WO2023065581A1 - 一种物理气相法制备超细粉体材料用的金属蒸气成核装置 - Google Patents

一种物理气相法制备超细粉体材料用的金属蒸气成核装置 Download PDF

Info

Publication number
WO2023065581A1
WO2023065581A1 PCT/CN2022/077817 CN2022077817W WO2023065581A1 WO 2023065581 A1 WO2023065581 A1 WO 2023065581A1 CN 2022077817 W CN2022077817 W CN 2022077817W WO 2023065581 A1 WO2023065581 A1 WO 2023065581A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleation
tubular
crucible
metal vapor
inner diameter
Prior art date
Application number
PCT/CN2022/077817
Other languages
English (en)
French (fr)
Inventor
赵登永
Original Assignee
江苏博迁新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏博迁新材料股份有限公司 filed Critical 江苏博迁新材料股份有限公司
Priority to JP2023600038U priority Critical patent/JP3244252U/ja
Publication of WO2023065581A1 publication Critical patent/WO2023065581A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material

Definitions

  • the utility model belongs to the technical field of ultrafine powder preparation, in particular to a metal vapor nucleation device for preparing ultrafine powder materials by a physical vapor phase method.
  • the raw materials need to be heated and vaporized at high temperature, and then the gaseous substance is converted into a liquid state and then solidified and formed.
  • the prepared ultra-fine powder particles are microscopic materials, mostly nano-scale, sub-micron or micron-scale powders, the formed particle size is small, the formation speed is very fast, the temperature is very high, and the technical principle of steam discharge and nucleation is simple. , but the practical application is very difficult.
  • the steam is discharged from the inner cavity of the crucible, it is very easy to condense into liquid or solid. The liquid is easy to flow out of the crucible, resulting in material loss, and the solid is easy to cause outlet blockage, which affects the continuous production.
  • the existing gas-phase method requires a nucleation process when preparing ultra-fine metal powder, due to the fast nucleation speed and the limitation of the equipment structure, it is difficult to control the nucleation process of the metal vapor alone, and sometimes the nucleation and growth, Solidification and cooling are concentrated in one structure at one time.
  • ultrafine particles can be prepared in the end, the obtained ultrafine particles are basically defective products with uneven size and chaotic shape, and even conjoined phenomena.
  • the utility model provides a metal vapor nucleation device for preparing ultrafine powder materials by a physical vapor phase method.
  • the tubular nucleation structure of the metal vapor nucleation device is connected to an evaporator and a particle forming structure.
  • the middle section can solve the situation that after the steam is discharged from the inner cavity of the crucible, it is very easy to condense into liquid or solid when it encounters condensation.
  • the liquid is easy to flow out of the crucible, resulting in material loss, and the solid is easy to cause outlet blockage, which affects the continuous production.
  • the internal structure of the metal vapor nucleation device is designed to control the successful completion of the metal vapor nucleation and provide a formed nucleus for the subsequent particle formation control.
  • a metal vapor nucleation device for preparing ultra-fine powder materials by a physical vapor phase method includes a tubular nucleation structure installed inside, and a crucible cover inside a high-temperature resistant evaporator connected to the tubular nucleation structure , the crucible installed under the crucible cover, and the particle forming structure directly communicated with the tubular nucleating structure, or the particle forming structure indirectly communicated with the tubular nucleating structure through the return structure or the recovery structure; the outer side of the tubular nucleating structure is arranged There is a cooling structure so that the temperature at the gas outlet of the tubular nucleation structure is lower than the temperature at the gas inlet; a heating device is arranged above the crucible.
  • tubular nucleation structure is in the shape of a circular tube with equal diameters or a tube with reduced diameters with a small inlet and a large outlet.
  • the ratio of the inner diameter of the lower opening of the crucible cover to the inner diameter of the upper opening of the crucible is 1:(0.5-2); the ratio of the inner diameter of the tubular nucleation structure to the inner diameter of the lower opening of the crucible cover is 1 :(1.5-6); the ratio of the inner diameter of the tubular nucleation structure to the inner diameter of the subsequent directly or indirectly connected particle forming structure is 1:(1-10).
  • the cooling structure includes an insulating material and a shell with a cooling jacket arranged sequentially outside the tubular nucleation structure, so as to control the temperature drop inside the tubular nucleation structure.
  • the housing with the cooling jacket is provided with a cooling liquid inlet and a cooling liquid outlet communicating with the cooling jacket.
  • the lower opening at the entrance of the tubular nucleation structure extends into the outer wall of the crucible lid.
  • This technical solution controls the cooling inside the tubular nucleation structure and controls the temperature range through the internal design of the structure of the metal vapor nucleation device, the shell structure with a cooling jacket and the heat preservation structure, so as to solve the problem of discharging the vapor out of the crucible.
  • the internal structure of the metal vapor nucleation device is designed to control the successful completion of the metal vapor nucleation and provide a formed nucleus for the subsequent particle formation control.
  • Fig. 1 is the schematic diagram of the metal vapor nucleation device of the present invention.
  • the utility model provides a metal vapor nucleation device for preparing ultrafine powder materials by physical vapor phase method, which includes a tubular nucleation structure 3 installed inside, and a high temperature resistant structure connected with the tubular nucleation structure 3
  • the shell 4 of the cooling jacket controls the degree of temperature drop through the cooperation of the heat insulating material 5 and the shell 4 with the cooling jacket.
  • a metal liquid 7 is placed in the crucible 1, and a heating device 6 is arranged above the metal liquid 7, and the heating device 6 is used for heating the metal liquid 7 to generate steam.
  • the lower opening 10 at the entrance of the tubular nucleation structure extends into the outer side wall of the crucible lid 2 .
  • the temperature at the center of the liquid surface of the metal liquid 7 inside the high temperature resistant evaporator is higher than 2000°C.
  • the temperature at the central axis of the middle section inside the tubular nucleation structure 3 is higher than 1200° C., and the temperature at the outlet of the tubular nucleation structure 3 is lower than the boiling point of the raw material.
  • the tubular nucleation structure 3 of the present utility model is the middle section connecting the evaporator and the particle forming structure.
  • the interior of the tubular nucleation structure 3 needs to ensure the smooth passage of metal vapor or steam, and its interior is also an important place for metal vapor nucleation.
  • the structure control, size control, installation method control and internal temperature control of the metal vapor nucleation device are all key technical points in the nucleation process of preparing ultrafine powder materials.
  • the inner diameter of the upper mouth of the crucible in the high temperature evaporator is 5cm, and the inner diameter of the lower mouth of the crucible cover is 10cm.
  • the tubular nucleation structure in the metal vapor nucleation device is straight, and the inner diameter of the straight pipe is 3.5cm.
  • the inner diameter of the particle forming control structure is It is 5cm.
  • the tubular nucleation structure and the metal vapor nucleation device A 5cm thick graphite felt insulation layer is set between the shells. After the nucleation process is completed, the particles directly enter the particle forming structure to complete growth and cooling, and then enter the gas-solid collection device for collection to obtain spherical nano-copper powder with an average particle size of 50nm.
  • the inner diameter of the upper opening of the crucible in the high temperature evaporator is 30 cm
  • the inner diameter of the lower opening of the crucible cover is 30 cm
  • the tubular nucleation structure in the metal vapor nucleation device is straight
  • the inner diameter of the straight pipe is 6 cm
  • the inner diameter of the particle forming control structure is 10cm.
  • the metal iron-nickel binary alloy placed in the crucible is heated to about 2700°C by a heating device, and the heating is continued until boiling to generate iron-nickel binary vapor.
  • a 36cm 3 /h inert gas is passed between the crucible and the crucible cover as a carrier gas, and the metal-iron-nickel binary vapor is quickly sent into the tubular nucleation structure inside the metal vapor nucleation device.
  • the tubular nucleation structure and the metal vapor A 9 cm thick ceramic felt insulation layer is arranged between the shells of the nucleating device. After the nucleation process is completed, the particles directly enter the particle forming structure to complete growth and cooling, and then enter the gas-solid collection device for collection to obtain spherical iron-nickel binary metal powder with an average particle size of 200nm.
  • the inner diameter of the upper opening of the crucible in the high temperature evaporator is 30cm, and the inner diameter of the lower opening of the crucible cover is 30cm.
  • the tubular nucleation structure in the metal vapor nucleation device is in the shape of a trumpet with a small entrance and a large exit.
  • the inner diameter of the entrance is 20cm, and the inner diameter of the outlet is is 30 cm, and the inner diameter of the particle-forming structure is 200 cm.
  • Heat the metal copper alloy placed in the crucible to about 2500°C by the heating device, and continue to heat until boiling to generate metal copper alloy vapor.
  • a 18cm 3 /h inert gas is passed between the crucible and the crucible cover as the carrier gas, and the metal copper alloy vapor is quickly sent into the trumpet tubular nucleation structure inside the metal vapor nucleation device, and the tubular nucleation structure forms with the metal vapor.
  • a 5cm thick ceramic felt insulation layer is set between the shells of the nuclear device.

Abstract

一种物理气相法制备超细粉体材料用的金属蒸气成核装置,包括内部安装的管状成核结构(3),与管状成核结构(3)连通的耐高温蒸发器内部的坩埚盖(2),安装在坩埚盖(2)下方的坩埚(1),以及与管状成核结构(3)直接连通的粒子成形结构(9);管状成核结构(3)的外侧设置有降温结构;坩埚上方设置有加热装置(6)。通过带冷却夹套的壳体(4)与保温材料(5),控制管状成核结构(3)内部的降温,并控制温度范围,同时设计金属蒸气成核装置的内部结构,控制金属蒸气成核顺利完成,为后续粒子成形控制提供成形的核。

Description

一种物理气相法制备超细粉体材料用的金属蒸气成核装置 技术领域
本实用新型属于超细粉制备技术领域,特别是指一种物理气相法制备超细粉体材料用的金属蒸气成核装置。
背景技术
在使用物理蒸发冷凝气相法制备超细粉粒子时,需将原材料先经过高温加热气化,再将气态物质转变为液态后固化成形。因为制备的超细粉粒子为微观材料,多为纳米级、亚微米级或微米级粉末,成形的粒子尺寸较小,形成速度非常快,温度非常高,蒸气排出与成核的技术原理虽然简单,但是实际运用却非常困难。在将蒸气排出坩埚内腔后,极易出现遇冷凝聚为液体或固体的情况,液体易流出坩埚外,导致物料损失,固体易造成出口堵塞,影响连续生产的持续进行。
现有气相法在制备超细金属粉时,虽然都需要成核过程,但因成核速度快,设备结构的限制会导致很难单独控制金属蒸气的成核过程,有时会将成核与生长、固化及冷却集中在一个结构中一次性的完成。虽然最终能制备出超细颗粒,但得到的超细颗粒基本上是大小不均、形态混乱的不良品,甚至出现联体现象。也有将成核、生长、固化及冷却分布在一个管道中的操作,但是这种操作并未对各个阶段进行特别控制,导致成核过程中伴有大量生长,生长阶段仍会发生成核,同时固化也伴随其中,最终的产品中将会出现大小不均匀现象,以及坩埚盖出口保温不良引起出口堵塞所导致的无法继续生产的问题。
发明内容
本实用新型针对背景技术中的问题,提供了一种物理气相法制备超细粉体材料用的金属蒸气成核装置,金属蒸气成核装置的管状成核结构为连接蒸发器和粒子成形结构的中间段,可解决在将蒸气排出坩埚的内腔后,极易出现遇冷凝聚为液体或固体的情况,液体易流出坩埚外,导致物料损失,固体易造成出口堵塞,影响连续生产的持续进行的问题。同时设计金 属蒸气成核装置的内部结构,控制金属蒸气成核顺利完成,为后续粒子成形控制提供成形的核。
为实现上述目的,本实用新型通过以下技术方案实现:
一种物理气相法制备超细粉体材料用的金属蒸气成核装置,所述金属蒸气成核装置包括内部安装的管状成核结构,与管状成核结构连通的耐高温蒸发器内部的坩埚盖,安装在坩埚盖下方的坩埚,以及与管状成核结构直接连通的粒子成形结构,或通过回流结构或回收结构与管状成核结构间接连通的粒子成形结构;所述管状成核结构的外侧设置有降温结构,以使得管状成核结构的出气口处的温度低于入气口处的温度;所述坩埚上方设置有加热装置。
进一步的,所述管状成核结构为等径圆管状或进口小出口大的变径管状。
进一步的,所述坩埚盖的安装下口内径与坩埚的安装上口内径的比值为1:(0.5-2);所述管状成核结构的内径与坩埚盖的安装下口内径的比值为1:(1.5-6);所述管状成核结构的内径与后续直接或间接连通的粒子成形结构的内径比值为1:(1-10)。
进一步的,所述降温结构包括依次设置在管状成核结构外侧的保温材料和带冷却夹套的壳体,以控制管状成核结构内部的温度下降。
进一步的,所述带冷却夹套的壳体上设置有与冷却夹套连通的冷却液进口和冷却液出口。
进一步的,所述管状成核结构的入口处的下口伸入坩埚盖的外侧壁。
本实用新型的有益效果是:
本技术方案通过对金属蒸气成核装置的结构内部的设计,通过带冷却夹套的壳体结构与保温结构,控制管状成核结构内部的降温,并控制温度范围,以解决在将蒸气排出坩埚的内腔后,极易出现遇冷凝聚为液体或固体的情况,液体易流出坩埚外,导致物料损失,固体易造成出口堵塞,影响连续生产的持续进行的问题。同时设计金属蒸气成核装置的内部结构,控制金属蒸气成核顺利完成,为后续粒子成形控制提供成形的核。
附图说明
图1为本实用新型的金属蒸气成核装置的示意图。
图中:1、坩埚,2、坩埚盖,3、管状成核结构,4、带冷却夹套的壳体,5、保温材料,6、加热装置,7、金属液体,8、耐高温蒸发器壳体,9、粒子成形结构,10、管状成核结构的入口处的下口。
具体实施方式
结合附图和实施例对本实用新型做进一步描述,虽然进行清楚完整地描述,显然所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属本实用新型保护的范围。
如图1所示,本实用新型提供了一种物理气相法制备超细粉体材料用的金属蒸气成核装置,包括内部安装的管状成核结构3,与管状成核结构3连通的耐高温蒸发器壳体8内部的坩埚盖2,安装在坩埚盖2下方的坩埚1,以及与管状成核结构3直接连通的粒子成形结构9;管状成核结构3的外侧设置有保温材料5和带冷却夹套的壳体4,通过保温材料5和带冷却夹套的壳体4的配合控制降温程度。坩埚1内放有金属液体7,金属液体7的上方设置有加热装置6,加热装置6用于对金属液体7加热以产生蒸气。管状成核结构的入口处的下口10伸入坩埚盖2的外侧壁。
耐高温蒸发器内部的金属液体7的液面中心位置温度高于2000℃。管状成核结构3内部的中段的中心轴处的温度高于1200℃,管状成核结构3出口处的温度低于原材料的沸点。
本实用新型的管状成核结构3为连接蒸发器和粒子成形结构的中间段,管状成核结构3的内部需保证金属蒸气或蒸汽顺利通过,同时其内部也是金属蒸气成核的重要场所,对于金属蒸气成核装置的结构控制、尺寸的控制及安装方法的控制和内部温度的控制均是制备超细粉体材料成核过程的关键技术点。
实施例1
耐高温蒸发器内的坩埚上口内径为5cm,坩埚盖下口内径为10cm,金 属蒸气成核装置内的管状成核结构呈直管状,直管的内径为3.5cm,粒子成形控制结构的内径为5cm。通过加热装置将坩埚内放置的金属铜加热至2500℃左右,继续加热至沸腾,以产生铜蒸气。在坩埚与坩埚盖之间通入3cm 3/h的惰性气体作为载流气,将金属铜蒸气迅速送入金属蒸气成核装置内部的管状成核结构内,管状成核结构与金属蒸气成核装置的壳体之间设置5cm厚的石墨毡保温层。成核过程完成后,微粒直接进入粒子成形结构完成生长与冷却,再进入气固收集装置中进行收集,得到平均粒径为50nm的圆球形纳米铜粉。
实施例2
耐高温蒸发器内的坩埚上口内径为30cm,坩埚盖下口内径为30cm,金属蒸气成核装置内的管状成核结构呈直管状,直管的内径为6cm,粒子成形控制结构的内径为10cm。通过加热装置将坩埚内放置的金属铁镍二元合金加热至2700℃左右,继续加热至沸腾,以产生铁镍二元蒸气。在坩埚与坩埚盖之间通入36cm 3/h的惰性气体作为载流气,将金属铁镍二元蒸气迅速送入金属蒸气成核装置内部的管状成核结构内,管状成核结构与金属蒸气成核装置的壳体之间设置9cm厚的陶瓷毡保温层。成核过程完成后,微粒直接进入粒子成形结构完成生长与冷却,再进入气固收集装置中进行收集,得到平均粒径为200nm的圆球形铁镍二元金属粉。
实施例3
耐高温蒸发器内的坩埚上口内径为30cm,坩埚盖下口内径为30cm,金属蒸气成核装置内的管状成核结构呈入口小出口大的喇叭管状,入口的内径为20cm,出口的内径为30cm,粒子成形结构的内径为200cm。通过加热装置将坩埚内放置的金属铜合金加热至2500℃左右,继续加热至沸腾,产生金属铜合金蒸气。在坩埚与坩埚盖之间通入18cm 3/h的惰性气体作为载流气,将金属铜合金蒸气迅速送入金属蒸气成核装置内部的喇叭管状成核结构内,管状成核结构与金属蒸气成核装置的壳体之间设置5cm厚的陶瓷毡保温层。成核过程完成后,微粒直接进入粒子成形结构完成生长与冷却,再进入气固收集装置中进行收集,得到平均粒径为700nm的圆球形金属铜合金粉。

Claims (6)

  1. 一种物理气相法制备超细粉体材料用的金属蒸气成核装置,其特征在于:所述金属蒸气成核装置包括内部安装的管状成核结构,与管状成核结构连通的耐高温蒸发器内部的坩埚盖,安装在坩埚盖下方的坩埚,以及与管状成核结构直接连通的粒子成形结构,或通过回流结构或回收结构与管状成核结构间接连通的粒子成形结构;所述管状成核结构的外侧设置有降温结构,以使得管状成核结构的出气口处的温度低于入气口处的温度;所述坩埚上方设置有加热装置。
  2. 根据权利要求1所述的物理气相法制备超细粉体材料用的金属蒸气成核装置,其特征在于:所述坩埚盖的安装下口内径与坩埚的安装上口内径的比值为1:(0.5-2);所述管状成核结构的内径与坩埚盖的安装下口内径的比值为1:(1.5-6);所述管状成核结构的内径与粒子成形结构的内径比值为1:(1-10)。
  3. 如权利要求1或2所述的物理气相法制备超细粉体材料用的金属蒸气成核装置,其特征在于:所述管状成核结构为等径圆管状或进口小出口大的变径管状。
  4. 如权利要求1至3中任一项所述的物理气相法制备超细粉体材料用的金属蒸气成核装置,其特征在于:所述降温结构包括依次设置在管状成核结构外侧的保温材料和带冷却夹套的壳体,以控制管状成核结构内部的温度下降。
  5. 如权利要求1至4中任一项所述的物理气相法制备超细粉体材料用的金属蒸气成核装置,其特征在于:所述带冷却夹套的壳体上设置有与冷却夹套连通的冷却液进口和冷却液出口。
  6. 如权利要求1至5中任一项所述的物理气相法制备超细粉体材料用的金属蒸气成核装置,其特征在于:所述管状成核结构的入口处的下口伸入坩埚盖的外侧壁。
PCT/CN2022/077817 2021-10-19 2022-02-25 一种物理气相法制备超细粉体材料用的金属蒸气成核装置 WO2023065581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023600038U JP3244252U (ja) 2021-10-19 2022-02-25 物理的気相法により超微粉体材料を製造するための金属蒸気核生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122514416.3 2021-10-19
CN202122514416.3U CN216421070U (zh) 2021-10-19 2021-10-19 一种物理气相法制备超细粉体材料用的金属蒸气成核装置

Publications (1)

Publication Number Publication Date
WO2023065581A1 true WO2023065581A1 (zh) 2023-04-27

Family

ID=81331933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077817 WO2023065581A1 (zh) 2021-10-19 2022-02-25 一种物理气相法制备超细粉体材料用的金属蒸气成核装置

Country Status (4)

Country Link
JP (1) JP3244252U (zh)
CN (1) CN216421070U (zh)
TW (1) TWM632164U (zh)
WO (1) WO2023065581A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351286B (zh) * 2022-08-08 2023-07-14 杭州新川新材料有限公司 一种金属粉末生产用高温蒸发炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379419B1 (en) * 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
JP2013112893A (ja) * 2011-12-01 2013-06-10 Shoei Chem Ind Co 金属粉末製造用プラズマ装置
US20140319712A1 (en) * 2011-12-06 2014-10-30 Shoei Chemicals Inc. Plasma device for production of metal powder
US20160271700A1 (en) * 2014-06-20 2016-09-22 Shoei Chemical Inc. Carbon-coated-metal powder, electroconductive paste containing carbon-coated-metal powder, layered electronic component in which said paste is used, and method for manufacturing carbon-coated-metal powder
CN107030292A (zh) * 2017-05-03 2017-08-11 江苏天楹环保能源成套设备有限公司 一种多级冷却制备金属粉末的等离子体雾化装置
CN207119805U (zh) * 2017-05-03 2018-03-20 江苏天楹环保能源成套设备有限公司 一种多级冷却制备金属粉末的等离子体雾化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379419B1 (en) * 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
JP2013112893A (ja) * 2011-12-01 2013-06-10 Shoei Chem Ind Co 金属粉末製造用プラズマ装置
US20140319712A1 (en) * 2011-12-06 2014-10-30 Shoei Chemicals Inc. Plasma device for production of metal powder
US20160271700A1 (en) * 2014-06-20 2016-09-22 Shoei Chemical Inc. Carbon-coated-metal powder, electroconductive paste containing carbon-coated-metal powder, layered electronic component in which said paste is used, and method for manufacturing carbon-coated-metal powder
CN107030292A (zh) * 2017-05-03 2017-08-11 江苏天楹环保能源成套设备有限公司 一种多级冷却制备金属粉末的等离子体雾化装置
CN207119805U (zh) * 2017-05-03 2018-03-20 江苏天楹环保能源成套设备有限公司 一种多级冷却制备金属粉末的等离子体雾化装置

Also Published As

Publication number Publication date
CN216421070U (zh) 2022-05-03
JP3244252U (ja) 2023-10-23
TWM632164U (zh) 2022-09-21

Similar Documents

Publication Publication Date Title
CN104722764B (zh) 循环冷却的金属粉体蒸发制取装置
WO2023065581A1 (zh) 一种物理气相法制备超细粉体材料用的金属蒸气成核装置
CN106735279B (zh) 循环冷却连续量产高纯纳米级金属粒子的装置
CN101618458B (zh) 一种亚微米锌粉的制备方法及其制备装置
CN106623957B (zh) 连续量产超细纳米级金属粒子的纳米粒子生长器
CN106270500A (zh) 一种碳纳米管表面均匀包覆金属银的方法及装置
TWI813105B (zh) 脈衝式金屬粉製備冷凝方法
CN109719303A (zh) 一种软磁材料用的亚微米级铁镍合金粉生产方法
CN107983965A (zh) 高温等离子气雾化超细球形金属粉末制备方法及装备
CN108714697A (zh) 一种用于制备金属粉末的气雾化喷嘴
CN112891967A (zh) 一种超微粉粒子聚集冷却管式结构及超微粉粒子成形方法
CN111521038A (zh) 一种用于超临界水热合成纳米粉体的螺旋缠绕式急冷器
WO2023082494A1 (zh) 一种导电材料超细粉体制备装置
CN107309433A (zh) 一种亚微米及纳米金属粉体的生产设备
CN107186209A (zh) 用于高温金属粉体球化的高频等离子加热器
WO2024040946A1 (zh) 一种制备高纯球形镁和/或高纯镁粉的设备及方法
WO2022156224A1 (zh) 一种超微粉粒子聚集冷却罐式结构及超微粉粒子成形方法
CN204035571U (zh) 一种制备金属钼球形微粉或超微粉的装置
CN112742305A (zh) 一种用于控制超微粉粒子成型的控制器
CN214810629U (zh) 一种用于控制超微粉粒子成型的控制器
CN206145974U (zh) 一种雾化制粉设备的气体加热装置
Okuyama et al. Preparation of micro controlled particles using aerosol process technology
KR0136588B1 (ko) 초미 분말의 제조장치
TWI820578B (zh) 超微粉粒子聚集冷卻管式結構及超微粉粒子成形方法
US20090008842A1 (en) Method and apparatus for producing metallic ultrafine particles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023600038

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882206

Country of ref document: EP

Kind code of ref document: A1