WO2023067651A1 - 飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム - Google Patents

飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム Download PDF

Info

Publication number
WO2023067651A1
WO2023067651A1 PCT/JP2021/038413 JP2021038413W WO2023067651A1 WO 2023067651 A1 WO2023067651 A1 WO 2023067651A1 JP 2021038413 W JP2021038413 W JP 2021038413W WO 2023067651 A1 WO2023067651 A1 WO 2023067651A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying object
aircraft
control device
remaining amount
unit
Prior art date
Application number
PCT/JP2021/038413
Other languages
English (en)
French (fr)
Inventor
豪 伊丹
恒子 倉
浩史 松原
潤 加藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/038413 priority Critical patent/WO2023067651A1/ja
Publication of WO2023067651A1 publication Critical patent/WO2023067651A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for

Definitions

  • the present invention relates to an aircraft control system, an aircraft control device, a remote control device, an aircraft, an aircraft control method, and an aircraft control program.
  • Non-Patent Document 1 describes observation of changes in the scattering/reflection spectrum of radio waves and light incident on the earth, etc., using a sensing method using a synthetic aperture radar in the microwave band or a sensing method using visible light/infrared light. is disclosed. Through this observation, it is possible to recognize the spatial distribution and temporal transition of the ground surface, deforestation damage, ozone holes, clouds, aerosols, and harmful gases (NO2, SO2, etc.).
  • Non-Patent Document 1 statistical data is combined with photographed image information, so the reliability of the data is lacking.
  • unmanned flying objects such as drones are flown in the sky to obtain various data such as weather information, environmental information, and disaster information.
  • the flying object when a flying object flies over the surface of water such as the ocean or a lake, the flying object may take off or land due to low battery level, low radio wave intensity of remote control signals, or contact with other flying objects. Sometimes it is not possible to return to the platform that is the point. In such a case, the flying object lands on the water surface of the ocean or lake, and not only is it impossible to obtain the collected data, but it is also difficult to recover the flying object itself.
  • the present invention has been made in view of the above circumstances, and aims to provide an aircraft control system, an aircraft control apparatus, and an aircraft control system capable of reliably returning an aircraft flying over water to a platform.
  • An object of the present invention is to provide a remote control device, an aircraft, an aircraft control method, and an aircraft control program.
  • a flying object control system is a flying object control system that controls a flying object that flies over water, comprising: a flying object control device provided in the flying object; and a remote control device that transmits a control signal, wherein either the flying object control device or the remote control device obtains the separation distance between the return position to which the flying object returns and the current position of the flying object.
  • a remaining amount acquiring unit that acquires the remaining amount of the drive battery of the flying object
  • a radio wave intensity acquiring unit that acquires the radio wave intensity of the received signal received by the flying object control device
  • a return control unit that causes the flying object to return to the return position in at least one of the case where the remaining amount falls below the lower limit remaining amount determined by the separation distance and the case where the radio wave intensity falls below the lower limit intensity
  • a flying object control device is a flying object control device that controls a flying object that flies over the surface of water, wherein the separation distance between a return position to which the flying object returns and a current position of the flying object is a distance obtaining unit for obtaining a distance, a remaining amount obtaining unit for obtaining the remaining amount of the driving battery of the flying object, a radio wave intensity obtaining unit for obtaining the radio wave strength of the received signal received by the communication unit, and the remaining amount of the driving battery. and a return control unit that returns the flying object to the return position when at least one of the case where is below the lower limit remaining amount determined by the separation distance and the case where the radio wave intensity is below the lower limit intensity. .
  • a remote control device is a remote control device that remotely controls a flying object flying over water, and obtains a separation distance between a return position to which the flying object returns and a current position of the flying object.
  • a remaining amount acquiring unit that acquires the remaining amount of the driving battery of the flying object
  • a radio wave intensity acquiring unit that acquires the radio wave intensity of the received signal received by the communicating unit of the flying object
  • the driving battery a return control unit that returns the flying object to the return position in at least one of the case where the remaining amount of is below the lower limit remaining amount determined by the separation distance, and the case where the radio wave intensity is below the lower limit intensity.
  • a flying object includes, on at least part of a surface, a mirror surface, an optical filter that transmits a specific wavelength of light reflected by the mirror surface, and a polarizing plate that polarizes the light transmitted through the optical filter. and a mirror surface member including .
  • a flying object control method is a flying object control method for controlling a flying object flying over water, wherein the distance between a return position to which the flying object returns and a current position of the flying object is determined as follows: obtaining the remaining amount of the driving battery of the flying object; obtaining the radio wave intensity of the received signal received by the flying object; and detecting the approach or collision between the flying object and an obstacle. and when the remaining amount of the driving battery falls below the lower limit remaining amount determined by the separation distance, and when the radio wave intensity falls below the lower limit strength, the approach or collision between the flying object and the obstacle is detected. returning the vehicle to the return position in at least one of the cases.
  • One aspect of the present invention is an aircraft control program for causing a computer to function as the aircraft control device.
  • FIG. 1 is a block diagram showing the configuration of an aircraft control system according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing an aircraft taking off from a platform and flying.
  • FIG. 3 is an explanatory diagram showing the detailed configuration of the mirror member mounted on the surface of the aircraft.
  • FIG. 4 is a flow chart showing the processing procedure of the aircraft control system according to the first embodiment.
  • FIG. 5 is a flowchart showing a detailed processing procedure of self-propelled return processing.
  • FIG. 6 is an explanatory diagram showing how an aircraft that has crashed into the sea runs by itself and returns to the platform.
  • FIG. 7 is a block diagram showing the configuration of an aircraft control system according to the second embodiment.
  • FIG. 8 is a block diagram showing the hardware configuration of the first and second embodiments.
  • FIG. 1 is a block diagram showing the configuration of an aircraft control system 100 according to the first embodiment.
  • an aircraft control system 100 includes an aircraft control device 1 mounted on an aircraft and a remote control device 2 for remotely controlling the aircraft.
  • the remote control device 2 is installed, for example, on a platform 51 installed on the sea, or in the vicinity thereof.
  • a platform 51 is a return position to which the aircraft V1 returns.
  • the remote control device 2 does not have to be installed near the platform 51 as long as wireless communication with the aircraft control device 1 is possible.
  • the flying object V1 flies over the ocean will be described, but it may also fly over the surface of water such as lakes.
  • flying object V1 takes off and lands.
  • the flying object V1 flies from the platform 51 to a destination over the ocean, and returns to the platform 51 after completing operations such as data collection.
  • FIG. 3 is an explanatory diagram schematically showing the configuration of the mirror surface member M1.
  • the mirror surface member M1 includes a mirror surface 71, an optical filter 72, and a polarizing plate 73. As shown in FIG.
  • the wavelength of light transmitted is selected by the optical filter 72, and light of a specific wavelength is emitted.
  • the light that has passed through the optical filter 72 is emitted as light L1 polarized by the polarizing plate 73 .
  • the platform 51 can specify and detect the light L1 reflected by the surface of the flying object V1. Therefore, even if the distance from the platform 51 to the flying object V1 is long, the light L1 reflected by the flying object V1 can be received. Therefore, even if the flying object V1 lands on the water surface and it becomes difficult to return, the position of the flying object V1 can be easily recognized.
  • the degree of freedom of selection for individual identification is improved, and even when multiple flying objects are flying at the same time, each flying object can be easily identified. It is possible.
  • the remote control device 2 includes an input unit 21, an operation control unit 22, and a communication unit 23.
  • the input unit 21 accepts input operations by the operator. For example, the flight path of the flying object V1, information on collected data, and the like are input by the input operation.
  • the operation control unit 22 generates a remote control signal for remotely controlling the flying object V1 based on the input command input by the input unit 21.
  • the remote control signal includes information on the flight path of the aircraft, the destination, and collected data such as images, temperature, UV intensity, carbon dioxide concentration, and the like.
  • the operation control section 22 outputs the generated remote control signal to the communication section 23 .
  • the communication unit 23 wirelessly transmits the remote control signal generated by the operation control unit 22 to the aircraft V1.
  • the aircraft control device 1 includes a main control section 11, a communication section 12, a proximity sensor 13, a GPS 14, a flight drive section 15, a drive battery 16, a reserve drive section 17, and a reserve battery 18. ing.
  • the communication unit 12 performs wireless communication with the communication unit 23 mounted on the remote control device 2.
  • the proximity sensor 13 detects that the flying object V1 is approaching (for example, 5 m or less) or coming into contact with an obstacle such as another flying object while flying over the ocean. Since a camera and radar (FMCW radar, Doppler radar) are standardly mounted on the flying object V1 such as a drone, these cameras and radar may also be used as the proximity sensor 13 .
  • FMCW radar FMCW radar, Doppler radar
  • the GPS 14 receives GPS signals transmitted by GPS satellites and acquires the position information of the flying object V1.
  • the positional information is obtained as longitude and latitude information, for example.
  • the flight drive unit 15 controls the flight of the aircraft V1. Specifically, the flight driving unit 15 controls the flight of the flying object V1 so that the flight direction and flight altitude are the desired direction and altitude based on flight control signals output from the flight control unit 111, which will be described later. Control.
  • the driving battery 16 supplies driving power to the flight driving section 15.
  • the preliminary driving unit 17 controls the flying object V1 on the sea surface to self-propel and return to the platform 51 when the flying object V1 lands on the sea surface due to a crash or an emergency landing. That is, the pre-driving unit 17 allows the flying object V1 to run on the surface of the water.
  • the pre-drive unit 17 has a compact structure that can be built into the aircraft V1.
  • the pre-driving unit 17 includes a screw (not shown) and a motor (not shown) for driving the screw. By driving the motor, the pre-driving unit 17 can self-propel the flying object V ⁇ b>1 after landing on the water and return it to the platform 51 .
  • the spare battery 18 is an emergency battery provided in a system different from the drive battery 16 described above.
  • the reserve battery 18 supplies power to the reserve drive section 17 .
  • the main control unit 11 includes a flight control unit 111, a return control unit 112, a remaining amount acquisition unit 113, a radio wave intensity acquisition unit 114, a distance acquisition unit 115, and a self-propelled control unit 116.
  • the flight control unit 111 outputs a flight control signal for driving the flight drive unit 15 based on the remote control signal transmitted from the remote control device 2 .
  • the flight drive unit 15 controls the flight of the aircraft V1 so that it flies to a desired destination along the flight route input by the operator.
  • the remaining amount acquisition unit 113 acquires the remaining amount of the driving battery 16 .
  • the radio wave intensity acquisition unit 114 acquires the radio wave intensity of received signals such as remote control signals received by the communication unit 12 . That is, the radio wave intensity acquisition unit 114 acquires the radio wave intensity of the reception signal received by the aircraft control device 1 .
  • the distance acquisition unit 115 acquires the distance from the platform 51 to the current position of the aircraft V1 (hereinafter referred to as "separation distance"). Specifically, the distance acquisition unit 115 calculates the separation distance based on the position information of the aircraft V1 and the position information of the platform 51 acquired from the GPS 14 .
  • the feedback control unit 112 determines the remaining amount of the drive battery 16 obtained by the remaining amount obtaining unit 113, the radio wave intensity obtained by the radio wave intensity obtaining unit 114, the separation distance between the aircraft V1 and the platform 51, and the proximity sensor 13 Acquire information on approach and contact with obstacles.
  • a return control unit 112 outputs a return command for the flying object V1 at a stage before it becomes impossible to return when it is predicted that the flying object V1 will not be able to return to the platform 51 based on the acquired information.
  • the lower limit remaining amount may be set in consideration of the surrounding flight environment such as sea winds and waves.
  • the feedback command may be output when the remaining amount of the driving battery 16 becomes equal to or less than a certain lower limit remaining amount (for example, 10%).
  • the feedback control unit 112 outputs a feedback command when the above-mentioned radio field strength drops below the strength just before going out of the communication range (lower limit strength; for example -90 dB). Also, the lower limit strength may be set in consideration of the propagation attenuation characteristics of radio waves.
  • the return control unit 112 outputs a return command for the flying object V1 when the proximity sensor 13 detects that it has approached an obstacle such as another flying object or that it has come into contact with an obstacle. do.
  • the feedback control unit 112 controls the flying object V1 when at least one of when the remaining amount of the drive battery 16 falls below the lower limit remaining amount determined by the separation distance and when the radio wave intensity falls below the lower limit strength. Return to a return position such as platform 51 . Further, the return control unit 112 performs control to return the flying object V1 to the return position when the flying object V1 approaches or contacts an obstacle.
  • the self-propelled control unit 116 controls the pre-driving unit 17 .
  • the self-propelled control unit 116 outputs a drive command to the preliminary drive unit 17 when the flying object V1 becomes difficult to fly and lands on the surface of the sea or crashes and lands on the water. That is, when the flying object V1 crashes into the sea surface, a strong impact is applied to the flying object V1.
  • the self-propelled control unit 116 activates the auxiliary driving unit 17 and the auxiliary battery 18 when the impact at the time of landing on water is detected.
  • the self-propelled control unit 116 drives the screw mounted on the preliminary drive unit 17 to self-propel the flying object V1 back to the platform 51. If communication with the remote control device 2 is not possible and self-propelled return is difficult, control is made to wait at the current position.
  • the self-propelled control unit 116 also calculates the direction of returning to the platform 51 from the relationship between the current position of the flying object V1 acquired by the GPS 14 and the position of the platform 51, and the flying object V1 that lands on the platform 51.
  • the pre-driving unit 17 is controlled so as to move forward. That is, the self-propelling control unit 116 returns the flying object V1 to the return position such as the platform 51 when the flying object V1 lands on the water surface.
  • FIG. 4 is a flow chart showing the processing procedure of the aircraft control system 100 according to the first embodiment
  • FIG. 5 is a flow chart showing the detailed processing procedure of the "self-propelled return process" shown in S22 of FIG.
  • the input unit 21 of the remote control device 2 accepts input of various flight information by the operator.
  • the operator inputs, for example, a destination over the ocean, information on collected data, and the like.
  • the operation control section 22 generates a remote control signal based on the input flight information.
  • the generated remote control signal is transmitted from the communication unit 23 to the aircraft control device 1 and received by the communication unit 12 of the aircraft control device 1 .
  • step S ⁇ b>12 the flight control unit 111 generates a flight control signal for flying the aircraft V ⁇ b>1 to the destination and outputs it to the flight drive unit 15 .
  • the aircraft V1 takes off from the platform 51 and starts flying toward the destination.
  • step S ⁇ b>13 the remaining amount acquisition unit 113 acquires the remaining amount of the drive battery 16 .
  • step S14 the remaining amount acquisition unit 113 calculates the possible flight distance with the remaining amount of the driving battery 16.
  • the relationship between the flight distance of the flying object V1 and the power consumption is recognized in advance, and the possible flight distance can be calculated based on this relationship.
  • step S15 the distance acquisition unit 115 acquires the current position information of the flying object V1 from the GPS14.
  • the distance acquisition unit 115 calculates the distance (separation distance) from the platform 51 to the current position of the aircraft V1.
  • step S16 the return control unit 112 determines whether or not the flying object V1 can return to the platform 51 based on the possible flight distance calculated in the process of step S14 and the separation distance calculated in the process of step S15. do. If the possible flight distance is equal to or less than the separation distance, it is not possible to return, so a NO determination is made, and the process proceeds to step S21. If the possible flight distance exceeds the separation distance, it is possible to return, so a YES determination is made, and the process proceeds to step S17.
  • step S21 the return control unit 112 outputs a return command for the flying object V1 to the flight control unit 111.
  • the flight control unit 111 controls the flight drive unit 15 to return the flying object V1 to the platform 51 . After that, this process is terminated.
  • step S ⁇ b>17 the radio wave intensity acquisition unit 114 acquires the radio wave intensity of the received signal received by the communication unit 12 .
  • step S18 the feedback control unit 112 determines whether or not the radio wave intensity acquired by the radio wave intensity acquisition unit 114 is equal to or higher than the lower limit intensity. If it is equal to or higher than the lower limit intensity (S18; YES), the process proceeds to step S19, otherwise (S18; NO), the process proceeds to step S21.
  • step S19 the return control unit 112 uses the proximity sensor 13 to determine whether the flying object V1 has approached or contacted an obstacle.
  • the process proceeds to step S21; otherwise (S19; NO), the process proceeds to step S20.
  • step S20 the self-propelled control unit 116 determines whether or not the flying object V1 has landed on the sea surface. If the flying object V1 lands on the sea surface (S20; YES), the process proceeds to step S22; otherwise (S20; NO), this process ends.
  • step S22 the self-propelled control unit 116 executes self-propelled return processing.
  • FIG. 5 is a flow chart showing the procedure of the self-propelled return process. The processing procedure of the self-propelled return processing will be described below with reference to FIG.
  • step S31 the self-running control unit 116 activates the spare battery 18.
  • step S32 the self-propelled control unit 116 transforms the flying object V1 into a small boat so that the flying object V1 can self-propel on the sea surface. Specifically, as indicated by reference numeral V2 in FIG. 6, the flying object V1 is deformed so as to float above the sea surface.
  • step S33 the self-propelled control unit 116 acquires the position information of the platform 51 based on the reception signal received by the GPS 14.
  • step S34 the self-propelling control unit 116 determines the traveling direction so that the deformed flying object V2 self-propels in the direction of the platform 51.
  • step S35 the self-propelled control unit 116 drives the pre-driving unit 17 to return the deformed flying object V2 to the platform 51. After that, this process is terminated.
  • FIG. 7 is a block diagram showing the configuration of an aircraft control system 100a according to the second embodiment.
  • an aircraft control system 100a according to the second embodiment includes an aircraft control device 1a mounted on an aircraft and a remote control device 2a for remotely controlling the aircraft.
  • the remote control device 2a includes an input unit 21, a communication unit 23, and a remote control unit 24.
  • the input unit 21 and the communication unit 23 are the same as those of the first embodiment shown in FIG. 1 described above, so description thereof will be omitted.
  • the remote control unit 24 includes an operation control unit 241, a feedback control unit 242, a distance acquisition unit 243, a remaining amount acquisition unit 244, and a radio wave intensity acquisition unit 245.
  • the operation control unit 241 generates a remote control signal for remotely controlling the flying object V1 based on the input command input by the input unit 21.
  • the remote control signal includes information on the flight path of the aircraft V1, the destination, and collected data such as images, temperature, ultraviolet intensity, and carbon dioxide concentration.
  • the remaining amount acquisition unit 244 acquires the remaining amount of the driving battery 16 mounted on the aircraft control device 1a via the communication unit 12 and the communication unit 23.
  • the radio wave intensity acquisition unit 245 acquires the radio wave intensity of received signals such as aircraft control signals received by the communication unit 12 of the aircraft control device 1a.
  • the distance acquisition unit 243 acquires the separation distance from the platform 51 to the current position of the aircraft V1. Specifically, the distance acquisition unit 243 acquires the position information of the flying object V1 acquired by the GPS 14 mounted on the flying object control device 1a via the communication unit 12 and the communication unit 23 . The distance acquisition unit 243 calculates the separation distance from the platform 51 to the aircraft V1 based on the position information of the aircraft V1 and the position information of the platform 51 .
  • the feedback control unit 242 obtains the remaining amount of the drive battery 16 obtained by the remaining amount obtaining unit 244, the radio wave intensity obtained by the radio wave intensity obtaining unit 245, the separation distance between the flying object V1 and the platform 51, and the flying object control device. Acquisition of information on approach and contact with an obstacle by a proximity sensor 13 mounted on 1a.
  • a return control unit 242 outputs a return command for the flying object V1 at a stage before it becomes impossible to return when it is predicted that the flying object V1 will not be able to return to the platform 51 based on the acquired information.
  • the aircraft control device 1a includes a main control section 11a, a communication section 12, a proximity sensor 13, a GPS 14, a flight drive section 15, a drive battery 16, a reserve drive section 17, and a reserve battery 18. ing.
  • the communication unit 12, the proximity sensor 13, the GPS 14, the flight drive unit 15, the drive battery 16, the auxiliary drive unit 17, and the spare battery 18 are the same as those shown in FIG. A description of the configuration is omitted.
  • the main control section 11a includes a flight control section 111 and a self-propelled control section 116.
  • the flight control unit 111 outputs a flight control signal for driving the flight drive unit 15 based on the remote control signal transmitted from the remote control device 2 .
  • the flight drive unit 15 controls the flight of the aircraft V1 so that it flies to a desired destination along the flight route input by the operator.
  • the flight control unit 111 controls the flight drive unit 15 to return to the platform 51 when a return command is output from the return control unit 242 of the remote control device 2a.
  • the self-propelled control unit 116 outputs a drive command to the preliminary drive unit 17 when the flying object V1 becomes difficult to fly and lands on the surface of the sea or crashes and lands on the water. Based on the current position of the flying object V1 acquired by the GPS 14, the self-propelled control unit 116 detects that the flying object V1 has landed on the sea surface. Note that an acceleration sensor or the like may be used to detect that the flying object V1 has landed on the sea surface.
  • the self-propelled control unit 116 calculates the direction of returning to the platform 51 from the relationship between the current position of the flying object V1 acquired by the GPS 14 and the position of the platform 51, and the flying object V1 that landed on the water heads toward the platform 51.
  • the pre-driving unit 17 is controlled as follows.
  • the operation of the aircraft control system 100a according to the second embodiment described above differs from that of the first embodiment described above in that the processing of the distance acquisition unit 243, the processing of the remaining amount acquisition unit 244, and the processing of the radio wave intensity acquisition unit 245 are different. , and the processing of the feedback control unit 242 are executed by the remote control device 2a, and other processing is the same as the processing of the flow charts shown in FIGS. Therefore, description of the processing procedure of the aircraft control system 100a according to the second embodiment is omitted.
  • the first and second embodiments are an aircraft control system for controlling an aircraft that flies over the surface of water. and a remote control device for transmitting a control signal, wherein one of the aircraft control device and the remote control device determines the separation distance between the platform 51 (return position) to which the aircraft V1 returns and the current position of the aircraft V1.
  • a remaining amount acquiring unit for acquiring the remaining amount of the drive battery of the flying object V1; a radio wave intensity acquiring unit for acquiring the radio wave intensity of the received signal received by the flying object control device;
  • a return control part is provided for returning the flying object V1 to the return position when at least one of when the remaining amount falls below the lower limit remaining amount determined by the separation distance and when the radio wave intensity falls below the lower limit strength.
  • the flying object V1 flying over the sea surface can be reliably returned to the platform 51. Therefore, it is possible to reliably collect various data collected by the flying object V1. In addition, it is possible to prevent the flying object V1 from sinking in water and becoming unrecoverable.
  • the flying object V1 when the flying object V1 lands on the surface of the sea, the flying object V1 can be self-propelled and returned to the platform 51. Therefore, even if it becomes impossible to return by flight, the flying object can be reliably operated. V1 can be fed back to platform 51;
  • the mirror surface member M1 is provided on at least part of the surface of the flying object V1. Therefore, when the mirror member M1 is irradiated with light, the light is reflected and polarized in a predetermined direction. When the flying object V1 lands on the sea surface and becomes unable to return, the light reflected by the mirror member M1 is detected to search for the flying object V1 even if the current position of the flying object V1 is lost. can be made easier.
  • the distance acquisition unit 243, the remaining amount acquisition unit, the radio field intensity acquisition unit 245, and the return control unit 242 are mounted on the remote control device 2a.
  • the functions to be mounted on the V1 can be simplified, and the size and weight of the flying object V1 can be reduced.
  • the aircraft control devices 1, 1a and the remote control devices 2, 2a of the first and second embodiments described above include, for example, a CPU (Central Processing Unit, processor) 901 and a memory 902. , a storage 903 (HDD: Hard Disk Drive, SSD: Solid State Drive), a communication device 904, an input device 905, and an output device 906.
  • a general-purpose computer system can be used.
  • Memory 902 and storage 903 are storage devices.
  • CPU 901 executes a predetermined program loaded on memory 902 to implement the functions of aircraft controllers 1 and 1a and remote controllers 2 and 2a.
  • flying object control devices 1, 1a and the remote control devices 2, 2a may be implemented by one computer, or may be implemented by a plurality of computers. Also, the flying object control devices 1, 1a and the remote control devices 2, 2a may be virtual machines implemented on a computer.
  • the programs for the aircraft controllers 1, 1a and the remote controllers 2, 2a can be read from computers such as HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), DVD (Digital Versatile Disc), etc. It can be stored on any available recording medium or distributed over a network.
  • computers such as HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), DVD (Digital Versatile Disc), etc. It can be stored on any available recording medium or distributed over a network.
  • Reference Signs List 1 1a flight control device 2, 2a remote control device 11, 11a main control unit 12 communication unit 13 proximity sensor 15 flight drive unit 16 drive battery 17 backup drive unit 18 spare battery 21 input unit 22 operation control unit 23 communication unit 24 Remote control section 51 Platform 71 Mirror surface 72 Optical filter 73 Polarizing plate 100, 100a Aircraft control system 111 Flight control section 112, 242 Return control section 113, 244 Remaining amount acquisition section 114, 245 Radio wave intensity acquisition section 115, 243 Distance acquisition section 116 self-propelled control unit 241 operation control unit M1 mirror surface member V1 flying object

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

飛行体(V1)とプラットホーム(51)との離間距離を検出する距離取得部(115)と、駆動バッテリ(16)の残量を取得する残量取得部(113)と、通信部(12)で受信される受信信号の電波強度を取得する電波強度取得部(114)と、駆動バッテリ(16)の残量が、離間距離により決められる下限残量を下回った場合、及び電波強度が下限強度を下回った場合、の少なくとも一方の場合に飛行体(V1)をプラットホーム(51)に帰還させる制御を行う帰還制御部(112)と、を備える。

Description

飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム
 本発明は、飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラムに関する。
 非特許文献1には、マイクロ波帯の合成開口レーダを用いたセンシング手法、或いは可視光・赤外線を用いたセンシング手法により、地球に入射した電波、光の散乱・反射スペクトルの変化等を観測することが開示されている。この観測により、地表面、森林伐採被害状況、オゾンホール、雲、エアロゾル、有害となる気体(NO2、SO2など)の空間的な分布、時間的な推移を認識することができる。
 非特許文献1では、撮影した画像情報に統計的なデータを組み合わせているので、データの信頼性に欠ける。
 実際の観測データを入手するために、ドローンなどの無人の飛行体を上空に飛行させることにより、気象情報、環境情報、災害情報などの種々のデータを取得することが行われている。
総務省,"4次元サイバーシティの活用に向けたタスクフォース(第1回)資料",2018.参考URL: https://www.soumu.go.jp/main_content/000534398.pdf
 しかし、海洋或いは湖沼などの水面上空に飛行体を飛行させる場合には、バッテリの残量低下、遠隔制御信号の電波強度の低下、或いは他の飛行体との接触、などにより、飛行体が発着地点であるプラットホームに帰還できない場合がある。このような場合には飛行体が海洋や湖沼の水面に着水してしまい、収集したデータを取得できないばかりか、飛行体自体の回収が困難になるという問題が発生する。
 本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、水面上空を飛行する飛行体をプラットホームに確実に帰還させることが可能な飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラムを提供することにある。
 本発明の一態様の飛行体制御システムは、水面上空を飛行する飛行体を制御する飛行体制御システムであって、前記飛行体に設けられた飛行体制御装置と、前記飛行体制御装置に遠隔制御信号を送信する遠隔制御装置と、を備え、前記飛行体制御装置及び前記遠隔制御装置のいずれか一方は、前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得する距離取得部と、前記飛行体の駆動バッテリの残量を取得する残量取得部と、前記飛行体制御装置が受信する受信信号の電波強度を取得する電波強度取得部と、前記駆動バッテリの残量が、前記離間距離により決められる下限残量を下回った場合、及び、前記電波強度が下限強度を下回った場合、の少なくとも一方にて前記飛行体を前記帰還位置に帰還させる帰還制御部、を備える。
 本発明の一態様の飛行体制御装置は、水面上空を飛行する飛行体を制御する飛行体制御装置であって、前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得する距離取得部と、前記飛行体の駆動バッテリの残量を取得する残量取得部と、通信部が受信する受信信号の電波強度を取得する電波強度取得部と、前記駆動バッテリの残量が、前記離間距離により決められる下限残量を下回った場合、及び前記電波強度が下限強度を下回った場合、の少なくとも一方にて前記飛行体を前記帰還位置に帰還させる帰還制御部と、を備える。
 本発明の一態様の遠隔制御装置は、水面上空を飛行する飛行体を遠隔制御する遠隔制御装置であって、前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得する距離取得部と、前記飛行体の駆動バッテリの残量を取得する残量取得部と、前記飛行体の通信部が受信する受信信号の電波強度を取得する電波強度取得部と、前記駆動バッテリの残量が、前記離間距離により決められる下限残量を下回った場合、及び前記電波強度が下限強度を下回った場合、の少なくとも一方にて前記飛行体を前記帰還位置に帰還させる帰還制御部と、を備える。
 本発明の一態様の飛行体は、表面の少なくとも一部に、鏡面と、前記鏡面で反射した光のうち特定の波長を透過する光学フィルタと、前記光学フィルタを透過した光を偏光させる偏光板と、を含む鏡面部材が配置されている。
 本発明の一態様の飛行体制御方法は、水面上空を飛行する飛行体を制御する飛行体制御方法であって、前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得するステップと、前記飛行体の駆動バッテリの残量を取得するステップと、前記飛行体が受信する受信信号の電波強度を取得するステップと、前記飛行体と障害物との接近または衝突を検出するステップと、前記駆動バッテリの残量が前記離間距離により決められる下限残量を下回った場合、前記電波強度が下限強度を下回った場合、前記飛行体と障害物との接近または衝突が検出された場合、の少なくとも一つの場合に、前記飛行体を前記帰還位置に帰還させるステップと、を備える。
 本発明の一態様は、上記飛行体制御装置としてコンピュータを機能させるための飛行体制御プログラムである。
 本発明によれば、水面上空を飛行する飛行体をプラットホームに確実に帰還させることが可能になる。
図1は、第1実施形態に係る飛行体制御システムの構成を示すブロック図である。 図2は、プラットホームから離陸して飛行する飛行体を示す説明図である。 図3は、飛行体の表面に搭載される鏡面部材の詳細な構成を示す説明図である。 図4は、第1実施形態に係る飛行体制御システムの処理手順を示すフローチャートである。 図5は、自走帰還処理の詳細な処理手順を示すフローチャートである。 図6は、海面に墜落した飛行体が自走してプラットホームに帰還する様子を示す説明図である。 図7は、第2実施形態に係る飛行体制御システムの構成を示すブロック図である。 図8は、第1、第2実施形態のハードウェア構成を示すブロック図である。
 以下、本発明の実施形態を図面を参照して説明する。
 [第1実施形態の構成]
 図1は、第1実施形態に係る飛行体制御システム100の構成を示すブロック図である。図1に示すように、飛行体制御システム100は、飛行体に搭載される飛行体制御装置1と、飛行体を遠隔制御する遠隔制御装置2を備えている。
 遠隔制御装置2は図2に示すように、例えば海上に設置されたプラットホーム51、或いはその付近に設置されている。プラットホーム51は、飛行体V1が帰還する帰還位置である。なお、遠隔制御装置2は飛行体制御装置1との間での無線通信が可能であれば、プラットホーム51の付近に設置されていなくてもよい。本実施形態では、飛行体V1が海洋の上空を飛行する例について説明するが、湖沼などの水面上空を飛行する場合であってもよい。
 プラットホーム51では、飛行体V1が離着陸する。飛行体V1は、プラットホーム51を起点として海洋上空の目的地まで飛行し、データ収集などの作業が終了した後に、プラットホーム51に帰還する。
 飛行体V1の表面の少なくとも一部には、鏡面部材が配置されている。図3は、鏡面部材M1の構成を模式的に示す説明図である。図3に示すように、鏡面部材M1は、鏡面71と、光学フィルタ72と、偏光板73を備えている。
 鏡面71で反射した光は、光学フィルタ72により透過する光の波長が選択され、固有の波長の光を放射する。光学フィルタ72を通過した光は、偏光板73により偏光が与えられた光L1となって放出される。プラットホーム51に、予め同様の偏光板を装着しておくことにより、鏡面部材M1で反射した光L1と通常の光(白色光)とを区別することができる。
 即ち、プラットホーム51では、飛行体V1の表面で反射した光L1を特定して検出することができる。このため、プラットホーム51から飛行体V1までの距離が長い場合であっても、飛行体V1で反射した光L1を受光することができる。このため、飛行体V1が水面に着水して帰還が困難になった場合でも、飛行体V1の位置を容易に認識できる。
 また、反射光の波長と偏光を組み合わせることにより、個体識別の選択自由度が向上し、複数の飛行体を同時に飛行させている場合であっても、それぞれの飛行体を容易に識別することが可能である。
 図1に戻って、遠隔制御装置2は、入力部21と、操作制御部22と、通信部23と、を備えている。
 入力部21は、操作者による入力操作を受け付ける。入力操作により、例えば飛行体V1の飛行経路、収集データの情報などが入力される。
 操作制御部22は、入力部21により入力された入力指令に基づいて、飛行体V1を遠隔で制御する遠隔制御信号を生成する。遠隔制御信号には、飛行体の飛行経路、目的地、及び画像、気温、紫外線強度、二酸化炭素濃度などの収集データの情報が含まれる。操作制御部22は、生成した遠隔制御信号を通信部23に出力する。
 通信部23は、操作制御部22で生成された遠隔制御信号を無線により飛行体V1に送信する。
 飛行体制御装置1は、主制御部11と、通信部12と、接近センサ13と、GPS14と、飛行駆動部15と、駆動バッテリ16と、予備駆動部17と、予備バッテリ18と、を備えている。
 通信部12は、遠隔制御装置2に搭載されている通信部23との間で無線通信を行う。
 接近センサ13は、飛行体V1が海洋上空を飛行中に、他の飛行体などの障害物に接近(例えば、5m以下)または接触したことを検出する。なお、ドローンなどの飛行体V1には、カメラ、レーダ(FMCWレーダ、ドップラーレーダ)が標準的に搭載されているので、これらのカメラ、レーダを接近センサ13と兼用してもよい。
 GPS14は、GPS衛星が送信するGPS信号を受信して、飛行体V1の位置情報を取得する。位置情報は例えば経度、緯度の情報として取得される。
 飛行駆動部15は、飛行体V1の飛行を制御する。具体的には、飛行駆動部15は、後述する飛行制御部111から出力される飛行制御信号に基づいて、飛行方向、飛行高度が所望の方向、高度となるように、飛行体V1の飛行を制御する。
 駆動バッテリ16は、飛行駆動部15に駆動用の電力を供給する。
 予備駆動部17は、飛行体V1が墜落、不時着などにより海面に着水した際に、海面上の飛行体V1を自走させてプラットホーム51に帰還する制御を行う。即ち、予備駆動部17は、水面上にて飛行体V1を自走させる。予備駆動部17は、飛行体V1に内蔵可能な小型構造を有している。予備駆動部17は、スクリュー(図示省略)、及び該スクリューを駆動するモータ(図示省略)を備えている。予備駆動部17は、モータを駆動させることにより、着水後の飛行体V1を自走させてプラットホーム51に帰還させることができる。
 予備バッテリ18は、前述した駆動バッテリ16とは異なる系統に設けられた緊急用のバッテリである。予備バッテリ18は、予備駆動部17に電力を供給する。
 主制御部11は、飛行制御部111と、帰還制御部112と、残量取得部113と、電波強度取得部114と、距離取得部115と、自走制御部116と、を備えている。
 飛行制御部111は、遠隔制御装置2から送信された遠隔制御信号に基づき、飛行駆動部15を駆動させるための飛行制御信号を出力する。飛行駆動部15は、飛行制御信号が入力されると、操作者が入力した飛行経路で、所望の目的地まで飛行するように飛行体V1の飛行を制御する。
 残量取得部113は、駆動バッテリ16の残量を取得する。
 電波強度取得部114は、通信部12が受信する遠隔制御信号などの受信信号の電波強度を取得する。即ち、電波強度取得部114は、飛行体制御装置1が受信する受信信号の電波強度を取得する。
 距離取得部115は、プラットホーム51から飛行体V1の現在位置までの距離(以下、「離間距離」という)を取得する。詳細には、距離取得部115は、GPS14から取得される飛行体V1の位置情報、及びプラットホーム51の位置情報に基づいて、離間距離を算出する。
 帰還制御部112は、残量取得部113で取得される駆動バッテリ16の残量、電波強度取得部114で取得される電波強度、飛行体V1とプラットホーム51との離間距離、及び接近センサ13による障害物への接近、接触の情報を取得する。帰還制御部112は、取得した各情報に基づき、飛行体V1がプラットホーム51に帰還できなくなると予測されたときに、帰還不能となる前の段階で、飛行体V1の帰還指令を出力する。
 具体的には帰還制御部112は、駆動バッテリ16の残量が、離間距離を飛行してプラットホーム51に帰還するために必要となる残量の直前の残量(下限残量)に達したときに帰還指令を出力する。また、上記の離間距離に加えて、海上の風、波などの周囲飛行環境を考慮して、下限残量を設定してもよい。また、駆動バッテリ16の残量が一定の下限残量(例えば、10%)以下となった場合に帰還指令を出力ようにしてもよい。
 帰還制御部112は、上記の電波強度が、通信圏外となる直前の強度(下限強度;例えば-90dB)以下に低下したときに帰還指令を出力する。また、電波の伝搬減衰特性を勘案して下限強度を設定してもよい。
 帰還制御部112は、接近センサ13により他の飛行体などの障害物に接近したことが検出された場合、或いは障害物に接触したことが検出された場合に、飛行体V1の帰還指令を出力する。
 即ち、帰還制御部112は、駆動バッテリ16の残量が、離間距離により決められる下限残量を下回った場合、及び、電波強度が下限強度を下回った場合、の少なくとも一方にて飛行体V1をプラットホーム51などの帰還位置に帰還させる。また、帰還制御部112は、飛行体V1が障害物に接近または接触した際に、飛行体V1を帰還位置に帰還させる制御を行う。
 自走制御部116は、予備駆動部17を制御する。自走制御部116は、飛行体V1が飛行困難となり、海面に不時着または墜落して着水した場合に、予備駆動部17に駆動指令を出力する。即ち、飛行体V1が海面に墜落すると、飛行体V1には強い衝撃が加えられる。自走制御部116は、着水時の衝撃が検出された際に、予備駆動部17および予備バッテリ18を作動させる。
 自走制御部116は、遠隔制御装置2との通信が可能である場合には、予備駆動部17に搭載されているスクリューを駆動し、飛行体V1を自走させてプラットホーム51に帰還させる。遠隔制御装置2との通信が可能でなく、自走での帰還が困難である場合には、現在の位置で待機するように制御する。
 自走制御部116はまた、GPS14で取得される飛行体V1の現在位置と、プラットホーム51の位置との関係から、プラットホーム51に帰還する方向を算出し、着水した飛行体V1がプラットホーム51に向かうように、予備駆動部17を制御する。即ち、自走制御部116は、飛行体V1が水面に着水した際に、飛行体V1をプラットホーム51などの帰還位置に帰還させる。
 [第1実施形態の動作]
 次に、上述のように構成された第1実施形態に係る飛行体制御システム100の動作について説明する。図4は、第1実施形態に係る飛行体制御システム100の処理手順を示すフローチャート、図5は、図4のS22に示す「自走帰還処理」の詳細な処理手順を示すフローチャートである。
 初めに図4のステップS11において、遠隔制御装置2の入力部21は、操作者による各種飛行情報の入力を受け付ける。操作者により、例えば海洋上空の目的地、収集データの情報などが入力される。操作制御部22は、入力された飛行情報に基づいて遠隔制御信号を生成する。生成された遠隔制御信号は、通信部23から飛行体制御装置1に送信され、該飛行体制御装置1の通信部12で受信される。
 ステップS12において、飛行制御部111は、飛行体V1を目的地まで飛行させるための飛行制御信号を生成して、飛行駆動部15に出力する。飛行体V1は、プラットホーム51から離陸し目的地に向けて飛行を開始する。
 ステップS13において、残量取得部113は、駆動バッテリ16の残量を取得する。
 ステップS14において、残量取得部113は、駆動バッテリ16の残量での飛行可能距離を算出する。飛行体V1の飛行距離と消費する電力との関係は予め認識されており、この関係に基づいて飛行可能距離を算出することができる。
 ステップS15において、距離取得部115は、GPS14から飛行体V1の現在の位置情報を取得する。距離取得部115は、プラットホーム51から飛行体V1の現在位置までの距離(離間距離)を算出する。
 ステップS16において、帰還制御部112は、ステップS14の処理で算出した飛行可能距離と、ステップS15の処理で算出した離間距離に基づき、飛行体V1がプラットホーム51まで帰還可能であるか否かを判定する。飛行可能距離が離間距離以下である場合には帰還できないのでNO判定となり、ステップS21に処理を進める。飛行可能距離が離間距離を上回っている場合には帰還可能であるのでYES判定となり、ステップS17に処理を進める。
 ステップS21において、帰還制御部112は、飛行体V1の帰還指令を飛行制御部111に出力する。飛行制御部111は、飛行駆動部15を制御して飛行体V1をプラットホーム51に帰還させる。その後、本処理を終了する。
 ステップS17において、電波強度取得部114は、通信部12で受信される受信信号の電波強度を取得する。
 ステップS18において、帰還制御部112は、電波強度取得部114で取得した電波強度が下限強度以上であるか否かを判定する。下限強度以上である場合には(S18;YES)、ステップS19に処理を進め、そうでなければ(S18;NO)、ステップS21に処理を進める。
 ステップS19において、帰還制御部112は、接近センサ13にて飛行体V1が障害物に接近または接触したか否かを判定する。障害物に接近または接触した場合には(S19;YES)、ステップS21に処理を進め、そうでなければ(S19;NO)、ステップS20に処理を進める。
 ステップS20において、自走制御部116は、飛行体V1が海面に着水したか否かを判定する。飛行体V1が海面に着水した場合には(S20;YES)、ステップS22に処理を進め、そうでなければ(S20;NO)、本処理を終了する。
 ステップS22において、自走制御部116は、自走帰還処理を実行する。図5は、自走帰還処理の処理手順を示すフローチャートである。以下、図5を参照して自走帰還処理の処理手順について説明する。
 初めに、ステップS31において、自走制御部116は、予備バッテリ18を作動させる。
 ステップS32において、自走制御部116は、飛行体V1が海面上を自走できるように、飛行体V1が小型船の形態になるように変形させる。具体的には、図6の符号V2に示すように、海面上に浮揚するように飛行体V1を変形させる。
 ステップS33において、自走制御部116は、GPS14で受信される受信信号に基づいて、プラットホーム51の位置情報を取得する。
 ステップS34において、自走制御部116は、変形後の飛行体V2がプラットホーム51の方向に自走するように、進行方向を決定する。
 ステップS35において、自走制御部116は、予備駆動部17を駆動させて変形後の飛行体V2をプラットホーム51に帰還させる。その後、本処理を終了する。
 [第2実施形態の説明]
 次に、第2実施形態について説明する。前述した、第1実施形態では、距離取得部115、残量取得部113、電波強度取得部114、及び帰還制御部112を飛行体制御装置1に搭載する例について示したが、距離取得部115、残量取得部113、電波強度取得部114、及び帰還制御部112は、飛行体制御装置1及び遠隔制御装置2のいずれか一方に搭載してもよい。第2実施形態では、上記の各構成要素を遠隔制御装置に搭載する例について示す。
 図7は、第2実施形態に係る飛行体制御システム100aの構成を示すブロック図である。図7に示すように、第2実施形態に係る飛行体制御システム100aは、飛行体に搭載される飛行体制御装置1aと、飛行体を遠隔制御する遠隔制御装置2aとを備えている。
 遠隔制御装置2aは、入力部21と、通信部23と、遠隔制御部24と、を備えている。
 入力部21、及び通信部23は、前述した図1に示した第1実施形態と同様であるので、説明を省略する。
 遠隔制御部24は、操作制御部241と、帰還制御部242と、距離取得部243と、残量取得部244と、電波強度取得部245と、を備えている。
 操作制御部241は、入力部21により入力された入力指令に基づいて、飛行体V1を遠隔で制御する遠隔制御信号を生成する。遠隔制御信号には、飛行体V1の飛行経路、目的地、及び画像、気温、紫外線強度、二酸化炭素濃度などの収集データの情報が含まれる。
 残量取得部244は、飛行体制御装置1aに搭載される駆動バッテリ16の残量を、通信部12、通信部23を経由して取得する。
 電波強度取得部245は、飛行体制御装置1aの通信部12が受信する飛行体制御信号などの受信信号の電波強度を取得する。
 距離取得部243は、プラットホーム51から飛行体V1の現在位置までの離間距離を取得する。詳細には、距離取得部243は、飛行体制御装置1aに搭載されるGPS14で取得される飛行体V1の位置情報を、通信部12および通信部23を経由して取得する。距離取得部243は、飛行体V1の位置情報とプラットホーム51の位置情報に基づいて、プラットホーム51から飛行体V1までの離間距離を算出する。
 帰還制御部242は、残量取得部244で取得される駆動バッテリ16の残量、電波強度取得部245で取得される電波強度、飛行体V1とプラットホーム51との離間距離、及び飛行体制御装置1aに搭載される接近センサ13による障害物への接近、接触の情報を取得する。帰還制御部242は、取得した各情報に基づき、飛行体V1がプラットホーム51に帰還できなくなると予測されたときに、帰還不能となる前の段階で、飛行体V1の帰還指令を出力する。
 飛行体制御装置1aは、主制御部11aと、通信部12と、接近センサ13と、GPS14と、飛行駆動部15と、駆動バッテリ16と、予備駆動部17と、予備バッテリ18と、を備えている。
 通信部12、接近センサ13、GPS14、飛行駆動部15、駆動バッテリ16、予備駆動部17、および予備バッテリ18は、前述した図1に示した構成と同一であるため、同一符号を付して構成説明を省略する。
 主制御部11aは、飛行制御部111と、自走制御部116と、を備えている。
 飛行制御部111は、遠隔制御装置2から送信された遠隔制御信号に基づき、飛行駆動部15を駆動させるための飛行制御信号を出力する。飛行駆動部15は、飛行制御信号が入力されると、操作者が入力した飛行経路で、所望の目的地まで飛行するように飛行体V1の飛行を制御する。飛行制御部111は、遠隔制御装置2aの帰還制御部242から帰還指令が出力された際には、飛行駆動部15をプラットホーム51に帰還させる制御を行う。
 自走制御部116は、飛行体V1が飛行困難となり、海面に不時着または墜落して着水した場合に、予備駆動部17に駆動指令を出力する。自走制御部116は、GPS14で取得される飛行体V1の現在位置に基づいて、飛行体V1が海面に着水したことを検出する。なお、加速度センサなどを用いて、飛行体V1が海面に着水したことを検出する構成としてもよい。
 自走制御部116は、GPS14で取得される飛行体V1の現在位置と、プラットホーム51の位置との関係から、プラットホーム51に帰還する方向を算出し、着水した飛行体V1がプラットホーム51に向かうように、予備駆動部17を制御する。
 上述した第2実施形態に係る飛行体制御システム100aの動作は、前述した第1実施形態と対比して、距離取得部243の処理、残量取得部244の処理、電波強度取得部245の処理、および帰還制御部242の処理が遠隔制御装置2aにて実行される点のみが相違しており、その他の処理は図4、図5に示したフローチャートの処理と同様である。従って、第2実施形態に係る飛行体制御システム100aの処理手順の説明を省略する。
 [実施形態の効果]
 このように、第1、第2実施形態は、水面上空を飛行する飛行体を制御する飛行体制御システムであって、飛行体V1に設けられた飛行体制御装置と、飛行体制御装置に遠隔制御信号を送信する遠隔制御装置と、を備え、飛行体制御装置及び遠隔制御装置のいずれか一方は、飛行体V1が帰還するプラットホーム51(帰還位置)と飛行体V1の現在位置との離間距離を取得する距離取得部と、飛行体V1の駆動バッテリの残量を取得する残量取得部と、飛行体制御装置が受信する受信信号の電波強度を取得する電波強度取得部と、駆動バッテリの残量が、離間距離により決められる下限残量を下回った場合、及び、電波強度が下限強度を下回った場合、の少なくとも一方にて飛行体V1を帰還位置に帰還させる帰還制御部、を備える。
 第1、第2実施形態によれば、海面上空を飛行する飛行体V1を確実にプラットホーム51に帰還させることができる。このため、飛行体V1により収集した各種のデータを確実に回収することが可能になる。また、飛行体V1が水中に沈没して回収不能になることを回避できる。
 また、飛行体V1が海面に着水した場合には、飛行体V1を自走させてプラットホーム51に帰還させることができるので、飛行による帰還ができなくなった場合であっても、確実に飛行体V1をプラットホーム51に帰還させることができる。
 第1、第2実施形態では、飛行体V1の表面の少なくとも一部に鏡面部材M1が設けられている。このため、鏡面部材M1に光が照射されると、この光は反射して所定の方向に偏光する。飛行体V1が海面に着水して帰還不能になった場合には、鏡面部材M1で反射する光を検出することにより、飛行体V1の現在位置を見失った場合でも、飛行体V1を探索し易くすることができる。
 また、第2実施形態に係る飛行体制御システム100aでは、距離取得部243、残量取得部、電波強度取得部245、および帰還制御部242が遠隔制御装置2aに搭載されているので、飛行体V1に搭載する機能を簡素化することができ、飛行体V1の小型化、軽量化を図ることが可能になる。
 上記説明した第1、第2実施形態の飛行体制御装置1、1a、および遠隔制御装置2、2aには、図8に示すように例えば、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:HardDisk Drive、SSD:SolidState Drive)と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムを用いることができる。メモリ902およびストレージ903は、記憶装置である。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、飛行体制御装置1、1a、および遠隔制御装置2、2aの各機能が実現される。
 なお、飛行体制御装置1、1a、および遠隔制御装置2、2aは、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また、飛行体制御装置1、1a、および遠隔制御装置2、2aは、コンピュータに実装される仮想マシンであっても良い。
 なお、飛行体制御装置1、1a、および遠隔制御装置2、2a用のプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。
 なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 1、1a 飛行体制御装置
 2、2a 遠隔制御装置
 11、11a 主制御部
 12 通信部
 13 接近センサ
 15 飛行駆動部
 16 駆動バッテリ
 17 予備駆動部
 18 予備バッテリ
 21 入力部
 22 操作制御部
 23 通信部
 24 遠隔制御部
 51 プラットホーム
 71 鏡面
 72 光学フィルタ
 73 偏光板
 100、100a 飛行体制御システム
 111 飛行制御部
 112、242 帰還制御部
 113、244 残量取得部
 114、245 電波強度取得部
 115、243 距離取得部
 116 自走制御部
 241 操作制御部
 M1 鏡面部材
 V1 飛行体

Claims (8)

  1.  水面上空を飛行する飛行体を制御する飛行体制御システムであって、
     前記飛行体に設けられた飛行体制御装置と、前記飛行体制御装置に遠隔制御信号を送信する遠隔制御装置と、を備え、
     前記飛行体制御装置及び前記遠隔制御装置のいずれか一方は、
     前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得する距離取得部と、
     前記飛行体の駆動バッテリの残量を取得する残量取得部と、
     前記飛行体制御装置が受信する受信信号の電波強度を取得する電波強度取得部と、
     前記駆動バッテリの残量が、前記離間距離により決められる下限残量を下回った場合、及び、前記電波強度が下限強度を下回った場合、の少なくとも一方にて前記飛行体を前記帰還位置に帰還させる帰還制御部、
     を備えた飛行体制御システム。
  2.  水面上空を飛行する飛行体を制御する飛行体制御装置であって、
     前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得する距離取得部と、
     前記飛行体の駆動バッテリの残量を取得する残量取得部と、
     通信部が受信する受信信号の電波強度を取得する電波強度取得部と、
     前記駆動バッテリの残量が、前記離間距離により決められる下限残量を下回った場合、及び前記電波強度が下限強度を下回った場合、の少なくとも一方にて前記飛行体を前記帰還位置に帰還させる帰還制御部と、
     を備えた飛行体制御装置。
  3.  前記飛行体が障害物に接近または接触したことを検出する接近センサ、を更に備え、
     前記帰還制御部は、前記飛行体が前記障害物に接近または接触した際に、前記飛行体を前記帰還位置に帰還させる請求項2に記載の飛行体制御装置。
  4.  水面上にて前記飛行体を自走させる予備駆動部と、
     前記予備駆動部に電力を供給する予備バッテリと、
     前記予備駆動部を制御する自走制御部と、
     を更に備え、
     前記自走制御部は、前記飛行体が水面に着水した際に、前記飛行体を前記帰還位置に帰還させる
     請求項2または3に記載の飛行体制御装置。
  5.  水面上空を飛行する飛行体を遠隔制御する遠隔制御装置であって、
     前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得する距離取得部と、
     前記飛行体の駆動バッテリの残量を取得する残量取得部と、
     前記飛行体の通信部が受信する受信信号の電波強度を取得する電波強度取得部と、
     前記駆動バッテリの残量が、前記離間距離により決められる下限残量を下回った場合、及び前記電波強度が下限強度を下回った場合、の少なくとも一方にて前記飛行体を前記帰還位置に帰還させる帰還制御部と、
     を備えた遠隔制御装置。
  6.  表面の少なくとも一部に、
     鏡面と、
     前記鏡面で反射した光のうち特定の波長を透過する光学フィルタと、
     前記光学フィルタを透過した光を偏光させる偏光板と、
     を含む鏡面部材が配置されている飛行体。
  7.  水面上空を飛行する飛行体を制御する飛行体制御方法であって、
     前記飛行体が帰還する帰還位置と前記飛行体の現在位置との離間距離を取得するステップと、
     前記飛行体の駆動バッテリの残量を取得するステップと、
     前記飛行体が受信する受信信号の電波強度を取得するステップと、
     前記飛行体と障害物との接近または衝突を検出するステップと、
     前記駆動バッテリの残量が前記離間距離により決められる下限残量を下回った場合、前記電波強度が下限強度を下回った場合、前記飛行体と障害物との接近または衝突が検出された場合、の少なくとも一つの場合に、前記飛行体を前記帰還位置に帰還させるステップと、
     を備えた飛行体制御方法。
  8.  請求項2~4のいずれか1項に記載の飛行体制御装置としてコンピュータを機能させる飛行体制御プログラム。
PCT/JP2021/038413 2021-10-18 2021-10-18 飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム WO2023067651A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038413 WO2023067651A1 (ja) 2021-10-18 2021-10-18 飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038413 WO2023067651A1 (ja) 2021-10-18 2021-10-18 飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム

Publications (1)

Publication Number Publication Date
WO2023067651A1 true WO2023067651A1 (ja) 2023-04-27

Family

ID=86058876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038413 WO2023067651A1 (ja) 2021-10-18 2021-10-18 飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム

Country Status (1)

Country Link
WO (1) WO2023067651A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057631A (ja) * 2001-06-07 2003-02-26 Seiko Epson Corp 液晶装置および電子機器
JP2004249954A (ja) * 2003-02-21 2004-09-09 Daigo Fukumoto ユニット型多目的飛行船
WO2018021300A1 (ja) * 2016-07-29 2018-02-01 日本電産株式会社 探索システムおよび当該探索システムに用いられる発信器
JP2018140686A (ja) * 2017-02-27 2018-09-13 日本電産コパル株式会社 移動体装置及び移動体システム
JP2019142406A (ja) * 2018-02-22 2019-08-29 株式会社Ksf 無人航空機
WO2019168047A1 (ja) * 2018-02-28 2019-09-06 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2020022263A1 (ja) * 2018-07-23 2020-01-30 株式会社ナイルワークス 飛行体
JP2021020672A (ja) * 2019-07-26 2021-02-18 国立大学法人信州大学 移動体、探査測量装置および探査測量方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057631A (ja) * 2001-06-07 2003-02-26 Seiko Epson Corp 液晶装置および電子機器
JP2004249954A (ja) * 2003-02-21 2004-09-09 Daigo Fukumoto ユニット型多目的飛行船
WO2018021300A1 (ja) * 2016-07-29 2018-02-01 日本電産株式会社 探索システムおよび当該探索システムに用いられる発信器
JP2018140686A (ja) * 2017-02-27 2018-09-13 日本電産コパル株式会社 移動体装置及び移動体システム
JP2019142406A (ja) * 2018-02-22 2019-08-29 株式会社Ksf 無人航空機
WO2019168047A1 (ja) * 2018-02-28 2019-09-06 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2020022263A1 (ja) * 2018-07-23 2020-01-30 株式会社ナイルワークス 飛行体
JP2021020672A (ja) * 2019-07-26 2021-02-18 国立大学法人信州大学 移動体、探査測量装置および探査測量方法

Similar Documents

Publication Publication Date Title
KR101941896B1 (ko) 선박의 자율 운항 제어 시스템
CN110268356B (zh) 前导无人机的***
US10173776B2 (en) Aerial drone for deploying a warning sign
CN110226143B (zh) 前导无人机的方法
EP2506235B1 (en) Methods and systems for predicting ship motion
ES2962278T3 (es) Sistema de dron submarino líder
EP3722904A1 (en) Control device, control method, program, and moving body
WO2017033976A1 (ja) 飛行体制御装置、飛行体制御方法、及びコンピュータ読み取り可能な記録媒体
JP5595030B2 (ja) 移動体制御システム、制御装置、制御方法、プログラム及び記録媒体
CN111684378B (zh) 管理机器人交通工具的有限安全模式操作
WO2017038891A1 (ja) 飛行制御装置、飛行制御方法、及びコンピュータ読み取り可能な記録媒体
WO2021070464A1 (ja) 移動体、移動体制御方法、移動体制御プログラム、管制装置、管制制御方法、管制制御プログラム、及び移動体システム
EP3989034B1 (en) Automatic safe-landing-site selection for unmanned aerial systems
US20210316828A1 (en) Adaptable control for autonomous maritime vehicles
WO2023067651A1 (ja) 飛行体制御システム、飛行体制御装置、遠隔制御装置、飛行体、飛行体制御方法、及び飛行体制御プログラム
US20190371094A1 (en) Detachable drone for monitoring a moving vessel
US20190346270A1 (en) Navigating using electromagnetic signals
EP3683780A1 (en) Obstacle detection using camera mounted on protrusion of vehicle
JP2007248173A (ja) 情報処理装置及び通信システム及び移動体誘導方法及びプログラム
US11994880B2 (en) Methods and systems for unmanned aerial vehicles to detect and avoid other flying machines
WO2022085325A1 (ja) 移動体制御装置、地上監視装置及びシステム
EP3859712A1 (en) Collision awareness using cameras mounted on a vehicle
KR102162055B1 (ko) 무인기용 지능형 가속처리장치
WO2023067653A1 (ja) 飛行体制御装置、飛行体制御方法、及び飛行体制御プログラム
JP7178862B2 (ja) 航空機の位置計測システム、航空機の位置計測方法及び航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE