARQ-ACK bits.
  • the characteristics of the above method include: according to whether the DCI format used to schedule the PUCCH or PUSCH includes the DAI field for the low-priority HARQ-ACK bits to determine whether to perform additional processing on the low-priority HARQ-ACK bits (for example, operations such as quantization or bundling (bundling)) to enhance the consistency of understanding of the quantity of low-priority HARQ-ACK bits by both communication parties.
  • the characteristics of the above method include: using different processing methods for the first bit block under different configurations to ensure that the transmission reliability of the second bit block can be guaranteed in different scenarios.
  • the characteristics of the above method include: when the first signaling does not include the target DAI field, the bits related to the first bit block that are multiplexed into the first physical layer channel
  • the quantity of is always a value that is understood and agreed by both communicating parties (that is, the first reference value in this application).
  • the benefits of the above method include: under the premise of ensuring the transmission reliability of high-priority HARQ-ACK bits, the flexibility of base station configuration is enhanced, and the base station can determine whether to increase the DCI signaling overhead according to different scenarios. Enhance the consistency of understanding of the quantity of low-priority HARQ-ACK bits between the communication parties.
  • the advantages of the above method include: ensuring the transmission reliability of the high-priority HARQ-ACK bits.
  • the advantages of the above method include: it is beneficial to reduce DCI signaling overhead.
  • the advantages of the above method include: it is beneficial to enhance the transmission performance of low-priority HARQ-ACK bits, thereby improving the overall efficiency of the system.
  • the above-mentioned method is characterized in that,
  • Any bit included in the second bit block belongs to the target bit block.
  • the above-mentioned method is characterized in that,
  • the target DAI field in the first signaling is used to indicate the number of HARQ-ACK bits included in the first bit block.
  • the above-mentioned method is characterized in that,
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI domain: one of the third bit blocks
  • the bit is the output of the HARQ-ACK bits in the first bit block after at least one operation of logic AND, logic OR, or exclusive OR.
  • the above-mentioned method is characterized in that,
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third bit block includes the first For only part of the HARQ-ACK bits in the bit block, the bits in the first bit block that do not belong to the third bit block do not belong to the target bit block.
  • the above-mentioned method is characterized in that,
  • the first bit block corresponds to a first priority index
  • the second bit block corresponds to a second priority index
  • the first priority index is different from the second priority index
  • the above method is characterized in that it includes:
  • the second information block is used to determine the first reference value.
  • the present application discloses a method used in a second node of wireless communication, which is characterized in that it includes:
  • the target block of bits comprising at least one bit
  • the first signaling is used to determine the resource occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK bit, and the second bit block includes at least one HARQ-ACK bit bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first signaling includes the When the target DAI field is mentioned, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block, and any one of the HARQ-ACK bits included in the first bit block Bits belong to the target bit block; when the first signaling does not include the target DAI domain, the first bit block is used to generate a third bit block, the third bit block includes at least one bit, The number of bits included in the third bit block is equal to the first reference value, and any bit included in the third bit block belongs to the target bit block.
  • the above-mentioned method is characterized in that,
  • Any bit included in the second bit block belongs to the target bit block.
  • the above-mentioned method is characterized in that,
  • the target DAI field in the first signaling is used to indicate the number of HARQ-ACK bits included in the first bit block.
  • the above-mentioned method is characterized in that,
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI domain: one of the third bit blocks
  • the bit is the output of the HARQ-ACK bits in the first bit block after at least one operation of logic AND, logic OR, or exclusive OR.
  • the above-mentioned method is characterized in that,
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third bit block includes the first For only part of the HARQ-ACK bits in the bit block, the bits in the first bit block that do not belong to the third bit block do not belong to the target bit block.
  • the above-mentioned method is characterized in that,
  • the first bit block corresponds to a first priority index
  • the second bit block corresponds to a second priority index
  • the first priority index is different from the second priority index
  • the above method is characterized in that it includes:
  • the second information block is used to determine the first reference value.
  • the present application discloses a first node device used for wireless communication, which is characterized in that it includes:
  • a first receiver receiving a first information block and first signaling, where the first information block is used to determine whether the first signaling includes a target DAI field;
  • the first transmitter transmits the target bit block in the first physical layer channel, at least the second bit block in the first bit block or the second bit block is used to generate the target bit block, and the target bit block includes at least one bit;
  • the first signaling is used to determine the resource occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK bit, and the second bit block includes at least one HARQ-ACK bit bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first signaling includes the When the target DAI field is mentioned, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block, and any one of the HARQ-ACK bits included in the first bit block Bits belong to the target bit block; when the first signaling does not include the target DAI domain, the first bit block is used to generate a third bit block, the third bit block includes at least one bit, The number of bits included in the third bit block is equal to the first reference value, and any bit included in the third bit block belongs to the target bit block.
  • the present application discloses a second node device used for wireless communication, which is characterized in that it includes:
  • a second transmitter sending a first information block and first signaling, where the first information block is used to determine whether the first signaling includes a target DAI field;
  • the second receiver receives the target bit block in the first physical layer channel, at least the second bit block in the first bit block or the second bit block is used to generate the target bit block, the target bit block includes at least one bit;
  • the first signaling is used to determine the resource occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK bit, and the second bit block includes at least one HARQ-ACK bit bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first signaling includes the When the target DAI field is mentioned, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block, and any one of the HARQ-ACK bits included in the first bit block Bits belong to the target bit block; when the first signaling does not include the target DAI domain, the first bit block is used to generate a third bit block, the third bit block includes at least one bit, The number of bits included in the third bit block is equal to the first reference value, and any bit included in the third bit block belongs to the target bit block.
  • the method in this application has the following advantages:
  • Fig. 1 shows the processing flowchart of the first node according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG. 5 shows a flow chart of signal transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram of the relationship between whether the first signaling includes the target DAI field and the target bit block according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the relationship between a target bit block, a first target bit sub-block, a second target bit sub-block and a first physical layer channel according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of the relationship between a first bit block, a first priority index, a second bit block, and a second priority index according to an embodiment of the present application
  • Fig. 9 shows a schematic diagram of the relationship between the second information block and the first reference value according to an embodiment of the present application.
  • FIG. 10 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Fig. 11 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flowchart of a first node according to an embodiment of the present application, as shown in FIG. 1 .
  • the first node in this application receives the first information in step 101; receives the first signaling in step 102; and sends the target bit block in the first physical layer channel in step 103.
  • the first information block is used to determine whether the first signaling includes the target DAI field; at least the second bit block in the first bit block or the second bit block is used to generate The target bit block, the target bit block includes at least one bit; the first signaling is used to determine the resource occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK Bits, the second bit block includes at least one HARQ-ACK bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or configurable is a non-negative integer; when the first signaling includes the target DAI field, the target DAI field in the first signaling is used to determine the HARQ-ACK bits included in the first bit block Any bit included in the first bit block belongs to the target bit block; when the first signaling does not include the target DAI domain, the first bit block is used to generate the third A bit block, the third bit block includes at least one bit, the number of bits included in the third bit block is
  • the first information block includes higher layer (higher layer) signaling.
  • the first information block is RRC signaling.
  • the first information block includes one or more fields in one RRC signaling.
  • the first information block is an IE (Information Element, information element).
  • the first information block includes one or more IEs.
  • the first information block includes one or more fields in one IE.
  • the first information block is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first information block includes one or more fields in one MAC CE signaling.
  • the first information block includes an information element PDSCH-Config.
  • the first information block includes an information element PhysicalCellGroupConfig.
  • the first information block includes an information element PUCCH-Config.
  • the first information block includes an information element PDCCH-Config.
  • the first information block includes an information element SearchSpace.
  • the first information block includes an information element ControlResourceSet.
  • the first information block is an information element PDSCH-Config.
  • the first information block is an information element PhysicalCellGroupConfig.
  • the first information block is an information element PUCCH-Config.
  • the first information block is an information element PDCCH-Config.
  • the first information block is an information element SearchSpace.
  • the first information block is an information element ControlResourceSet.
  • the names of the above information elements are case-insensitive.
  • the name of the first information block includes DAI (case insensitive).
  • the name of the first information block includes downlinkAssignmentIndex (case insensitive).
  • the first signaling is physical layer signaling.
  • the first signaling is a DCI (Downlink control information, downlink control information) format (DCI format).
  • DCI Downlink control information, downlink control information format
  • the first signaling is one of DCI format 1_1 or DCI format 1_2.
  • the first signaling is one of DCI format 0_1 or DCI format 0_2.
  • the first signaling is DCI format 1_0, and for a specific definition of the DCI format 1_0, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_1, and for a specific definition of the DCI format 1_1, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 1_2, and for a specific definition of the DCI format 1_2, refer to Section 7.3.1.2 in 3GPP TS38.212.
  • the first signaling is DCI format 0_0, and for a specific definition of the DCI format 0_0, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_1, and for a specific definition of the DCI format 0_1, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling is DCI format 0_2, and for a specific definition of the DCI format 0_2, refer to Section 7.3.1.1 in 3GPP TS38.212.
  • the first signaling includes one or more fields (fields) in a DCI format.
  • the first signaling is a downlink scheduling signaling (DownLink Grant Signaling).
  • the first signaling is an uplink scheduling signaling (UpLink Grant Signaling).
  • UpLink Grant Signaling UpLink Grant Signaling
  • the first signaling is higher layer (higher layer) signaling.
  • the first signaling is RRC signaling.
  • the first signaling includes one or more fields in one RRC signaling.
  • the first signaling includes an IE (Information Element, information element).
  • the first signaling includes one or more fields in one IE.
  • the first signaling is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first signaling includes one or more fields in one MAC CE signaling.
  • the first information block is used to indicate whether the first signaling includes the target DAI field.
  • the first information block is used to explicitly indicate whether the first signaling includes the target DAI field.
  • the first information block is used to implicitly indicate whether the first signaling includes the target DAI field.
  • the first information block is used to configure whether the first signaling includes the target DAI field.
  • the first information block includes a field to indicate that the first signaling includes the target DAI field, and the first information block does not include this field to indicate that the first signaling command to not include the target DAI domain.
  • the first information block includes a field to indicate that the first signaling does not include the target DAI field, and the first information block does not include this field to indicate that the first Signaling includes the target DAI field.
  • the first physical layer channel is a PUCCH.
  • the first physical layer channel is a PUSCH.
  • the first physical layer channel is a physical uplink channel.
  • the meaning of sending the target bit block in the first physical layer channel includes: the target bit block includes a first target bit sub-block and a second target bit sub-block, and the first target bit sub-block and The coded bit sequences obtained after performing channel coding on the second target bit sub-blocks are all sent in the first physical layer channel.
  • the meaning of sending the target bit block in the first physical layer channel includes: the target bit block includes a first target bit sub-block and a second target bit sub-block, and the first target bit sub-block and The second target bit sub-blocks are all sent in the first physical layer channel.
  • the target bit block undergoes at least CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) attachment (attachment), code block segmentation (Code Block Segmentation) before being sent in the first physical layer channel, Code block CRC addition, channel coding, rate matching and code block concatenation (Concatenation), scrambling code (Scrambling), modulation and resource block mapping.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • Attachment attachment
  • code block segmentation Code Block Segmentation
  • Code Block CRC addition channel coding
  • rate matching and code block concatenation Concatenation
  • Scmbling scrambling code
  • At least CRC addition, channel coding and rate matching, scrambling, modulation and resource block mapping are performed before the target bit block is sent in the first physical layer channel.
  • the target bit block undergoes at least CRC addition, code block segmentation, code block CRC addition, channel coding, rate matching and code block concatenation (Concatenation) before being sent in the first physical layer channel, Scrambling, modulation, layer mapping, antenna port mapping and resource block mapping.
  • At least a sequence is generated and mapped to a physical resource.
  • At least channel coding, rate matching, scrambling, modulation and mapping to physical resources are performed before the target bit block is sent in the first physical layer channel.
  • At least channel coding, rate matching, scrambling, modulation, layer mapping and resource block mapping are performed before the target bit block is sent in the first physical layer channel.
  • the target bit block undergoes CRC addition, code block segmentation, code block CRC addition, channel coding, rate matching, code block concatenation, scrambling, modulation (Modulation), spreading (Spreading), layer mapping (Layer Mapping), precoding (Precoding), mapping to physical resources, multi-carrier symbol generation (Generation), and at least part of modulation and upconversion (Modulation and Upconversion) are sent in the first physical layer channel.
  • the target bit block includes at least one HARQ-ACK bit.
  • the bits in the target bit block are all HARQ-ACK bits.
  • the bits in the target bit block are all UCI (Uplink control information, uplink control information) bits.
  • the target bit block includes at least one CSI (Channel state information, channel state information) bit.
  • one HARQ-ACK bit is one HARQ-ACK information bit (HARQ-ACK information bit).
  • both the first bit block and the second bit block are used to generate the target bit block.
  • the target bit block includes an output of the HARQ-ACK bits in the second bit block after at least one operation of logical AND, logical OR, or exclusive OR.
  • the second bit block includes multiple bits, and only some bits in the second bit block belong to the target bit block.
  • the target bit block includes the second bit block.
  • the number of HARQ-ACK bits included in the first bit block is equal to 1.
  • the number of HARQ-ACK bits included in the first bit block is equal to two.
  • the number of HARQ-ACK bits included in the first bit block is equal to three.
  • the number of HARQ-ACK bits included in the first bit block is equal to 4.
  • the number of HARQ-ACK bits included in the first bit block is equal to 8.
  • the number of HARQ-ACK bits included in the first bit block is equal to five.
  • the number of HARQ-ACK bits included in the first bit block is equal to 6.
  • the number of HARQ-ACK bits included in the first bit block is equal to 7.
  • the number of HARQ-ACK bits included in the first bit block is greater than 3.
  • the number of HARQ-ACK bits included in the first bit block is greater than 4.
  • the number of HARQ-ACK bits included in the first bit block is not greater than 1706.
  • the number of HARQ-ACK bits included in the second bit block is equal to 1.
  • the number of HARQ-ACK bits included in the second bit block is equal to two.
  • the number of HARQ-ACK bits included in the second bit block is equal to three.
  • the number of HARQ-ACK bits included in the second bit block is greater than 3.
  • the number of HARQ-ACK bits included in the second bit block is greater than 4.
  • the number of HARQ-ACK bits included in the second bit block is not greater than 1706.
  • the first bit block only includes HARQ-ACK bits.
  • the second bit block only includes HARQ-ACK bits.
  • the first bit block only includes UCI bits.
  • the second bit block only includes UCI bits.
  • the first signaling is used to indicate resources occupied by the first physical layer channel.
  • the first signaling is used to explicitly indicate resources occupied by the first physical layer channel.
  • the first signaling is used to implicitly indicate resources occupied by the first physical layer channel.
  • the first signaling is used to indicate the time domain resource occupied by the first physical layer channel.
  • the first signaling is used to indicate frequency domain resources occupied by the first physical layer channel.
  • the first signaling is used to configure resources occupied by the first physical layer channel.
  • the first physical layer channel is a PUCCH
  • the first signaling is used to indicate a PUCCH resource (PUCCH resource) occupied by the first physical layer channel.
  • the first physical layer channel is a PUCCH
  • the first signaling is used to indicate the PUCCH resources occupied by the first physical layer channel from a PUCCH resource set (PUCCH resource set) .
  • the expression that the type of the first bit block is different from the type of the second bit block includes: the type of the HARQ-ACK bit in the first bit block is different from the type of the second bit The types of HARQ-ACK bits in a block are different.
  • the HARQ-ACK bits in the first bit block and the HARQ-ACK bits in the second bit block are HARQ-ACK bits with different priorities respectively.
  • the HARQ-ACK bits in the first bit block and the HARQ-ACK bits in the second bit block are respectively for different priority indexes (Priority index).
  • the HARQ-ACK bits in the first bit block and the HARQ-ACK bits in the second bit block are respectively associated with different priority indexes.
  • the type in this application is: priority.
  • the type of the first bit block is: the priority of the first bit block; the type of the second bit block is: the priority of the second bit block.
  • the type of the first bit block is: the priority index corresponding to the first bit block; the type of the second bit block is: the corresponding priority index of the second bit block priority index.
  • the expression that the type of the first bit block is different from the type of the second bit block includes: the first bit block and the second bit block respectively correspond to different priority indexes .
  • the expression that the type of the first bit block is different from the type of the second bit block includes: the HARQ-ACK bits in the first bit block and the HARQ-ACK bits in the second bit block HARQ-ACK bits have different priority indexes respectively.
  • the priority of the first bit block is the priority of the HARQ-ACK bits in the first bit block
  • the priority of the second bit block is the priority of the HARQ-ACK bits in the second bit block.
  • the type in this application is: feedback mode.
  • the type of the first bit block is: the feedback mode corresponding to the first bit block; the type of the second bit block is: the feedback mode corresponding to the second bit block feedback mode.
  • the type in this application is: communication mode (such as multicast or unicast).
  • the type of the first bit block is: the communication mode corresponding to the first bit block; the type of the second bit block is: the communication mode corresponding to the second bit block communication mode.
  • the HARQ-ACK bits in the first bit block are all HARQ-ACK bits used for MBS, and the HARQ-ACK bits in the second bit block are all HARQ-ACK bits used for unicast - ACK bit.
  • the HARQ-ACK bits in the second bit block are all HARQ-ACK bits used for MBS, and the HARQ-ACK bits in the first bit block are all HARQ-ACK bits used for unicast - ACK bit.
  • the type in this application is a type related to RNTI (Radio Network Temporary Identifier, wireless network temporary identifier), and different types correspond to different RNTIs.
  • RNTI Radio Network Temporary Identifier, wireless network temporary identifier
  • the expression that the type of the first bit block is different from the type of the second bit block includes: the HARQ-ACK bits in the first bit block and the HARQ-ACK bits in the second bit block
  • the HARQ-ACK bits are respectively for different RNTIs.
  • different types correspond to different HARQ-ACK sub-codebooks (sub-codebook); the expression that the type of the first bit block is different from the type of the second bit block includes: the first The first bit block and the second bit block respectively include HARQ-ACK bits belonging to different HARQ-ACK sub-codebooks.
  • the first reference value is equal to 1.
  • the first reference value is equal to 2.
  • the first reference value is equal to 3.
  • the first reference value is not greater than 1706.
  • the first reference value is a positive integer configured by higher layer signaling.
  • the expression that the first reference value is a default non-negative integer or a configurable non-negative integer includes: the first reference value is a constant.
  • the expression that the first reference value is a default non-negative integer or a configurable non-negative integer includes: the first reference value is a value configured by RRC signaling.
  • the expression that the first reference value is a default non-negative integer or a configurable non-negative integer includes: the first reference value is one of the first reference value set, the first reference The set of values includes a plurality of reference values, any reference value in the first set of reference values is preset or configured by RRC signaling, and physical layer signaling or higher layer signaling is used from the first The first reference value is indicated in the set of reference values.
  • the first signaling is used to indicate the first reference value from the first reference value set.
  • MAC CE signaling is used to indicate the first reference value from the first reference value set.
  • RRC signaling is used to indicate the first reference value from the first reference value set.
  • the target DAI field includes at least one bit.
  • the target DAI domain is a domain in DCI format 1_1.
  • the target DAI domain is a domain in DCI format 1_2.
  • the target DAI domain is a domain in DCI format 1_1 or DCI format 1_2.
  • the target DAI domain is a domain in DCI format 0_1.
  • the target DAI domain is a domain in DCI format 0_2.
  • the target DAI domain is a domain in DCI format 0_1 or DCI format 0_2.
  • the target DAI field is a DAI (Downlink assignment index, downlink assignment index) field.
  • the target DAI domain is a counter DAI domain.
  • the target DAI field is a total (total) DAI field.
  • the target DAI domain is a UL (UpLink) DAI domain.
  • the target DAI field is a DAI field for the type of HARQ-ACK bits corresponding to the first bit block.
  • the target DAI field is a DAI field for the total number of HARQ-ACK bits of the type corresponding to the first bit block.
  • the target DAI field is the DAI field for the HARQ-ACK bit associated with priority index 0.
  • the target DAI field is a DAI field for the total number of HARQ-ACK bits associated with priority index 0.
  • the target DAI field is the DAI field for the HARQ-ACK bit associated with priority index 1.
  • the target DAI field is a DAI field for the total number of HARQ-ACK bits associated with priority index 1.
  • whether the first signaling includes the target DAI field is used to determine the target bit block.
  • whether the first signaling includes the target DAI field is used to determine the relationship between the target bit block and the first bit block.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first signaling The value of the target DAI field in is used to perform counting to obtain the number of HARQ-ACK bits included in the first bit block.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first signaling
  • the target DAI field in is used to indicate the number of HARQ-ACK bits included in the first bit block.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first signaling
  • the target DAI field in is used to explicitly indicate the number of HARQ-ACK bits included in the first bit block.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first signaling
  • the target DAI field in is used to implicitly indicate the number of HARQ-ACK bits included in the first bit block.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first bit block The number of included HARQ-ACK bits is linearly related to the value of the target DAI field in the first signaling.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first bit block The number of included HARQ-ACK bits is equal to a first intermediate quantity multiplied by 2, and the first intermediate quantity is linearly related to the value of the target DAI field in the first signaling.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first bit block
  • the number of included HARQ-ACK bits is a multiple of a first intermediate quantity, and the first intermediate quantity is linearly related to the value of the target DAI field in the first signaling.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first bit block
  • the number of included HARQ-ACK bits is equal to a non-negative integer multiple of T1 plus the value of the target DAI field in the first signaling, where T1 is a positive integer.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first bit block The number of included HARQ-ACK bits is equal to a first intermediate amount multiplied by 2, the first intermediate amount is equal to a non-negative integer multiple of T1 plus the value of the target DAI field in the first signaling, the T1 is a positive integer.
  • the meaning of expressing that the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block includes: the first bit block
  • the number of included HARQ-ACK bits is a multiple of a first intermediate amount, the first intermediate amount is equal to a non-negative integer multiple of T1 plus the value of the target DAI field in the first signaling, and the T1 is a positive integer.
  • the T1 is equal to 4.
  • the T1 is equal to 2.
  • the T1 is equal to 2 to the T2 power
  • the T2 is a number of bits included in the DAI field.
  • the T1 is equal to 2 to the T2 power
  • the T2 is the number of bits included in the counting DAI field used for counting the number of HARQ-ACK bits associated with the priority index 0.
  • the target bit block only includes the first bit block and the second bit block.
  • the expression that the first bit block is used to generate the third bit block includes: the third bit block includes at least some bits in the first bit block after logical AND, logical OR, or The output after at least one of the XOR operations.
  • the meaning of expressing that the first bit block is used to generate the third bit block includes: the third bit block includes at least part of the bits in the first bit block.
  • the number of HARQ-ACK bits included in the first bit block is less than the first reference value; when the first signaling does not include the target DAI field: the third bit block including the first block of bits and at least one padding bit.
  • the filling bits are bits with a value of 0.
  • the filling bit is a bit with a value of 1.
  • one filling bit is a repetition (repetition) of one bit in the first bit block.
  • the bits in the third bit block are all HARQ-ACK bits.
  • the bits in the third bit block are all UCI bits.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third bit block Including only part of the bits in the first bit block and at least one compressed bit, the at least one compressed bit is at least one of the HARQ-ACK bits in the first bit block after logical AND, logical OR, or exclusive OR An output of an operation.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third bit block It includes only part of the bits in the first bit block and at least one compressed bit, where one compressed bit is equal to the result of a logical AND operation on values of multiple HARQ-ACK bits in the first bit block.
  • the bits in the target bit block are all bits before channel coding.
  • the first node further receives at least one PDSCH
  • the first signaling is used to schedule the at least one PDSCH
  • the second bit block includes at least one transmission for the at least one PDSCH HARQ-ACK bits of a block (Transport Block, TB) or code block group (Code Block Group, CBG).
  • the meaning of the number of bits included in a bit block includes: how many bits are included in this bit block.
  • the number of HARQ-ACK bits included in a bit block means: how many HARQ-ACK bits are included in this bit block.
  • the number of bits included in a bit block refers to: the size of the bit block.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates 5G NR, the figure of the network architecture 200 of LTE (Long-Term Evolution, long-term evolution) and LTE-A (Long-Term Evolution Advanced, enhanced long-term evolution) system.
  • the 5G NR or LTE network architecture 200 may be referred to as EPS (Evolved Packet System, Evolved Packet System) 200 or some other suitable term.
  • EPS Evolved Packet System, Evolved Packet System
  • EPS 200 may include one or more UE (User Equipment, User Equipment) 201, NG-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core)/5G-CN (5G-Core Network , 5G core network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet service 230.
  • the EPS may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity. As shown, the EPS provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to networks providing circuit-switched services or other cellular networks.
  • NG-RAN includes NR Node B (gNB) 203 and other gNBs 204 .
  • the gNB 203 provides user and control plane protocol termination towards the UE 201 .
  • a gNB 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • a gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmitting Receiver Node) or some other suitable terminology.
  • the gNB203 provides an access point to the EPC/5G-CN 210 for the UE201.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radios non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, NB-IoT devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any Other devices with similar functions.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • the gNB203 is connected to the EPC/5G-CN 210 through the S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, Mobility Management Entity)/AMF (Authentication Management Field, Authentication Management Field)/UPF (User Plane Function, User Plane Function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, service gateway) 212 and P-GW (Packet Date Network Gateway, packet data network gateway) 213.
  • MME/AMF/UPF 211 is a control node that handles signaling between UE 201 and EPC/5G-CN 210. In general, MME/AMF/UPF 211 provides bearer and connection management.
  • All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW212, and the S-GW212 itself is connected to the P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230 .
  • the Internet service 230 includes the Internet protocol service corresponding to the operator, and specifically may include the Internet, the intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet-switched streaming services.
  • the UE 201 corresponds to the first node in this application.
  • the UE 201 corresponds to the second node in this application.
  • the gNB203 corresponds to the first node in this application.
  • the gNB203 corresponds to the second node in this application.
  • the UE201 corresponds to the first node in this application
  • the gNB203 corresponds to the second node in this application.
  • the gNB203 is a macrocell (MarcoCellular) base station.
  • the gNB203 is a micro cell (Micro Cell) base station.
  • the gNB203 is a pico cell (PicoCell) base station.
  • the gNB203 is a home base station (Femtocell).
  • the gNB203 is a base station device supporting a large delay difference.
  • the gNB203 is a flight platform device.
  • the gNB203 is a satellite device.
  • both the first node and the second node in this application correspond to the UE 201 , for example, V2X communication is performed between the first node and the second node.
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • FIG. 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300.
  • FIG. 3 shows three layers for the first communication node device (UE, gNB or RSU in V2X) and the second The communication node device (gNB, UE or RSU in V2X), or the radio protocol architecture of the control plane 300 between two UEs: layer 1, layer 2 and layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY 301 .
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device and the two UEs through the PHY 301 .
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, radio link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304 , these sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides handover support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, radio resource control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (that is, radio bearers) and using the connection between the second communication node device and the first communication node device Inter- RRC signaling to configure the lower layer.
  • radio resources that is, radio bearers
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is for the physical layer 351, L2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer) , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminating at the P-GW on the network side and another layer terminating at the connection.
  • Application layer at one end eg, remote UE, server, etc.).
  • the wireless protocol architecture in Fig. 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Fig. 3 is applicable to the second node in this application.
  • the first information block in this application is generated in the RRC sublayer 306 .
  • the first information block in this application is generated in the MAC sublayer 302 .
  • the first information block in this application is generated in the MAC sublayer 352 .
  • the second information block in this application is generated in the RRC sublayer 306 .
  • the second information block in this application is generated in the MAC sublayer 302 .
  • the second information block in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated in the RRC sublayer 306 .
  • the first signaling in this application is generated in the MAC sublayer 302 .
  • the first signaling in this application is generated in the MAC sublayer 352 .
  • the first signaling in this application is generated by the PHY301.
  • the first signaling in this application is generated by the PHY351.
  • At least one bit in the target bit block in this application is generated in the RRC sublayer 306 .
  • At least one bit in the target bit block in this application is generated in the MAC sublayer 302 .
  • At least one bit in the target bit block in this application is generated in the MAC sublayer 352 .
  • At least one bit in the target bit block in this application is generated by the PHY301.
  • At least one bit in the target bit block in this application is generated by the PHY351.
  • At least one bit in the first bit block in this application is generated in the RRC sublayer 306 .
  • At least one bit in the first bit block in this application is generated in the MAC sublayer 302 .
  • At least one bit in the first bit block in this application is generated in the MAC sublayer 352 .
  • At least one bit in the first bit block in this application is generated by the PHY301.
  • At least one bit in the first bit block in this application is generated by the PHY351.
  • At least one bit in the second bit block in this application is generated in the RRC sublayer 306 .
  • At least one bit in the second bit block in this application is generated in the MAC sublayer 302 .
  • At least one bit in the second bit block in this application is generated in the MAC sublayer 352 .
  • At least one bit in the second bit block in this application is generated by the PHY301.
  • At least one bit in the second bit block in this application is generated by the PHY351.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Fig. 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452 .
  • controller/processor 475 implements the functionality of the L2 layer.
  • controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels Multiplexing, and allocation of radio resources to said second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the second communication device 450 .
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for keying (QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)).
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for keying
  • M-PSK M phase shift keying
  • M-QAM M quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams.
  • the transmit processor 416 maps each spatial stream to subcarriers, multiplexes with a reference signal (e.g., pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel that carries a time-domain multi-carrier symbol stream. Then the multi-antenna transmit processor 471 performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into an RF stream, which is then provided to a different antenna 420 .
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal via its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto an RF carrier and converts the RF stream to a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • Receive processor 456 and multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • Receive processor 456 converts the baseband multi-carrier symbol stream after the receive analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered in the multi-antenna detection in the multi-antenna receiving processor 458.
  • the symbols on each spatial stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 can be associated with memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • controller/processor 459 In transmission from said first communication device 410 to said second communication device 450, controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements a header based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the first communication device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which is provided to different antennas 452 via the transmitter 454 after undergoing analog precoding/beamforming operations in the multi-antenna transmit processor 457 .
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into an RF symbol stream, and then provides it to the antenna 452 .
  • each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 can be associated with memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 In transmission from the second communication device 450 to the first communication device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression . Control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first node in this application includes the second communication device 450
  • the second node in this application includes the first communication device 410 .
  • the first node is a user equipment
  • the second node is a user equipment
  • the first node is a user equipment
  • the second node is a relay node
  • the first node is a relay node
  • the second node is a user equipment
  • the first node is user equipment
  • the second node is base station equipment
  • the first node is a relay node
  • the second node is a base station device
  • the second node is user equipment
  • the first node is base station equipment
  • the second node is a relay node
  • the first node is a base station device
  • the second communication device 450 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; and the at least one controller/processor is responsible for HARQ operation.
  • the first communication device 410 includes: at least one controller/processor; the at least one controller/processor is responsible for using positive acknowledgment (ACK) and/or negative acknowledgment (NACK) ) protocol for error detection to support HARQ operation.
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the second communication device 450 means at least: receiving a first information block and first signaling, where the first information block is used to determine whether the first signaling includes a target DAI field; in the first physical layer channel sending a target bit block, at least the second bit block in the first bit block or the second bit block is used to generate the target bit block, the target bit block includes at least one bit; wherein the first information The order is used to determine the resources occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK bit, the second bit block includes at least one HARQ-ACK bit, and the first bit The type of the block is different from the type of the second bit block; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first signaling includes the target DAI field, the The target
  • the second communication device 450 corresponds to the first node in this application.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: receiving a first An information block and first signaling, the first information block is used to determine whether the first signaling includes the target DAI domain; sending the target bit block in the first physical layer channel, the first bit block or the second At least the second bit block in the bit block is used to generate the target bit block, the target bit block includes at least one bit; wherein the first signaling is used to determine the first physical layer channel resources occupied; the first bit block includes at least one HARQ-ACK bit, the second bit block includes at least one HARQ-ACK bit, the type of the first bit block and the type of the second bit block Different; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first signaling includes the target DAI field, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the
  • the second communication device 450 corresponds to the first node in this application.
  • the first communication device 410 includes: at least one processor and at least one memory, and the at least one memory includes computer program code; the at least one memory and the computer program code are configured to communicate with the Use with at least one processor.
  • the first communication device 410 means at least: sending a first information block and first signaling, where the first information block is used to determine whether the first signaling includes a target DAI domain; in the first physical layer channel receiving a target block of bits, at least the second block of bits in the first block of bits or the second block of bits being used to generate the target block of bits, the target block of bits comprising at least one bit; wherein the first information
  • the order is used to determine the resources occupied by the first physical layer channel;
  • the first bit block includes at least one HARQ-ACK bit, the second bit block includes at least one HARQ-ACK bit, and the first bit
  • the type of the block is different from the type of the second bit block;
  • the first reference value is a default non-negative integer or a configurable non-negative integer;
  • the first communication device 410 corresponds to the second node in this application.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, and the computer-readable instruction program generates an action when executed by at least one processor, and the action includes: sending the first An information block and first signaling, the first information block is used to determine whether the first signaling includes the target DAI domain; receiving the target bit block in the first physical layer channel, the first bit block or the second At least the second bit block in the bit block is used to generate the target bit block, the target bit block includes at least one bit; wherein the first signaling is used to determine the first physical layer channel resources occupied; the first bit block includes at least one HARQ-ACK bit, the second bit block includes at least one HARQ-ACK bit, the type of the first bit block and the type of the second bit block Different; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first signaling includes the target DAI field, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first
  • the first communication device 410 corresponds to the second node in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive said first information block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the first information block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive said second information block in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the second information block in this application.
  • the antenna 452 the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to receive the first signaling in this application.
  • At least one of ⁇ the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, the controller/processor 475, and the memory 476 ⁇ One of them is used to send the first signaling in this application.
  • the antenna 452 the transmitter 454, the multi-antenna transmission processor 458, the transmission processor 468, the controller/processor 459, the memory 460, the data At least one of the sources 467 ⁇ is used to transmit the target bit block in the present application in the first physical layer channel in the present application.
  • At least one of ⁇ the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475, and the memory 476 ⁇ One is used for receiving the target bit block in the present application in the first physical layer channel in the present application.
  • Embodiment 5 illustrates a signal transmission flow chart according to an embodiment of the present application, as shown in FIG. 5 .
  • the communication between the first node U1 and the second node U2 is performed through an air interface.
  • the steps in the dotted box F1 are optional.
  • the order of the step pair ⁇ S521, S511 ⁇ and ⁇ S5201, S5101 ⁇ in FIG. 5 does not represent a specific time relationship.
  • the first node U1 receives the first information in step S511; receives the second information in step S5101; receives the first signaling in step S512; and sends the target bit block in the first physical layer channel in step S513.
  • the second node U2 sends the first information in step S521; sends the second information in step S5201; sends the first signaling in step S522; receives the target bit block in the first physical layer channel in step S523.
  • the first information block is used to determine whether the first signaling includes the target DAI field; at least the second bit block in the first bit block or the second bit block is used to generate The target bit block, the target bit block includes at least one bit; wherein, the first signaling is used to determine the resource occupied by the first physical layer channel; the first bit block includes at least one HARQ - ACK bits, the second bit block includes at least one HARQ-ACK bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or A configurable non-negative integer; when the first signaling includes the target DAI field, the target DAI field in the first signaling is used to determine the HARQ- The number of ACK bits, any bit included in the first bit block belongs to the target bit block; when the first signaling does not include the target DAI field, the first bit block is used to generate The third bit block, the third bit block includes at least one bit, the number of bits included in the third bit block is equal to the
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field :
  • One bit in the third bit block is the output of the HARQ-ACK bits in the first bit block after at least one operation of logical AND, logical OR, or exclusive OR.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the The third bit block includes only part of the HARQ-ACK bits in the first bit block, and bits in the first bit block that do not belong to the third bit block do not belong to the target bit block.
  • the first node U1 is the first node in this application.
  • the second node U2 is the second node in this application.
  • the first node U1 is a UE.
  • the first node U1 is a base station.
  • the second node U2 is a base station.
  • the second node U2 is a UE.
  • the air interface between the second node U2 and the first node U1 is a Uu interface.
  • the air interface between the second node U2 and the first node U1 includes a cellular link.
  • the air interface between the second node U2 and the first node U1 is a PC5 interface.
  • the air interface between the second node U2 and the first node U1 includes a side link.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node U2 and the first node U1 includes a wireless interface between satellite equipment and user equipment.
  • the air interface between the second node U2 and the first node U1 includes a user equipment-to-user wireless interface.
  • the steps in the dashed box F1 are absent.
  • the first information block and the second information block are received simultaneously.
  • the first information block is received before the second information block.
  • the first information block is received after the second information block.
  • both the first information block and the second information block are received before the first signaling.
  • the first information block is received before the first signaling.
  • each HARQ-ACK bit in the first bit block corresponds to a DCI format, and the DCI format corresponding to any HARQ-ACK bit in the first bit block is in the first signal block Order was received before.
  • the meaning that one HARQ-ACK bit corresponds to one DCI format includes: the one HARQ-ACK bit is used to indicate whether the one DCI format is received or the one DCI format is received Whether a scheduled block of bits (eg, transport block or group of code blocks) is correctly decoded.
  • a scheduled block of bits eg, transport block or group of code blocks
  • the first signaling is a DCI format
  • at least one HARQ-ACK bit in the second bit block corresponds to the first signaling
  • Embodiment 6 illustrates a schematic diagram of whether the first signaling includes the target DAI field and the target bit block according to an embodiment of the present application, as shown in FIG. 6 .
  • the target DAI field in the first signaling is used to determine the The number of HARQ-ACK bits included in the first bit block, any bit included in the first bit block belongs to the target bit block in this application; when the first signaling does not include the When targeting the DAI domain, the first bit block is used to generate a third bit block, the third bit block includes at least one bit, and the number of bits included in the third bit block is equal to the For the first reference value, any bit included in the third bit block belongs to the target bit block.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value.
  • the third bit block includes only some bits and at least one compressed bit in the first bit block, and the at least one The compressed bits are outputs of the HARQ-ACK bits in the first bit block after at least one operation of logic AND, logic OR, or exclusive OR.
  • one bit in the third bit block is the HARQ-ACK bit in the first bit block after logical AND, logical OR , or the output of at least one of the XOR operations.
  • the first signaling does not include the target DAI field: none of the bits belonging to the first bit block and not belonging to the third bit block belong to the target bit block.
  • bits belonging to the first bit block and not belonging to the third bit block are not sent.
  • the third bit block includes only part of the HARQ-ACK bits in the first bit block.
  • the third bit block includes only part of the HARQ-ACK bits in the first bit block, and the first bit block in Bits that do not belong to the third bit block do not belong to the target bit block.
  • the value of a bit in the third bit block is equal to the HARQ-ACK bit in the first bit block after logical ANDing, The output after at least one operation of logical OR or XOR.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field, the third The value of one bit in the bit block is equal to the output of the HARQ-ACK bits in the first bit block after at least one operation of logical AND, logical OR, or exclusive OR.
  • the value of one bit in the third bit block is equal to the value of multiple HARQ-ACK bits in the first bit block The result of a logical AND operation.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field, the third The value of one bit in the bit block is equal to the result of logical AND operation on the values of multiple HARQ-ACK bits in the first bit block.
  • Embodiment 7 illustrates a schematic diagram of the relationship among the target bit block, the first target bit sub-block, the second target bit sub-block and the first physical layer channel according to an embodiment of the present application, as shown in FIG. 7 .
  • the target bit block in this application includes a first target bit sub-block and a second target bit sub-block, and both the first target bit sub-block and the second target bit sub-block are in this The application is sent in the first physical layer channel.
  • the target DAI field in the first signaling is used to determine the HARQ-ACK bits included in the first bit block Any bit included in the first bit block belongs to the first target bit sub-block; when the first signaling does not include the target DAI field, the first bit block is used for generating a third bit block, the third bit block includes at least one bit, the number of bits included in the third bit block is equal to the first reference value, and any bit included in the third bit block belongs to The first target bit sub-block.
  • the second bit block is used to generate the second target bit sub-block.
  • any bit included in the second bit block belongs to the second target bit sub-block.
  • the second target bit sub-block only includes the second bit block.
  • the first target bit sub-block and the second target bit sub-block are respectively channel coded.
  • the expression that both the first target bit sub-block and the second target bit sub-block are sent in the first physical layer channel includes: the first target bit sub-block is appended with CRC , code block segmentation, code block CRC addition, channel coding, rate matching and at least part of code block concatenation to obtain the first coded bit sequence, the second target bit sub-blocks are respectively subjected to CRC addition, code block division, code A second coded bit sequence is obtained after block CRC appending, channel coding, rate matching and at least part of code block concatenation, both said first coded bit sequence and said second coded bit sequence are in said first physical layer channel is sent.
  • the first coded bit sequence and the second coded bit sequence are at least modulated and mapped to physical resources before being sent in the first physical layer channel.
  • the first coded bit sequence and the second coded bit sequence are at least scrambled, modulated, and mapped to physical resources before being sent in the first physical layer channel.
  • the first coded bit sequence and the second coded bit sequence are sent in the first physical layer channel.
  • at least scrambling, modulation, layer mapping and resource block mapping are performed before the first coded bit sequence and the second coded bit sequence are sent in the first physical layer channel.
  • the first target bit sub-block undergoes at least channel coding, rate matching, scrambling, modulation and mapping to physical resources before being sent in the first physical layer channel
  • the second target bit sub-block The blocks are at least channel encoded, rate matched, scrambled, modulated and mapped to physical resources before being transmitted in the first physical layer channel.
  • the first target bit sub-block undergoes at least channel coding, rate matching, scrambling, modulation, layer mapping and resource block mapping before being sent in the first physical layer channel, and the second target Before the bit sub-block is sent in the first physical layer channel, at least channel coding, rate matching, scrambling, modulation, layer mapping and resource block mapping are performed.
  • the first target bit sub-block undergoes CRC addition, code block segmentation, code block CRC addition, channel coding, rate matching, code block concatenation, scrambling, modulation (Modulation), and spreading (Spreading) , layer mapping (Layer Mapping), precoding (Precoding), mapping to physical resources, multi-carrier symbol generation (Generation), output after at least part of modulation up-conversion (Modulation and Upconversion), and the second target bit Sub-blocks undergo CRC addition, code block segmentation, code block CRC addition, channel coding, rate matching, code block concatenation, scrambling, modulation (Modulation), spreading (Spreading), layer mapping (Layer Mapping), precoding ( Precoding), mapping to physical resources, multi-carrier symbol generation (Generation), and at least part of the outputs after modulation and upconversion (Modulation and Upconversion) are all sent in the first physical layer channel.
  • Embodiment 8 illustrates a schematic diagram of the relationship among the first bit block, the first priority index, the second bit block and the second priority index according to an embodiment of the present application, as shown in FIG. 8 .
  • the first bit block in this application corresponds to a first priority index
  • the second bit block in this application corresponds to a second priority index
  • the first priority index is different from the The second priority index described above.
  • the first priority index and the second priority index represent different priorities respectively.
  • the first priority index is a priority index (Priority index) 0, and the second priority index is a priority index 1.
  • the first priority index is priority index 1
  • the second priority index is priority index 0.
  • all the HARQ-ACK bits in the first bit block are HARQ-ACK bits with the first priority index.
  • all the HARQ-ACK bits in the second bit block are HARQ-ACK bits with the second priority index.
  • the HARQ-ACK bits in the first bit block all correspond to the DCI format indicating the first priority index.
  • the HARQ-ACK bits in the second bit block all correspond to the DCI format indicating the second priority index.
  • the first signaling indicates the first priority index.
  • the first signaling indicates the second priority index.
  • the Priority indicator field in the first signaling indicates the first priority index.
  • the Priority indicator field in the first signaling indicates the second priority index.
  • Embodiment 9 illustrates a schematic diagram of the relationship between the second information block and the first reference value according to an embodiment of the present application, as shown in FIG. 9 .
  • the first node in this application receives a second information block, and the second information block is used to determine the first reference value in this application.
  • the second information block includes higher layer (higher layer) signaling.
  • the second information block is RRC signaling.
  • the second information block includes one or more fields in one RRC signaling.
  • the second information block is an IE (Information Element, information element).
  • the second information block includes one or more IEs.
  • the second information block includes one or more fields in one IE.
  • the second information block is MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the second information block includes one or more fields in one MAC CE signaling.
  • the second information block includes an information element PDSCH-Config.
  • the second information block includes an information element PhysicalCellGroupConfig.
  • the second information block includes an information element PUCCH-Config.
  • the second information block includes an information element PDCCH-Config.
  • the second information block includes an information element SearchSpace.
  • the second information block includes an information element ControlResourceSet.
  • the second information block is an information element PDSCH-Config.
  • the second information block is an information element PhysicalCellGroupConfig.
  • the second information block is an information element PUCCH-Config.
  • the second information block is an information element PDCCH-Config.
  • the second information block is an information element SearchSpace.
  • the second information block is an information element ControlResourceSet.
  • the names of the above information elements are case-insensitive.
  • the second information block is the first information block.
  • the second information block is not the first information block.
  • the second information block is used to configure the first reference value.
  • the second information block is used to indicate the first reference value.
  • the second information block is used to explicitly indicate the first reference value.
  • the second information block is used to implicitly indicate the first reference value.
  • the first reference value set includes a plurality of reference values
  • the second information block is used to indicate the first reference value from the first reference value set.
  • Embodiment 10 illustrates a structural block diagram of a processing device in a first node device, as shown in FIG. 10 .
  • a first node device processing apparatus 1000 includes a first receiver 1001 and a first transmitter 1002 .
  • the first node device 1000 is a user equipment.
  • the first node device 1000 is a relay node.
  • the first node device 1000 is a vehicle communication device.
  • the first node device 1000 is a user equipment supporting V2X communication.
  • the first node device 1000 is a relay node supporting V2X communication.
  • the first receiver 1001 includes the antenna 452 in the accompanying drawing 4 of the present application, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data At least one of the sources 467.
  • the first receiver 1001 includes the antenna 452 in the accompanying drawing 4 of the present application, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data At least the first five of sources 467 .
  • the first receiver 1001 includes the antenna 452 in the accompanying drawing 4 of the present application, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data At least the first four of sources 467 .
  • the first receiver 1001 includes the antenna 452 in the accompanying drawing 4 of the present application, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data At least the first three of sources 467 .
  • the first receiver 1001 includes the antenna 452 in the accompanying drawing 4 of the present application, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, the controller/processor 459, the memory 460 and the data At least the first two of sources 467 .
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least one of the data sources 467 .
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first five of the data sources 467 .
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first four of the data sources 467 .
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first three of the data sources 467 .
  • the first transmitter 1002 includes the antenna 452, transmitter 454, multi-antenna transmitter processor 457, transmission processor 468, controller/processor 459, memory 460 and At least the first two of the data sources 467 .
  • the first receiver 1001 receives a first information block and a first signaling, and the first information block is used to determine whether the first signaling includes a target DAI field; the first Transmitter 1002, sending a target bit block in a first physical layer channel, where at least the second bit block in the first bit block or the second bit block is used to generate the target bit block, the target bit block includes At least one bit; wherein, the first signaling is used to determine the resources occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK bit, and the second bit block includes at least A HARQ-ACK bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first When the signaling includes the target DAI field, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block, and the first bit block includes Any bit included belongs to the target bit block;
  • any bit included in the second bit block belongs to the target bit block.
  • the target DAI field in the first signaling is used to indicate the HARQ-ACK bits included in the first bit block of the said quantity.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third One bit in the bit block is the output of the HARQ-ACK bits in the first bit block after at least one operation of logic AND, logic OR, or exclusive OR.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third bit block Only part of the HARQ-ACK bits in the first bit block are included, and bits in the first bit block that do not belong to the third bit block do not belong to the target bit block.
  • the first bit block corresponds to a first priority index
  • the second bit block corresponds to a second priority index
  • the first priority index is different from the second priority index
  • the first receiver 1001 receives a second information block; wherein, the second information block is used to determine the first reference value.
  • the first receiver 1001 receives a first information block and a first signaling, and the first information block is used to determine whether the first signaling includes a target DAI field; the first Transmitter 1002, sending a target bit block in a first physical layer channel, where at least the second bit block in the first bit block or the second bit block is used to generate the target bit block, the target bit block includes At least one bit; wherein, the first signaling is a DCI format, and the first physical layer channel is one of PUCCH or PUSCH; the first signaling is used to determine the first physical layer channel Occupied resources; the first bit block includes at least one HARQ-ACK bit, the second bit block includes at least one HARQ-ACK bit, and the number of HARQ-ACK bits included in the first bit block is greater than the A first reference value; the first bit block corresponds to a first priority index, the second bit block corresponds to a second priority index, and the first priority index is different from the second priority index; the first The reference value is equal to one
  • the target bit block includes a first target bit sub-block and a second target bit sub-block, and the first target bit sub-block is added by CRC, code block is divided, and code block CRC is added , channel coding, at least part of rate matching and code block concatenation to obtain the first coded bit sequence, the second target bit sub-blocks are respectively subjected to CRC addition, code block segmentation, code block CRC addition, channel coding, rate matching A second coded bit sequence is obtained after at least part of the code block concatenation, and both the first coded bit sequence and the second coded bit sequence are transmitted in the first physical layer channel; the second bit Any bit included in the block belongs to the second target bit sub-block; when the first signaling includes the target DAI field, any bit included in the first bit block belongs to the first target A bit sub-block: when the first signaling does not include the target DAI field, any bit included in the third bit block belongs to the first target bit
  • Embodiment 11 illustrates a structural block diagram of a processing device in a second node device, as shown in FIG. 11 .
  • the second node device processing apparatus 1100 includes a second transmitter 1101 and a second receiver 1102 .
  • the second node device 1100 is a user equipment.
  • the second node device 1100 is a base station.
  • the second node device 1100 is a relay node.
  • the second node device 1100 is a vehicle communication device.
  • the second node device 1100 is a user equipment supporting V2X communication.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second transmitter 1101 includes the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 416, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. at least one.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the top five.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first four.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first three.
  • the second receiver 1102 includes the antenna 420, the receiver 418, the multi-antenna receiving processor 472, the receiving processor 470, the controller/processor 475 and the memory 476 in the accompanying drawing 4 of the present application. At least the first two.
  • the second transmitter 1101 sends a first information block and first signaling, and the first information block is used to determine whether the first signaling includes a target DAI field;
  • the second Receiver 1102 receiving a target bit block in a first physical layer channel, where at least the second bit block in the first bit block or the second bit block is used to generate the target bit block, the target bit block includes At least one bit; wherein, the first signaling is used to determine the resources occupied by the first physical layer channel; the first bit block includes at least one HARQ-ACK bit, and the second bit block includes at least A HARQ-ACK bit, the type of the first bit block is different from the type of the second bit block; the first reference value is a default non-negative integer or a configurable non-negative integer; when the first When the signaling includes the target DAI field, the target DAI field in the first signaling is used to determine the number of HARQ-ACK bits included in the first bit block, and the first bit block includes Any bit included belongs to the target bit block; when the first
  • any bit included in the second bit block belongs to the target bit block.
  • the target DAI field in the first signaling is used to indicate the HARQ-ACK bits included in the first bit block of the said quantity.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third One bit in the bit block is the output of the HARQ-ACK bits in the first bit block after at least one operation of logic AND, logic OR, or exclusive OR.
  • the number of HARQ-ACK bits included in the first bit block is greater than the first reference value; when the first signaling does not include the target DAI field: the third bit block Only part of the HARQ-ACK bits in the first bit block are included, and bits in the first bit block that do not belong to the third bit block do not belong to the target bit block.
  • the first bit block corresponds to a first priority index
  • the second bit block corresponds to a second priority index
  • the first priority index is different from the second priority index
  • the second transmitter 1101 transmits a second information block; where the second information block is used to determine the first reference value.
  • the first node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • the second node devices in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control aircraft, etc. wireless communication equipment.
  • User equipment or UE or terminals in this application include but are not limited to mobile phones, tablet computers, notebooks, network cards, low-power devices, eMTC devices, NB-IoT devices, vehicle communication devices, aircraft, aircraft, drones, remote control Aircraft and other wireless communication equipment.
  • the base station equipment or base station or network side equipment in this application includes but not limited to macrocell base station, microcell base station, home base station, relay base station, eNB, gNB, transmission and receiving node TRP, GNSS, relay satellite, satellite base station, aerial Base stations, test devices, test equipment, test instruments and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一接收机,接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;第一发射机,在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信***中的传输方法和装置,尤其是支持蜂窝网的无线通信***中的无线信号的传输方法和装置。
背景技术
在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)NR(New Radio,新空口)***中,为了支持更高要求(如更高可靠性、更低延迟等)的URLLC(Ultra Reliable and Low Latency Communication,超高可靠性与超低时延通信)业务,NR Release 16版本已经支持了针对上行链路传输的多种增强。
在NR Release 17版本的URLLC继续增强的WI(Work Item,工作项目)中,对UE(User Equipment,用户设备)内(Intra-UE)不同业务的复用(Multiplexing)是需要研究一个重点。
发明内容
当不同优先级的HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement,混合自动重传请求确认)比特被复用到同一个PUCCH(Physical Uplink Control CHannel,物理上行链路控制信道)或PUSCH(Physical Uplink Shared CHannel,物理上行链路共享信道)中时,高优先级HARQ-ACK比特(如,针对URLLC业务的HARQ-ACK比特)的传输可靠性会受到低优先级HARQ-ACK比特(如,针对eMBB(enhanced Mobile BroadBand,增强移动宽带)业务的HARQ-ACK比特)的影响;如何保证高优先级HARQ-ACK比特的传输可靠性是实现不同业务之间的复用所需要解决的一个关键问题。
针对上述问题,本申请公开了一种解决方案。需要说明的是,在本申请的的描述中,采用URLLC作为一个典型应用场景或者例子;本申请也同样适用于其他场景,比如多发送接收节点传输,IoT(Internet of Things,物联网),MBS(Multicast and Broadcast Services,多播和广播服务),车联网,NTN(non-terrestrial networks,非地面网络)等,并取得类似的技术效果。此外,不同场景(包括但不限于URLLC,多发送接收节点传输,IoT,MBS,车联网,NTN)采用统一解决方案还有助于降低硬件复杂度和成本,或者提高性能。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包 括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,本申请要解决的问题包括:如何在不同的配置下降低低优先级HARQ-ACK比特对高优先级HARQ-ACK比特的传输可靠性的负面影响。
作为一个实施例,本申请要解决的问题包括:通信双方对低优先级HARQ-ACK比特的数量的理解不一致会导致高优先级HARQ-ACK比特在基站侧被错误译码,如何增强通信双方对低优先级HARQ-ACK比特的数量的理解一致性。
作为一个实施例,上述方法的特质包括:根据被用于调度PUCCH或PUSCH的DCI格式中是否包括针对低优先级HARQ-ACK比特的DAI域来确定是否对低优先级HARQ-ACK比特进行额外处理(如,量化或捆绑(bundling)等操作)以增强通信双方对低优先级HARQ-ACK比特的数量的理解一致性。
作为一个实施例,上述方法的特质包括:在不同的配置下对所述第一比特块使用不同的处理方式来确保所述第二比特块的传输可靠性在不同的场景中都能得到保证。
作为一个实施例,上述方法的特质包括:当所述第一信令不包括所述目标DAI域时,被复用到所述第一物理层信道中的与所述第一比特块有关的比特的数量总是一个通信双方理解一致的数值(即,本申请中的所述第一参考数值)。
作为一个实施例,上述方法的好处包括:在保证高优先级HARQ-ACK比特的传输可靠性的前提下增强了基站配置的灵活性,基站可以根据不同场景来确定是否通过增加DCI信令开销来增强通信双方对低优先级HARQ-ACK比特的数量的理解一致性。
作为一个实施例,上述方法的好处包括:保证了高优先级HARQ-ACK比特的传输可靠性。
作为一个实施例,上述方法的好处包括:有利于降低DCI信令开销。
作为一个实施例,上述方法的好处包括:有利于增强低优先级HARQ-ACK比特的传输性能,从而提升***的总体效率。
根据本申请的一个方面,上述方法的特征在于,
所述第二比特块所包括的任意一个比特属于所述目标比特块。
根据本申请的一个方面,上述方法的特征在于,
当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
根据本申请的一个方面,上述方法的特征在于,包括:
接收第二信息块;
其中,所述第二信息块被用于确定所述第一参考数值。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
在第一物理层信道中接收目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比 特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
根据本申请的一个方面,上述方法的特征在于,
所述第二比特块所包括的任意一个比特属于所述目标比特块。
根据本申请的一个方面,上述方法的特征在于,
当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
根据本申请的一个方面,上述方法的特征在于,
所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
根据本申请的一个方面,上述方法的特征在于,包括:
发送第二信息块;
其中,所述第二信息块被用于确定所述第一参考数值。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
第一发射机,在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发射机,发送第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
第二接收机,在第一物理层信道中接收目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI 域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,本申请中的方法具备如下优势:
-增强了基站配置和调度的灵活性;
-保证了高优先级HARQ-ACK比特的传输可靠性;
-有利于降低DCI信令开销;
-有利于增强低优先级HARQ-ACK信息的上报性能;
-提升了***的总体效率;
-标准修订所需工作量小。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的信号传输流程图;
图6示出了根据本申请的一个实施例的第一信令是否包括目标DAI域与目标比特块之间关系的示意图;
图7示出了根据本申请的一个实施例的目标比特块,第一目标比特子块,第二目标比特子块以及第一物理层信道之间关系的示意图;
图8示出了根据本申请的一个实施例的第一比特块,第一优先级索引,第二比特块以及第二优先级索引之间关系的示意图;
图9示出了根据本申请的一个实施例的第二信息块与第一参考数值之间关系的示意图;
图10示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图11示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一节点的处理流程图,如附图1所示。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信息;在步骤102中接收第一信令;在步骤103中在第一物理层信道中发送目标比特块。
在实施例1中,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,所述第一信息块包括更高层(higher layer)信令。
作为一个实施例,所述第一信息块是RRC信令。
作为一个实施例,所述第一信息块包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信息块是一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信息块包括一个或多个IE。
作为一个实施例,所述第一信息块包括一个IE中的一个或多个域。
作为一个实施例,所述第一信息块是MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信息块包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第一信息块包括信息元素PDSCH-Config。
作为一个实施例,所述第一信息块包括信息元素PhysicalCellGroupConfig。
作为一个实施例,所述第一信息块包括信息元素PUCCH-Config。
作为一个实施例,所述第一信息块包括信息元素PDCCH-Config。
作为一个实施例,所述第一信息块包括信息元素SearchSpace。
作为一个实施例,所述第一信息块包括信息元素ControlResourceSet。
作为一个实施例,所述第一信息块是信息元素PDSCH-Config。
作为一个实施例,所述第一信息块是信息元素PhysicalCellGroupConfig。
作为一个实施例,所述第一信息块是信息元素PUCCH-Config。
作为一个实施例,所述第一信息块是信息元素PDCCH-Config。
作为一个实施例,所述第一信息块是信息元素SearchSpace。
作为一个实施例,所述第一信息块是信息元素ControlResourceSet。
作为一个实施例,上述信息元素的名字不区分大小写。
作为一个实施例,所述第一信息块的名字包括DAI(不区分大小写)。
作为一个实施例,所述第一信息块的名字包括downlinkAssignmentIndex(不区分大小写)。
作为一个实施例,所述第一信令是物理层信令。
作为一个实施例,所述第一信令是DCI(Downlink control information,下行链路控制信息)格式(DCI format)。
作为一个实施例,所述第一信令是DCI format 1_1或DCI format 1_2中之一。
作为一个实施例,所述第一信令是DCI format 0_1或DCI format 0_2中之一。
作为一个实施例,所述第一信令是DCI format 1_0,所述DCI format 1_0的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_1,所述DCI format 1_1的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 1_2,所述DCI format 1_2的具体定义参见3GPP TS38.212中的第7.3.1.2章节。
作为一个实施例,所述第一信令是DCI format 0_0,所述DCI format 0_0的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_1,所述DCI format 0_1的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令是DCI format 0_2,所述DCI format 0_2的具体定义参见3GPP TS38.212中的第7.3.1.1章节。
作为一个实施例,所述第一信令包括一个DCI格式中的一个或多个域(field)。
作为一个实施例,所述第一信令是一个下行调度信令(DownLink Grant Signalling)。
作为一个实施例,所述第一信令是一个上行调度信令(UpLink Grant Signalling)。
作为一个实施例,所述第一信令是更高层(higher layer)信令。
作为一个实施例,所述第一信令是RRC信令。
作为一个实施例,所述第一信令包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息元素)。
作为一个实施例,所述第一信令包括一个IE中的一个或多个域。
作为一个实施例,所述第一信令是MAC CE(MediumAccess Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第一信息块被用于指示所述第一信令是否包括所述目标DAI域。
作为一个实施例,所述第一信息块被用于显式指示所述第一信令是否包括所述目标DAI域。
作为一个实施例,所述第一信息块被用于隐式指示所述第一信令是否包括所述目标DAI域。
作为一个实施例,所述第一信息块被用于配置所述第一信令是否包括所述目标DAI域。
作为一个实施例,所述第一信息块包括一个域被用于指示所述第一信令包括所述目标DAI域,所述第一信息块不包括这个域被用于指示所述第一信令不包括所述目标DAI域。
作为一个实施例,所述第一信息块包括一个域被用于指示所述第一信令不包括所述目标DAI域,所述第一信息块不包括这个域被用于指示所述第一信令包括所述目标DAI域。
作为一个实施例,所述第一物理层信道是一个PUCCH。
作为一个实施例,所述第一物理层信道是一个PUSCH。
作为一个实施例,所述第一物理层信道是一个物理上行链路信道。
作为一个实施例,所述表述在第一物理层信道中发送目标比特块的意思包括:目标比特块包括第一目标比特子块和第二目标比特子块,所述第一目标比特子块和所述第二目标比特子块分别进行信道编码后得到的编码比特序列都在第一物理层信道中被发送。
作为一个实施例,所述表述在第一物理层信道中发送目标比特块的意思包括:目标比特块包括第一目标比特子块和第二目标比特子块,所述第一目标比特子块和所述第二目标比特子块都在第一物理层信道中被发送。
作为一个实施例,所述目标比特块在所述第一物理层信道中被发送之前经过至少CRC(Cyclic Redundancy Check,循环冗余校验)附加(attachment),码块分割(Code Block Segmentation),码块CRC附加,信道编码,速率匹配和码块级联(Concatenation),扰码(Scrambling),调制和资源块映射。
作为一个实施例,所述目标比特块在所述第一物理层信道中被发送之前经过至少CRC附加,信道编码和速率匹配,扰码,调制和资源块映射。
作为一个实施例,所述目标比特块在所述第一物理层信道中被发送之前经过至少CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联(Concatenation),扰码,调制,层映射,天线端口映射和资源块映射。
作为一个实施例,所述目标比特块在所述第一物理层信道中被发送之前经过至少序列生成和映射到物理资源。
作为一个实施例,所述目标比特块在所述第一物理层信道中被发送之前经过至少信道编码,速率匹配,扰码,调制和映射到物理资源。
作为一个实施例,所述目标比特块在所述第一物理层信道中被发送之前经过至少信道编码,速率匹配,扰码,调制,层映射和资源块映射。
作为一个实施例,所述目标比特块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配,码块级联,扰码,调制(Modulation),扩频(Spreading),层映射(Layer Mapping),预编码(Precoding),映射到物理资源,多载波符号生成(Generation),调制上变频(Modulation and Upconversion)中的至少部分之后在所述第一物理层信道中被发送。
作为一个实施例,所述目标比特块包括至少一个HARQ-ACK比特。
作为一个实施例,所述目标比特块中的比特都是HARQ-ACK比特。
作为一个实施例,所述目标比特块中的比特都是UCI(Uplink control information,上行链路控制信息)比特。
作为一个实施例,所述目标比特块包括至少一个CSI(Channel state information,信道状态信息)比特。
作为一个实施例,一个所述HARQ-ACK比特是一个HARQ-ACK信息比特(HARQ-ACK information bit)。
作为一个实施例,所述第一比特块和所述第二比特块都被用于生成所述目标比特块。
作为一个实施例,所述目标比特块包括所述第二比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,所述第二比特块包括多个比特,所述第二比特块中的仅部分比特属于所述目标比特块。
作为一个实施例,所述目标比特块包括所述第二比特块。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于1。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于2。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于3。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于4。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于8。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于5。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于6。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量等于7。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量大于3。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量大于4。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量不大于1706。
作为一个实施例,所述第二比特块所包括的HARQ-ACK比特的数量等于1。
作为一个实施例,所述第二比特块所包括的HARQ-ACK比特的数量等于2。
作为一个实施例,所述第二比特块所包括的HARQ-ACK比特的数量等于3。
作为一个实施例,所述第二比特块所包括的HARQ-ACK比特的数量大于3。
作为一个实施例,所述第二比特块所包括的HARQ-ACK比特的数量大于4。
作为一个实施例,所述第二比特块所包括的HARQ-ACK比特的数量不大于1706。
作为一个实施例,所述第一比特块仅包括HARQ-ACK比特。
作为一个实施例,所述第二比特块仅包括HARQ-ACK比特。
作为一个实施例,所述第一比特块仅包括UCI比特。
作为一个实施例,所述第二比特块仅包括UCI比特。
作为一个实施例,所述第一信令被用于指示所述第一物理层信道所占用的资源。
作为一个实施例,所述第一信令被用于显式指示所述第一物理层信道所占用的资源。
作为一个实施例,所述第一信令被用于隐式指示所述第一物理层信道所占用的资源。
作为一个实施例,所述第一信令被用于指示所述第一物理层信道所占用的时域资源。
作为一个实施例,所述第一信令被用于指示所述第一物理层信道所占用的频域资源。
作为一个实施例,所述第一信令被用于配置所述第一物理层信道所占用的资源。
作为一个实施例,所述第一物理层信道是一个PUCCH,所述第一信令被用于指示所述第一物理层信道所占用的PUCCH资源(PUCCH resource)。
作为一个实施例,所述第一物理层信道是一个PUCCH,所述第一信令被用于从一个PUCCH资源集合(PUCCH resource set)中指示出所述第一物理层信道所占用的PUCCH资源。
作为一个实施例,所述表述所述第一比特块的类型和所述第二比特块的类型不同的意思包括:所述第一比特块中的HARQ-ACK比特的类型和所述第二比特块中的HARQ-ACK比特的类型不同。
作为一个实施例,所述第一比特块中的HARQ-ACK比特和所述第二比特块中的HARQ-ACK比特分别是不同的优先级的HARQ-ACK比特。
作为一个实施例,所述第一比特块中的HARQ-ACK比特和所述第二比特块中的HARQ-ACK比特分别针对不同的优先级索引(Priority index)。
作为一个实施例,所述第一比特块中的HARQ-ACK比特和所述第二比特块中的HARQ-ACK比特分别关联到不同的优先级索引。
作为一个实施例,本申请中的所述类型是:优先级。
作为一个实施例,所述第一比特块的所述类型是:所述第一比特块的优先级;所述第二比特块的所述类型是:所述第二比特块的优先级。
作为一个实施例,所述第一比特块的所述类型是:所述第一比特块所对应的优先级索引;所述第二比特块的所述类型是:所述第二比特块所对应的优先级索引。
作为一个实施例,所述表述所述第一比特块的类型和所述第二比特块的类型不同的意思包括:所述第一比特块和所述第二比特块分别对应不同的优先级索引。
作为一个实施例,所述表述所述第一比特块的类型和所述第二比特块的类型不同的意思包括:所述第一比特块中的HARQ-ACK比特和所述第二比特块中的HARQ-ACK比特分别具有不同的优先级索引。
作为一个实施例,所述第一比特块的优先级是所述第一比特块中的HARQ-ACK比特的优先级,所述第二比特块的优先级是所述第二比特块中的HARQ-ACK比特的优先级。
作为一个实施例,本申请中的所述类型是:反馈模式。
作为一个实施例,所述第一比特块的所述类型是:所述第一比特块所对应的反馈模式;所述第二比特块的所述类型是:所述第二比特块所对应的反馈模式。
作为一个实施例,本申请中的所述类型是:通信模式(如多播或单播)。
作为一个实施例,所述第一比特块的所述类型是:所述第一比特块所对应的通信模式;所述第二比特块的所述类型是:所述第二比特块所对应的通信模式。
作为一个实施例,所述第一比特块中的HARQ-ACK比特都是被用于MBS的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特都是被用于单播的HARQ-ACK比特。
作为一个实施例,所述第二比特块中的HARQ-ACK比特都是被用于MBS的HARQ-ACK比特,所述第一比特块中的HARQ-ACK比特都是被用于单播的HARQ-ACK比特。
作为一个实施例,本申请中的所述类型是与RNTI(Radio Network Temporary Identifier,无线网络临时标识符)有关的类型,不同类型对应不同的RNTI。
作为一个实施例,所述表述所述第一比特块的类型和所述第二比特块的类型不同的意思包括:所述第一比特块中的HARQ-ACK比特和所述第二比特块中的HARQ-ACK比特分别针对不同的RNTI。
作为一个实施例,不同类型对应不同的HARQ-ACK子码本(sub-codebook);所述表述所述第一比特块的类型和所述第二比特块的类型不同的意思包括:所述第一比特块和所述第二比特块分别包括属于不同的HARQ-ACK子码本的HARQ-ACK比特。
作为一个实施例,所述第一参考数值等于1。
作为一个实施例,所述第一参考数值等于2。
作为一个实施例,所述第一参考数值等于3。
作为一个实施例,所述第一参考数值不大于1706。
作为一个实施例,所述第一参考数值是更高层信令所配置的一个正整数。
作为一个实施例,所述表述第一参考数值是一个缺省的非负整数或可配置的非负整数的意思包括:第一参考数值是常数。
作为一个实施例,所述表述第一参考数值是一个缺省的非负整数或可配置的非负整数的意思包括:第一参考数值是RRC信令所配置的数值。
作为一个实施例,所述表述第一参考数值是一个缺省的非负整数或可配置的非负整数的意思包括:第一参考数值是第一参考数值集合中之一,所述第一参考数值集合包括多个参考数值,所述第一参考数值集合中的任一参考数值是预置的或RRC信令所配置的,物理层信令或更高层信令被用于从所述第一参考数值集合中指示出所述第一参考数值。
作为上述实施例的一个子实施例,所述第一信令被用于从所述第一参考数值集合中指示出所述第一参考数值。
作为上述实施例的一个子实施例,MAC CE信令被用于从所述第一参考数值集合中指示出所述第一参考数值。
作为上述实施例的一个子实施例,RRC信令被用于从所述第一参考数值集合中指示出所述第一参考数值。
作为一个实施例,所述目标DAI域包括至少一个比特。
作为一个实施例,所述目标DAI域是DCI format 1_1中的一个域。
作为一个实施例,所述目标DAI域是DCI format 1_2中的一个域。
作为一个实施例,所述目标DAI域是DCI format 1_1或DCI format 1_2中的一个域。
作为一个实施例,所述目标DAI域是DCI format 0_1中的一个域。
作为一个实施例,所述目标DAI域是DCI format 0_2中的一个域。
作为一个实施例,所述目标DAI域是DCI format 0_1或DCI format 0_2中的一个域。
作为一个实施例,所述目标DAI域是一个DAI(Downlink assignment index,下行链路分配索引)域。
作为一个实施例,所述目标DAI域是一个计数(counter)DAI域。
作为一个实施例,所述目标DAI域是一个总数(total)DAI域。
作为一个实施例,所述目标DAI域是一个UL(UpLink)DAI域。
作为一个实施例,所述目标DAI域是针对对应所述第一比特块所对应的所述类型的HARQ-ACK比特的DAI域。
作为一个实施例,所述目标DAI域是针对对应所述第一比特块所对应的所述类型的HARQ-ACK比特的总数DAI域。
作为一个实施例,所述目标DAI域是针对关联到优先级索引0的HARQ-ACK比特的DAI域。
作为一个实施例,所述目标DAI域是针对关联到优先级索引0的HARQ-ACK比特的总数DAI域。
作为一个实施例,所述目标DAI域是针对关联到优先级索引1的HARQ-ACK比特的DAI域。
作为一个实施例,所述目标DAI域是针对关联到优先级索引1的HARQ-ACK比特的总数DAI域。
作为一个实施例,所述第一信令是否包括所述目标DAI域被用于确定所述目标比特块。
作为一个实施例,所述第一信令是否包括所述目标DAI域被用于确定所述目标比特块与所述第一比特块之间的关系。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一信令中的所述目标DAI域的值被用于执行计数得到所述第一比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一信令中的所述目标DAI域被用于显式指示所述第一比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一信令中的所述目标DAI域被用于隐式指示所述第一比特块所包括的HARQ-ACK比特的数量。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一比特块所包括的HARQ-ACK比特的数量与所述第一信令中的所述目标DAI域的值线性相关。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一比特块所包括的HARQ-ACK比特的数量等于第一中间量乘以2,所述第一中间量与所述第一信令中的所述目标DAI域的值线性相关。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一比特块所包括的HARQ-ACK比特的数量是第一中间量的倍数,所述第一中间量与所述第一信令中的所述目标DAI域的值线性相关。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一比特块所包括的HARQ-ACK比特的数量等于T1的非负整数倍加上所述第一信令中的所述目标DAI域的值,所述T1是正整数。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一比特块所包括的HARQ-ACK比特的数量等于第一中间量乘以2,所述第一中间量等于T1的非负整数倍加上所述第一信令中的所述目标DAI域的值,所述T1是正整数。
作为一个实施例,所述表述所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量的意思包括:所述第一比特块所包括的HARQ-ACK比特的数量是第一中间量的倍数,所述第一中间量等于T1的非负整数倍加上所述第一信令中的所述目标DAI域的值,所述T1是正整数。
作为一个实施例,所述T1等于4。
作为一个实施例,所述T1等于2。
作为一个实施例,所述T1等于2的T2次方,所述T2是一个计数DAI域所包括的比特的数量。
作为一个实施例,所述T1等于2的T2次方,所述T2是用于计数关联到优先级索引0的HARQ-ACK比特的数量的计数DAI域所包括的比特的数量。
作为一个实施例,当所述第一信令包括所述目标DAI域时:所述目标比特块仅包括所述第一比特块和所述第二比特块。
作为一个实施例,所述表述所述第一比特块被用于生成第三比特块的意思包括:第三比特块包括所述第一比特块中的至少部分比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,所述表述所述第一比特块被用于生成第三比特块的意思包括:第三比特块包括所述第一比特块中的至少部分比特。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量小于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块以及至少一个填充比特。
作为一个实施例,所述填充比特是值为0的比特。
作为一个实施例,所述填充比特是值为1的比特。
作为一个实施例,一个所述填充比特是所述第一比特块中的一个比特的重复(repetition)。
作为一个实施例,所述第三比特块中的比特都是HARQ-ACK比特。
作为一个实施例,所述第三比特块中的比特都是UCI比特。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分比特以及至少一个压缩比特,所述至少一个压缩比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分比特以及至少一个压缩比特,一个所述压缩比特等于所述第一比特块中的多个HARQ-ACK比特的值进行逻辑与操作的结果。
作为一个实施例,所述目标比特块中的比特都是进行信道编码前的比特。
作为一个实施例,所述第一节点还接收至少一个PDSCH,所述第一信令被用于调度所述至少一个PDSCH,所述第二比特块包括至少一个针对所述至少一个PDSCH中的传输块(Transport Block,TB)或码块组(Code Block Group,CBG)的HARQ-ACK比特。
作为一个实施例,在本申请中,一个比特块所包括的比特的数量的意思包括:这个比特块包括多少个比特。
作为一个实施例,在本申请中,一个比特块所包括的HARQ-ACK比特的数量的意思包括:这个比特块包括多少个HARQ-ACK比特。
作为一个实施例,在本申请中,一个比特块所包括的比特的数量是指:这个比特块的大小。
实施例2
实施例2示例了根据本申请的一个网络架构的示意图,如附图2所示。
附图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution  Advanced,增强长期演进)***的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组***)200某种其它合适术语。EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,NG-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NG-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收节点)或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位***、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子***)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201对应本申请中的所述第二节点。
作为一个实施例,所述gNB203对应本申请中的所述第一节点。
作为一个实施例,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述UE201对应本申请中的所述第一节点,所述gNB203对应本申请中的所述第二节点。
作为一个实施例,所述gNB203是宏蜂窝(MarcoCellular)基站。
作为一个实施例,所述gNB203是微小区(Micro Cell)基站。
作为一个实施例,所述gNB203是微微小区(PicoCell)基站。
作为一个实施例,所述gNB203是家庭基站(Femtocell)。
作为一个实施例,所述gNB203是支持大时延差的基站设备。
作为一个实施例,所述gNB203是一个飞行平台设备。
作为一个实施例,所述gNB203是卫星设备。
作为一个实施例,本申请中的所述第一节点和所述第二节点都对应所述UE201,例如所述第一节点和所述第二节点之间执行V2X通信。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的 RSU),或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备以及两个UE之间的链路。L2层305包括MAC(MediumAccess Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,本申请中的所述第一信息块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信息块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二信息块生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二信息块生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二信息块生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一信令生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一信令生成于所述PHY301。
作为一个实施例,本申请中的所述第一信令生成于所述PHY351。
作为一个实施例,本申请中的所述目标比特块中的至少一个比特生成于所述RRC子层306。
作为一个实施例,本申请中的所述目标比特块中的至少一个比特生成于所述MAC子层302。
作为一个实施例,本申请中的所述目标比特块中的至少一个比特生成于所述MAC子层352。
作为一个实施例,本申请中的所述目标比特块中的至少一个比特生成于所述PHY301。
作为一个实施例,本申请中的所述目标比特块中的至少一个比特生成于所述PHY351。
作为一个实施例,本申请中的所述第一比特块中的至少一个比特生成于所述RRC子层306。
作为一个实施例,本申请中的所述第一比特块中的至少一个比特生成于所述MAC子层302。
作为一个实施例,本申请中的所述第一比特块中的至少一个比特生成于所述MAC子层352。
作为一个实施例,本申请中的所述第一比特块中的至少一个比特生成于所述PHY301。
作为一个实施例,本申请中的所述第一比特块中的至少一个比特生成于所述PHY351。
作为一个实施例,本申请中的所述第二比特块中的至少一个比特生成于所述RRC子层306。
作为一个实施例,本申请中的所述第二比特块中的至少一个比特生成于所述MAC子层302。
作为一个实施例,本申请中的所述第二比特块中的至少一个比特生成于所述MAC子层352。
作为一个实施例,本申请中的所述第二比特块中的至少一个比特生成于所述PHY301。
作为一个实施例,本申请中的所述第二比特块中的至少一个比特生成于所述PHY351。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第一通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第二通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第二通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第一通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述所述第一通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波 束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第二通信设备450到所述第一通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450,本申请中的所述第二节点包括所述第一通信设备410。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是中继节点。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是用户设备。
作为上述实施例的一个子实施例,所述第一节点是用户设备,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第一节点是中继节点,所述第二节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是用户设备,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二节点是中继节点,所述第一节点是基站设备。
作为上述实施例的一个子实施例,所述第二通信设备450包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责HARQ操作。
作为上述实施例的一个子实施例,所述第一通信设备410包括:至少一个控制器/处理器;所述至少一个控制器/处理器负责使用肯定确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目 标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为上述实施例的一个子实施例,所述第二通信设备450对应本申请中的所述第一节点。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;在第一物理层信道中接收目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;在第一物理层信道中接收目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为上述实施例的一个子实施例,所述第一通信设备410对应本申请中的所述第二节点。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信息块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第二信息块。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第二信息块。
作为一个实施例,{所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于接收本申请中的所述第一信令。
作为一个实施例,{所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述发射器454,所述多天线发射处理器458,所述发射处理器468, 所述控制器/处理器459,所述存储器460,所述数据源467}中的至少之一被用于在本申请中的所述第一物理层信道中发送本申请中的所述目标比特块。
作为一个实施例,{所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475,所述存储器476}中的至少之一被用于在本申请中的所述第一物理层信道中接收本申请中的所述目标比特块。
实施例5
实施例5示例了根据本申请的一个实施例的信号传输流程图,如附图5所示。在附图5中,第一节点U1和第二节点U2之间是通过空中接口进行通信的。在附图5中,虚线方框F1中的步骤是可选的。特别地,附图5中的步骤对{S521,S511}与{S5201,S5101}之间的先后顺序不代表特定的时间关系。
第一节点U1,在步骤S511中接收第一信息;在步骤S5101中接收第二信息;在步骤S512中接收第一信令;在步骤S513中在第一物理层信道中发送目标比特块。
第二节点U2,在步骤S521中发送第一信息;在步骤S5201中发送第二信息;在步骤S522中发送第一信令;在步骤S523中在第一物理层信道中接收目标比特块。
在实施例5中,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块;所述第二比特块所包括的任意一个比特属于所述目标比特块;所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引;所述第二信息块被用于确定所述第一参考数值。
作为实施例5的一个子实施例,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为实施例5的一个子实施例,所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点U2是本申请中的所述第二节点。
作为一个实施例,所述第一节点U1是一个UE。
作为一个实施例,所述第一节点U1是一个基站。
作为一个实施例,所述第二节点U2是一个基站。
作为一个实施例,所述第二节点U2是一个UE。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是Uu接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括蜂窝链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口是PC5接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括旁链路。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括卫星设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,虚线方框F1中的步骤存在。
作为一个实施例,虚线方框F1中的步骤不存在。
作为一个实施例,所述第一信息块和所述第二信息块同时被接收。
作为一个实施例,所述第一信息块在所述第二信息块之前被接收。
作为一个实施例,所述第一信息块在所述第二信息块之后被接收。
作为一个实施例,所述第一信息块和所述第二信息块都在所述第一信令之前被接收。
作为一个实施例,所述第一信息块在所述第一信令之前被接收。
作为一个实施例,所述第一比特块中的每个HARQ-ACK比特都对应一个DCI格式,与所述第一比特块中的任一HARQ-ACK比特对应DCI格式都在所述第一信令之前被接收。
作为一个实施例,在本申请中,一个HARQ-ACK比特对应一个DCI格式的意思包括:所述一个HARQ-ACK比特被用于指示所述一个DCI格式是否被接收到或所述一个DCI格式所调度的一个比特块(如,传输块或码块组)是否被正确译码。
作为一个实施例,所述第一信令是一个DCI格式,所述第二比特块中的至少一个HARQ-ACK比特对应所述第一信令。
实施例6
实施例6示例了根据本申请的一个实施例的第一信令是否包括目标DAI域与目标比特块之间关系的示意图,如附图6所示。在附图6中,在S61中确定第一信令是否包括目标DAI域,在S62中第一信令中的目标DAI域被用于确定第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于目标比特块,在S63中第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于第一参考数值,所述第三比特块所包括的任意一个比特属于目标比特块。
在实施例6中,当本申请中的所述第一信令包括本申请中的所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定本申请中的所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于本申请中的所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于本申请中的所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值。
作为一个实施例,当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分比特以及至少一个压缩比特,所述至少一个所述压缩比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,当所述第一信令不包括所述目标DAI域时:属于所述第一比特块且不属于所述第三比特块的比特都不属于所述目标比特块。
作为一个实施例,当所述第一信令不包括所述目标DAI域时:属于所述第一比特块且不属于所述第三比特块的比特都不被发送。
作为一个实施例,当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特。
作为一个实施例,当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
作为一个实施例,当所述第一信令不包括所述目标DAI域时,所述第三比特块中的一个比特的值等于所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当 所述第一信令不包括所述目标DAI域时,所述第三比特块中的一个比特的值等于所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,当所述第一信令不包括所述目标DAI域时,所述第三比特块中的一个比特的值等于所述第一比特块中的多个HARQ-ACK比特的值进行逻辑与操作的结果。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时,所述第三比特块中的一个比特的值等于所述第一比特块中的多个HARQ-ACK比特的值进行逻辑与操作的结果。
实施例7
实施例7示例了根据本申请的一个实施例的目标比特块,第一目标比特子块,第二目标比特子块以及第一物理层信道之间关系的示意图,如附图7所示。
在实施例7中,本申请中的所述目标比特块包括第一目标比特子块和第二目标比特子块,所述第一目标比特子块和所述第二目标比特子块都在本申请中的所述第一物理层信道中被发送。
作为一个实施例,当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述第一目标比特子块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述第一目标比特子块。
作为一个实施例,所述第二比特块被用于生成所述第二目标比特子块。
作为一个实施例,所述第二比特块所包括的任意一个比特属于所述第二目标比特子块。
作为一个实施例,所述第二目标比特子块仅包括所述第二比特块。
作为一个实施例,所述第一目标比特子块和所述第二目标比特子块被分别进行信道编码。
作为一个实施例,所述表述所述第一目标比特子块和所述第二目标比特子块都在第一物理层信道中被发送的意思包括:所述第一目标比特子块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联中的至少部分之后得到第一编码比特序列,所述第二目标比特子块分别经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联中的至少部分之后得到第二编码比特序列,所述第一编码比特序列和所述第二编码比特序列都在所述第一物理层信道中被发送。
作为一个实施例,所述第一编码比特序列和所述第二编码比特序列在所述第一物理层信道中被发送之前经过至少调制和映射到物理资源。
作为一个实施例,所述第一编码比特序列和所述第二编码比特序列在所述第一物理层信道中被发送之前经过至少扰码,调制和映射到物理资源。
作为一个实施例,所述第一编码比特序列和所述第二编码比特序列在所述第一物理层信道中被发送之前经过至少扰码,调制,层映射和资源块映射。
作为一个实施例,所述第一目标比特子块在所述第一物理层信道中被发送之前经过至少信道编码,速率匹配,扰码,调制和映射到物理资源,所述第二目标比特子块在所述第一物理层信道中被发送之前经过至少信道编码,速率匹配,扰码,调制和映射到物理资源。
作为一个实施例,所述第一目标比特子块在所述第一物理层信道中被发送之前经过至少信道编码,速率匹配,扰码,调制,层映射和资源块映射,所述第二目标比特子块在所述第一物理层信道中被发送之前经过至少信道编码,速率匹配,扰码,调制,层映射和资源块映射。
作为一个实施例,所述第一目标比特子块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配,码块级联,扰码,调制(Modulation),扩频(Spreading),层映射(Layer Mapping),预编码(Precoding),映射到物理资源,多载波符号生成(Generation),调制上变频(Modulation and Upconversion)中的至少部分之后的输出,以及所述第二目标比特子块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配,码块级联,扰码,调制(Modulation),扩频(Spreading),层映射(Layer Mapping),预编码(Precoding),映射到物理资源,多载波符号生成(Generation),调制上变频(Modulation and Upconversion)中的至少部分之后的输出都在所述第一物理层信道中被发送。
实施例8
实施例8示例了根据本申请的一个实施例的第一比特块,第一优先级索引,第二比特块以及第二优先级索引之间关系的示意图,如附图8所示。
在实施例8中,本申请中的所述第一比特块对应第一优先级索引,本申请中的所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
作为一个实施例,所述第一优先级索引和所述第二优先级索引分别表示不同的优先级。
作为一个实施例,所述第一优先级索引是优先级索引(Priority index)0,所述第二优先级索引是优先级索引1。
作为一个实施例,所述第一优先级索引是优先级索引1,所述第二优先级索引是优先级索引0。
作为一个实施例,所述第一比特块中的HARQ-ACK比特都是具有所述第一优先级索引的HARQ-ACK比特。
作为一个实施例,所述第二比特块中的HARQ-ACK比特都是具有所述第二优先级索引的HARQ-ACK比特。
作为一个实施例,所述第一比特块中的HARQ-ACK比特都对应指示所述第一优先级索引的DCI格式。
作为一个实施例,所述第二比特块中的HARQ-ACK比特都对应指示所述第二优先级索引的DCI格式。
作为一个实施例,所述第一信令指示所述第一优先级索引。
作为一个实施例,所述第一信令指示所述第二优先级索引。
作为一个实施例,所述第一信令中的Priority indicator域指示所述第一优先级索引。
作为一个实施例,所述第一信令中的Priority indicator域指示所述第二优先级索引。
实施例9
实施例9示例了根据本申请的一个实施例的第二信息块与第一参考数值之间关系的示意图,如附图9所示。
在实施例9中,本申请中的所述第一节点接收第二信息块,所述第二信息块被用于确定本申请中的所述第一参考数值。
作为一个实施例,所述第二信息块包括更高层(higher layer)信令。
作为一个实施例,所述第二信息块是RRC信令。
作为一个实施例,所述第二信息块包括一个RRC信令中的一个或多个域。
作为一个实施例,所述第二信息块是一个IE(Information Element,信息元素)。
作为一个实施例,所述第二信息块包括一个或多个IE。
作为一个实施例,所述第二信息块包括一个IE中的一个或多个域。
作为一个实施例,所述第二信息块是MAC CE(MediumAccess Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第二信息块包括一个MAC CE信令中的一个或多个域。
作为一个实施例,所述第二信息块包括信息元素PDSCH-Config。
作为一个实施例,所述第二信息块包括信息元素PhysicalCellGroupConfig。
作为一个实施例,所述第二信息块包括信息元素PUCCH-Config。
作为一个实施例,所述第二信息块包括信息元素PDCCH-Config。
作为一个实施例,所述第二信息块包括信息元素SearchSpace。
作为一个实施例,所述第二信息块包括信息元素ControlResourceSet。
作为一个实施例,所述第二信息块是信息元素PDSCH-Config。
作为一个实施例,所述第二信息块是信息元素PhysicalCellGroupConfig。
作为一个实施例,所述第二信息块是信息元素PUCCH-Config。
作为一个实施例,所述第二信息块是信息元素PDCCH-Config。
作为一个实施例,所述第二信息块是信息元素SearchSpace。
作为一个实施例,所述第二信息块是信息元素ControlResourceSet。
作为一个实施例,上述信息元素的名字不区分大小写。
作为一个实施例,所述第二信息块是所述第一信息块。
作为一个实施例,所述第二信息块不是所述第一信息块。
作为一个实施例,所述第二信息块被用于配置所述第一参考数值。
作为一个实施例,所述第二信息块被用于指示所述第一参考数值。
作为一个实施例,所述第二信息块被用于显式指示所述第一参考数值。
作为一个实施例,所述第二信息块被用于隐式指示所述第一参考数值。
作为一个实施例,第一参考数值集合包括多个参考数值,所述第二信息块被用于从所述第一参考数值集合中指示出所述第一参考数值。
实施例10
实施例10示例了一个第一节点设备中的处理装置的结构框图,如附图10所示。在附图10中,第一节点设备处理装置1000包括第一接收机1001和第一发射机1002。
作为一个实施例,所述第一节点设备1000是用户设备。
作为一个实施例,所述第一节点设备1000是中继节点。
作为一个实施例,所述第一节点设备1000是车载通信设备。
作为一个实施例,所述第一节点设备1000是支持V2X通信的用户设备。
作为一个实施例,所述第一节点设备1000是支持V2X通信的中继节点。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一接收机1001包括本申请附图4中的天线452,接收器454,多天线接收处理器458,接收处理器456,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少之一。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前五者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前四者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前三者。
作为一个实施例,所述第一发射机1002包括本申请附图4中的天线452,发射器454,多天线发射器处理器457,发射处理器468,控制器/处理器459,存储器460和数据源467中的至少前二者。
作为一个实施例,所述第一接收机1001,接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;所述第一发射机1002,在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI 域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,所述第二比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
作为一个实施例,所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
作为一个实施例,所述第一接收机1001,接收第二信息块;其中,所述第二信息块被用于确定所述第一参考数值。
作为一个实施例,所述第一接收机1001,接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;所述第一发射机1002,在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令是一个DCI格式,所述第一物理层信道是PUCCH或PUSCH中之一;所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引;第一参考数值等于1或2或3中之一;所述第二比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块中的一个比特的值等于所述第一比特块中的多个HARQ-ACK比特的值进行逻辑与操作的结果,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为上述实施例的一个子实施例,所述目标比特块包括第一目标比特子块和第二目标比特子块,所述第一目标比特子块经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联中的至少部分之后得到第一编码比特序列,所述第二目标比特子块分别经过CRC附加,码块分割,码块CRC附加,信道编码,速率匹配和码块级联中的至少部分之后得到第二编码比特序列,所述第一编码比特序列和所述第二编码比特序列都在所述第一物理层信道中被发送;所述第二比特块所包括的任意一个比特属于所述第二目标比特子块;当所述第一信令包括所述目标DAI域时,所述第一比特块所包括的任意一个比特属于所述第一目标比特子块;当所述第一信令不包括所述目标DAI域时,所述第三比特块所包括的任意一个比特属于所述第一目标比特子块。
实施例11
实施例11示例了一个第二节点设备中的处理装置的结构框图,如附图11所示。在附图11中,第二节点设备处理装置1100包括第二发射机1101和第二接收机1102。
作为一个实施例,所述第二节点设备1100是用户设备。
作为一个实施例,所述第二节点设备1100是基站。
作为一个实施例,所述第二节点设备1100是中继节点。
作为一个实施例,所述第二节点设备1100是车载通信设备。
作为一个实施例,所述第二节点设备1100是支持V2X通信的用户设备。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二发射机1101包括本申请附图4中的天线420,发射器418,多天线发射处理器471,发射处理器416,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少之一。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前五者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前四者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前三者。
作为一个实施例,所述第二接收机1102包括本申请附图4中的天线420,接收器418,多天线接收处理器472,接收处理器470,控制器/处理器475和存储器476中的至少前二者。
作为一个实施例,所述第二发射机1101,发送第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;所述第二接收机1102,在第一物理层信道中接收目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,所述第二比特块所包括的任意一个比特属于所述目标比特块。
作为一个实施例,当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
作为一个实施例,所述第一比特块所包括的HARQ-ACK比特的数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
作为一个实施例,所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
作为一个实施例,所述第二发射机1101,发送第二信息块;其中,所述第二信息块被用于确定所述第一参考数值。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或 部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点设备包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的用户设备或者UE或者终端包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的基站设备或者基站或者网络侧设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,测试装置,测试设备,测试仪表等设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (32)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
    第一发射机,在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
    其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第二比特块所包括的任意一个比特属于所述目标比特块。
  3. 根据权利要求1或2所述的第一节点设备,其特征在于,当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
  4. 根据权利要求1至3中任一权利要求所述的第一节点设备,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
  5. 根据权利要求1至4中任一权利要求所述的第一节点设备,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,所述第一比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于单播的HARQ-ACK比特;或者,所述第一比特块中的HARQ-ACK比特是用于单播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
  8. 根据权利要求1至7中任一权利要求所述的第一节点设备,其特征在于,包括:
    所述第一接收机,接收第二信息块;
    其中,所述第二信息块被用于确定所述第一参考数值。
  9. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发射机,发送第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
    第二接收机,在第一物理层信道中接收目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
    其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
  10. 根据权利要求9所述的第二节点设备,其特征在于,所述第二比特块所包括的任意一个比特属于 所述目标比特块。
  11. 根据权利要求9或10所述的第二节点设备,其特征在于,当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
  12. 根据权利要求9至11中任一权利要求所述的第二节点设备,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
  13. 根据权利要求9至12中任一权利要求所述的第二节点设备,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
  14. 根据权利要求9至13中任一权利要求所述的第二节点设备,其特征在于,所述第一比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于单播的HARQ-ACK比特;或者,所述第一比特块中的HARQ-ACK比特是用于单播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特。
  15. 根据权利要求9至14中任一权利要求所述的第二节点设备,其特征在于,所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
  16. 根据权利要求9至15中任一权利要求所述的第二节点设备,其特征在于,包括:
    所述第二发射机,发送第二信息块;
    其中,所述第二信息块被用于确定所述第一参考数值。
  17. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
    在第一物理层信道中发送目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
    其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
  18. 根据权利要求17所述的第一节点中的方法,其特征在于,所述第二比特块所包括的任意一个比特属于所述目标比特块。
  19. 根据权利要求17或18所述的第一节点中的方法,其特征在于,当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
  20. 根据权利要求17至19中任一权利要求所述的第一节点中的方法,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
  21. 根据权利要求17至20中任一权利要求所述的第一节点中的方法,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
  22. 根据权利要求17至21中任一权利要求所述的第一节点中的方法,其特征在于,所述第一比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于单播 的HARQ-ACK比特;或者,所述第一比特块中的HARQ-ACK比特是用于单播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特。
  23. 根据权利要求17至22中任一权利要求所述的第一节点中的方法,其特征在于,所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
  24. 根据权利要求17至23中任一权利要求所述的第一节点中的方法,其特征在于,包括:
    接收第二信息块;
    其中,所述第二信息块被用于确定所述第一参考数值。
  25. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信息块和第一信令,所述第一信息块被用于确定所述第一信令是否包括目标DAI域;
    在第一物理层信道中接收目标比特块,第一比特块或第二比特块中的至少所述第二比特块被用于生成所述目标比特块,所述目标比特块包括至少一个比特;
    其中,所述第一信令被用于确定所述第一物理层信道所占用的资源;所述第一比特块包括至少一个HARQ-ACK比特,所述第二比特块包括至少一个HARQ-ACK比特,所述第一比特块的类型和所述第二比特块的类型不同;第一参考数值是一个缺省的非负整数或可配置的非负整数;当所述第一信令包括所述目标DAI域时,所述第一信令中的所述目标DAI域被用于确定所述第一比特块所包括的HARQ-ACK比特的数量,所述第一比特块所包括的任意一个比特属于所述目标比特块;当所述第一信令不包括所述目标DAI域时,所述第一比特块被用于生成第三比特块,所述第三比特块包括至少一个比特,所述第三比特块所包括的比特的数量等于所述第一参考数值,所述第三比特块所包括的任意一个比特属于所述目标比特块。
  26. 根据权利要求25所述的第二节点中的方法,其特征在于,所述第二比特块所包括的任意一个比特属于所述目标比特块。
  27. 根据权利要求25或26所述的第二节点中的方法,其特征在于,当所述第一信令包括所述目标DAI域时:所述第一信令中的所述目标DAI域被用于指示所述第一比特块所包括的HARQ-ACK比特的所述数量。
  28. 根据权利要求25至27中任一权利要求所述的第二节点中的方法,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块中的一个比特是所述第一比特块中的HARQ-ACK比特经过逻辑与,逻辑或,或者异或中的至少一种操作后的输出。
  29. 根据权利要求25至28中任一权利要求所述的第二节点中的方法,其特征在于,所述第一比特块所包括的HARQ-ACK比特的所述数量大于所述第一参考数值;当所述第一信令不包括所述目标DAI域时:所述第三比特块包括所述第一比特块中的仅部分HARQ-ACK比特,所述第一比特块中不属于所述第三比特块的比特都不属于所述目标比特块。
  30. 根据权利要求25至29中任一权利要求所述的第二节点中的方法,其特征在于,所述第一比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于单播的HARQ-ACK比特;或者,所述第一比特块中的HARQ-ACK比特是用于单播的HARQ-ACK比特,所述第二比特块中的HARQ-ACK比特是用于多播的HARQ-ACK比特。
  31. 根据权利要求25至30中任一权利要求所述的第二节点中的方法,其特征在于,所述第一比特块对应第一优先级索引,所述第二比特块对应第二优先级索引,所述第一优先级索引不同于所述第二优先级索引。
  32. 根据权利要求25至31中任一权利要求所述的第二节点中的方法,其特征在于,包括:
    发送第二信息块;
    其中,所述第二信息块被用于确定所述第一参考数值。
PCT/CN2022/127646 2021-10-29 2022-10-26 一种被用于无线通信的节点中的方法和装置 WO2023072138A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/111,611 US20230224114A1 (en) 2021-10-29 2023-02-20 Method and device in nodes used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111267571.8A CN116095834A (zh) 2021-10-29 2021-10-29 一种被用于无线通信的节点中的方法和装置
CN202111267571.8 2021-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/111,611 Continuation US20230224114A1 (en) 2021-10-29 2023-02-20 Method and device in nodes used for wireless communication

Publications (1)

Publication Number Publication Date
WO2023072138A1 true WO2023072138A1 (zh) 2023-05-04

Family

ID=86160478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127646 WO2023072138A1 (zh) 2021-10-29 2022-10-26 一种被用于无线通信的节点中的方法和装置

Country Status (3)

Country Link
US (1) US20230224114A1 (zh)
CN (1) CN116095834A (zh)
WO (1) WO2023072138A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823487A (zh) * 2013-09-26 2015-08-05 华为技术有限公司 上行信息发送方法及装置、接收方法及装置、通信***
US20180205504A1 (en) * 2015-09-15 2018-07-19 Huawei Technologies Co., Ltd. Control information sending method and communications device
US20190173651A1 (en) * 2016-08-12 2019-06-06 Shanghai Langbo Communication Technology Company Limited Method and device in wireless transmission
CN112152762A (zh) * 2019-06-26 2020-12-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021185229A1 (zh) * 2020-03-20 2021-09-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823487A (zh) * 2013-09-26 2015-08-05 华为技术有限公司 上行信息发送方法及装置、接收方法及装置、通信***
US20180205504A1 (en) * 2015-09-15 2018-07-19 Huawei Technologies Co., Ltd. Control information sending method and communications device
US20190173651A1 (en) * 2016-08-12 2019-06-06 Shanghai Langbo Communication Technology Company Limited Method and device in wireless transmission
CN112152762A (zh) * 2019-06-26 2020-12-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021185229A1 (zh) * 2020-03-20 2021-09-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN116095834A (zh) 2023-05-09
US20230224114A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022041810A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020177608A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103742A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072136A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN113630892A (zh) 一种被用于无线通信的节点中的方法和装置
WO2020034847A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022193644A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220210785A1 (en) Method and device in nodes used for wireless communication
WO2022205848A1 (zh) 一种用于无线通信的节点中的方法和装置
WO2021213251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023072138A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023040809A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023000976A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023029240A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023160462A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023202378A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023151468A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023045794A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023030424A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE