WO2023066168A1 - 一种通信方法、装置及*** - Google Patents

一种通信方法、装置及*** Download PDF

Info

Publication number
WO2023066168A1
WO2023066168A1 PCT/CN2022/125495 CN2022125495W WO2023066168A1 WO 2023066168 A1 WO2023066168 A1 WO 2023066168A1 CN 2022125495 W CN2022125495 W CN 2022125495W WO 2023066168 A1 WO2023066168 A1 WO 2023066168A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information
pdu session
mapping relationship
identifier
Prior art date
Application number
PCT/CN2022/125495
Other languages
English (en)
French (fr)
Inventor
何青春
程型清
李明超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22882774.7A priority Critical patent/EP4404603A1/en
Publication of WO2023066168A1 publication Critical patent/WO2023066168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/20Transfer of user or subscriber data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, device, and system.
  • the short-distance communication system has a relatively limited communication distance, but the terminal has low power consumption and low cost;
  • the fifth generation (5th generation, 5G) cellular network communication system can provide macro coverage and a wide communication range, but the power consumption and cost of the terminal Relatively high.
  • the short-distance communication system can be integrated with the 5G cellular network communication system, so that the integrated communication system can achieve low-power, low-cost long-distance transmission.
  • Embodiments of the present application provide a communication method, device, and system for enabling a 5G core network to sense terminal equipment that does not support NAS signaling transmission, and to manage the terminal equipment that does not support NAS signaling transmission.
  • the embodiment of the present application provides a communication method, which may be applied to a first node.
  • the method includes: acquiring first information, where the first information is used to indicate the mapping relationship between the second node and the first node; sending the first information to the third node, where the first information is used to identify the associated first node in the protocol data unit PDU session Two nodes.
  • the first node can send the mapping relationship between the second node (that is, a terminal node that does not support NAS signaling transmission) and the first node to the third node (core network), so that the core network can Identify (that is, perceive or manage) terminal nodes that do not support NAS signaling transmission, so as to realize the management of services provided by terminal nodes that do not support NAS signaling transmission, so as to be more suitable for terminal devices that do not support NAS signaling transmission need.
  • the second node that is, a terminal node that does not support NAS signaling transmission
  • the core network core network
  • the first information used to indicate the mapping relationship between the second node and the first node includes: the first information used to indicate the second node between the identifier of the second node and the first IP address of the first node A mapping relationship, or, a second mapping relationship between the identifier of the second node and the first port number of the first node, or, a relationship between the identifier of the second node and the first media access control MAC address of the first node.
  • the third mapping relationship or, the mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the first node is the management node of the second node, and the first node can be used to manage or maintain the information of the second node.
  • the mapping relationship between the first node and the second node means that the first node establishes a mapping relationship based on the information (such as identification) of the second node managed by it and the specific information of the first node, and sends the mapping relationship to
  • the core network enables the core network to sense the information of the first node and the second node managed by the first node.
  • mapping relationship between the first node and the second node are provided, so that the third node can flexibly identify the second node in various ways.
  • the first IP address is one of multiple public network IP addresses allocated to the first node in the PDU session.
  • the first port number is one of a plurality of port numbers allocated to the first node in the PDU session.
  • the first MAC address is one of multiple MAC addresses derived by the first node according to its own unique MAC address.
  • the first identifier may be one of multiple identifiers temporarily assigned by the first node. The first identifier is used to establish a mapping relationship with the identifier of the second node.
  • mapping relationship between the second node and the first node is the first between the identifier of the second node and the first IP address of the first node. Mapping relations. Wherein, when the PDU session includes a public network IP address of the first node, the mapping relationship between the second node and the first node is a second mapping relationship between the identifier of the second node and the first port number of the first node.
  • the first information is carried in a non-access stratum NAS message
  • the first information is carried in a non-access stratum NAS message
  • the NAS message is a PDU session establishment process, a PDU session modification process, and a registration Any of the NAS messages in the process.
  • the NAS message may include, but not limited to, any one of a registration request message, an access session request message, a PDU session establishment request message, and a PDU session modification request message.
  • the first node may send the first information to the third node in various situations.
  • the second node is associated with a packet filter in the PDU session, and the packet filter is used to determine the QoS flow corresponding to the second node in the PDU session.
  • a PDU session is associated with one or more packet filters (also called a packet filter set), and the IP address and port number of the first node are carried in the packet filter, and the IP address or port number of the first node A mapping relationship is established between the number and the second node, therefore, the packet filter associated with the PDU session can be associated with the second node.
  • the third node can carry the IP address and port number of the first node, or the MAC address of the first node, or the identifier of the first node, and the first node and the second node through the packet filter.
  • the mapping relationship among them identifies the second node from the PUD session, so that the third node can adjust the QoS policy of the second node.
  • the acquisition of the first information by the first node may include: receiving access-side session request information or access-side session modification request information from the second node; determining that the second node is associated with a PDU session; The identification of the two nodes, the first IP address associated with the PDU session, establish a first mapping relationship; or, based on the identification of the second node, the first port number associated with the PDU session, establish a second mapping relationship; or, based on the second mapping relationship Establish a third mapping relationship between the identification of the two nodes and the first MAC address; or, based on the identification of the second node and the first identification, establish a mapping relationship between the identification of the second node and the first identification of the first node .
  • the access side session request information is used to instruct the second node to request the first node to allocate a PDU session
  • the access side session modification request information is used to instruct the second node to request the first node to modify the PDU session.
  • the first node after receiving the PDU session-related information from the second node, the first node associates the corresponding PDU session for the second node, and the first node can establish a mapping relationship between the second node and the first node. Since the PDU session is allocated by the first node to the second node according to the requirements of the second node, but the PDU session is directly associated with the first node (established between the first node and the core network), so that the third node can The mapping relationship can determine the corresponding relationship between the PDU session or the data in the PDU session and the second node, so that the associated second node in the PDU session can be identified.
  • the first node may further: receive second information from the second node, where the second information includes link state information and/or node state information; Adding the identifier of the second node to the second information to obtain third information; sending the third information to the third node.
  • the link state information includes at least one of the short-range measurement quantity (short-distance air interface state information), and the link state measurement quantity between the short-distance node and the 5G core network.
  • the first node after the first node receives the control information (second information) of the second node after sending the first information to the third node, it can add the identity of the second node to the control information and send it to the third node.
  • the third node can identify the data associated with the second node (such as QoS flow) based on the first information, so that the third node can adjust the configuration information (QoS flow related parameters) of the second node accordingly.
  • the first node may also: receive configuration information from the third node, the configuration information includes the running state management information of the second node, node parameter update information, link state detection strategy and QoS configuration strategy at least one item of; sending the configuration information to the second node.
  • the first node may forward the configuration information formulated by the third node for the second node to the second node.
  • the configuration of the second node by the third node can be implemented, so that the service provided by the third node to the second node can better adapt to the requirements of the second node.
  • the link state detection strategy includes at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the first node may further: send the fourth mapping relationship between the identifier of the second node and the IP address of the second node to the fourth node.
  • the first node sends the fourth mapping relationship between the identity of the second node and the IP address of the second node to the fourth node, so that the fourth node can identify the second node, thereby providing the second Nodes provide services.
  • the first node communicates with the second node based on the first communication technology; and communicates with the third node based on the second communication technology.
  • the embodiment of the present application provides a communication method, which may be applied to a third node.
  • the method includes: receiving first information used to indicate a mapping relationship between the second node and the first node; based on the first information, identifying the second node associated in the protocol data unit PDU session.
  • the third node in the embodiment of the present application can maintain or manage the mapping relationship between the second node (that is, a terminal node that does not support NAS signaling transmission) and the first node, and can identify (that is, perceive or manage) NAS signaling transmission terminal nodes, so as to realize the management of services provided by terminal nodes that do not support NAS signaling transmission, so as to better meet the needs of terminal devices that do not support NAS signaling transmission.
  • the first information is used to indicate the mapping relationship between the second node and the first node, including: the first information is used to indicate the relationship between the identifier of the second node and the first IP address of the first node The first mapping relationship, or, the second mapping relationship between the identifier of the second node and the first port number of the first node, or, the identifier of the second node and the first media access control MAC address of the first node or, the mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the first IP address is one of multiple public network IP addresses allocated to the first node in the PDU session.
  • the first port number is one of multiple port numbers allocated to the first node in the PDU session.
  • the PDU session includes a public network IP address of the first node.
  • the first MAC address is one of multiple MAC addresses derived by the first node according to its own unique MAC address.
  • the first identifier may be one of multiple identifiers temporarily assigned by the first node.
  • the first information is carried in a non-access stratum NAS message
  • the NAS message is any one of a NAS message in a PDU session establishment process, a PDU session modification process, and a registration process.
  • the NAS message may include, but not limited to, any one of a registration request message, an access session request message, a PDU session establishment request message, and a PDU session modification request message.
  • the second node is associated with a packet filter in the PDU session
  • the packet filter is used to determine the quality of service QoS flow corresponding to the second node in the PDU session
  • the QoS flow is used to transmit data associated with the second node
  • Identifying the second node associated in the protocol data unit PDU session based on the first information includes: identifying the second node associated in the PDU session based on the public IP address of the first node in the packet filter and the first mapping relationship; Or, based on the port number of the first node in the packet filter and the second mapping relationship, identify the second node associated in the PDU session; or, based on the MAC address of the first node in the packet filter and the third mapping relationship, Identifying the second node associated in the PDU session, or, based on the identifier of the first node in the packet filter and the mapping relationship between the identifier of the second node and the first identifier of the first node, identifying the associated node in the PDU session
  • the third node may further: receive third information, where the third information includes the identity of the second node, link state information and/or node state information; based on the identity of the second node and the first mapping relationship, identify the second node associated with the third information; or, based on the identity of the second node and the second mapping relationship, identify the second node associated with the third information; or, Based on the identification of the second node and the third mapping relationship, identifying the second node associated with the third information; based on the identification of the second node and the mapping relationship between the identification of the second node and the first identification of the first node, identifying The second node associated with the third information.
  • the link state information includes at least one of the short-range measurement quantity (short-distance air interface state information), and the link state measurement quantity between the short-distance node and the 5G core network.
  • the third node may also: determine configuration information based on the first information, where the configuration information includes the running state management information of the second node, node parameter update information, link state detection strategy, and QoS configuration strategy At least one item of; sending configuration information to the first node.
  • the link state detection strategy includes at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the third node may also: communicate with the first node based on the second communication technology; and provide services for the second node based on the first communication technology based on the second communication technology.
  • the embodiment of the present application provides a communication method, which may be applied to the second node.
  • the method includes: receiving configuration information from the first node, the configuration information including at least one of the running state management information of the second node, node parameter update information, link state detection strategy and quality of service QoS configuration strategy; based on the configuration information , configure the second node.
  • the second node receives the configuration information forwarded by the first node, and can perform corresponding configuration on the second node based on the configuration information.
  • the link state detection strategy includes at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the second node may also send access-side session request information or access-side session modification request information to the first node. It can be understood that the access side session request information is used to instruct the second node to request the first node to allocate a PDU session, and the access side session modification request information is used to instruct the second node to request the first node to modify the PDU session.
  • the second node may also send second information to the first node, where the second information includes link state information and/or node state information.
  • the second node may also communicate with the first node based on the first communication technology, and obtain services provided based on the second communication technology through the third node.
  • the embodiment of the present application provides a communication method, which may be applied to a fourth node.
  • the method includes: receiving a fourth mapping relationship between the identifier of the second node and the IP address of the second node from the first node; and determining the second node based on the fourth mapping relationship and the IP address of the second node.
  • the fourth node can determine the second node based on the fourth mapping relationship between the identifier of the second node and the IP address of the second node and the IP address of the second node, so that the fourth node can identify (that is, perceive or management) the second node, so as to better provide services for the second node.
  • the embodiment of the present application provides a communication device, which is used to realize the above first aspect or any one of the methods in the first aspect, including corresponding functional modules or units, respectively used to realize the above first aspect steps in the method.
  • Functions can be realized by hardware, or by executing corresponding software by hardware, and the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the communication device may include: a processing module, configured to obtain first information; wherein, the first information is used to indicate a mapping relationship between the second node and the first node; The three nodes send the first information, where the first information is used to identify the second node associated in the protocol data unit PDU session.
  • the first information is used to indicate the mapping relationship between the second node and the first node, including: the first information is used to indicate the identity of the second node and the first node A first mapping relationship between first IP addresses of a node, or, a second mapping relationship between an identifier of the second node and a first port number of the first node, or, the second node The third mapping relationship between the identifier of the first node and the first MAC address of the first node, or the mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the first IP address is one of multiple public network IP addresses allocated to the first node in the PDU session.
  • the first port number is one of multiple port numbers allocated to the first node in the PDU session, and the PDU session includes a public network IP address of the first node.
  • the first identifier may be one of multiple identifiers temporarily assigned by the first node.
  • the first information is carried in a non-access stratum NAS message
  • the NAS message is any one of a NAS message in a PDU session establishment process, a PDU session modification process, and a registration process.
  • the NAS message may include, but not limited to, any one of a registration request message, an access session request message, a PDU session establishment request message, and a PDU session modification request message.
  • the second node is associated with a packet filter in the PDU session, and the packet filter is used to determine a QoS flow corresponding to the second node in the PDU session.
  • the transceiver module is further configured to receive access-side session request information or access-side session modification request information from the second node; the processing module may also determine that the second node is associated with the The PDU session; based on the identity of the second node, the first IP address associated with the PDU session, establish the first mapping relationship; or, based on the identity of the second node, and the PDU The first port number associated with the session, and establish the second mapping relationship; or, based on the identifier of the second node, and the first MAC address, establish the third mapping relationship, or, based on the The identifier of the second node and the first identifier establish a mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the access side session request information is used to instruct the second node to request the first node to allocate a PDU session
  • the access side session modification request information is used to instruct the second node to request the first node to modify the PDU session.
  • the transceiver module may also receive second information from the second node, where the second information includes link state information and/or Node status information; the processing module may also add the second node's identifier to the second information to obtain third information; and then the transceiver module sends the third information to the third node.
  • the link state information includes at least one of the short-range measurement quantity (short-distance air interface state information), and the link state measurement quantity between the short-distance node and the 5G core network.
  • the transceiver module may also receive configuration information from the third node, where the configuration information includes the running state management information of the second node, node parameter update information, link state detection policy and At least one item in the QoS configuration policy; sending the configuration information to the second node.
  • the link state detection strategy includes at least one of measurement objects, reporting objects, reporting thresholds, reporting periods, and event parameters.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the transceiver module may also send the fourth mapping relationship between the identifier of the second node and the IP address of the second node to the fourth node.
  • the transceiver module may communicate with the second node based on the first communication technology; and communicate with the third node based on the second communication technology.
  • the embodiment of the present application provides a communication device, which is used to implement the second aspect or any one of the methods in the second aspect, including corresponding functional modules or units, respectively used to implement the second aspect steps in the method.
  • Functions can be realized by hardware, or by executing corresponding software by hardware, and the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the communication device may include: the device includes: a transceiver module configured to receive first information, the first information used to indicate a mapping relationship between the second node and the first node; a processing module configured to The first information identifies the second node associated in the protocol data unit PDU session.
  • the first information is used to indicate the mapping relationship between the second node and the first node, including: the first information is used to indicate the identity of the second node and the first node.
  • the first mapping relationship between the first IP address of the second node, or the second mapping relationship between the identifier of the second node and the first port number of the first node, or the identifier of the second node and the first port number of the first node A third mapping relationship between first MAC addresses of a node, or a mapping relationship between an identifier of a second node and a first identifier of the first node.
  • the first IP address is any one of multiple public network IP addresses allocated to the first node in the PDU session.
  • the first port number is any one of multiple port numbers allocated to the first node in the PDU session, and the PDU session includes a public network IP address of the first node.
  • the first MAC address is one of multiple MAC addresses derived by the first node according to its own unique MAC address.
  • the first identifier may be one of multiple identifiers temporarily assigned by the first node.
  • the first information is carried in a non-access stratum NAS message
  • the NAS message is any one of a NAS message in a PDU session establishment process, a PDU session modification process, and a registration process.
  • the NAS message may include, but not limited to, any one of a registration request message, an access session request message, a PDU session establishment request message, and a PDU session modification request message.
  • the second node is associated with a packet filter in the PDU session, and the packet filter is used to determine the quality of service QoS flow corresponding to the second node in the PDU session, the The QoS flow is used to transmit data associated with the second node;
  • the processing module can identify the association in the PDU session based on the public network IP address of the first node in the packet filter and the first mapping relationship or, based on the port number of the first node in the packet filter and the second mapping relationship, identify the second node associated in the PDU session; or, based on The MAC address of the first node in the packet filter and the third mapping relationship identify the second node associated in the PDU session; or, the first node in the packet filter
  • the identifier of the node and the mapping relationship between the identifier of the second node and the first identifier of the first node identify the second node associated in the PDU session.
  • the transceiver module may further: receive third information, where the third information includes the identifier of the second node, link state information and/or or node state information; the processing module 1201 may also: identify the second node associated with the third information based on the identifier of the second node and the first mapping relationship; or, based on the identity of the second node The identification and the second mapping relationship, identifying the second node associated with the third information; or, based on the identification of the second node and the third mapping relationship, identifying the second node associated with the third information the second node; or, based on the identifier of the second node and a mapping relationship between the identifier of the second node and the first identifier of the first node, identify the second node associated with the third information.
  • the processing module may also determine configuration information based on the first information, where the configuration information includes running state management information of the second node, node parameter update information, link state detection policy, and At least one item in the QoS configuration policy; sending the configuration information to the first node.
  • the link state detection strategy includes at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the transceiver module may communicate with the first node based on the second communication technology; and provide services for the second node based on the first communication technology based on the second communication technology.
  • the embodiment of the present application provides a communication device, which is used to implement any one of the third aspect or the method in the third aspect, including corresponding functional modules or units, respectively used to implement the third aspect steps in the method.
  • Functions can be realized by hardware, and can also be realized by executing corresponding software by hardware, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device may include: a transceiver module, configured to receive configuration information from the first node, where the configuration information includes operating state management information of the second node, node parameter update information, link state detection strategy and at least one of QoS configuration policies; a processing module configured to configure the second node based on the configuration information.
  • the link state detection strategy includes at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the transceiver module may also send access-side session request information or access-side session modification request information to the first node. It can be understood that the access side session request information is used to instruct the second node to request the first node to allocate a PDU session, and the access side session modification request information is used to instruct the second node to request the first node to modify the PDU session.
  • the transceiver module may also send second information to the first node, where the second information includes link state information and/or node state information.
  • the link state information includes at least one of the short-range measurement quantity (short-distance air interface state information), and the link state measurement quantity between the short-distance node and the 5G core network.
  • the transceiver module communicates with the first node based on the first communication technology, and obtains the service provided based on the second communication technology through the third node.
  • the embodiment of the present application provides a communication device, which is used to implement any method in the fourth aspect or the fourth aspect, and includes corresponding functional modules or units, respectively used to implement the fourth aspect steps in the method.
  • Functions can be realized by hardware, or by executing corresponding software by hardware, and the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • the communication device may include: a transceiver module, configured to receive a fourth mapping relationship between an identifier of a second node and an IP address of the second node from the first node; a processing module, configured to The third mapping relationship and the IP address of the second node determine the second node.
  • a communication device includes a processor and a memory.
  • the memory is used to store calculation programs or instructions
  • the processor is coupled to the memory; when the processor executes the computer programs or instructions, the device is made to perform any method in the first aspect or the first aspect, or the The device executes the above-mentioned second aspect or any one of the methods in the second aspect, or makes the device execute the above-mentioned third aspect or any one of the methods in the third aspect, or makes the device execute the above-mentioned fourth aspect or the first method Any one of the four methods.
  • the communication device may be a terminal device or a part of components (such as a chip) in the terminal device.
  • the terminal device may be, for example, a smart mobile terminal, a smart home device, a smart car, a smart wearable device, and the like.
  • the smart mobile terminal includes a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA) and the like.
  • Smart home devices such as smart refrigerators, smart washing machines, smart TVs, speakers, etc.
  • Smart car wearable devices such as smart headphones, smart glasses, smart clothing or shoes, etc.
  • the present application provides a chip, which is connected to a memory, and is used to read and execute computer programs or instructions stored in the memory, so as to realize the above-mentioned first aspect or any possible design of the first aspect. method; or to realize the above-mentioned second aspect or the method in any possible design of the second aspect; or to realize the above-mentioned third aspect or the method in any possible design of the third aspect; or to realize the above-mentioned The method in the fourth aspect or any possible design of the fourth aspect.
  • a computer-readable storage medium in which a computer program or instruction is stored, and when the computer program or instruction is executed by a device, the device executes the above-mentioned first aspect or the first aspect.
  • the present application provides a computer program product
  • the computer program product includes a computer program or an instruction
  • the device executes the above-mentioned first aspect or any possibility of the first aspect or make the device execute the method in the above-mentioned second aspect or any possible design of the second aspect; or make the device execute the above-mentioned third aspect or the method in any possible design of the third aspect; Or to realize the fourth aspect or the method in any possible design of the fourth aspect.
  • a thirteenth aspect provides that the present application provides a communication system, and the communication system includes the communication device described in the fourth aspect to the eighth aspect.
  • FIG. 1 is a schematic diagram of a first communication system provided by an embodiment of the present application.
  • FIG. 2A is one of the schematic diagrams of the communication system provided by the embodiment of the present application.
  • FIG. 2B is the second schematic diagram of the communication system provided by the embodiment of the present application.
  • FIG. 3 is one of the schematic flowcharts of the first communication method provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a user plane control protocol architecture provided by an embodiment of the present application.
  • FIG. 5A is a schematic diagram of the first data routing provided by the embodiment of the present application.
  • FIG. 5B is a schematic diagram of the second data routing provided by the embodiment of the present application.
  • FIG. 5C is a schematic diagram of a third data routing provided by the embodiment of the present application.
  • FIG. 5D is a schematic diagram of a fourth data routing provided by the embodiment of the present application.
  • FIG. 5E is a schematic diagram of a fifth data routing provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the architecture of the control plane control protocol provided by the embodiment of the present application.
  • FIG. 7A is a schematic diagram of a scene applicable to an embodiment of the present application.
  • FIG. 7B is a schematic diagram of a non-PDU session communication flow provided by the embodiment of the present application.
  • FIG. 8 is the second schematic flow diagram of the first communication method provided by the embodiment of the present application.
  • FIG. 9 is a schematic flow diagram of a second communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a sixth data routing provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the second node in the embodiment of the present application is a node (for example, T node) used for service application, which may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method. Of course, it can also are other communication devices such as system-on-a-chip.
  • the first node is a node (for example, G node) used to authorize and authenticate the second node, or the first node may be a terminal device or a terminal device capable of supporting the terminal device to implement the method.
  • the functional communication device may of course also be other communication devices, such as a chip system.
  • the third node in the embodiment of the present application is a node (for example, a core network node) used to provide services for the second node, which may be a network device or a communication device capable of supporting the network device to implement the functions required by the method , such as access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF), user plane function (user plane function, UPF), data network (data network, DN), etc.
  • access and mobility management function access and mobility management function, AMF
  • session management function session management function
  • SMF session management function
  • user plane function user plane function
  • UPF data network
  • DN data network
  • At least one of the functional entities, or the third node may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip system.
  • the fourth node in the embodiment of the present application is a node for providing the second node with access to the core network service. It may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, and may be an access network device: for example, a trusted non-3rd generation partnership project (3rd generation partnership project, 3GPP) gateway function (trusted non-3GPP gateway function, TNGF) node.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • 3GPP gateway function trusted non-3GPP gateway function, TNGF
  • a data protocol unit session (protocol data unit session, PDU) session can be understood as a pipeline for data transmission established between the end user and the core network.
  • This pipeline can carry one or more quality of service (quality of service, QoS ) flow, each QoS flow has different QoS attributes or QoS requirements.
  • QoS quality of service
  • the term "multiple” in the embodiments of the present application means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items. For example, at least one item (piece) of a, b, or c may represent: a, b, c, a and b, a and c, b and c, or a and b and c.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features .
  • a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the embodiments of the present application provide a communication method and device, so that the core network can identify terminal nodes that do not support NAS, so as to realize the management of services provided by the core network for terminal nodes that do not support NAS.
  • the embodiments of the present application will be further described in detail below in conjunction with the accompanying drawings.
  • the communication method provided by the embodiment of the present application can be applied to a 5G communication system, such as a 5G new air interface (new radio, NR), and can also be applied to various communication systems in the future, such as the sixth generation (6th generation, 6G) communication system, which is not limited here.
  • a 5G communication system such as a 5G new air interface (new radio, NR)
  • 6G sixth generation
  • FIG. 1 shows the architecture of a communication system to which the communication method is applicable according to an embodiment of the present application.
  • the communication system may include a first node 110 , a second node 120 and a third node 130 .
  • the second node 120 can be a terminal node
  • the first node 110 can be an authorization node of the second node 120
  • both the second node 120 and the first node 110 can support the first communication technology
  • the second node 120 and the first node 110 may form a first communication system
  • the two parties may communicate using the first communication technology.
  • Both the first node 110 and the third node 130 can support the second communication technology
  • the first node 110 and the third node 130 can form a second communication system
  • the two parties can use the second communication technology to communicate
  • the first communication technology and The second communication technology is different.
  • a communication connection can be established between the first communication system and the second communication system to form a heterogeneous communication system.
  • the first node 110, the second node 120, And the third node 130 may perform corresponding communication services and/or transmit communication service data in the heterogeneous communication system.
  • the communication system may further include a fourth node 140 .
  • the fourth node 140 communicates directly with the second node 120 , or communicates indirectly through the first node 110 and the second node 120 , so as to provide services for the second node 120 .
  • the first communication technology and the second communication technology may be different technologies.
  • the communication system in this application may be a communication system in which different communication systems are integrated.
  • the first communication technology takes wireless short-distance communication technology as an example
  • the second communication technology takes 5G cellular network communication technology as an example
  • the embodiment of the present application can be obtained after the wireless short-distance communication system is integrated with the 5G cellular network communication system Applicable communication system.
  • the integrated communication system may also be called a tightly coupled (tight interworking) communication system, or an interworking (interworking) communication system.
  • the terminal nodes supporting wireless short-distance communication can access the 5G network through the control node or gateway node, and further use the services provided by the 5G network.
  • the 5G network can also configure and manage the data transmission strategy of the terminal node according to the terminal node's subscription information and link state information, so as to provide services for the network. That is to say, in the integrated communication system, the wireless short-distance communication system and the 5G cellular network communication system can work interactively and complement each other.
  • the wireless short-distance communication system described in this application can be any possible short-distance communication system, such as Bluetooth, wireless fidelity (wireless fidelity, Wi-Fi), vehicle-mounted general-purpose short-distance communication system, etc. And short-distance communication systems that may appear in the future. Compared with the 5G communication system, the coverage of the short-distance communication system is smaller, and the communication distance is shorter. This application does not specifically limit the specific communication distance or coverage of the short-distance communication system. allow.
  • the first communication technology is short-distance communication technology
  • the second communication technology is 5G cellular network communication technology as an example.
  • the third node 130 may include core network equipment: AMF, SMF, At least one of functional entities such as UPF and data network (DN).
  • Each node or functional entity in Figure 2A can be connected through an interface.
  • the serial number of the interface or the name of the interface is not limited in this embodiment of the application, and the interface defined in the 3GPP related standard protocol of the 5G system can also be used. Interfaces in communication systems.
  • the second node 120 may communicate with the first node 110 through the Yt interface
  • the first node 110 may communicate with the next generation radio access network (next generation radio access network, NG-RAN) through the Ta interface
  • the second node 120 may Communicate with NG-RAN through NWt interface.
  • NG-RAN next generation radio access network
  • the second node 120 and the first node 110 can communicate with the AMF through the next generation network (next generation, N) 1 interface (abbreviated as N1); NG-RAN communicates with the AMF through the N2 interface (referred to as N2), and the NG-RAN communicates with the AMF through the N3 interface (N3 for short) communicates with the local UPF, and the UPF communicates with the DN through the N6 interface (N6 for short).
  • the AMF communicates with the SMF through the N11 interface (N11 for short), and the SMF communicates with the UPF through the N4 interface (N4 for short).
  • the 5G network can perceive key information such as the equipment status, network status, and service status of the second node 120 through the first node 110, so as to achieve remote reachability, perception, and awareness of industry on-site networks and services. tube etc.
  • the communication system in FIG. 2B may further include a fourth node 140, and the fourth node 140 may be, for example, a TNGF node.
  • the second node 120 can communicate with the first node 110 through the Yt interface
  • the first node 110 can communicate with the fourth node 140 through the Ta interface
  • the second node 120 can communicate with the fourth node 140 through the NWt interface.
  • the fourth node 140 can perceive key information such as the equipment status, network status, and business status of the second node 120 through the first node 110, so as to achieve remote reachability and perception of the industrial field network and business. , Can manage etc.
  • the heterogeneous communication system may include the first node 110, the second node 120, the third node 130 and the fourth node 140, and the communication between each node and its functional modules
  • the communication method does not limit the number of each node and the serial number or name of the interface.
  • the number of the first node 110 , the second node 120 , the third node 130 and the fourth node 140 may not be limited to one.
  • the terminal device in this embodiment of the present application may be a device for implementing a wireless communication function, such as a terminal or a chip that may be used in the terminal.
  • Examples may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • user equipment user equipment
  • UE wireless terminal equipment
  • mobile terminal equipment subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote Station (remote station), access point (access point, AP), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device), etc.
  • mobile phones or called "cellular" phones
  • computers with mobile terminal equipment portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, smart wearable devices, etc.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the network equipment in the embodiment of the present application may include access network (access network, AN) equipment, radio access network (radio access network, RAN) equipment, access network equipment such as base stations (for example, access point), may refer to a device in an access network that communicates with a wireless terminal device through one or more cells over an air interface.
  • the base station can be used to convert received over-the-air frames to and from Internet Protocol (IP) packets, acting as a router between the terminal device and the rest of the access network, which can include the IP network.
  • IP Internet Protocol
  • the network side device can also coordinate attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolved Node B) in a long term evolution (long term evolution, LTE) system or an advanced long term evolution (long term evolution-advanced, LTE-A), Or it can also include the next generation node B (next generation node B, gNB) or the next generation evolved base station (next generation evolved base station) in the fifth generation mobile communication technology (the 5th generation, 5G) new air interface (new radio, NR) system nodeB, ng-eNB), en-gNB (enhanced next generation node B, gNB): Enhanced next-generation base stations; can also include centralized units in the cloud access network (cloud radio access network, Cloud RAN) system (centralized unit, CU) and a distributed unit (distributed unit, DU), or may also include a relay device, which is not limited in this embodiment of the present application.
  • a relay device which is not limited in this embodiment of the present application.
  • Figure 3 shows the first communication method provided by the embodiment of the present application. The method includes the following steps:
  • the first node acquires first information.
  • the first information is used to indicate the mapping relationship between the second node and the first node.
  • the mapping relationship between the second node and the first node refers to the mapping relationship between the identifier of the second node and the specific information of the first node.
  • the identifier of the second node may be a subscription permanent identifier (SUPI) or a subscription concealed identifier (SUCI)
  • the SUPI may be a unified data repository (UDR) in the 5G communication system Or the international mobile subscriber identity (IMSI) or network access identifier (NAI) uniformly assigned by the unified data management device (unified data management, UDM);
  • SUCI can be obtained by encrypting SUPI,
  • SUCI can be understood as an encryption form of SUPI, which can effectively improve the communication security of the second node.
  • the ID of the second node may also be temporarily assigned by the first node to the second node, and the ID of the second node may be uniquely identified under the management domain of the first node.
  • the ID assigned by the first node to the second node The specific form of the unique identifier is not specifically limited in this embodiment of the application.
  • the second nodes managed by the first node are T-node 1 and T-node 2, the identifier assigned by the first node to T-node 1 may be 001, and the identifier assigned by the first node to T-node 1 may be 002.
  • the second nodes managed by the first node are T-node 1 and T-node 2
  • the identifier assigned by the first node to T-node 1 may be A
  • the identifier assigned by the first node to T-node 1 may be B.
  • the specific information of the first node may be, for example, any one of the first IP address, the first port number and the first MAC address of the first node, and the identifier of the first node.
  • the mapping relationship may be, for example, a first mapping relationship between the identifier of the second node and the first IP address of the first node, or a mapping relationship between the identifier of the second node and the first port number of the first node.
  • the second mapping relationship is either a third mapping relationship between the identifier of the second node and the first MAC address of the first node, or a mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the first IP address is one of multiple public network IP addresses allocated by the third node to the first node in the PDU session.
  • the first port number is one of multiple port numbers allocated by the third node to the first node in the PDU session.
  • the first MAC address is one of multiple MAC addresses derived by the first node according to its own unique MAC address.
  • the first identifier may be one of multiple identifiers temporarily allocated by the first node.
  • the first information is used to indicate the mapping relationship between the second node and the first node, including the following situations:
  • the first information is used to indicate the first mapping relationship between the identifier of the second node and the first IP address of the first node.
  • the first information is used to indicate a second mapping relationship between the identifier of the second node and the first port number of the first node.
  • the first information is used to indicate a third mapping relationship between the identifier of the second node and the first MAC address of the first node.
  • the first information is used to indicate the mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the first node can obtain the first information, including but not limited to the following ways:
  • Embodiment 1 The first node determines the PDU session associated with the second node by interacting with the second node, and obtains the first information based on the PDU session and the identifier of the second node.
  • the first node obtains the first information based on the PDU session and the identifier of the second node, that is, the first node determines the connection between the first node and the second node based on the PDU session and the identifier of the second node. Mapping relations.
  • the first node may receive access-side session request information or access-side session modification request information from the second node, and determine the PDU session associated with the second node. It can be understood that the access side session request information is used to instruct the second node to request the first node to allocate a PDU session, and the access side session modification request information is used to instruct the second node to request the first node to modify the PDU session.
  • the first node determines whether there is a PDU session that meets the current service requirements of the second node, and if so, the first node may determine whether A new PDU session is established for the second node, and the PDU session is directly assigned to the second node. If not, the first node may determine to establish a new PDU session for the first node.
  • the first node may also send related information of the PDU (for example, the identifier and type of the PDU session, etc.) to the second node.
  • the design method of the mapping relationship between the first node and the second node includes but not limited to the following methods:
  • the first node establishes a first mapping relationship between the second node's identifier and the first node's first IP address based on the second node's identifier and the first IP address associated with the PDU session.
  • the PDU session associated with the second node includes multiple public network IP addresses of the first node, that is, the third node allocates multiple public network IP addresses to the first node in the above PDU session address, so that the first node can assign a corresponding public network IP address (i.e. the first IP address) to the second node it manages, so that the first node is based on the identity of the second node, the first IP address associated with the PDU session , establishing a first mapping relationship between the identifier of the second node and the first IP address of the first node.
  • the third node allocates multiple public network IP addresses to the first node in the above PDU session address, so that the first node can assign a corresponding public network IP address (i.e. the first IP address) to the second node it manages, so that the first node is based on the identity of the second node, the first IP address associated with the PDU session , establishing a first mapping relationship between the identifier of the second node and the first IP
  • Table 1 shows an example of the first mapping relationship
  • the second nodes in Table 1 are T Node 1, T Node 2, and T Node 3 as examples.
  • the third node assigns three public network IP addresses to the first node in a PDU session: IP1, IP2 and IP3, and the first node can assign corresponding public network IP addresses to the second node it manages, for example, the first The node allocates IP1 to T-node 1, the first node allocates IP2 to T-node 2, and the first node allocates IP3 to T-node 3. Therefore, the first node can establish the first mapping relationship shown in Table 1.
  • ID of the second node The first IP address of the first node Identification of T-Node 1 IP1 Identification of T-node 2 IP2 Identification of T node 3 IP3
  • the first node establishes a second mapping relationship between the identifier of the second node and the first port number of the first node based on the identifier of the second node and the first port number associated with the PDU session.
  • the PDU session associated with the second node only includes one public network IP address of the first node, but includes multiple port numbers of the first node, that is, the third node in the above PDU session Multiple port numbers are assigned to the first node, and the first node can assign a port number to the second node it manages, so that the first node can establish a connection between the identity of the second node and the first port number of the first node.
  • the second mapping relationship is the PDU session associated with the second node only includes one public network IP address of the first node, but includes multiple port numbers of the first node, that is, the third node in the above PDU session Multiple port numbers are assigned to the first node, and the first node can assign a port number to the second node it manages, so that the first node can establish a connection between the identity of the second node and the first port number of the first node.
  • Table 2 shows an example of the second mapping relationship.
  • the second nodes are T-node 1, T-node 2, and T-node 3 as examples.
  • the third node assigns three port numbers to the first node in a PDU session: P1, P2 and P3, and the first node can assign corresponding port numbers to the second node it manages, for example, the first node is a T node 1 allocates P1, the first node allocates P2 to T node 2, and the first node allocates P3 to T node 3. Therefore, the first node can establish the second mapping relationship shown in Table 2.
  • ID of the second node The port number of the first node Identification of T-Node 1 P1 Identification of T-node 2 P2 Identification of T node 3 P3
  • Design mode 3 based on the identifier of the second node and the first MAC address, the first node establishes a third mapping relationship between the identifier of the second node and the first MAC address of the first node.
  • the first MAC address is one of multiple MAC addresses derived by the first node based on its own unique MAC address, and the first node can assign a MAC address to the second node it manages , so that the first node can establish a third mapping relationship between the identifier of the second node and the first MAC address of the first node.
  • Table 3 shows an example of the third mapping relationship.
  • the second nodes are T-Node 1, T-Node 2 and T-Node 3 as examples.
  • the first node derives three MAC addresses based on its own unique MAC address: MAC address A, MAC address B, and MAC address C.
  • the first node can assign corresponding MAC addresses to the second node it manages. For example, the first node The MAC address A is distributed for T node 1, the first node distributes MAC address B for T node 2, and the first node distributes MAC address C for T node 3. Therefore, the first node can establish the third node shown in Table 3. Mapping relations.
  • Design mode 4 based on the identifier of the second node and the first identifier, the first node establishes a third mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the first identifier is one of multiple temporarily assigned identifiers, and the first node can assign a temporary identifier to the second node it manages, so that the first node can establish the second The mapping relationship between the identifier of the second node and the first identifier address of the first node.
  • Table 4 shows an example of the mapping relationship.
  • the second nodes are T-Node 1, T-Node 2 and T-Node 3 as examples.
  • the first node temporarily assigns three identifiers: 01, 02, and 03.
  • the first node can assign corresponding temporary identifiers to the second node it manages.
  • the first node assigns the identifier 01 to T node 1, and the first node The ID 02 is assigned to the T-node 2, and the ID 03 is assigned to the T-node 3 by the first node. Therefore, the mapping relationship shown in Table 4 can be established by the first node.
  • the first node obtains the first information through information exchange with the second node, so that the first information can be updated in time, so as to better adapt to the needs of the second node.
  • Embodiment 2 The first node has pre-managed or maintained the PDU session associated with the second node, and the first node can obtain the first information directly based on the PDU session and the identifier of the second node.
  • the corresponding example of "the first node can obtain the first information directly based on the PDU session and the identifier of the second node" is similar to Embodiment 1, please refer to the relevant description above, and will not repeat it here.
  • the first node obtains the first information more efficiently.
  • the first node sends the first information to the third node.
  • the third node receives the first information.
  • the first information is carried in a non-access stratum NAS message. That is to say, the first node may send the first information to the third node through the NAS message.
  • the NAS message is any one of the NAS messages in the PDU session establishment process, the PDU session modification process and the registration process.
  • the NAS message may include, but is not limited to, any one of a registration request message, an access session request message, a PDU session establishment request message, a PDU session modification request message, and a PDU session update information. limited.
  • the first information when the first information is used to indicate the first mapping relationship between the identifier of the second node and the first IP address of the first node, or the first mapping relationship between the identifier of the second node and the first port number of the first node In the case of two mapping relationships, the first information may be carried in PDU session update information. For another example, when the first information is used to indicate the third mapping relationship between the identity of the second node and the first MAC address of the first node, or the mapping between the identity of the second node and the first identity of the first node When the first node has a relationship, the first information may be carried in any NAS information after the first node successfully registers.
  • the third node identifies the second node associated in the PDU session based on the first information.
  • the third node identifies the second node associated in the PDU session, that is, the third node identifies the second node associated with the user plane data.
  • the third node may directly identify the second node associated in the PDU session based on the mapping relationship indicated by the first information. For example, the third node may identify the second node associated in the PDU session based on the first mapping relationship. For another example, the third node may identify the second node associated in the PDU session based on the foregoing second mapping relationship. For another example, the third node may identify the second node associated in the PDU session based on the foregoing third mapping relationship.
  • FIG. 4 shows a user plane protocol architecture applicable to the first communication method provided by the embodiment of the present application.
  • the third node uses UPF as an example.
  • the user plane protocol architecture includes the service data adaptation protocol (service data adaptation protocol, SDAP) layer, packet data convergence protocol (packet data convergence protocol, PDCP) layer, radio link control (Radio link control) layer from top to bottom. , RLC) layer, medium access control (medium access control, MAC) layer, physical (physical layer, PHY) layer, etc.
  • the PDU layer (layer) is used to carry the IP data packets of the PDU session.
  • N9stack is the N9 protocol stack and the N9 interface is the interface between 5G core network elements.
  • User Datagram Protocol (UDP)/Internet Protocol (IP) is a data transmission protocol, UDP marks data transmission as unreliable transmission (different from TCP connection, TCP is reliable transmission), IP provides The addressing mode of data transmission is defined, and the data routing addressing is based on IP.
  • the GPRS tunneling protocol-user (GTP-U) of the user plane provides a data packet method, and the GTP-U frame structure can carry tunnel information, message type, sequence number, etc.
  • L1 layer refers to the physical layer, the lowest layer in the computer network model, which provides mechanical, electronic, functional and normative characteristics for the creation, maintenance, and removal of physical links required to transmit data.
  • the L2 layer refers to the data link layer, which is the second layer in the computer network model reference model, between the physical layer and the network layer.
  • the data link layer provides services to the network layer on the basis of the services provided by the physical layer, and its most basic service is to reliably transmit data from the network layer to the target network layer of the adjacent node.
  • L1 and L2 can be used for sending and receiving processing of link layer data.
  • Relay can relay the received information.
  • the communication between the first node and the second node may be performed through a communication link (sparkLinkL2) protocol.
  • the first node can communicate with NG-RAN through SDAP layer, PDCP layer, RLC layer, MAC layer and physical layer, and UDP/IP, GTP-U, L2, L1 can be used between NG-RAN and UPF (third node) communication.
  • NG-RAN and UPF the third node
  • the second node can indirectly obtain the service passed by the third node through the first node.
  • the first node can encapsulate the public network IP address of the first node in the data packet of the PDU Layer, so that the UPF receives the corresponding After the IP data packet, the first mapping relationship between the public network IP address of the first node in the IP data packet and the identification of the second node and the first IP address of the first node can be used to identify the associated first node in the PDU session.
  • Two nodes Two nodes.
  • Example 1 please refer to Figure 5A, the second node takes T-Node 1, T-Node 2 and T-Node 3 as examples, there are multiple PDU sessions that can be established between the UPF and the first node, for example, there may be PDU Session 1 and PDU Session 2.
  • PDU session 1 is used to transmit data of T node 1 and T node 2
  • PDU session 2 is used to transmit data of T node 3
  • PDU session 1 is associated with T node 1 and T node 2
  • PDU session 2 is associated with T node 3.
  • PDU session 1 includes the IP addresses of the first node: IP1 and IP2
  • PDU session 2 includes the IP address of the first node: IP3, the first node assigns IP1 to T node 1, and the first node assigns IP2 to T node 2.
  • the first node allocates IP3 to T node 3 .
  • the UPF when the UPF receives the IP data packet of PDU session 1, the public network IP address of the first node is IP1, then it can be determined according to the first mapping relationship between the identifier of the second node and the first IP address of the first node The second node associated with PDU session 1 is T node 1 .
  • the UPF receives the IP data packet of PDU session 1 where the public network IP address of the first node is IP2, then according to the first mapping relationship between the identifier of the second node and the first IP address of the first node, It is determined that the second node associated with PDU session 1 is T node 2 .
  • the UPF receives the IP data packet of PDU session 2 where the public network IP address of the first node is IP3, then according to the first mapping relationship between the identifier of the second node and the first IP address of the first node, It is determined that the second node associated with PDU session 2 is T node 3 .
  • the first node can encapsulate the port number of the first node in the data packet of the PDU Layer, so that after the UPF receives the IP data packet
  • the second node associated in the PDU session may be identified according to the port number of the first node in the IP data packet and the second mapping relationship between the identifier of the second node and the first port number of the first node.
  • Example 2 please refer to Figure 5B, the second node takes T-Node 1, T-Node 2 and T-Node 3 as examples, there are multiple sessions that can be established between the UPF and the first node, for example, there may be PDU Session 1 and PDU Session 2 .
  • PDU session 1 is used to transmit data of T node 1 and T node 2
  • PDU session 2 is used to transmit data of T node 3
  • PDU session 1 is associated with T node 1 and T node 2
  • PDU session 2 is associated with T node 3.
  • PDU session 1 and PDU session 2 include the same IP address IP1 of the first node
  • PDU session 1 includes the port numbers of the first node: P1 and P2
  • PDU session 2 includes the port number P3 of the first node
  • the first node will P1 is assigned to T-Node 1, the first node assigns P2 to T-Node 2, and the first node assigns P3 to T-Node3.
  • the UPF when the UPF receives the port number of the first node in the IP packet of PDU session 1 as P1, it can determine the PDU session according to the second mapping relationship between the identity of the second node and the first port number of the first node.
  • the second node associated with 1 is T-node 1.
  • the UPF when the UPF receives the port number of the first node in the IP packet of PDU session 1 as P2, it can determine the PDU according to the second mapping relationship between the identifier of the second node and the first port number of the first node.
  • the second node associated with session 1 is T node 2 .
  • the UPF receives the port number of the first node in the IP packet of PDU session 2 as P3, it can determine the PDU according to the second mapping relationship between the identifier of the second node and the first port number of the first node.
  • the second node associated with session 2 is T node 3 .
  • the first node can encapsulate the MAC address of the first node in the data packet of the PDU Layer, so that after the UPF receives the IP data packet
  • the second node associated in the PDU session may be identified according to the MAC address of the first node in the IP data packet and the third mapping relationship between the identifier of the second node and the first MAC address of the first node.
  • Example 3 please refer to Figure 5C, the second node takes T node 1, T node 2 and T node 3 as an example, there are multiple sessions that can be established between the UPF and the first node, for example, there may be PDU session 1 and PDU session 2 .
  • PDU session 1 is used to transmit data of T node 1 and T node 2
  • PDU session 2 is used to transmit data of T node 3
  • PDU session 1 is associated with T node 1 and T node 2
  • PDU session 2 is associated with T node 3.
  • PDU session 1 and PDU session 2 include the same IP address IP1 of the first node, and the temporary MAC addresses derived by the first node according to its own unique MAC address are: MAC address A, MAC address B and MAC address C, the first node MAC address A is assigned to T-node 1 , MAC address B is assigned to T-node 2 by the first node, and MAC address C is assigned to T-node 3 by the first node.
  • PDU session 1 is used to transmit data of T node 1 and T node 2
  • PDU session 2 is used to transmit data of T node 3
  • PDU session 1 is associated with T node 1 and T node 2
  • PDU session 2 is associated with T node node 3.
  • the UPF receives the MAC address of the first node in the IP packet of PDU session 1 as A, it can determine the PDU session according to the third mapping relationship between the second node's identifier and the first MAC address of the first node
  • the second node associated with 1 is T-node 1.
  • the UPF receives the MAC address of the first node in the IP data packet of PDU session 1 as B, it can determine the PDU according to the third mapping relationship between the identifier of the second node and the first MAC address of the first node.
  • the second node associated with session 1 is T node 2 .
  • the UPF receives the port number of the first node in the IP data packet of PDU session 2 as C, it can determine the PDU according to the third mapping relationship between the identifier of the second node and the first MAC address of the first node.
  • the second node associated with session 2 is T node 3 .
  • the first node can encapsulate the identifier of the first node in the data packet of the PDU Layer, so that after the UPF receives the IP data packet, it can Identify the associated second node in the PDU session according to the first node identifier in the IP data packet and the mapping relationship between the second node identifier and the first node first identifier.
  • Example 4 please refer to Figure 5D, the second node takes T-Node 1, T-Node 2 and T-Node 3 as examples, there are multiple sessions that can be established between the UPF and the first node, for example, there may be PDU Session 1 and PDU Session 2 .
  • PDU session 1 is used to transmit data of T node 1 and T node 2
  • PDU session 2 is used to transmit data of T node 3
  • PDU session 1 is associated with T node 1 and T node 2
  • PDU session 2 is associated with T node 3.
  • PDU session 1 and PDU session 2 include the same IP address IP1 of the first node, the first node has temporary identifiers: 01, 02 and 03, the first node assigns temporary identifier 01 to T node 1, the first node assigns temporary The ID 02 is assigned to T-Node 2, and the first node assigns a temporary ID 03 to T-Node 3.
  • the UPF when the UPF receives the temporary identifier of the first node in the IP packet of PDU session 1 as 01, it can determine the PDU session 1 associated
  • the second node is T-node1.
  • the UPF receives the temporary identifier of the first node in the IP packet of PDU session 1 as 02, it can determine the association of PDU session 1 according to the mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the second node of is T node 2.
  • the UPF when the UPF receives the temporary identifier of the first node in the IP packet of PDU session 2 as 03, it can determine the association of PDU session 2 according to the mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the second node of is T node 3.
  • the second node is also configured with a packet filter packet filter (s) (which may also be called a filter policy ), so that the second node is associated with a packet filter in the PDU session, and the packet filter can be used to filter or determine the QoS flow corresponding to the second node in the PDU session, and the QoS flow is used to transmit data associated with the second node; thus
  • the third node may identify the second node associated in the PDU session based on the packet filter and the mapping relationship between the first node and the second node.
  • the QoS flow corresponding to the second node in the PDU session takes QoS flow 1 and QoS flow 2 as examples
  • the first node sends the packet filter configured for the second node to the third node
  • the third node may filter out QoS flow 1 and QoS flow 2 according to the packet filter, and then the third node determines to put the service flow corresponding to the second node into QoS flow 1 and QoS flow 2 for transmission.
  • the third node may base on the public network IP address of the first node in the packet filter and the identity of the second node and the first node's first node The first mapping relationship between an IP address identifies the second node associated in the PDU session; if the packet filter includes the port number (port) of the first node, the third node can be based on the first node in the packet filter The port number (port) of a node and the second mapping relationship between the identification of the second node and the first port number of the first node identify the second node associated in the PDU session; if the packet filter includes the first MAC address of a node, then the third node can identify the PDU session based on the MAC address of the first node in the packet filter and the third mapping relationship between the identification of the second node and the first MAC address of the first node The second node associated in .
  • the third node may base on the temporary identifier of the first node in the packet filter and the mapping between the identifier of the second node and the first identifier of the first node A relationship identifying a second node associated in the PDU session.
  • the third node can identify the second node associated in the PDU session based on the packet filter and the above-mentioned mapping relationship between the first node and the second node, the accuracy of identifying the second node by the third node can be effectively improved .
  • the first node can send the mapping relationship between the second node and the first node to the core network, so that the third node can identify (that is, perceive or manage) the second node, so as to implement the second node The management of the services provided by the second node to better suit the needs of the second node.
  • the third node and the first node have maintained or managed the mapping relationship between the second node and the first node, and the control information that the second node needs to report to the third node carries the identity of the second node
  • the third node may also identify data associated with the second node based on the mapping relationship and the identifier of the second node, so that the third node can make corresponding adjustments to the configuration information (eg, QoS flow-related parameters) of the second node.
  • FIG. 6 shows a control plane protocol architecture applicable to the first communication method provided by the embodiment of the present application.
  • the third node uses AMF as an example.
  • the control plane protocol architecture includes a radio resource control (radio resource control, RRC) layer, PDCP layer, RLC layer, MAC layer, PHY layer, etc. from top to bottom.
  • RRC radio resource control
  • N2stack is the N2 protocol stack and the N2 interface is the interface between the 5G core network element and the NG-RAN.
  • the communication between the first node and the second node may be performed through any one of a communication link (sparkLinkL2) protocol, a direct transfer application part (DTAP) protocol, and 5G integration.
  • sparkLinkL2 a communication link
  • DTAP direct transfer application part
  • the first node can communicate with the NG-RAN through the RRC layer, the PDCP layer, the RLC layer, the MAC layer and the physical layer, and communicate between the NG-RAN and the AMF (the third node) through the N2stack interface.
  • the second node can indirectly obtain the service passed by the third node through the first node.
  • the second node Since the second node does not support NAS signaling, the first node and the AMF support NAS signaling. Therefore, the second node can send the control information to be reported to the AMF to the first node, and the first node sends the control information and the identity of the second node to the AMF at the same time through the NAS information, so that the AMF can and the mapping relationship between the second node and the first node to identify data associated with the second node (for example, QoS flow).
  • Figure 7A also provides a corresponding schematic diagram of the scene.
  • the second node takes T node 1-T node N as an example, and the first node can simultaneously send the T node identifier and its corresponding control information to The AMF, and furthermore, the AMF may identify data associated with the second node based on the mapping relationship between the identifier of the second node and the first node and the identifier of the second node.
  • FIG. 7B shows the communication process between the second node and the third node when there is no PDU session:
  • the second node sends second information to the first node.
  • the first node receives the second information.
  • the second information includes link state information and/or node state information.
  • the link state information includes at least one of the short-range measurement quantity (short-distance air interface state information), and the link state measurement quantity between the short-distance node and the 5G core network.
  • Short-distance measurements include reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), signal to interference plus noise ratio (SINR), channel quality At least one of indication (channel quality indication, CQI), precoding matrix indication (precoding matrix indicator, PMI), rank indication (rank indication, RI) and time stamp; the link between the short-distance node and the 5G core network
  • the state measurement includes at least one of round-trip time (round-trip time, RTT), packet loss rate, jitter, and timestamp.
  • the second node may send the second information to the first node through the Bluetooth technology or the WiFi technology.
  • the first node adds the identifier of the second node to the second information to obtain third information.
  • the first node may add the identifier of the second node to the header or tail of the data packet corresponding to the second information, so as to obtain the third information.
  • the first node sends third information to the third node.
  • the third node receives the third information.
  • the third information may be carried in a NAS message. That is to say, the first node may send the third information to the third node through the NAS message.
  • the third node identifies the second node associated with the third information based on the mapping relationship between the first node and the second node.
  • mapping relationship between the first node and the second node is determined by the third node according to the pre-received first information.
  • the first information may be used to indicate the mapping relationship between the second node and the first node, including: the first information is used to indicate the relationship between the identifier of the second node and the first IP address of the first node or, the first information is used to indicate the second mapping relationship between the identifier of the second node and the first port number of the first node; or, the first information is used to indicate the identifier of the second node
  • the third mapping relationship with the first MAC address of the first node, or the first information is used to indicate the mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the third node may identify the second node associated with the third information based on the identifier of the second node and the first mapping relationship; or identify the second node associated with the third information based on the identifier of the second node and the second mapping relationship.
  • Two nodes; or, based on the identity of the second node and the third mapping relationship, identifying the second node associated with the third information; or, based on the identity of the second node and the difference between the identity of the second node and the first identity of the first node The mapping relationship among them identifies the second node associated with the third information.
  • the first node can add the control information of the second node after the identification of the second node , and send it to the third node, so that the third node can identify the data associated with the second node based on the first information, so that the third node can adjust the configuration information of the second node accordingly.
  • the first communication method provided by the embodiment of the present application may also include the following steps:
  • the third node determines configuration information based on the first information.
  • the configuration information includes at least one item of running state management information of the second node, node parameter update information, link state detection policy, node state reporting policy, and QoS configuration policy. Examples of such information are given below.
  • the running state management information includes: any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes: update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the link state detection strategy includes: at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the QoS configuration strategy includes: the corresponding relationship between the second node and the QoS flow in the PDU session.
  • the third node sends configuration information to the first node.
  • the first node receives the configuration information.
  • the first node sends the configuration information to the second node.
  • the second node receives the configuration information.
  • the first node may send the configuration information to the second node through Bluetooth.
  • the second node configures the second node based on the configuration information.
  • Example 1 when the configuration information includes the running state management information of the second node, the second node may configure the running state of the second node based on the running state management information.
  • the configuration information includes node parameter update information of the second node, and the second node can configure the node parameters (eg, version information, power information, hardware information, and software information) of the second node based on the running status management information.
  • the node parameters eg, version information, power information, hardware information, and software information
  • the configuration information includes the link state detection policy of the second node, and the second node can configure the link state monitoring mechanism of the second node based on the link state detection policy, such as configuring measurement objects, reporting objects, reporting thresholds, At least one of reporting period and event parameters.
  • the configuration information includes the node status reporting policy of the second node, and the second node can configure the node status reporting mechanism of the second node based on the node status reporting policy, such as configuring at least one of the reporting object, reporting period and reporting event item.
  • the configuration information includes the QoS configuration policy of the second node, and the second node may configure or adjust a transmission channel for data associated with the second node based on the QoS configuration policy.
  • Example 6 when the configuration information includes the running state management information and node parameter update information of the second node, the second node can configure the running state of the second node based on the running state management information, and the second node can manage the information, configuring node parameters (for example, version information, power information, hardware information, and software information) of the second node.
  • node parameters for example, version information, power information, hardware information, and software information
  • the configuration information includes the link state detection policy and the node state reporting policy of the second node
  • the second node can configure the link state monitoring mechanism of the second node based on the link state detection policy, such as configuring measurement objects, reporting At least one of object, reporting threshold, reporting period and event parameters.
  • the second node may configure the node status reporting mechanism of the second node based on the node status reporting policy, for example, configuring at least one of reporting object, reporting period and reporting event.
  • the configuration information includes the link state detection policy of the second node, the node state reporting policy and the QoS configuration policy
  • the second node can configure the link state monitoring mechanism of the second node based on the link state detection policy, for example, configuring At least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the second node may configure the node status reporting mechanism of the second node based on the node status reporting policy, for example, configuring at least one of reporting object, reporting period and reporting event.
  • the second node may configure a transmission channel for data associated with the second node or adjust a transmission channel for data associated with the second node based on the QoS configuration policy.
  • the configuration information includes the running status management information of the second node, node parameter update information, link status detection strategy, node status reporting strategy and QoS configuration strategy
  • the second node may base the running status management information on the second node's Configure the running state; and, the second node can configure the node parameters of the second node based on the running state management information.
  • the second node may configure the link state monitoring mechanism of the second node based on the link state detection policy.
  • the second node may configure the node status reporting mechanism of the second node based on the node status reporting policy.
  • the second node may configure the transmission channel of the data associated with the second node based on the QoS configuration policy.
  • the configuration information may also include other parameters, which are not specifically limited in this embodiment of the present application.
  • the third node can manage and control at least one of the second node's running status management information, node parameter update information, link status detection strategy, node status reporting strategy, and QoS configuration strategy, so that the third node
  • the node can provide the second node with a service more suitable for the second node.
  • FIG. 9 shows the second communication method provided by the embodiment of the present application.
  • the execution bodies of the method are the first node and the fourth node.
  • the method includes:
  • the first node may acquire a fourth mapping relationship between the identifier of the second node and the IP address of the second node.
  • Table 5 shows an example of the fourth mapping relationship.
  • the second node takes T-node 1, T-node 2 and T-node 3 as examples, and the corresponding private IP address of T-node 1 is IP4
  • the private IP address corresponding to T node 2 is IP5 and the private IP address corresponding to T node 3 is IP6, then the first node can establish a mapping relationship as shown in Table 1.
  • ID of the second node The private IP address of the second node Identification of T-Node 1 IP4 Identification of T-node 2 IP5 Identification of T node 3 IP6
  • the first node sends the fourth mapping relationship to the fourth node.
  • the fourth node receives the fourth mapping relationship.
  • the fourth node determines the second node based on the fourth mapping relationship.
  • the fourth node receives the data packet of the second node, and can identify the second node according to the private IP address carried in the data packet of the second node and the fourth mapping relationship.
  • the fourth node can determine the second node based on the fourth mapping relationship between the identifier of the second node and the IP address of the second node and the IP address of the second node, so that the fourth node can identify (that is, perceive or management) the second node, so as to better provide services for the second node.
  • the third node only allocates a public network IP address to the first node in the PDU session, and the first node can allocate a private IP address to the second node it manages, so that the first node can A fifth mapping relationship between the identifier of the second node and the private IP address of the second node is established and sent to the third node.
  • the third node maintains or manages the first corresponding relationship between the PDU session and the public network IP address of the first node, and maintains or manages the first corresponding relationship between the public network IP address of the first node and the private IP address of the second node.
  • the third node can maintain the third correspondence between the PDU session identifier and the private IP address of the second node based on the first correspondence, the first correspondence and the fifth mapping. relation. Therefore, when the third node receives the packet filter associated with the PDU session, it can identify the second node according to the private IP address of the second node carried in the packet filter and the third corresponding relationship.
  • the QoS flow corresponding to the second node (that is, T node) in the PDU session takes QoS flow 1 and QoS flow 2 as examples, and the first node sends the packet filter configured for the T node to The third node, and the private IP address IP(T) of the T node can be carried in the packet filter, so that the third node can filter out the QoS flow 1 and the QoS flow 2 corresponding to the T node according to the packet filter, and the third node
  • the service flow corresponding to the T node can be put into QoS flow 1 and QoS flow 2 for transmission.
  • the second node takes T node 1, T node 2 and T node 3 as examples, T node 1 corresponds to a private IP address of IP7, T node 2 corresponds to a private IP address of IP8 and T node 3
  • the corresponding private IP address is IP9, and the private IP addresses are IP7, IP8, and IP9, all of which are associated with the public network IP address IP1 of the first node, and the public network IP address IP1 is associated with PDU session 1.
  • the private IP address of the second node carried in the filtering data packet associated with PDU session 1 received by the third node is IP7, and the third node can recognize that the second node is T-node1.
  • the private IP address of the second node carried in the filtered data packet associated with the PDU session 1 received by the third node is IP8, and the third node can recognize that the second node is T-node 2 .
  • the private IP address of the second node carried in the filtering data packet associated with PDU session 1 received by the third node is IP9, and the third node can recognize that the second node is T node 3 .
  • Fig. 11 is a schematic block diagram of an apparatus 1100 provided by an embodiment of the present application, which is used to realize the function of the first node in the above method embodiment.
  • the device may be a software module or a system on a chip.
  • the chip may consist of chips, or may include chips and other discrete devices.
  • the apparatus 1100 includes a processing module 1101 and a transceiver module 1102 .
  • a processing module 1101 configured to acquire first information; wherein, the first information is used to indicate a mapping relationship between the second node and the first node;
  • the transceiver module 1102 is configured to send the first information to a third node, where the first information is used to identify the second node associated in the protocol data unit PDU session.
  • the transceiver module 1102 may also be referred to as a communication interface, a communication unit, or an input/output interface.
  • the first information is used to indicate the mapping relationship between the second node and the first node, including: the first information is used to indicate that the identity of the second node and the first node of the first node A first mapping relationship between IP addresses, or, a second mapping relationship between the identifier of the second node and the first port number of the first node, or, an identifier of the second node and the first port number of the first node.
  • the first IP address is one of multiple public network IP addresses allocated to the first node in the PDU session.
  • the first port number is one of multiple port numbers allocated to the first node in the PDU session, and the PDU session includes a public network IP address of the first node.
  • the first identifier may be one of multiple identifiers temporarily assigned by the first node.
  • the first information is carried in a non-access stratum NAS message
  • the NAS message is any one of a NAS message in a PDU session establishment process, a PDU session modification process, and a registration process.
  • the NAS message may include, but not limited to, any one of a registration request message, an access session request message, a PDU session establishment request message, and a PDU session modification request message.
  • the first information when the first information is used to indicate the first mapping relationship between the identifier of the second node and the first IP address of the first node, or the first mapping relationship between the identifier of the second node and the first port number of the first node In the case of two mapping relationships, the first information may be carried in PDU session update information. For another example, when the first information is used to indicate the third mapping relationship between the identity of the second node and the first MAC address of the first node, or the mapping between the identity of the second node and the first identity of the first node When the first node has a relationship, the first information may be carried in any NAS information after the first node successfully registers.
  • the second node is associated with a packet filter in the PDU session, and the packet filter is used to determine a QoS flow corresponding to the second node in the PDU session.
  • the transceiving module 1102 is further configured to receive access-side session request information or access-side session modification request information from the second node; the processing module 1101 may also determine that the second The node is associated with the PDU session; the first mapping relationship is established based on the identifier of the second node and the first IP address associated with the PDU session; or, based on the identifier of the second node, and Establish the second mapping relationship with the first port number associated with the PDU session; or, establish the third mapping relationship based on the identity of the second node and the first MAC address, or, Based on the identifier of the second node and the first identifier, a mapping relationship between the identifier of the second node and the first identifier of the first node is established.
  • the access side session request information is used to instruct the second node to request the first node to allocate a PDU session
  • the access side session modification request information is used to instruct the second node to request the first node to modify the PDU session.
  • the transceiver module 1102 may also receive second information from the second node, where the second information includes link state information and/or node state information
  • the processing module 1101 may also add the identifier of the second node to the second information to obtain third information; furthermore, the transceiver module 1102 sends the third information to the third node.
  • the link state information includes at least one of the short-range measurement quantity (short-distance air interface state information), and the link state measurement quantity between the short-distance node and the 5G core network.
  • the transceiver module 1102 may also receive configuration information from the third node, where the configuration information includes the running state management information of the second node, node parameter update information, and link state detection information. At least one of policy and QoS configuration policy; sending the configuration information to the second node.
  • the link state detection strategy includes at least one of measurement objects, reporting objects, reporting thresholds, reporting periods, and event parameters.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the transceiving module 1102 may also send the fourth mapping relationship between the identifier of the second node and the IP address of the second node to the fourth node.
  • the transceiver module 1102 communicates with the second node based on the first communication technology; and communicates with the third node based on the second communication technology.
  • Fig. 12 is a schematic block diagram of an apparatus 1200 provided by an embodiment of the present application, which is used to realize the function of the first node in the above method embodiment.
  • the device may be a software module or a system on a chip.
  • the chip may consist of chips, or may include chips and other discrete devices.
  • the apparatus 1200 includes a processing module 1201 and a transceiver module 1202 .
  • a processing module 1201 configured to receive first information, where the first information is used to indicate a mapping relationship between the second node and the first node;
  • the transceiving module 1202 is configured to identify the second node associated in the protocol data unit PDU session based on the first information.
  • the first information is used to indicate the mapping relationship between the second node and the first node, including: the first information is used to indicate the identity of the second node and the first node The first mapping relationship between the first IP addresses of the nodes, or the second mapping relationship between the identifier of the second node and the first port number of the first node, or the identifier of the second node and the first port number of the first node A third mapping relationship between the first MAC addresses of the first nodes, or a mapping relationship between the identifier of the second node and the first identifier of the first node.
  • the first IP address is any one of multiple public network IP addresses allocated to the first node in the PDU session.
  • the first port number is any one of multiple port numbers allocated to the first node in the PDU session, and the PDU session includes a public network IP address of the first node.
  • the first MAC address is one of multiple MAC addresses derived by the first node according to its own unique MAC address.
  • the first identifier may be one of multiple identifiers temporarily assigned by the first node.
  • the first information is carried in a non-access stratum NAS message
  • the NAS message is any one of a NAS message in a PDU session establishment process, a PDU session modification process, and a registration process.
  • the NAS message may include, but not limited to, any one of a registration request message, an access session request message, a PDU session establishment request message, and a PDU session modification request message.
  • the first information when the first information is used to indicate the first mapping relationship between the identifier of the second node and the first IP address of the first node, or the first mapping relationship between the identifier of the second node and the first port number of the first node In the case of two mapping relationships, the first information may be carried in PDU session update information. For another example, when the first information is used to indicate the third mapping relationship between the identity of the second node and the first MAC address of the first node, or the mapping between the identity of the second node and the first identity of the first node When the first node has a relationship, the first information may be carried in any NAS information after the first node successfully registers.
  • the second node is associated with a packet filter in the PDU session, and the packet filter is used to determine the quality of service (QoS) flow corresponding to the second node in the PDU session.
  • QoS quality of service
  • the QoS flow is used to transmit data associated with the second node;
  • the processing module 1201 can identify the PDU session based on the public network IP address of the first node in the packet filter and the first mapping relationship or, based on the port number of the first node in the packet filter and the second mapping relationship, identify the second node associated in the PDU session; or , based on the MAC address of the first node in the packet filter and the third mapping relationship, identify the second node associated in the PDU session; or, the packet filter in the The identifier of the first node and the mapping relationship between the identifier of the second node and the first identifier of the first node identify the second node associated in the PDU session.
  • the transceiver module 1202 may further: receive third information, where the third information includes the identity of the second node and link state information and/or node state information; the processing module 1201 may also: identify the second node associated with the third information based on the identifier of the second node and the first mapping relationship; or, based on the second The identifier of the node and the second mapping relationship, identifying the second node associated with the third information; or, based on the identifier of the second node and the third mapping relationship, identifying the third information association or, based on the identity of the second node and the mapping relationship between the identity of the second node and the first identity of the first node, identify the second node associated with the third information .
  • the processing module 1201 may also determine configuration information based on the first information, where the configuration information includes the running state management information of the second node, node parameter update information, and link state detection information. At least one of policy and QoS configuration policy; sending the configuration information to the first node.
  • the link state detection policy includes at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the transceiver module 1202 communicates with the first node based on the second communication technology; and provides services for the second node based on the first communication technology based on the second communication technology.
  • Fig. 13 is a schematic block diagram of an apparatus 1300 provided by an embodiment of the present application, which is used to realize the function of the first node in the above method embodiment.
  • the device may be a software module or a system on a chip.
  • the chip may consist of chips, or may include chips and other discrete devices.
  • the apparatus 1300 includes a processing module 1301 and a transceiver module 1302 .
  • a transceiver module 1302 configured to receive configuration information from the first node, where the configuration information includes at least one of the running state management information of the second node, node parameter update information, link state detection policy, and quality of service QoS configuration policy
  • the link state detection policy includes at least one of a measurement object, a reporting object, a reporting threshold, a reporting period, and an event parameter.
  • the running state management information includes any one of the power-on state, power-off state and sleep state of the second node.
  • the node status update information includes update information corresponding to any one of the second node's version information, battery information, hardware information, and software information.
  • the node status reporting strategy includes: at least one of reporting object, reporting cycle and reporting event.
  • the transceiving module 1302 may also send access-side session request information or access-side session modification request information to the first node. It can be understood that the access side session request information is used to instruct the second node to request the first node to allocate a PDU session, and the access side session modification request information is used to instruct the second node to request the first node to modify the PDU session.
  • the transceiver module 1302 may also send second information to the first node, where the second information includes link state information and/or node state information.
  • the link state information includes at least one of the short-range measurement quantity (short-distance air interface state information), and the link state measurement quantity between the short-distance node and the 5G core network.
  • the transceiver module 1302 communicates with the first node based on the first communication technology, and obtains the service provided based on the second communication technology through the third node.
  • FIG. 14 is a schematic block diagram of an apparatus 1400 provided by an embodiment of the present application, which is used to realize the function of the fourth node in the above method embodiment.
  • the device may be a software module or a system on a chip.
  • the chip may consist of chips, or may include chips and other discrete devices.
  • the apparatus 1400 includes a processing module 1401 and a transceiver module 1402 .
  • a transceiver module 1402 configured to receive from the first node a fourth mapping relationship between the identifier of the second node and the IP address of the second node;
  • a processing module 1401 configured to determine the second node based on the third mapping relationship and the IP address of the second node.
  • each functional module may be integrated into one processor, or physically exist separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • FIG. 15 is a schematic diagram of an apparatus 1500 provided by an embodiment of the present application.
  • the apparatus 1500 may be a node, or a component of a node, such as a chip or an integrated circuit.
  • the apparatus 1500 can include at least one processor 1502 and a communication interface 1504 .
  • the device may further include at least one memory 1501 .
  • a bus 1503 may also be included. Wherein, the memory 1501 , the processor 1502 and the communication interface 1504 are connected through a bus 1503 .
  • the memory 1501 is used to provide a storage space, in which data such as operating systems and computer programs can be stored.
  • the memory 1501 mentioned in the embodiment of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • Processor 1502 is a module for performing arithmetic operations and/or logical operations, specifically, it may be a central processing unit (central processing unit, CPU), a picture processor (graphics processing unit, GPU), a microprocessor (microprocessor unit, MPU), Application specific integrated circuit (ASIC), field programmable logic gate array (field programmable gate array, FPGA), complex programmable logic device (complex programmable logic device, CPLD), coprocessor (to assist the central processing unit to complete Corresponding processing and application), microcontroller unit (microcontroller unit, MCU) and other processing modules or a combination of more.
  • CPU central processing unit
  • CPU central processing unit
  • MPU graphics processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable logic gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • coprocessor to assist the central processing unit to complete Corresponding processing and application
  • microcontroller unit microcontroller unit, MCU
  • the processor is a general-purpose processor, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • Communication interface 1504 may be used to provide information input or output to the at least one processor. And/or the communication interface can be used to receive data sent from the outside and/or send data to the outside, which can be a wired link interface such as an Ethernet cable, or a wireless link (Wi-Fi, Bluetooth, General wireless transmission, vehicle short-distance communication technology, etc.) interface.
  • the communication interface 1504 may further include a transmitter (such as a radio frequency transmitter, an antenna, etc.) or a receiver coupled with the interface.
  • the foregoing apparatus 1500 may be the first node or components in the first node in the foregoing method embodiments, such as a chip or an integrated circuit.
  • the foregoing apparatus 1500 may be the third node or components in the third node in the above method embodiments, such as a chip or an integrated circuit.
  • the foregoing apparatus 1500 may be the second node or a component in the second node in the foregoing method embodiments, such as a chip or an integrated circuit.
  • the foregoing apparatus 1500 may be the fourth node or components in the fourth node in the foregoing method embodiments, such as a chip or an integrated circuit.
  • the embodiment of the present application also provides a terminal, and the terminal may be an intelligent terminal such as a smart phone, a notebook, and a tablet computer with a short-distance communication function, a mouse, a keyboard, an earphone, an audio system, or a vehicle-mounted playback device.
  • the terminal includes a first device and/or a second device, and the first device and the second device may be the first node and the second node in the embodiment shown in FIG. 3 above, respectively.
  • the types of the first device and the second device may be the same or different.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the method and the device are conceived based on the same or similar technology. Since the principle of solving the problem of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method described in the above embodiments.
  • An embodiment of the present application further provides a system on chip, where the system on chip includes at least one processor and an interface circuit. Further optionally, the chip system may further include a memory or an external memory. The processor is configured to perform instruction and/or data interaction through the interface circuit, so as to implement the methods in the above method embodiments.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiments of the present application also provide a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method described in the above embodiments.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, or a coprocessor etc., can implement or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a digital video disc (digital video disc, DVD for short)
  • a semiconductor medium for example, SSD
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、装置及***,涉及通信技术领域,可以用于自动驾驶、智能驾驶或者辅助驾驶。该方法包括:获取第一信息,第一信息用于指示第二节点与第一节点的映射关系;向第三节点发送第一信息,第一信息用于识别协议数据单元PDU会话中关联的第二节点。通过该方法,本申请实施例中第一节点可以将第二节点(即不支持NAS信令传输的终端节点)与第一节点的映射关系发送至核心网,使得核心网可以识别(即感知或管理)不支持NAS信令传输的终端节点,从而实现对终端节点提供的服务的管理,以更好适用于终端设备的需求。该方法可以应用于车联网,如车辆外联V2X、车间通信长期演进技术LTE-V、车辆-车辆V2V等。

Description

一种通信方法、装置及***
相关申请的交叉引用
本申请要求在2021年10月19日提交中国专利局、申请号为202111216597.X、申请名称为“一种通信方法、装置及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置及***。
背景技术
为了能够使不同的通信***优势互补,经常将不同的通信***进行融合。例如,短距通信***,通信距离相对有限,但是终端功耗低,成本低;第五代(5th generation,5G)蜂窝网络通信***可以提供宏覆盖,通信范围广,但是终端的功耗和成本相对较高。基于此,可以通过将短距通信***与5G蜂窝网络通信***进行融合,从而使得融合后的通信***能够实现低功耗,低成本的远距离传输。
然而,一些短距通信***内的终端不支持非接入层(non access stratum,NAS)信令传输,因此,需要通过短距中的支持NAS信令传输的节点(如管理节点)接入蜂窝网络,从而间接享有5G核心网提供的服务。因此,当一个(protocol data unit,PDU)会话中包含多个不支持NAS信令的节点的数据时,如何使5G核心网感知这些节点,以及在PDU会话中这些节点进行管理(例如,策略配置),是亟需解决的技术问题。
发明内容
本申请实施例提供一种通信方法、装置及***,用以使5G核心网感知不支持NAS信令传输的终端设备,以及对不支持NAS信令传输的终端设备进行管理。
第一方面,本申请实施例提供了一种通信方法,可以应用于第一节点。该方法包括:获取第一信息,第一信息用于指示第二节点与第一节点的映射关系;向第三节点发送第一信息,第一信息用于识别协议数据单元PDU会话中关联的第二节点。
通过该方法,本申请实施例中第一节点可以将第二节点(即不支持NAS信令传输的终端节点)与第一节点的映射关系发送至第三节点(核心网),使得核心网可以识别(即感知或管理)不支持NAS信令传输的终端节点,从而实现对不支持NAS信令传输的终端节点提供的服务的管理,以更好适用于不支持NAS信令传输的终端设备的需求。
在一种可能的设计中,第一信息用于指示第二节点与第一节点的映射关系包括:第一信息用于指示第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或,第二节点的标识与第一节点的第一端口号之间的第二映射关系,或,第二节点的标识与第一节点的第一媒体访问控制MAC地址之间的第三映射关系,或,第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,第一节点是第二节点的管理节点,第一节点可以用于管理或维护第二 节点的信息。第一节点和第二节点之间的映射关系是指第一节点基于其管理的第二节点的信息(例如标识)和第一节点的特定信息建立了一个映射关系,并把该映射关系发送至核心网,使得核心网能够感知第一节点,以及第一节点管理的第二节点的信息。
在该设计中,提供了多种第一节点和第二节点之间的映射关系的实现方式,使得第三节点可以通过多种方式灵活地识别第二节点。
在一种可能的设计中,第一IP地址是在PDU会话中为第一节点分配的多个公网IP地址中的一个。第一端口号是在PDU会话中为第一节点分配的多个端口号中的一个。第一MAC地址为第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个。第一标识可以是第一节点临时分配的多个标识中的一个标识。第一标识用于和第二节点的标识建立映射关系。
可以理解的是,PDU会话包括第一节点的多个公网IP地址时,第二节点与第一节点的映射关系为第二节点的标识与第一节点的第一IP地址之间的第一映射关系。其中,PDU会话包括第一节点的一个公网IP地址时,第二节点与第一节点的映射关系为第二节点的标识与第一节点的第一端口号之间的第二映射关系。
在一种可能的设计中,第一信息承载于非接入层NAS消息,所述第一信息承载于非接入层NAS消息,所述NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。示例性的,NAS消息可以包括但不限于注册请求消息、接入会话请求消息、PDU会话建立请求消息和PDU会话修改请求消息中的任一种。
在该设计中,提供了一种第一信息的发送方式,且第一节点可以在多种情况中将第一信息发送至第三节点。
在一种可能的设计中,在PDU会话中第二节点关联包过滤器,包过滤器用于确定PDU会话中第二节点对应的服务质量QoS流。
可以理解的是,一个PDU会话关联一个或多个包过滤器(也称作包过滤器集合),包过滤中携带了第一节点的IP地址和端口号,而第一节点的IP地址或端口号与第二节点的建立了映射关系,因此,PDU会话关联的包过滤器可以与第二节点关联。如此,在该设计中,第三节点可以通过包过滤器中携带第一节点的IP地址和端口号、或第一节点的MAC地址、或第一节点的标识、以及第一节点和第二节点之间的映射关系,从PUD会话中识别第二节点,从而第三节点可以对第二节点的QoS策略进行调整。
在一种可能的设计中,第一节点获取第一信息,可以包括:接收来自第二节点的接入侧会话请求信息或接入侧会话修改请求信息;确定第二节点关联PDU会话;基于第二节点的标识、与PDU会话关联的第一IP地址,建立第一映射关系;或者,基于第二节点的标识、与PDU会话关联的第一端口号,建立第二映射关系;或者,基于第二节点的标识、与第一MAC地址,建立第三映射关系;或者,基于第二节点的标识、与第一标识,建立第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,接入侧会话请求信息用于指示第二节点向第一节点请求分配PDU会话,接入侧会话修改请求信息用于指示第二节点向第一节点请求修改PDU会话。
在该设计中,第一节点在接收到来自第二节点的PDU会话相关信息之后,为第二节点关联相应的PDU会话,第一节点可以建立第二节点与第一节点之间的映射关系。由于PDU会话是第一节点根据第二节点需求为第二节点分配的,但PDU会话直接与第一节点关联(在第一节点与核心网之间建立),如此,使得第三节点可以根据该映射关系,可以 确定PDU会话或PDU会话中的数据与第二节点的对应关系,从而可以识别出PDU会话中关联的第二节点。
在一种可能的设计中,第一节点在向第三节点发送第一信息之后,还可以:接收来自第二节点的第二信息,第二信息包括链路状态信息和/或节点状态信息;在第二信息中增加第二节点的标识,得到第三信息;向第三节点发送第三信息。
其中,链路状态信息包括短距测量量(短距空口状态信息)、短距节点与5G核心网之间的链路状态测量量中的至少一项。
在该设计中,第一节点在向第三节点发送第一信息之后,若接收到第二节点的控制信息(第二信息),可以在该控制信息添加第二节点的标识,并发送给第三节点,如此,第三节点可以基于第一信息,识别第二节点关联的数据(例如QoS流),从而便于第三节点对第二节点的配置信息(QoS流相关参数)进行相应的调整。
在一种可能的设计中,第一节点还可以:接收来自第三节点的配置信息,配置信息包括第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;将配置信息发送至第二节点。
在该设计中,第一节点可以将第三节点为第二节点制定的配置信息转发至第二节点。如此,可以实现第三节点对第二节点的配置,从而使得第三节点为第二节点提供的服务更好地适配于第二节点的需求。
在一种可能的设计中,其中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的设计中,第一节点还可以:将第二节点的标识与第二节点的IP地址之间的第四映射关系,发送至第四节点。在该设计中,第一节点通过将第二节点的标识与第二节点的IP地址之间的第四映射关系,发送至第四节点,使得第四节点可以识别第二节点,从而为第二节点提供服务。
在一种可能的设计中,第一节点基于第一通信技术与第二节点进行通信;以及基于第二通信技术与第三节点进行通信。
第二方面,本申请实施例提供了一种通信方法,可以应用于第三节点。该方法包括:接收与第一信息,第一信息用于指示第二节点与第一节点的映射关系;基于第一信息,识别协议数据单元PDU会话中关联的第二节点。
通过该方法,本申请实施例中第三节点可以维护或管理第二节点(即不支持NAS信令传输的终端节点)与第一节点的映射关系,并且可以识别(即感知或管理)不支持NAS信令传输的终端节点,从而实现对不支持NAS信令传输的终端节点提供的服务的管理,以更好适用于不支持NAS信令传输的终端设备的需求。
在一种可能的设计中,第一信息用于指示第二节点与第一节点的映射关系,包括:第一信息用于指示第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或,第二节点的标识与第一节点的第一端口号之间的第二映射关系,或,第二节点的标识与第一节点的第一媒体访问控制MAC地址之间的第三映射关系,或,第二节点的标识与第一节点的第一标识之间的映射关系。
在一种可能的设计中,第一IP地址是在PDU会话中为第一节点分配的多个公网IP地址中的一个。
在一种可能的设计中,第一端口号是在PDU会话中为第一节点分配的多个端口号中的一个。其中,PDU会话包括第一节点的一个公网IP地址。
在一种可能的设计中,第一MAC地址为第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个。第一标识可以是第一节点临时分配的多个标识中的一个标识。
在一种可能的设计中,所述第一信息承载于非接入层NAS消息,所述NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。示例性的,NAS消息可以包括但不限于注册请求消息、接入会话请求消息、PDU会话建立请求消息和PDU会话修改请求消息中的任一种。
在一种可能的设计中,在PDU会话中第二节点关联包过滤器,包过滤器用于确定PDU会话中第二节点对应的服务质量QoS流,QoS流用于传输与第二节点关联的数据;基于第一信息,识别协议数据单元PDU会话中关联的第二节点,包括:基于包过滤器中的第一节点的公网IP地址和第一映射关系,识别PDU会话中关联的第二节点;或者,基于包过滤器中的第一节点的端口号和第二映射关系,识别PDU会话中关联的第二节点;或者,基于包过滤器中的第一节点的MAC地址和第三映射关系,识别PDU会话中关联的第二节点,或者,基于包过滤器中的第一节点的标识、以及第二节点的标识与第一节点的第一标识之间的映射关系,识别PDU会话中关联的第二节点。
在一种可能的设计中,在接收来自第一节点的第一信息之后,第三节点还可以:接收第三信息,第三信息包括第二节点的标识、链路状态信息和/或节点状态信息;基于第二节点的标识和第一映射关系,识别第三信息关联的第二节点;或者,基于第二节点的标识和第二映射关系,识别第三信息关联的第二节点;或者,基于第二节点的标识和第三映射关系,识别第三信息关联的第二节点;基于第二节点的标识、和第二节点的标识与第一节点的第一标识之间的映射关系,识别第三信息关联的第二节点。其中,链路状态信息包括短距测量量(短距空口状态信息)、短距节点与5G核心网之间的链路状态测量量中的至少一项。
在一种可能的设计中,第三节点还可以:基于第一信息,确定配置信息,配置信息包括第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;向第一节点发送配置信息。
在一种可能的设计中,其中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的设计中,第三节点还可以:基于第二通信技术与第一节点进行通信;以及基于第二通信技术为基于第一通信技术的第二节点提供服务。
第三方面,本申请实施例提供了一种通信方法,可以应用于第二节点。该方法包括:接收来自第一节点的配置信息,配置信息包括第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和服务质量QoS配置策略中的至少一项;基于配置信息,配置第二节点。
通过本申请的方法,第二节点接收到第一节点转发的配置信息,可以基于配置信息对第二节点进行相应的配置。
在一种可能的设计中,其中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的设计中,第二节点还可以向第一节点发送接入侧会话请求信息或接入侧会话修改请求信息。可以理解的是,接入侧会话请求信息用于指示第二节点向第一节点请求分配PDU会话,接入侧会话修改请求信息用于指示第二节点向第一节点请求修改PDU会话。
在一种可能的设计中,第二节点还可以向第一节点发送第二信息,第二信息包括链路状态信息和/或节点状态信息。
在一种可能的设计中,第二节点还可以基于第一通信技术与第一节点进行通信,以及通过第三节点获取基于第二通信技术提供的服务。
第四方面,本申请实施例提供了一种通信方法,可以应用于第四节点。该方法包括:从第一节点接收第二节点的标识与第二节点的IP地址之间的第四映射关系;基于第四映射关系和第二节点的IP地址,确定第二节点。
通过该方法,第四节点可以基于第二节点的标识与第二节点的IP地址之间的第四映射关系以及第二节点的IP地址,确定第二节点,使得第四节点可以识别(即感知或管理)第二节点,从而可以更好地为第二节点提供服务。
第五方面,本申请实施例提供了一种通信装置,该装置用于实现上述第一方面或第一方面中任意一种方法,包括相应的功能模块或单元,分别用于实现上述第一方面方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相应的模块或单元。
示例性的,该通信装置可以包括:处理模块,用于获取第一信息;其中,所述第一信息用于指示第二节点与所述第一节点的映射关系;收发模块,用于向第三节点发送所述第一信息,所述第一信息用于识别协议数据单元PDU会话中关联的所述第二节点。
在一种可能的设计中,所述第一信息用于指示第二节点与所述第一节点的映射关系,包括:所述第一信息用于指示所述第二节点的标识与所述第一节点的第一IP地址之间的第一映射关系,或,所述第二节点的标识与所述第一节点的第一端口号之间的第二映射关系,或,所述第二节点的标识与所述第一节点的第一媒体访问控制MAC地址之间的第三映射关系,或者是第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,所述第一IP地址是在所述PDU会话中为所述第一节点分配的多个公网IP地址中的一个。所述第一端口号是在所述PDU会话中为所述第一节点分配的多个端口号中的一个,PDU会话包括所述第一节点的一个公网IP地址。第一标识可以是第一节点临时分配的多个标识中的一个标识。
在一种可能的设计中,所述第一信息承载于非接入层NAS消息,所述NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。示例性的,NAS消息可以包括但不限于注册请求消息、接入会话请求消息、PDU会话建立请求消息和PDU 会话修改请求消息中的任一种。
在一种可能的设计中,在所述PDU会话中所述第二节点关联包过滤器,所述包过滤器用于确定所述PDU会话中所述第二节点对应的服务质量QoS流。
在一种可能的设计中,所述收发模块还用于接收来自所述第二节点的接入侧会话请求信息或接入侧会话修改请求信息;处理模块还可以确定所述第二节点关联所述PDU会话;基于所述第二节点的标识、与所述PDU会话关联的所述第一IP地址,建立所述第一映射关系;或者,基于所述第二节点的标识、与所述PDU会话关联的所述第一端口号,建立所述第二映射关系;或者,基于所述第二节点的标识、与所述第一MAC地址,建立所述第三映射关系,或者,基于所述第二节点的标识、与所述第一标识,建立第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,接入侧会话请求信息用于指示第二节点向第一节点请求分配PDU会话,接入侧会话修改请求信息用于指示第二节点向第一节点请求修改PDU会话。
在一种可能的设计中,收发模块在向第三节点发送所述第一信息之后,还可以接收来自所述第二节点的第二信息,所述第二信息包括链路状态信息和/或节点状态信息;处理模块还可以在所述第二信息中增加所述第二节点的标识,得到第三信息;进而收发模块向所述第三节点发送所述第三信息。其中,链路状态信息包括短距测量量(短距空口状态信息)、短距节点与5G核心网之间的链路状态测量量中的至少一项。
在一种可能的设计中,收发模块还可以接收来自所述第三节点的配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;将所述配置信息发送至所述第二节点。
其中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的实施方式中,收发模块还可以将所述第二节点的标识与所述第二节点的IP地址之间的第四映射关系,发送至第四节点。
在一种可能的实施方式中,收发模块可以基于第一通信技术与所述第二节点进行通信;以及基于第二通信技术与所述第三节点进行通信。
第六方面,本申请实施例提供了一种通信装置,该装置用于实现上述第二方面或第二方面中任意一种方法,包括相应的功能模块或单元,分别用于实现上述第二方面方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相应的模块或单元。
示例性的,该通信装置可以包括:所述装置包括:收发模块,用于接收第一信息,所述第一信息用于指示第二节点与第一节点的映射关系;处理模块,用于基于所述第一信息,识别协议数据单元PDU会话中关联的所述第二节点。
在一种可能的设计中,所述第一信息用于指示第二节点与所述第一节点的映射关系,包括:所述第一信息用于指示所述第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或,所述第二节点的标识与第一节点的第一端口号之间的第二映射关系,或,所述第二节点的标识与第一节点的第一媒体访问控制MAC地址之间的第三映射关系,或, 第二节点的标识和第一节点的第一标识之间的映射关系。
其中,所述第一IP地址是在所述PDU会话中为所述第一节点分配的多个公网IP地址中的任一个。所述第一端口号是在所述PDU会话中为所述第一节点分配的多个端口号中的任一个,所述PDU会话包括所述第一节点的一个公网IP地址。第一MAC地址为第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个。第一标识可以是第一节点临时分配的多个标识中的一个标识。
在一种可能的设计中,所述第一信息承载于非接入层NAS消息,所述NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。示例性的,NAS消息可以包括但不限于注册请求消息、接入会话请求消息、PDU会话建立请求消息和PDU会话修改请求消息中的任一种。
在一种可能的设计中,在所述PDU会话中所述第二节点关联包过滤器,所述包过滤器用于确定所述PDU会话中所述第二节点对应的服务质量QoS流,所述QoS流用于传输与所述第二节点关联的数据;处理模块可以基于所述包过滤器中的所述第一节点的公网IP地址和所述第一映射关系,识别所述PDU会话中关联的所述第二节点;或者,基于所述包过滤器中的所述第一节点的端口号和所述第二映射关系,识别所述PDU会话中关联的所述第二节点;或者,基于所述包过滤器中的所述第一节点的MAC地址和所述第三映射关系,识别所述PDU会话中关联的所述第二节点;或者,所述包过滤器中的所述第一节点的标识、和第二节点的标识与第一节点的第一标识之间的映射关系,识别所述PDU会话中关联的所述第二节点。
在一种可能的设计中,收发模块在接收来自第一节点的第一信息之后,还可以:接收第三信息,所述第三信息包括所述第二节点的标识、链路状态信息和/或节点状态信息;处理模块1201还可以:基于所述第二节点的标识和所述第一映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和所述第二映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和所述第三映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和第二节点的标识与第一节点的第一标识之间的映射关系,识别所述第三信息关联的所述第二节点。
在一种可能的设计中,处理模块还可以基于所述第一信息,确定配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;向所述第一节点发送所述配置信息。
在一种可能的设计中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的设计中,收发模块可以基于第二通信技术与所述第一节点进行通信;以及基于所述第二通信技术为基于第一通信技术的第二节点提供服务。
第七方面,本申请实施例提供了一种通信装置,该装置用于实现上述第三方面或第三方面中任意一种方法,包括相应的功能模块或单元,分别用于实现上述第三方面方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一 个或多个与上述功能相应的模块或单元。
示例性的,该通信装置可以包括:收发模块,用于接收来自第一节点的配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和服务质量QoS配置策略中的至少一项;处理模块,用于基于所述配置信息,配置所述第二节点。
在一种可能的设计中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的设计中,收发模块还可以向第一节点发送接入侧会话请求信息或接入侧会话修改请求信息。可以理解的是,接入侧会话请求信息用于指示第二节点向第一节点请求分配PDU会话,接入侧会话修改请求信息用于指示第二节点向第一节点请求修改PDU会话。
在一种可能的设计中,收发模块还可以向所述第一节点发送第二信息,所述第二信息包括链路状态信息和/或节点状态信息。其中,链路状态信息包括短距测量量(短距空口状态信息)、短距节点与5G核心网之间的链路状态测量量中的至少一项。
在一种可能的实施方式中,收发模块基于第一通信技术与所述第一节点进行通信,以及通过第三节点获取基于第二通信技术提供的服务。
第八方面,本申请实施例提供了一种通信装置,该装置用于实现上述第四方面或第四方面中任意一种方法,包括相应的功能模块或单元,分别用于实现上述第四方面方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相应的模块或单元。示例性的,该通信装置可以包括:收发模块,用于从第一节点接收第二节点的标识与所述第二节点的IP地址之间的第四映射关系;处理模块,用于基于所述第三映射关系和所述第二节点的IP地址,确定所述第二节点。
第九方面,提供一种通信装置,该装置包括处理器和存储器。其中,存储器用于存储计算程序或指令,处理器与存储器耦合;当处理器执行计算机程序或指令时,使得该装置执行上述第一方面或第一方面中的任意一种方法,或者,使得该装置执行上述第二方面或第二方面中的任意一种方法,或者,使得该装置执行上述第三方面或第三方面中的任意一种方法,或者,使得该装置执行上述第四方面或第四方面中的任意一种方法。例如,所述通信装置可以是终端设备或终端设备内的部分组件(比如芯片)。所述终端设备例如可以是智能移动终端、智能家居设备、智能汽车、智能穿戴设备等等。其中,智能移动终端比如手机、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等。智能家居设备比如智能冰箱、智能洗衣机、智能电视机、音箱等。智能汽车穿戴设备比如智能耳机、智能眼镜、智能服饰或鞋子等。
第十方面,本申请提供一种芯片,芯片与存储器相连,用于读取并执行存储器中存储的计算机程序或指令,以实现上述第一方面或第一方面的任一种可能的设计中的方法;或以实现上述第二方面或第二方面的任一种可能的设计中的方法;或以实现上述第三方面或第三方面的任一种可能的设计中的方法;或以实现上述第四方面或第四方面的任一种可能 的设计中的方法。
第十一方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第一方面或第一方面的任意可能的设计中的方法;或使得该装置执行上述第二方面或第二方面的任意可能的设计中的方法;或使得该装置执行上述第三方面或第三方面的任意可能的设计中的方法;或以实现上述第四方面或第四方面的任一种可能的设计中的方法。
第十二方面,提供本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或指令,当计算机程序或指令被装置执行时,使得该装置执行上述第一方面或第一方面的任意可能的设计中的方法;或使得该装置执行上述第二方面或第二方面的任意可能的设计中的方法;或使得该装置执行上述第三方面或第三方面的任意可能的设计中的方法;或以实现上述第四方面或第四方面的任一种可能的设计中的方法。
第十三方面,提供本申请提供一种通信***,该通信***包括如上述第四方面至第八方面的所述的通信装置。
应理解,基于本申请所提供的技术方案,可应用于不同通信***融合场景下,从而使得在不同通信***进行融合通信场景下核心网提供的服务能够有效适用于不支持NAS信令传输的终端的需求。
附图说明
图1为本申请实施例提供的第一种通信***示意图;
图2A为本申请实施例提供的通信***示意图之一;
图2B为本申请实施例提供的通信***示意图之二;
图3为本申请实施例提供的第一种通信方法的流程示意图之一;
图4为本申请实施例提供的用户面控制协议架构示意图;
图5A为本申请实施例提供的第一种数据路由示意图;
图5B为本申请实施例提供的第二种数据路由示意图;
图5C为本申请实施例提供的第三种数据路由示意图;
图5D为本申请实施例提供的第四种数据路由示意图;
图5E为本申请实施例提供的第五种数据路由示意图;
图6为本申请实施例提供的控制面控制协议架构示意图;
图7A为本申请实施例适用的场景示意图;
图7B为本申请实施例提供的非PDU会话通信流程示意图;
图8为本申请实施例提供的第一种通信方法的流程示意图之二;
图9为本申请实施例提供的第二种通信方法的流程示意图;
图10为本申请实施例提供的第六种数据路由示意图;
图11为本申请实施例提供的一种通信装置结构示意图;
图12为本申请实施例提供的又一种通信装置结构示意图;
图13为本申请实施例提供的又一种通信装置结构示意图;
图14为本申请实施例提供的又一种通信装置结构示意图;
图15为本申请实施例提供的另一种通信装置结构示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中第二节点,为用于进行服务申请的节点(例如,T节点),可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。
(2)本申请实施例中第一节点,为用于对第二节点进行授权认证的节点(例如,G节点),或者第一节点可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。
(3)本申请实施例中第三节点,为用于为第二节点提供服务的节点(例如,核心网节点),可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,例如接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、用户面功能(user plane function,UPF)、数据网络(data network,DN)等功能实体中的至少一项,或者,第三节点可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片***。
(4)本申请实施例中第四节点,为用于为第二节点提供接入核心网服务的节点。可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,可以是接入网设备:例如可信的非第三代合作伙伴计划(3rd generation partnership project,3GPP)网关功能(trusted non-3GPP gateway function,TNGF)节点。
(5)数据协议单元(protocol data unit session,PDU)会话,可以理解为终端用户与核心网建立的用于数据传输的管道,这个管道里面可以承载一个或多个服务质量(quality of service,QoS)流,每个QoS流具有不同的QoS属性或QoS要求。
(6)本申请实施例中的术语“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c。
以及,在本申请实施例的描述中,以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例提供一种通信方法及装置,以使核心网可以识别不支持NAS的终端节点,从而实现对核心网为不支持NAS的终端节点提供的服务的管理。为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
可以理解的是,本申请实施例提供的通信方法可以应用到5G通信***,例如5G新空口(new radio,NR),也可以应用于未来的各种通信***,例如第六代(6th generation,6G)通信***,在此并不进行限定。
请参见图1,图1示出了本申请实施例提供了该通信方法适用的一种通信***的架构,该通信***可以包括第一节点110、第二节点120和第三节点130。
其中,第二节点120可以为终端节点,第一节点110可以为第二节点120的授权节点,第二节点120和第一节点110均可支持第一通信技术,第二节点120和第一节点110可以组成第一通信***,双方之间可以采用第一通信技术进行通信。第一节点110和第三节点130均可支持第二通信技术,第一节点110和第三节点130可以组成第二通信***,双方之间可以采用第二通信技术进行通信,第一通信技术和第二通信技术不同。在该第一通信技术和第二通信技术的融合通信场景中,第一通信***与第二通信***之间可以建立通信连接,组成异构式通信***,第一节点110、第二节点120、以及第三节点130可以在该异构式通信***中执行相应的通信业务和/或传输通信业务数据。
可选的,该通信***还可以包括第四节点140。第四节点140和第二节点120直接通信,也可以通过第一节点110和第二节点120间接通信,从而为第二节点120提供服务。
其中,第一通信技术和第二通信技术可以为不同的技术。相应的,本申请中该通信***可以为不同通信***融合后的通信***。示例性的,第一通信技术以无线短距通信技术为例,第二通信技术以5G蜂窝网络通信技术为例,则无线短距通信***与5G蜂窝网络通信***融合后可以得到本申请实施例适用的通信***。
其中,融合后的通信***还可以称为紧耦合(tight interworking)的通信***,或者互相配合(interworking)的通信***。在该融合后的通信***中,支持无线短距通信的终端节点可以通过控制节点或网关节点接入5G网络,进一步使用5G网络提供的服务。此外,5G网络还可以根据终端节点的签约信息和链路状态信息,对终端节点进行数据传输策略的配置和管理,以便为提供服务。也就是说,在该融合后的通信***中,无线短距通信***与5G蜂窝网络通信***可以交互工作,优势互补。
可选的,本申请所述的无线短距通信***,可以是任意可能的短距通信***,例如蓝牙,无线保真技术(wireless fidelity,Wi-Fi)、车载通用短距通信***以及等现在以及未来可能出现的短距通信***。相比5G通信***,短距通信***的覆盖范围较小,且通信距离较短,本申请不具体限定短距通信***的具体通信距离或覆盖范围,以相对5G通信***的通信距离较短为准。
示例性的,请参见图2A,图2A中以第一通信技术为短距通信技术、第二通信技术为5G蜂窝网络通信技术为例,第三节点130可以包括核心网设备:AMF、SMF、UPF以及数据网络(data network,DN)等功能实体中的至少一项。
图2A中的各个节点或功能实体之间可以通过接口连接,接口的序列号或接口的名称本申请实施例中不作限定,可以按照5G***的3GPP相关标准协议中定义的接口,也可以使用未来通信***中的接口。例如,第二节点120可以通过Yt接口与第一节点110通信,第一节点110可以通过Ta接口与新一代无线接入网(next generation radio access network,NG-RAN)通信,第二节点120可以通过NWt接口与NG-RAN通信。第二节点120、第一节点110可以通过下一代网络(next generation,N)1接口(简称N1)与AMF通信;NG-RAN通过N2接口(简称N2)与AMF通信,NG-RAN通过N3接口(简称N3)与本地UPF通信,UPF通过N6接口(简称N6)与DN通信。AMF通过N11接口(简称N11)与SMF通信,SMF通过N4接口(简称N4)与UPF通信。由此,使得5G网络能够透过该第一节点110来感知该第二节点120的设备状态、网络状态、业务状态等关键信息,达到远程对行业现场网络和业务的可达、可感、可管等。
又示例性的,请参见图2B,在图2B中的通信***中还可以包括第四节点140,第四 节点140例如可以为TNGF节点。其中,第二节点120可以通过Yt接口与第一节点110通信,第一节点110可以通过Ta接口与第四节点140通信,第二节点120可以通过NWt接口与第四节点140通信。由此,使得第四节点140能够透过该第一节点110来感知该第二节点120的设备状态、网络状态、业务状态等关键信息,达到远程对行业现场网络和业务的可达、可感、可管等。
需要说明的是,上述仅是示意性表示该异构式通信***中可以包括第一节点110、第二节点120、第三节点130和第四节点140,以及各个节点及其功能模块之间的通信方式,并不限定各个节点的数量以及接口的序列号或名称。在具体实施时,第一节点110、第二节点120、第三节点130和第四节点140的数量可以不限于1个。
可选的,本申请实施例中的终端设备,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位***(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
可选的,本申请实施例中的网络设备,可以包括接入网(access network,AN)设备,无线接入网(radio access network,RAN)设备,接入网设备例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络侧设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)***或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolved  Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)***中的下一代节点B(next generation node B,gNB)或者下一代演进型基站(next generation evolved nodeB,ng-eNB)、en-gNB(enhanced next generation node B,gNB):增强的下一代基站;也可以包括云接入网(cloud radio access network,Cloud RAN)***中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),或者还可以包括中继设备,本申请实施例并不限定。
如上介绍了本申请实施例涉及的应用架构,下面介绍本申请实施例的技术特征。
请参见图3,图3示出了本申请实施例提供第一种通信方法,该方法包括以下步骤:
S301、第一节点获取第一信息。
其中,第一信息用于指示第二节点与第一节点的映射关系。
可以理解的是,第二节点与第一节点的映射关系,是指第二节点的标识与第一节点的特定信息之间的映射关系。其中,第二节点的标识可以是用户永久标识(subscription permanent identifier,SUPI)或用户隐藏标识(subscription concealed identifier,SUCI),SUPI可以是5G通信***中的融合数据存储设备(unified data repository,UDR)或统一数据管理设备(unified data management,UDM)统一分配的国际移动订阅标识(international mobile subscriber identity,IMSI)或者网络接入标识(network access identifier,NAI);SUCI可以是对SUPI进行加密得到的,也就是说,SUCI可以理解为是SUPI的一种加密形式,可以有效提升第二节点的通信安全。
或者,第二节点的标识也可以是由第一节点临时为第二节点分配的,在该第一节点的管理域下可以唯一标识第二节点的标识,对于第一节点为第二节点分配的唯一标识的具体形式本申请实施例不作具体的限定。例如,第一节点管理的第二节点为T节点1和T节点2,第一节点为T节点1分配的标识可以是001、第一节点为T节点1分配的标识可以是002。再例如,第一节点管理的第二节点为T节点1和T节点2,第一节点为T节点1分配的标识可以是A、第一节点为T节点1分配的标识可以是B。
其中,第一节点的特定信息例如可以是第一节点的第一IP地址、第一端口号和第一MAC地址、第一节点的标识中的任一个。相应的,该映射关系例如可以是第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或者是第二节点的标识与第一节点的第一端口号之间的第二映射关系,或者是第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,或者是第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,第一IP地址是第三节点在PDU会话中为第一节点分配的多个公网IP地址中的一个。第一端口号是第三节点在PDU会话中为第一节点分配的多个端口号中的一个。第一MAC地址为第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个。第一标识可以是第一节点临时分配的多个标识中的一个标识。
相应的,第一信息用于指示第二节点与第一节点的映射关系,包括以下情况:
情况1,第一信息用于指示第二节点的标识与第一节点的第一IP地址之间的第一映射关系。
情况2,第一信息用于指示第二节点的标识与第一节点的第一端口号之间的第二映射关系。
情况3,第一信息用于指示第二节点的标识与第一节点的第一媒体访问控制MAC地址之间的第三映射关系。
情况4,第一信息用于指示第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,第一节点获取第一信息,有多种实现方式,包括但不限于以下方式:
实施方式一、第一节点通过和第二节点交互,确定第二节点关联的PDU会话,基于该PDU会话和第二节点的标识,获取第一信息。
可以理解的是,第一节点基于该PDU会话和第二节点的标识,获取第一信息,即第一节点基于该PDU会话和第二节点的标识,确定第一节点与第二节点之间的映射关系。
在一种可能的实施方式中,第一节点可以接收来自第二节点的接入侧会话请求信息或接入侧会话修改请求信息,确定第二节点关联的PDU会话。可以理解的是,接入侧会话请求信息用于指示第二节点向第一节点请求分配PDU会话,接入侧会话修改请求信息用于指示第二节点向第一节点请求修改PDU会话。相应的,例如,第一节点基于接入侧会话请求信息或接入侧会话修改请求信息,确定是否存在满足第二节点的当前业务需求的PDU会话,若有,则该第一节点可以确定不为该第二节点建立新的PDU会话,直接为第二节点分配PDU会话。若无,则该第一节点可以确定为该第一节点建立新的PDU会话。可选的,第一节点为第二节点确定PDU会话之后,还可以向第二节点发送该PDU的相关信息(例如,PDU会话的标识和类型等)。
其中,本申请实施例提供的第一节点与第二节点之间的映射关系设计方式,包括但不限于以下方式:
设计方式1,第一节点基于第二节点的标识、与PDU会话关联的第一IP地址,建立第二节点的标识与第一节点的第一IP地址之间的第一映射关系。
需要说明的是,在设计方式1中,第二节点关联的PDU会话包括第一节点的多个公网IP地址,即第三节点在上述PDU会话中为第一节点分配了多个公网IP地址,从而第一节点可以对其管理的第二节点分配了相应的公网IP地址(即第一IP地址),从而第一节点基于第二节点的标识、与PDU会话关联的第一IP地址,建立第二节点的标识与第一节点的第一IP地址之间的第一映射关系。
示例性的,表1示出了第一映射关系的一种示例,在表1中第二节点以T节点1、T节点2和T节点3为例。第三节点在一个PDU会话中为第一节点分配了三个公网IP地址:IP1、IP2和IP3,第一节点可以对其管理的第二节点分配相应的公网IP地址,例如,第一节点为T节点1分配了IP1、第一节点为T节点2分配了IP2、第一节点为T节点3分配了IP3,因而,第一节点可以建立表1所示的第一映射关系。
表1
第二节点标识 第一节点的第一IP地址
T节点1的标识 IP1
T节点2的标识 IP2
T节点3的标识 IP3
设计方式2,第一节点基于第二节点的标识、与PDU会话关联的第一端口号,建立第二节点的标识与第一节点的第一端口号之间的第二映射关系。
需要说明的是,在设计方式2中,第二节点关联的PDU会话仅包括第一节点的一个公网IP地址,但包括第一节点的多个端口号,即第三节点在上述PDU会话中为第一节点分配了多个端口号,第一节点可以为对其管理的第二节点分配一个端口号,从而第一节点可以建立第二节点的标识与第一节点的第一端口号之间的第二映射关系。
示例性的,表2示出了第二映射关系的一种示例。在表2中第二节点以T节点1、T节点2和T节点3为例。第三节点在一个PDU会话中为第一节点分配了三个端口号:P1、P2和P3,第一节点可以对其管理的第二节点分配相应的端口号,例如,第一节点为T节点1分配了P1、第一节点为T节点2分配了P2、第一节点为T节点3分配了P3,因而,第一节点可以建立表2所示的第二映射关系。
表2
第二节点标识 第一节点的端口号
T节点1的标识 P1
T节点2的标识 P2
T节点3的标识 P3
设计方式3,第一节点基于第二节点的标识、与第一MAC地址,建立第二节点的标识与第一节点的第一MAC地址之间的第三映射关系。
需要说明的是,在设计方式3中,第一MAC地址为第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个,第一节点可以为对其管理的第二节点分配一个MAC地址,从而第一节点可以建立第二节点的标识与第一节点的第一MAC地址之间的第三映射关系。
示例性的,表3示出了第三映射关系的一种示例。在表3中第二节点以T节点1、T节点2和T节点3为例。第一节点根据自身唯一MAC地址衍生了三个MAC地址:MAC地址A、MAC地址B、和MAC地址C,第一节点可以对其管理的第二节点分配相应的MAC地址,例如,第一节点为T节点1分配了MAC地址A、第一节点为T节点2分配了MAC地址B、第一节点为T节点3分配了MAC地址C,因而,第一节点可以建立表3所示的第三映射关系。
表3
第二节点标识 第一节点的MAC地址
T节点1的标识 MAC地址A
T节点2的标识 MAC地址B
T节点3的标识 MAC地址C
设计方式4,第一节点基于第二节点的标识、与第一标识,建立第二节点的标识与第一节点的第一标识之间的第三映射关系。
需要说明的是,在设计方式4中,第一标识为临时分配的多个标识中的一个标识,第一节点可以为对其管理的第二节点分配一个临时标识,从而第一节点可以建立第二节点的标识与第一节点的第一标识址之间的映射关系。示例性的,表4示出了该映射关系的一种示例。在表4中第二节点以T节点1、T节点2和T节点3为例。第一节点临时分配了三个标识:01、02和03,第一节点可以对其管理的第二节点分配相应临时的标识,例如,第一节点为T节点1分配了标识01、第一节点为T节点2分配了标识02、第一节点为T节点3分配了标识03,因而,第一节点可以建立表4所示的映射关系。
表4
第二节点标识 第一节点的临时标识
T节点1的标识 01
T节点2的标识 02
T节点3的标识 03
在实施方式一,第一节点通过和第二节点的交互信息,获取第一信息,使得第一信息可以及时更新,从而更好地适配于第二节点的需求。
实施方式二、第一节点已预先管理或维护第二节点关联的PDU会话,第一节点可以直接基于该PDU会话和第二节点的标识,获取第一信息。其中,“第一节点可以直接基于该PDU会话和第二节点的标识,获取第一信息”对应示例与实施方式一类似,请参见前文的相关描述,这里不再赘述。
在实施方式二,第一节点获取第一信息的效率较高。
S302、第一节点向第三节点发送第一信息。相应的,第三节点接收第一信息。
在一种可能的实施方式中,第一信息承载于非接入层NAS消息。也就是说,第一节点可以通过NAS消息向第三节点发送第一信息。其中,NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。示例性的,NAS消息可以包括但不限于注册请求消息、接入会话请求消息、PDU会话建立请求消息和PDU会话修改请求消息、PDU会话更新信息中的任一种,本申请实施例不作具体的限定。
例如,当第一信息用于指示第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或者第二节点的标识与第一节点的第一端口号之间的第二映射关系时,第一信息可以承载于PDU会话更新信息中。又例如,当第一信息用于指示第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,或者第二节点的标识与第一节点的第一标识之间的映射关系时,第一信息可以承载于第一节点注册成功后的任意NAS信息中。
S303、第三节点基于第一信息,识别PDU会话中关联的第二节点。
本申请实施例中,第三节点识别PDU会话中关联的第二节点,即第三节点识别用户面数据关联的第二节点。
方式1、第三节点可以直接基于第一信息指示的映射关系,识别PDU会话中关联的第二节点。例如,第三节点可以基于上述第一映射关系,识别PDU会话中关联的第二节点。又例如,第三节点可以基于上述第二映射关系,识别PDU会话中关联的第二节点。又例如,第三节点可以基于上述第三映射关系,识别PDU会话中关联的第二节点。
图4示出了本申请实施例提供的第一种通信方法适用的用户面协议架构,在图4中,第三节点以UPF为例。
其中,用户面协议架构从上之下依次包括业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(Radio link control,RLC)层、媒体接入控制(medium access control,MAC)层、物理(physical layer,PHY)层等。其中,PDU layer(层)用于承载PDU会话的IP数据包。
其中,N9stack为N9协议栈及N9接口为5G核心网网元之间的接口。用户数据报协议(user datagram protocol,UDP)/网际互连协议(internet protocol,IP)为数据传输协议,UDP标识数据传输为非可靠传输(区别于TCP连接,TCP为可靠传输),IP为提供了数据传输的寻址方式,基于IP进行数据路由寻址。用户平面的GPRS隧道协议(GPRS tunnelling protocol–user,GTP-U),提供了数据的封包方式,GTP-U帧结构里可以携带隧道信息、消息类型、序列号等。L1层指的是物理层,计算机网络模型中最低的一层,为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简 单的说,物理层确保原始的数据可在各种物理媒体上传输。L2层指的是数据链路层,是计算机网络模型参考模型中的第二层,介乎于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。L1和L2可以用于链路层数据的收发处理。中继(Relay)可以对接收到的信息进行中转。
其中,第一节点和第二节点之间可以通过通信链路(sparkLinkL2)协议进行通信。第一节点可以通过SDAP层、PDCP层、RLC层、MAC层以及物理层和NG-RAN通信,NG-RAN和UPF(第三节点)之间通过UDP/IP、GTP-U、L2、L1进行通信。其中,NG-RAN和UPF(第三节点)还可以通过Relay对收发进行中转。从而第二节点可以通过第一节点间接地获取第三节点通过的服务。
一种情况中,若第一节点为第二节点分配了第一节点的公网IP地址,第一节点可以在PDU Layer的数据包中封装第一节点的公网IP地址,从而UPF接收到对应的IP数据包之后可以根据IP数据包中第一节点的公网IP地址和上述第二节点的标识与第一节点的第一IP地址之间的第一映射关系,识别PDU会话中关联的第二节点。
示例1,请参见图5A,第二节点以T节点1、T节点2和T节点3为例,UPF与第一节点之间存在可以建立多个PDU会话,例如可以存在PDU会话1和PDU会话2。其中,PDU会话1用于传输T节点1和T节点2的数据,PDU会话2用于传输T节点3的数据,即PDU会话1关联T节点1和T节点2,以及PDU会话2关联T节点3。其中,PDU会话1包括第一节点的IP地址:IP1和IP2,PDU会话2包括第一节点的IP地址:IP3,第一节点将IP1分配给T节点1、第一节点将IP2分配给T节点2、以及第一节点将IP3分配给T节点3。
例如,UPF接收到PDU会话1的IP数据包中第一节点的公网IP地址为IP1,则可以根据第二节点的标识与第一节点的第一IP地址之间的第一映射关系,确定PDU会话1关联的第二节点为T节点1。又例如,UPF接收到PDU会话1的IP数据包中第一节点的公网IP地址为IP2,则可以根据第二节点的标识与第一节点的第一IP地址之间的第一映射关系,确定PDU会话1关联的第二节点为T节点2。又例如,UPF接收到PDU会话2的IP数据包中第一节点的公网IP地址为IP3,则可以根据第二节点的标识与第一节点的第一IP地址之间的第一映射关系,确定PDU会话2关联的第二节点为T节点3。
另一种情况中,若第一节点为第二节点分配了第一节点的端口号,第一节点可以在PDU Layer的数据包中封装第一节点的端口号,从而UPF接收到IP数据包之后可以根据IP数据包中第一节点的端口号和上述第二节点的标识与第一节点的第一端口号之间的第二映射关系,识别PDU会话中关联的第二节点。
示例2,请参见图5B,第二节点以T节点1、T节点2和T节点3为例,UPF与第一节点之间存在可以建立多个会话,例如可以存在PDU会话1和PDU会话2。其中,PDU会话1用于传输T节点1和T节点2的数据,PDU会话2用于传输T节点3的数据,即PDU会话1关联T节点1和T节点2,以及PDU会话2关联T节点3。其中,PDU会话1和PDU会话2包括第一节点的同一IP地址IP1,PDU会话1包括第一节点的端口号:P1和P2,PDU会话2包括第一节点的端口号P3,第一节点将P1分配给T节点1、第一节点将P2分配给T节点2、以及第一节点将P3分配给T节点3。
例如,UPF接收到PDU会话1的IP数据包中第一节点的端口号为P1,则可以根据第二节点的标识与第一节点的第一端口号之间的第二映射关系,确定PDU会话1关联的第二节点 为T节点1。又例如,UPF接收到PDU会话1的IP数据包中第一节点的端口号为P2,则可以根据第二节点的标识与第一节点的第一端口号之间的第二映射关系,确定PDU会话1关联的第二节点为T节点2。又例如,UPF接收到PDU会话2的IP数据包中第一节点的端口号为P3,则可以根据第二节点的标识与第一节点的第一端口号之间的第二映射关系,确定PDU会话2关联的第二节点为T节点3。
另一种情况中,若第一节点为第二节点分配了第一节点的MAC地址,第一节点可以在PDU Layer的数据包中封装第一节点的MAC地址,从而UPF接收到IP数据包之后可以根据IP数据包中第一节点的MAC地址和上述第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,识别PDU会话中关联的第二节点。
示例3,请参见图5C,第二节点以T节点1、T节点2和T节点3为例,UPF与第一节点之间存在可以建立多个会话,例如可以存在PDU会话1和PDU会话2。其中,PDU会话1用于传输T节点1和T节点2的数据,PDU会话2用于传输T节点3的数据,即PDU会话1关联T节点1和T节点2,以及PDU会话2关联T节点3。其中,PDU会话1和PDU会话2包括第一节点的同一IP地址IP1,第一节点根据自身的唯一MAC地址衍生的临时MAC地址有:MAC地址A、MAC地址B和MAC地址C,第一节点将MAC地址A分配给T节点1、第一节点将MAC地址B分配给T节点2、以及第一节点将MAC地址C分配给T节点3。相应的,PDU会话1用于传输T节点1和T节点2的数据,PDU会话2用于传输T节点3的数据,即PDU会话1关联T节点1和T节点2,以及PDU会话2关联T节点3。
例如,UPF接收到PDU会话1的IP数据包中第一节点的MAC地址为A,则可以根据第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,确定PDU会话1关联的第二节点为T节点1。又例如,UPF接收到PDU会话1的IP数据包中第一节点的MAC地址为B,则可以根据第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,确定PDU会话1关联的第二节点为T节点2。又例如,UPF接收到PDU会话2的IP数据包中第一节点的端口号为C,则可以根据第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,确定PDU会话2关联的第二节点为T节点3。
另一种情况中,若第一节点为第二节点分配了第一节点的临时标识,第一节点可以在PDU Layer的数据包中封装第一节点的标识,从而UPF接收到IP数据包之后可以根据IP数据包中第一节点的标识和上述第二节点的标识与第一节点的第一标识之间的映射关系,识别PDU会话中关联的第二节点。
示例4,请参见图5D,第二节点以T节点1、T节点2和T节点3为例,UPF与第一节点之间存在可以建立多个会话,例如可以存在PDU会话1和PDU会话2。其中,PDU会话1用于传输T节点1和T节点2的数据,PDU会话2用于传输T节点3的数据,即PDU会话1关联T节点1和T节点2,以及PDU会话2关联T节点3。其中,PDU会话1和PDU会话2包括第一节点的同一IP地址IP1,第一节点有临时标识:01、02和03,第一节点将临时标识01分配给T节点1、第一节点将临时标识02分配给T节点2、以及第一节点将临时标识03分配给T节点3。
例如,UPF接收到PDU会话1的IP数据包中第一节点的临时标识为01,则可以根据第二节点的标识与第一节点的第一标识之间的映射关系,确定PDU会话1关联的第二节点为T节点1。又例如,UPF接收到PDU会话1的IP数据包中第一节点的临时标识为02,则可以根据第二节点的标识与第一节点的第一标识之间的映射关系,确定PDU会话1关联的第二节点为T节点2。又例如,UPF接收到PDU会话2的IP数据包中第一节点的临时标识为03,则可以 根据第二节点的标识与第一节点的第一标识之间的映射关系,确定PDU会话2关联的第二节点为T节点3。
在方式1,第三节点识别第二节点的效率较高。
方式2、第一节点为第二节点分配PDU会话时(例如,在PDU会话建立或PDU会话修改过程中),还为第二节点配置了包过滤器packetfilter(s)(也可以称为过滤策略),使得在PDU会话中第二节点关联包过滤器,该包过滤器可以用于筛选或确定PDU会话中第二节点对应的QoS流,该QoS流用于传输与第二节点关联的数据;从而第三节点可以基于包过滤器和上述第一节点与第二节点之间的映射关系,识别PDU会话中关联的第二节点。
示例性的,请参见图5E,PDU会话中第二节点对应的QoS流以QoS流1和QoS流2为例,第一节点将其为第二节点配置的包过滤器发送至第三节点,第三节点可以根据该包过滤器筛选出QoS流1和QoS流2,进而第三节点确定将第二节点对应的业务流放入QoS流1和QoS流2传输。
此外,若该包过滤器中包括第一节点的公网IP地址,则第三节点可以基于包过滤器中的第一节点的公网IP地址和上述第二节点的标识与第一节点的第一IP地址之间的第一映射关系,识别PDU会话中关联的第二节点;若该包过滤器中包括第一节点的端口号(port),则第三节点可以基于包过滤器中的第一节点的端口号(port)和上述第二节点的标识与第一节点的第一端口号之间的第二映射关系,识别PDU会话中关联的第二节点;若该包过滤器中包括第一节点的MAC地址,则第三节点可以基于包过滤器中的第一节点的MAC地址和上述第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,识别PDU会话中关联的第二节点。若该包过滤器中包括第一节点的临时标识,则第三节点可以基于包过滤器中的第一节点的临时标识和上述第二节点的标识与第一节点的第一标识之间的映射关系,识别PDU会话中关联的第二节点。
在方式2,由于第三节点可以基于包过滤器和上述第一节点与第二节点之间的映射关系,识别PDU会话中关联的第二节点,有效提升第三节点识别第二节点的准确性。
在图3所示的实施例中,第一节点可以将第二节点与第一节点的映射关系发送至核心网,使得第三节点可以识别(即感知或管理)第二节点,从而实现对第二节点提供的服务的管理,以更好适用于第二节点的需求。
需要说明的是,第三节点和第一节点已维护或管理第二节点与第一节点之间的映射关系,则在第二节点需要向第三节点上报的控制信息中携带第二节点的标识,第三节点也可以基于该映射关系和第二节点的标识,识别第二节点关联的数据,从而便于第三节点对第二节点的配置信息(例如,QoS流相关参数)进行相应的调整。
图6示出了本申请实施例提供的第一种通信方法适用的控制面协议架构,在图6中,第三节点以AMF为例。其中,控制面协议架构从上之下依次包括无线资源控制(radio resource control,RRC)层,PDCP层、RLC层、MAC层、PHY层等。其中,N2stack为N2协议栈及N2接口为5G核心网网元和NG-RAN之间的接口。
其中,第一节点和第二节点之间可以通过通信链路(sparkLinkL2)协议、数据直传应用部分(direct transfer application part,DTAP)协议和5G融合中的任一个进行通信。
第一节点可以通过RRC层、PDCP层、RLC层、MAC层以及物理层和NG-RAN通信,NG-RAN和AMF(第三节点)之间通过N2stack接口进行通信。从而第二节点可以通过第一节点间接地获取第三节点通过的服务。
由于第二节点不支持NAS信令,第一节点和AMF支持NAS信令。因此,第二节点可以将其要上报AMF的控制信息发送至第一节点,第一节点通过NAS信息将该控制信息和第二节点的标识同时发送至AMF,从而AMF可以基于第二节点的标识和第二节点与第一节点之间的映射关系,识别第二节点关联的数据(例如QoS流)。
为了便于理解,图7A还提供了相应的场景示意图,在图7A中,第二节点以T节点1-T节点N为例,第一节点可以将T节点标识及其对应的控制信息同时发送至AMF,进而AMF可以基于上述第二节点的标识与第一节点之间的映射关系、和第二节点的标识,识别第二节点关联的数据。
下面结合具体的附图,对第三节点识别控制信息关联的第二节点的流程进行详细的说明。
示例性的,请参见图7B,图7B示出了不存在PDU会话的情况下,第二节点和第三节点之间的通信流程:
S701、第二节点向第一节点发送第二信息。相应的,第一节点接收第二信息。
在一种可能的实施方式,第二信息包括链路状态信息和/或节点状态信息。其中,链路状态信息包括短距测量量(短距空口状态信息)、短距节点与5G核心网之间的链路状态测量量中的至少一项。短距测量量包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、信道质量指示(channel quality indication,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)和时间戳中的至少一项;短距节点与5G核心网之间的链路状态测量量包括往返时延(round-trip time,RTT),丢包率,抖动,时间戳中的至少一项。
示例性的,第二节点可以通过蓝牙技术或WiFi技术向第一节点发送第二信息。
S702、第一节点在第二信息中增加第二节点的标识,得到第三信息。
示例性的,第一节点可以在第二信息对应的数据包的头部或尾部增加第二节点的标识,以得到第三信息。
S703、第一节点向第三节点发送第三信息。相应的,第三节点接收第三信息。
在一种可能的实施方式中,第三信息可以承载于NAS消息。也就是说,第一节点可以通过NAS消息向第三节点发送第三信息。
S704、第三节点基于第一节点和第二节点之间的映射关系,识别第三信息关联的第二节点。
可以理解的是,第一节点和第二节点之间的映射关系是第三节点根据预先收到的第一信息确定的。
在一种可能的实施方式中,第一信息可以用于指示第二节点与第一节点的映射关系,包括:第一信息用于指示第二节点的标识与第一节点的第一IP地址之间的第一映射关系;或者,第一信息用于指示第二节点的标识与第一节点的第一端口号之间的第二映射关系;或者,第一信息用于指示第二节点的标识与第一节点的第一媒体访问控制MAC地址之间的第三映射关系,或者,第一信息用于指示第二节点的标识与第一节点的第一标识之间的映射关系。相应的,第三节点可以基于第二节点的标识和第一映射关系,识别第三信息关联的第二节点;或者,基于第二节点的标识和第二映射关系,识别第三信息关联的第二节点;或者,基于第二节点的标识和第三映射关系,识别第三信息关联的第二节点;或者, 基于第二节点的标识和第二节点的标识与第一节点的第一标识之间的映射关系,识别第三信息关联的第二节点。
在图7B所示的实施例中,在第三节点已经维护好第一节点和第二节点之间的映射关系时之后,第一节点可以将第二节点的控制信息添加第二节点的标识之后,发送给第三节点,如此,第三节点可以基于第一信息,识别第二节点关联的数据,从而便于第三节点对第二节点的配置信息进行相应的调整。
进一步的,请参见图8,本申请实施例提供的第一种通信方法还可以包括以下步骤:
S304、第三节点基于第一信息,确定配置信息。
其中,配置信息包括第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略、节点状态上报策略和QoS配置策略中的至少一项。下面对这些信息进行举例说明。
运行状态管理信息包括:第二节点的开机状态、关机状态和休眠状态中的任一项。
节点状态更新信息包括:第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。
链路状态检测策略包括:测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。
节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
QoS配置策略包括:第二节点与PDU会话中QoS流的对应关系。
S305、第三节点向第一节点发送配置信息。相应的,第一节点接收该配置信息。
S306、第一节点向第二节点发送该配置信息。相应的,第二节点接收该配置信息。
示例性的,第一节点可以通过蓝牙方式,向第二节点发送该配置信息。
S307、第二节点基于该配置信息,配置第二节点。
示例1,配置信息包括第二节点的运行状态管理信息时,第二节点可以基于运行状态管理信息,对第二节点的运行状态进行配置。
示例2,配置信息包括第二节点的节点参数更新信息,第二节点可以基于运行状态管理信息,对第二节点的节点参数(例如,版本信息、电量信息、硬件信息和软件信息)进行配置。
示例3,配置信息包括第二节点的链路状态检测策略,第二节点可以基于链路状态检测策略对第二节点的链路状态监测机制进行配置,例如配置测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。
示例4,配置信息包括第二节点的节点状态上报策略,第二节点可以基于节点状态上报策略对第二节点的节点状态上报机制进行配置,例如配置上报对象、上报周期和上报事件中的至少一项。
示例5,配置信息包括第二节点的QoS配置策略,第二节点可以基于QoS配置策略,配置用于第二节点关联的数据的传输通道或者调整用于第二节点关联的数据的传输通道。
示例6,配置信息包括第二节点的运行状态管理信息和节点参数更新信息时,第二节点可以基于运行状态管理信息,对第二节点的运行状态进行配置,以及第二节点可以基于运行状态管理信息,对第二节点的节点参数(例如,版本信息、电量信息、硬件信息和软件信息)进行配置。
示例7,配置信息包括第二节点的链路状态检测策略和节点状态上报策略,第二节点可以基于链路状态检测策略对第二节点的链路状态监测机制进行配置,例如配置测量对象、 上报对象、上报阈值、上报周期和事件参数中的至少一项。以及,第二节点可以基于节点状态上报策略对第二节点的节点状态上报机制进行配置,例如配置上报对象、上报周期和上报事件中的至少一项。
示例8,配置信息包括第二节点的链路状态检测策略、节点状态上报策略和QoS配置策略,第二节点可以基于链路状态检测策略对第二节点的链路状态监测机制进行配置,例如配置测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。以及,第二节点可以基于节点状态上报策略对第二节点的节点状态上报机制进行配置,例如配置上报对象、上报周期和上报事件中的至少一项。以及,第二节点可以基于QoS配置策略,配置用于第二节点关联的数据的传输通道或者调整用于第二节点关联的数据的传输通道。
示例9,配置信息包括第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略、节点状态上报策略和QoS配置策略,第二节点可以基于运行状态管理信息,对第二节点的运行状态进行配置;以及,第二节点可以基于运行状态管理信息,对第二节点的节点参数进行配置。以及,第二节点可以基于链路状态检测策略对第二节点的链路状态监测机制进行配置。以及,第二节点可以基于节点状态上报策略对第二节点的节点状态上报机制进行配置。以及,第二节点可以基于QoS配置策略,配置第二节点关联的数据的传输通道。
可以理解的是,在其他的示例中,配置信息还可以包括其他的参数,本申请实施例不作具体的限制。
通过步骤S304-S307,第三节点可以对第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略、节点状态上报策略和QoS配置策略中的至少一项进行管控,从而第三节点可以为第二节点提供更加适配于第二节点的服务。
以上介绍第三节点如何识别第二节点的通信方法,下面结合具体的附图介绍第四节点识别第二节点的通信方法。
请参见图9,图9示出了本申请实施例提供第二种通信方法,该方法的执行主体为第一节点和第四节点,该方法包括:
S901、第一节点可以获取第二节点的标识与第二节点的IP地址之间的第四映射关系。
示例性的,表5示出了第四映射关系的一种示例,在表5中,第二节点以T节点1、T节点2和T节点3为例,T节点1对应私有IP地址为IP4、T节点2对应私有IP地址为IP5以及T节点3对应私有IP地址为IP6,则第一节点可以建立如表1所示的映射关系。
表5
第二节点标识 第二节点的私有IP地址
T节点1的标识 IP4
T节点2的标识 IP5
T节点3的标识 IP6
S902、第一节点向第四节点发送第四映射关系。相应的,第四节点接收第四映射关系。
S903、第四节点基于第四映射关系,确定第二节点。
示例性的,第四节点接收到第二节点的数据包,可以根据第二节点的数据包中携带的私有IP地址和第四映射关系,识别出第二节点。
通过该方法,第四节点可以基于第二节点的标识与第二节点的IP地址之间的第四映射关系以及第二节点的IP地址,确定第二节点,使得第四节点可以识别(即感知或管理)第 二节点,从而可以更好地为第二节点提供服务。
在一些可能的实施例中,第三节点在PDU会话中仅为第一节点分配了一个公网IP地址,第一节点可以为对其管理的第二节点分配私有IP地址,从而第一节点可以建立第二节点的标识与第二节点的私有IP地址之间的第五映射关系,并发送至第三节点。第三节点维护或管理该PDU会话与第一节点的公网IP地址之间的第一对应关系,以及维护或管理第一节点的公网IP地址与第二节点的私有IP地址之间的第二对应关系,从而第三节点接收到第五映射关系之后,可以基于第一对应关系、第一对应关系和第五映射关系,维护PDU会话标识与二节点的私有IP地址之间的第三对应关系。因此第三节点收到PDU会话关联的包过滤器时,可以根据包过滤器中携带第二节点的私有IP地址和第三对应关系,识别出第二节点。
示例性的,请参见图10,PDU会话中第二节点(即T节点)对应的QoS流以QoS流1和QoS流2为例,第一节点将其为T节点配置的包过滤器发送至第三节点,且包过滤器中可以携带了T节点的私有IP地址IP(T),从而第三节点可以根据该包过滤器筛选出T节点对应的QoS流1和QoS流2,第三节点可以将T节点对应的业务流放入QoS流1和QoS流2传输。
示例性的,在表6中,第二节点以T节点1、T节点2和T节点3为例,T节点1对应私有IP地址为IP7、T节点2对应私有IP地址为IP8以及T节点3对应私有IP地址为IP9,私有IP地址为IP7、IP8和IP9,均关联第一节点的公网IP地址IP1,而公网IP地址IP1关联PDU会话1。例如,第三节点收到PDU会话1关联的过滤数据包中携带的二节点的私有IP地址为IP7,第三节点可以识别出第二节点为T节点1。又例如,第三节点收到PDU会话1关联的过滤数据包中携带的二节点的私有IP地址为IP8,第三节点可以识别出第二节点为T节点2。又例如,第三节点收到PDU会话1关联的过滤数据包中携带的二节点的私有IP地址为IP9,第三节点可以识别出第二节点为T节点3。
表6
Figure PCTCN2022125495-appb-000001
以下结合附图详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可相互参见。
图11是本申请实施例提供的装置1100的示意性框图,用于实现上文方法实施例中第一节点的功能。例如,该装置可以为软件模块或芯片***。所述芯片可以由芯片构成,也可以包括芯片和其他分立器件。
示例性的,该装置1100包括处理模块1101和收发模块1102。
处理模块1101,用于获取第一信息;其中,所述第一信息用于指示第二节点与所述第一节点的映射关系;
收发模块1102,用于向第三节点发送所述第一信息,所述第一信息用于识别协议数据单元PDU会话中关联的所述第二节点。
其中,收发模块1102还可以称为通信接口、通信单元或输入\输出接口等。
示例性的,所述第一信息用于指示第二节点与所述第一节点的映射关系,包括:所述第一信息用于指示所述第二节点的标识与所述第一节点的第一IP地址之间的第一映射关系,或,所述第二节点的标识与所述第一节点的第一端口号之间的第二映射关系,或,所述第二节点的标识与所述第一节点的第一媒体访问控制MAC地址之间的第三映射关系,或者是第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,所述第一IP地址是在所述PDU会话中为所述第一节点分配的多个公网IP地址中的一个。所述第一端口号是在所述PDU会话中为所述第一节点分配的多个端口号中的一个,PDU会话包括所述第一节点的一个公网IP地址。第一标识可以是第一节点临时分配的多个标识中的一个标识。
在一种可能的设计中,所述第一信息承载于非接入层NAS消息,所述NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。示例性的,NAS消息可以包括但不限于注册请求消息、接入会话请求消息、PDU会话建立请求消息和PDU会话修改请求消息中的任一种。
例如,当第一信息用于指示第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或者第二节点的标识与第一节点的第一端口号之间的第二映射关系时,第一信息可以承载于PDU会话更新信息中。又例如,当第一信息用于指示第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,或者第二节点的标识与第一节点的第一标识之间的映射关系时,第一信息可以承载于第一节点注册成功后的任意NAS信息中。
可选的,在所述PDU会话中所述第二节点关联包过滤器,所述包过滤器用于确定所述PDU会话中所述第二节点对应的服务质量QoS流。
在一种可能的实施方式中,所述收发模块1102还用于接收来自所述第二节点的接入侧会话请求信息或接入侧会话修改请求信息;处理模块1101还可以确定所述第二节点关联所述PDU会话;基于所述第二节点的标识、与所述PDU会话关联的所述第一IP地址,建立所述第一映射关系;或者,基于所述第二节点的标识、与所述PDU会话关联的所述第一端口号,建立所述第二映射关系;或者,基于所述第二节点的标识、与所述第一MAC地址,建立所述第三映射关系,或者,基于所述第二节点的标识、与所述第一标识,建立第二节点的标识与第一节点的第一标识之间的映射关系。
可以理解的是,接入侧会话请求信息用于指示第二节点向第一节点请求分配PDU会话,接入侧会话修改请求信息用于指示第二节点向第一节点请求修改PDU会话。
可选的,收发模块1102在向第三节点发送所述第一信息之后,还可以接收来自所述第二节点的第二信息,所述第二信息包括链路状态信息和/或节点状态信息;处理模块1101还可以在所述第二信息中增加所述第二节点的标识,得到第三信息;进而收发模块1102向所述第三节点发送所述第三信息。其中,链路状态信息包括短距测量量(短距空口状态信息)、短距节点与5G核心网之间的链路状态测量量中的至少一项。
在一种可能的实施方式中,收发模块1102还可以接收来自所述第三节点的配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;将所述配置信息发送至所述第二节点。
其中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中 的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的实施方式中,收发模块1102还可以将所述第二节点的标识与所述第二节点的IP地址之间的第四映射关系,发送至第四节点。
在一种可能的实施方式中,收发模块1102基于第一通信技术与所述第二节点进行通信;以及基于第二通信技术与所述第三节点进行通信。
图12是本申请实施例提供的装置1200的示意性框图,用于实现上文方法实施例中第一节点的功能。例如,该装置可以为软件模块或芯片***。所述芯片可以由芯片构成,也可以包括芯片和其他分立器件。
示例性的,该装置1200包括处理模块1201和收发模块1202。
处理模块1201,用于接收与第一信息,所述第一信息用于指示第二节点与第一节点的映射关系;
收发模块1202,用于基于所述第一信息,识别协议数据单元PDU会话中关联的所述第二节点。
在一种可能的实施方式中,所述第一信息用于指示第二节点与所述第一节点的映射关系,包括:所述第一信息用于指示所述第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或,所述第二节点的标识与第一节点的第一端口号之间的第二映射关系,或,所述第二节点的标识与第一节点的第一媒体访问控制MAC地址之间的第三映射关系,或,第二节点的标识和第一节点的第一标识之间的映射关系。
其中,所述第一IP地址是在所述PDU会话中为所述第一节点分配的多个公网IP地址中的任一个。所述第一端口号是在所述PDU会话中为所述第一节点分配的多个端口号中的任一个,所述PDU会话包括所述第一节点的一个公网IP地址。第一MAC地址为第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个。第一标识可以是第一节点临时分配的多个标识中的一个标识。
在一种可能的设计中,所述第一信息承载于非接入层NAS消息,所述NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。示例性的,NAS消息可以包括但不限于注册请求消息、接入会话请求消息、PDU会话建立请求消息和PDU会话修改请求消息中的任一种。
例如,当第一信息用于指示第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或者第二节点的标识与第一节点的第一端口号之间的第二映射关系时,第一信息可以承载于PDU会话更新信息中。又例如,当第一信息用于指示第二节点的标识与第一节点的第一MAC地址之间的第三映射关系,或者第二节点的标识与第一节点的第一标识之间的映射关系时,第一信息可以承载于第一节点注册成功后的任意NAS信息中。
在一种可能的实施方式中,在所述PDU会话中所述第二节点关联包过滤器,所述包过滤器用于确定所述PDU会话中所述第二节点对应的服务质量QoS流,所述QoS流用于传输与所述第二节点关联的数据;处理模块1201可以基于所述包过滤器中的所述第一节点的公网IP地址和所述第一映射关系,识别所述PDU会话中关联的所述第二节点;或者,基于所述包过滤器中的所述第一节点的端口号和所述第二映射关系,识别所述PDU会话中关联的所述第二节点;或者,基于所述包过滤器中的所述第一节点的MAC地址和所述 第三映射关系,识别所述PDU会话中关联的所述第二节点;或者,所述包过滤器中的所述第一节点的标识、和第二节点的标识与第一节点的第一标识之间的映射关系,识别所述PDU会话中关联的所述第二节点。
在一种可能的实施方式中,收发模块1202在接收来自第一节点的第一信息之后,还可以:接收第三信息,所述第三信息包括所述第二节点的标识、链路状态信息和/或节点状态信息;处理模块1201还可以:基于所述第二节点的标识和所述第一映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和所述第二映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和所述第三映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和第二节点的标识与第一节点的第一标识之间的映射关系,识别所述第三信息关联的所述第二节点。
在一种可能的实施方式中,处理模块1201还可以基于所述第一信息,确定配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;向所述第一节点发送所述配置信息。
在一种可能的实施方式中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的实施方式中,所述收发模块1202基于第二通信技术与所述第一节点进行通信;以及基于所述第二通信技术为基于第一通信技术的第二节点提供服务。
图13是本申请实施例提供的装置1300的示意性框图,用于实现上文方法实施例中第一节点的功能。例如,该装置可以为软件模块或芯片***。所述芯片可以由芯片构成,也可以包括芯片和其他分立器件。
示例性的,该装置1300包括处理模块1301和收发模块1302。
收发模块1302,用于接收来自第一节点的配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和服务质量QoS配置策略中的至少一项;处理模块1301,用于基于所述配置信息,配置所述第二节点。
在一种可能的实施方式中,所述链路状态检测策略包括测量对象、上报对象、上报阈值、上报周期和事件参数中的至少一项。运行状态管理信息包括第二节点的开机状态、关机状态和休眠状态中的任一项。节点状态更新信息包括第二节点的版本信息、电量信息、硬件信息和软件信息中的任一项对应的更新信息。节点状态上报策略包括:上报对象、上报周期和上报事件中的至少一项。
在一种可能的实施方式中,收发模块1302还可以向第一节点发送接入侧会话请求信息或接入侧会话修改请求信息。可以理解的是,接入侧会话请求信息用于指示第二节点向第一节点请求分配PDU会话,接入侧会话修改请求信息用于指示第二节点向第一节点请求修改PDU会话。
在一种可能的实施方式中,收发模块1302还可以向所述第一节点发送第二信息,所述第二信息包括链路状态信息和/或节点状态信息。其中,链路状态信息包括短距测量量(短距空口状态信息)、短距节点与5G核心网之间的链路状态测量量中的至少一项。
在一种可能的实施方式中,收发模块1302基于第一通信技术与所述第一节点进行通 信,以及通过第三节点获取基于第二通信技术提供的服务。
图14是本申请实施例提供的装置1400的示意性框图,用于实现上文方法实施例中第四节点的功能。例如,该装置可以为软件模块或芯片***。所述芯片可以由芯片构成,也可以包括芯片和其他分立器件。
示例性的,该装置1400包括处理模块1401和收发模块1402。
收发模块1402,用于从第一节点接收第二节点的标识与第二节点的IP地址之间的第四映射关系;
处理模块1401,用于基于所述第三映射关系和所述第二节点的IP地址,确定所述第二节点。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请实施例中各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
请参见图15,图15为本申请实施例提供的装置1500的示意图,该装置1500可以为节点,或者节点中的一部件,例如芯片或集成电路等。该装置1500可包括至少一个处理器1502和通信接口1504。进一步,可选的,所述装置还可以包括至少一个存储器1501。更进一步,可选的,还可以包含总线1503。其中,存储器1501、处理器1502和通信接口1504通过总线1503相连。
其中,存储器1501用于提供存储空间,存储空间中可以存储操作***和计算机程序等数据。本申请实施例中提及的存储器1501可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。处理器1502是进行算术运算和/或逻辑运算的模块,具体可以是中央处理器(central processing unit,CPU)、图片处理器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程逻辑门阵列(field programmable gate array,FPGA)、复杂可编程逻辑器件(complex programmable logic device,CPLD)、协处理器(协助中央处理器完成相应处理和应用)、微控制单元(microcontroller unit,MCU)等处理模块中的一种或者多种的组合。
需要说明的是,当处理器为通用处理器、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
通信接口1504可以用于为所述至少一个处理器提供信息输入或者输出。和/或所述通 信接口可以用于接收外部发送的数据和/或向外部发送数据,可以为包括诸如以太网电缆等的有线链路接口,也可以是无线链路(Wi-Fi、蓝牙、通用无线传输、车载短距通信技术等)接口。可选的,通信接口1504还可以包括与接口耦合的发射器(如射频发射器、天线等),或者接收器等。
在一些实施例中,上述装置1500可以为上文方法实施例中的第一节点或第一节点中的部件,例如芯片或者集成电路。
在另一些实施例中,上述装置1500可以为上文方法实施例中的第三节点或第三节点中的部件,例如芯片或者集成电路。
在另一些实施例中,上述装置1500可以为上文方法实施例中的第二节点或者第二节点中的部件,例如芯片或者集成电路。
在另一些实施例中,上述装置1500可以为上文方法实施例中的第四节点或者第四节点中的部件,例如芯片或者集成电路。
关于具体细节,可参见上文方法实施例中的记载,在此不再赘述。
本申请实施例还提供一种终端,所述终端可以为具备短距通信功能的智能手机、笔记本、平板电脑等智能终端、鼠标、键盘、耳机、音响或者车载播放设备等。所述终端包括第一装置和/或第二装置,该第一装置和第二装置可分别为上述图3所示实施例中的第一节点和第二节点。其中,第一装置与第二装置的类型可相同或不同。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
其中,方法和装置是基于相同或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上文实施例所描述的方法。
本申请实施例还提供一种芯片***,该芯片***包括至少一个处理器和接口电路。进一步可选的,所述芯片***还可以包括存储器或者外接存储器。所述处理器用于通过所述接口电路执行指令和/或数据的交互,以实现上文方法实施例中的方法。该芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行上文实施例所描述的方法。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、协处理器等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种通信方法,应用于第一节点,其特征在于,所述方法包括:
    获取第一信息;其中,所述第一信息用于指示第二节点与所述第一节点的映射关系;
    向第三节点发送所述第一信息,所述第一信息用于识别协议数据单元PDU会话中关联的所述第二节点。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息用于指示第二节点与所述第一节点的映射关系,包括:
    所述第一信息用于指示所述第二节点的标识与所述第一节点的第一IP地址之间的第一映射关系,或,所述第二节点的标识与所述第一节点的第一端口号之间的第二映射关系,或,所述第二节点的标识与所述第一节点的第一媒体访问控制MAC地址之间的第三映射关系。
  3. 根据权利要求2所述的方法,其特征在于,所述第一IP地址是在所述PDU会话中为所述第一节点分配的多个公网IP地址中的一个。
  4. 根据权利要求2所述的方法,其特征在于,所述第一端口号是在所述PDU会话中为所述第一节点分配的多个端口号中的一个。
  5. 根据权利要求4所述的方法,其特征在于,所述PDU会话包括所述第一节点的一个公网IP地址。
  6. 根据权利要求2所述的方法,其特征在于,所述第一MAC地址为所述第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一信息承载于非接入层NAS消息,所述NAS消息包括PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,在所述PDU会话中所述第二节点关联包过滤器,所述包过滤器用于确定所述PDU会话中所述第二节点对应的服务质量QoS流。
  9. 根据权利要求2-7任一项所述的方法,其特征在于,所述获取第一信息,包括:
    接收来自所述第二节点的接入侧会话请求信息或接入侧会话修改请求信息;
    确定所述第二节点关联所述PDU会话;
    基于所述第二节点的标识、与所述PDU会话关联的所述第一IP地址,建立所述第一映射关系;或者,
    基于所述第二节点的标识、与所述PDU会话关联的所述第一端口号,建立所述第二映射关系;或者,
    基于所述第二节点的标识、与所述第一MAC地址,建立所述第三映射关系。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,在向第三节点发送所述第一信息之后,所述方法还包括:
    接收来自所述第二节点的第二信息,所述第二信息包括链路状态信息和/或节点状态信息;
    在所述第二信息中增加所述第二节点的标识,得到第三信息;
    向所述第三节点发送所述第三信息。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第三节点的配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;
    将所述配置信息发送至所述第二节点。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述方法还包括:
    将所述第二节点的标识与所述第二节点的IP地址之间的第四映射关系,发送至第四节点。
  13. 如权利要求1-12任一项所述的方法,其特征在于,基于第一通信技术与所述第二节点进行通信;以及基于第二通信技术与所述第三节点进行通信。
  14. 一种通信方法,应用于第三节点,其特征在于,所述方法包括:
    接收与第一信息,所述第一信息用于指示第二节点与第一节点的映射关系;
    基于所述第一信息,识别协议数据单元PDU会话中关联的所述第二节点。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息用于指示第二节点与所述第一节点的映射关系,包括:
    所述第一信息用于指示所述第二节点的标识与第一节点的第一IP地址之间的第一映射关系,或,所述第二节点的标识与第一节点的第一端口号之间的第二映射关系,或,所述第二节点的标识与第一节点的第一媒体访问控制MAC地址之间的第三映射关系。
  16. 根据权利要求15所述的方法,其特征在于,所述第一IP地址是在所述PDU会话中为所述第一节点分配的多个公网IP地址中的任一个。
  17. 根据权利要求15所述的方法,其特征在于,所述第一端口号是在所述PDU会话中为所述第一节点分配的多个端口号中的任一个。
  18. 根据权利要求17所述的方法,其特征在于,所述PDU会话包括所述第一节点的一个公网IP地址。
  19. 根据权利要求15所述的方法,其特征在于,所述第一MAC地址为所述第一节点根据自身唯一MAC地址衍生的多个MAC地址中的一个。
  20. 根据权利要求14-19任一项所述的方法,其特征在于,所述第一信息承载于非接入层NAS消息,所述NAS消息为PDU会话建立流程、PDU会话修改流程和注册流程中的NAS消息中的任一种。
  21. 根据权利要求14-20任一项所述的方法,其特征在于,在所述PDU会话中所述第二节点关联包过滤器,所述包过滤器用于确定所述PDU会话中所述第二节点对应的服务质量QoS流;所述基于所述第一信息,识别协议数据单元PDU会话中关联的所述第二节点,包括:
    基于所述包过滤器中的所述第一节点的公网IP地址和所述第一映射关系,识别所述PDU会话中关联的所述第二节点;或者,
    基于所述包过滤器中的所述第一节点的端口号和所述第二映射关系,识别所述PDU会话中关联的所述第二节点;或者,
    基于所述包过滤器中的所述第一节点的MAC地址和所述第三映射关系,识别所述PDU会话中关联的所述第二节点。
  22. 根据权利要求14-21任一项所述的方法,其特征在于,在接收来自第一节点的第一信息之后,所述方法还包括:
    接收第三信息,所述第三信息包括所述第二节点的标识、链路状态信息和/或节点状态信息;
    基于所述第二节点的标识和所述第一映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和所述第二映射关系,识别所述第三信息关联的所述第二节点;或者,基于所述第二节点的标识和所述第三映射关系,识别所述第三信息关联的所述第二节点。
  23. 根据权利要求14-22任一项所述的方法,其特征在于,所述方法还包括:
    基于所述第一信息,确定配置信息,所述配置信息包括所述第二节点的运行状态管理信息、节点参数更新信息、链路状态检测策略和QoS配置策略中的至少一项;
    向所述第一节点发送所述配置信息。
  24. 如权利要求14-23任一项所述的方法,其特征在于,基于第二通信技术与所述第一节点进行通信;以及基于所述第二通信技术为基于第一通信技术的第二节点提供服务。
  25. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于获取第一信息;其中,所述第一信息用于指示第二节点与所述第一节点的映射关系;
    收发模块,用于向第三节点发送所述第一信息,所述第一信息用于识别协议数据单元PDU会话中关联的所述第二节点。
  26. 一种通信装置,其特征在于,所述装置包括:
    收发模块,用于接收第一信息,所述第一信息用于指示第二节点与第一节点的映射关系;
    处理模块,用于基于所述第一信息,识别协议数据单元PDU会话中关联的所述第二节点。
  27. 一种计算机可读存储介质,其特征在于,包括程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法;或执行如权利要求14至24中任一项所述的方法。
PCT/CN2022/125495 2021-10-19 2022-10-14 一种通信方法、装置及*** WO2023066168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22882774.7A EP4404603A1 (en) 2021-10-19 2022-10-14 Communication method, apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111216597.X 2021-10-19
CN202111216597.XA CN115996374A (zh) 2021-10-19 2021-10-19 一种通信方法、装置及***

Publications (1)

Publication Number Publication Date
WO2023066168A1 true WO2023066168A1 (zh) 2023-04-27

Family

ID=85994021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125495 WO2023066168A1 (zh) 2021-10-19 2022-10-14 一种通信方法、装置及***

Country Status (3)

Country Link
EP (1) EP4404603A1 (zh)
CN (1) CN115996374A (zh)
WO (1) WO2023066168A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190335330A1 (en) * 2017-05-08 2019-10-31 Apostolis Salkintzis A method to authenticate with a mobile communication network
CN110771221A (zh) * 2017-06-20 2020-02-07 中兴通讯股份有限公司 接入和移动性管理功能的鲁棒调整
WO2020098954A1 (en) * 2018-11-16 2020-05-22 Lenovo (Singapore) Pte. Ltd. Access network selection for a ue not supporting nas over non-3gpp access
CN113455026A (zh) * 2021-05-28 2021-09-28 华为技术有限公司 接入方法及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190335330A1 (en) * 2017-05-08 2019-10-31 Apostolis Salkintzis A method to authenticate with a mobile communication network
CN110771221A (zh) * 2017-06-20 2020-02-07 中兴通讯股份有限公司 接入和移动性管理功能的鲁棒调整
WO2020098954A1 (en) * 2018-11-16 2020-05-22 Lenovo (Singapore) Pte. Ltd. Access network selection for a ue not supporting nas over non-3gpp access
CN113455026A (zh) * 2021-05-28 2021-09-28 华为技术有限公司 接入方法及通信装置

Also Published As

Publication number Publication date
EP4404603A1 (en) 2024-07-24
CN115996374A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
US20140082205A1 (en) System and method for post-discovery communication within a neighborhood-aware network
WO2022012468A1 (zh) 路由配置方法及装置
JP7389243B2 (ja) QoSマッピング
CN113228717B (zh) 一种通信方法及装置
WO2021004191A1 (zh) 一种支持时间敏感网络的方法及装置
US20240214874A1 (en) Communication method, apparatus, and system
WO2022000171A1 (zh) 无线通信方法、终端设备和网络设备
EP4401384A1 (en) Data transmission method and communication apparatus
WO2023284551A1 (zh) 通信方法、装置和***
WO2023066168A1 (zh) 一种通信方法、装置及***
US9439169B2 (en) Reducing paging delays using location analytics in communications networks
WO2021203983A1 (zh) 处理时间同步报文的方法和装置
WO2021062807A1 (zh) 一种通信方法、装置以及***
CN113498083A (zh) 通信方法、装置及***
WO2023051422A1 (zh) 通信方法及相关设备
WO2023056852A1 (zh) 一种通信方法、装置及***
WO2023160390A1 (zh) 通信方法与装置
EP4243554A1 (en) Communication method and communication apparatus
WO2024045179A1 (zh) 数据报文的传输方法、通信装置和通信***
WO2024045180A1 (zh) 数据报文的传输方法、通信装置和通信***
WO2023001010A1 (zh) 一种通信方法以及装置
EP4336885A1 (en) Communication method and apparatus
WO2022222748A1 (zh) 中继通信方法和装置
WO2024045177A1 (zh) 数据报文的传输方法、通信装置和通信***
EP4408049A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882774

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022882774

Country of ref document: EP

Effective date: 20240415

NENP Non-entry into the national phase

Ref country code: DE