WO2023063129A1 - Retardation layer–equipped polarizing plate and image display device using same - Google Patents

Retardation layer–equipped polarizing plate and image display device using same Download PDF

Info

Publication number
WO2023063129A1
WO2023063129A1 PCT/JP2022/036884 JP2022036884W WO2023063129A1 WO 2023063129 A1 WO2023063129 A1 WO 2023063129A1 JP 2022036884 W JP2022036884 W JP 2022036884W WO 2023063129 A1 WO2023063129 A1 WO 2023063129A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
polarizing plate
retardation layer
retardation
Prior art date
Application number
PCT/JP2022/036884
Other languages
French (fr)
Japanese (ja)
Inventor
理 小島
一裕 中島
帆奈美 伊藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280068406.6A priority Critical patent/CN118103741A/en
Publication of WO2023063129A1 publication Critical patent/WO2023063129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
  • Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly spreading.
  • Polarizing plates and retardation plates are typically used in image display devices.
  • a polarizing plate with a retardation layer, in which a polarizing plate and a retardation plate are integrated, is widely used (for example, Patent Document 1).
  • Thinning of the polarizing plate with the retardation layer can be achieved, for example, by omitting or thinning the protective layer of the polarizing film included in the polarizing plate, or by thinning the retardation layer (retardation film).
  • the polarizing plate provided in the image display device may decolor. Such decoloration is conspicuous in a high-temperature, high-humidity environment.
  • the present invention has been made in view of the above, and its main purpose is to provide a thin polarizing plate with a retardation layer that suppresses decoloration when used in an image display device.
  • a polarizing plate with a retardation layer includes a polarizing film containing iodine and having a first main surface and a second main surface facing each other, and a polarizing film disposed on the first main surface side of the polarizing film, A protective layer having a moisture permeability of 150 g/m 2 ⁇ 24 h or less at 40°C and 92% RH, an adhesive layer disposed on the second main surface side of the polarizing film, the polarizing film and the adhesive layer.
  • the thickness of the laminated portion up to is 50 ⁇ m or less.
  • the polarizing film, the retardation layer, and the inorganic film are arranged in this order.
  • the inorganic film is arranged in direct contact with the retardation layer.
  • the thickness of the inorganic film is less than 400 nm.
  • the inorganic film has a thickness of 50 nm or more.
  • the inorganic film contains at least one selected from the group consisting of silicon oxide, silicon carbide, and composites thereof.
  • the inorganic film is a deposited film.
  • the moisture permeability at 40° C. and 92% RH of the laminated portion from the layer adjacent to the second main surface of the polarizing film to the layer adjacent to the pressure-sensitive adhesive layer is 50 g/m 2 ⁇ 24 h. It is below.
  • the retardation layer is a fixed alignment layer of a liquid crystal compound. According to another aspect of the present invention, an image display device is provided. This image display device has the above polarizing plate with a retardation layer.
  • decoloration can be remarkably suppressed when used in an image display device.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a polarizing plate with a retardation layer according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view showing an outline of a state in which a polarizing plate with a retardation layer is arranged on an organic EL panel in an organic EL display device according to one embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a polarizing plate with a retardation layer according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view showing an outline of a state in which a polarizing plate with a retardation layer is arranged on an organic EL panel in an organic EL display device according to one embodiment of the present invention.
  • refractive index (nx, ny, nz) is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re( ⁇ )” is an in-plane retardation measured at 23° C. with light having a wavelength of ⁇ nm.
  • Re(550) is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Thickness direction retardation (Rth) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of ⁇ nm.
  • Rth(550) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a polarizing plate with a retardation layer according to one embodiment of the present invention.
  • the polarizing plate 100 with a retardation layer includes a polarizing film 11 having a first main surface 11a and a second main surface 11b facing each other, a protective layer 12 disposed on the first main surface 11a side of the polarizing film 11, a polarizing It has a retardation layer 20, an inorganic film 30 and an adhesive layer 40 arranged on the second main surface 11b side of the film 11.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a polarizing plate with a retardation layer according to one embodiment of the present invention.
  • the polarizing plate 100 with a retardation layer includes a polarizing film 11 having a first main surface 11a and a second main surface 11b facing each other, a protective layer 12 disposed on the first main surface 11a side of the polarizing film 11, a polarizing It has
  • the retardation layer-attached polarizing plate 100 is typically arranged so that the polarizing film 11 is on the viewer side of the retardation layer 20 in the image display device.
  • protective layer 12 is located on the top surface of the image display device.
  • the retardation layer-attached polarizing plate 100 can be obtained, for example, by laminating the polarizing plate 10 obtained by laminating the polarizing film 11 and the protective layer 12 and other layers.
  • the retardation layer 20 has a laminated structure including the first retardation layer 21 and the second retardation layer 22, but unlike the illustrated example, the retardation layer 20 has a lamination structure of three or more layers. It may have a structure or may be a single layer.
  • Each member constituting the polarizing plate with a retardation layer can be laminated via any appropriate adhesive layer (not shown).
  • the adhesive layer include an adhesive layer and an adhesive layer.
  • the protective layer 12 is attached to the polarizing film 11 via an adhesive layer (preferably using an active energy ray-curable adhesive).
  • the retardation layer 20 is attached to the polarizing film 11 via an adhesive layer (preferably using an active energy ray-curable adhesive).
  • the retardation layers are attached to each other, for example, via an adhesive layer (preferably using an active energy ray-curable adhesive).
  • the thickness of the adhesive layer is preferably 0.4 ⁇ m or more, more preferably 0.4 ⁇ m to 3.0 ⁇ m, still more preferably 0.6 ⁇ m to 2.2 ⁇ m.
  • the adhesive layer 40 arranged on the second main surface 11b side of the polarizing film 11 enables, for example, the polarizing plate 100 with the retardation layer to be attached to an image display panel included in the image display device.
  • a release liner is practically adhered to the surface of the pressure-sensitive adhesive layer 40 .
  • the release liner can be temporarily attached until the retardation layer-attached polarizing plate is ready for use.
  • a release liner for example, it is possible to protect the pressure-sensitive adhesive layer and roll-form the retardation layer-attached polarizing plate.
  • An inorganic film 30 is arranged between the polarizing film 11 and the adhesive layer 40 .
  • the decolorization can be suppressed while contributing to thinning of the polarizing plate with the retardation layer.
  • the arrangement of the inorganic film 30 is not particularly limited. is preferably arranged on the side where is not arranged.
  • the inorganic film 30 is arranged, for example, in direct contact with the retardation layer 20 . Such a configuration can contribute to thinning the polarizing plate with the retardation layer.
  • the polarizing plate with a retardation layer may be elongated or sheet-shaped.
  • the term "elongated” refers to an elongated shape whose length is sufficiently longer than its width, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, its width.
  • the elongated retardation layer-attached polarizing plate can be wound into a roll.
  • the thickness of the laminated portion from the polarizing plate 10 (protective layer 12) to the layer adjacent to the adhesive layer 40 (inorganic film 30 in the illustrated example) is, for example, 60 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less.
  • Such a thickness contributes to thinning of the image display device, and for example, it may be possible to mount a member (such as a battery) to cope with an increase in size of the screen.
  • a member such as a battery
  • the thickness of the retardation layer-attached polarizing plate is, for example, 10 ⁇ m or more.
  • the thickness of the retardation layer-attached polarizing plate also includes the thickness of the adhesive layer.
  • an adhesive layer that may be placed between the protective layer and the polarizing film, an adhesive layer that may be placed between the polarizing film and the retardation layer, and a retardation layer when the retardation layer has a laminated structure Also included is the thickness of the adhesive layer that may be placed at.
  • the thickness of the retardation layer-attached polarizing plate does not include the thickness of the adhesive layer for adhering the retardation layer-attached polarizing plate to an external adherend such as a panel or glass.
  • the moisture permeability at 40° C. and 92% RH of the laminated portion from the layer adjacent to the second main surface 11b of the polarizing film 11 to the layer adjacent to the adhesive layer 40 is preferably 200 g/m 2 ⁇ 24 h or less, It is more preferably 150 g/m 2 ⁇ 24h or less, still more preferably 100 g/m 2 ⁇ 24h or less, and particularly preferably 50 g/m 2 ⁇ 24h or less.
  • decolorization can be suppressed more effectively. Specifically, decolorization can be effectively suppressed in a high-humidity environment in which generation of ammonia (ammonium ion), which will be described later, can be accelerated.
  • the moisture permeability at 40° C. and 92% RH of the laminated portion from the layer adjacent to the second main surface of the polarizing film to the layer adjacent to the pressure-sensitive adhesive layer is, for example, 1 g/m 2 ⁇ 24 h or more. Note that “adjacent” includes not only direct adjacency but also adjacency via an adhesive layer.
  • the polarizing plate includes a polarizing film and a protective layer.
  • a polarizing plate can be obtained by laminating a polarizing film and a protective layer via an adhesive layer.
  • the polarizing film is typically a resin film containing a dichroic substance. Iodine is preferably used as the dichroic substance.
  • resin films include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films.
  • the thickness of the polarizing film is preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less. On the other hand, the thickness of the polarizing film is preferably 1 ⁇ m or more.
  • the polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizing film is, for example, 41.5% to 48.0%, preferably 42.0% to 46.0%.
  • the polarization degree of the polarizing film is, for example, 90.0% or more, preferably 99.0% or more, and more preferably 99.9% or more.
  • the polarizing film can be produced by any appropriate method. Specifically, the polarizing film may be produced from a single-layer resin film, or may be produced using a laminate of two or more layers.
  • the method of producing a polarizing film from the above single-layer resin film typically includes subjecting the resin film to a dyeing treatment with a dichroic substance such as iodine or a dichroic dye and a stretching treatment.
  • a dichroic substance such as iodine or a dichroic dye
  • a stretching treatment for example, hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films are used.
  • the method may further include an insolubilization treatment, a swelling treatment, a cross-linking treatment, and the like. Since such a manufacturing method is well known and commonly used in the industry, detailed description thereof will be omitted.
  • a polarizing film obtained using the laminate can be produced, for example, using a laminate of a resin substrate and a resin film or resin layer (typically, a PVA-based resin layer).
  • a PVA-based resin solution is applied to a resin base material, dried to form a PVA-based resin layer on the resin base material, and a laminate of the resin base material and the PVA-based resin layer is obtained; stretching and dyeing the laminate to make the PVA-based resin layer into a polarizing film;
  • a PVA-based resin layer containing a halide and a PVA-based resin is formed on one side of the resin substrate. Stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching.
  • stretching may further include stretching the laminate in air at a high temperature (eg, 95° C. or higher) before stretching in an aqueous boric acid solution, if necessary.
  • the laminate is preferably subjected to drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink the laminate by 2% or more in the width direction.
  • the manufacturing method of the present embodiment includes subjecting the laminate to an in-air auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order.
  • a polarizing plate can be obtained by laminating a protective layer on the peeled surface of the obtained resin substrate/polarizing film laminate, or on the surface opposite to the peeled surface. Details of the method for manufacturing such a polarizing film are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. These publications are incorporated herein by reference in their entireties.
  • the protective layer may be formed of any suitable film that can be used as a protective layer for a polarizing film.
  • suitable film such as triacetyl cellulose (TAC), polyester-based resins such as polyethylene terephthalate, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, and polyethersulfone.
  • TAC triacetyl cellulose
  • polyester-based resins such as polyethylene terephthalate
  • polyvinyl alcohol-based polycarbonate-based
  • polyamide-based polyamide-based
  • polyimide-based polyethersulfone
  • polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based, (meth)acrylic-based, and acetate-based resins.
  • the polarizing plate with a retardation layer according to the embodiment of the present invention is typically arranged on the viewing side of the image display device, and the protective layer is arranged on the viewing side. Therefore, the protective layer may be subjected to surface treatment such as hard coat (HC) treatment, anti-reflection treatment, anti-sticking treatment, anti-glare treatment, etc., if necessary.
  • surface treatment such as hard coat (HC) treatment, anti-reflection treatment, anti-sticking treatment, anti-glare treatment, etc.
  • the thickness of the protective layer is preferably less than 30 ⁇ m, more preferably 28 ⁇ m or less. On the other hand, the thickness of the protective layer is preferably 11 ⁇ m or more, more preferably 13 ⁇ m or more. In addition, when the said surface treatment is performed, the thickness of a protective layer is thickness including the thickness of a surface treatment layer.
  • the moisture permeability of the protective layer at 40° C. and 92% RH is 150 g/m 2 ⁇ 24 h or less, may be 100 g/m 2 ⁇ 24 h or less, or 50 g/m 2 ⁇ 24 h It may be below.
  • at least one selected from cycloolefin-based resins, polycarbonate-based resins, (meth)acrylic-based resins, and polyester-based resins is used as the material constituting the protective layer.
  • ammonia (ammonium ion), which will be described later, is likely to be confined within the polarizing plate (polarizing film) (difficult to be discharged to the outside of the polarizing plate), and decoloration tends to occur. According to the embodiment of the present invention, decolorization can be suppressed even if such a protective layer is provided.
  • the thickness of the retardation layer is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 7 ⁇ m or less, depending on its configuration (whether it is a single layer or has a laminated structure). is. On the other hand, the thickness of the retardation layer is, for example, 0.5 ⁇ m or more.
  • the "thickness of the retardation layer” means the total thickness of each retardation layer. Specifically, the "thickness of the retardation layer" does not include the thickness of the adhesive layer.
  • an alignment solidified layer of a liquid crystal compound (liquid crystal alignment solidified layer) is preferably used.
  • a liquid crystal compound for example, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. thickness can be significantly reduced. Therefore, it is possible to realize a remarkable thinning of the polarizing plate with the retardation layer.
  • the term "fixed alignment layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction and the alignment state is fixed.
  • the "alignment fixed layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later.
  • rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the retardation layer (homogeneous alignment).
  • the liquid crystal alignment fixed layer is formed by subjecting the surface of a predetermined base material to an alignment treatment, coating the surface with a coating liquid containing a liquid crystal compound, and orienting the liquid crystal compound in a direction corresponding to the alignment treatment. It can be formed by fixing the orientation state. Any appropriate orientation treatment can be adopted as the orientation treatment. Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment. Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment. Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose.
  • the alignment of the liquid crystal compound is performed by processing at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the alignment fixed layer are described in JP-A-2006-163343. The description of the publication is incorporated herein by reference.
  • the retardation layer may be a single layer or may have a laminated structure of two or more layers.
  • the retardation layer when the retardation layer is a single layer, the retardation layer can function as a ⁇ /4 plate.
  • Re(550) of the retardation layer is preferably 100 nm to 180 nm, more preferably 110 nm to 170 nm, still more preferably 110 nm to 160 nm.
  • the thickness of the retardation layer can be adjusted so as to obtain the desired in-plane retardation of the ⁇ /4 plate.
  • the retardation layer is the liquid crystal alignment fixing layer described above, its thickness is, for example, 1.0 ⁇ m to 2.5 ⁇ m.
  • the angle between the slow axis of the retardation layer and the absorption axis of the polarizing film is preferably 40° to 50°, more preferably 42° to 48°, and even more preferably 44°. ° to 46°.
  • the retardation layer preferably exhibits reverse dispersion wavelength characteristics in which the retardation value increases according to the wavelength of the measurement light.
  • the retardation layer 20 when the retardation layer 20 has a laminated structure, the retardation layer 20 includes, for example, a first retardation layer (H layer) 21 and a second retardation layer (Q layer) in order from the polarizing plate 10 side. 22 are arranged in a two-layer laminated structure.
  • the H layer can typically function as a ⁇ /2 plate and the Q layer can typically function as a ⁇ /4 plate.
  • Re(550) of the H layer is preferably 200 nm to 300 nm, more preferably 220 nm to 290 nm, still more preferably 230 nm to 280 nm;
  • Re(550) of the Q layer is preferably It is 100 nm to 180 nm, more preferably 110 nm to 170 nm, even more preferably 110 nm to 150 nm.
  • the thickness of the H layer can be adjusted to obtain the desired in-plane retardation of the ⁇ /2 plate.
  • the H layer is the liquid crystal alignment fixing layer described above, its thickness is, for example, 2.0 ⁇ m to 4.0 ⁇ m.
  • the thickness of the Q layer can be adjusted to obtain the desired in-plane retardation of the ⁇ /4 plate.
  • the Q layer is the liquid crystal alignment fixing layer described above, its thickness is, for example, 0.5 ⁇ m to 2.5 ⁇ m.
  • the angle between the slow axis of the H layer and the absorption axis of the polarizing film is preferably 10° to 20°, more preferably 12° to 18°, still more preferably 12°. ⁇ 16°; the angle formed by the slow axis of the Q layer and the absorption axis of the polarizing film is preferably 70° to 80°, more preferably 72° to 78°, still more preferably 72° ⁇ 76°.
  • each layer may exhibit reverse dispersion wavelength characteristics in which the retardation value increases according to the wavelength of the measurement light. It may exhibit a positive wavelength dispersion characteristic in which the value decreases according to the wavelength of the measurement light, or may exhibit a flat wavelength dispersion characteristic in which the retardation value hardly changes even with the wavelength of the measurement light.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3.
  • the retardation layer is preferably a liquid crystal alignment fixed layer.
  • the liquid crystal compound include a liquid crystal compound having a nematic liquid crystal phase (nematic liquid crystal).
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used. Either lyotropic or thermotropic mechanism may be used to develop the liquid crystallinity of the liquid crystal compound.
  • the liquid crystal polymer and liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer.
  • the alignment state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, the alignment state can be fixed by polymerizing or cross-linking the liquid crystal monomers.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by cross-linking, but these are non-liquid crystalline. Therefore, the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a change in temperature, which is peculiar to liquid crystalline compounds. As a result, the retardation layer becomes a highly stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
  • liquid crystal monomer Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer.
  • polymerizable mesogenic compounds described in JP-T-2002-533742 WO00/37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93/22397 EP0261712, DE19504224, DE4408171, and GB2280445
  • Specific examples of such polymerizable mesogenic compounds include LC242 (trade name) available from BASF, E7 (trade name) available from Merck, and LC-Sillicon-CC3767 (trade name) available from Wacker-Chem.
  • a nematic liquid crystal monomer is preferable as the liquid crystal monomer.
  • the inorganic film 30 contains silicon. Specifically, it contains a silicon compound. Silicon compounds include, for example, silicon oxide, silicon carbide, and composites thereof. Preferably, the inorganic film contains at least one selected from the group consisting of silicon oxide, silicon carbide, and composites thereof. Decolorization can be suppressed by providing such an inorganic film.
  • the present inventors faced a new problem that the retardation layer-attached polarizing plate decolors when applied to an image display device (typically, an organic EL display device). As a result of intensive studies on the subject, the inventors discovered that the cause of the decoloration is ammonia (substantially, ammonium ions) derived from the members constituting the image display panel.
  • the inorganic membrane comprises at least one of silicon carbide or silicon carbide oxide. Reliability can be improved by using such materials.
  • the thickness of the inorganic film is, for example, 30 nm or more, preferably 50 nm or more, more preferably 70 nm or more, and still more preferably 90 nm or more. With such a thickness, decolorization can be suppressed more effectively.
  • the thickness of the inorganic film is preferably less than 400 nm, more preferably 350 nm or less, still more preferably 300 nm or less, particularly preferably 250 nm or less, and may be 200 nm or less.
  • the inorganic film can be deposited by any appropriate method.
  • the film can be formed by vacuum deposition, physical vapor deposition such as sputtering, or chemical vapor deposition.
  • chemical vapor deposition plasma chemical vapor deposition (CVD) is preferable from the viewpoint that film formation is possible in a low-temperature process and the object to be film-formed is not damaged by heat.
  • the inorganic film is a deposited film.
  • the inorganic film can be formed directly on the surface of the adjacent layer (for example, retardation layer, polarizing film).
  • the inorganic film may be partially formed in a region overlapping the polarizing film in plan view, but is preferably formed over the entire area.
  • the thickness of the adhesive layer 40 is preferably 10 ⁇ m to 20 ⁇ m.
  • the adhesive layer can be composed of any appropriate adhesive. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination and compounding ratio of the monomers forming the base resin of the adhesive, as well as the compounding amount of the cross-linking agent, the reaction temperature, the reaction time, etc., an adhesive having desired properties according to the purpose. can be prepared.
  • the base resin of the adhesive may be used alone or in combination of two or more.
  • the base resin is preferably an acrylic resin (specifically, the pressure-sensitive adhesive layer is preferably composed of an acrylic pressure-sensitive adhesive).
  • the polarizing plate with retardation layer according to the embodiment of the present invention can be typically obtained by laminating the polarizing plate and the retardation layer.
  • the lamination of the polarizing plate and the retardation layer is performed, for example, while transporting them by roll (so-called roll-to-roll).
  • Lamination is typically performed by transferring a liquid crystal alignment solidified layer formed on a substrate.
  • each retardation layer may be sequentially laminated (transferred) to the polarizing plate, and a laminate in which the retardation layers are laminated in advance is attached to the polarizing plate. It may be laminated (transferred).
  • the inorganic film can be deposited at an appropriate timing so as to be arranged at a desired position.
  • the film may be formed before laminating the polarizing plate and the retardation layer, or may be formed after laminating the polarizing plate and the retardation layer.
  • an image display device has the retardation layer-attached polarizing plate.
  • FIG. 2 is a schematic diagram showing a schematic configuration of an image display device according to one embodiment of the present invention, using an organic EL display device as an example.
  • an organic EL display device according to one embodiment of the present invention, it is a schematic cross-sectional view showing an outline of a state in which a polarizing plate with a retardation layer is arranged on an organic EL panel.
  • the retardation layer-equipped polarizing plate 100 is arranged so that the inorganic film 30 is closer to the organic EL panel main body 70 than the polarizing film 11 .
  • the retardation layer-equipped polarizing plate 100 is attached to the organic EL panel main body 70 with the adhesive layer 40 .
  • the organic EL panel main body 70 has a substrate 71 and an upper structure layer 72 including a circuit layer including thin film transistors (TFTs) and the like, an organic light emitting diode (OLED), a sealing film for sealing the OLED, and the like.
  • TFTs thin film transistors
  • OLED organic light emitting diode
  • the upper structural layer 72 includes, for example, a nitrogen-containing layer (eg, a nitride layer such as silicon nitride, silicon oxynitride, etc.), and ammonia (ammonium ions) can be generated from the upper structural layer 72 .
  • a nitrogen-containing layer eg, a nitride layer such as silicon nitride, silicon oxynitride, etc.
  • ammonia ammonium ions
  • the thickness and moisture permeability are values measured by the following measuring methods. In addition, unless otherwise specified, "parts" and “%" in Examples and Comparative Examples are by weight. 1. Thickness The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). A thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”). 2. Moisture Permeability Moisture permeability was determined by the cup method (JIS Z 0208).
  • Example 1 Preparation of polarizing plate
  • a thermoplastic resin substrate a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a Tg of about 75° C. was used, and one side of this resin substrate was subjected to corona treatment.
  • PVA-based resin obtained by mixing polyvinyl alcohol (degree of polymerization: 4200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER”) at a weight ratio of 9:1.
  • the finally obtained polarizing film is placed in a dyeing bath (iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was a desired value (dyeing treatment). Next, it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 40°C (an aqueous solution of boric acid obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water).
  • crosslinking treatment After that, while immersing the laminate in an aqueous solution of boric acid (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70° C., the laminate was moved vertically (longitudinally) between rolls with different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment). After that, the laminate was immersed in a washing bath (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (washing treatment).
  • a washing bath aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water
  • a COP film (thickness: 27 ⁇ m, transparent at 40° C. and 92% RH) having an HC layer formed thereon was placed on the polarizing film side of the obtained laminate via an ultraviolet curable adhesive (thickness after curing: 1.5 ⁇ m). Humidity: 20 g/m 2 ⁇ 24 h) was laminated as a protective layer. Thereafter, the resin substrate was peeled off from the polarizing film to obtain a polarizing plate having a structure of HC layer/COP film/adhesive layer/polarizing film.
  • the COP film on which the HC layer was formed was obtained by forming a 2 ⁇ m-thick hard coat layer on a cycloolefin-based unstretched film (manufactured by Nippon Zeon Co., Ltd., thickness 25 ⁇ m).
  • Polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name “Paliocolor LC242”, represented by the following formula) 10 g, and a photopolymerization initiator for the polymerizable liquid crystal compound (manufactured by BASF: trade name “Irgacure 907 ”) was dissolved in 40 g of toluene to prepare a liquid crystal composition (coating liquid).
  • the surface of a polyethylene terephthalate (PET) film was rubbed with a rubbing cloth and subjected to orientation treatment.
  • the direction of the orientation treatment was set at 15° to the direction of the absorption axis of the polarizing film when viewed from the viewing side when the film was attached to the polarizing plate.
  • the above liquid crystal coating solution was applied to the alignment-treated surface using a bar coater, and dried by heating at 90° C. for 2 minutes to align the liquid crystal compound.
  • the liquid crystal layer thus formed is irradiated with light of 1 mJ/cm 2 using a metal halide lamp to cure the liquid crystal layer, thereby forming a liquid crystal alignment fixed layer A (H layer) on the PET film. bottom.
  • a liquid crystal alignment fixed layer B (Q layer) was formed.
  • a silicon carbide oxide film having a thickness of 50 nm was formed on the surface of the liquid crystal alignment fixed layer B.
  • a polarizing plate laminated with a liquid crystal alignment fixed layer is set in a roll-to-roll CVD film forming apparatus, and after the pressure in the vacuum chamber is reduced to 1 ⁇ 10 ⁇ 3 Pa, while the polarizing plate is running, Hexamethyldisiloxane (HMDSO) and oxygen vaporized by heating, which are film forming materials, were introduced into the chamber under the conditions of a substrate temperature of 12° C., a flow rate of 25 sccm and a flow rate of 700 sccm, respectively, and the pressure was set to about 1.0 Pa to generate plasma.
  • HMDSO Hexamethyldisiloxane
  • oxygen vaporized by heating which are film forming materials
  • a plasma was generated by discharging under the conditions of a power supply frequency of 80 kHz and a power of 1.0 kW to form a film.
  • an adhesive layer having a thickness of 15 ⁇ m was formed on the surface of the silicon carbide oxide film using an acrylic adhesive to obtain a polarizing plate with a retardation layer.
  • the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment solid layer A to the silicon carbide oxide film was 50 g/m 2 ⁇ 24 h.
  • Example 2 A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that the thickness of the silicon carbide oxide film was 200 nm. In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment solid layer A to the silicon carbide oxide film was 30 g/m 2 ⁇ 24 h.
  • Example 3 A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that the thickness of the silicon carbide oxide film was 400 nm. In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment fixed layer A to the silicon carbide oxide film was 20 g/m 2 ⁇ 24 h.
  • Example 1 A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that no silicon carbide oxide film was formed.
  • the laminated portion from the liquid crystal alignment fixed layer A to the liquid crystal alignment fixed layer B had a moisture permeability at 40° C. and 92% RH of 400 to 500 g/m 2 ⁇ 24 h.
  • Example 2 A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that an organic film having a thickness of 400 nm was formed instead of forming a silicon carbide oxide film having a thickness of 50 nm.
  • acrylic resin manufactured by Kusumoto Kasei Co., Ltd., product name "B-811”
  • thermoplastic epoxy resin manufactured by Mitsubishi Chemical Corporation, trade name "jER (registered trademark) YX6954BH30” 85 parts ( solid content) was dissolved in 80 parts of methyl ethyl ketone to obtain a resin solution (20%).
  • This resin solution was applied to the surface of the liquid crystal alignment fixed layer B using a wire bar, and the applied film was dried at 60° C. for 5 minutes to form an organic film.
  • the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment fixed layer A to the organic film was 400 to 500 g/m 2 ⁇ 24 h.
  • Example 3 A polarizing plate obtained in the same manner as in Example 1 is laminated with the following retardation film via an acrylic pressure-sensitive adhesive (thickness 5 ⁇ m). ), a 15 ⁇ m-thick adhesive layer was formed on the surface of the liquid crystal alignment fixed layer C with an acrylic adhesive to obtain a polarizing plate with a retardation layer. The retardation film was attached so that the absorption axis of the polarizing film and the slow axis of the retardation film formed an angle of 45°. In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the retardation film to the liquid crystal alignment solid layer C was 70 g/m 2 ⁇ 24 h.
  • the coating solution was applied to the vertically aligned PET substrate using a bar coater, and dried by heating at 80° C. for 4 minutes to align the liquid crystal.
  • a liquid crystal orientation fixed layer C thinness 3 ⁇ m
  • a long roll of polyvinyl alcohol (PVA)-based resin film with a thickness of 30 ⁇ m (manufactured by Kuraray, product name “PE3000”) is uniaxially stretched in the longitudinal direction by a roll stretching machine so as to be 5.9 times the length while simultaneously being stretched. After swelling, dyeing, cross-linking, and washing treatments were performed in this order, a drying treatment was finally performed to prepare a polarizing film having a thickness of 12 ⁇ m. In the swelling treatment, the film was stretched 2.2 times while being treated with pure water at 20°C. Next, the dyeing treatment is performed in an aqueous solution at 30° C.
  • PVA polyvinyl alcohol
  • the cross-linking treatment employed two-step cross-linking treatment, and the first-step cross-linking treatment was performed by stretching the film 1.2 times while treating it in an aqueous solution of boric acid and potassium iodide at 40°C.
  • the boric acid content of the aqueous solution for the first-stage cross-linking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the film was stretched 1.6 times while being treated in an aqueous solution of boric acid and potassium iodide at 65°C.
  • the boric acid content of the aqueous solution for the second-stage cross-linking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the washing treatment was carried out with an aqueous potassium iodide solution at 20°C.
  • the potassium iodide content of the aqueous solution for the cleaning treatment was 2.6% by weight.
  • a drying treatment was performed at 70° C. for 5 minutes to obtain a polarizing film.
  • a TAC film (thickness: 25 ⁇ m) having an HC layer (thickness: 7 ⁇ m) and a TAC film having a thickness of 25 ⁇ m were laminated via a polyvinyl alcohol-based adhesive to form an HC layer/TAC.
  • a polarizing plate having a structure of film/adhesive layer/polarizing film/adhesive layer/TAC film was obtained.
  • the moisture permeability at 40° C. and 92% RH of the laminated portion from the TAC film to the liquid crystal alignment solid layer B was 300 to 400 g/m 2 ⁇ 24 h.
  • the degree of polarization of the polarizing plate with a retardation layer after the humidification test was measured.
  • an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation, V-7100 was used to measure the single transmittance Ts, the parallel transmittance Tp, and the orthogonal transmittance Tc, and the degree of polarization P was obtained by the following formula.
  • Ts, Tp and Tc are Y values measured with a JIS Z 8701 2-degree field of view (C light source) and subjected to visibility correction.
  • Degree of polarization P (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100 2.
  • Example 3 the degree of polarization after the humidification test was maintained at 99% or more, indicating that decolorization was suppressed. In Example 3, cracks were confirmed in the reliability evaluation.
  • a polarizing plate with a retardation layer according to an embodiment of the present invention is used in an image display device, and can also be suitably used in a curved, bendable, foldable, or rollable image display device.
  • Typical image display devices include liquid crystal display devices, organic EL display devices, and inorganic EL display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention provides a thin retardation layer–equipped polarizing plate in which decolorization of the plate when used in an image display device is suppressed. A retardation layer–equipped polarizing plate according to an embodiment of the present invention comprises: a polarizing film that contains iodine and has a first main surface and a second main surface on opposite sides from one another; a protective layer that is disposed on the first main surface side of the polarizing film and has a moisture permeability at 40°C and 92% RH of no more than 150 g/m2·24h; an adhesive layer that is disposed on the second main surface side of the polarizing film; a retardation layer that is disposed between the polarizing film and the adhesive layer; and an inorganic film that contains silicon and is disposed between the polarizing film and the adhesive layer, wherein the thickness of the section of layers from the protective layer to the layer adjacent to the adhesive layer is no larger than 50 μm.

Description

位相差層付偏光板およびそれを用いた画像表示装置Polarizing plate with retardation layer and image display device using the same
 本発明は、位相差層付偏光板およびそれを用いた画像表示装置に関する。 The present invention relates to a polarizing plate with a retardation layer and an image display device using the same.
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられている(例えば、特許文献1)。 Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices) are rapidly spreading. Polarizing plates and retardation plates are typically used in image display devices. Practically, a polarizing plate with a retardation layer, in which a polarizing plate and a retardation plate are integrated, is widely used (for example, Patent Document 1).
 近年、画像表示装置の薄型化への要望が強くなるに伴って、位相差層付偏光板についても薄型化の要望が強まっている。例えば、可撓性基板(例えば、樹脂基板)を用いて、画像表示装置の湾曲、屈曲、折り畳み、巻き取りの可能性が検討され、これに対応可能な薄型の位相差層付偏光板が求められている。 In recent years, as the demand for thinner image display devices has increased, the demand for thinner polarizing plates with retardation layers has also increased. For example, using a flexible substrate (for example, a resin substrate), the possibility of curving, bending, folding, and winding an image display device has been studied, and a thin polarizing plate with a retardation layer that can handle this is sought. It is
特許第3325560号公報Japanese Patent No. 3325560
 位相差層付偏光板の薄型化は、例えば、偏光板に含まれる偏光膜の保護層の省略または薄型化や位相差層(位相差フィルム)の薄型化により達成され得る。しかし、画像表示装置に設けられた偏光板は、脱色する場合がある。このような脱色は、高温高湿環境下で顕著である。 Thinning of the polarizing plate with the retardation layer can be achieved, for example, by omitting or thinning the protective layer of the polarizing film included in the polarizing plate, or by thinning the retardation layer (retardation film). However, the polarizing plate provided in the image display device may decolor. Such decoloration is conspicuous in a high-temperature, high-humidity environment.
 本発明は、上記に鑑みてなされたものであり、その主たる目的は、画像表示装置に用いた場合に脱色が抑制される薄型の位相差層付偏光板を提供することにある。 The present invention has been made in view of the above, and its main purpose is to provide a thin polarizing plate with a retardation layer that suppresses decoloration when used in an image display device.
 本発明の実施形態による位相差層付偏光板は、ヨウ素を含み、互いに対向する第一主面および第二主面を有する偏光膜と、前記偏光膜の前記第一主面側に配置され、40℃および92%RHにおける透湿度が150g/m・24h以下である保護層と、前記偏光膜の前記第二主面側に配置される粘着剤層と、前記偏光膜と前記粘着剤層との間に配置される位相差層と、前記偏光膜と前記粘着剤層との間に配置され、ケイ素を含む無機膜と、を有し、前記保護層から前記粘着剤層に隣接する層までの積層部分の厚みは50μm以下である。
 1つの実施形態においては、上記偏光膜と、上記位相差層と、上記無機膜とがこの順に配置される。
 1つの実施形態においては、上記無機膜は、上記位相差層に直に接して配置される。
 1つの実施形態においては、上記無機膜の厚みは400nm未満である。
 1つの実施形態においては、上記無機膜の厚みは50nm以上である。
 1つの実施形態においては、上記無機膜は、酸化ケイ素、炭化ケイ素、および、これらの複合体からなる群から選択される少なくとも1つを含む。
 1つの実施形態においては、上記無機膜は蒸着膜である。
 1つの実施形態においては、上記偏光膜の上記第二主面に隣接する層から上記粘着剤層に隣接する層までの積層部分の40℃および92%RHにおける透湿度は50g/m・24h以下である。
 1つの実施形態においては、上記位相差層は液晶化合物の配向固化層である。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記の位相差層付偏光板を有する。
A polarizing plate with a retardation layer according to an embodiment of the present invention includes a polarizing film containing iodine and having a first main surface and a second main surface facing each other, and a polarizing film disposed on the first main surface side of the polarizing film, A protective layer having a moisture permeability of 150 g/m 2 ·24 h or less at 40°C and 92% RH, an adhesive layer disposed on the second main surface side of the polarizing film, the polarizing film and the adhesive layer. and a retardation layer disposed between the polarizing film and the pressure-sensitive adhesive layer, and an inorganic film containing silicon, the layer adjacent to the pressure-sensitive adhesive layer from the protective layer The thickness of the laminated portion up to is 50 μm or less.
In one embodiment, the polarizing film, the retardation layer, and the inorganic film are arranged in this order.
In one embodiment, the inorganic film is arranged in direct contact with the retardation layer.
In one embodiment, the thickness of the inorganic film is less than 400 nm.
In one embodiment, the inorganic film has a thickness of 50 nm or more.
In one embodiment, the inorganic film contains at least one selected from the group consisting of silicon oxide, silicon carbide, and composites thereof.
In one embodiment, the inorganic film is a deposited film.
In one embodiment, the moisture permeability at 40° C. and 92% RH of the laminated portion from the layer adjacent to the second main surface of the polarizing film to the layer adjacent to the pressure-sensitive adhesive layer is 50 g/m 2 ·24 h. It is below.
In one embodiment, the retardation layer is a fixed alignment layer of a liquid crystal compound.
According to another aspect of the present invention, an image display device is provided. This image display device has the above polarizing plate with a retardation layer.
 本発明の実施形態による位相差層付偏光板によれば、画像表示装置に用いた場合に脱色が顕著に抑制され得る。 According to the polarizing plate with retardation layer according to the embodiment of the present invention, decoloration can be remarkably suppressed when used in an image display device.
本発明の1つの実施形態による位相差層付偏光板の概略の構成を示す模式的な断面図である。1 is a schematic cross-sectional view showing a schematic configuration of a polarizing plate with a retardation layer according to one embodiment of the present invention; FIG. 本発明の1つの実施形態による有機EL表示装置において、有機ELパネルに位相差層付偏光板が配置された状態の概略を示す模式的な断面図である。1 is a schematic cross-sectional view showing an outline of a state in which a polarizing plate with a retardation layer is arranged on an organic EL panel in an organic EL display device according to one embodiment of the present invention. FIG.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚み、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、図面については、同一または同等の要素には同一の符号を付し、重複する説明は省略することがある。 Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. In order to make the explanation clearer, the drawings may schematically show the width, thickness, shape, etc. of each part compared to the embodiment, but this is only an example and limits the interpretation of the present invention. isn't it. Also, in the drawings, the same or equivalent elements may be denoted by the same reference numerals, and redundant description may be omitted.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re(λ)” is an in-plane retardation measured at 23° C. with light having a wavelength of λ nm. For example, "Re(550)" is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is obtained by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Thickness direction retardation (Rth)
“Rth(λ)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of λ nm. For example, “Rth(550)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is obtained by Nz=Rth/Re.
(5) Angle When referring to an angle in this specification, the angle includes both clockwise and counterclockwise directions with respect to a reference direction. Thus, for example, "45°" means ±45°.
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略の構成を示す模式的な断面図である。位相差層付偏光板100は、互いに対向する第一主面11aおよび第二主面11bを有する偏光膜11と、偏光膜11の第一主面11a側に配置された保護層12と、偏光膜11の第二主面11b側に配置された位相差層20、無機膜30および粘着剤層40を有する。偏光膜11と位相差層20との間には保護層が配置されておらず、位相差層20は偏光膜11に隣接して配置されて偏光膜11の保護材として機能し得る。このような構成によれば、後述の位相差層付偏光板の厚みを良好に達成し得る。位相差層付偏光板100は、代表的には、画像表示装置において位相差層20よりも偏光膜11が視認側となるように配置される。1つの実施形態においては、保護層12は、画像表示装置の最表面に位置する。位相差層付偏光板100は、例えば、偏光膜11と保護層12とを積層して得られる偏光板10と、その他の層を積層することにより得ることができる。 FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a polarizing plate with a retardation layer according to one embodiment of the present invention. The polarizing plate 100 with a retardation layer includes a polarizing film 11 having a first main surface 11a and a second main surface 11b facing each other, a protective layer 12 disposed on the first main surface 11a side of the polarizing film 11, a polarizing It has a retardation layer 20, an inorganic film 30 and an adhesive layer 40 arranged on the second main surface 11b side of the film 11. FIG. No protective layer is arranged between the polarizing film 11 and the retardation layer 20 , and the retardation layer 20 is arranged adjacent to the polarizing film 11 and can function as a protective material for the polarizing film 11 . According to such a configuration, the thickness of the retardation layer-attached polarizing plate, which will be described later, can be satisfactorily achieved. The retardation layer-attached polarizing plate 100 is typically arranged so that the polarizing film 11 is on the viewer side of the retardation layer 20 in the image display device. In one embodiment, protective layer 12 is located on the top surface of the image display device. The retardation layer-attached polarizing plate 100 can be obtained, for example, by laminating the polarizing plate 10 obtained by laminating the polarizing film 11 and the protective layer 12 and other layers.
 図示例では、位相差層20は第一位相差層21および第二位相差層22を含む積層構造を有しているが、図示例とは異なり、位相差層20は、三層以上の積層構造を有していてもよいし、単一層とされていてもよい。 In the illustrated example, the retardation layer 20 has a laminated structure including the first retardation layer 21 and the second retardation layer 22, but unlike the illustrated example, the retardation layer 20 has a lamination structure of three or more layers. It may have a structure or may be a single layer.
 位相差層付偏光板を構成する各部材は、任意の適切な接着層(図示せず)を介して積層され得る。接着層の具体例としては、接着剤層、粘着剤層が挙げられる。例えば、保護層12は、接着剤層を介して(好ましくは、活性エネルギー線硬化型接着剤を用いて)偏光膜11に貼り合わせられる。例えば、位相差層20は、接着剤層を介して(好ましくは、活性エネルギー線硬化型接着剤を用いて)偏光膜11に貼り合わせられる。図示するように、位相差層20が二層以上の積層構造を有する場合、位相差層どうしは、例えば、接着剤層を介して(好ましくは、活性エネルギー線硬化型接着剤を用いて)貼り合わせられる。接着剤層の厚みは、好ましくは0.4μm以上であり、より好ましくは0.4μm~3.0μmであり、さらに好ましくは0.6μm~2.2μmである。 Each member constituting the polarizing plate with a retardation layer can be laminated via any appropriate adhesive layer (not shown). Specific examples of the adhesive layer include an adhesive layer and an adhesive layer. For example, the protective layer 12 is attached to the polarizing film 11 via an adhesive layer (preferably using an active energy ray-curable adhesive). For example, the retardation layer 20 is attached to the polarizing film 11 via an adhesive layer (preferably using an active energy ray-curable adhesive). As illustrated, when the retardation layer 20 has a laminated structure of two or more layers, the retardation layers are attached to each other, for example, via an adhesive layer (preferably using an active energy ray-curable adhesive). be matched. The thickness of the adhesive layer is preferably 0.4 μm or more, more preferably 0.4 μm to 3.0 μm, still more preferably 0.6 μm to 2.2 μm.
 偏光膜11の第二主面11b側に配置される粘着剤層40により、例えば、位相差層付偏光板100は画像表示装置に含まれる画像表示パネルに貼り付け可能とされる。図示しないが、粘着剤層40の表面には、実用的には、はく離ライナーが貼り合わせられる。はく離ライナーは、位相差層付偏光板が使用に供されるまで仮着され得る。はく離ライナーを用いることにより、例えば、粘着剤層を保護するとともに、位相差層付偏光板のロール形成が可能となる。 The adhesive layer 40 arranged on the second main surface 11b side of the polarizing film 11 enables, for example, the polarizing plate 100 with the retardation layer to be attached to an image display panel included in the image display device. Although not shown, a release liner is practically adhered to the surface of the pressure-sensitive adhesive layer 40 . The release liner can be temporarily attached until the retardation layer-attached polarizing plate is ready for use. By using a release liner, for example, it is possible to protect the pressure-sensitive adhesive layer and roll-form the retardation layer-attached polarizing plate.
 偏光膜11と粘着剤層40との間に、無機膜30が配置されている。無機膜30を用いることにより、位相差層付偏光板の薄型化に寄与しながら、上記脱色を抑制し得る。無機膜30の配置は特に限定されないが、優れた信頼性を得る(例えば、クラックの発生を防止する)観点から、図示するように、無機膜30は、位相差層20に対して偏光膜11が配置されない側に配置されることが好ましい。無機膜30は、例えば、位相差層20に直に接して配置される。このような構成によれば、位相差層付偏光板の薄型化に寄与し得る。 An inorganic film 30 is arranged between the polarizing film 11 and the adhesive layer 40 . By using the inorganic film 30, the decolorization can be suppressed while contributing to thinning of the polarizing plate with the retardation layer. The arrangement of the inorganic film 30 is not particularly limited. is preferably arranged on the side where is not arranged. The inorganic film 30 is arranged, for example, in direct contact with the retardation layer 20 . Such a configuration can contribute to thinning the polarizing plate with the retardation layer.
 位相差層付偏光板は、長尺状であってもよいし、枚葉状であってもよい。ここで、「長尺状」とは、幅に対して長さが十分に長い細長形状をいい、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状をいう。長尺状の位相差層付偏光板は、ロール状に巻回可能である。 The polarizing plate with a retardation layer may be elongated or sheet-shaped. Here, the term "elongated" refers to an elongated shape whose length is sufficiently longer than its width, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, its width. The elongated retardation layer-attached polarizing plate can be wound into a roll.
 偏光板10(保護層12)から粘着剤層40に隣接する層(図示例では、無機膜30)までの積層部分の厚み(単に、「位相差層付偏光板の厚み」と称する場合がある)は、例えば60μm以下であり、好ましくは50μm以下であり、より好ましくは40μm以下である。このような厚みによれば、画像表示装置の薄型化に寄与し、例えば、画面の大型化に対応するための部材(電池等)の搭載も可能とし得る。また、湾曲、屈曲、折り畳み、巻き取り等の変形可能な画像表示装置にも良好に対応し得る。一方、位相差層付偏光板の厚みは、例えば10μm以上である。 The thickness of the laminated portion from the polarizing plate 10 (protective layer 12) to the layer adjacent to the adhesive layer 40 (inorganic film 30 in the illustrated example) (simply referred to as "the thickness of the polarizing plate with a retardation layer") ) is, for example, 60 μm or less, preferably 50 μm or less, more preferably 40 μm or less. Such a thickness contributes to thinning of the image display device, and for example, it may be possible to mount a member (such as a battery) to cope with an increase in size of the screen. In addition, it can be well adapted to an image display device that can be deformed by bending, bending, folding, winding, or the like. On the other hand, the thickness of the retardation layer-attached polarizing plate is, for example, 10 μm or more.
 上記位相差層付偏光板の厚みには、上記接着層の厚みも含まれる。例えば、保護層と偏光膜との間に配置されてもよい接着層、偏光膜と位相差層との間に配置されてもよい接着層、位相差層が積層構造を有する場合に位相差層間に配置されてもよい接着層の厚みも含まれる。なお、位相差層付偏光板の厚みには、位相差層付偏光板をパネルやガラスなどの外部被着体と密着させるための接着層の厚みは含まれない。 The thickness of the retardation layer-attached polarizing plate also includes the thickness of the adhesive layer. For example, an adhesive layer that may be placed between the protective layer and the polarizing film, an adhesive layer that may be placed between the polarizing film and the retardation layer, and a retardation layer when the retardation layer has a laminated structure Also included is the thickness of the adhesive layer that may be placed at. The thickness of the retardation layer-attached polarizing plate does not include the thickness of the adhesive layer for adhering the retardation layer-attached polarizing plate to an external adherend such as a panel or glass.
 偏光膜11の第二主面11bに隣接する層から粘着剤層40に隣接する層までの積層部分の40℃および92%RHにおける透湿度は、好ましくは200g/m・24h以下であり、より好ましくは150g/m・24h以下であり、さらに好ましくは100g/m・24h以下であり、特に好ましくは50g/m・24h以下である。このような構成によれば、より効果的に脱色を抑制し得る。具体的には、後述するアンモニア(アンモニウムイオン)の発生が促進され得る高湿環境下において、脱色を効果的に抑制し得る。一方、偏光膜の第二主面に隣接する層から粘着剤層に隣接する層までの積層部分の40℃および92%RHにおける透湿度は、例えば1g/m・24h以上である。なお、隣接とは、直接隣り合っているだけでなく、接着層を介して隣り合っていることも包含する。 The moisture permeability at 40° C. and 92% RH of the laminated portion from the layer adjacent to the second main surface 11b of the polarizing film 11 to the layer adjacent to the adhesive layer 40 is preferably 200 g/m 2 ·24 h or less, It is more preferably 150 g/m 2 ·24h or less, still more preferably 100 g/m 2 ·24h or less, and particularly preferably 50 g/m 2 ·24h or less. With such a configuration, decolorization can be suppressed more effectively. Specifically, decolorization can be effectively suppressed in a high-humidity environment in which generation of ammonia (ammonium ion), which will be described later, can be accelerated. On the other hand, the moisture permeability at 40° C. and 92% RH of the laminated portion from the layer adjacent to the second main surface of the polarizing film to the layer adjacent to the pressure-sensitive adhesive layer is, for example, 1 g/m 2 ·24 h or more. Note that "adjacent" includes not only direct adjacency but also adjacency via an adhesive layer.
A.偏光板
 上記偏光板は、偏光膜と保護層とを含む。代表的には、偏光板は、偏光膜と保護層とを接着層を介して積層することにより得ることができる。
A. Polarizing Plate The polarizing plate includes a polarizing film and a protective layer. Typically, a polarizing plate can be obtained by laminating a polarizing film and a protective layer via an adhesive layer.
A-1.偏光膜
 上記偏光膜は、代表的には、二色性物質を含む樹脂フィルムである。二色性物質としては、好ましくは、ヨウ素が用いられる。樹脂フィルムとしては、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムが挙げられる。
A-1. Polarizing Film The polarizing film is typically a resin film containing a dichroic substance. Iodine is preferably used as the dichroic substance. Examples of resin films include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films.
 偏光膜の厚みは、好ましくは12μm以下であり、より好ましくは10μm以下であり、さらに好ましくは8μm以下である。一方、偏光膜の厚みは、好ましくは1μm以上である。 The thickness of the polarizing film is preferably 12 μm or less, more preferably 10 μm or less, and even more preferably 8 μm or less. On the other hand, the thickness of the polarizing film is preferably 1 μm or more.
 偏光膜は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光膜の単体透過率は、例えば41.5%~48.0%であり、好ましくは42.0%~46.0%である。偏光膜の偏光度は、例えば90.0%以上であり、好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizing film is, for example, 41.5% to 48.0%, preferably 42.0% to 46.0%. The polarization degree of the polarizing film is, for example, 90.0% or more, preferably 99.0% or more, and more preferably 99.9% or more.
 偏光膜は、任意の適切な方法で作製し得る。具体的には、偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。 The polarizing film can be produced by any appropriate method. Specifically, the polarizing film may be produced from a single-layer resin film, or may be produced using a laminate of two or more layers.
 上記単層の樹脂フィルムから偏光膜を作製する方法は、代表的には、樹脂フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理と延伸処理とを施すことを含む。樹脂フィルムとしては、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムが用いられる。当該方法は、不溶化処理、膨潤処理、架橋処理等をさらに含んでいてもよい。このような製造方法は、当業界で周知慣用であるので、詳細な説明は省略する。 The method of producing a polarizing film from the above single-layer resin film typically includes subjecting the resin film to a dyeing treatment with a dichroic substance such as iodine or a dichroic dye and a stretching treatment. As the resin film, for example, hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films are used. The method may further include an insolubilization treatment, a swelling treatment, a cross-linking treatment, and the like. Since such a manufacturing method is well known and commonly used in the industry, detailed description thereof will be omitted.
 上記積層体を用いて得られる偏光膜は、例えば、樹脂基材と樹脂フィルムまたは樹脂層(代表的には、PVA系樹脂層)との積層体を用いて作製され得る。具体的には、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とPVA系樹脂とを含むPVA系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成し得る。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成し得る。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、PVA分子の配向の乱れ、および配向性の低下が抑制され得、高い光学特性を達成し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、高い光学特性を達成し得る。得られた樹脂基材/偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に保護層を積層して偏光板が得られ得る。このような偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 A polarizing film obtained using the laminate can be produced, for example, using a laminate of a resin substrate and a resin film or resin layer (typically, a PVA-based resin layer). Specifically, a PVA-based resin solution is applied to a resin base material, dried to form a PVA-based resin layer on the resin base material, and a laminate of the resin base material and the PVA-based resin layer is obtained; stretching and dyeing the laminate to make the PVA-based resin layer into a polarizing film; In this embodiment, preferably, a PVA-based resin layer containing a halide and a PVA-based resin is formed on one side of the resin substrate. Stretching typically includes immersing the laminate in an aqueous boric acid solution for stretching. Furthermore, stretching may further include stretching the laminate in air at a high temperature (eg, 95° C. or higher) before stretching in an aqueous boric acid solution, if necessary. In addition, in the present embodiment, the laminate is preferably subjected to drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink the laminate by 2% or more in the width direction. Typically, the manufacturing method of the present embodiment includes subjecting the laminate to an in-air auxiliary stretching treatment, a dyeing treatment, an underwater stretching treatment, and a drying shrinkage treatment in this order. By introducing auxiliary stretching, it is possible to improve the crystallinity of PVA and achieve high optical properties even when PVA is applied onto a thermoplastic resin. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of orientation and dissolution of PVA when immersed in water in the subsequent dyeing process or stretching process, resulting in high optical properties. can be achieved. Furthermore, when the PVA-based resin layer is immersed in a liquid, compared with the case where the PVA-based resin layer does not contain a halide, the disturbance of the orientation of the PVA molecules and the deterioration of the orientation can be suppressed, and high optical properties can be obtained. achievable. Furthermore, high optical properties can be achieved by shrinking the laminate in the width direction by drying shrinkage treatment. A polarizing plate can be obtained by laminating a protective layer on the peeled surface of the obtained resin substrate/polarizing film laminate, or on the surface opposite to the peeled surface. Details of the method for manufacturing such a polarizing film are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. These publications are incorporated herein by reference in their entireties.
A-2.保護層
 上記保護層は、偏光膜の保護層として使用できる任意の適切なフィルムで形成され得る。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン等のシクロオレフィン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の樹脂が挙げられる。
A-2. Protective Layer The protective layer may be formed of any suitable film that can be used as a protective layer for a polarizing film. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based resins such as polyethylene terephthalate, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, and polyethersulfone. polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based, (meth)acrylic-based, and acetate-based resins.
 本発明の実施形態による位相差層付偏光板は、代表的には、画像表示装置の視認側に配置され、保護層は、視認側に配置される。したがって、保護層には、必要に応じて、ハードコート(HC)処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。 The polarizing plate with a retardation layer according to the embodiment of the present invention is typically arranged on the viewing side of the image display device, and the protective layer is arranged on the viewing side. Therefore, the protective layer may be subjected to surface treatment such as hard coat (HC) treatment, anti-reflection treatment, anti-sticking treatment, anti-glare treatment, etc., if necessary.
 保護層の厚みは、好ましくは30μm未満であり、より好ましくは28μm以下である。一方、保護層の厚みは、好ましくは11μm以上であり、より好ましくは13μm以上である。なお、上記表面処理が施されている場合、保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer is preferably less than 30 µm, more preferably 28 µm or less. On the other hand, the thickness of the protective layer is preferably 11 μm or more, more preferably 13 μm or more. In addition, when the said surface treatment is performed, the thickness of a protective layer is thickness including the thickness of a surface treatment layer.
 1つの実施形態においては、保護層の40℃および92%RHにおける透湿度は、150g/m・24h以下であり、100g/m・24h以下であってもよく、50g/m・24h以下であってもよい。この場合、保護層を構成する材料としては、例えば、シクロオレフィン系樹脂、ポリカーボネート系樹脂、(メタ)アクリル系樹脂およびポリエステル系樹脂から選択される少なくとも1つが用いられる。このような形態においては、後述するアンモニア(アンモニウムイオン)が偏光板(偏光膜)内に閉じ込められやすく(偏光板の外へ排出されにくく)、脱色が起こりやすい傾向にある。本発明の実施形態によれば、このような保護層が設けられていても、脱色を抑制することができる。 In one embodiment, the moisture permeability of the protective layer at 40° C. and 92% RH is 150 g/m 2 ·24 h or less, may be 100 g/m 2 ·24 h or less, or 50 g/m 2 ·24 h It may be below. In this case, at least one selected from cycloolefin-based resins, polycarbonate-based resins, (meth)acrylic-based resins, and polyester-based resins is used as the material constituting the protective layer. In such a form, ammonia (ammonium ion), which will be described later, is likely to be confined within the polarizing plate (polarizing film) (difficult to be discharged to the outside of the polarizing plate), and decoloration tends to occur. According to the embodiment of the present invention, decolorization can be suppressed even if such a protective layer is provided.
B.位相差層
 上記位相差層の厚みは、その構成(単一層であるか積層構造を有するか)にもよるが、好ましくは10μm以下であり、より好ましくは8μm以下であり、さらに好ましくは7μm以下である。一方、位相差層の厚みは、例えば0.5μm以上である。なお、位相差層が積層構造である場合、「位相差層の厚み」は、各位相差層の厚みの合計を意味する。具体的には、「位相差層の厚み」には接着層の厚みは含まれない。
B. Retardation layer The thickness of the retardation layer is preferably 10 µm or less, more preferably 8 µm or less, and even more preferably 7 µm or less, depending on its configuration (whether it is a single layer or has a laminated structure). is. On the other hand, the thickness of the retardation layer is, for example, 0.5 μm or more. When the retardation layer has a laminated structure, the "thickness of the retardation layer" means the total thickness of each retardation layer. Specifically, the "thickness of the retardation layer" does not include the thickness of the adhesive layer.
 位相差層としては、好ましくは、液晶化合物の配向固化層(液晶配向固化層)が用いられる。液晶化合物を用いることにより、例えば、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。したがって、位相差層付偏光板の顕著な薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。位相差層においては、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。 As the retardation layer, an alignment solidified layer of a liquid crystal compound (liquid crystal alignment solidified layer) is preferably used. By using a liquid crystal compound, for example, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. thickness can be significantly reduced. Therefore, it is possible to realize a remarkable thinning of the polarizing plate with the retardation layer. As used herein, the term "fixed alignment layer" refers to a layer in which a liquid crystal compound is aligned in a predetermined direction and the alignment state is fixed. In addition, the "alignment fixed layer" is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later. In the retardation layer, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the retardation layer (homogeneous alignment).
 上記液晶配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 The liquid crystal alignment fixed layer is formed by subjecting the surface of a predetermined base material to an alignment treatment, coating the surface with a coating liquid containing a liquid crystal compound, and orienting the liquid crystal compound in a direction corresponding to the alignment treatment. It can be formed by fixing the orientation state. Any appropriate orientation treatment can be adopted as the orientation treatment. Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment. Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment. Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。  The alignment of the liquid crystal compound is performed by processing at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the alignment fixed layer are described in JP-A-2006-163343. The description of the publication is incorporated herein by reference.
 位相差層は、上述のとおり、単一層であってもよいし、二層以上の積層構造を有していてもよい。 As described above, the retardation layer may be a single layer or may have a laminated structure of two or more layers.
 図示例とは異なり、位相差層が単一層である場合、位相差層は、λ/4板として機能し得る。具体的には、位相差層のRe(550)は、好ましくは100nm~180nmであり、より好ましくは110nm~170nmであり、さらに好ましくは110nm~160nmである。位相差層の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得る。位相差層が上述の液晶配向固化層である場合、その厚みは、例えば1.0μm~2.5μmである。本実施形態においては、位相差層の遅相軸と偏光膜の吸収軸とのなす角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは44°~46°である。また、位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示すことが好ましい。 Unlike the illustrated example, when the retardation layer is a single layer, the retardation layer can function as a λ/4 plate. Specifically, Re(550) of the retardation layer is preferably 100 nm to 180 nm, more preferably 110 nm to 170 nm, still more preferably 110 nm to 160 nm. The thickness of the retardation layer can be adjusted so as to obtain the desired in-plane retardation of the λ/4 plate. When the retardation layer is the liquid crystal alignment fixing layer described above, its thickness is, for example, 1.0 μm to 2.5 μm. In the present embodiment, the angle between the slow axis of the retardation layer and the absorption axis of the polarizing film is preferably 40° to 50°, more preferably 42° to 48°, and even more preferably 44°. ° to 46°. Moreover, the retardation layer preferably exhibits reverse dispersion wavelength characteristics in which the retardation value increases according to the wavelength of the measurement light.
 図示するように、位相差層20が積層構造を有する場合、位相差層20は、例えば、偏光板10側から順に第一位相差層(H層)21と第二位相差層(Q層)22とが配置された、二層の積層構造を有する。H層は、代表的にはλ/2板として機能し得、Q層は、代表的にはλ/4板として機能し得る。具体的には、H層のRe(550)は好ましくは200nm~300nmであり、より好ましくは220nm~290nmであり、さらに好ましくは230nm~280nmであり;Q層のRe(550)は、好ましくは100nm~180nmであり、より好ましくは110nm~170nmであり、さらに好ましくは110nm~150nmである。H層の厚みは、λ/2板の所望の面内位相差が得られるよう調整され得る。H層が上述の液晶配向固化層である場合、その厚みは、例えば2.0μm~4.0μmである。Q層の厚みは、λ/4板の所望の面内位相差が得られるよう調整され得る。Q層が上述の液晶配向固化層である場合、その厚みは、例えば0.5μm~2.5μmである。本実施形態においては、H層の遅相軸と偏光膜の吸収軸とのなす角度は、好ましくは10°~20°であり、より好ましくは12°~18°であり、さらに好ましくは12°~16°であり;Q層の遅相軸と偏光膜の吸収軸とのなす角度は、好ましくは70°~80°であり、より好ましくは72°~78°であり、さらに好ましくは72°~76°である。位相差層20が積層構造を有する場合、それぞれの層(例えば、H層およびQ層)は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 As illustrated, when the retardation layer 20 has a laminated structure, the retardation layer 20 includes, for example, a first retardation layer (H layer) 21 and a second retardation layer (Q layer) in order from the polarizing plate 10 side. 22 are arranged in a two-layer laminated structure. The H layer can typically function as a λ/2 plate and the Q layer can typically function as a λ/4 plate. Specifically, Re(550) of the H layer is preferably 200 nm to 300 nm, more preferably 220 nm to 290 nm, still more preferably 230 nm to 280 nm; Re(550) of the Q layer is preferably It is 100 nm to 180 nm, more preferably 110 nm to 170 nm, even more preferably 110 nm to 150 nm. The thickness of the H layer can be adjusted to obtain the desired in-plane retardation of the λ/2 plate. When the H layer is the liquid crystal alignment fixing layer described above, its thickness is, for example, 2.0 μm to 4.0 μm. The thickness of the Q layer can be adjusted to obtain the desired in-plane retardation of the λ/4 plate. When the Q layer is the liquid crystal alignment fixing layer described above, its thickness is, for example, 0.5 μm to 2.5 μm. In the present embodiment, the angle between the slow axis of the H layer and the absorption axis of the polarizing film is preferably 10° to 20°, more preferably 12° to 18°, still more preferably 12°. ~16°; the angle formed by the slow axis of the Q layer and the absorption axis of the polarizing film is preferably 70° to 80°, more preferably 72° to 78°, still more preferably 72° ~76°. When the retardation layer 20 has a laminated structure, each layer (for example, the H layer and the Q layer) may exhibit reverse dispersion wavelength characteristics in which the retardation value increases according to the wavelength of the measurement light. It may exhibit a positive wavelength dispersion characteristic in which the value decreases according to the wavelength of the measurement light, or may exhibit a flat wavelength dispersion characteristic in which the retardation value hardly changes even with the wavelength of the measurement light.
 位相差層(積層構造を有する場合には少なくとも一つの層)は、代表的には、屈折率特性がnx>ny=nzの関係を示す。なお、「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。 A retardation layer (at least one layer if it has a laminated structure) typically exhibits a relationship of nx>ny=nz in refractive index characteristics. Note that "ny=nz" includes not only the case where ny and nz are completely equal but also the case where they are substantially equal. Therefore, ny>nz or ny<nz may be satisfied within a range that does not impair the effects of the present invention. The Nz coefficient of the retardation layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3.
 上述のとおり、位相差層は、好ましくは液晶配向固化層である。上記液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 As described above, the retardation layer is preferably a liquid crystal alignment fixed layer. Examples of the liquid crystal compound include a liquid crystal compound having a nematic liquid crystal phase (nematic liquid crystal). As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. Either lyotropic or thermotropic mechanism may be used to develop the liquid crystallinity of the liquid crystal compound. The liquid crystal polymer and liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, the alignment state can be fixed by polymerizing or cross-linking the liquid crystal monomers. Here, a polymer is formed by polymerization and a three-dimensional network structure is formed by cross-linking, but these are non-liquid crystalline. Therefore, the formed retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a change in temperature, which is peculiar to liquid crystalline compounds. As a result, the retardation layer becomes a highly stable retardation layer that is not affected by temperature changes.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、ネマチック性液晶モノマーが好ましい。 Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer. For example, polymerizable mesogenic compounds described in JP-T-2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4408171, and GB2280445 can be used. Specific examples of such polymerizable mesogenic compounds include LC242 (trade name) available from BASF, E7 (trade name) available from Merck, and LC-Sillicon-CC3767 (trade name) available from Wacker-Chem. A nematic liquid crystal monomer is preferable as the liquid crystal monomer.
C.無機膜
 無機膜30は、ケイ素を含む。具体的には、ケイ素化合物を含む。ケイ素化合物としては、例えば、酸化ケイ素、炭化ケイ素、および、これらの複合体が挙げられる。好ましくは、無機膜は、酸化ケイ素、炭化ケイ素、および、これらの複合体からなる群から選択される少なくとも1つを含む。このような無機膜を設けることにより、脱色を抑制し得る。本発明者らは、位相差層付偏光板を画像表示装置(代表的には、有機EL表示装置)に適用した場合に、位相差層付偏光板が脱色するという新たな課題に直面し、当該課題について鋭意検討した結果、脱色の原因は、画像表示パネルを構成する部材に由来するアンモニア(実質的には、アンモニウムイオン)であることを発見した。このような無機膜を設けることにより、偏光膜11に到達するアンモニアをできる限り遮断し、脱色を抑制することができる。具体的には、偏光膜に含まれる二色性物質(代表的には、ヨウ素錯体)の分解が抑制され得る。好ましくは、無機膜は、炭化ケイ素または酸化炭化ケイ素の少なくとも1つを含む。このような材料を用いることにより、信頼性が向上し得る。
C. Inorganic Film The inorganic film 30 contains silicon. Specifically, it contains a silicon compound. Silicon compounds include, for example, silicon oxide, silicon carbide, and composites thereof. Preferably, the inorganic film contains at least one selected from the group consisting of silicon oxide, silicon carbide, and composites thereof. Decolorization can be suppressed by providing such an inorganic film. The present inventors faced a new problem that the retardation layer-attached polarizing plate decolors when applied to an image display device (typically, an organic EL display device). As a result of intensive studies on the subject, the inventors discovered that the cause of the decoloration is ammonia (substantially, ammonium ions) derived from the members constituting the image display panel. By providing such an inorganic film, ammonia reaching the polarizing film 11 can be blocked as much as possible, and decolorization can be suppressed. Specifically, decomposition of a dichroic substance (typically an iodine complex) contained in the polarizing film can be suppressed. Preferably, the inorganic membrane comprises at least one of silicon carbide or silicon carbide oxide. Reliability can be improved by using such materials.
 無機膜の厚みは、例えば30nm以上であり、好ましくは50nm以上であり、より好ましくは70nm以上であり、さらに好ましくは90nm以上である。このような厚みによれば、より効果的に脱色を抑制し得る。一方、無機膜の厚みは、好ましくは400nm未満であり、より好ましくは350nm以下であり、さらに好ましくは300nm以下であり、特に好ましくは250nm以下であり、200nm以下であってもよい。無機膜を採用することにより、このような厚みにおいても脱色を良好に抑制し得る。また、このような厚みによれば、優れた信頼性が得られ得る。例えば、クラックの発生を防止し得る。 The thickness of the inorganic film is, for example, 30 nm or more, preferably 50 nm or more, more preferably 70 nm or more, and still more preferably 90 nm or more. With such a thickness, decolorization can be suppressed more effectively. On the other hand, the thickness of the inorganic film is preferably less than 400 nm, more preferably 350 nm or less, still more preferably 300 nm or less, particularly preferably 250 nm or less, and may be 200 nm or less. By adopting an inorganic film, decolorization can be satisfactorily suppressed even with such a thickness. Also, with such a thickness, excellent reliability can be obtained. For example, cracks can be prevented from occurring.
 無機膜は、任意の適切な方法により成膜され得る。例えば、真空蒸着、スパッタリング等の物理蒸着、化学蒸着により成膜され得る。化学蒸着法の場合、低温プロセスで成膜が可能で、成膜対象に熱による損傷が与えられないという観点から、プラズマ化学気相蒸着(CVD)が好ましい。具体的には、無機膜は蒸着膜である。この場合、無機膜は、隣接する層(例えば、位相差層、偏光膜)表面に直接成膜することができる。無機膜は、平面視で偏光膜と重畳する領域に部分的に形成されていてもよいが、全体に亘って形成されていることが好ましい。 The inorganic film can be deposited by any appropriate method. For example, the film can be formed by vacuum deposition, physical vapor deposition such as sputtering, or chemical vapor deposition. In the case of chemical vapor deposition, plasma chemical vapor deposition (CVD) is preferable from the viewpoint that film formation is possible in a low-temperature process and the object to be film-formed is not damaged by heat. Specifically, the inorganic film is a deposited film. In this case, the inorganic film can be formed directly on the surface of the adjacent layer (for example, retardation layer, polarizing film). The inorganic film may be partially formed in a region overlapping the polarizing film in plan view, but is preferably formed over the entire area.
D.粘着剤層
 粘着剤層40の厚みは、好ましくは10μm~20μmである。粘着剤層は、任意の適切な粘着剤で構成され得る。具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、およびポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。ベース樹脂は、好ましくはアクリル系樹脂である(具体的には、粘着剤層は、好ましくはアクリル系粘着剤で構成される)。
D. Adhesive Layer The thickness of the adhesive layer 40 is preferably 10 μm to 20 μm. The adhesive layer can be composed of any appropriate adhesive. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination and compounding ratio of the monomers forming the base resin of the adhesive, as well as the compounding amount of the cross-linking agent, the reaction temperature, the reaction time, etc., an adhesive having desired properties according to the purpose. can be prepared. The base resin of the adhesive may be used alone or in combination of two or more. The base resin is preferably an acrylic resin (specifically, the pressure-sensitive adhesive layer is preferably composed of an acrylic pressure-sensitive adhesive).
E.位相差層付偏光板の作製
 本発明の実施形態による位相差層付偏光板は、代表的には、上記偏光板と上記位相差層とを積層することにより得ることができる。偏光板と位相差層との積層は、例えば、これらをロール搬送しながら(いわゆるロールトゥロールにより)行われる。積層は、代表的には、基材に形成された液晶配向固化層を転写することにより行われる。図示するように、位相差層が積層構造を有する場合には、それぞれの位相差層を偏光板に順次積層(転写)してもよく、位相差層どうしを予め積層した積層体を偏光板に積層(転写)してもよい。
E. Preparation of polarizing plate with retardation layer The polarizing plate with retardation layer according to the embodiment of the present invention can be typically obtained by laminating the polarizing plate and the retardation layer. The lamination of the polarizing plate and the retardation layer is performed, for example, while transporting them by roll (so-called roll-to-roll). Lamination is typically performed by transferring a liquid crystal alignment solidified layer formed on a substrate. As shown in the figure, when the retardation layer has a laminated structure, each retardation layer may be sequentially laminated (transferred) to the polarizing plate, and a laminate in which the retardation layers are laminated in advance is attached to the polarizing plate. It may be laminated (transferred).
 上記無機膜は、所望の位置に配置されるように、適切なタイミングで成膜され得る。具体的には、偏光板と位相差層との積層前に成膜してもよいし、偏光板と位相差層との積層後に成膜してもよい。 The inorganic film can be deposited at an appropriate timing so as to be arranged at a desired position. Specifically, the film may be formed before laminating the polarizing plate and the retardation layer, or may be formed after laminating the polarizing plate and the retardation layer.
F.画像表示装置
 上記位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明の実施形態による画像表示装置は、上記位相差層付偏光板を有する。
F. Image Display Device The retardation layer-attached polarizing plate can be applied to an image display device. Therefore, an image display device according to an embodiment of the present invention has the retardation layer-attached polarizing plate.
 図2は、本発明の1つの実施形態による画像表示装置の概略の構成を、有機EL表示装置を例にして示す模式図である。具体的には、本発明の1つの実施形態による有機EL表示装置において、有機ELパネルに位相差層付偏光板が配置された状態の概略を示す模式的な断面図である。有機ELパネル200において位相差層付偏光板100は、無機膜30が偏光膜11よりも有機ELパネル本体70側となるように配置されている。具体的には、有機ELパネル本体70に位相差層付偏光板100は粘着剤層40によって貼り付けられている。 FIG. 2 is a schematic diagram showing a schematic configuration of an image display device according to one embodiment of the present invention, using an organic EL display device as an example. Specifically, in an organic EL display device according to one embodiment of the present invention, it is a schematic cross-sectional view showing an outline of a state in which a polarizing plate with a retardation layer is arranged on an organic EL panel. In the organic EL panel 200 , the retardation layer-equipped polarizing plate 100 is arranged so that the inorganic film 30 is closer to the organic EL panel main body 70 than the polarizing film 11 . Specifically, the retardation layer-equipped polarizing plate 100 is attached to the organic EL panel main body 70 with the adhesive layer 40 .
 有機ELパネル本体70は、基板71と、薄膜トランジスタ(TFT)等を含む回路層、有機発光ダイオード(OLED)、OLEDを封止する封止膜等を含む上部構造層72とを有する。例えば、基板71として可撓性基板(例えば、樹脂基板)を用いる場合、得られる有機EL表示装置は、湾曲、屈曲、折り曲げ、巻き取りなどが実現され得る。上部構造層72には、例えば、窒素含有層(例えば、窒化ケイ素、酸化窒化ケイ素等の窒化物層)が含まれ、上部構造層72からアンモニア(アンモニウムイオン)が生じ得る。上記位相差層付偏光板によれば、画像表示装置において、脱色が顕著に抑制され得る。また、画像表示パネル本体の構成を設計変更することなく、脱色の課題を解決し得る。 The organic EL panel main body 70 has a substrate 71 and an upper structure layer 72 including a circuit layer including thin film transistors (TFTs) and the like, an organic light emitting diode (OLED), a sealing film for sealing the OLED, and the like. For example, when a flexible substrate (for example, a resin substrate) is used as the substrate 71, the resulting organic EL display device can be curved, bent, bent, rolled up, and the like. The upper structural layer 72 includes, for example, a nitrogen-containing layer (eg, a nitride layer such as silicon nitride, silicon oxynitride, etc.), and ammonia (ammonium ions) can be generated from the upper structural layer 72 . According to the retardation layer-attached polarizing plate, discoloration can be remarkably suppressed in an image display device. Also, the problem of decolorization can be solved without changing the design of the image display panel main body.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みおよび透湿度は下記の測定方法により測定した値である。また、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
1.厚み
 10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
2.透湿度
 透湿度を、カップ法(JIS Z 0208)により求めた。
EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples. The thickness and moisture permeability are values measured by the following measuring methods. In addition, unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are by weight.
1. Thickness The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). A thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”).
2. Moisture Permeability Moisture permeability was determined by the cup method (JIS Z 0208).
[実施例1]
(偏光板の作製)
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、この樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1の重量比で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。
 このようにして、樹脂基材上に厚み5.4μmの偏光膜を形成し、樹脂基材/偏光膜の構成を有する積層体を得た。
[Example 1]
(Preparation of polarizing plate)
As a thermoplastic resin substrate, a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a Tg of about 75° C. was used, and one side of this resin substrate was subjected to corona treatment. .
PVA-based resin obtained by mixing polyvinyl alcohol (degree of polymerization: 4200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER") at a weight ratio of 9:1. 13 parts by weight of potassium iodide was added to 100 parts by weight and dissolved in water to prepare an aqueous PVA solution (coating liquid).
The above PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 μm, thereby producing a laminate.
The resulting laminate was uniaxially stretched 2.4 times in the machine direction (longitudinal direction) in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
Next, the finally obtained polarizing film is placed in a dyeing bath (iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was a desired value (dyeing treatment).
Next, it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 40°C (an aqueous solution of boric acid obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water). (crosslinking treatment).
After that, while immersing the laminate in an aqueous solution of boric acid (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70° C., the laminate was moved vertically (longitudinally) between rolls with different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
After that, the laminate was immersed in a washing bath (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (washing treatment).
Thereafter, while drying in an oven maintained at about 90° C., it was brought into contact with a heating roll made of SUS whose surface temperature was maintained at about 75° C. (dry shrinkage treatment).
In this manner, a polarizing film having a thickness of 5.4 μm was formed on the resin base material to obtain a laminate having a structure of resin base material/polarizing film.
 得られた積層体の偏光膜側に、紫外線硬化型接着剤(硬化後の厚み1.5μm)を介して、HC層が形成されたCOPフィルム(厚み:27μm、40℃および92%RHにおける透湿度:20g/m・24h)を保護層として貼り合わせた。その後、偏光膜から樹脂基材を剥離し、HC層/COPフィルム/接着剤層/偏光膜の構成を有する偏光板を得た。
 なお、HC層が形成されたCOPフィルムは、シクロオレフィン系未延伸フィルム(日本ゼオン社製、厚み25μm)に、厚み2μmのハードコート層を形成することにより得た。
A COP film (thickness: 27 μm, transparent at 40° C. and 92% RH) having an HC layer formed thereon was placed on the polarizing film side of the obtained laminate via an ultraviolet curable adhesive (thickness after curing: 1.5 μm). Humidity: 20 g/m 2 · 24 h) was laminated as a protective layer. Thereafter, the resin substrate was peeled off from the polarizing film to obtain a polarizing plate having a structure of HC layer/COP film/adhesive layer/polarizing film.
The COP film on which the HC layer was formed was obtained by forming a 2 μm-thick hard coat layer on a cycloolefin-based unstretched film (manufactured by Nippon Zeon Co., Ltd., thickness 25 μm).
(位相差層の作製)
 ネマチック液晶相を示す重合性液晶(BASF社製:商品名「Paliocolor LC242」、下記式で表される)10gと、当該重合性液晶化合物に対する光重合開始剤(BASF社製:商品名「イルガキュア907」)3gとを、トルエン40gに溶解して、液晶組成物(塗工液)を調製した。
Figure JPOXMLDOC01-appb-C000001
(Production of retardation layer)
Polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name “Paliocolor LC242”, represented by the following formula) 10 g, and a photopolymerization initiator for the polymerizable liquid crystal compound (manufactured by BASF: trade name “Irgacure 907 ”) was dissolved in 40 g of toluene to prepare a liquid crystal composition (coating liquid).
Figure JPOXMLDOC01-appb-C000001
 ポリエチレンテレフタレート(PET)フィルム(厚み38μm)表面を、ラビング布を用いてラビングし、配向処理を施した。配向処理の方向は、偏光板に貼り合わせる際に偏光膜の吸収軸の方向に対して視認側から見て15°方向となるようにした。この配向処理表面に、上記液晶塗工液をバーコーターにより塗工し、90℃で2分間加熱乾燥することによって液晶化合物を配向させた。このようにして形成された液晶層に、メタルハライドランプを用いて1mJ/cmの光を照射し、当該液晶層を硬化させることによって、PETフィルム上に液晶配向固化層A(H層)を形成した。液晶配向固化層Aの厚みは2.5μm、面内位相差Re(550)は270nmであった。さらに、液晶配向固化層Aは、nx>ny=nzの屈折率特性を示した。 The surface of a polyethylene terephthalate (PET) film (thickness: 38 μm) was rubbed with a rubbing cloth and subjected to orientation treatment. The direction of the orientation treatment was set at 15° to the direction of the absorption axis of the polarizing film when viewed from the viewing side when the film was attached to the polarizing plate. The above liquid crystal coating solution was applied to the alignment-treated surface using a bar coater, and dried by heating at 90° C. for 2 minutes to align the liquid crystal compound. The liquid crystal layer thus formed is irradiated with light of 1 mJ/cm 2 using a metal halide lamp to cure the liquid crystal layer, thereby forming a liquid crystal alignment fixed layer A (H layer) on the PET film. bottom. The liquid crystal alignment fixed layer A had a thickness of 2.5 μm and an in-plane retardation Re (550) of 270 nm. Furthermore, the liquid crystal alignment fixed layer A exhibited refractive index characteristics of nx>ny=nz.
 塗工厚みを変更したこと、および、配向処理方向を偏光膜の吸収軸の方向に対して視認側から見て75°方向となるようにしたこと以外は上記と同様にして、PETフィルム上に液晶配向固化層B(Q層)を形成した。液晶配向固化層Bの厚みは1.5μm、面内位相差Re(550)は140nmであった。さらに、液晶配向固化層Bは、nx>ny=nzの屈折率特性を示した。 On the PET film, in the same manner as above, except that the coating thickness was changed and the orientation treatment direction was set to be 75° to the direction of the absorption axis of the polarizing film when viewed from the viewing side. A liquid crystal alignment fixed layer B (Q layer) was formed. The liquid crystal alignment fixed layer B had a thickness of 1.5 μm and an in-plane retardation Re (550) of 140 nm. Furthermore, the liquid crystal alignment fixed layer B exhibited refractive index characteristics of nx>ny=nz.
(位相差層付偏光板の作製)
 得られた偏光板の偏光膜側に、得られた液晶配向固化層A(H層)および液晶配向固化層B(Q層)をこの順に転写した。このとき、偏光膜の吸収軸と配向固化層Aの遅相軸とのなす角度が15°、偏光膜の吸収軸と配向固化層Bの遅相軸とのなす角度が75°になるようにして転写(貼り合わせ)を行った。それぞれの転写は、ロール搬送しながら、紫外線硬化型接着剤(硬化後の厚み1μm)を介して行った。
(Preparation of polarizing plate with retardation layer)
The obtained liquid crystal alignment fixed layer A (H layer) and liquid crystal alignment fixed layer B (Q layer) were transferred in this order to the polarizing film side of the obtained polarizing plate. At this time, the angle between the absorption axis of the polarizing film and the slow axis of the oriented fixed layer A was set to 15°, and the angle between the absorption axis of the polarizing film and the slow axis of the oriented fixed layer B was set to 75°. Then, transfer (bonding) was performed. Each transfer was performed through an ultraviolet curable adhesive (having a thickness of 1 μm after curing) while being conveyed by rolls.
 その後、液晶配向固化層Bの表面に、厚み50nmの酸化炭化ケイ素膜を成膜した。具体的には、ロールトゥロール方式のCVD成膜装置に液晶配向固化層を積層した偏光板をセットし、真空チャンバー内を1×10-3Paまで減圧した後、偏光板を走行させながら、基板温度12℃、成膜材料である加熱気化させたヘキサメチルジシロキサン(HMDSО)および酸素を、それぞれ、流量25sccm、流量700sccmの条件でチャンバー内に導入して気圧1.0Pa程度とし、プラズマ発生用電源の周波数80kHz、電力1.0kWの条件で放電してプラズマを発生させ、成膜を行った。
 次いで、酸化炭化ケイ素膜の表面にアクリル系粘着剤で厚み15μmの粘着剤層を形成し、位相差層付偏光板を得た。
 得られた位相差層付偏光板において、液晶配向固化層Aから酸化炭化ケイ素膜までの積層部分の40℃および92%RHにおける透湿度は50g/m・24hであった。
Thereafter, a silicon carbide oxide film having a thickness of 50 nm was formed on the surface of the liquid crystal alignment fixed layer B. Specifically, a polarizing plate laminated with a liquid crystal alignment fixed layer is set in a roll-to-roll CVD film forming apparatus, and after the pressure in the vacuum chamber is reduced to 1×10 −3 Pa, while the polarizing plate is running, Hexamethyldisiloxane (HMDSO) and oxygen vaporized by heating, which are film forming materials, were introduced into the chamber under the conditions of a substrate temperature of 12° C., a flow rate of 25 sccm and a flow rate of 700 sccm, respectively, and the pressure was set to about 1.0 Pa to generate plasma. A plasma was generated by discharging under the conditions of a power supply frequency of 80 kHz and a power of 1.0 kW to form a film.
Next, an adhesive layer having a thickness of 15 μm was formed on the surface of the silicon carbide oxide film using an acrylic adhesive to obtain a polarizing plate with a retardation layer.
In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment solid layer A to the silicon carbide oxide film was 50 g/m 2 ·24 h.
[実施例2]
 酸化炭化ケイ素膜の厚みを200nmとしたこと以外は実施例1と同様にして、位相差層付偏光板を得た。
 得られた位相差層付偏光板において、液晶配向固化層Aから酸化炭化ケイ素膜までの積層部分の40℃および92%RHにおける透湿度は30g/m・24hであった。
[Example 2]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that the thickness of the silicon carbide oxide film was 200 nm.
In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment solid layer A to the silicon carbide oxide film was 30 g/m 2 ·24 h.
[実施例3]
 酸化炭化ケイ素膜の厚みを400nmとしたこと以外は実施例1と同様にして、位相差層付偏光板を得た。
 得られた位相差層付偏光板において、液晶配向固化層Aから酸化炭化ケイ素膜までの積層部分の40℃および92%RHにおける透湿度は20g/m・24hであった。
[Example 3]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that the thickness of the silicon carbide oxide film was 400 nm.
In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment fixed layer A to the silicon carbide oxide film was 20 g/m 2 ·24 h.
[比較例1]
 酸化炭化ケイ素膜を成膜しなかったこと以外は実施例1と同様にして、位相差層付偏光板を得た。
 得られた位相差層付偏光板において、液晶配向固化層Aから液晶配向固化層Bまでの積層部分の40℃および92%RHにおける透湿度は400~500g/m・24hであった。
[Comparative Example 1]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that no silicon carbide oxide film was formed.
In the obtained polarizing plate with a retardation layer, the laminated portion from the liquid crystal alignment fixed layer A to the liquid crystal alignment fixed layer B had a moisture permeability at 40° C. and 92% RH of 400 to 500 g/m 2 ·24 h.
[比較例2]
 厚み50nmの酸化炭化ケイ素膜を成膜するかわりに、厚み400nmの有機膜を形成したこと以外は実施例1と同様にして、位相差層付偏光板を得た。
 具体的には、アクリル系樹脂(楠本化成社製、製品名「B-811」)15部と熱可塑性エポキシ樹脂(三菱ケミカル株式会社製、商品名「jER(登録商標)YX6954BH30」)85部(固形分換算)とをメチルエチルケトン80部に溶解し、樹脂溶液(20%)を得た。この樹脂溶液を液晶配向固化層Bの表面にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、有機膜を形成した。
 得られた位相差層付偏光板において、液晶配向固化層Aから有機膜までの積層部分の40℃および92%RHにおける透湿度は400~500g/m・24hであった。
[Comparative Example 2]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1, except that an organic film having a thickness of 400 nm was formed instead of forming a silicon carbide oxide film having a thickness of 50 nm.
Specifically, acrylic resin (manufactured by Kusumoto Kasei Co., Ltd., product name "B-811") 15 parts and thermoplastic epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name "jER (registered trademark) YX6954BH30") 85 parts ( solid content) was dissolved in 80 parts of methyl ethyl ketone to obtain a resin solution (20%). This resin solution was applied to the surface of the liquid crystal alignment fixed layer B using a wire bar, and the applied film was dried at 60° C. for 5 minutes to form an organic film.
In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the liquid crystal alignment fixed layer A to the organic film was 400 to 500 g/m 2 ·24 h.
[比較例3]
 実施例1と同様にして得た偏光板に、アクリル系粘着剤(厚み5μm)を介して下記の位相差フィルムを貼り合わせ、さらに、位相差フィルムに紫外線硬化型接着剤(硬化後の厚み1μm)を介して下記の液晶配向固化層Cを貼り合わせた後、液晶配向固化層Cの表面にアクリル系粘着剤で厚み15μmの粘着剤層を形成し、位相差層付偏光板を得た。なお、位相差フィルムは、偏光膜の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして貼り合わせた。
 得られた位相差層付偏光板において、位相差フィルムから液晶配向固化層Cまでの積層部分の40℃および92%RHにおける透湿度は70g/m・24hであった。
[Comparative Example 3]
A polarizing plate obtained in the same manner as in Example 1 is laminated with the following retardation film via an acrylic pressure-sensitive adhesive (thickness 5 μm). ), a 15 μm-thick adhesive layer was formed on the surface of the liquid crystal alignment fixed layer C with an acrylic adhesive to obtain a polarizing plate with a retardation layer. The retardation film was attached so that the absorption axis of the polarizing film and the slow axis of the retardation film formed an angle of 45°.
In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the retardation film to the liquid crystal alignment solid layer C was 70 g/m 2 ·24 h.
(位相差フィルムの作製)
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
(Production of retardation film)
Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with stirring blades and reflux condensers controlled at 100°C. Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by mass (0.139 mol), 63.77 parts by mass (0.298 mol) of diphenyl carbonate (DPC) and 1.19 × 10 -2 parts by weight of calcium acetate monohydrate as a catalyst (6.78 × 10 - 5 mol) was charged. After the interior of the reactor was replaced with nitrogen under reduced pressure, heating was performed with a heating medium, and stirring was started when the internal temperature reached 100°C. After 40 minutes from the start of heating, the internal temperature was allowed to reach 220°C, and the pressure was reduced at the same time as controlling to maintain this temperature. Phenol vapor produced as a by-product of the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer components contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C and recovered. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, the temperature rise and pressure reduction in the second reactor were started, and the internal temperature was brought to 240° C. and the pressure to 0.2 kPa in 50 minutes. After that, polymerization was allowed to proceed until a predetermined stirring power was obtained. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the polyester carbonate-based resin produced was extruded into water, and strands were cut to obtain pellets.
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度133℃、延伸倍率2.8倍で延伸し、厚み50μmの位相差フィルムを得た。得られた位相差フィルムのRe(550)は141nmであり、Re(450)/Re(550)は0.82であり、Nz係数は1.12であった。 After vacuum drying the obtained polyester carbonate resin (pellet) at 80 ° C. for 5 hours, a single screw extruder (Toshiba Machine Co., Ltd., cylinder setting temperature: 250 ° C.), T die (width 200 mm, setting temperature: 250 ° C.), a chill roll (set temperature: 120 to 130° C.) and a film forming apparatus equipped with a winder to prepare a long resin film having a thickness of 135 μm. The obtained long resin film was stretched in the width direction at a stretching temperature of 133° C. and a stretching ratio of 2.8 to obtain a retardation film with a thickness of 50 μm. Re(550) of the obtained retardation film was 141 nm, Re(450)/Re(550) was 0.82, and Nz coefficient was 1.12.
(液晶配向固化層Cの作製)
 下記化学式(1)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、垂直配向処理を施したPET基材に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、nz>nx=nyの屈折率特性を示す液晶配向固化層C(厚み3μm)を基材上に形成した。
Figure JPOXMLDOC01-appb-C000002
(Preparation of Liquid Crystal Alignment Fixed Layer C)
20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (1) (numbers 65 and 35 in the formula indicate mol% of monomer units, and are expressed in block polymer form for convenience: weight average molecular weight 5000); 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Paliocolor LC242) and 5 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: trade name Irgacure 907) are dissolved in 200 parts by weight of cyclopentanone. Then, a liquid crystal coating liquid was prepared. Then, the coating solution was applied to the vertically aligned PET substrate using a bar coater, and dried by heating at 80° C. for 4 minutes to align the liquid crystal. By irradiating the liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a liquid crystal orientation fixed layer C (thickness 3 μm) exhibiting a refractive index characteristic of nz>nx=ny was formed on the substrate.
Figure JPOXMLDOC01-appb-C000002
[参考例1]
 偏光板として、下記に示す偏光板を用いたこと、酸化炭化ケイ素膜を成膜しなかったこと、および、粘着剤層の厚みを30μmとしたこと以外は実施例1と同様にして、位相差層付偏光板を得た。
[Reference example 1]
Retardation was obtained in the same manner as in Example 1 except that the following polarizing plate was used as the polarizing plate, the silicon carbide oxide film was not formed, and the thickness of the adhesive layer was 30 μm. A layered polarizing plate was obtained.
(偏光板の作製)
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理をこの順で施した後、最後に乾燥処理を施すことにより、厚み12μmの偏光膜を作製した。
 上記膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光膜の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。次いで、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。次いで、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、70℃で5分間乾燥処理して偏光膜を得た。
(Preparation of polarizing plate)
A long roll of polyvinyl alcohol (PVA)-based resin film with a thickness of 30 μm (manufactured by Kuraray, product name “PE3000”) is uniaxially stretched in the longitudinal direction by a roll stretching machine so as to be 5.9 times the length while simultaneously being stretched. After swelling, dyeing, cross-linking, and washing treatments were performed in this order, a drying treatment was finally performed to prepare a polarizing film having a thickness of 12 μm.
In the swelling treatment, the film was stretched 2.2 times while being treated with pure water at 20°C. Next, the dyeing treatment is performed in an aqueous solution at 30° C. in which the weight ratio of iodine and potassium iodide is 1:7 and the iodine concentration is adjusted so that the single transmittance of the obtained polarizing film is 45.0%. while stretching to 1.4 times. Then, the cross-linking treatment employed two-step cross-linking treatment, and the first-step cross-linking treatment was performed by stretching the film 1.2 times while treating it in an aqueous solution of boric acid and potassium iodide at 40°C. The boric acid content of the aqueous solution for the first-stage cross-linking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. In the second-stage cross-linking treatment, the film was stretched 1.6 times while being treated in an aqueous solution of boric acid and potassium iodide at 65°C. The boric acid content of the aqueous solution for the second-stage cross-linking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. Then, the washing treatment was carried out with an aqueous potassium iodide solution at 20°C. The potassium iodide content of the aqueous solution for the cleaning treatment was 2.6% by weight. Finally, a drying treatment was performed at 70° C. for 5 minutes to obtain a polarizing film.
 得られた偏光膜の両側に、それぞれ、ポリビニルアルコール系接着剤を介してのHC層(厚み7μm)が形成されたTACフィルム(厚み25μm)および厚み25μmのTACフィルムを貼り合わせ、HC層/TACフィルム/接着剤層/偏光膜/接着剤層/TACフィルムの構成を有する偏光板を得た。
 得られた位相差層付偏光板において、TACフィルムから液晶配向固化層Bまでの積層部分の40℃および92%RHにおける透湿度は300~400g/m・24hであった。
On both sides of the resulting polarizing film, a TAC film (thickness: 25 μm) having an HC layer (thickness: 7 μm) and a TAC film having a thickness of 25 μm were laminated via a polyvinyl alcohol-based adhesive to form an HC layer/TAC. A polarizing plate having a structure of film/adhesive layer/polarizing film/adhesive layer/TAC film was obtained.
In the obtained polarizing plate with a retardation layer, the moisture permeability at 40° C. and 92% RH of the laminated portion from the TAC film to the liquid crystal alignment solid layer B was 300 to 400 g/m 2 ·24 h.
 実施例および比較例について、下記の評価を行った。評価結果を表1にまとめる。
<評価>
1.脱色(アンモニア試験)
 得られた位相差層付偏光板を、厚み500nmの酸窒化ケイ素膜が表面に成膜された無アルカリガラス板に貼り合わせた後、これを60℃、90%RHの環境下に96時間置いた(加湿試験)。ここで、酸窒化ケイ素膜が成膜された無アルカリガラス板を加湿試験に供することにより、アンモニアの発生が確認された。
 加湿試験後の位相差層付偏光板を反射板に貼り合わせ、反射色相を目視により確認した。また、加湿試験後の位相差層付偏光板の偏光度を測定した。具体的には、紫外可視分光光度計(日本分光社製、V-7100)を用いて単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定し、下記式により偏光度Pを求めた。ここで、Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
   偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
2.信頼性
 得られた位相差層付偏光板を、無アルカリガラス板に貼り合わせた後、これを-40℃の環境下に30分間置いた後、85℃の環境下に30分置いた(1サイクル)。この作業を200サイクル繰り返し、信頼性試験を行った。信頼性試験後、位相差層付偏光板の外観を目視で観察し、クラックの有無を確認した。
The examples and comparative examples were evaluated as follows. The evaluation results are summarized in Table 1.
<Evaluation>
1. Decolorization (ammonia test)
After bonding the obtained polarizing plate with a retardation layer to an alkali-free glass plate having a silicon oxynitride film having a thickness of 500 nm formed on the surface, this was placed in an environment of 60° C. and 90% RH for 96 hours. (humidification test). Here, generation of ammonia was confirmed by subjecting an alkali-free glass plate on which a silicon oxynitride film was formed to a humidification test.
After the humidification test, the retardation layer-attached polarizing plate was attached to a reflector, and the reflection hue was visually confirmed. Also, the degree of polarization of the polarizing plate with a retardation layer after the humidification test was measured. Specifically, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, V-7100) was used to measure the single transmittance Ts, the parallel transmittance Tp, and the orthogonal transmittance Tc, and the degree of polarization P was obtained by the following formula. . Here, Ts, Tp and Tc are Y values measured with a JIS Z 8701 2-degree field of view (C light source) and subjected to visibility correction.
Degree of polarization P (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 × 100
2. Reliability After bonding the obtained polarizing plate with a retardation layer to a non-alkali glass plate, this was placed in an environment of -40 ° C. for 30 minutes, and then placed in an environment of 85 ° C. for 30 minutes (1 cycle). This operation was repeated 200 cycles and a reliability test was conducted. After the reliability test, the appearance of the retardation layer-attached polarizing plate was visually observed to confirm the presence or absence of cracks.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 各実施例においては、加湿試験後の偏光度は99%以上を保持しており、脱色は抑えられていることがわかる。実施例3では、信頼性の評価においてクラックが確認された。  In each example, the degree of polarization after the humidification test was maintained at 99% or more, indicating that decolorization was suppressed. In Example 3, cracks were confirmed in the reliability evaluation.
 本発明の実施形態による位相差層付偏光板は、画像表示装置に用いられ、湾曲した、あるいは、屈曲、折り畳み、または巻き取り可能な画像表示装置にも好適に用いられ得る。画像表示装置としては、代表的には、液晶表示装置、有機EL表示装置、無機EL表示装置が挙げられる。 A polarizing plate with a retardation layer according to an embodiment of the present invention is used in an image display device, and can also be suitably used in a curved, bendable, foldable, or rollable image display device. Typical image display devices include liquid crystal display devices, organic EL display devices, and inorganic EL display devices.
 10   偏光板
 11   偏光膜
 12   保護層
 20   位相差層
 21   第一位相差層
 22   第二位相差層
 30   無機膜
 40   粘着剤層
100   位相差層付偏光板
REFERENCE SIGNS LIST 10 polarizing plate 11 polarizing film 12 protective layer 20 retardation layer 21 first retardation layer 22 second retardation layer 30 inorganic film 40 adhesive layer 100 polarizing plate with retardation layer

Claims (10)

  1.  ヨウ素を含み、互いに対向する第一主面および第二主面を有する偏光膜と、
     前記偏光膜の前記第一主面側に配置され、40℃および92%RHにおける透湿度が150g/m・24h以下である保護層と、
     前記偏光膜の前記第二主面側に配置される粘着剤層と、
     前記偏光膜と前記粘着剤層との間に配置される位相差層と、
     前記偏光膜と前記粘着剤層との間に配置され、ケイ素を含む無機膜と、を有し、
     前記保護層から前記粘着剤層に隣接する層までの積層部分の厚みは50μm以下である、
     位相差層付偏光板。
    a polarizing film containing iodine and having a first principal surface and a second principal surface facing each other;
    a protective layer disposed on the first main surface side of the polarizing film and having a moisture permeability of 150 g/m 2 ·24 h or less at 40° C. and 92% RH;
    an adhesive layer arranged on the second main surface side of the polarizing film;
    a retardation layer disposed between the polarizing film and the pressure-sensitive adhesive layer;
    an inorganic film containing silicon disposed between the polarizing film and the pressure-sensitive adhesive layer;
    The thickness of the laminated portion from the protective layer to the layer adjacent to the adhesive layer is 50 μm or less.
    A polarizing plate with a retardation layer.
  2.  前記偏光膜と、前記位相差層と、前記無機膜とがこの順に配置される、請求項1に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, wherein the polarizing film, the retardation layer, and the inorganic film are arranged in this order.
  3.  前記無機膜は、前記位相差層に直に接して配置される、請求項2に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 2, wherein the inorganic film is arranged in direct contact with the retardation layer.
  4.  前記無機膜の厚みは400nm未満である、請求項1から3のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 3, wherein the inorganic film has a thickness of less than 400 nm.
  5.  前記無機膜の厚みは50nm以上である、請求項1から4のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 4, wherein the inorganic film has a thickness of 50 nm or more.
  6.  前記無機膜は、酸化ケイ素、炭化ケイ素、および、これらの複合体からなる群から選択される少なくとも1つを含む、請求項1から5のいずれかに記載の位相差層付偏光板。 The retardation layer-attached polarizing plate according to any one of claims 1 to 5, wherein the inorganic film contains at least one selected from the group consisting of silicon oxide, silicon carbide, and composites thereof.
  7.  前記無機膜は蒸着膜である、請求項1から6のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 6, wherein the inorganic film is a vapor deposition film.
  8.  前記偏光膜の前記第二主面に隣接する層から前記粘着剤層に隣接する層までの積層部分の40℃および92%RHにおける透湿度は50g/m・24h以下である、請求項1から7のいずれかに記載の位相差層付偏光板。 2. The moisture permeability at 40° C. and 92% RH of the laminated portion from the layer adjacent to the second main surface of the polarizing film to the layer adjacent to the adhesive layer is 50 g/m 2 ·24 h or less at 40° C. and 24 h or less. 8. The polarizing plate with a retardation layer according to any one of 7 to 7.
  9.  前記位相差層は液晶化合物の配向固化層である、請求項1から8のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 8, wherein the retardation layer is an alignment fixed layer of a liquid crystal compound.
  10.  請求項1から9のいずれかに記載の位相差層付偏光板を有する、画像表示装置。 An image display device comprising the retardation layer-attached polarizing plate according to any one of claims 1 to 9.
PCT/JP2022/036884 2021-10-13 2022-10-03 Retardation layer–equipped polarizing plate and image display device using same WO2023063129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280068406.6A CN118103741A (en) 2021-10-13 2022-10-03 Polarizing plate with retardation layer and image display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-168320 2021-10-13
JP2021168320A JP2023058350A (en) 2021-10-13 2021-10-13 Polarizing plate with phase difference layer and image display device using the same

Publications (1)

Publication Number Publication Date
WO2023063129A1 true WO2023063129A1 (en) 2023-04-20

Family

ID=85988563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036884 WO2023063129A1 (en) 2021-10-13 2022-10-03 Retardation layer–equipped polarizing plate and image display device using same

Country Status (4)

Country Link
JP (1) JP2023058350A (en)
CN (1) CN118103741A (en)
TW (1) TW202331312A (en)
WO (1) WO2023063129A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259336A (en) * 1988-08-24 1990-02-28 Mitsubishi Monsanto Chem Co Polarizing film
WO2016043240A1 (en) * 2014-09-17 2016-03-24 株式会社巴川製紙所 Protective film, film layered body, and polarizing plate
JP2016105166A (en) * 2014-11-20 2016-06-09 日東電工株式会社 Circular polarization plate for organic el display device and organic el display device
JP2017049536A (en) * 2015-09-04 2017-03-09 日東電工株式会社 Polarizing plate, anti-reflection laminate, and image display system
WO2018190180A1 (en) * 2017-04-13 2018-10-18 日東電工株式会社 Polarizer, image display device and method for producing said image display device
CN210626704U (en) * 2019-11-29 2020-05-26 昆山工研院新型平板显示技术中心有限公司 Polarizer and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259336A (en) * 1988-08-24 1990-02-28 Mitsubishi Monsanto Chem Co Polarizing film
WO2016043240A1 (en) * 2014-09-17 2016-03-24 株式会社巴川製紙所 Protective film, film layered body, and polarizing plate
JP2016105166A (en) * 2014-11-20 2016-06-09 日東電工株式会社 Circular polarization plate for organic el display device and organic el display device
JP2017049536A (en) * 2015-09-04 2017-03-09 日東電工株式会社 Polarizing plate, anti-reflection laminate, and image display system
WO2018190180A1 (en) * 2017-04-13 2018-10-18 日東電工株式会社 Polarizer, image display device and method for producing said image display device
CN210626704U (en) * 2019-11-29 2020-05-26 昆山工研院新型平板显示技术中心有限公司 Polarizer and display device

Also Published As

Publication number Publication date
CN118103741A (en) 2024-05-28
JP2023058350A (en) 2023-04-25
TW202331312A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP7294908B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7281025B2 (en) Method for manufacturing polarizing film
JP7321005B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2021063975A (en) Polarizing plate with retardation layer and organic electroluminescence display device using the same
TWI816868B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP7294909B2 (en) Polarizing plate with retardation layer and image display device using the same
JP6712335B2 (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP2020115226A (en) Polarizing plate with retardation layer, and image display device using the same
WO2021070467A1 (en) Phase difference layer-attached polarization plate and organic electro luminescence display device using same
WO2023063129A1 (en) Retardation layer–equipped polarizing plate and image display device using same
TWI827658B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
CN111045130B (en) Polarizing plate with retardation layer and image display device using the same
CN111045129B (en) Polarizing plate with retardation layer and image display device using the same
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
WO2023063128A1 (en) Retardation layer–equipped polarizing plate and image display device using same
KR20240072184A (en) Polarizer with phase contrast layer and image display device using the same
JP7240270B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2023013275A1 (en) Retardation layer-equipped polarizing plate and image display device using same
CN112840249B (en) Polarizing plate with retardation layer and image display device using the same
CN112840253B (en) Polarizing plate with retardation layer and image display device using the same
KR20240072183A (en) Polarizer with phase contrast layer and image display device using the same
CN112840247B (en) Polarizing plate with retardation layer and image display device using the same
TW202229013A (en) Phase difference layer-equipped phase difference layer-equipped polarizing plate and organic electroluminescence display device using same
CN111045131A (en) Polarizing plate with retardation layer and image display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247011929

Country of ref document: KR

Kind code of ref document: A