WO2023065896A1 - 一种近眼虚拟显示装置及近眼头戴虚拟设备 - Google Patents

一种近眼虚拟显示装置及近眼头戴虚拟设备 Download PDF

Info

Publication number
WO2023065896A1
WO2023065896A1 PCT/CN2022/118678 CN2022118678W WO2023065896A1 WO 2023065896 A1 WO2023065896 A1 WO 2023065896A1 CN 2022118678 W CN2022118678 W CN 2022118678W WO 2023065896 A1 WO2023065896 A1 WO 2023065896A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual display
translation
adjustment assembly
eye
rotation
Prior art date
Application number
PCT/CN2022/118678
Other languages
English (en)
French (fr)
Inventor
陆军
林能清
刘桂潮
Original Assignee
深圳市谦视智能科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市谦视智能科技有限责任公司 filed Critical 深圳市谦视智能科技有限责任公司
Publication of WO2023065896A1 publication Critical patent/WO2023065896A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features

Definitions

  • the present disclosure relates to the field of virtual display devices, in particular to a near-eye virtual display device and a near-eye head-mounted virtual device.
  • HMD Head-Mounted Display
  • the optical device In order to form a virtual image at the intended location of the viewer, the optical device must meet various geometric and positional requirements. Such as the user's eye position, and the placement of the optical system relative to the user's eyes. Sometimes the user may want the virtual image content to be superimposed on the real world in the field of view, sometimes the virtual object is under the user's main viewing area as an auxiliary display, and sometimes the user also wants to store the display device temporarily so as not to affect the user's observation of the real world, etc. and other usage needs.
  • the present disclosure provides a near-eye virtual display device and a near-eye head-mounted virtual device, which realize the efficient adjustment of the spatial position of the near-eye head-mounted virtual display content, which not only improves the convenience of user adjustment, but also saves product volume and reduces weight.
  • an embodiment of the present disclosure provides a near-eye virtual display device, the near-eye virtual display device includes: a first translation adjustment component, a second translation adjustment component, a third translation adjustment component, a first rotation adjustment component, a second translation adjustment component, Two rotation adjustment components and virtual display components; wherein:
  • the second translation adjustment component is used to realize the forward and backward translation of the virtual display component in the Y-axis direction;
  • the first rotation adjustment component is rotatably connected with the second translation adjustment component and the third translation adjustment component, so that the third translation adjustment component rotates around the second translation adjustment component to realize the virtual Display parts storage and height adjustment;
  • the third translation adjustment component is used to realize the up and down translation of the virtual display component in the Z-axis direction;
  • the second rotation adjustment component is respectively assembled and combined with the third translation adjustment component and the first translation adjustment component, so that the first translation adjustment component rotates around the third translation adjustment component to realize the virtual Angle adjustment of the display content of the display part;
  • the first translation adjustment component is movably connected with the virtual display part, so as to realize the left and right translation of the virtual display part in the X-axis direction.
  • an embodiment of the present disclosure also provides a near-eye head-mounted virtual device, the near-eye head-mounted virtual device includes a head-mounted device and the near-eye virtual display device described in any embodiment of the present disclosure; The display device is fixedly connected with the head-mounted device.
  • the present disclosure provides a near-eye virtual display device and a near-eye head-mounted virtual device.
  • the near-eye virtual display device includes a first translation adjustment component, a second translation adjustment component, a third translation adjustment component, a first rotation adjustment component, and a second translation adjustment component.
  • the second translation adjustment component realizes the forward and backward translation of the virtual display component in the Y-axis direction
  • the first rotation adjustment component realizes the storage and height adjustment of the virtual display component
  • the third translation adjustment component realizes the vertical translation of the virtual display component in the Z-axis direction
  • the second rotation adjustment component realizes the angle adjustment of the display content of the virtual display component
  • the first translation adjustment component realizes all left and right translation of the virtual display component in the X-axis direction.
  • the virtual display part By taking the eye movement range and exit pupil distance of the virtual display part as the center within the visual spatial position range of the near-eye virtual image, combined with the range of statistical data related to the interpupillary distance and eye height of men and women, the virtual display part can be seen clearly according to the coverage of most people In the extremely small product space volume of the near-eye virtual display device, the three translations of the first translation adjustment component, the second translation adjustment component, and the third translation adjustment component plus the first rotation adjustment component, the second translation adjustment component, and the second translation adjustment component are constructed.
  • the combination of two rotations of the rotation adjustment component and a total of five degrees of freedom in spatial movement can realize the adjustment and changes of the near-eye virtual display device in the spatial position, including pupillary distance, eye height, exit pupil distance, viewing area angle and position, etc., to achieve It realizes the efficient adjustment of the spatial position of the near-eye virtual display content, thereby allowing the user to conveniently adjust the display position of the near-eye virtual image content, without removing the wearable display device, and does not interfere with the visibility of the virtual display content, and does not affect the user's wearability
  • it can not only meet the needs of different head-shaped users with different visual characteristics and capabilities, but also realize the change of the spatial position of the virtual display components to meet different use requirements; at the same time, it can be used when the virtual display components are not needed.
  • the near-eye virtual display device of the present disclosure is small in size, can be operated with one hand, is flexible and convenient, and not only improves the convenience of user adjustment , and save product volume and reduce weight.
  • FIG. 1 is a schematic structural diagram of a near-eye virtual display device provided in an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an exploded structure of a near-eye virtual display device provided in an embodiment of the present disclosure.
  • Fig. 3 is a schematic structural diagram of a second implementation of the first rotation adjustment component in a near-eye virtual display device provided in an embodiment of the present disclosure.
  • FIG. 4 is an exploded schematic diagram of a second implementation of the first rotation adjustment component in a near-eye virtual display device provided in an embodiment of the present disclosure.
  • Fig. 5 is an exploded schematic diagram of a first translation adjustment component in a near-eye virtual display device provided in an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a front view state of a near-eye virtual display device provided in an embodiment of the present disclosure after translation adjustment.
  • FIG. 7 is a schematic diagram of an auxiliary vision state of a near-eye virtual display device provided in an embodiment of the present disclosure after the rotation S2 is adjusted.
  • FIG. 8 is a schematic diagram of a three-dimensional state of a near-eye virtual display device provided in an embodiment of the present disclosure after storage and adjustment.
  • FIG. 9 is a schematic diagram of a front-view state of a near-eye virtual display device provided in an embodiment of the present disclosure after storage and adjustment.
  • FIG. 10 is a schematic structural diagram of another near-eye virtual display device provided in an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a near-eye head-mounted virtual device provided in an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a monocular use state of a near-eye head-mounted virtual device in which a near-eye virtual display device and a headband-shaped head-mounted device are combined according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a binocular use state of a near-eye head-mounted virtual device that combines a near-eye virtual display device and a headband-shaped head-mounted device provided in an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a monocular use state of a near-eye head-mounted virtual device that combines a near-eye virtual display device and a helmet-shaped head-mounted device provided in an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a binocular use state of a near-eye head-mounted virtual device that combines a near-eye virtual display device and a helmet-shaped head-mounted device provided in an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a monocular use state of a near-eye head-mounted virtual device in which a near-eye virtual display device and a glasses-shaped head-mounted device are combined according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a binocular use state of a near-eye head-mounted virtual device that combines a near-eye virtual display device and a glasses-shaped head-mounted device provided in an embodiment of the present disclosure.
  • Fig. 18 is a schematic diagram of automatic adjustment between the head-mounted device and the near-eye virtual display device in a near-eye head-mounted virtual device provided in an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of voice control for automatic adjustment between the head-mounted device and the near-eye virtual display device in a near-eye head-mounted virtual device provided in an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a near-eye virtual display device.
  • the near-eye virtual display device 10 includes: a first translation adjustment component 1, a second translation adjustment component 2, The third translation adjustment assembly 3, the first rotation adjustment assembly 4, the second rotation adjustment assembly 5 and the virtual display part 8; wherein, the first translation adjustment assembly 1, the second translation adjustment assembly 2, the third translation adjustment assembly
  • the translation adjustment components 3 are perpendicular to each other, respectively corresponding to the X/Y/Z coordinate system of the three-dimensional space;
  • the second translation adjustment assembly 2 is used to realize the forward and backward translation of the virtual display part 8 in the Y-axis direction;
  • the first rotation adjustment assembly 4 is respectively rotatably connected with the second translation adjustment assembly 2 and the third translation adjustment assembly 3, so that the third translation adjustment assembly 3 rotates around the second translation adjustment assembly 2 ( Rotate S1) as shown in FIG. 1 to realize the storage and height adjustment of the virtual display component 8;
  • the third translation adjustment component 3 is used to realize the up and down translation of the virtual display part 8 in the Z-axis direction;
  • the second rotation adjustment assembly 5 is respectively assembled and combined with the third translation adjustment assembly 3 and the first translation adjustment assembly 1, so that the first translation adjustment assembly 1 rotates around the third translation adjustment assembly 3 ( Rotation S2) as shown in FIG. 1, to realize the angle adjustment of the display content of the virtual display part 8;
  • the first translation adjustment assembly 1 is movably connected with the virtual display part 8 to realize the left and right translation of the virtual display part 8 in the X-axis direction.
  • moving the first translation adjustment assembly 1 can change the eye movement range position of the virtual display part so that its center is basically consistent with the pupil observation center
  • moving the second translation adjustment assembly 2 can change the virtual display part's distance from the eyes.
  • moving the third translation adjustment component 3 can change the height of the virtual display component to meet the requirements of users with different head shapes and different eye heights.
  • FIG. 6 it is a schematic diagram of a front view state of a near-eye virtual display device provided in an embodiment of the present disclosure after translation adjustment.
  • the first translation adjustment assembly 1 , the second translation adjustment assembly 2 , and the third translation adjustment assembly 3 are all in a state of front view and vertical observation, where the first translation adjustment assembly 1 and the second translation adjustment assembly 2.
  • the translation direction of the third translation adjustment component 3 is bidirectionally variable, and various intermediate positions can constitute a certain frontal viewing position for users with different head shapes.
  • the second translation adjustment assembly 2 is used to realize the forward and backward translation of the virtual display part 8 in the Y-axis direction, and realize the adjustment of the exit pupil distance, so that the virtual The display content of the display unit 8 changes within a certain range of the Y axis in the front and rear direction as viewed by the user.
  • the second translation adjustment assembly 2 includes: a first miniature slide rail upper cover 21, a first damper 22, a first miniature slide rail 23, a first miniature slide rail lower cover 24, a second damper 25 and a first rotation Shaft cover 26 on the shaft; wherein:
  • the first micro-slide upper cover 21 is combined with the base of the head-mounted device 20;
  • the first micro-slide rail 23 realizes the forward and backward translation of the virtual display component in the Y-axis direction, and its upper part is fixed with the first micro-slide rail upper cover 21. After being assembled into the first damper 22, it is connected with the head-mounted device 20 base combination; the bottom of the first miniature slide rail 23 is fixed with the first miniature slide rail lower cover 24, and the first miniature slide rail lower cover 24 is assembled into the second damper 25 and connected with the upper shaft cover 26 of the first rotating shaft combination.
  • the front and rear translation of the virtual display component in the Y-axis direction can be realized through the first miniature slide rail 23, and the distance between the center of the virtual display component and the pupil of the human eye can be adjusted.
  • a first damper 22 and a second damper 25 are respectively arranged above and below the first miniature slide rail 23, and the first damper 22 and the second damper 25 are respectively assembled back to back.
  • the first damper 22 and the first miniature slide rail 23 are respectively located in the first miniature slide rail Both sides of the upper cover 21 of the slide rail; the second damper 25 and the first miniature slide rail 23 are respectively located on both sides of the lower cover 24 of the first miniature slide rail.
  • the first damper 22 is assembled on the inner side of the first miniature slide rail upper cover 21, and the first miniature slide rail 23 is respectively located on both sides of the first miniature slide rail upper cover 21;
  • the second damper 25 is assembled on the inner side of the first miniature slide rail lower cover 24 , and the first miniature slide rail 23 is respectively located on two sides of the first miniature slide rail lower cover 24 .
  • the first damper 22 and the second damper 25 constitute a damper mechanism, which can ensure the spatial stability of the first miniature slide rail 23 and realize the function of stepless adjustment of position.
  • both the first damper 22 and the second damper 25 are damping magnets.
  • the damper mechanism is composed of the first damper 22 and the second damper 25 combined.
  • the damper mechanism can also be realized by a combined structure of a magnet component or a combined structure of a damping gear and a rack component, and its realization structure is similar to that of the first damper 22 and the second damper 22.
  • the structure of the two dampers 25 combined to form the damper mechanism is similar, and will not be repeated here.
  • the second translation adjustment component 2 can make the display content of the virtual display part 8 change within a certain range of the Y axis in the front and rear direction observed by the user, and realize the exit pupil distance for different user head size differences. Adjustment, that is, to adjust the distance between the center of the virtual display part and the pupil of the human eye, and at the same time, the second translation adjustment assembly 2 can slide the part of the virtual display part 8 back to allow the rotation when the virtual display part 8 needs to be stored. Storage where there is room for movement.
  • the first miniature slide rail 23 in addition to using an independent first miniature slide rail 23 to realize the forward and backward translation of the virtual display component in the Y-axis direction, can also be combined with the first Combination design of the miniature slide rail upper cover 21, the first miniature slide rail upper cover 21 is designed as a part of a special slide rail, or the first miniature slide rail 23 is combined with the first miniature slide rail lower cover 24, and the The lower cover 24 of the first miniature slide rail is designed as a part of a special slide rail to realize the forward and backward translation of the virtual display component in the Y-axis direction. In this way, some parts can be saved, the assembly complexity can be reduced, and the reliability can be improved, but the essence of the function that the first miniature slide rail 23 can realize is not changed.
  • the third translation adjustment assembly 3 is rotatably connected to the first rotation adjustment assembly 4, through which the first rotation adjustment assembly 4 can be adjusted around the second translation Component 2 rotates.
  • the third translation adjustment assembly 3 includes: the lower shaft cover 31 of the first rotating shaft, the third damper 32, the lower cover body 33 of the third translation adjustment assembly, the second miniature slide rail 34, the second The mini slide rail upper cover 35 , the fourth damper 36 and the third translation adjustment assembly upper cover 37 .
  • the third damper 32 is assembled on the inner side of the lower cover 33 of the third translation adjustment assembly, and the second miniature slide rail 34 is respectively located on both sides of the lower cover 33 of the third translation adjustment assembly, which can The spatial stability of the second miniature sliding rail 34 is ensured, and the function of stepless position adjustment is also realized.
  • the third damper 32 is a damping magnet.
  • the lower cover 33 of the third translation adjustment assembly is fixedly connected with the second miniature slide rail 34, and after the lower cover 33 of the third translation adjustment assembly is assembled into the third damper 32, it is connected with the first The lower shaft cover 31 of the rotating shaft is fixedly connected.
  • the second miniature slide rail 34 is fixedly connected with the lower cover body 33 of the third translation adjustment assembly and the upper cover 35 of the second miniature slide rail respectively, so as to realize the up and down movement of the virtual display component in the Z-axis direction Translation, adjust the position of the center of the virtual display component in the eye height direction, so that the virtual display component slides up and down in the height direction of the Z axis, adjust the height of the eye height difference of different users and assist in observing the display content of the virtual display component Adjustment of exit pupil distance.
  • the second miniature slide rail upper cover 35 is fixedly connected with the second miniature slide rail 34, and after the second miniature slide rail upper cover 35 is assembled into the fourth damper 36, it is connected with the third translation adjustment assembly The cover body 37 is combined.
  • the fourth damper 36 is assembled on the inner side of the second micro-slide upper cover 35, and the third damper 32 is assembled on the inner side of the third translation adjustment assembly lower cover 33 to present a back-to-back installation.
  • the fourth damper 36 and the second miniature slide rail 34 are respectively located on both sides of the second miniature slide rail upper cover 35, which can ensure the spatial stability of the second miniature slide rail 34, and also The function of stepless adjustment of position is realized.
  • the fourth damper 36 is a damping magnet.
  • the third damper 32 and the fourth damper 36 constitute a damper mechanism, which can ensure the spatial stability of the second miniature slide rail 34 and realize the function of stepless adjustment of the position.
  • the damper mechanism can also be realized by a combined structure of a magnet component or a combined structure of a damping gear and a rack component, and its realization structure is similar to that of the third damper 32 and the first damper 32
  • the structure of the four dampers 36 combined to form the damper mechanism is similar and will not be repeated here.
  • the upper cover 37 of the third translation adjustment assembly is combined with the second miniature slide rail upper cover 35 to form the entire cover of the third translation adjustment assembly 3 .
  • the third translation adjustment component 3 can realize the up and down translation of the virtual display part 8 in the direction of the Z axis, so that the virtual display part 8 can slide up and down in the height direction of the Z axis.
  • the user's eye height difference can be used to adjust the height and assist the adjustment of the exit pupil distance when observing the display content of the virtual display part 8 .
  • the second micro-slide rail 34 can also be combined with the third translation adjustment assembly lower cover 33 is designed in combination, and the third translation adjustment assembly lower cover 33 is designed as a part of a special slide rail, or the second miniature slide rail 34 and the second miniature slide rail are combined.
  • Rail cover 35 is designed in combination, and the second miniature slide rail cover 35 is designed as a part of a special slide rail to realize the up and down translation of the virtual display component in the Z-axis direction. In this way, some parts can be saved, the assembly complexity can be reduced, and the reliability can be improved, but the essence of the function that the second miniature slide rail 34 can realize is not changed.
  • the first rotation adjustment assembly 4 is rotatably connected to the second translation adjustment assembly 2 and the third translation adjustment assembly 3 respectively, so that the third translation adjustment assembly 4
  • the translation adjustment assembly 3 rotates around the second translation adjustment assembly 2 to realize storage and height adjustment of the virtual display component 8 .
  • the first rotation adjustment assembly 4 includes: a first rotation shaft, the first rotation shaft is connected to the upper shaft cover 26 of the first rotation shaft and the lower shaft cover 26 of the first rotation shaft respectively.
  • the shaft cover 31 is assembled and fixedly connected so that the third translation adjustment assembly 3 can rotate around the second translation adjustment assembly 2 to achieve a single rotation of the third translation adjustment assembly 3 around the X axis.
  • the first rotation adjustment assembly 4 is respectively rotatably connected with the second translation adjustment assembly 2 and the third translation adjustment assembly 3, so that the third translation adjustment assembly 3 can rotate around the
  • the rotation of the second translation adjustment assembly 2 realizes the single rotation of the third translation adjustment assembly 3 around the X axis.
  • the second translation adjustment assembly 2 realizes the front and rear translation of the virtual display part in the Y-axis direction, and when the virtual display part 8 needs to be stored, the part of the virtual display part 8 can be slid back to allow rotation and storage
  • There is a movable space so that the first rotation adjustment component 4 realizes the accommodation adjustment of the virtual display component 8 .
  • the up and down translation of the virtual display part 8 in the Z axis direction is realized in the third translation adjustment assembly 3, so that the virtual display part 8 slides up and down in the height direction of the Z axis, so that the first rotation adjustment
  • the assembly 4 realizes the height adjustment of the virtual display part 8 . Therefore, the first rotation adjustment assembly 4 can realize the storage and height adjustment of the virtual display components, and by rotating the third translation adjustment assembly 3 around the first rotation adjustment assembly 4 above the user's eyes, all The virtual display part 8 moves above the user's eyes without blocking the user's straight ahead line of sight.
  • the near-eye virtual display device shown in Fig. 8 and Fig. 9 is in the state after storage and adjustment.
  • the third translation adjustment assembly 3 can be rotated by the first rotation adjustment assembly 4.
  • the X-axis rotates about 90 degrees above the eyes to realize the fast storage of the virtual display component 8, so that the user's field of view is unobstructed.
  • the first rotating shaft and the upper shaft cover of the first rotating shaft can also be used 26 combined design, design the upper shaft cover 26 of the first rotating shaft as a part of a special slide rail, or combine the first rotating shaft with the lower shaft cover 31 of the first rotating shaft, and make the first rotating shaft
  • a shaft cover 31 under a rotating shaft is designed as a part of a special slide rail to realize storage and height adjustment of the virtual display unit 8 .
  • FIG. 3 and FIG. 4 it is a schematic structural diagram of a second implementation manner of the first rotation adjustment assembly 4 .
  • the first rotation adjustment assembly 4 is composed of spherical vertical bidirectional rotation, including rotation S1-1 and rotation S1-2; wherein, the rotation S1-1 is a 360-degree rotation , realize the function of storing the virtual display part 8 and adjusting the height of the virtual display part 8 at a large angle; the rotation S1-2 is 20-30 degree rotation, and realizes that the user observes the virtual display part 8 and the eye observation direction Angle adjustment, combined with other joints can also achieve a certain eye pupil distance adjustment.
  • the first rotation adjustment assembly 4 includes: a rotation damping force adjustment knob 45 , a cardan shaft core 46 , a shaft cover 47 , and a cardan shaft base 48 .
  • the rotation damping force adjustment knob 45 is fixedly installed on the upper shaft cover 26 of the first rotation shaft, and is sheathed on one end of the universal shaft core 46 to realize the rotation S1-1, so that the third translation adjustment The component 3 is rotated 360 degrees around the X axis, and then the first translation adjustment component 1 equipped with the virtual display component is also rotated 360 degrees around the X axis.
  • the cardan shaft core 46 passes through the shaft cover 47 and is fixedly assembled on the cardan shaft base 48 through the shaft cover 47 .
  • the cardan shaft core 46, the shaft cover 47, and the cardan shaft base 48 form a rotation around the Z axis of 20-30 degrees to realize the rotation S1-2, and together with the rotation damping force adjustment knob 10 form a ball-axis biaxial composite rotation , realizing the compound rotation of rotation S1-1 and rotation S1-2.
  • the cardan shaft base 48 is assembled into the lower shaft cover 31 of the first rotating shaft for fixed connection.
  • the cardan shaft base 48 is assembled into the lower shaft cover 31 of the first rotation shaft for fixed connection, and the cardan shaft
  • the core 46 is assembled on the cardan shaft base 48 through the shaft cover 47, then the shaft cover 47 is assembled, and then the rotation damping force adjustment knob 45 is fixedly installed on the shaft cover 26 on the first rotating shaft . Therefore, the first rotation adjustment assembly 4 can make the third translation adjustment assembly 3 rotate 360 degrees around the X-axis, and can also rotate 20-30 degrees around the Z-axis, thereby forming a compound rotation of the ball axis and two axes.
  • the second implementation has more advantages than the first implementation.
  • the angle between the virtual display part 8 and the user's field of view in the Z-axis direction can be controlled, and a better visual experience can be provided in combination with the characteristics of the virtual display part 8.
  • the second rotation adjustment assembly 5 is assembled with the third translation adjustment assembly 3 and the first translation adjustment assembly 1 respectively, so that the first translation adjustment assembly 1 rotates around the third translation adjustment component 3 to realize the angle adjustment of the display content of the virtual display component 8.
  • the second rotation adjustment assembly 5 includes a second rotation shaft, and the second rotation shaft is respectively assembled and fixedly connected with the upper cover body 37 of the third translation adjustment assembly and the first translation adjustment assembly 1 , and the third translation adjustment assembly 3 is assembled with the first translation adjustment assembly 1 through the second rotation axis, so that the first translation adjustment assembly 1 can rotate around the third translation adjustment assembly 3, that is, the function of rotation S2 is realized.
  • the second rotation adjustment assembly 5 is assembled with the third translation adjustment assembly 3 and the first translation adjustment assembly 1 respectively, so that the second translation adjustment assembly 2 can rotate around the first translation adjustment assembly 1 A translation adjustment component 1 rotates, that is, realizes the function of rotation S2, so that the second rotation adjustment component 5 realizes the angle adjustment of the display content of the virtual display component, satisfying users to observe the virtual display content from different angles.
  • FIG. 7 it is a schematic diagram of an auxiliary vision state of a near-eye virtual display device provided in an embodiment of the present disclosure after the rotation S2 is adjusted.
  • the first translation adjustment component 1 is movably connected with the virtual display part 8 to realize the movement of the virtual display part 8 in the X-axis direction. Pan left and right.
  • the first translation adjustment assembly 1 includes: a spiral groove upper cover 11 , a spiral groove lower cover 12 , a movable guide rail 13 , a knob base 15 and a spiral knob 16 .
  • the movable guide rail 13 is movably connected with the virtual display component 8 .
  • the movable guide rail 13 is provided with a guide post 131 , and the guide post 131 can move in the spiral groove upper cover 11 and the spiral groove lower cover 12 .
  • the spiral groove cover 11 is provided with a first small screw hole 111 .
  • the screw knob 16 is in the shape of a hollow ring, through which the movable guide rail 13 can pass.
  • the outer ring of the spiral knob 16 is provided with a second small screw hole (not shown), the second small screw hole cooperates with the first small screw hole 111 of the spiral groove upper cover 11, and can be fixedly connected by screws .
  • the inner side of the knob base 15 is provided with a rotation limit guide groove (not shown), and the rotation limit guide groove cooperates with the guide post 131 on the movable guide rail 13, so that the guide post 131 can Move in the rotation limiting guide groove.
  • the center of the knob base 15 is provided with a second rotating shaft sleeve 151, and the second rotating shaft sleeve 151 is used to assemble and combine with the second rotating shaft of the second rotating adjustment assembly 5, so that The first translation adjustment assembly 1 and the third translation adjustment assembly 3 are assembled and combined through the second rotation axis, so that the first translation adjustment assembly 1 can rotate around the third translation adjustment assembly 3 to realize the rotation 2 Function.
  • the movable guide rail 13, the spiral groove upper cover 11, and the spiral groove lower cover 11 are assembled into the knob base 15 along the rotation limiting guide groove, and are connected with the second small screw hole provided on the spiral knob 16.
  • the first small screw hole 111 on the spiral groove upper cover 11 is fixedly connected by screws, and the spiral knob 16 is fixedly connected with the movable guide rail 13, which can prevent the movable guide rail 13 from moving toward the virtual display component side. fall off.
  • the rotation limiting guide groove can be moved by rotating the screw knob 16 to drive the guide column 131 on the movable guide rail 13, because the movable guide rail 13 is fixed in the knob base 15 with a rotation limiting groove , so as to realize the conversion from rotational movement to translation, the translation movement of the movable guide rail 13 can make the virtual display part 8 fixed on it move left and right in the X-axis direction, and realize the virtual display part 8 in the X-axis direction
  • the linear reciprocating translation slides left and right to adjust the position of the center of the virtual display component in the interpupillary distance direction to meet the observation needs of users with different interpupillary distances.
  • the first translation adjustment assembly 1 is movably connected with the virtual display part 8, and the first translation adjustment assembly 1 is rotationally connected with the second rotation adjustment assembly 5, so that the first The translation adjustment assembly 1 can rotate around the third translation adjustment assembly 3, so that the first translation adjustment assembly 1 can realize the left and right translation of the virtual display part in the X-axis direction, so that the display content of the virtual display part is in the
  • the user's interpupillary distance is displaced within a certain distance on the X-axis in the horizontal direction, so as to meet the observation needs of different users with different interpupillary distances.
  • the embodiment of the present disclosure provides a near-eye virtual display device 10 when assembling, the first rotation adjustment component 4 is described in the first realization of the first rotation axis, and the second rotation adjustment component 5 is described in the second
  • the rotary axis will be described as an example.
  • the assembly process of the near-eye virtual display device 10 is as follows.
  • the first miniature slide rail upper cover 21 is connected and fixed with the base of the head-mounted device 20 by screws, and the base may be a part of the head-mounted device 20 such as a helmet, a headband or glasses.
  • the first micro-slide rail 23 realizes the forward and backward translation of the virtual display component in the Y-axis direction, and its upper part is fixed with the first micro-slide rail upper cover 21.
  • the first damper 22 After being assembled into the first damper 22, it is connected with the head-mounted device 20 base combination; the bottom of the first miniature slide rail 23 is fixed with the first miniature slide rail lower cover 24, and the first miniature slide rail lower cover 24 is assembled into the second damper 25 and connected with the upper shaft cover 26 of the first rotating shaft combination.
  • the first rotating shaft 4 is respectively assembled and fixedly connected with the upper shaft cover 26 of the first rotating shaft and the lower shaft cover 31 of the first rotating shaft, so that the third translation adjustment assembly 3 rotates around the second
  • the translation adjustment assembly 2 rotates to realize the rotation of the third translation adjustment assembly 3 around the X axis.
  • the second miniature slide rail 34 realizes the vertical translation of the virtual display component in the Z-axis direction, and its upper part is fixedly connected with the lower cover body 33 of the third translation adjustment assembly, and the lower cover of the third translation adjustment assembly
  • the body 33 is assembled into the third damper 32 and fixedly connected with the lower shaft cover 31 of the first rotating shaft.
  • the bottom of the second miniature slide rail 34 is fixedly connected with the second miniature slide rail upper cover 35, and after the second miniature slide rail upper cover 35 is assembled into the fourth damper 36, it is adjusted with the third translation.
  • the assembly upper cover body 37 is assembled.
  • the second rotating shaft 5 is respectively assembled and fixedly connected with the upper cover body 37 of the third translation adjustment assembly and the first translation adjustment assembly 1, so that the first translation adjustment assembly 1 rotates around the third translation adjustment assembly 3, that is, realizes the rotation The function of S2.
  • the first translation adjustment assembly 1 is movably connected with the virtual display part 8 to realize the left and right translation of the virtual display part 8 in the X-axis direction.
  • the coaxial line T runs through the various components between the base of the head-mounted device 20 and the virtual display part 8 mentioned in FIG. All the connecting lines of the virtual display device are built into the product, which improves the safety of use in complex working scenarios such as limited space.
  • the first motor translation adjustment assembly 1 includes a guide rail base 11', a first micro motor 12' with a screw rod, a first push rod 13' and a hollow guide rail 14'.
  • the first micro motor 12' with a screw is fixed in the guide rail base 11', one end of the first push rod 13' is connected to the screw, and the other end is connected to the hollow guide rail 14', and the hollow guide rail 14' It is fixedly connected with the virtual display part 8; by controlling the positive and negative rotation of the first micro motor 12', the left and right translation of the screw rod in the X-axis direction is realized, and then the hollow guide rail 14' connected with the screw rod is realized in the X-axis direction left and right translation, the translation movement of the hollow guide rail 14' in the X-axis direction can make the virtual display part 8 fixed on it electric left and right translation in the X-axis direction, and realize the virtual display part 8 in the X-axis direction.
  • Direction linear reciprocating translation slide left and right to adjust the position of the center of the virtual display part 8 in the pupillary distance direction to meet the observation needs of users with different pupillary distances.
  • the third translation adjustment assembly 3 includes an upper sliding seat 31', a third micro motor 32' with a screw rod, a third push rod 33' and a lower sliding seat 34'.
  • the third micro-motor 32' with a screw is fixed in the upper sliding seat 31', one end of the third push rod 33' is connected to the screw, and the other end is connected to the lower sliding seat 34';
  • the vertical translation of the screw rod in the Z-axis direction is realized, and the vertical translation of the lower sliding seat 34' connected with the screw rod in the Z-axis direction is realized, thereby realizing
  • the electric up and down translation of the virtual display part 8 in the Z-axis direction adjusts the position of the center of the virtual display part 8 in the eye-height direction and the length of the side arm of the entire product, and is combined with other rotation adjustments to meet the needs of users in various observation positions , and adjust the eye height difference for different users and adjust the exit pupil distance when assisting in observing the display content of the virtual display part 8 .
  • the second translation adjustment assembly 2 includes an upper base 21', a second micro motor 22' with a screw, a second push rod 23' and a lower base 24'.
  • the second micro motor 22' with a screw is fixed in the upper base 21', one end of the second push rod 23' is connected with the screw, and the other end is connected with the lower base 24'; by controlling the second The positive and negative rotation of the micro motor 22' realizes the forward and backward translation of the screw rod in the Y-axis direction, and then realizes the forward and backward translation of the lower base 24' connected with the screw rod in the Y-axis direction, and then realizes the virtual display component 8
  • the electric forward and backward translation in the Y-axis direction adjusts the distance between the center of the virtual display part 8 and the pupil of the human eye, so as to adapt to the difference in the head shape of different users and realize the adjustment of the exit pupil distance.
  • the part of the virtual display part 8 can be slid back to a position where there is room for rotation and storage.
  • the first rotation adjustment assembly 4 includes a third rotation shaft, and the third rotation shaft is adjusted with the lower base 24 ′ of the second translation adjustment assembly 2 and the third translation adjustment assembly 2 respectively.
  • the upper sliding seat 31' of the assembly 3 is assembled and fixedly connected so that the third translation adjustment assembly 3 can rotate around the second translation adjustment assembly 2, so that the third translation adjustment assembly 3 can rotate around the X axis rotate.
  • the first rotation adjustment component 4 is respectively rotatably connected with the second translation adjustment component 2 and the third translation adjustment component 3, and the virtual display is implemented in the second translation adjustment component 2
  • the front and rear translation of the component in the Y-axis direction when the virtual display component 8 needs to be stored, the virtual display component 8 can be partially slid back to a position where there is room for rotation and storage, so that the first rotation adjustment The component 4 realizes the storage adjustment of the virtual display component 8 .
  • the up and down translation of the virtual display part 8 in the Z axis direction is realized in the third translation adjustment assembly 3, so that the virtual display part 8 slides up and down in the height direction of the Z axis, so that the first rotation adjustment The assembly 4 realizes the height adjustment of the virtual display part 8 .
  • the first rotation adjustment assembly 4 can realize the storage and height adjustment of the virtual display components, and by rotating the third translation adjustment assembly 3 around the first rotation adjustment assembly 4 above the user's eyes, the The virtual display part 8 moves to the top of the user's eyes without blocking the user's straight ahead line of sight.
  • the second rotation adjustment assembly 5 includes a fourth rotation shaft, and the fourth rotation shaft is connected to the lower sliding seat 34' and the first rotation shaft of the third translation adjustment assembly 3 respectively.
  • the guide rail base 11' of the translation adjustment assembly 1 is assembled and fixedly connected, and the third translation adjustment assembly 3 and the first translation adjustment assembly 1 are assembled and combined through the fourth rotation axis, which can make the first translation adjustment assembly 1 rotates around the third translation adjustment assembly 3, that is, to realize the function of rotation S2.
  • the second rotation adjustment component 5 realizes the angle adjustment of the display content of the virtual display part 8, satisfying the user to observe the virtual display content from different angles.
  • an embodiment of the present disclosure also provides a near-eye head-mounted virtual device, which includes a head-mounted device 20 and the near-eye virtual display device 10 described in any of the above-mentioned embodiments.
  • the near-eye virtual display device 10 is fixedly connected to the head-mounted device 20 , so that the near-eye virtual display device 10 is fixed on the head-mounted device 20 .
  • the near-eye virtual display device 10 is fixed on the head-mounted device 20 through screw connection.
  • the head-mounted device 20 includes a base.
  • the first miniature sliding rail upper cover 21-3 of the second translation adjustment assembly 2 is combined and fixedly connected with the base of the head-mounted device 20, so that the near-eye virtual display device 10 is fixed on the on the headset 20.
  • the near-eye virtual display device is consistent with the near-eye virtual display device 10 described in any of the above-mentioned embodiments.
  • the display device 10 will not be described in detail here.
  • the head-mounted device 20 includes a headband, a helmet (hard hat) or glasses.
  • a near-eye virtual display device 10 provided in an embodiment of the present disclosure can be used as a monocular product when combined with the head-mounted device 20 in the form of a helmet (safety helmet), headband or glasses to form a near-eye head-mounted virtual device It can also be used as a binocular product.
  • a helmet safety helmet
  • headband headband
  • glasses to form a near-eye head-mounted virtual device
  • binocular product please refer to Figure 12 to Figure 17.
  • the head-mounted device 20 includes a host (not shown) and an output interface (not shown), and the host is connected to the output interface.
  • the output interface is a USB interface.
  • the host is connected to the near-eye virtual display device 10 through the output interface, and transmits the virtual display content in the host to the virtual display component in the near-eye virtual display device 10 for display.
  • the near-eye virtual display device 10 includes a printed circuit board (PCB, Printed Circuit Board) (not shown), and the printed circuit board can be arranged on the first translation adjustment component 1, the second translation adjustment Component 2 or the third translation adjustment component 3.
  • PCB printed circuit Board
  • the printed circuit board includes a micro control unit (MCU, Microcontroller Unit) controller and driver.
  • MCU Microcontroller Unit
  • the MCU controller communicates with the host through the output interface to obtain the Control instructions (such as forward translation, backward translation, upward translation, downward translation, left translation, right translation, etc.), and then convert the control instructions into pulse signals, direction signals and micro-motor numbers, and send them to the drive.
  • the driver drives the corresponding micro-motor to move according to the received pulse signal, direction signal and micro-motor number, so as to achieve the function of controlling the near-eye virtual display device 10 and further achieve the function of controlling the head-mounted device 20 .
  • the MCU controller can send the data of adjusting the near-eye virtual display device 10 to the best position to the host, so that the host can store the data of the best position, and the host can send it once next time.
  • the control command allows the near-eye virtual display device 10 to be adjusted to an optimal position without sending control commands multiple times.
  • the control process of the MCU controller is divided into three parts: initialization, interrupt, and main loop. The details are as follows.
  • Initialization part when powered on, the MCU controller first performs an initialization operation, resets, enables the driver, and makes all micro motors in the initialization position.
  • Interrupt part After the micro motor to be adjusted according to the control instruction reaches the end position that needs to be adjusted, the driver will give an end signal, and send the end signal to the interrupt of the MCU controller, and the MCU controller will do Correspondingly, the host is notified through the output interface, and the host informs the operator that a certain direction can no longer be adjusted through the display screen or voice.
  • Main loop The main loop of the MCU controller is responsible for receiving the data packet containing the command code sent by the output interface, unpacking to obtain the command code, identifying the control command from the command code, and converting the control command into a pulse Signal, direction signal and micro motor number are sent to the driver.
  • the driver drives the corresponding micro motor to move according to the received pulse signal, direction signal and micro motor number. For example, if the control instruction is "forward", then the control instruction is converted into a certain number of pulses, the direction is forward rotation, and the number of the micromotor is 22', and then these controls are sent to the driver, and the driver drives the micromotor 22' to rotate.
  • the near-eye virtual display device is pushed forward by a certain distance.
  • the converted pulse number, direction and micro-motor number will be cached in the memory first.
  • the MCU controller will perform a calculation on the adjustment result to simplify the operation, such as "forward" twice and “backward” once. Through calculation, only one "forward” result needs to be stored.
  • After calculating the best adjustment result package it and send it to the host through the output interface for storage in the memory. The next time the host only sends a command to adjust the near-eye virtual display device to the best position.
  • the host computer further includes a microphone, and the microphone is used to collect voice control information from the user and transmit it to the host computer for voice processing.
  • the host also has a built-in voice command recognition APP (Application, application program) and a near-eye virtual display device adjustment APP.
  • the voice command recognition APP has built-in control commands of the near-eye virtual display device 10 (such as forward translation, backward translation, upward translation, downward translation, leftward translation, rightward translation, etc.), and the voice command recognition
  • the APP recognizes the voice control information transmitted by the microphone, compares it with the built-in control command, recognizes the control command corresponding to the voice control information, and informs the near-eye virtual display device of the near-eye virtual display device to adjust the APP by broadcasting the control command;
  • the near-eye virtual display device adjusts the APP to call the corresponding interface, sends the control command to the MCU controller of the near-eye virtual display device through the output interface, and then controls the movement of the corresponding micro motor.
  • the specific process is as follows.
  • the microphone collects the voice control information sent by the user, it transmits it to the voice command recognition APP of the host; the voice command recognition APP calls the offline voice library file interface (it can also be an online voice library file); the offline voice library is related to The interface then compares the collected voice control information with the built-in voice resource file, and feeds back a voice recognition result to the voice command recognition APP;
  • the control instruction of the near-eye virtual display device is matched with a corresponding control instruction, and the corresponding control instruction is sent in a broadcast manner to inform the near-eye virtual display device to adjust the APP.
  • the near-eye virtual display device adjusts the APP to convert the received control instruction into a command code, and packs the command code into a data exchange format package that can be recognized by the MCU controller, such as a general Json package (JavaScript Object Notation, JS Object Notation), or the package format of a custom data exchange format.
  • the near-eye virtual display device adjusts the APP to call the output interface driver of the corresponding driver layer (for example, if the output interface is USB, the output interface driver is a USB driver), and sends the data packet containing the command code to the near-eye virtual display through the output interface. device's MCU controller.
  • the MCU controller recognizes the received data packet containing the command code, unpacks and identifies the control command from the command code, converts the control command into a pulse signal, a direction signal and a micromotor number, and sends it to the driver.
  • the driver drives the corresponding micro motor to move according to the received pulse signal, direction signal and micro motor number.
  • the MCU controller feeds back the adjustment result to the near-eye virtual display device adjustment APP through the output interface according to the final adjustment result of the driver, and the near-eye virtual display device adjustment APP stores the adjustment result in the local host memory
  • the near-eye virtual display device adjustment APP only needs to directly send the adjustment result fed back by the MCU controller to the MCU
  • the controller can quickly adjust the near-eye virtual display device without sending multiple control instructions for adjustment.
  • the above embodiment of the near-eye head-mounted virtual device and the above-mentioned embodiment of the near-eye virtual display device belong to the same concept, and its specific implementation process is detailed in the embodiment of the near-eye virtual display device.
  • the technical features of the embodiment of the near-eye virtual display device are described in the The above-mentioned embodiments of the near-eye head-mounted virtual device are all correspondingly applicable, and repeated descriptions will not be repeated.
  • the near-eye virtual display device and the near-eye head-mounted virtual device provided by the present disclosure take the eye movement range and exit pupil distance of the virtual display components as the center within the visual spatial position range of the near-eye virtual image, and combine the statistics of interpupillary distance and eye height of men and women
  • the range of data is based on the spatial change area that can be seen clearly by the vast majority of people.
  • the first translation adjustment component, the second translation adjustment component, and the third translation adjustment component are constructed.
  • the three translations of the adjustment component plus the combination of the first rotation adjustment component and the two rotations of the second rotation adjustment component, a total of five degrees of freedom, can realize the spatial position of the near-eye virtual display device, including pupil distance, eye height, exit distance, etc.
  • the adjustment of the pupillary distance, the angle and position of the visual area, etc. realizes the efficient adjustment of the spatial position of the near-eye virtual display content, thereby allowing the user to conveniently adjust the display position of the near-eye virtual image content, without removing the wearable display device, and without Interfering with the visibility of the virtual display content does not affect the user's use when wearing myopia glasses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

本公开提供了一种近眼虚拟显示装置及近眼头戴虚拟设备,属于虚拟显示设备。所述近眼虚拟显示装置包括:第二平移调节组件,用于实现虚拟显示器部件在Y轴方向上的前后平移;第一旋转调节组件,分别与第二平移调节组件和第三平移调节组件旋转连接,以实现虚拟显示器部件收纳和高度调节;第三平移调节组件,用于实现虚拟显示器部件在Z轴方向上的上下平移;第二旋转调节组件分别与第三平移调节组件和第一平移调节组件装配组合,以实现虚拟显示器部件的显示内容的角度调节;第一平移调节组件,与虚拟显示器部件活动连接,以实现虚拟显示器部件在X轴方向上的左右平移。从而实现了近眼头戴虚拟显示内容空间位置的高效调节。

Description

一种近眼虚拟显示装置及近眼头戴虚拟设备 技术领域
本公开涉及虚拟显示设备领域,尤其涉及一种近眼虚拟显示装置及近眼头戴虚拟设备。
背景技术
目前,单目和双目的近眼AR(Augmented Reality,增强现实)头戴式显示器(Head-Mounted Display,HMD)广泛用于包括军事、医疗、工业、安防和娱乐等场景。
为了在观看者的预期位置处形成虚拟图像,光学设备必须满足各种几何和位置要求。如用户的眼睛位置、以及光学***相对于用户眼睛的放置。有时用户可能希望虚拟图像内容在视野内与真实世界叠加观察,有时希望虚拟对象在用户眼睛主视区域下方,作为辅助显示,有时用户还希望临时把显示装置收纳起来,不影响用户观察真实世界等等各种使用需求。由于每个人眼睛的瞳距、眼高等视觉特性存在差异,而目前AR虚拟显示器部件包括棱镜、自由曲面、光波导等各种技术都普遍存在FOV(Field of view,视场角)、眼动范围小等问题,且大部分AR产品显示区域空间位置刚性约束太强(例如,眼镜类形态产品还影响原来用户眼镜的佩戴),很难满足不同人头型不同的使用需求,用户也无法很好移动显示区域的空间位置,不能适应使用者的不同角度和方向的调节需要。也有用连杆组合方式来实现头戴显示器的显示器空间位置的调节,但是这种组合方式做出的产品普遍存在体积大、笨重、调节复杂等问题,部分技术方案也存在连接线外露,在一些设备密集或者有限作业空间使用时头部容易被剐蹭,影响用户安全性。
技术问题
基于此,本公开提供了一种近眼虚拟显示装置及近眼头戴虚拟设备,实现了近眼头戴虚拟显示内容空间位置的高效调节,既提高了用户调节便利性,又节省了产品体积和降低了重量。
技术解决方案
第一方面,本公开实施例提供了一种近眼虚拟显示装置,所述近眼虚拟显示装置包括:第一平移调节组件、第二平移调节组件、第三平移调节组件、第一旋转调节组件、第二旋转调节组件和虚拟显示器部件;其中:
所述第二平移调节组件用于实现所述虚拟显示器部件在Y轴方向上的前后平移;
所述第一旋转调节组件分别与所述第二平移调节组件和所述第三平移调节组件旋转连接,使所述第三平移调节组件绕所述第二平移调节组件旋转,以实现所述虚拟显示器部件收纳和高度调节;
所述第三平移调节组件用于实现所述虚拟显示器部件在Z轴方向上的上下平移;
所述第二旋转调节组件分别与所述第三平移调节组件和所述第一平移调节组件装配组合,使所述第一平移调节组件绕所述第三平移调节组件旋转,以实现所述虚拟显示器部件的显示内容的角度调节;
所述第一平移调节组件与所述虚拟显示器部件活动连接,以实现所述虚拟显示器部件在X轴方向上的左右平移。
另一方面,本公开实施例还提供了一种近眼头戴虚拟设备,所述近眼头戴虚拟设备包括头戴装置和本公开任一项实施例所述的近眼虚拟显示装置;所述近眼虚拟显示装置与头戴装置固定连接。
有益效果
本公开提供了一种近眼虚拟显示装置及近眼头戴虚拟设备,通过所述近眼虚拟显示装置包括第一平移调节组件、第二平移调节组件、第三平移调节组件、第一旋转调节组件、第二旋转调节组件和虚拟显示器部件;所述第二平移调节组件实现所述虚拟显示器部件在Y轴方向上的前后平移,所述第一旋转调节组件实现所述虚拟显示器部件收纳和高度调节,所述第三平移调节组件实现所述虚拟显示器部件在Z轴方向上的上下平移,所述第二旋转调节组件实现所述虚拟显示器部件的显示内容的角度调节,所述第一平移调节组件实现所述虚拟显示器部件在X轴方向上的左右平移。通过在近眼虚像可视空间位置范围内,以虚拟显示器部件的眼动范围,出瞳距离为中心,结合男女瞳距、眼高相关统计数据范围,按照覆盖绝大多数人群能够看清虚拟显示器部件的空间变化区域,在近眼虚拟显示装置极小的产品空间体积内,构建以第一平移调节组件、第二平移调节组件、第三平移调节组件的三个平移加以第一旋转调节组件、第二旋转调节组件的两个旋转共五个自由度的空间运动组合方式来可以实现近眼虚拟显示装置在空间位置包括瞳距、眼高、出瞳距离、可视区域角度和位置等的调节变化,实现了近眼头戴虚拟显示内容空间位置的高效调节,从而允许用户方便调节近眼虚拟图像内容的显示位置,不用除去可穿戴显示装置,且不干扰虚拟显示内容的可见性,也不影响用户在佩戴近视眼镜的情况下使用,既可以满足不同头型用户人眼视觉特性和能力差异的需求,还能实现虚拟显示器部件空间位置的变化以满足不同的使用要求;同时在不需要虚拟显示器部件的时候可以快速收纳到不遮挡视线的位置,而不影响正常视野。并且,能够很好的弥补了现有包括棱镜、自由曲面、光波导等各种AR光学技术在眼动范围、FOV小等问题的局限性,满足了工业、医疗等场景下不同头型用户不同视觉特性的多种近眼显示使用需求。相比现有的要由至少两节组合运动调节虚拟显示器部件的连杆组合调节方式,本公开的近眼虚拟显示装置体积小、单手即可操作,灵活、方便,既提高了用户调节便利性,又节省了产品体积和降低了重量。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例中提供的一种近眼虚拟显示装置的结构示意图。
图2为本公开实施例中提供的一种近眼虚拟显示装置的分解结构示意图。
图3为本公开实施例中提供的一种近眼虚拟显示装置中第一旋转调节组件的第二种实现结构示意图。
图4为本公开实施例中提供的一种近眼虚拟显示装置中第一旋转调节组件的第二种实现结构分解示意图。
图5为本公开实施例中提供的一种近眼虚拟显示装置中第一平移调节组件的结构分解示意图。
图6为本公开实施例中提供的一种近眼虚拟显示装置处于平移调节后的正视状态示意图。
图7为本公开实施例中提供的一种近眼虚拟显示装置处于旋转S2调节后的辅助视觉状态示意图。
图8为本公开实施例中提供的一种近眼虚拟显示装置处于收纳调节后的立体状态示意图。
图9为本公开实施例中提供的一种近眼虚拟显示装置处于收纳调节后的正视状态示意图。
图10为本公开实施例中提供的另一种近眼虚拟显示装置的结构示意图。
图11为本公开实施例中提供的一种近眼头戴虚拟设备的结构示意图。
图12为本公开实施例中提供的一种近眼虚拟显示装置与头箍形态的头戴装置组合的近眼头戴虚拟设备的单目使用状态示意图。
图13为本公开实施例中提供的一种近眼虚拟显示装置与头箍形态的头戴装置组合的近眼头戴虚拟设备的双目使用状态示意图。
图14为本公开实施例中提供的一种近眼虚拟显示装置与头盔形态的头戴装置组合的近眼头戴虚拟设备的单目使用状态示意图。
图15为本公开实施例中提供的一种近眼虚拟显示装置与头盔形态的头戴装置组合的近眼头戴虚拟设备的双目使用状态示意图。
图16为本公开实施例中提供的一种近眼虚拟显示装置与眼镜形态的头戴装置组合的近眼头戴虚拟设备的单目使用状态示意图。
图17为本公开实施例中提供的一种近眼虚拟显示装置与眼镜形态的头戴装置组合的近眼头戴虚拟设备的双目使用状态示意图。
图18为本公开实施例中提供的一种近眼头戴虚拟设备中的所述头戴装置与近眼虚拟显示装置之间进行自动调节的示意图。
图19为本公开实施例中提供的一种近眼头戴虚拟设备中的所述头戴装置与近眼虚拟显示装置之间进行自动调节的语音控制示意图。
本发明的实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
在一个实施例中,如图1和图2所示,本公开实施例提供一种近眼虚拟显示装置,所述近眼虚拟显示装置10包括:第一平移调节组件1、第二平移调节组件2、第三平移调节组件3、第一旋转调节组件4、第二旋转调节组件5和虚拟显示器部件8;其中,所述第一平移调节组件1、所述第二平移调节组件2、所述第三平移调节组件3互相垂直,分别对应三维空间的X/Y/Z坐标系;
所述第二平移调节组件2用于实现所述虚拟显示器部件8在Y轴方向上的前后平移;
所述第一旋转调节组件4分别与所述第二平移调节组件2和所述第三平移调节组件3旋转连接,使所述第三平移调节组件3绕所述第二平移调节组件2旋转(如图1中所示的旋转S1),以实现所述虚拟显示器部件8收纳和高度调节;
所述第三平移调节组件3用于实现所述虚拟显示器部件8在Z轴方向上的上下平移;
所述第二旋转调节组件5分别与所述第三平移调节组件3和所述第一平移调节组件1装配组合,使所述第一平移调节组件1绕所述第三平移调节组件3旋转(如图1中所示的旋转S2),以实现所述虚拟显示器部件8的显示内容的角度调节;
所述第一平移调节组件1与所述虚拟显示器部件8活动连接,以实现所述虚拟显示器部件8在X轴方向上的左右平移。
如图1所示,移动第一平移调节组件1可以改变所述虚拟显示器部件的眼动范围位置使其中心与瞳孔观察中心基本一致,移动第二平移调节组件2可以改变虚拟显示器部件的离开眼睛的距离,而弥补虚拟显示器部件本身出瞳距离不可变的局限性,移动第三平移调节组件3可以改变虚拟显示器部件的高度,满足不同头型用户不同眼高的使用要求。
如图6所示,为本公开实施例中提供的一种近眼虚拟显示装置处于平移调节后的正视状态示意图。在图6中,第一平移调节组件1、第二平移调节组件2、第三平移调节组件3均处于打开的一种正视垂直观察状态,其中,第一平移调节组件1、第二平移调节组件2、第三平移调节组件3的平移方向都是双向可变的,各种中间位置都可以构成不同头型用户的某个正视观察位置。
在一个实施例中,如图2所示,所述第二平移调节组件2用于实现所述虚拟显示器部件8在Y轴方向上的前后平移,实现出瞳距离的调节,以使所述虚拟显示器部件8的显示内容在用户观察前后方向Y轴的一定范围内变化。
所述第二平移调节组件2包括:第一微型滑轨上盖21、第一阻尼器22、第一微型滑轨23、第一微型滑轨下盖24、第二阻尼器25和第一旋转轴上轴盖26;其中:
所述第一微型滑轨上盖21与头戴装置20的底座组合;
所述第一微型滑轨23实现所述虚拟显示器部件在Y轴方向上的前后平移,其上方与第一微型滑轨上盖21固定,装配入第一阻尼器22后,与头戴装置20的底座组合;第一微型滑轨23的下方与第一微型滑轨下盖24固定,所述第一微型滑轨下盖24装配入第二阻尼器25后与第一旋转轴上轴盖26组合。通过第一微型滑轨23即可实现所述虚拟显示器部件在Y轴方向上的前后平移,调节虚拟显示器部件中心离开人眼瞳孔的距离。
其中,在所述第一微型滑轨23的上方和下方各设置有一第一阻尼器22和一第二阻尼器25,所述第一阻尼器22和所述第二阻尼器25分别背靠背地装配在所述第一微型滑轨上盖21的内侧和所述第一微型滑轨下盖24的内侧,所述第一阻尼器22与所述第一微型滑轨23分别位于所述第一微型滑轨上盖21的两侧;所述第二阻尼器25与所述第一微型滑轨23分别位于所述第一微型滑轨下盖24的两侧。所述第一阻尼器22装配在所述第一微型滑轨上盖21的内侧,与所述第一微型滑轨23分别位于所述第一微型滑轨上盖21的两侧;所述第二阻尼器25装配在所述第一微型滑轨下盖24的内侧,与所述第一微型滑轨23分别位于所述第一微型滑轨下盖24的两侧。所述第一阻尼器22和所述第二阻尼器25构成阻尼器机构,可以保证所述第一微型滑轨23的空间稳定性,也实现了无级调节位置的作用。优选地,所述第一阻尼器22和所述第二阻尼器25为均为阻尼磁铁。
在本实施例中,所述阻尼器机构由所述第一阻尼器22和所述第二阻尼器25组合构成。在另一个可选的实施例中,所述阻尼器机构也可以由磁铁部件组合结构或者阻尼齿轮与齿条部件的组合结构来实现,其实现结构与所述第一阻尼器22和所述第二阻尼器25组合构成阻尼器机构的结构类似,在此不再赘述。
在本实施例中,所述第二平移调节组件2可以使所述虚拟显示器部件8的显示内容在用户观察前后方向Y轴的一定范围内变化,对于不同用户头型大小差异,实现出瞳距离的调节,即调节虚拟显示器部件中心离开人眼瞳孔的距离,同时所述第二平移调节组件2在所述虚拟显示器部件8需要收纳时候,可以滑动所述虚拟显示器部件8部分回到可让旋转收纳有活动空间的位置。
作为另一个可选实施例,除了采用独立的第一微型滑轨23来实现所述虚拟显示器部件在Y轴方向上的前后平移之外,也可以将所述第一微型滑轨23与第一微型滑轨上盖21组合设计,把第一微型滑轨上盖21设计成为一个特殊滑轨的一部分,或者将所述第一微型滑轨23与第一微型滑轨下盖24组合设计,把第一微型滑轨下盖24设计成为一个特殊滑轨的一部分,来实现所述虚拟显示器部件在Y轴方向上的前后平移。这样可以节省部分零件,减少装配复杂度,提高可靠性,但不改变所述第一微型滑轨23能够实现功能的本质。
在一个实施例中,如图1和图2所示,所述第三平移调节组件3与所述第一旋转调节组件4旋转连接,通过所述第一旋转调节组件4可以绕第二平移调节组件2旋转。
如图2所示,所述第三平移调节组件3包括:第一旋转轴下轴盖31、第三阻尼器32、第三平移调节组件下盖体33、第二微型滑轨34、第二微型滑轨上盖35、第四阻尼器36和第三平移调节组件上盖体37。
所述第三阻尼器32装配在所述第三平移调节组件下盖体33的内侧,与所述第二微型滑轨34分别位于所述第三平移调节组件下盖体33的两侧,可以保证所述第二微型滑轨34的空间稳定性,也实现了无级调节位置的作用。优选地,所述第三阻尼器32为阻尼磁铁。
所述第三平移调节组件下盖体33与所述第二微型滑轨34固定连接,在所述第三平移调节组件下盖体33装配入所述第三阻尼器32后与所述第一旋转轴下轴盖31固定连接。
所述第二微型滑轨34分别与所述第三平移调节组件下盖体33和所述第二微型滑轨上盖35固定连接,用于实现所述虚拟显示器部件在Z轴方向上的上下平移,调节虚拟显示器部件中心在眼高方向上的位置,以使所述虚拟显示器部件在Z轴的高度方向上下滑动,对于不同用户眼高差异进行高度的调节和辅助观察虚拟显示器部件的显示内容时出瞳距离的调节。
所述第二微型滑轨上盖35与所述第二微型滑轨34固定连接,在第二微型滑轨上盖35装配入所述第四阻尼器36后与所述第三平移调节组件上盖体37组合。
所述第四阻尼器36装配在所述第二微型滑轨上盖35的内侧,与所述第三阻尼器32装配在所述第三平移调节组件下盖体33的内侧呈现出的背靠背安装形态,所述第四阻尼器36与所述第二微型滑轨34分别位于所述第二微型滑轨上盖35的两侧,可以保证所述第二微型滑轨34的空间稳定性,也实现了无级调节位置的作用。优选地,所述第四阻尼器36为阻尼磁铁。
在本实施例中,所述第三阻尼器32和所述第四阻尼器36构成阻尼器机构,可以保证所述第二微型滑轨34的空间稳定性,也实现了无级调节位置的作用。在另一个可选的实施例中,所述阻尼器机构也可以由磁铁部件组合结构或者阻尼齿轮与齿条部件的组合结构来实现,其实现结构与所述第三阻尼器32和所述第四阻尼器36组合构成阻尼器机构的结构类似,在此不再赘述。
所述第三平移调节组件上盖体37与所述第二微型滑轨上盖35组合,形成第三平移调节组件3的整个盖体。
在本实施例中,所述第三平移调节组件3可以实现所述虚拟显示器部件8在Z轴方向上的上下平移,以使所述虚拟显示器部件8在Z轴的高度方向上下滑动,对于不同用户眼高差异进行高度的调节和辅助观察虚拟显示器部件8的显示内容时出瞳距离的调节。
作为另一个可选实施例,除了采用独立的第二微型滑轨34来实现所述虚拟显示器部件在Z轴方向上的上下平移之外,也可以将所述第二微型滑轨34与所述第三平移调节组件下盖体33组合设计,把所述第三平移调节组件下盖体33设计成为一个特殊滑轨的一部分,或者将所述第二微型滑轨34与所述第二微型滑轨上盖35组合设计,把所述第二微型滑轨上盖35设计成为一个特殊滑轨的一部分,来实现所述虚拟显示器部件在Z轴方向上的上下平移。这样可以节省部分零件,减少装配复杂度,提高可靠性,但不改变所述第二微型滑轨34能够实现功能的本质。
在一个实施例中,如图1至图4所示,所述第一旋转调节组件4分别与所述第二平移调节组件2和所述第三平移调节组件3旋转连接,使所述第三平移调节组件3绕所述第二平移调节组件2旋转,以实现所述虚拟显示器部件8收纳和高度调节。
如图2所示,为所述第一旋转调节组件4的第一种实现方式的结构示意图。在该第一种实现方式中,所述第一旋转调节组件4包括:第一旋转轴,所述第一旋转轴分别与所述第一旋转轴上轴盖26和所述第一旋转轴下轴盖31装配组合固定连接,以使所述第三平移调节组件3绕所述第二平移调节组件2进行旋转,实现所述第三平移调节组件3绕X轴单一旋转。
在本实施例中,所述第一旋转调节组件4分别与所述第二平移调节组件2和所述第三平移调节组件3旋转连接,以使所述第三平移调节组件3可以绕所述第二平移调节组件2旋转,实现所述第三平移调节组件3绕X轴单一旋转。在所述第二平移调节组件2实现所述虚拟显示器部件在Y轴方向上的前后平移,在所述虚拟显示器部件8需要收纳时,可以滑动所述虚拟显示器部件8部分回到可让旋转收纳有活动空间的位置,从而使所述第一旋转调节组件4实现所述虚拟显示器部件8的收纳调节。在所述第三平移调节组件3实现所述虚拟显示器部件8在Z轴方向上的上下平移,以使所述虚拟显示器部件8在Z轴的高度方向上下滑动,从而使所述第一旋转调节组件4实现所述虚拟显示器部件8的高度调节。所以,所述第一旋转调节组件4可以实现所述虚拟显示器部件收纳和高度调节,通过将所述第三平移调节组件3绕所述第一旋转调节组件4向用户眼睛上方旋转,可以使所述虚拟显示器部件8移动到用户眼睛上方而不遮挡用户正前方视线。
如图8和图9所示的所述近眼虚拟显示装置处于收纳调节后的状态,有时用户暂时不需要观察虚拟显示内容的时候,可以通过第一旋转调节组件4将第三平移调节组件3绕X轴向眼睛上方旋转90度左右,实现虚拟显示器部件8的快速收纳,让用户视野无遮挡。
作为另一个可选实施例,除了采用独立的第一旋转轴来实现所述虚拟显示器部件8收纳和高度调节之外,也可以将所述第一旋转轴与所述第一旋转轴上轴盖26组合设计,把所述第一旋转轴上轴盖26设计成为一个特殊滑轨的一部分,或者将所述第一旋转轴与所述第一旋转轴下轴盖31组合设计,把所述第一旋转轴下轴盖31设计成为一个特殊滑轨的一部分,来实现所述虚拟显示器部件8收纳和高度调节。这样可以节省部分零件,减少装配复杂度,提高可靠性,但不改变所述第一旋转轴能够实现功能的本质。
作为另一个可选实施例,如图3和图4所示,为所述第一旋转调节组件4的第二种实现方式的结构示意图。在该第二种实现方式中,所述第一旋转调节组件4是由球型的垂直双向旋转组成,包括旋转S1-1和旋转S1-2;其中,所述旋转S1-1是360度旋转,实现所述虚拟显示器部件8收纳和大角度调节所述虚拟显示器部件8高度的作用;所述旋转S1-2是20-30度旋转,实现用户观察所述虚拟显示器部件8与眼睛观察方向的角度调节,和其他关节组合也能实现一定出瞳距离的调节。
在该实施例中,所述第一旋转调节组件4包括:旋转阻尼力调节旋钮45、万向轴芯46、轴盖47、万向轴底座48。
所述旋转阻尼力调节旋钮45固定安装在第一旋转轴上轴盖26上,并套设在所述万向轴芯46的一末端,以实现旋转S1-1,使所述第三平移调节组件3绕X轴旋转360度,进而使装配有所述虚拟显示器部件的所述第一平移调节组件1也实现绕X轴旋转360度。
所述万向轴芯46穿过所述轴盖47,通过所述轴盖47固定装配在所述万向轴底座48上。所述万向轴芯46与轴盖47、万向轴底座48组成绕Z轴旋转20-30度,以实现旋转S1-2,并与旋转阻尼力调节旋钮10一起组成球轴双轴复合旋转,实现旋转S1-1和旋转S1-2的复合旋转。
所述万向轴底座48装配入所述第一旋转轴下轴盖31,进行固定连接。
在本实施例中,所述第一旋转调节组件4的第二种实现方式中,所述万向轴底座48装配入所述第一旋转轴下轴盖31进行固定连接,所述万向轴芯46穿过所述轴盖47装配入所述万向轴底座48上,之后装配所述轴盖47,再装配所述旋转阻尼力调节旋钮45固定安装在第一旋转轴上轴盖26上。从而所述第一旋转调节组件4可以使所述第三平移调节组件3绕X轴旋转360度,也可以绕Z轴旋转20-30度,由此组成球轴双轴复合旋转。相比于上述第一旋转调节组件4的第一种实现方式只是绕X轴旋转360度的旋转调节,第二种实现方式除了具备第一种实现方式的优点之外,第二种实现方式多了绕Z轴的小角度旋转调节能力,可以控制虚拟显示器部件8与用户视野在Z轴方向的夹角,与虚拟显示器部件8特性结合提供更好的视觉体验。
在一个实施例中,如图2所示,所述第二旋转调节组件5分别与所述第三平移调节组件3和所述第一平移调节组件1装配组合,使所述第一平移调节组件1绕所述第三平移调节组件3旋转,以实现所述虚拟显示器部件8的显示内容的角度调节。
所述第二旋转调节组件5包括第二旋转轴,所述第二旋转轴分别与第三平移调节组件上盖体37和第一平移调节组件1装配组合固定连接,所述第三平移调节组件3与第一平移调节组件1通过第二旋转轴装配组合,可以使第一平移调节组件1绕第三平移调节组件3进行旋转,即实现旋转S2的功能。
在本实施例中,所述第二旋转调节组件5分别与所述第三平移调节组件3和所述第一平移调节组件1装配组合,可以使所述第二平移调节组件2绕所述第一平移调节组件1进行旋转,即实现旋转S2的功能,从而使所述第二旋转调节组件5实现所述虚拟显示器部件的显示内容的角度调节,满足用户不同角度观察虚拟显示内容。
如图7所示,为本公开实施例中提供的一种近眼虚拟显示装置处于旋转S2调节后的辅助视觉状态示意图。
在图7中,因在正视观察位置时,用户正前方主视野被虚拟显示器部件8占用,有时用户需要正前方主视野观察真实世界而不需要叠加虚拟信息,但又希望虚拟信息在其正视区域边缘,用户需要查看时只需移动眼睛聚焦点即可快速观察,避免移动头部或者身体,导致主视区域观察中断引起的工作不连续性,此时用户可以调节第二旋转调节组件2处于旋转S2调节,进入辅助视觉模式,把虚拟显示内容保留在用户眼睛的FOV范围内,而不遮挡正视视野。
在一个实施例中,如图1、图2和图5所示,所述第一平移调节组件1与所述虚拟显示器部件8活动连接,以实现所述虚拟显示器部件8在X轴方向上的左右平移。
如图5所示,为所述第一平移调节组件1的结构示意图。在图5中,所述第一平移调节组件1包括:螺旋槽上盖11、螺旋槽下盖12、活动导轨13、旋钮底座15和螺旋旋钮16。
所述活动导轨13与所述虚拟显示器部件8活动连接。
所述活动导轨13上设有导柱131,所述导柱131可在所述螺旋槽上盖11和所述螺旋槽下盖12中活动。
所述螺旋槽上盖11设有一第一小螺丝孔111。
所述螺旋旋钮16为中空圆环状,可以使所述活动导轨13从中穿过。所述螺旋旋钮16的外圆环设有一个第二小螺丝孔(未图示),所述第二小螺丝孔与螺旋槽上盖11的第一小螺丝孔111配合,可以通过螺丝固定连接。
所述旋钮底座15的内侧设有旋转限位导槽(未图示),所述旋转限位导槽与所述活动导轨13上的所述导柱131配合,可以使所述导柱131在所述旋转限位导槽中移动。
所述旋钮底座15的中心处设有一第二旋转轴轴套151,所述第二旋转轴轴套151用于与所述第二旋转调节组件5的所述第二旋转轴装配组合,从而使所述第一平移调节组件1与所述第三平移调节组件3通过所述第二旋转轴装配组合,可以使第一平移调节组件1绕第三平移调节组件3进行旋转,以实现旋转2的功能。
所述活动导轨13和螺旋槽上盖11、螺旋槽下盖11沿着所述旋转限位导槽装配入旋钮底座15中,通过设置在所述螺旋旋钮16上的第二小螺丝孔与所述螺旋槽上盖11上的第一小螺丝孔111通过螺丝固定连接,将所述螺旋旋钮16与所述活动导轨13固定连接在一起,可以防止所述活动导轨13向所述虚拟显示器部件侧脱落。装配完成后,通过旋转所述螺旋旋钮16可以移动所述旋转限位导槽来驱动所述活动导轨13上的导柱131,因为所述活动导轨13在旋钮底座15中有旋转限位槽固定,从而实现旋转运动向平移的转换,所述活动导轨13的平移运动可以使固定其上的所述虚拟显示器部件8在X轴方向上左右平移变化,实现所述虚拟显示器部件8在X轴方向直线左右往复平移滑动,调节虚拟显示器部件中心在瞳距方向的位置,适应不同瞳距用户观察需求。
在本实施例中,所述第一平移调节组件1与所述虚拟显示器部件8活动连接,所述第一平移调节组件1与所述第二旋转调节组件5旋转连接,以使所述第一平移调节组件1可以绕所述第三平移调节组件3旋转,以使所述第一平移调节组件1可以实现所述虚拟显示器部件在X轴方向上的左右平移,使虚拟显示器部件的显示内容在用户瞳距水平方向X轴一定距离范围内位移,从而实现满足不同用户不同瞳距的观察需求。
本公开实施例提供一种近眼虚拟显示装置10在装配时,所述第一旋转调节组件4以第一旋转轴的第一种实现方式来进行说明,所述第二旋转调节组件5以第二旋转轴为例进行说明。所述近眼虚拟显示装置10的装配过程如下所述。
首先,将所述第一微型滑轨上盖21与头戴装置20的底座通过螺丝连接固定,底座可以是头盔、头箍或者眼镜等头戴装置20的一部分。所述第一微型滑轨23实现所述虚拟显示器部件在Y轴方向上的前后平移,其上方与第一微型滑轨上盖21固定,装配入第一阻尼器22后,与头戴装置20的底座组合;第一微型滑轨23的下方与第一微型滑轨下盖24固定,所述第一微型滑轨下盖24装配入第二阻尼器25后与第一旋转轴上轴盖26组合。
所述第一旋转轴4分别与所述第一旋转轴上轴盖26和所述第一旋转轴下轴盖31装配组合固定连接,以使所述第三平移调节组件3绕所述第二平移调节组件2进行旋转,实现所述第三平移调节组件3绕X轴旋转。
所述第二微型滑轨34实现所述虚拟显示器部件在Z轴方向上的上下平移,其上方与所述第三平移调节组件下盖体33固定连接,在所述第三平移调节组件下盖体33装配入所述第三阻尼器32后与所述第一旋转轴下轴盖31固定连接。所述第二微型滑轨34的下方与所述第二微型滑轨上盖35固定连接,在第二微型滑轨上盖35装配入所述第四阻尼器36后与所述第三平移调节组件上盖体37组合。
所述第二旋转轴5分别与第三平移调节组件上盖体37和第一平移调节组件1装配组合固定连接,使第一平移调节组件1绕第三平移调节组件3进行旋转,即实现旋转S2的功能。
所述第一平移调节组件1与所述虚拟显示器部件8活动连接,以实现所述虚拟显示器部件8在X轴方向上的左右平移。同轴线T贯穿图2中提到的头戴装置20的底座到虚拟显示器部件8之间的各个组件,在装置内部各组件间实现柔性连接功能,满足各个关节活动要求,且使得所述近眼虚拟显示装置的所有连接线均内置产品内部,提高了在有限空间等复杂工作场景下使用的安全性。
在一个实施例中,所述第一电机平移调节组件1包括导轨底座11’、带有丝杆的第一微型电机12’、第一推杆13’和中空导轨14’。
带有丝杆的第一微型电机12’固定于导轨底座11’中,所述第一推杆13’一端与丝杆连接,另一端与所述中空导轨14’连接,所述中空导轨14’与虚拟显示器部件8固定连接;通过控制第一微型电机12’的正反转实现丝杆在X轴方向上的左右平移,进而实现与丝杆连接的所述中空导轨14’在X轴方向上的左右平移,所述中空导轨14’在X轴方向上的平移运动可以使固定其上的所述虚拟显示器部件8在X轴方向上的电动左右平移,实现所述虚拟显示器部件8在X轴方向直线左右往复平移滑动,调节虚拟显示器部件8中心在瞳距方向的位置,适应不同瞳距用户观察需求。
在一个实施例中,所述第三平移调节组件3包括上侧滑座31’、带有丝杆的第三微型电机32’、第三推杆33’和下侧滑座34’。
带有丝杆的第三微型电机32’固定于所述上侧滑座31’中,所述第三推杆33’一端与丝杆连接,另一端与所述下侧滑座34’连接;通过控制第三微型电机32’的正反转实现丝杆在Z轴方向上的上下平移,进而实现与丝杆连接的所述下侧滑座34’在Z轴方向上的上下平移,进而实现所述虚拟显示器部件8在Z轴方向上的电动上下平移,调节虚拟显示器部件8中心在眼高方向的位置和整个产品侧臂的长度,与其他旋转调节组合起来满足用户各种不同观察位置需要,以及对于不同用户眼高差异进行高度的调节和辅助观察虚拟显示器部件8的显示内容时出瞳距离的调节。
在一个实施例中,所述第二平移调节组件2包括上底座21’、带有丝杆的第二微型电机22’、第二推杆23’和下底座24’。
带有丝杆的第二微型电机22’固定于所述上底座21’中,所述第二推杆23’一端与丝杆连接,另一端与所述下底座24’连接;通过控制第二微型电机22’的正反转实现丝杆在Y轴方向上的前后平移,进而实现与丝杆连接的所述下底座24’在Y轴方向上的前后平移,进而实现所述虚拟显示器部件8在Y轴方向上的电动前后平移,调节虚拟显示器部件8中心离开人眼瞳孔的距离,以适应不同用户头型大小差异,实现出瞳距离的调节,同时所述第二平移调节组件2在所述虚拟显示器部件8需要收纳时候,可以滑动所述虚拟显示器部件8部分回到可让旋转收纳有活动空间的位置。
在一个实施例中,所述第一旋转调节组件4包括第三旋转轴,所述第三旋转轴分别与所述第二平移调节组件2的所述下底座24’和所述第三平移调节组件3的所述上侧滑座31’装配组合固定连接,以使所述第三平移调节组件3绕所述第二平移调节组件2进行旋转,实现所述第三平移调节组件3绕X轴旋转。
在本实施例中,所述第一旋转调节组件4分别与所述第二平移调节组件2和所述第三平移调节组件3旋转连接,在所述第二平移调节组件2实现所述虚拟显示器部件在Y轴方向上的前后平移,在所述虚拟显示器部件8需要收纳时,可以滑动所述虚拟显示器部件8部分回到可让旋转收纳有活动空间的位置,从而使所述第一旋转调节组件4实现所述虚拟显示器部件8的收纳调节。在所述第三平移调节组件3实现所述虚拟显示器部件8在Z轴方向上的上下平移,以使所述虚拟显示器部件8在Z轴的高度方向上下滑动,从而使所述第一旋转调节组件4实现所述虚拟显示器部件8的高度调节。所以,所述第一旋转调节组件4可以实现所述虚拟显示器部件收纳和高度调节,通过将述第三平移调节组件3绕所述第一旋转调节组件4向用户眼睛上方旋转,可以使所述虚拟显示器部件8移动到用户眼睛上方而不遮挡用户正前方视线。
在一个实施例中,所述第二旋转调节组件5包括第四旋转轴,所述第四旋转轴分别与所述第三平移调节组件3的所述下侧滑座34’和所述第一平移调节组件1的所述导轨底座11’装配组合固定连接,所述第三平移调节组件3与所述第一平移调节组件1通过第四旋转轴装配组合,可以使所述第一平移调节组件1绕所述第三平移调节组件3进行旋转,即实现旋转S2的功能。从而使所述第二旋转调节组件5实现所述虚拟显示器部件8的显示内容的角度调节,满足用户不同角度观察虚拟显示内容。
基于同一构思,如图11所示,本公开实施例还提供一种近眼头戴虚拟设备,所述近眼头戴虚拟设备包括头戴装置20和上述任一实施例所述的近眼虚拟显示装置10;所述近眼虚拟显示装置10与所述头戴装置20固定连接,从而将所述近眼虚拟显示装置10固定在所述头戴装置20上。优选地,所述近眼虚拟显示装置10通过螺丝连接固定在所述头戴装置20上。
具体地,所述头戴装置20包括一底座。所述第二平移调节组件2的所述第一微型滑轨上盖21-3与所述头戴装置20的底座组合固定连接,从而将所述近眼虚拟显示装置10通过螺丝连接固定在所述头戴装置20上。
本公开实施例中,所述近眼虚拟显示装置与上述任一实施例所述的所述近眼虚拟显示装置10是一致,具体的结构与功能可以参考上述任一实施例所述的所述近眼虚拟显示装置10,在此不再赘述。
所述头戴装置20包括头箍、头盔(安全帽)或者眼镜。
本公开实施例中提供的一种近眼虚拟显示装置10,在与包括头盔(安全帽)、头箍或者眼镜形态的所述头戴装置20组合成近眼头戴虚拟设备时,可以作为单目产品使用,也可以作为双目产品使用。具体请参考如图12至图17所示。
在一个实施例中,所述头戴装置20包括一主机(未图示)和输出接口(未图示),所述主机与所述输出接口连接。优选地,所述输出接口为USB接口。所述主机与通过所述输出接口与所述近眼虚拟显示装置10连接,将主机中的虚拟显示内容传输给所述近眼虚拟显示装置10中的虚拟显示器部件进行显示。
在一个实施例中,所述近眼虚拟显示装置10包括一印刷电路板(PCB,Printed Circuit Board)(未图示),所述印刷电路板可以设置在第一平移调节组件1、第二平移调节组件2或第三平移调节组件3上。
所述印刷电路板包括微控制单元(MCU,Microcontroller Unit)控制器和驱动器。
如图18所示,在所述主机与通过所述输出接口与所述近眼虚拟显示装置10连接后,所述MCU控制器通过所述输出接口与所述主机进行通信,获取所述主机下发的控制指令(例如向前平移、向后平移、向上平移、向下平移、向左平移、向右平移等),再将所述控制指令转换为脉冲信号、方向信号和微型电机编号,发送给所述驱动器。所述驱动器根据接收到的所述脉冲信号、方向信号和微型电机编号,驱动相应的微型电机运动,从而达到控制所述近眼虚拟显示装置10的作用,进而达到控制所述头戴装置20的作用。
同时,所述MCU控制器可以把所述近眼虚拟显示装置10调节到最佳位置的数据发送给所述主机,以使所述主机存储最佳位置数据,所述主机下次可以通过下发一次控制指令,即可让所述近眼虚拟显示装置10调整到最佳位置,而无需多次下发控制指令。
所述MCU控制器的控制过程分为三个部分:初始化,中断,主循环。具体如下所述。
初始化部分:上电时,所述MCU控制器先执行初始化操作,复位,使能驱动器,让所有微型电机处于初始化位置。
中断部分:根据控制指令要进行调节的微型电机到达需要调节的终点位置后,所述驱动器会给出终点信号,将所述终点信号发送给所述MCU控制器的中断,所述MCU控制器做相应处理,通过所述输出接口通知所述主机,主机通过显示屏或者语音告知操作人员某个方向已经无法再调节了。
主循环:所述MCU控制器的主循环负责接收所述输出接口发送过来的包含命令码的数据包,解包获取命令码,从命令码中识别出控制指令,将所述控制指令转换为脉冲信号、方向信号和微型电机编号,发送给所述驱动器。所述驱动器根据接收到的所述脉冲信号、方向信号和微型电机编号,驱动相应的微型电机运动。例如,控制指令是“向前”,那么将该控制指令转化为一定的脉冲数,方向是正转,微型电机编号是22’,再把这些控制下发给驱动器,驱动器驱动微型电机22’转动,把所述近眼虚拟显示装置向前推一定的距离。
转化之后的脉冲数、方向和微型电机编号会先在内存缓存起来,当调节完毕之后,使用者认为可以存储当前的近眼虚拟显示装置位置时,那么下发语音指令“存储当前近眼虚拟显示装置位置”或者类似的指令。所述MCU控制器会把调节结果做一个计算,简化操作,比如两次“向前”,一次“向后”,通过计算,仅需要存储一次“向前”的结果即可。计算最佳的调节结果之后,打包,通过输出接口发送给主机进行存储到存储器中,下次开机主机仅下发一次命令,即可把近眼虚拟显示装置调节到最佳位置。
在一个实施例中,如图19所示,所述主机还包括麦克风,所述麦克风用于采集用户发出的语音控制信息,传输给所述主机进行语音处理。
所述主机还内置有语音指令识别APP(Application,应用程序)和近眼虚拟显示装置调节APP。所述语音指令识别APP内置有所述近眼虚拟显示装置10的控制指令(例如向前平移、向后平移、向上平移、向下平移、向左平移、向右平移等),所述语音指令识别APP识别所述麦克风传输过来的语音控制信息,与内置的控制指令进行比对,识别所述语音控制信息对应的控制指令,通过广播方式将所述控制指令告知所述近眼虚拟显示装置调节APP;所述近眼虚拟显示装置调节APP调用相应的接口,通过输出接口下发所述控制指令给所述近眼虚拟显示装置的所述MCU控制器,进而控制相应的微型电机运动。具体过程如下。
所述麦克风采集用户发出的语音控制信息后,传输给所述主机语音指令识别APP;所述语音指令识别APP调用离线语音库文件接口(也可以是在线语音库文件);所述离线语音库相关接口再根据内置的语音资源文件与采集到的所述语音控制信息做对比,反馈出一个语音识别结果到所述语音指令识别APP;所述语音指令识别APP根据所述语音识别结果,从内置的近眼虚拟显示装置的控制指令匹配出对应的控制指令,将对应的所述控制指令通过广播方式发送告知所述近眼虚拟显示装置调节APP。
所述近眼虚拟显示装置调节APP将接收到的所述控制指令转化为命令码,并将命令码打包成所述MCU控制器可以识别的数据交换格式的包,比如通用的Json包(JavaScript Object Notation,JS对象简谱),或者自定义的数据交换格式的包格式。所述近眼虚拟显示装置调节APP调用相应的驱动层的输出接口驱动(例如输出接口为USB,则输出接口驱动为USB驱动),通过输出接口将包含命令码的数据包发送给所述近眼虚拟显示装置的MCU控制器。
所述MCU控制器识别接收到包含命令码的数据包,解包从命令码中识别出控制指令,将所述控制指令转换为脉冲信号、方向信号和微型电机编号,发送给所述驱动器。所述驱动器根据接收到的所述脉冲信号、方向信号和微型电机编号,驱动相应的微型电机运动。
所述MCU控制器根据所述驱动器的最终调节结果,把调节结果通过所述输出接口反馈给所述近眼虚拟显示装置调节APP,所述近眼虚拟显示装置调节APP把该调节结果存储到本地主机存储器中,下次下发语音命令类似“快速调节所述近眼虚拟显示装置”指令时,所述近眼虚拟显示装置调节APP只要把所述MCU控制器之前反馈回来的调节结果直接下发给所述MCU控制器即可快速调节所述近眼虚拟显示装置,无需下发多次控制指令调节。
需要说明的是,上述近眼头戴虚拟设备实施例与上述近眼虚拟显示装置实施例属于同一构思,其具体实现过程详见近眼虚拟显示装置实施例,近眼虚拟显示装置实施例中的技术特征在所述近眼头戴虚拟设备实施例中均对应适用,重复之处不再赘述。
以上参照附图说明了本公开的优选实施例,并非因此局限本公开的权利范围。本领域技术人员不脱离本公开的范围和实质内所作的任何修改、等同替换和改进,均应在本公开的权利范围之内。
工业实用性
本公开提供的近眼虚拟显示装置及近眼头戴虚拟设备,通过在近眼虚像可视空间位置范围内,以虚拟显示器部件的眼动范围,出瞳距离为中心,结合男女瞳距、眼高相关统计数据范围,按照覆盖绝大多数人群能够看清虚拟显示器部件的空间变化区域,在近眼虚拟显示装置极小的产品空间体积内,构建以第一平移调节组件、第二平移调节组件、第三平移调节组件的三个平移加以第一旋转调节组件、第二旋转调节组件的两个旋转共五个自由度的空间运动组合方式来可以实现近眼虚拟显示装置在空间位置包括瞳距、眼高、出瞳距离、可视区域角度和位置等的调节变化,实现了近眼头戴虚拟显示内容空间位置的高效调节,从而允许用户方便调节近眼虚拟图像内容的显示位置,不用除去可穿戴显示装置,且不干扰虚拟显示内容的可见性,也不影响用户在佩戴近视眼镜的情况下使用,既可以满足不同头型用户人眼视觉特性和能力差异的需求,还能实现虚拟显示器部件空间位置的变化以满足不同的使用要求;同时在不需要虚拟显示器部件的时候可以快速收纳到不遮挡视线的位置,而不影响正常视野。并且,能够很好的弥补了现有包括棱镜、自由曲面、光波导等各种AR光学技术在眼动范围、FOV小等问题的局限性,满足了工业、医疗等场景下不同头型用户不同视觉特性的多种近眼显示使用需求。相比现有的要由至少两节组合运动调节虚拟显示器部件的连杆组合调节方式,体积小、单手即可操作,灵活、方便,既提高了用户调节便利性,又节省了产品体积和降低了重量。因此,具有工业实用性。

Claims (18)

  1. 一种近眼虚拟显示装置,所述近眼虚拟显示装置包括:第一平移调节组件、第二平移调节组件、第三平移调节组件、第一旋转调节组件、第二旋转调节组件和虚拟显示器部件;其中:
    所述第二平移调节组件用于实现所述虚拟显示器部件在Y轴方向上的前后平移;
    所述第一旋转调节组件分别与所述第二平移调节组件和所述第三平移调节组件旋转连接,使所述第三平移调节组件绕所述第二平移调节组件旋转,以实现所述虚拟显示器部件收纳和高度调节;
    所述第三平移调节组件用于实现所述虚拟显示器部件在Z轴方向上的上下平移;
    所述第二旋转调节组件分别与所述第三平移调节组件和所述第一平移调节组件装配组合,使所述第一平移调节组件绕所述第三平移调节组件旋转,以实现所述虚拟显示器部件的显示内容的角度调节;
    所述第一平移调节组件与所述虚拟显示器部件活动连接,以实现所述虚拟显示器部件在X轴方向上的左右平移。
  2. 根据权利要求1所述的近眼虚拟显示装置,其中,所述第二平移调节组件包括第一微型滑轨上盖、第一微型滑轨、第一微型滑轨下盖和第一旋转轴上轴盖;其中:
    所述第一微型滑轨上盖与头戴装置的底座组合;
    所述第一微型滑轨的上方与第一微型滑轨上盖固定,下方与第一微型滑轨下盖固定,以实现所述虚拟显示器部件在Y轴方向上的前后平移;
    所述第一微型滑轨下盖与第一旋转轴上轴盖组合。
  3. 根据权利要求2所述的近眼虚拟显示装置,其中,在所述第一微型滑轨的上方和下方各设置有一第一阻尼器和一第二阻尼器;所述第一阻尼器和所述第二阻尼器分别背靠背地装配在所述第一微型滑轨上盖的内侧和所述第一微型滑轨下盖的内侧,所述第一阻尼器与所述第一微型滑轨分别位于所述第一微型滑轨上盖的两侧;所述第二阻尼器与所述第一微型滑轨分别位于所述第一微型滑轨下盖的两侧。
  4. 根据权利要求2所述的近眼虚拟显示装置,其中,所述第三平移调节组件包括第一旋转轴下轴盖、第三平移调节组件下盖体、第二微型滑轨、第二微型滑轨上盖和第三平移调节组件上盖体;其中:
    所述第三平移调节组件下盖体分别与所述第二微型滑轨和所述第一旋转轴下轴盖固定连接;
    所述第二微型滑轨与所述第二微型滑轨上盖固定连接,用于实现所述虚拟显示器部件在Z轴方向上的上下平移;
    所述第二微型滑轨上盖与所述第三平移调节组件上盖体组合。
  5. 根据权利要求4所述的近眼虚拟显示装置,其中,所述第二微型滑轨的上方和下方各设置有一第三阻尼器和一第四阻尼器;所述第三阻尼器和所述第四阻尼器分别背靠背地装配在所述第三平移调节组件下盖体的内侧和所述第二微型滑轨上盖的内侧,所述第三阻尼器与所述第二微型滑轨分别位于所述第三平移调节组件下盖体的两侧;所述第四阻尼器与所述第二微型滑轨分别位于所述第二微型滑轨上盖的两侧。
  6. 根据权利要求4所述的近眼虚拟显示装置,其中,所述第一旋转调节组件包括第一旋转轴,所述第一旋转轴分别与所述第一旋转轴上轴盖和所述第一旋转轴下轴盖组合,以使所述第三平移调节组件绕所述第二平移调节组件进行旋转。
  7. 根据权利要求4所述的近眼虚拟显示装置,其中,所述第一旋转调节组件包括旋转阻尼力调节旋钮、万向轴芯、轴盖和万向轴底座;其中:
    所述旋转阻尼力调节旋钮固定安装在第一旋转轴上轴盖上,并套设在所述万向轴芯的一末端,使所述第三平移调节组件绕X轴旋转360度;
    所述万向轴芯通过所述轴盖固定装配在所述万向轴底座上,所述万向轴芯与所述轴盖、万向轴底座组成绕Z轴旋转20-30度;
    所述万向轴底座装配入所述第一旋转轴下轴盖固定连接。
  8. 根据权利要求4所述的近眼虚拟显示装置,其中,所述第二旋转调节组件包括第二旋转轴,所述第二旋转轴分别与第三平移调节组件上盖体和第一平移调节组件装配组合,使所述第一平移调节组件绕所述第三平移调节组件旋转。
  9. 根据权利要求8所述的近眼虚拟显示装置,其中,所述第一平移调节组件包括螺旋槽上盖、螺旋槽下盖、活动导轨、旋钮底座和螺旋旋钮;其中:
    所述活动导轨与所述虚拟显示器部件活动连接;
    所述活动导轨上设有导柱,所述导柱在所述螺旋槽上盖和所述螺旋槽下盖中活动;
    所述螺旋旋钮使所述活动导轨从中穿过,所述螺旋旋钮与所述螺旋槽上盖固定连接;
    所述旋钮底座的内侧设有旋转限位导槽,所述旋转限位导槽与所述活动导轨上的所述导柱配合,使所述导柱在所述旋转限位导槽中移动,实现旋转运动向平移的转换,使所述虚拟显示器部件在X轴方向上左右平移。
  10. 根据权利要求1所述的近眼虚拟显示装置,其特征在于,所述第一平移调节组件包括导轨底座、带有丝杆的第一微型电机、第一推杆和中空导轨;其中:
    所述第一微型电机固定于导轨底座中,所述第一推杆一端与丝杆连接,另一端与所述中空导轨连接,所述中空导轨与虚拟显示器部件固定连接;
    通过控制第一微型电机的正反转实现丝杆在X轴方向上的左右平移,进而实现虚拟显示器部件在X轴方向上电动左右平移。
  11. 根据权利要求10所述的近眼虚拟显示装置,其中,所述第二平移调节组件包括上底座、带有丝杆的第二微型电机、第二推杆和下底座;其中:
    所述第二微型电机固定于所述上底座中,所述第二推杆一端与丝杆连接,另一端与所述下底座连接;
    通过控制第二微型电机的正反转实现丝杆在Y轴方向上的前后平移,进而实现所述虚拟显示器部件在Y轴方向上的电动前后平移。
  12. 根据权利要求11所述的近眼虚拟显示装置,其中,所述第三平移调节组件包括上侧滑座、带有丝杆的第三微型电机、第三推杆和下侧滑座;其中:
    所述第三微型电机固定于所述上侧滑座中,所述第三推杆一端与丝杆连接,另一端与所述下侧滑座连接;通过控制第三微型电机的正反转实现丝杆在Z轴方向上的上下平移,进而实现所述虚拟显示器部件在Z轴方向上的电动上下平移。
  13. 根据权利要求12所述的近眼虚拟显示装置,其中,所述第一旋转调节组件包括第三旋转轴,所述第三旋转轴分别与所述下底座和所述上侧滑座装配组合,以使所述第三平移调节组件绕所述第二平移调节组件进行旋转。
  14. 根据权利要求12所述的近眼虚拟显示装置,其中,所述第二旋转调节组件包括第四旋转轴,所述第四旋转轴分别与所述下侧滑座和所述导轨底座装配组合,使所述第一平移调节组件绕所述第三平移调节组件进行旋转。
  15. 一种近眼头戴虚拟设备,所述近眼头戴虚拟设备包括头戴装置和如权利要求1至14任一项所述的近眼虚拟显示装置;所述近眼虚拟显示装置与头戴装置固定连接。
  16. 根据权利要求15所述的近眼头戴虚拟设备,其中,所述头戴装置包括一主机和输出接口,所述主机与通过所述输出接口与所述近眼虚拟显示装置连接,将所述主机中的虚拟显示内容传输给所述近眼虚拟显示装置中的虚拟显示器部件进行显示。
  17. 根据权利要求16所述的近眼头戴虚拟设备,其中,所述近眼虚拟显示装置包括一印刷电路板,所述印刷电路板包括微控制单元控制器和驱动器;
    所述微控制单元控制器通过所述输出接口与所述主机进行通信,获取所述主机下发的控制指令,再将所述控制指令转换为脉冲信号、方向信号和微型电机编号,发送给所述驱动器;
    所述驱动器根据接收到的所述脉冲信号、方向信号和微型电机编号,驱动相应的微型电机运动。
  18. 根据权利要求17所述的近眼头戴虚拟设备,其中,所述主机还包括麦克风,所述麦克风用于采集用户发出的语音控制信息,传输给所述主机;
    所述主机还内置有语音指令识别APP和近眼虚拟显示装置调节APP;所述麦克风采集用户发出的语音信息后,传输给所述主机语音指令识别APP;
    所述语音指令识别APP内置有所述近眼虚拟显示装置的控制指令,所述语音指令识别APP识别所述麦克风传输过来的语音控制信息,与内置的控制指令进行比对,识别所述语音控制信息对应的控制指令,通过广播方式将所述控制指令告知所述近眼虚拟显示装置调节APP;
    所述近眼虚拟显示装置调节APP调用相应的接口,通过所述输出接口下发所述控制指令给所述近眼虚拟显示装置的所述微控制单元控制器,进而控制相应的微型电机运动。
PCT/CN2022/118678 2021-10-22 2022-09-14 一种近眼虚拟显示装置及近眼头戴虚拟设备 WO2023065896A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111230392.7 2021-10-22
CN202111230392.7A CN113671713B (zh) 2021-10-22 2021-10-22 一种近眼虚拟显示装置及近眼头戴虚拟设备

Publications (1)

Publication Number Publication Date
WO2023065896A1 true WO2023065896A1 (zh) 2023-04-27

Family

ID=78550813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118678 WO2023065896A1 (zh) 2021-10-22 2022-09-14 一种近眼虚拟显示装置及近眼头戴虚拟设备

Country Status (2)

Country Link
CN (1) CN113671713B (zh)
WO (1) WO2023065896A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671713B (zh) * 2021-10-22 2022-01-28 深圳市谦视智能科技有限责任公司 一种近眼虚拟显示装置及近眼头戴虚拟设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012814A1 (en) * 2009-07-15 2011-01-20 Brother Kogyo Kabushiki Kaisha Adjustable Attachment for Attaching Head-Mounted Display to Eyeglasses-Type Frame
CN106802483A (zh) * 2015-09-30 2017-06-06 奥林巴斯株式会社 可佩戴装置
CN107637070A (zh) * 2015-06-16 2018-01-26 麦克赛尔株式会社 头戴式显示装置
US20180124366A1 (en) * 2016-03-25 2018-05-03 Brother Kogyo Kabushiki Kaisha Head-Mounted Display
CN108700742A (zh) * 2016-01-06 2018-10-23 伊奎蒂公司 具有旋转显示器的头戴式显示器
CN208780909U (zh) * 2018-08-06 2019-04-23 西安枭龙科技有限公司 一种可调节的ar显示设备
CN111474714A (zh) * 2020-04-20 2020-07-31 深圳市谦视智能科技有限责任公司 一种近眼显示装置及可穿戴设备
CN113671713A (zh) * 2021-10-22 2021-11-19 深圳市谦视智能科技有限责任公司 一种近眼虚拟显示装置及近眼头戴虚拟设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI308845B (en) * 2006-06-07 2009-04-11 Himax Display Inc Head-mounted display and image adjusting method for the same
TWI518368B (zh) * 2013-09-11 2016-01-21 財團法人工業技術研究院 虛像顯示裝置
CN107422475B (zh) * 2016-05-24 2020-07-24 华为终端有限公司 一种智能眼镜曲率调节方法和装置
CN209198764U (zh) * 2018-11-24 2019-08-02 潍坊歌尔电子有限公司 一种调节机构及应用该调节机构的头戴显示器
CN109782449A (zh) * 2019-03-27 2019-05-21 深圳市忻毅科技有限公司 一种可前后调节的智能眼镜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012814A1 (en) * 2009-07-15 2011-01-20 Brother Kogyo Kabushiki Kaisha Adjustable Attachment for Attaching Head-Mounted Display to Eyeglasses-Type Frame
CN107637070A (zh) * 2015-06-16 2018-01-26 麦克赛尔株式会社 头戴式显示装置
CN106802483A (zh) * 2015-09-30 2017-06-06 奥林巴斯株式会社 可佩戴装置
CN108700742A (zh) * 2016-01-06 2018-10-23 伊奎蒂公司 具有旋转显示器的头戴式显示器
US20180124366A1 (en) * 2016-03-25 2018-05-03 Brother Kogyo Kabushiki Kaisha Head-Mounted Display
CN208780909U (zh) * 2018-08-06 2019-04-23 西安枭龙科技有限公司 一种可调节的ar显示设备
CN111474714A (zh) * 2020-04-20 2020-07-31 深圳市谦视智能科技有限责任公司 一种近眼显示装置及可穿戴设备
CN113671713A (zh) * 2021-10-22 2021-11-19 深圳市谦视智能科技有限责任公司 一种近眼虚拟显示装置及近眼头戴虚拟设备

Also Published As

Publication number Publication date
CN113671713B (zh) 2022-01-28
CN113671713A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
JP7090247B2 (ja) ヘッド装着式可動表示装置を備えた外科手術用立体視覚化システム
US11819273B2 (en) Augmented and extended reality glasses for use in surgery visualization and telesurgery
EP3912588B1 (en) Imaging system for surgical robot, and surgical robot
EP2903551B1 (en) Digital system for surgical video capturing and display
US11988842B2 (en) Head-mounted display with pivoting display
US20150157188A1 (en) Systems and apparatuses for improved visualization of endoscopic images
US11624928B2 (en) Wearable pupil-forming display apparatus
WO2021062375A1 (en) Augmented and extended reality glasses for use in surgery visualization and telesurgery
WO2023065896A1 (zh) 一种近眼虚拟显示装置及近眼头戴虚拟设备
CN211433341U (zh) 一种用于内窥镜手术的显示头盔
JP2023509038A (ja) 外科用顕微鏡を操作する方法及び外科用顕微鏡
EP3290988A1 (en) Electronic apparatus and display module thereof
CN212789785U (zh) 一种家庭vr影院***
WO2015034453A1 (en) Providing a wide angle view image
US11785198B2 (en) Head-mounted device
State et al. Simulation-based design and rapid prototyping of a parallax-free, orthoscopic video see-through head-mounted display
CN115524853B (zh) 一种能够自动追视的拼接显示屏
CN112034980A (zh) 一种家庭vr影院***
JPH09138367A (ja) 画像表示装置及びそのシステム
US20240126376A1 (en) Computing system with head wearable display
WO2022158207A1 (ja) 頭部装着型ディスプレイ
KR20230168317A (ko) 가상 현실 헤드셋
EP4034028A1 (en) Augmented and extended reality glasses for use in surgery visualization and telesurgery
JP2017009726A (ja) 画像表示装置
JP3274535B2 (ja) 立体視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE