WO2023063452A1 - 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법 - Google Patents

불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2023063452A1
WO2023063452A1 PCT/KR2021/014315 KR2021014315W WO2023063452A1 WO 2023063452 A1 WO2023063452 A1 WO 2023063452A1 KR 2021014315 W KR2021014315 W KR 2021014315W WO 2023063452 A1 WO2023063452 A1 WO 2023063452A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
inorganic core
halo
sandwich panels
Prior art date
Application number
PCT/KR2021/014315
Other languages
English (en)
French (fr)
Inventor
김용학
김정도
유영길
Original Assignee
주식회사 웰스톤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 웰스톤 filed Critical 주식회사 웰스톤
Publication of WO2023063452A1 publication Critical patent/WO2023063452A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/146Silica fume
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/10Acids or salts thereof containing carbon in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/942Building elements specially adapted therefor slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • composition of an inorganic core material for a sandwich panel having excellent incombustibility and light weight and a manufacturing method thereof.
  • Sandwich panels are widely used as a main material for prefabricated buildings, and are manufactured by bonding or foaming a core material between steel plates.
  • polyurethane foam and Styrofoam are mainly used as core materials, but organic core materials are sometimes used in consideration of aspects such as workability, insulation, and economic feasibility.
  • organic core materials are sometimes used in consideration of aspects such as workability, insulation, and economic feasibility.
  • an organic core material there is a problem in that a large amount of toxic gas is generated during combustion or fire, resulting in human casualties.
  • it is difficult to extinguish the fire in the early stages due to its high flammability it is highly likely to develop into a large fire, and its use is restricted in policy.
  • the inorganic core composition for a sandwich panel having excellent incombustibility and light weight contains 100 parts by weight of a binder composed of 40 to 90% by weight of fluidized bed boiler fly ash and 10 to 60% by weight of Portland cement, and 55 to 55 to 50% of mixing water. 85 parts by weight, 0.05 to 8 parts by weight of silica fume as an outer halo, 0.05 to 2 parts by weight of a fluidizing agent as an outer halo, 0.05 to 1 part by weight of a fiber, and 0.05 to 0.9 parts by weight of a foaming agent as an outer halo.
  • the inorganic core composition for sandwich panels having excellent incombustibility and light weight is a binder composed of 0.1 to 40% by weight of calcium carbonate, 40 to 80% by weight of fluidized bed boiler fly ash, and 5 to 50% by weight of Portland cement. 100 parts by weight, 55 to 85 parts by weight of mixing water, 0.05 to 8 parts by weight of silica fume as an outer halo, 0.05 to 2 parts by weight of a fluidizing agent as an outer halo, 0.05 to 1 part by weight of a fiber, and 0.05 to 0.9 parts by weight of a foaming agent as an outer halo.
  • a method for manufacturing an inorganic core material for a sandwich panel having excellent incombustibility and light weight includes (a) mixing raw materials to form a slurry, (b) charging the slurry into a mold, followed by foaming and condensation (c) primary curing of the foamed and condensed slurry, (d) secondary curing after demolding and cutting the semi-cured body after the primary curing has been completed, and (e) secondary curing and drying the cured product after curing is completed.
  • the inorganic core composition for a sandwich panel having excellent incombustibility and light weight and a method for manufacturing the same are not only environmentally friendly but also nonflammable and lightweight by replacing a part of Portland cement with calcium carbonate and fluidized bed boiler fly ash. It has very excellent effects on physical properties such as heat resistance, heat insulation and sound absorption.
  • FIG. 1 is a process chart for explaining a method for manufacturing an inorganic core material for a sandwich panel having excellent incombustibility and light weight according to another embodiment of the disclosure disclosed herein.
  • the inorganic core composition for sandwich panels having excellent incombustibility and light weight disclosed herein replaces a portion of Portland cement with calcium carbonate and fluidized bed boiler fly ash, unlike the conventional method in which only Portland cement is used as a binder. Therefore, it is not only environmentally friendly, but also has very excellent physical properties such as incombustibility, light weight, heat insulation and sound absorption.
  • the inorganic core material composition for a sandwich panel having excellent incombustibility and light weight may include a binder, mixing water, silica fume as an outer shell, a fluidizing agent as an outer shell, fibers, and a foaming agent as an outer shell.
  • the binder may consist of 40 to 90% by weight of fluidized bed boiler fly ash and 10 to 60% by weight of Portland cement, or 0.1 to 40% by weight of calcium carbonate, 40 to 80% by weight of fluidized bed boiler fly ash and 5 to 50% by weight of Portland cement. there is.
  • Fluidized bed boiler fly ash is a by-product generated in the boiler and can be added as an admixture for Portland cement, and the specific surface area measured by the brain fineness tester may be 5,000 to 7,000 cm 2 /g.
  • the fly ash of a fluidized bed boiler is composed of CaO and CaSO 4 , unlike the fly ash generated in a thermal power plant containing a large amount of SiO 2 , specifically CaSO 4 44.2%, CaO 36.5%, SiO2 7.6% and CaCO 3 may consist of 11.6%.
  • the fluidized bed boiler fly ash may be included in 40 to 90% by weight based on the total weight of the binder, and when calcium carbonate is included, it may be included in 40 to 80% by weight. If the fluidized bed boiler fly ash is less than 40% by weight, the effect of increasing the compressive strength may be insignificant, and if it exceeds 90% by weight, there is a risk of rapid heating and cracking or volume expansion increase.
  • Portland cement is a typical hydraulic cement.
  • Portland type 1 cement can be used, and its main components include silica, aluminum, iron oxide, and lime.
  • Such Portland cement may be included in 10 to 60% by weight based on the total weight% of the binder, and when calcium carbonate is included, it may be included in 5 to 50% by weight. If the Portland cement is less than 5% by weight, strength or durability may be reduced, and if it exceeds 60% by weight, strength or durability is improved but drying shrinkage may occur, which is not preferable.
  • Calcium carbonate (CaCO 3 ) is a well-known type of natural calcium carbonate, ground calcium carbonate (GCC) obtained by simple crushing of limestone, calcite, marble, etc., and precipitated carbonic acid produced according to a well-known precipitation/production process At least one selected from calcium (Precipitated Calcium Carbonate, PCC) and mineral materials may be used.
  • GCC ground calcium carbonate
  • PCC Precipitated Calcium Carbonate
  • the direct reaction between carbon dioxide (CO 2 ) and calcium oxide (CaO) or industrial by-products discharged from power plants, waste incineration facilities, and sewage slurry treatment facilities, specifically Carbon dioxide (CO 2 ) captured through the mineral carbonation reaction can be further used.
  • the industrial by-products may be steelmaking slag, waste concrete powder, or domestic waste incineration ash containing a large amount of calcium oxide (CaO), and may be used by adding acids and ammonium salts as solvents for the purpose of pH control, but are not limited thereto.
  • Mixing water usually uses water, and this mixing water may be included in 55 to 85 parts by weight based on 100 parts by weight of the binder, which is preferable because it may adversely affect workability when it is out of the above-mentioned range.
  • Silica fume is a micro-silica particle obtained by collecting and filtering amorphous SiO 2 contained in waste gas generated when manufacturing silicon (Si), ferrosilicon (FeSi), silicon alloy, etc. with a dust collector, and has high strength and durability. It is known as an essential component for manufacturing products that require this product, and serves as a high-strength mixture for fillers, grout materials, and fast-setting cement systems.
  • the concrete structure is densified according to the micro filler effect in which calcium silicate (CSH) hydrate (gel) is generated by causing a pozzolanic reaction between silica fume and Ca(OH) 2 as an external halogen, increasing long-term strength and improving durability.
  • CSH calcium silicate
  • Ca(OH) 2 Ca(OH) 2
  • Silica fume may be included in an amount of 0.05 to 8 parts by weight based on 100 parts by weight of the binder. If the amount of silica fume is less than 0.05 parts by weight, it may be difficult to develop high compressive strength, and if it exceeds 8 parts by weight, curing is fast. It may occur and the physical properties and durability may deteriorate.
  • the outer halo fluidizing agent is a material added for the distribution of materials in the slurry and the ease of mixing, and polycarboxylate may be used.
  • the outer half fluidizing agent may be included in an amount of 0.05 to 2 parts by weight based on 100 parts by weight of the binder. If the outer half fluidizing agent is less than 0.05 parts by weight, a problem of lack of fluidity due to the polymer component of calcium carbonate may occur, as well as agitation workability. The securing of and strength compensation function may be insignificant, and if it exceeds 2 parts by weight, the effect of using more than necessary may not be so great. Therefore, it is preferable to satisfy the above-mentioned range so as to prevent the problem of lack of fluidity due to the polymer component of calcium carbonate, to secure stirring workability and to double the function of strength compensation.
  • the fiber is a material added to improve durability, and one or more selected from glass fiber, carbon fiber, aramid fiber, and polyester fiber may be used.
  • These fibers may be included in 0.05 to 1 part by weight based on 100 parts by weight of the binder. If the fiber is less than 0.05 part by weight, the durability improvement effect may be insignificant, and if it exceeds 1 part by weight, formability may be poor.
  • the outer halo foaming agent is a material added to improve the lightness and heat insulation of the cured product, and aluminum powder, which is generally used in terms of foam stability and foaming performance, can be used.
  • Such an externally divided foaming agent may be included in 0.05 to 0.9 parts by weight based on 100 parts by weight of the binder. If the externally divided foaming agent is less than 0.05 parts by weight, the effect of reducing surface tension may be insignificant, and if it exceeds 0.9 parts by weight, use more than necessary. The effect of this may not be very large.
  • FIG. 1 is a process chart for explaining a method for manufacturing an inorganic core material for a sandwich panel having excellent incombustibility and light weight disclosed herein.
  • a method for manufacturing a biodegradable sheet according to this embodiment will be described with reference to this.
  • raw materials are mixed to form a slurry (S10).
  • a binder composed of 40 to 90% by weight of fluidized bed boiler fly ash and 10 to 60% by weight of Portland cement, 55 to 85 parts by weight of mixing water, 0.05 to 8 parts by weight of silica fume as an outer halo, 0.05 to 2 parts by weight of a fluidizing agent as an outer halo
  • 0.05 to 1 part by weight of fiber and 0.05 to 0.9 parts by weight of a foaming agent are mixed to form a slurry, or 0.1 to 40% by weight of calcium carbonate, 40 to 80% by weight of fluidized bed boiler fly ash, and 5 to 50% by weight of Portland cement.
  • binder 100 parts by weight of binder, 55 to 85 parts by weight of mixing water, 0.05 to 8 parts by weight of silica fume, 0.05 to 2 parts by weight of fluidizer as outer half, 0.05 to 1 part by weight of fiber, and 0.05 to 0.9 parts by weight of foaming agent as outer half Mixed slurry get angry Since the specific components of the raw materials and the reasons for limiting the component ratios have been described in detail above, they will be omitted.
  • the slurry is loaded into a mold and then foamed and solidified (S20).
  • step S10 After loading the slurry prepared in step S10 into a mold, the volume is increased by a foaming reaction, and condensation is allowed to proceed by a hydration reaction for 1 to 3 hours, preferably 2 hours at room temperature of 20 to 25 ° C. .
  • time is less than 1 hour, it is difficult to complete the hydration action of the binder and water, and if it exceeds 3 hours, work efficiency may be reduced due to an increase in time more than necessary.
  • the slurry, which is foamed and condensed in step S20, may be cured first for 5 to 7 hours at a temperature of 60 to 70 ° C.
  • the secondary curing may be performed at a temperature of 60 to 70 ° C. for 5 to 7 hours.
  • step S40 the cured body, after which the secondary curing has been completed, is cooled to room temperature of 20 to 25° C., and then dried using a dryer until the cured body is completely dried.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

개시된 내용은, 포틀랜드 시멘트의 일부를 탄산칼슘과 유동층상 보일러 비산재로 대체함으로써 환경친화적일 뿐만 아니라 불연성, 경량성, 단열성 및 흡음성과 같은 물성이 매우 우수한 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법에 관한 것이다. 이러한 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법은 (a) 원료를 혼합하여 슬러리화하는 단계, (b) 상기 슬러리를 몰드에 장입한 후 발포 및 응결하는 단계, (c) 상기 발포 및 응결된 슬러리를 1차 양생하는 단계, (d) 상기 1차 양생이 완료된 반경화체를 몰드로부터 탈형 및 컷팅한 후 2차 양생하는 단계, 및 (e) 상기 2차 양생이 완료된 경화체를 감온한 후 건조하는 단계를 포함한다.

Description

불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법
본 명세서에 개시된 내용은 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 조성물 및 그 제조방법에 관한 것이다.
본 명세서에서 달리 표시하지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.
샌드위치 판넬은 조립식 건축물의 주요자재로 널리 사용되고 있으며, 강판과 강판 사이에 심재를 넣어 접착 또는 발포시킴으로써 제조된다. 이때 심재로는 폴리우레탄폼과 스티로폼을 주로 사용하나 시공성, 단열성 및 경제성과 같은 측면을 고려하여 유기질 심재를 사용하기도 한다. 그러나 유기질 심재를 사용하는 경우 연소 또는 화재 발생 시 유독가스가 다량 발생함으로써 인명피해가 발생되는 문제점이 있다. 또한, 가연성이 높아 화재 초기진압이 어려우므로 대형 화재로 발전될 가능성이 높아 그 사용을 정책적으로 제한하고 있는 추세이다.
따라서, 기존 샌드위치 판넬용 심재의 취약점을 해결하고자 해당제품의 제조사들은 불연성이 우수한 초경량 무기심재에 대한 연구 및 개발에 매진하고 있다.
불연성이 뛰어날 뿐만 아니라 단열성, 경량성 및 흡음성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법을 제공하고자 한다.
또한 상술한 바와 같은 기술적 과제들로 한정되지 않으며, 이하의 설명으로부터 또 다른 기술적 과제가 도출될 수도 있음은 자명하다.
개시된 내용의 일 실시예에 의하면, 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물은 유동층상 보일러 비산재 40~90중량% 및 포틀랜드 시멘트 10~60중량%로 이루어진 결합재 100중량부, 혼합수 55~85중량부, 외할로 실리카흄 0.05~8중량부, 외할로 유동화제 0.05~2중량부, 섬유 0.05~1중량부 및 외할로 기포제 0.05~0.9중량부를 포함한다.
개시된 내용의 다른 실시예에 의하면, 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물은 탄산칼슘 0.1~40중량%, 유동층상 보일러 비산재 40~80중량% 및 포틀랜드 시멘트 5~50중량%로 이루어진 결합재 100중량부, 혼합수 55~85중량부, 외할로 실리카흄 0.05~8중량부, 외할로 유동화제 0.05~2중량부, 섬유 0.05~1중량부 및 외할로 기포제 0.05~0.9중량부를 포함한다.
개시된 내용의 다른 실시예에 의하면, 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법은 (a) 원료를 혼합하여 슬러리화하는 단계, (b) 상기 슬러리를 몰드에 장입한 후 발포 및 응결하는 단계, (c) 상기 발포 및 응결된 슬러리를 1차 양생하는 단계, (d) 상기 1차 양생이 완료된 반경화체를 몰드로부터 탈형 및 컷팅한 후 2차 양생하는 단계 및 (e) 상기 2차 양생이 완료된 경화체를 감온한 후 건조하는 단계를 포함한다.
본 명세서에 개시된 일 실시예에 따르면, 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법은 포틀랜드 시멘트의 일부를 탄산칼슘과 유동층상 보일러 비산재로 대체함으로써 환경친화적일 뿐만 아니라 불연성, 경량성, 단열성 및 흡음성과 같은 물성이 매우 우수한 효과가 있다.
또한, 고부가가치를 창출할 수 있는 효과가 있다.
도 1은 본 명세서에 개시된 내용의 다른 실시예에 따른 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법을 설명하기 위한 공정도이다.
도 2 내지 도 6은 실시예 1 또는 실시예 2에 따른 무기심재를 나타낸 사진이다.
이하, 첨부된 도면을 참조하여 개시된 내용의 바람직한 실시예의 구성 및 작용 효과에 대하여 살펴본다. 참고로, 이하 도면에서, 각 구성요소는 편의 및 명확성을 위하여 생략되거나 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 반영하는 것은 아니다. 또한 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭하며 개별 도면에서 동일 구성에 대한 도면 부호는 생략하기로 한다.
본 명세서에 개시된 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물은 결합재로 포틀랜드 시멘트만을 사용하던 종래와는 달리 포틀랜드 시멘트의 일부를 탄산칼슘과 유동층상 보일러 비산재로 대체하였다. 따라서, 환경친화적일 뿐만 아니라 불연성, 경량성, 단열성 및 흡음성과 같은 물성이 매우 우수하다.
본 실시예에 따른 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물은 결합재, 혼합수, 외할로 실리카흄, 외할로 유동화제, 섬유 및 외할로 기포제를 포함할 수 있다.
결합재는 유동층상 보일러 비산재 40~90중량% 및 포틀랜드 시멘트 10~60중량%로 이루어지거나 탄산칼슘 0.1~40중량%, 유동층상 보일러 비산재 40~80중량% 및 포틀랜드 시멘트 5~50중량%로 이루어질 수 있다.
유동층상 보일러 비산재는 보일러에서 발생하는 부산물로 포틀랜드 시멘트의 혼화제 용도로 첨가될 수 있으며, 브레인 분말도 시험기에 의해 측정된 비표면적은 5,000~7,000cm2/g일 수 있다. 예컨대, 유동층상 보일러 비산재는 SiO2 성분이 다량으로 함유되어 있는 화력발전소에서 발생하는 비산재와는 달리 CaO와 CaSO4로 구성되며, 구체적으로는 CaSO4 44.2%, CaO 36.5%, SiO2 7.6% 및 CaCO3 11.6%로 구성될 수 있다.
이러한 유동층상 보일러 비산재는 결합재 전체 중량%에 대하여, 40~90중량% 로 포함될 수 있는데, 탄산칼슘이 포함되는 경우에는 40~80중량%로 포함될 수 있다. 유동층상 보일러 비산재가 40중량% 미만이면, 압축강도 증가 효과가 미미할 수 있고, 90중량%를 초과하면, 급열과 균열발생 또는 부피팽창 증대 우려가 있다.
포틀랜드 시멘트는 대표적인 수경성 시멘트로, 본 실시예에서는 포틀랜드 1종 시멘트를 사용할 수 있으며 주성분은 실리카, 알루미늄, 산화철 및 석회 등을 포함하고 있다.
이러한 포틀랜드 시멘트는 결합재 전체 중량%에 대하여, 10~60중량%로 포함될 수 있는데, 탄산칼슘이 포함되는 경우에는 5~50중량%로 포함될 수 있다. 포틀랜드 시멘트가 5중량% 미만이면, 강도 또는 내구성이 저하될 수 있고, 60중량%를 초과하면, 강도 또는 내구성은 개선되나 건조수축이 발생될 수 있으므로 바람직하지 못하다.
탄산칼슘(CaCO3)은 널리 알려진 형태의 천연 탄산칼슘, 석회석, 방해석, 대리석 등을 단순 분쇄가공 하여 얻어진 중질탄산칼슘(Ground Calcium Carbonate, GCC), 널리 알려진 침전/제조 공정에 따라 제조된 침강성 탄산칼슘(Precipitated Calcium Carbonate, PCC) 및 광물재료 중에서 선택되는 하나 이상을 사용할 수 있다.
또한, 상기 언급한 탄산칼슘, 중질탄산칼슘 및 침강성 탄산칼슘 외에도 발전소, 폐기물 소각시설, 하수 슬러리 처리시설로부터 배출되는 이산화탄소(CO2)와 산화칼슘(CaO) 또는 산업부산물의 직접 반응, 구체적으로는 광물탄산화 반응을 통해 포집된 이산화탄소(CO2) 포집물을 더 사용할 수 있다. 상기 산업부산물은 산화칼슘(CaO)을 다량으로 포함하고 있는 제강슬래그, 폐콘크리트 미분 또는 생활 폐기물 소각재일 수 있으며, pH조절을 목적으로 산과 암모늄염을 용제로 추가하여 사용할 수 있으나 이에 제한되는 것은 아니다.
혼합수(w/b)는 보통 물을 사용하며, 이러한 혼합수는 결합재 100중량부에 대하여, 55~85중량부로 포함될 수 있는데, 이는 상기 언급한 범위를 벗어나는 경우 워커빌리티에 악영향을 미칠 수 있으므로 바람직하지 못하다.
외할로 실리카흄(Silica fume)은 실리콘(Si), 페로실리콘(FeSi), 실리콘 합금 등을 제조할 때에 발생되는 폐가스 중에 포함되어 있는 비결정질 SiO2를 집진기로 수집 여과하여 얻어지는 마이크로 실리카 입자로서 고강도 및 내구성이 요구되는 제품 제조에 필수적인 성분으로 알려져 있으며, 채움재, 그라우트재, 속경성 시멘트계 등 고강도 혼합제 역할을 한다. 한편, 외할로 실리카흄과 Ca(OH)2간에 포졸란 반응을 일으켜 칼슘실리케이트(C-S-H) 수화물(gel)이 생성되는 마이크로 필러 효과에 따라 콘크리트 조직이 치밀화되고 장기강도 상승 및 내구성 향상 등의 효과가 있으며, 콘크리트 재료분리 저항성 증대에 있어 상당히 효과적이기는 하나 고가이기 때문에 경제성을 고려하여 하기 언급한 함량으로 한정하는 것이 바람직하다.
이러한 외할로 실리카흄은 결합재 100중량부에 대하여, 0.05~8중량부로 포함될 수 있는데, 이는 외할로 실리카흄이 0.05중량부 미만이면, 높은 압축강도 발현이 어려울 수 있고, 8중량부를 초과하면, 경화가 빠르게 일어나 물성 및 내구성이 떨어질 수 있다.
외할로 유동화제는 슬러리(slurry)의 재료 분포성 및 혼합 작업의 용이성을 위해 첨가하는 물질로, 폴리카르본산계(polycarboxylate)를 사용할 수 있다.
이러한 외할로 유동화제는 결합재 100중량부에 대하여, 0.05~2중량부로 포함될 수 있는데, 이는 외할로 유동화제가 0.05중량부 미만이면, 탄산칼슘의 고분자 성분에 의한 유동성 부족 문제가 발생될 뿐만 아니라 교반 워커빌리티의 확보 및 강도보상 기능이 미미할 수 있고, 2중량부를 초과하면, 필요 이상의 사용으로 인한 효과는 그다지 크지 않을 수 있다. 따라서, 탄산칼슘의 고분자 성분에 의한 유동성 부족 문제를 방지하고, 교반 워커빌리티의 확보 및 강도보상의 기능이 배가되도록 상기 언급한 범위를 만족하는 것이 바람직하다.
섬유는 내구성 향상을 위해 첨가하는 물질로, 유리섬유, 탄소섬유, 아라미드섬유 및 폴리에스테르 섬유 중에서 선택되는 하나 이상을 사용할 수 있다.
이러한 섬유는 결합재 100중량부에 대하여, 0.05~1중량부로 포함될 수 있는데, 이는 섬유가 0.05중량부 미만이면, 내구성 향상 효과가 미미할 수 있고, 1중량부를 초과하면, 성형성이 좋지 못할 수 있다.
외할로 기포제는 경화체의 경량성과 단열성의 개선을 위해 첨가하는 물질로, 기포의 안정성 및 발포성능 면에서 일반적으로 실용화되어 있는 알루미늄 분말을 사용할 수 있다.
이러한 외할로 기포제는 결합재 100중량부에 대하여, 0.05~0.9중량부로 포함될 수 있는데, 이는 외할로 기포제가 0.05중량부 미만이면, 표면장력 저하 효과가 미미할 수 있고, 0.9중량부를 초과하면, 필요이상의 사용으로 인한 효과는 그다지 크지 않을 수 있다.
이하, 본 명세서에 개시된 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법을 도면에 따라 상세하게 설명한다.
도 1은 본 명세서에 개시된 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법을 설명하기 위한 공정도이다. 이하, 이를 참조하여 본 실시예에 따른 생분해성 시트의 제조방법에 대해 설명하기로 한다.
도 1을 참조하면, 우선 원료를 혼합하여 슬러리화한다(S10).
원료로 유동층상 보일러 비산재 40~90중량% 및 포틀랜드 시멘트 10~60중량%로 이루어진 결합재 100중량부, 혼합수 55~85중량부, 외할로 실리카흄 0.05~8중량부, 외할로 유동화제 0.05~2중량부, 섬유 0.05~1중량부 및 외할로 기포제 0.05~0.9중량부를 혼합하여 슬러리화 하거나 탄산칼슘 0.1~40중량%, 유동층상 보일러 비산재 40~80중량% 및 포틀랜드 시멘트 5~50중량%로 이루어진 결합재 100중량부, 혼합수 55~85중량부, 외할로 실리카흄 0.05~8중량부, 외할로 유동화제 0.05~2중량부, 섬유 0.05~1중량부 및 외할로 기포제 0.05~0.9중량부를 혼합하여 슬러리화 한다. 원료의 구체적인 성분 및 성분비의 한정사유에 대해서는 상기에서 자세히 설명하였으므로 생략하기로 한다.
그 다음, 슬러리를 몰드에 장입한 후 발포 및 응결시킨다(S20).
상기 S10단계에서 제조된 슬러리를 몰드에 장입한 후 발포반응으로 부피를 증가시키고, 20~25℃의 상온에서 1~3시간, 바람직하게는 2시간동안 수화반응에 의해 응결이 진행되도록 할 수 있다.
상기 언급한 온도 범위를 벗어나는 경우 온도 균열이 발생될 수 있으므로 바람직하지 못하다.
상기 시간이 1시간 미만이면, 결합재와 물과의 수화 작용이 완료되기 어렵고, 3시간을 초과하면, 필요이상의 시간 증가로 인해 업무 효율이 저조해질 수 있다.
그 후 발포 및 응결된 슬러리를 1차 양생한다(S30).
상기 S20단계에서 발포 및 응결이 완료된 슬러리를 60~70℃의 온도에서 5~7시간동안 1차 양생할 수 있다.
그리고, 1차 양생이 완료된 반경화체를 몰드로부터 탈형 및 컷팅한 후 2차 양생한다(S40).
상기 S30단계에서 1차 양생이 완료된 반경화체를 몰드로부터 탈형 및 컷팅한 후 60~70℃의 온도에서 5~7시간동안 2차 양생할 수 있다.
상기 언급한 1차 및 2차 양생 온도와 시간을 만족하지 않는 경우, 외부의 충격에 의해 쉽게 파손되고, 비중 0.2~0.3 및 압축강도 40MPa 이상의 확보가 어려울 수 있다.
마지막으로 2차 양생이 완료된 경화체를 감온한 후 건조한다(S50).
상기 S40단계에서 2차 양생이 완료된 경화체를 20~25℃의 상온까지 감온시킨 후 건조기를 이용하여 경화체가 완전히 건조될 때까지 건조를 실시할 수 있다.
<실시예 1>
유동층상 보일러 비산재 70kg, 포틀랜드 1종 시멘트 30kg, 외할로 실리카흄 0.6kg, 섬유 0.07kg, 외할로 유동화제 0.24kg, 알루미늄 분말 0.08kg을 물 63kg과 혼합하여 슬러리화한 후 몰드에 넣어 발포시킨 후 23℃의 상온에서 약 2시간동안 응결시켰다. 그리고, 약 65℃의 항온양생실에서 6시간동안 1차 양생한 후 몰드를 제거하고, 도 2 내지 6에 도시된 바와 같이 가로 495mm, 세로 495mm, 높이 65mm로 컷팅한 다음 약 65℃의 항온양생실에서 6시간동안 2차 양생하고 감온 및 건조하여 무기심재를 제조하였다.
<실시예 2>
탄산칼슘 20kg, 유동층상 보일러 비산재 55kg, 포틀랜드 1종 시멘트 25kg, 외할로 실리카흄 0.4kg, 섬유 0.06kg, 외할로 유동화제 0.5kg, 알루미늄 분말 0.08kg을 물 63kg과 혼합하여 슬러리화한 후 몰드에 넣어 발포시킨 후 23℃의 상온에서 약 2시간동안 응결시켰다. 그리고, 약 65℃의 항온양생실에서 6시간동안 1차 양생한 후 몰드를 제거하고, 도 2 내지 6에 도시된 바와 같이 가로 495mm, 세로 495mm, 높이 65mm로 컷팅한 다음 약 65℃의 항온양생실에서 6시간동안 2차 양생하고 감온 및 건조하여 무기심재를 제조하였다.
개시된 내용은 예시에 불과하며, 특허청구범위에서 청구하는 청구의 요지를 벗어나지 않고 당해 기술분야에서 통상의 지식을 가진 자에 의하여 다양하게 변경 실시될 수 있으므로, 개시된 내용의 보호범위는 상술한 특정의 실시예에 한정되지 않는다.

Claims (9)

  1. 유동층상 보일러 비산재 40~90중량% 및 포틀랜드 시멘트 10~60중량%로 이루어진 결합재 100중량부;
    혼합수 55~85중량부;
    외할로 실리카흄 0.05~8중량부;
    외할로 유동화제 0.05~2중량부;
    섬유 0.05~1중량부; 및
    외할로 기포제 0.05~0.9중량부;를 포함하는 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물.
  2. 탄산칼슘 0.1~40중량%, 유동층상 보일러 비산재 40~80중량% 및 포틀랜드 시멘트 5~50중량%로 이루어진 결합재 100중량부;
    혼합수 55~85중량부;
    외할로 실리카흄 0.05~8중량부;
    외할로 유동화제 0.05~2중량부;
    섬유 0.05~1중량부; 및
    외할로 기포제 0.05~0.9중량부;를 포함하는 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물.
  3. 제1항 또는 제2항에 있어서,
    상기 유동층상 보일러 비산재의 비표면적은 5,000~7,000cm2/g인 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물.
  4. 제1항 또는 제2항에 있어서,
    상기 외할로 유동화제는 폴리카르본산계인 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물.
  5. (a) 원료를 혼합하여 슬러리화하는 단계;
    (b) 상기 슬러리를 몰드에 장입한 후 발포 및 응결하는 단계;
    (c) 상기 발포 및 응결된 슬러리를 1차 양생하는 단계;
    (d) 상기 1차 양생이 완료된 반경화체를 몰드로부터 탈형 및 컷팅한 후 2차 양생하는 단계; 및
    (e) 상기 2차 양생이 완료된 경화체를 감온한 후 건조하는 단계;를 포함하는 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법.
  6. 제5항에 있어서,
    상기 (a)단계에서 원료는 유동층상 보일러 비산재 40~90중량% 및 포틀랜드 시멘트 10~60중량%로 이루어진 결합재 100중량부, 혼합수 55~85중량부, 외할로 실리카흄 0.05~8중량부, 외할로 유동화제 0.05~2중량부, 섬유 0.05~1중량부 및 외할로 기포제 0.05~0.9중량부를 포함하는 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법.
  7. 제5항에 있어서,
    상기 (a)단계에서 원료는 탄산칼슘 0.1~40중량%, 유동층상 보일러 비산재 40~80중량% 및 포틀랜드 시멘트 5~50중량%로 이루어진 결합재 100중량부, 혼합수 55~85중량부, 외할로 실리카흄 0.05~8중량부, 외할로 유동화제 0.05~2중량부, 섬유 0.05~1중량부 및 외할로 기포제 0.05~0.9중량부를 포함하는 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법.
  8. 제5항에 있어서,
    상기 (b)단계에서 응결은 20~25℃의 상온에서 1~3시간동안 실시되는 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법.
  9. 제5항에 있어서,
    상기 (c)단계의 1차 양생과 상기 (d)단계의 2차 양생은 60~70℃의 온도에서 5~7시간동안 실시되는 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재의 제조방법.
PCT/KR2021/014315 2021-10-14 2021-10-15 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법 WO2023063452A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0136602 2021-10-14
KR1020210136602A KR20230053772A (ko) 2021-10-14 2021-10-14 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023063452A1 true WO2023063452A1 (ko) 2023-04-20

Family

ID=85987788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014315 WO2023063452A1 (ko) 2021-10-14 2021-10-15 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20230053772A (ko)
WO (1) WO2023063452A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532309A (ja) * 2007-07-05 2010-10-07 ユナイテッド・ステイツ・ジプサム・カンパニー 軽量セメント系組成物及び建築用製品、並びにそれらを作製するための方法
KR101833399B1 (ko) * 2017-09-05 2018-02-28 (유)보창산업 기포콘크리트 보강용 판재부착 판넬
KR20180046940A (ko) * 2016-10-28 2018-05-10 (주) 에스와이씨 Pp 섬유 혼합형 단열소재 및 이의 제조 방법
KR20180137965A (ko) * 2017-06-20 2018-12-28 충북대학교 산학협력단 순환 유동층 보일러 애시를 이용한 경량 기포 콘크리트 조성물 및 이를 이용한 경량 기포 콘크리트 블록 제조방법
KR102186229B1 (ko) * 2019-06-13 2020-12-03 한국건설기술연구원 플라이애시와 섬유화된 볏짚을 이용한 고밀도 압출성형 시멘트 패널용 조성물, 이를 이용한 압출성형 시멘트 패널의 제작방법, 및 이에 의해 제작된 압출성형 시멘트 패널

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577495B1 (ko) 2002-04-22 2006-05-10 에스케이케미칼주식회사 샌드위치 패널용 내부심재 및 이를 내장한 샌드위치 패널

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532309A (ja) * 2007-07-05 2010-10-07 ユナイテッド・ステイツ・ジプサム・カンパニー 軽量セメント系組成物及び建築用製品、並びにそれらを作製するための方法
KR20180046940A (ko) * 2016-10-28 2018-05-10 (주) 에스와이씨 Pp 섬유 혼합형 단열소재 및 이의 제조 방법
KR20180137965A (ko) * 2017-06-20 2018-12-28 충북대학교 산학협력단 순환 유동층 보일러 애시를 이용한 경량 기포 콘크리트 조성물 및 이를 이용한 경량 기포 콘크리트 블록 제조방법
KR101833399B1 (ko) * 2017-09-05 2018-02-28 (유)보창산업 기포콘크리트 보강용 판재부착 판넬
KR102186229B1 (ko) * 2019-06-13 2020-12-03 한국건설기술연구원 플라이애시와 섬유화된 볏짚을 이용한 고밀도 압출성형 시멘트 패널용 조성물, 이를 이용한 압출성형 시멘트 패널의 제작방법, 및 이에 의해 제작된 압출성형 시멘트 패널

Also Published As

Publication number Publication date
KR20230053772A (ko) 2023-04-24

Similar Documents

Publication Publication Date Title
US9034097B2 (en) Fire protection mortar
KR101037073B1 (ko) 순환골재를 이용한 고내화성 모르타르 조성물 및 그 시공방법
WO2013172497A1 (ko) 고로슬래그 및 바텀애시로 구성되는 무시멘트 결합재를 포함하는 콘크리트 조성물, 이를 이용한 침목 및 그 제조방법
WO2016072622A2 (ko) 무시멘트 촉진형 혼화제 및 이를 포함하는 무시멘트 조성물
CA2451657A1 (en) Fly ash composition for use in concrete mix
CN111205061A (zh) 一种免烧高强粉煤灰陶粒的制备方法
EP1362017B1 (en) Cementitious material
KR101410797B1 (ko) 비소성 무기결합재를 활용한 바닥용 모르타르 조성물
CN110981349A (zh) 一种轻质高强渣土基保温材料及其制备方法
KR20130018500A (ko) 석탄재를 이용한 모르타르 또는 콘크리트 조성물 및 그의 용도
WO2017131330A1 (ko) 황산처리된 굴패각을 포함하는 고화재 및 이를 이용한 시공방법
CN114105673A (zh) 一种耐水型石膏碱矿渣防火涂料及其制备方法
WO2023063452A1 (ko) 불연성 및 경량성이 우수한 샌드위치 판넬용 무기심재 조성물 및 그 제조방법
WO2019050138A1 (ko) 방수형 기포콘크리트 블록의 습식 제조방법
CN106116422B (zh) 一种轻质空心保温板及其制备方法
WO2023210877A1 (ko) 산중성 폐내화물을 재활용한 내화 뿜칠 피복재 조성물
KR102390008B1 (ko) 탄산칼슘을 첨가한 발포 경량보드의 제조방법 및 그 제조방법에 의해 제조되는 발포 경량보드
WO2023054956A1 (ko) 균열제어 자기치유 혼화재 조성물과 그 혼화재의 제조방법, 그리고 자기치유 모르타르 조성물과 이를 이용한 콘크리트 구조물의 단면보수공법
CN113816718B (zh) 一种建筑轻质墙板及其制备方法
RU2340577C2 (ru) Сульфатно-шлаковое вяжущее
KR20210122500A (ko) 지오폴리머 또는 지오폴리머 복합체의 제조방법
WO2017023050A1 (ko) 페로니켈 슬래그 미분을 이용한 마그네시아 인산염 복합체의 제조방법 및 이에 의해 제조된 페로니켈 슬래그 미분을 이용한 마그네시아 인산염 복합체
KR100566948B1 (ko) 폐콘크리트의 재생 방법
KR20170114125A (ko) 연약지반용 고화재 조성물 및 이를 이용한 연약지반 개량방법
KR102328281B1 (ko) 1일 2사이클 증기 양생용 혼합재 조성물 및 이를 이용한 콘크리트 제품의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE