WO2023065829A1 - 驱动电路、控制芯片电路、电源适配器及电子设备 - Google Patents

驱动电路、控制芯片电路、电源适配器及电子设备 Download PDF

Info

Publication number
WO2023065829A1
WO2023065829A1 PCT/CN2022/115740 CN2022115740W WO2023065829A1 WO 2023065829 A1 WO2023065829 A1 WO 2023065829A1 CN 2022115740 W CN2022115740 W CN 2022115740W WO 2023065829 A1 WO2023065829 A1 WO 2023065829A1
Authority
WO
WIPO (PCT)
Prior art keywords
nmos transistor
resistor
pmos transistor
transistor
control module
Prior art date
Application number
PCT/CN2022/115740
Other languages
English (en)
French (fr)
Inventor
江力
Original Assignee
深圳英集芯科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳英集芯科技股份有限公司 filed Critical 深圳英集芯科技股份有限公司
Publication of WO2023065829A1 publication Critical patent/WO2023065829A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of electronic technology, in particular to a drive circuit, a control chip circuit, a power adapter and electronic equipment.
  • GaN gallium nitride
  • GaN will be considered as the material of GaN power tubes.
  • EMI Electromagnetic interference
  • the embodiment of the present application provides a driving circuit, a control chip circuit, a power adapter and an electronic device, which can solve the EMI problem caused by the GaN power tube in charging applications and meet the accuracy requirements of the driving voltage of the GaN power tube.
  • the embodiment of the present application provides a driving circuit, the driving circuit includes: an operational amplifier circuit, a comparator, a first NMOS transistor, a second NMOS transistor, a third NMOS transistor, a first PMOS transistor, a second PMOS transistor tube, the first drive control module, and the second drive control module, wherein,
  • the non-inverting input end of the operational amplifier circuit is connected to the first power supply, the output end of the operational amplifier circuit is connected to the first end of the first NMOS transistor, and the third end of the first NMOS transistor is connected to the second power supply, so
  • the second end of the first MOS transistor is connected to one end of the first resistor, and the other end of the first resistor is connected to the inverting input end of the operational amplifier circuit and grounded through the second resistor;
  • the non-inverting input terminal of the comparator is connected to the third power supply, the output terminal of the comparator is connected to the first input terminal of the OR gate circuit, the second input terminal of the OR gate circuit is used to access the driving signal, and the driving The signal is also input into the first end of the first drive control module;
  • the output end of the OR gate circuit is connected to the first end of the second drive control module, and the second end of the second drive control module is connected to the first end of the second PMOS transistor; the first end of the second PMOS transistor The two ends are connected to the second end of the first PMOS transistor and the second end of the second NMOS end, the third end of the second PMOS transistor is connected to a driving port, and the driving port is used to drive a GaN power transistor;
  • the third end of the second NMOS transistor is also connected to one end of the third resistor, and the other end of the third resistor is connected to one end of the fourth resistor and the inverting input end of the comparator;
  • the first end of the second NMOS transistor is connected to one end of the fifth resistor, and the other end of the fifth resistor is connected to the first end of the first NMOS transistor and grounded through the first capacitor; the second NMOS transistor the third end of which is connected to the second power supply;
  • the second end of the first drive control module is connected to the first end of the first PMOS transistor, and the third end of the first drive control module is connected to the first end of the third NMOS transistor and the second end of the second NMOS transistor.
  • the third end of the drive control module, the third NMOS transistor is connected to the third end of the second PMOS transistor, and the second end of the third NMOS transistor is grounded.
  • an embodiment of the present application provides a control chip circuit, and the control chip circuit includes the driving circuit as described in the first aspect above.
  • an embodiment of the present application provides a power adapter, the power adapter includes the drive circuit described in the first aspect, or the control chip circuit described in the second aspect.
  • the embodiment of the present application provides an electronic device, the electronic device includes the driving circuit as described in the first aspect, or, the control chip circuit as described in the second aspect, or, as described in the third aspect power adapter.
  • the driving circuit includes: an operational amplifier circuit, a comparator, a first NMOS transistor, a second NMOS transistor, a third NMOS transistor, a first PMOS transistor, a second PMOS transistor, a first drive control module, and a second drive control module, wherein the non-inverting input end of the operational amplifier circuit is connected to the first power supply, and the output end of the operational amplifier circuit is connected to the first NMOS transistor
  • the first end of the first NMOS transistor is connected to the second power supply
  • the second end of the first MOS transistor is connected to one end of the first resistor
  • the other end of the first resistor is connected to the inverting input end of the operational amplifier circuit and through The second resistor is grounded;
  • the non-inverting input terminal of the comparator is connected to the third power supply, the output terminal of the comparator is connected to the first input terminal of the OR gate circuit, and the second input terminal of
  • the third end of the first drive control module is connected to the first end of the third NMOS transistor and the third end of the second drive control module, the third NMOS transistor is connected to the third end of the second PMOS transistor, the third NMOS transistor The second terminal is grounded.
  • the control method of LDO operational amplifier clamping the upper limit of the output driving voltage can be used to ensure that the upper line of the output driving voltage is strictly clamped at about 6V.
  • the EMI effect is improved by using the method of detecting the magnitude of the output driving voltage and driving in two stages.
  • FIG. 1 is a schematic structural diagram of an NMOS transistor provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a PMOS transistor provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a driving circuit provided in an embodiment of the present application.
  • FIG. 4 is another structural schematic diagram of a driving circuit provided by an embodiment of the present application.
  • FIG. 5 is another structural schematic diagram of a driving circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a drive control circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another driving control circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic waveform diagram of signals based on the driving circuit in FIG. 5 provided by the embodiment of the present application.
  • GaN devices With low on-resistance and high operating frequency, it can meet the requirements of next-generation electronic equipment for higher power, higher frequency, smaller volume and harsher high-temperature operation of power devices.
  • the overall performance of GaN power components is better, and it can be epitaxially grown on a silicon substrate. In terms of area and overall cost, it is also more cost-effective than silicon carbide components, so it is also used in high-power, high-frequency semiconductor components. .
  • GaN-based power electronic devices Compared with silicon Si-based power electronic devices, GaN-based power electronic devices have the following three advantages:
  • High efficiency and energy saving Due to the unique polarization characteristics of GaN materials, there is a strong polarization effect between AlGaN/GaN heterojunctions, forming a high-concentration two-dimensional electron gas (2DEG) with a mobility as high as 2000 and an areal density as high as an order of magnitude. ).
  • the GaN-based power switching device HFET uses AlGaN/GaN heterojunction 2DEG to work. The device has the advantages of small on-resistance and fast switching speed, which greatly reduces the on-state loss and switching of the device.
  • GaN material has a larger band gap than Si, so that GaN devices can work in a higher temperature environment, so the heat dissipation device can be simplified or even omitted.
  • the GaN device has a high switching frequency, the volume of the passive device capacitance and inductance of the system is greatly reduced. All of these make the GaN-based power electronic device more miniaturized and lightweight, greatly reducing the system manufacturing cost.
  • High output power density and strong driving force Due to the characteristics of wide bandgap and other characteristics, the critical breakdown electric field of GaN material is as high as 3.4MV/cm, which is 10 times that of Si material. Therefore, GaN devices have higher withstand voltage capability. At the same time, GaN-based devices work with 2DEG to obtain low on-resistance and high current density, so that GaN devices can obtain greater power density.
  • GaN Gallium Nitride-based Field Effect Transistors
  • the reverse recovery characteristics of the body diode are much better than those of silicon MOSFETs.
  • GaNFETs have some output capacitance, but it's significantly lower than silicon.
  • RDS(ON) resistance
  • GaN transistors have lower resistance (RDS(ON)) and gate charge QG. What's more, GaN transistors are not subject to strong negative temperature coefficients like MOSFETs. Therefore, the driving requirements for a GaN FET, whether it is normal or off, will be completely different from that of a silicon MOSFET.
  • the GaN driver circuit drives the switching frequency higher, requires lower driving voltage, and has higher efficiency. For power supply designers, factors to consider when driving GaN devices:
  • the threshold voltage of GaN FET is generally lower than 1.5V, the minimum value is as low as 0.7V, which is lower than that of many MOSFETs, but it changes almost smoothly with temperature.
  • VGS(MAX) 6V.
  • VGS must be set below 5.5V to reserve a safety margin of 0.5V.
  • the first end of the NMOS transistor is the gate, the second end is the source, the third end is the drain, the fourth end is the substrate, and the first end is the substrate.
  • the four terminals are grounded; as shown in Figure 2, for the PMOS transistor, the first end of the PMOS transistor is the gate, the second end is the source, the third end is the drain, the fourth end is the substrate, and the fourth end is used for Connect to the power supply, such as VDD; for the drive control module, the first terminal is DR, the second terminal is DU, and the third terminal is DW.
  • FIG. 3 is a drive control circuit of a conventional drive, and its drive modules are driven step by step through an inverter chain.
  • the output voltage drives an external MOS power transistor.
  • the external MOS power transistor has a non-negligible capacitance between the gate and the source.
  • a larger current is required to drive the gate voltage up or down.
  • the drive adopts a one-stage control method.
  • the Drive signal is 0, the gate voltage of the NMOS transistor N1 is high.
  • N1 is turned on to output a large current, and the GATE voltage becomes higher instantly; similarly, when the Drive signal is 1, the NMOS transistors N2 and N3 are turned on, and the GATE voltage is pulled down instantly.
  • the disadvantage of the drive circuit shown in Figure 1 is that the drive adopts a one-stage control mode, and the di/dt changes during the switching process are large, resulting in poor EMI effects.
  • the output voltage is limited by the VCC voltage, the highest is VCC-VGS, and the output voltage changes with the change of VCC, which is unfavorable for the GaN drive tube. If you want to use this driver, you need to add an additional circuit to control VCC, which increases the cost.
  • Fig. 4 is the drive circuit of the resonant drive schematic diagram, the core idea is to add an LC resonant circuit to the drive circuit, and use the parasitic capacitance inside the switch tube to resonate with the external inductance to realize the drive of the switch tube, and store in The energy in the resonant inductor is effectively recovered, thereby reducing the driving loss.
  • the control circuit is complicated, and an additional circuit needs to be added to control VCC, and the resonant drive can only exert its advantages in ultra-high frequency applications. Not applicable for flyback configurations.
  • the embodiments of the present application provide a driving circuit, a chip control circuit, a power adapter and an electronic device for solving the above-mentioned defects.
  • FIG. 5 is a schematic structural diagram of a driving circuit provided by an embodiment of the present application.
  • the driving circuit includes: an operational amplifier circuit OP1, a comparator CMP1, a first NMOS transistor MN1, a second NMOS transistor MN2, a Three NMOS transistors MN3, the first PMOS transistor MP1, the second PMOS transistor MP2, the first drive control module CTRL1, and the second drive control module CTR2, wherein,
  • the non-inverting input terminal (+) of the operational amplifier circuit OP1 is connected to the first power supply S1, the output terminal of the operational amplifier circuit OP1 is connected to the first end of the first NMOS transistor MN1, and the first terminal of the first NMOS transistor MN2
  • the three terminals are connected to the second power supply VDD, the second terminal of the first MOS transistor MN1 is connected to one terminal of the first resistor R1, and the other terminal of the first resistor R1 is connected to the inverting input terminal of the operational amplifier circuit OP1 (- ) and grounding through the second resistor R2;
  • the non-inverting input terminal (+) of the comparator CMP1 is connected to the third power supply S2, the output terminal of the comparator CMP1 is connected to the first input terminal of the OR gate circuit, and the second input terminal of the OR gate circuit is used to access a drive signal Drive_P, the drive signal Drive_P is also input to the first end of the first drive control module CTRL1;
  • the output end of the OR gate circuit is connected to the first end of the second drive control module, and the second end of the second drive control module is connected to the first end of the second PMOS transistor MP2; the second PMOS transistor MP2 The second end of the first PMOS transistor MP1 is connected to the second end of the second NMOS end MN2, the third end of the second PMOS transistor MN2 is connected to the drive port GATE, and the drive port GATE Used to drive a GaN power transistor; the third end of the second NMOS transistor MN2 is also connected to one end of the third resistor R3, and the other end of the third resistor R3 is connected to one end of the fourth resistor R4 and the inverting phase of the comparator CMP1 input (-);
  • the first end of the second NMOS transistor MN2 is connected to one end of the fifth resistor R5, and the other end of the fifth resistor R5 is connected to the first end of the first NMOS transistor NM1 and grounded through the first capacitor C1;
  • the third end of the second NMOS transistor MN2 is connected to the second power supply VDD;
  • the second end of the first drive control module CTRL1 is connected to the first end of the first PMOS transistor MP1
  • the third end of the first drive control module CTR1 is connected to the first end of the third NMOS transistor MN3
  • the third end of the second drive control module CTR2 and the third NMOS transistor MN3 are connected to the third end of the second PMOS transistor MP2, and the second end of the third NMOS transistor MN3 is grounded.
  • R1 and R2 can be replaced with a variable resistor, and the ratio between R1 and R2 can be adjusted through the variable resistor.
  • R3 and R4 can also be replaced with a variable resistor, through which the ratio between R3 and R4 can be adjusted.
  • the operational amplifier circuit OP1, the first resistor R1, the second resistor R2, and the first NMOS transistor MN1 are used to form an LDO negative feedback system;
  • the negative feedback system is used to dynamically adjust the current of the first NMOS transistor MN1 through the ratio between the first resistor R1 and the second resistor R2, and the operational amplifier circuit OP1, so as to obtain the first output voltage V1 of the second terminal of the first NMOS transistor MN1;
  • the output of the operational amplifier circuit becomes low, the current passing through the first NMOS transistor decreases, and the first output voltage decreases, thereby realizing and dynamically adjusting the first output voltage of the second terminal of the first NMOS transistor.
  • the first design value of the output voltage may be preset or defaulted by the system, for example, the first design value of the output voltage may be a set value, that is, an empirical value.
  • the absolute value of the difference between the second output voltage V2 of the second terminal of the second NMOS transistor MN2 and the first output voltage V1 is smaller than a preset threshold.
  • the preset threshold can be preset or defaulted by the system, and the preset threshold can be close to 0, for example, the preset threshold is 0.01.
  • the first output voltage V1 is determined by the input voltage VREF of the non-inverting input terminal (+) of the operational amplifier circuit OP1, the first resistor R1 and the second resistor R2.
  • the specific calculation formula is as follows:
  • V1 VREF*(R1+R2)/R2
  • the second output voltage V2 is determined by the input voltage VREF of the non-inverting input terminal (+) of the operational amplifier circuit OP1, the first resistor R1 and the second resistor R2, and the specific calculation formula is as follows:
  • V2 VREF*(R1+R2)/R2
  • the drive signal Drive_P is used to turn on the first PMOS transistor MP1 through the first drive control module CTRL1, and turn off the third NMOS transistor MN3, through the third resistor R3 and the first
  • the four resistors R4 divide the voltage to obtain the third output voltage VO_ADOPT, and use the third output voltage VO_ADOPT as the first input signal of the inverting input terminal (-) of the comparator CMP1, and use the non-inverting input of the comparator CMP1 Compare the second input signal of terminal (+) to obtain a drive control signal; pass the drive control signal and the drive signal Drive_P through an OR gate circuit to obtain an output signal, and turn on the second PMOS transistor through the output signal, Charged simultaneously by the first PMOS transistor MP1 and the second PMOS transistor MP1.
  • the first drive control module CTRL1 includes M inverters, a fourth NMOS transistor MN4, a fifth NMOS transistor MN5, a third PMOS transistor MP3, and a fourth PMOS transistor MP4, where M is an even number;
  • the first end of the first drive control module CTRL1 is connected to the second end of the first drive control module CTRL1 and the first end of the fifth NMOS transistor MN5 through the M inverters;
  • the second end of the NMOS transistor MN5 is grounded;
  • the first end of the first drive control module CTRL1 is connected to the first end of the fourth NMOS transistor MN4, the second end of the fourth NMOS transistor MN4 is grounded, and the third end of the fourth NMOS transistor MN4 is connected to One end of the sixth resistor R6, the other end of the sixth resistor R6 is connected to the third end and the first end of the third PMOS transistor MP3, and the first end of the third PMOS transistor MP3 is connected to the fourth PMOS transistor MP3
  • the first end of the tube MP4; the third end of the fourth PMOS transistor MP4 is connected to one end of the seventh resistor R7, and the other end of the seventh resistor R7 is connected to the third end of the first drive control module CTRL1 and the
  • the third end of the fifth NMOS transistor MN5; the second end of the third PMOS transistor MP3 and the second end of the fourth PMOS transistor MP4 are both connected to the second power supply VDD.
  • the inverter can improve the driving ability, on the other hand, it can realize the delay effect.
  • the second drive control module CTRL2 includes N inverters, a sixth NMOS transistor MN6, a seventh NMOS transistor MN7, a fifth PMOS transistor MP5, and a sixth PMOS transistor MP6, where N is an even number;
  • the first end of the second drive control module CTRL2 is connected to the second end of the second drive control module CTRL2 and the first end of the seventh NMOS transistor MN7 through the N inverters; the seventh The second end of the NMOS transistor MN7 is grounded;
  • the first end of the second drive control module CTRL is connected to the first end of the sixth NMOS transistor MN6, the second end of the sixth NMOS transistor MN6 is grounded, and the third end of the sixth NMOS transistor MN6 is connected to One end of the eighth resistor R8, the other end of the eighth resistor R8 is connected to the third end and the first end of the fifth PMOS transistor MP5, and the first end of the fifth PMOS transistor MP5 is connected to the sixth PMOS transistor MP5
  • the first end of the transistor MP6; the third end of the sixth PMOS transistor MP6 is connected to one end of the ninth resistor R9, and the other end of the ninth resistor R9 is connected to the third end of the second drive control module CTRL2 and the
  • the third end of the seventh NMOS transistor MN7; the second end of the fifth PMOS transistor MP5 and the second end of the sixth PMOS transistor MP6 are both connected to the second power supply VDD.
  • the inverter can improve the driving ability, on the other hand, it can realize the delay effect.
  • the first drive control circuit and the second drive control circuit are respectively controlled to work in different periods, and then two-stage drive control is formed, and the two-stage drive control and LDO operational amplifier are used to clamp
  • the upper limit technology of the output driving voltage not only improves the EMI, but also improves the precise value of the chip driving voltage, avoiding damage to the GaN device due to the fluctuation of the output voltage value. Furthermore, the effect of chip EMI can be improved on the basis of satisfying GaN driving requirements.
  • the operational amplifier OP1, the resistors R1 and R2, and the NMOS tube MN1 form an LDO circuit.
  • LDO is a negative feedback system, using the ratio of R1 and R2, and the op amp to dynamically adjust the current through MN1, the precise value of the output voltage (V1) can be achieved.
  • V1 the output voltage
  • the output of OP1 becomes high, the current through MN1 increases, and the output voltage V1 increases.
  • the output voltage V1 is greater than the design value, the output of OP1 becomes low, the current through MN1 decreases, and the output voltage V1 decrease. In this way, the voltage output of V1 is maintained at the design value.
  • the first ports of MN2 and MN1 are connected together, and the two are matched as much as possible, so that the output voltage V2 can be maintained at the design value, that is, V1 and V2 are equal or almost equal.
  • the function of the capacitor C1 is to stabilize the voltage of the gate of the MOS transistor, reduce the bandwidth of the LDO, and increase the stability of the LDO system.
  • C1 and R5 form a low-pass filter, which can reduce the influence of the gate voltage of MN2 on the gate voltage of MN1.
  • the above set value can be determined according to the driving voltage of the GAN power amplifier of the device to be driven.
  • the working principle of the two-stage drive is: first, the drive signal Drive_P passes through the drive control module CTRL1 (the circuit is shown in Figure 6), turns on MP1, turns off MN3, and increases the output voltage. Then, divide the voltage through resistors R3 and R4 to sample the output voltage. The sampled output voltage is compared with the reference voltage VREF1 by the comparator CMP1 to output 2-stage drive control signals. Then it is ORed with the signal Drive_P, PM2 is turned on through the control module CTRL2, and finally MP1 and MP2 give charging at the same time. In this way, the driving current changes from small to large, and the driving voltage has a slow and gradual process from low to high. Reduced di/dt spike and improved EMI effect.
  • the control method of clamping the upper limit of the output driving voltage of the LDO operational amplifier is adopted to ensure that the upper line of the output driving voltage is strictly clamped at about 6V.
  • the EMI effect is improved by using the method of detecting the magnitude of the output driving voltage and driving in two stages. That is, it can meet the driving requirements of GaN, so that the output driving voltage can be well maintained at 6V, avoiding damage to GaN caused by output voltage fluctuations, and improving the effect of chip EMI.
  • the driving circuit shown in Figure 5 has a smaller EMI and lower cost in the embodiment of the present application; the driving circuit shown in Figure 5 is compared with the driving circuit shown in Figure 4, The embodiment of the present application has lower EMI and is applicable to a flyback structure.
  • both the first power supply and the third power supply can be AC/DC power supply, DC/DC power supply, regulated power supply, communication power supply, module power supply, variable frequency power supply, inverter power supply, AC regulated power supply, DC regulated power supply, etc.
  • This embodiment of the present application does not limit it.
  • the first power supply and the second power supply may be the same power supply or different power supplies.
  • the GaN power tube is used to output to the electric device to charge the electric device.
  • the electric device can be understood as a device that needs to be charged by the user.
  • the user device can include but not limited to: smart phones, tablet computers, Smart robots, smart elevators, in-vehicle devices, wearable devices, smart home devices, computing devices or other processing devices connected to wireless modems, and various forms of user equipment (user equipment, UE), mobile station (mobile station, MS ), terminal device (terminaldevice) and so on.
  • control chip circuit can include at least one of the following: AC-DC chip control circuit, DC-DC chip control circuit, which is not limited here, AC-DC chip control circuit It can be a flyback AC-DC chip control circuit or a non-flyback AC-DC chip control circuit.
  • the two-stage drive control and LDO operational amplifier clamp output drive voltage upper limit technology are used, which not only improves EMI, but also improves the precise value of the chip drive voltage, avoiding damage to GaN devices due to fluctuations in output voltage values .
  • the driver is used in the flyback ACDC control chip circuit to realize the driving of the GaN power tube.
  • both the above-mentioned drive circuit and the above-mentioned control chip circuit can be applied to a power adapter.
  • the embodiment of the present application also provides an electronic device, which may include a drive circuit or a chip control circuit or a power adapter as described in FIG. 5 , for example, the electronic device may be a power bank or a charger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electronic Switches (AREA)

Abstract

一种驱动电路包括:运放电路(OP1)、比较器(CMP1)、第一NMOS管(MN1)、第二NMOS管(MN2)、第三NMOS管(MN3)、第一PMOS管(MP1)、第二PMOS管(MP2)、第一驱动控制模块(CTRL1)、第二驱动控制模块(CTRL2),其中,第一电阻(R1)、第二电阻(R2)、第一NMOS管(MN1)用于形成LDO负反馈***。

Description

驱动电路、控制芯片电路、电源适配器及电子设备
本申请要求于2021年10月22日提交中国专利局、申请号为202111230436.6、申请名称为“驱动电路、控制芯片电路、电源适配器及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,具体涉及一种驱动电路、控制芯片电路、电源适配器及电子设备。
背景技术
随着工艺的进步和缺陷率的不断降低,氮化镓(GaN)在交直流电力转换、改变电压电平、并且以一定数量的函数确保可靠电力供应的电子电源中的优势越来越明显。
进而,实际应用中,会考虑将GaN用于作为GaN功率管的材料,但是,在充电过程中,由于GaN工作在较高的频率,会存在较大的di/dt,进而会引起严重的电磁干扰(electromagnetic interference,EMI),因此,如何解决在充电应用中,由于GaN功率管导致的EMI问题亟待解决。
发明内容
本申请实施例提供了一种驱动电路、控制芯片电路、电源适配器及电子设备,能够解决在充电应用中,由于GaN功率管导致的EMI问题和满足GaN功率管驱动电压的精度要求。
第一方面,本申请实施例提供一种驱动电路,所述驱动电路包括:运放电路、比较器、第一NMOS管、第二NMOS管、第三NMOS管、第一PMOS管、第二PMOS管、第一驱动控制模块、第二驱动控制模块,其中,
所述运放电路的同相输入端连接第一电源,所述运放电路的输出端连接所述第一NMOS管的第一端,所述第一NMOS管的第三端连接第二电源,所述第一MOS管的第二端连接第一电阻的一端,所述第一电阻的另一端连接所述运放电路的反相输入端以及通过第二电阻进行接地;
所述比较器的同相输入端连接第三电源,所述比较器的输出端连接或门电路的第一输入端,所述或门电路的第二输入端用于接入驱动信号,所述驱动信号还被输入所述第一驱动控制模块的第一端;
所述或门电路的输出端连接所述第二驱动控制模块的第一端,所述第二驱动控制模块的第二端连接第二PMOS管的第一端;所述第二PMOS管的第二端连接所述第一PMOS管的第二端以及所述第二NMOS端的第二端,所述第二PMOS管的第三端连接驱动端口,所述驱动端口用于驱动GaN功率管;所述第二NMOS管的第三端还连接第三电阻的一端,第三电阻的另一端连接第四电阻的一端以及所述比较器的反相输入端;
所述第二NMOS管的第一端连接第五电阻的一端,所述第五电阻的另一端连接所述第一NMOS管的第一端以及通过第一电容进行接地;所述第二NMOS管的第三端连接所述第二电源;
所述第一驱动控制模块的第二端连接所述第一PMOS管的第一端,所述第一驱动控制模 块的第三端连接所述第三NMOS管的第一端以及所述第二驱动控制模块的第三端,所述第三NMOS管连接所述第二PMOS管的第三端,所述第三NMOS管的第二端接地。
第二方面,本申请实施例提供一种控制芯片电路,所述控制芯片电路包括如上述第一方面所描述的驱动电路。
第三方面,本申请实施例提供一种电源适配器,所述电源适配器包括如第一方面所描述的驱动电路,或者,如第二方面所描述的控制芯片电路。
第四方面,本申请实施例提供一种电子设备,所述电子设备包括如第一方面所描述的驱动电路,或者,如第二方面所描述的控制芯片电路,或者,如第三方面所描述的电源适配器。
实施本申请实施例,具备如下有益效果:
可以看出,本申请实施例中所描述的驱动电路、芯片控制电路、电源适配器及电子设备,其中,驱动电路包括:运放电路、比较器、第一NMOS管、第二NMOS管、第三NMOS管、第一PMOS管、第二PMOS管、第一驱动控制模块、第二驱动控制模块,其中,运放电路的同相输入端连接第一电源,运放电路的输出端连接第一NMOS管的第一端,第一NMOS管的第三端连接第二电源,第一MOS管的第二端连接第一电阻的一端,第一电阻的另一端连接运放电路的反相输入端以及通过第二电阻进行接地;比较器的同相输入端连接第三电源,比较器的输出端连接或门电路的第一输入端,或门电路的第二输入端用于接入驱动信号,驱动信号还被输入第一驱动控制模块的第一端,或门电路的输出端连接第二驱动控制模块的第一端,第二驱动控制模块的第二端连接第二PMOS管的第一端;第二PMOS管的第二端连接第一PMOS管的第二端以及第二NMOS端的第二端,第二PMOS管的第三端连接驱动端口,驱动端口用于驱动GaN功率管;第二NMOS管的第三端还连接第三电阻的一端,第三电阻的另一端连接第四电阻的一端以及比较器的反相输入端,第二NMOS管的第一端连接第五电阻的一端,第五电阻的另一端连接第一NMOS管的第一端以及通过第一电容进行接地;第二NMOS管的第三端连接第二电源,第一驱动控制模块的第二端连接第一PMOS管的第一端,第一驱动控制模块的第三端连接第三NMOS管的第一端以及第二驱动控制模块的第三端,第三NMOS管连接第二PMOS管的第三端,第三NMOS管的第二端接地,能够针对GaN器件的驱动要求,采用LDO运放钳位输出驱动电压上限的控制方法,确保输出驱动电压上线严格的钳位在6V左右。同时,采用检测输出驱动电压的大小2段驱动的方法,改善EMI效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种NMOS管的结构示意图;
图2是本申请实施例提供的一种PMOS管的结构示意图;
图3是本申请实施例提供的一种驱动电路的结构示意图;
图4是本申请实施例提供的一种驱动电路的另一结构示意图;
图5是本申请实施例提供的一种驱动电路的另一结构示意图;
图6是本申请实施例提供的一种驱动控制电路的结构示意图;
图7是本申请实施例提供的另一种驱动控制电路的结构示意图;
图8是本申请实施例提供的基于图5的驱动电路的信号的波形示意图。
具体实施方式
为了本技术领域人员更好理解本申请的技术方案,下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的部分实施例,而并非全部的实施例。基于本申请实施例的描述,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请所保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图对本申请实施例进行介绍,附图中相交导线的交叉处有圆点表示导线相接,交叉处无圆点表示导线不相接。
为了更好地理解本申请实施例的方案,下面先对本申请实施例可能涉及的相关术语和概念进行介绍。
GaN器件:具有低导通电阻、高工作频率,能满足下一代电子装备对功率器件更大功率、更高频率、更小体积和更恶劣高温工作的要求。GaN功率元件整体性能更加优异,而且可以在硅基质上外延成长,在面积与整体成本考量上,也具有比碳化硅元件更划算的可能性,因此也被运用在高功率、高频率半导体元件中。
随着工艺的进步和缺陷率的不断降低,GaN在交直流电力转换、改变电压电平、并且以一定数量的函数确保可靠电力供应的电子电源中的优势越来越明显。电源设计人员正在重新思考电路的设计,试图寻找能充分发挥全新GaN晶体管潜能又能避免负面影响的方法来创造电源***。思考这类问题时通常的思路是在现有组件中寻找解决方案—GaN开关,Si开关驱动器,高速开关控制器,以及功率电感器、变压器和电容器等总体设计中的部件。生产电源产品的集成电路(IC)制造商如果能用共同设计的器件提供***级解决方案,甚至在模块封装中集成多个芯片,就能够大大提高电源设计可能性。
与硅Si基功率电子器件相比,GaN基功率电子器件具有如下3个优点:
1、高效节能:由于GaN材料特有的极化特性,在AlGaN/GaN异质结间存在极强的极化效应,形成迁移率高达2000和面密度高达量级的高浓度二维电子气(2DEG)。GaN基功率开关器件HFET利用AlGaN/GaN异质结2DEG工作,器件具有导通电阻小、开关速度快的优点,使器件的通态损耗和开关大大降低。
2、可以使电力电子装置小型化、轻量化,低成本化:GaN材料比Si具有更大的禁带宽度,使GaN器件可以工作在更高温度环境,因此,可简化甚至省去散热装置。此外,由于GaN器件具有高的开关频率,使得***的无源器件电容电感的体积大大缩小。这些都使得GaN基电力电子装置能更小型化轻量化,大大降低***制作成本。
3、输出功率密度大,驱动力强劲:由于宽禁带等特性,GaN材料的临界击穿电场高达3.4MV/cm,是Si材料的10倍,因此,GaN器件具有更高耐压能力。同时,GaN基器件利用 2DEG工作,获得低导通电阻,高电流密度,因此使GaN器件可以获得更大的功率密度。
与硅MOSFET,氮化镓基场效应晶体管(GaN)运行的速度快得多在较低的栅极阈值电压。此外,对于GaN FET的内部栅极电阻更低,体二极管的反向恢复特性远优于硅MOSFET。GaNFET有一些输出电容,但它明显低于硅。实际应用中,GaN晶体管具有较低的电阻(RDS(ON))和栅极电荷QG。更重要的是,GaN晶体管不受像MOSFET那样的强负温度系数的影响。因此,对于GaN FET的驱动要求,是否正常或关闭,将完全不同与硅MOSFET。
与传统Si驱动相比,GaN驱动电路驱动开关频率更高,要求的驱动电压更低,效率更高。对于电源设计人员来说,驱动GaN器件需要考虑的因素:
(1)、低阈值电压
GaN FET的阈值电压一般低于1.5V,最小值低至0.7V,相比很多MOSFETs低,但它随温度几乎平缓变化。
(2)、栅源电压上限要求严格:VGS(MAX)=6V。一方面,VGS必须被设定在5.5V以下来预留0.5V的安全余量。另一方面,从Rds(ON)与VGS曲线看出,在VGS=4.5-5.5V时,RDS(ON)可以达到最小值,意味着降低传导损耗。综合考虑,将VGS设置在5V。栅源电压设计要求带来的问题:必须对栅源电压进行严格控制,避免损坏GaN FET功率管栅极,适用于MOSFETs驱动的普通偏置不能被直接使用。
(3)、EMI问题
由于GaN可以工作在较高的频率,所以,存在较大的dV/dt。这将会引起严重的EMI问题。
另外,本申请实施例中,如图1所示,针对NMOS管,NMOS管的第一端为栅极,第二端为源极,第三端为漏极,第四端为衬底,第四端接地;如图2所示,针对PMOS管,PMOS管的第一端为栅极,第二端为源极,第三端为漏极,第四端为衬底,第四端用于接入电源,如VDD;针对驱动控制模块,其第一端为DR,第二端为DU,第三端为DW。
相关技术中,如图3所示,图3为传统驱动的驱动控制电路,其驱动模块通过反向器链逐级驱动。输出电压驱动外部MOS功率管。外部MOS功率管在栅源之间有一个不可忽略的电容。为了快速的地导通或关断漏极电流,需要较大的电流来驱动栅极电压上升或者下降。驱动采用一段控制方式,Drive信号为0时,NMOS管N1栅极电压位置高。同时,N1打开输出大电流,瞬间GATE电压变高;同理,Drive信号为1时,NMOS管N2、N3被打开,瞬间拉低GATE电压。
其中,基于图1所示的驱动电路的缺点是,驱动采用一段控制方式,开关过程中存在的di/dt变化大,导致EMI效果差。同时,输出电压受VCC电压的限制,最高为VCC-VGS,输出电压随着VCC的变化而变化,对于GaN驱动管是不利的。要想使用该驱动,就需要增加额外电路对VCC进行控制,从而增加成本。
进一步的,图4为谐振型驱动原理图的驱动电路,其核心思想是在驱动电路中加入LC谐振电路,利用开关管内部的寄生电容与外部电感谐振来实现开关管的驱动,并对储存在谐振电感中的能量进行有效回收,从而减小驱动损耗。但该控制电路复杂,需要增加额外电路对VCC进行控制,并且谐振型驱动只有在超高频场合才能发挥其优势。对于反激结构不适用。
进而,基于上述相关技术的缺陷,本申请实施例提供了一种驱动电路、芯片控制电路、电源适配器和电子设备,用于解决上述缺陷。
请参阅图5,图5是本申请实施例提供的一种驱动电路的结构示意图,所述驱动电路包括:运放电路OP1、比较器CMP1、第一NMOS管MN1、第二NMOS管MN2、第三NMOS管MN3、第一PMOS管MP1、第二PMOS管MP2、第一驱动控制模块CTRL1、第二驱动控制模块CTR2,其中,
所述运放电路OP1的同相输入端(+)连接第一电源S1,所述运放电路OP1的输出端连接所述第一NMOS管MN1的第一端,所述第一NMOS管MN2的第三端连接第二电源VDD,所述第一MOS管MN1的第二端连接第一电阻R1的一端,所述第一电阻R1的另一端连接所述运放电路OP1的反相输入端(-)以及通过第二电阻R2进行接地;
所述比较器CMP1的同相输入端(+)连接第三电源S2,所述比较器CMP1的输出端连接或门电路的第一输入端,所述或门电路的第二输入端用于接入驱动信号Drive_P,所述驱动信号Drive_P还被输入所述第一驱动控制模块CTRL1的第一端;
所述或门电路的输出端连接所述第二驱动控制模块的第一端,所述第二驱动控制模块的第二端连接第二PMOS管MP2的第一端;所述第二PMOS管MP2的第二端连接所述第一PMOS管MP1的第二端以及所述第二NMOS端MN2的第二端,所述第二PMOS管MN2的第三端连接驱动端口GATE,所述驱动端口GATE用于驱动GaN功率管;所述第二NMOS管MN2的第三端还连接第三电阻R3的一端,第三电阻R3的另一端连接第四电阻R4的一端以及所述比较器CMP1的反相输入端(-);
所述第二NMOS管MN2的第一端连接第五电阻R5的一端,所述第五电阻R5的另一端连接所述第一NMOS管NM1的第一端以及通过第一电容C1进行接地;所述第二NMOS管MN2的第三端连接所述第二电源VDD;
所述第一驱动控制模块CTRL1的第二端连接所述第一PMOS管MP1的第一端,所述第一驱动控制模块CTR1的第三端连接所述第三NMOS管MN3的第一端以及所述第二驱动控制模块CTR2的第三端,所述第三NMOS管MN3连接所述第二PMOS管MP2的第三端,所述第三NMOS管MN3的第二端接地。
其中,R1、R2可以替换成一个可变电阻,通过该可变电阻调节R1与R2之间的比值。R3、R4也可以替换成一个可变电阻,通过该可变电阻调节R3与R4之间的比值。
可选的,所述运放电路OP1、所述第一电阻R1、所述第二电阻R2、所述第一NMOS管MN1用于形成LDO负反馈***;
所述负反馈***用于通过所述第一电阻R1、所述第二电阻R2之间的比值,以及所述运放电路OP1实现动态调节所述第一NMOS管MN1的电流,以得到所述第一NMOS管MN1的第二端的第一输出电压V1;
当所述第一输出电压V1小于第一输出电压设计值时,所述运放电路OP1的输出变高,通过所述第一NMOS管NM1的电流增大,所述第一输出电压V1增加;
反之,当所述第一输出电压大于第一输出电压设计值时,所述运放电路的输出变低,通过所述第一NMOS管的电流减小,所述第一输出电压降低,从而实现动态调节所述第一NMOS管的第二端的第一输出电压。
其中,第一输出电压设计值可以预先设置或者***默认,例如,第一输出电压设计值可以为设定值,即经验值。
可选的,所述第二NMOS管MN2的第二端的第二输出电压V2与所述第一输出电压V1之间的差值的绝对值小于预设阈值。
其中,预设阈值可以预先设置或者***默认,预设阈值可以趋近于0,例如,预设阈值 为0.01。
可选的,所述第一输出电压V1由所述运放电路OP1的同相输入端(+)的输入电压VREF、所述第一电阻R1和所述第二电阻R2确定。具体计算公式如下:
V1=VREF*(R1+R2)/R2
可选的,所述第二输出电压V2由所述运放电路OP1的同相输入端(+)的输入电压VREF、所述第一电阻R1和所述第二电阻R2确定,具体计算公式如下:
V2=VREF*(R1+R2)/R2
可选的,所述驱动信号Drive_P用于通过所述第一驱动控制模块CTRL1开启所述第一PMOS管MP1,且关闭所述第三NMOS管MN3,通过所述第三电阻R3和所述第四电阻R4分压,得到第三输出电压VO_ADOPT,将所述第三输出电压VO_ADOPT作为所述比较器CMP1的反相输入端(-)的第一输入信号,将所述比较器CMP1的同相输入端(+)的第二输入信号进行比较,得到驱动控制信号;将所述驱动控制信号与所述驱动信号Drive_P通过或门电路,得到输出信号,通过该输出信号开启所述第二PMOS管,由所述第一PMOS管MP1和所述第二PMOS管MP1同时充电。
可选的,所述第一驱动控制模块CTRL1包括M个反相器、第四NMOS管MN4、第五NMOS管MN5、第三PMOS管MP3和第四PMOS管MP4,所述M为偶数;
所述第一驱动控制模块CTRL1的第一端通过所述M个反相器连接所述第一驱动控制模块CTRL1的第二端以及所述第五NMOS管MN5的第一端;所述第五NMOS管MN5的第二端接地;
所述第一驱动控制模块CTRL1的第一端连接所述第四NMOS管MN4的第一端,所述第四NMOS管MN4的第二端接地,所述第四NMOS管MN4的第三端连接第六电阻R6的一端,所述第六电阻R6的另一端连接所述第三PMOS管MP3的第三端和第一端,所述第三PMOS管MP3的第一端连接所述第四PMOS管MP4的第一端;所述第四PMOS管MP4的第三端连接第七电阻R7的一端,所述第七电阻R7的另一端连接所述第一驱动控制模块CTRL1的第三端以及所述第五NMOS管MN5的第三端;所述第三PMOS管MP3的第二端和所述第四PMOS管MP4的第二端均连接所述第二电源VDD。
具体的,如图6所示,图6中,M=4,即以4个反相器为例进行说明,图中以三角形代表反相器。反相器一方面能够提升驱动能力,另一方面,能够实现延时效果。
可选的,所述第二驱动控制模块CTRL2包括N个反相器、第六NMOS管MN6、第七NMOS管MN7、第五PMOS管MP5和第六PMOS管MP6,所述N为偶数;
所述第二驱动控制模块CTRL2的第一端通过所述N个反相器连接所述第二驱动控制模块CTRL2的第二端以及所述第七NMOS管MN7的第一端;所述第七NMOS管MN7的第二端接地;
所述第二驱动控制模块CTRL的第一端连接所述第六NMOS管MN6的第一端,所述第六NMOS管MN6的第二端接地,所述第六NMOS管MN6的第三端连接第八电阻R8的一端,所述第八电阻R8的另一端连接所述第五PMOS管MP5的第三端和第一端,所述第五PMOS管MP5的第一端连接所述第六PMOS管MP6的第一端;所述第六PMOS管MP6的第三端连接第九电阻R9的一端,所述第九电阻R9的另一端连接所述第二驱动控制模块CTRL2的第三端以及所述第七NMOS管MN7的第三端;所述第五PMOS管MP5的第二端和所述第六PMOS管MP6的第二端均连接所述第二电源VDD。
具体的,如图7所示,图7中,N=4,即以4个反相器为例进行说明,图中以三角形代 表反相器。反相器一方面能够提升驱动能力,另一方面,能够实现延时效果。
本申请实施例,由于或门电路的控制,实现不同时段分别控制第一驱动控制电路和第二驱动控制电路进行工作,进而,形成两段驱动控制,采用两段驱动控制和LDO运放钳位输出驱动电压上限技术,既改善了EMI,又提高了芯片驱动电压的精确值,避免了因为输出电压值的波动而损坏GaN器件。进而,能够在满足GaN驱动要求的基础上,又改善芯片EMI的效果。
具体实现中,运放OP1、电阻R1和R2,NMOS管MN1构成了LDO电路。
针对上述驱动电路,其具体工作原理:LDO是一个负反馈的***,利用R1和R2的比值,以及运放动态调节通过MN1的电流,可以实现输出电压(V1)精确值。当输出电压V1小于设计值时,OP1输出变高,通过MN1的电流增大,输出电压V1增加,当输出电压V1大于设计值时,OP1输出变低,通过MN1的电流减小,输出电压V1减小。从而实现V1电压输出维持在设计值。同样的,将MN2和MN1的第一端口接在一起,两者尽量匹配,可以实现输出电压V2维持在设计值,即V1与V2两者相等或者几乎相等。电容C1的作用是稳定MOS管栅级的电压,降低LDO的带宽,增加LDO***的稳定性。同时,C1和R5组成了一个低通滤波器,可以减少MN2栅极电压对MN1栅极电压的影响。
其中,上述设定值可以根据需要驱动的设备的GAN功放的驱动电压确定。
具体实现中,两段驱动工作原理:首先,驱动信号Drive_P通过驱动控制模块CTRL1(电路如图6所示),开启MP1,关闭MN3,使输出电压上升。然后,通过电阻R3和R4分压,采样输出电压。采样后的输出电压通过比较器CMP1与基准电压VREF1比较输出2段驱动控制信号。再和信号Drive_P相或,通过控制模块CTRL2开启PM2,最后由MP1和MP2同时给出充电。这样使驱动电流由小到大变化,驱动电压从低到高有一个缓慢渐变的过程。降低了di/dt尖冲,改善了EMI效果。
本申请实施例中,针对GaN器件的驱动要求,采用LDO运放钳位输出驱动电压上限的控制方法,确保输出驱动电压上线严格的钳位在6V左右。同时,采用检测输出驱动电压的大小2段驱动的方法,改善EMI效果。即能够满足GaN驱动要求,使输出驱动电压很好的维持在6V,避免输出电压波动对GaN造成损坏,又改善芯片EMI的效果。图5所示的驱动电路与图3所示的驱动电路相比较,本申请实施例具备EMI更小,且成本更低;图5所示的驱动电路与图4所示的驱动电路相比较,本申请实施例具备EMI更小,而且能够适用于反激结构。
其中,第一电源、第三电源均可以是AC/DC电源、DC/DC电源、稳压电源、通信电源、模块电源、变频电源、逆变电源、交流稳压电源、直流稳压电源等,本申请实施例对此不做限定。第一电源、第二电源可以为相同的电源或者不同的电源。
进一步地,通过GaN功率管输出给用电设备,用于实现对用电设备进行充电,用电设备可以理解为需要用户进行充电的设备,用户设备可以包括但不仅限于:智能手机、平板电脑、智能机器人、智能电梯、车载设备、可穿戴设备、智能家居设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminaldevice)等等。
具体实现中,如图8所示,其中,示出了Drive_P、DU1、DU2以及GATE信号的波形图,可以看到能够使驱动电流由小到大变化,驱动电压从低到高有一个缓慢渐变的过程。降低了di/dt尖冲,改善了EMI效果。
进一步的,上述驱动电路可以应用于控制芯片电路,该控制芯片电路可以包括以下至少 一种:AC-DC芯片控制电路、DC-DC芯片控制电路,在此不做限定,AC-DC芯片控制电路可以为反激AC-DC芯片控制电路或者非反激AC-DC芯片控制电路。
如此,具体实现中,采用两段驱动控制和LDO运放钳位输出驱动电压上限技术,既改善了EMI,又提高了芯片驱动电压的精确值,避免了因为输出电压值的波动而损坏GaN器件。例如,将该驱动用在反激ACDC控制芯片电路中,实现对GaN功率管的驱动。
再进一步的,上述驱动电路以及上述控制芯片电路均可以应用于电源适配器。
当然,本申请实施例还提供一种电子设备,该电子设备可以包括如图5所描述的驱动电路或者芯片控制电路或者电源适配器,例如,电子设备可以为充电宝或者充电器。
以上是本申请实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (11)

  1. 一种驱动电路,其特征在于,所述驱动电路包括:运放电路、比较器、第一NMOS管、第二NMOS管、第三NMOS管、第一PMOS管、第二PMOS管、第一驱动控制模块、第二驱动控制模块,其中,
    所述运放电路的同相输入端连接第一电源,所述运放电路的输出端连接所述第一NMOS管的第一端,所述第一NMOS管的第三端连接第二电源,所述第一MOS管的第二端连接第一电阻的一端,所述第一电阻的另一端连接所述运放电路的反相输入端以及通过第二电阻进行接地;
    所述比较器的同相输入端连接第三电源,所述比较器的输出端连接或门电路的第一输入端,所述或门电路的第二输入端用于接入驱动信号,所述驱动信号还被输入所述第一驱动控制模块的第一端;
    所述或门电路的输出端连接所述第二驱动控制模块的第一端,所述第二驱动控制模块的第二端连接第二PMOS管的第一端;所述第二PMOS管的第二端连接所述第一PMOS管的第二端以及所述第二NMOS端的第二端,所述第二PMOS管的第三端连接驱动端口,所述驱动端口用于驱动GaN功率管;所述第二NMOS管的第三端还连接第三电阻的一端,第三电阻的另一端连接第四电阻的一端以及所述比较器的反相输入端;
    所述第二NMOS管的第一端连接第五电阻的一端,所述第五电阻的另一端连接所述第一NMOS管的第一端以及通过第一电容进行接地;所述第二NMOS管的第三端连接所述第二电源;
    所述第一驱动控制模块的第二端连接所述第一PMOS管的第一端,所述第一驱动控制模块的第三端连接所述第三NMOS管的第一端以及所述第二驱动控制模块的第三端,所述第三NMOS管连接所述第二PMOS管的第三端,所述第三NMOS管的第二端接地。
  2. 根据权利要求1所述的驱动电路,其特征在于,所述运放电路、所述第一电阻、所述第二电阻、所述第一NMOS管用于形成LDO负反馈***;
    所述负反馈***用于通过所述第一电阻、所述第二电阻之间的比值,以及所述运放电路实现动态调节所述第一NMOS管的电流,以得到所述第一NMOS管的第二端的第一输出电压;
    当所述第一输出电压小于第一输出电压设计值时,所述运放电路的输出变高,通过所述第一NMOS管的电流增大,所述第一输出电压增加;
    反之,当所述第一输出电压大于或等于所述第一输出电压设计值时,所述运放电路的输出变低,通过所述第一NMOS管的电流减小,所述第一输出电压降低,实现动态调节所述第一NMOS管的第二端的第一输出电压。
  3. 根据权利要求2所述的驱动电路,其特征在于,所述第二NMOS管的第二端的第二输出电压与所述第一输出电压之间的差值的绝对值小于预设阈值。
  4. 根据权利要求3所述的驱动电路,其特征在于,所述第一输出电压由所述运放电路的同相输入端的输入电压、所述第一电阻和所述第二电阻确定。
  5. 根据权利要求3所述的驱动电路,其特征在于,所述第二输出电压由所述运放电路的同相输入端的输入电压、所述第一电阻和所述第二电阻确定。
  6. 根据权利要求1-3任一项所述的驱动电路,其特征在于,所述驱动信号用于通过所述第一驱动控制模块开启所述第一PMOS管,且关闭所述第三NMOS管,通过所述第三电阻和所述第四电阻分压,得到第三输出电压,将所述第三输出电压作为所述比较器的反相输入端的第一输入信号,将所述比较器的同相输入端的第二输入信号进行比较,得到驱动控制信号;将所述驱动控制信号与所述驱动信号通过或门电路,得到输出信号,通过该输出信号开启所述第二PMOS管,由所述第一PMOS管和所述第二PMOS管同时充电。
  7. 根据权利要求1-3任一项所述的驱动电路,其特征在于,所述第一驱动控制模块包括M个反相器、第四NMOS管、第五NMOS管、第三PMOS管和第四PMOS管,所述M为偶数;
    所述第一驱动控制模块的第一端通过所述M个反相器连接所述第一驱动控制模块的第二端以及所述第五NMOS管的第一端;所述第五NMOS管的第二端接地;
    所述第一驱动控制模块的第一端连接所述第四NMOS管的第一端,所述第四NMOS管的第二端接地,所述第四NMOS管的第三端连接第六电阻的一端,所述第六电阻的另一端连接所述第三PMOS管的第三端和第一端,所述第三PMOS管的第一端连接所述第四PMOS管的第一端;所述第四PMOS管的第三端连接第七电阻的一端,所述第七电阻的另一端连接所述第一驱动控制模块的第三端以及所述第五NMOS管的第三端;所述第三PMOS管的第二端和所述第四PMOS管的第二端均连接所述第二电源。
  8. 根据权利要求1-3任一项所述的驱动电路,其特征在于,所述第二驱动控制模块包括N个反相器、第六NMOS管、第七NMOS管、第五PMOS管和第六PMOS管,所述N为偶数;
    所述第二驱动控制模块的第一端通过所述N个反相器连接所述第二驱动控制模块的第二端以及所述第七NMOS管的第一端;所述第七NMOS管的第二端接地;
    所述第二驱动控制模块的第一端连接所述第六NMOS管的第一端,所述第六NMOS管的第二端接地,所述第六NMOS管的第三端连接第八电阻的一端,所述第八电阻的另一端连接所述第五PMOS管的第三端和第一端,所述第五PMOS管的第一端连接所述第六PMOS管的第一端;所述第六PMOS管的第三端连接第九电阻的一端,所述第九电阻的另一端连接所述第二驱动控制模块的第三端以及所述第七NMOS管的第三端;所述第五PMOS管的第二端和所述第六PMOS管的第二端均连接所述第二电源。
  9. 一种控制芯片电路,其特征在于,所述控制芯片电路包括如权利要求1-8任一项所描述的驱动电路。
  10. 一种电源适配器,其特征在于,所述电源适配器包括如权利要求1-8任一项所描述的驱动电路,或者,如权利要求9所描述的控制芯片电路。
  11. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-8任一项所描述的驱 动电路,或者,如权利要求9所描述的控制芯片电路,或者,如权利要求10所描述的电源适配器。
PCT/CN2022/115740 2021-10-22 2022-08-30 驱动电路、控制芯片电路、电源适配器及电子设备 WO2023065829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111230436.6 2021-10-22
CN202111230436.6A CN113676025B (zh) 2021-10-22 2021-10-22 驱动电路、控制芯片电路、电源适配器及电子设备

Publications (1)

Publication Number Publication Date
WO2023065829A1 true WO2023065829A1 (zh) 2023-04-27

Family

ID=78550852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115740 WO2023065829A1 (zh) 2021-10-22 2022-08-30 驱动电路、控制芯片电路、电源适配器及电子设备

Country Status (2)

Country Link
CN (2) CN113676025B (zh)
WO (1) WO2023065829A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113676025B (zh) * 2021-10-22 2022-02-08 深圳英集芯科技股份有限公司 驱动电路、控制芯片电路、电源适配器及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202856608U (zh) * 2012-05-24 2013-04-03 意法半导体研发(深圳)有限公司 用于功率驱动的电路
CN105871180A (zh) * 2016-04-08 2016-08-17 厦门大学 一种大电流cmos推挽驱动电路及其控制方法
CN110417243A (zh) * 2019-08-05 2019-11-05 上海航天电子通讯设备研究所 一种高压mosfet驱动电路
CN111224647A (zh) * 2020-03-13 2020-06-02 无锡硅动力微电子股份有限公司 高可靠的GaN功率管快速门极驱动电路
CN113676025A (zh) * 2021-10-22 2021-11-19 深圳英集芯科技股份有限公司 驱动电路、控制芯片电路、电源适配器及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5777537B2 (ja) * 2012-02-17 2015-09-09 三菱電機株式会社 パワーデバイス制御回路およびパワーデバイス回路
CN105453434A (zh) * 2013-04-17 2016-03-30 奥的斯电梯公司 采用氮化镓开关的驱动单元
US9571093B2 (en) * 2014-09-16 2017-02-14 Navitas Semiconductor, Inc. Half bridge driver circuits
CN111478562A (zh) * 2020-05-09 2020-07-31 上海坤振集成电路有限公司 一种功率开关管分段驱动电路及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202856608U (zh) * 2012-05-24 2013-04-03 意法半导体研发(深圳)有限公司 用于功率驱动的电路
CN105871180A (zh) * 2016-04-08 2016-08-17 厦门大学 一种大电流cmos推挽驱动电路及其控制方法
CN110417243A (zh) * 2019-08-05 2019-11-05 上海航天电子通讯设备研究所 一种高压mosfet驱动电路
CN111224647A (zh) * 2020-03-13 2020-06-02 无锡硅动力微电子股份有限公司 高可靠的GaN功率管快速门极驱动电路
CN113676025A (zh) * 2021-10-22 2021-11-19 深圳英集芯科技股份有限公司 驱动电路、控制芯片电路、电源适配器及电子设备

Also Published As

Publication number Publication date
CN113676025A (zh) 2021-11-19
CN116015022A (zh) 2023-04-25
CN113676025B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US9621044B2 (en) Zero voltage soft switching scheme for power converters
US6477065B2 (en) Resonant gate driver
KR101800602B1 (ko) 적층형 nmos dc―dc 전력 변환
US9100019B2 (en) Semiconductor driver circuit and power conversion device
Reusch et al. Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter
Umegami et al. A novel high-efficiency gate drive circuit for normally off-type GaN FET
Kinzer et al. Monolithic HV GaN power ICs: performance and application
Ji et al. High frequency high power density 3D integrated Gallium Nitride based point of load module
WO2014012518A1 (en) Switching power supply and chip for controlling the same
WO2023065829A1 (zh) 驱动电路、控制芯片电路、电源适配器及电子设备
WO2023065789A1 (zh) 驱动电路及相关产品
TWI425730B (zh) 具有完整漏源電壓鉗位元的功率開關裝置及限制耦合變壓器推拉式整流器之主開關場效應電晶體的最大漏源電壓的裝置及方法
US20240106371A1 (en) Systems and methods for decoupling capacitor for inverter for electric vehicle
US20170179825A1 (en) Switched mode power supply converter
CN114337304A (zh) 控制芯片及其内置mos管驱动速度控制方法
Umeda et al. Highly efficient low-voltage DC-DC converter at 2-5 MHz with high operating current using GaN gate injection transistors
CN111414033B (zh) 一种低压降稳压器和相关方法
US20230006538A1 (en) Transistor turn-off circuit
US11336191B1 (en) Power supply device with low loss
Ming et al. A GaN HEMT gate driver IC with programmable turn-on dV/dt control
CN115065217A (zh) 一种过零检测动态延迟补偿电路
Akagi et al. A silicon based multi-tens MHz gate driver IC for GaN power devices
Liu et al. Review of SiC MOSFET drive circuit
Nagai et al. A compact drive-by-microwave gate driver with coupler integrated in a package
Antonov et al. Dual 4-A High-Speed Low-Side Gate Driver IC for GaN and Si MOSFETs and IGBTs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE