WO2023061641A1 - Turbocharger housing and exhaust gas turbocharger with integral turborotor housing and compressor housing cover - Google Patents

Turbocharger housing and exhaust gas turbocharger with integral turborotor housing and compressor housing cover Download PDF

Info

Publication number
WO2023061641A1
WO2023061641A1 PCT/EP2022/073171 EP2022073171W WO2023061641A1 WO 2023061641 A1 WO2023061641 A1 WO 2023061641A1 EP 2022073171 W EP2022073171 W EP 2022073171W WO 2023061641 A1 WO2023061641 A1 WO 2023061641A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
compressor
turbocharger
rotor
integral
Prior art date
Application number
PCT/EP2022/073171
Other languages
German (de)
French (fr)
Inventor
Ralf Böning
Timo Maier
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of WO2023061641A1 publication Critical patent/WO2023061641A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • F01D25/265Vertically split casings; Clamping arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to a turbocharger housing and an exhaust gas turbocharger with an integral turbotor housing and compressor housing cover for an internal combustion engine.
  • Exhaust gas turbochargers are increasingly being used to increase the performance of internal combustion engines, for example for motor vehicles. This is done with the aim of reducing the size and weight of the combustion engine with the same or even increased performance and at the same time reducing consumption and thus CO2 emissions in view of the increasingly strict legal requirements in this regard.
  • the active principle is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the combustion engine and thus achieve better filling of the combustion chamber with air-oxygen in order to be able to convert more fuel, petrol or diesel, per combustion process, i.e. the to increase the power of the internal combustion engine.
  • a conventional exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, an air compressor arranged in the intake tract and a rotor bearing arranged in between.
  • the exhaust gas turbine has a turbine housing and a turbine impeller which is arranged therein and is driven by the exhaust gas mass flow.
  • the air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up a boost pressure.
  • the turbine impeller and the compressor impeller are arranged in a rotationally fixed manner on the opposite ends of a common shaft, the so-called rotor shaft or rotor shaft, and thus form the so-called turbocharger rotor or turbocharger rotor.
  • the rotor shaft extends axially between the turbine impeller and the compressor impeller through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor and is rotatably mounted in it radially and axially with respect to the rotor shaft axis.
  • the turbine impeller driven by the exhaust gas mass flow drives the compressor impeller via the rotor shaft, which increases the pressure in the intake tract of the combustion engine, based on the air mass flow behind the fresh air compressor, and thus causes better filling of the combustion chamber with air-oxygen.
  • a conventional exhaust gas turbocharger has a multi-part structure.
  • a turbine housing of an exhaust gas turbine that can be arranged in the exhaust tract of the internal combustion engine, a compressor housing of an air compressor that can be arranged in the intake tract of the internal combustion engine, and a bearing housing of a bearing unit between the turbine housing and the compressor housing are arranged next to one another on a common turbocharger axis and are connected to one another in terms of assembly.
  • the turbine housing has one or more exhaust gas spiral ducts which are arranged in a ring around the turbocharger axis and the turbine impeller and taper helically towards the turbine impeller.
  • the exhaust gas spiral ducts have a respective or common, tangentially outwardly directed exhaust gas supply duct with a manifold connection flange for connection to an exhaust manifold of an internal combustion engine, through which the exhaust gas mass flow flows into the respective exhaust gas spiral duct.
  • the compressor housing has an air supply duct, which has an intake manifold connector for connection to the air intake system of the internal combustion engine and runs in the direction of the turbocharger axis toward the axial end of the compressor impeller. An air mass flow is sucked in by the compressor impeller from the air intake system via this air supply duct. Furthermore, the compressor housing generally has a compressor spiral duct, which is arranged annularly around the turbocharger axis and the compressor impeller and widens in a helical shape away from the compressor impeller 13 .
  • the compressor volute duct also has a tangentially outwardly directed air discharge duct with a distributor connection flange for connection to an air distributor pipe of an internal combustion engine.
  • a so-called spiral duct tongue is formed on the side of the air discharge duct facing the diffuser running air discharge duct separates and the air flow into the air discharge channel directs. The air mass flow is then conducted through the air discharge duct under increased pressure into the air distribution pipe of the combustion engine.
  • the radial inner contour of the compressor housing follows the outer contour of the compressor impeller accommodated therein.
  • This area of the inner contour of the compressor housing is referred to as the compressor sealing contour and causes the air mass flow to flow as completely as possible through the blading of the compressor impeller and not past it.
  • the bearing housing is arranged axially between the turbine housing and the compressor housing.
  • the bearing arrangement for supporting the rotor shaft of the turbocharger rotor and the turbocharger rotor is accommodated in the bearing housing.
  • the turbocharger rotor or turbocharger rotor represents a further assembly of the exhaust gas turbocharger, which has the rotor shaft, the turbine wheel arranged in the turbine housing and the compressor wheel arranged in the compressor housing.
  • the turbine wheel and the compressor wheel are arranged on the opposite ends of the common rotor shaft and are non-rotatably connected thereto.
  • the rotor shaft extends axially through the bearing housing in the direction of the turbocharger axis and is rotatably mounted in it by means of a bearing arrangement consisting of a radial bearing and an axial bearing about its longitudinal axis, the rotor shaft axis of rotation, with the rotor shaft axis of rotation lying in the turbocharger axis, i.e. coinciding with it.
  • the turbocharger rotor and the bearing arrangement are combined to form a preassembled assembly, which is referred to as a turbocharger rotor cartridge or, in the following, as a turbo rotor cartridge for short.
  • the turbine housing, the compressor housing and the bearing housing are also combined to form a one-piece housing, referred to below as the integral turbotor housing.
  • the integral turbotor housing Such a prior art design is shown in FIG.
  • Fig. 1 shows an embodiment of an exhaust gas turbocharger 1, which essentially consists of only three structural components or component assemblies during final assembly, namely an integral turbo rotor housing 3, a turbo rotor cartridge 10 and a compressor housing cover 34.
  • the turbo rotor cartridge 10 which can be provided as a completely preassembled assembly for final assembly, has a turbine wheel 12 , a compressor wheel 13 , a rotor shaft 14 with a rotor axis of rotation 15 and a shaft bearing cartridge 40 .
  • the turbine wheel 12 is non-rotatably connected to a first shaft end of the rotor shaft 14 and the compressor wheel 13 to the second shaft end of the rotor shaft 14, and the rotor shaft 14, together with the turbine wheel 12 and the compressor wheel 13, can be rotated about the rotor axis of rotation 15 in the shaft bearing cartridge 40 stored.
  • the rotor axis of rotation 15 simultaneously specifies the turbocharger axis 6, with which it coincides when the exhaust gas turbocharger is in the installed state.
  • the integral turbotor housing 3 includes
  • the bearing housing 41 which is arranged between the turbine housing 21 and the compressor housing 31 and in which the shaft bearing cartridge 40 or the turbo rotor cartridge 10 is accommodated.
  • the integral turbo rotor housing 3 is designed as a one-piece housing part and has a rotor receiving shaft 4 extending in the direction of the turbocharger axis 6 and an internal geometry for the turbo rotor cartridge 10 .
  • the inner geometry of the rotor receiving shaft 4 of the integral turbotor housing 3 is designed in such a way that the complete turbo rotor cartridge 10 as a preassembled unit, in only one axial joining direction running in the direction of the rotor axis of rotation 15 or the turbocharger axis 6, by a front mounting opening 33, can be recorded or mounted.
  • the compressor spiral channel 32 is arranged in such a way that it overlaps the bearing housing 41 or the rotor receptacle 4 in the axial direction, which saves on axial installation space.
  • the assembly opening 33 is closed by means of a compressor housing cover 34 which has at least one compressor impeller sealing contour 35 adapted to the compressor impeller 13 and an intake manifold connection piece 37 and thus completes the turbocharger housing 2 .
  • the assembly opening is only so large that the turbo rotor cartridge 10 can be easily inserted into the rotor receiving shaft 4 in the axial direction.
  • the compressor spiral duct 32 are formed completely, including the spiral channel tongue (not visible in FIG. 1) and the diffuser gap 38, at least partially in the one-piece integral turbotortor housing 3.
  • the aforementioned configuration of the exhaust gas turbocharger advantageously reduces the total number of individual components and the required assembly processes. Furthermore, the number of housing interfaces to be sealed off from the environment is also reduced to a minimum and their overall length is also reduced to a minimum. This in turn has an advantageous effect on the production costs and on operation that is improved with regard to undesired emissions.
  • the present invention is therefore based on the object of specifying a turbocharger housing and an exhaust gas turbocharger which are characterized by an integral turbotor housing which, in comparison to the prior art, is simpler and cheaper to produce in a casting process and thus further reduces the production costs contributes.
  • the turbocharger housing and the exhaust gas turbocharger are characterized in that the turbine housing, including the exhaust gas spiral duct, the bearing housing and the compressor housing, including the air spiral duct, are combined to form an integral turbotor housing, which is designed, for example, as a one-piece cast part and a Having rotor receiving shaft with an internal geometry for a turbo rotor cartridge.
  • the inside diameter of the assembly opening is enlarged at least to the outer edge area of the compressor spiral duct, and at least a part of a contour of a spiral duct tongue and a part of the housing edge of the compressor spiral duct are formed on the inside of the compressor housing cover.
  • the aforementioned configuration of the turbocharger housing and the exhaust gas turbocharger advantageously reduces the total number of individual components and the assembly processes required. Furthermore, the number of housing interfaces to be sealed off from the environment is also reduced to a minimum and their overall length is also reduced to a minimum.
  • the production of the integral turbotor housing is simplified in particular by the inventive design of the assembly opening and the compressor housing cover in that fewer undercuts have to be considered, which complicate the design of the casting molds and casting core elements and thus make the turbocharger housing and the exhaust gas turbocharger more expensive.
  • the demoulding simplified by the design according to the invention also reduces the proportion of rejects in production and extends the service life of the casting molds. All this ultimately has an advantageous effect on the production costs.
  • turbocharger housings and exhaust gas turbochargers as well as further advantageous configurations and developments of the objects according to the invention are illustrated and explained below with reference to the individual figures of the attached drawing.
  • FIG. 1 shows an exhaust gas turbocharger with the essential components, in a simplified schematic sectional representation, for representing the prior art and for explaining the terms used;
  • FIG. 2 shows an exemplary embodiment of a turbocharger housing and exhaust gas turbocharger according to the invention in a disassembled state and a simplified sectional view of the components;
  • FIG. 3 shows a front view of an opened integral turbo rotor housing with an inserted turbo rotor cartridge but without a compressor housing cover;
  • FIG. 4 shows a perspective view of an embodiment of the compressor housing cover according to the invention
  • FIG. 5 shows the design of the compressor housing cover shown in FIG. 4 in a half-section illustration.
  • FIG. 1 shows a schematic representation of an exhaust gas turbocharger 1 with a conventional integral turbotor housing 3 in a sectional representation, according to the known prior art and serves to explain the basic structure of an exhaust gas turbocharger 1 from exhaust gas turbine 20 air compressor 30, turbo rotor cartridge 10 and shaft bearing cartridge 40
  • the structure in detail has already been described in the introduction above.
  • turbocharger housing 2 for an exhaust gas turbocharger 1 of an internal combustion engine, which has an integral turbotor housing 3 and a compressor housing cover 34 .
  • the integral turbotortor housing 3 is made in one piece and has at least
  • a rotor receiving shaft 4 for a turbo rotor cartridge 10 which axially extends in the direction of a turbocharger axis 6,
  • the assembly opening 33 can be closed with the compressor housing cover 34 .
  • the compressor housing cover 34 has at least one suction pipe connecting piece 37 and a cover inner side 34a facing the rotor receiving shaft 4 with a compressor impeller sealing contour 35 .
  • the embodiment according to the invention shown is characterized in that the clear diameter D of the assembly opening 33 is expanded at least up to the outer edge region of the compressor spiral channel 32, ie at least up to the housing edge 32d of the compressor spiral channel 32 on the compressor housing 31, and on the cover Inside 34a of the compressor housing cover 34 at least a part of a contour of a spiral channel tongue 32a and the housing edge 32c of the compressor spiral channel 32 is formed.
  • turbo rotor cartridge 10 is shown outside the integral turbo rotor housing 3, in the rotor receiving shaft 4 of which it is inserted in the axial joining direction, which is symbolized by an arrow.
  • the turbo rotor cartridge 10 has a shaft bearing cartridge 40, a rotor shaft 14 which extends through the shaft bearing cartridge 40 and is rotatably mounted therein about the rotor axis of rotation 15, a turbine impeller 12 which is arranged at one end of the rotor shaft 14 and a compressor impeller 13 which is arranged at an opposite end of the rotor shaft 14.
  • turbo rotor cartridge 10 and compressor housing cover 34 When the exhaust gas turbocharger 1 is assembled with the integral turbotor housing 3, turbo rotor cartridge 10 and compressor housing cover 34, the rotor axis of rotation 15 coincides with the turbocharger axis 6; the turbine impeller 12 is arranged in the turbine housing 21.
  • the compressor impeller 13 is arranged in the compressor housing 31 and the assembly opening 33 is closed by means of the compressor housing cover 34 .
  • the compressor impeller sealing contour 35 comprises the blading of the compressor impeller 13 and the compressor spiral duct 32 is formed by the part of the housing edge 32c of the compressor spiral duct 32 formed on the inside of the cover 34a and by the part of the contour of the compressor volute formed on the inside of the cover 34a Spiral channel tongue 32a, completed.
  • a further feature shown in Fig. 2 corresponds to an embodiment which is characterized in that the compressor spiral channel 32 is arranged in such a way that at least a part of the compressor spiral channel 32 surrounds the rotor receiving shaft 4 in the axial direction, in relation to the turbocharger axis 6 , at least partially overlapping.
  • a part of the compressor spiral channel 32 protrudes in the direction of the turbocharger axis 6 to the right a little way over the rotor receiving shaft and encompasses the rotor receiving shaft 4 over the circumference.
  • Such an embodiment advantageously saves axial installation space due to the overlapping of the geometries.
  • a dividing plane T which is essentially perpendicular to the turbocharger axis 6, is laid between the integral turbotor housing 3 and the compressor housing cover (34) through an outer peripheral line of the compressor spiral duct (32), which, with reference to the turbocharger axis 6, runs along the radially outermost points of an inner contour of the compressor spiral channel (32) over its circumference.
  • the radially outermost points of the inner contour of the compressor volute duct 32 are the points of the inner contour of the compressor volute duct 32 which have the greatest radial distance from the turbocharger axis 6 at the respective point on its circumference.
  • the parting plane T is shown in FIG.
  • the parting plane T in this example deviates slightly from the right angle with respect to the turbocharger axis 6 .
  • an angular deviation from the perpendicular to the turbocharger axis 6 can occur, which is generally less than or equal to 22.5 degrees, which in this context is understood to be essentially perpendicular to the turbocharger axis 6 .
  • the parting plane T can optionally also be perpendicular to the turbocharger axis 6 .
  • This position of the parting plane T ensures that there are no undercuts in the direction of the turbocharger axis 6 either on the side of the compressor housing 31 or on the side of the compressor housing cover 34 due to the shaping of the respective portions of the housing edge 32c, 32d.
  • a further embodiment of the turbocharger housing 2 according to the invention is characterized in that the integral turbotortor housing 3 is an integral part of a cylinder head housing 50 or an engine housing 51 of an internal combustion engine. This is shown in FIG. 2 by a dash-dotted line encompassing the integral turbotortor housing 3 and symbolically embodying a cylinder head housing or a motor housing 51 .
  • the integration of the integral turbotortor housing 3 in the cylinder head housing 50 or the engine housing 51 of an internal combustion engine increases the complexity of the respective housing, but reduces the number of parts and the assembly effort. Furthermore, the number of interfaces between the exhaust gas turbocharger 1 and the internal combustion engine is reduced, and failure of these interfaces with regard to tightness is thus avoided.
  • FIG. 3 An integral turbo rotor housing 3 with an inserted turbo rotor cartridge 10 according to the invention is shown in FIG. 3 in a front view in the axial direction of the assembly opening 33 in the compressor housing 31 with the compressor housing cover 34 removed.
  • Compressor spiral channel 32 and the portion of spiral channel tongue 32b formed in compressor housing 31 can be seen, below which compressor spiral channel 32 begins, which in this example then runs counterclockwise around turbocharger axis 6, with its cross section permanently increasing until it in turn merges tangentially into the air discharge duct 36 in the area of the spiral duct tongue 32b, with the spiral duct tongue 32b separating the air discharge duct 36 from the compressor spiral duct 32 and representing a flow-guiding element that diverts the air flow from the compressor spiral duct 32 into the air discharge duct 36.
  • the clear diameter D of the assembly opening 33 is enlarged at least as far as the outer edge area of the compressor volute duct 32 and beyond the volute duct tongue 32b to the housing edge 32d of the compressor volute duct 32 on the compressor housing 31.
  • FIG. 4 shows an embodiment of a compressor housing cover 34 according to the invention in a perspective representation with a view of the inside 34a of the cover with the compressor impeller sealing contour 35 which merges into the air discharge duct 36 . It is also easy to see that on the inside of the cover 34a of the compressor housing sedeckels 34 at least part of a contour of a spiral channel tongue 32a and a housing edge 32c of the compressor spiral channel 32 is formed.
  • FIG. 5 shows the design of the compressor housing cover 34 shown in FIG. 4 in a half-section illustration.
  • the compressor impeller sealing contour 35 which merges into the air discharge duct 36 , is arranged on the inside 34a of the cover. It can also be clearly seen that at least part of a contour of a spiral channel tongue 32a and a housing edge 32c of the compressor spiral channel 32 is formed on the inside 34a of the compressor housing cover 34 .
  • the intake manifold connection piece 37 can be seen, via which the turbocharger housing 2 can be connected to the air supply unit of an internal combustion engine.

Abstract

The invention relates to a turbocharger housing (2) for an exhaust gas turbocharger (1) of an internal combustion engine, and to an exhaust gas turbocharger comprising such a turbocharger housing (2). The turbocharger housing (2) comprises an integral turborotor housing (3) designed as one-piece and a compressor housing cover (34), wherein the integral turborotor housing (3) comprises a rotor receiving shaft (4) for a turborotor cartridge (10), a turbine housing (21) with at least one turbine spiral channel (22) and a compressor housing (31) with a compressor spiral channel (32) and an air discharge channel (36) adjacent thereto. The integral turborotor housing (3) comprises, on the side of the compressor housing (31), an end face assembly opening (33) through which the turborotor cartridge (10) can be inserted into the rotor receiving shaft (4) of the integral turborotor housing (3) in an axial joining direction running parallel to the turbocharger axis (6). The assembly opening (33) can be closed with the compressor housing cover (34), wherein the latter comprises at least one suction pipe connection piece (37) and a cover inner side (34a) facing the rotor receiving shaft (4), on which a compressor impellor sealing contour (35) and at least one part of a contour of a spiral channel tongue (32a) and a housing edge (32b) of the compressor spiral channel (32) is formed.

Description

Beschreibung Description
Turboladergehäuse und Abgasturbolader mit Integral-Turborotorgehäuse und Verdichtergehäusedeckel Turbocharger housing and exhaust gas turbocharger with integral turbotortor housing and compressor housing cover
Die Erfindung betrifft ein Turboladergehäuse sowie einen Abgasturbolader mit In- tegral-Turborotorgehäuse und Verdichtergehäusedeckel für einen Verbrennungsmotor. The invention relates to a turbocharger housing and an exhaust gas turbocharger with an integral turbotor housing and compressor housing cover for an internal combustion engine.
Abgasturbolader werden vermehrt zur Leistungssteigerung bei Verbrennungsmotoren, beispielsweise für Kraftfahrzeuge, eingesetzt. Dies geschieht mit dem Ziel den Verbrennungsmotor bei gleicher oder gar gesteigerter Leistung in Baugröße und Gewicht zu reduzieren und gleichzeitig den Verbrauch und somit den CO2-Ausstoß, im Hinblick auf immer strenger werdende gesetzliche Vorgaben diesbezüglich, zu verringern. Das Wirkprinzip besteht darin, die im Abgasstrom enthaltene Energie zu nutzen um den Druck im Ansaugtrakt des Verbrennungsmotors zu erhöhen und so eine bessere Befüllung des Brennraumes mit Luft-Sauerstoff zu bewirken um mehr Treibstoff, Benzin oder Diesel, pro Verbrennungsvorgang umsetzen zu können, also die Leistung des Verbrennungsmotors zu erhöhen. Exhaust gas turbochargers are increasingly being used to increase the performance of internal combustion engines, for example for motor vehicles. This is done with the aim of reducing the size and weight of the combustion engine with the same or even increased performance and at the same time reducing consumption and thus CO2 emissions in view of the increasingly strict legal requirements in this regard. The active principle is to use the energy contained in the exhaust gas flow to increase the pressure in the intake tract of the combustion engine and thus achieve better filling of the combustion chamber with air-oxygen in order to be able to convert more fuel, petrol or diesel, per combustion process, i.e. the to increase the power of the internal combustion engine.
Dazu weist ein herkömmlicher Abgasturbolader eine im Abgastrakt des Verbrennungsmotors angeordnete Abgasturbine, einen im Ansaugtrakt angeordneten Luftverdichter und ein dazwischen angeordnetes Läuferlager auf. Die Abgasturbine weist ein Turbinengehäuse und ein darin angeordnetes, durch den Abgasmassenstrom angetriebenes Turbinenlaufrad auf. Der Luftverdichter weist ein Verdichtergehäuse und ein darin angeordnetes, einen Ladedruck aufbauendes Verdichterlaufrad auf. Das Turbinenlaufrad und das Verdichterlaufrad sind auf den sich gegenüberliegenden Enden einer gemeinsamen Welle, der sogenannten Rotorwelle oder Läuferwelle, drehfest angeordnet und bilden so den sogenannten Turboladerrotor oder Turboladerläufer. Die Rotorwelle erstreckt sich axial zwischen Turbinenlaufrad und Verdichterlaufrad durch das zwischen Abgasturbine und Frischluftverdichter angeordnete Läuferlager und ist in diesem, in Bezug auf die Rotorwellenachse, radial und axial drehgelagert. Gemäß diesem Aufbau treibt das vom Abgasmassenstrom angetriebene Turbinenlaufrad über die Rotorwelle das Verdichterlaufrad an, wodurch der Druck im Ansaugtrakt des Verbrennungsmotors, bezogen auf den Luftmassenstrom hinter dem Frischluftverdichter, erhöht und dadurch eine bessere Befüllung des Brennraumes mit Luft-Sauerstoff bewirkt wird. In der Regel weist ein gebräuchlicher Abgasturbolader einen mehrteiligen Aufbau auf. Dabei sind ein im Abgastrakt des Verbrennungsmotors anordenbares Turbinengehäuse einer Abgasturbine, ein im Ansaugtrakt des Verbrennungsmotors anordenbares Verdichtergehäuse eines Luftverdichters und zwischen Turbinengehäuse und Verdichtergehäuse ein Lagergehäuse einer Lagereinheit auf einer gemeinsamen Turboladerachse nebeneinander angeordnet und montagetechnisch miteinander verbunden. For this purpose, a conventional exhaust gas turbocharger has an exhaust gas turbine arranged in the exhaust tract of the internal combustion engine, an air compressor arranged in the intake tract and a rotor bearing arranged in between. The exhaust gas turbine has a turbine housing and a turbine impeller which is arranged therein and is driven by the exhaust gas mass flow. The air compressor has a compressor housing and a compressor impeller which is arranged therein and builds up a boost pressure. The turbine impeller and the compressor impeller are arranged in a rotationally fixed manner on the opposite ends of a common shaft, the so-called rotor shaft or rotor shaft, and thus form the so-called turbocharger rotor or turbocharger rotor. The rotor shaft extends axially between the turbine impeller and the compressor impeller through the rotor bearing arranged between the exhaust gas turbine and the fresh air compressor and is rotatably mounted in it radially and axially with respect to the rotor shaft axis. According to this design, the turbine impeller driven by the exhaust gas mass flow drives the compressor impeller via the rotor shaft, which increases the pressure in the intake tract of the combustion engine, based on the air mass flow behind the fresh air compressor, and thus causes better filling of the combustion chamber with air-oxygen. As a rule, a conventional exhaust gas turbocharger has a multi-part structure. A turbine housing of an exhaust gas turbine that can be arranged in the exhaust tract of the internal combustion engine, a compressor housing of an air compressor that can be arranged in the intake tract of the internal combustion engine, and a bearing housing of a bearing unit between the turbine housing and the compressor housing are arranged next to one another on a common turbocharger axis and are connected to one another in terms of assembly.
Das Turbinengehäuse weist einen oder mehrere ringförmig um die Turboladerachse und das Turbinenlaufrad angeordnete, sich schneckenförmig zum Turbinenlaufrad hin verjüngende Abgas-Spiralkanäle auf. Die Abgas-Spiralkanäle weisen einen jeweiligen oder gemeinsamen, tangential nach außen gerichteten Abgaszuführkanal mit einem Krümmer-Anschlussflansch zum Anschluss an einen Abgaskrümmer eines Verbrennungsmotors auf, durch den der Abgasmassenstrom in den jeweiligen Abgas-Spiralkanal strömt. The turbine housing has one or more exhaust gas spiral ducts which are arranged in a ring around the turbocharger axis and the turbine impeller and taper helically towards the turbine impeller. The exhaust gas spiral ducts have a respective or common, tangentially outwardly directed exhaust gas supply duct with a manifold connection flange for connection to an exhaust manifold of an internal combustion engine, through which the exhaust gas mass flow flows into the respective exhaust gas spiral duct.
Das Verdichtergehäuse weist einen Luftzuführkanal auf, der einen Saug- rohr-Anschlussstutzen zum Anschluss an das Luft-Saugsystem des Verbrennungsmotors aufweist und in Richtung der Turboladerachse auf das axiale Ende des Verdichterlaufrades zu verläuft. Über diesen Luftzuführkanal wird ein Luftmassenstrom vom Verdichterlaufrad aus dem Luft-Saugsystem angesaugt. Weiterhin weist das Verdichtergehäuse in der Regel einen, ringförmig um die Turboladerachse und das Verdichterlaufrad angeordneten, sich schneckenförmig vom Verdichterlaufrad 13 weg erweiternden Verdichter-Spiralkanal auf. Dieser weist eine zumindest über einen Teil des Innenumfanges verlaufende Ringkanal-Öffnung mit definierter Spaltbreite, den sogenannten Diffusorspalt auf, der in radialer Richtung vom Außenumfang des Verdichterlaufrades weg gerichtet in den Verdichter-Spiralkanal hinein verläuft und durch den der Luftmassenstrom vom Verdichterlaufrad weg unter erhöhtem Druck in den Verdichter-Spiralkanal strömt. Der Verdichter-Spiralkanal weist weiterhin einen tangential nach außen gerichteten Luftabführkanal mit einem Verteiler-Anschlussflansch zum Anschluss an ein Luft-Verteilerrohr eines Verbrennungsmotors auf. The compressor housing has an air supply duct, which has an intake manifold connector for connection to the air intake system of the internal combustion engine and runs in the direction of the turbocharger axis toward the axial end of the compressor impeller. An air mass flow is sucked in by the compressor impeller from the air intake system via this air supply duct. Furthermore, the compressor housing generally has a compressor spiral duct, which is arranged annularly around the turbocharger axis and the compressor impeller and widens in a helical shape away from the compressor impeller 13 . This has an annular duct opening running at least over part of the inner circumference with a defined gap width, the so-called diffuser gap, which runs radially away from the outer circumference of the compressor impeller and into the compressor spiral duct and through which the air mass flow away from the compressor impeller under increased pressure flows into the compressor spiral duct. The compressor volute duct also has a tangentially outwardly directed air discharge duct with a distributor connection flange for connection to an air distributor pipe of an internal combustion engine.
In dem Bereich, in dem der Verdichter-Spiralkanal in den tangential verlaufenden Luftabführkanal übergeht, ist auf der dem Diffusor zugewandten Seite des Luftabführkanals, eine sogenannte Spiralkanalzunge ausgebildet, die, bezogen auf die Luftströmung, den Anfang des Verdichter-Spiralkanals von dem tangential nach außen verlaufenden Luftabführkanal trennt und den Luftstrom in den Luftabführ- kanal leitet. Durch den Luftabführkanal wird der Luftmassenstrom dann unter erhöhtem Druck in das Luft-Verteilerrohr des Verbrennungsmotors geleitet. In the area in which the compressor spiral duct merges into the tangentially running air discharge duct, a so-called spiral duct tongue is formed on the side of the air discharge duct facing the diffuser running air discharge duct separates and the air flow into the air discharge channel directs. The air mass flow is then conducted through the air discharge duct under increased pressure into the air distribution pipe of the combustion engine.
In dem Bereich zwischen Luftzuführkanal und Diffusorspalt, folgt die radiale Innenkontur des Verdichtergehäuses der Außenkontur des darin aufgenommenen Verdichterlaufrades. Dieser Bereich der Innenkontur des Verdichtergehäuses wird als Verdichter-Dichtkontur bezeichnet und bewirkt, dass der Luftmassenstrom möglichst vollständig durch die Beschaufelung des Verdichterlaufrades strömt und nicht daran vorbei. In the area between the air supply duct and the diffuser gap, the radial inner contour of the compressor housing follows the outer contour of the compressor impeller accommodated therein. This area of the inner contour of the compressor housing is referred to as the compressor sealing contour and causes the air mass flow to flow as completely as possible through the blading of the compressor impeller and not past it.
Das Lagergehäuse ist axial zwischen dem Turbinengehäuse und dem Verdichtergehäuse angeordnet. Im Lagergehäuse ist die Lageranordnung zur Lagerung der Rotorrwelle des Turboladerrotors und der Turboladerrotor aufgenommen. The bearing housing is arranged axially between the turbine housing and the compressor housing. The bearing arrangement for supporting the rotor shaft of the turbocharger rotor and the turbocharger rotor is accommodated in the bearing housing.
Der Turboladerrotor oder Turboladerläufer stellt eine weitere Baugruppe des Abgasturboladers dar, der die Rotorwelle, das in dem Turbinengehäuse angeordnete Turbinenlaufrad und das in dem Verdichtergehäuse angeordnete Verdichterlaufrad aufweist. Das Turbinenlaufrad und das Verdichterlaufrad sind auf den sich gegenüberliegenden Enden der gemeinsamen Rotorwelle angeordnet und mit diesen drehfest verbunden. Die Rotorwelle erstreckt sich in Richtung der Turboladerachse axial durch das Lagergehäuse und ist in diesem mittels einer Lageranordnung aus Radiallager und Axiallager um seine Längsachse, die Rotorrwellendrehachse, drehgelagert, wobei die Rotorwellendrehachse in der Turboladerachse liegt, also mit dieser zusammenfällt. In bekannten Ausführungen wird der Turboladerrotor und die Lageranordnung zu einer vormontierbaren Baugruppe zusammengefasst, die als Turboladerläuferkartusche oder im Folgenden auch kurz als Turborotorkartusche bezeichnet wird. The turbocharger rotor or turbocharger rotor represents a further assembly of the exhaust gas turbocharger, which has the rotor shaft, the turbine wheel arranged in the turbine housing and the compressor wheel arranged in the compressor housing. The turbine wheel and the compressor wheel are arranged on the opposite ends of the common rotor shaft and are non-rotatably connected thereto. The rotor shaft extends axially through the bearing housing in the direction of the turbocharger axis and is rotatably mounted in it by means of a bearing arrangement consisting of a radial bearing and an axial bearing about its longitudinal axis, the rotor shaft axis of rotation, with the rotor shaft axis of rotation lying in the turbocharger axis, i.e. coinciding with it. In known designs, the turbocharger rotor and the bearing arrangement are combined to form a preassembled assembly, which is referred to as a turbocharger rotor cartridge or, in the following, as a turbo rotor cartridge for short.
In einer anderen, zum Beispiel aus Dokument DE 10 2020 202 967 A1 bekannten Ausführung sind auch das Turbinengehäuse, das Verdichtergehäuse und das Lagergehäuse zu einem einteiligen Gehäuse, im Folgenden als Integral-Turborotor- gehäuse bezeichnet, zusammengefasst. Eine solche Ausführung gemäß Stand der Technik ist in Fig. 1 dargestellt. In another embodiment known, for example, from document DE 10 2020 202 967 A1, the turbine housing, the compressor housing and the bearing housing are also combined to form a one-piece housing, referred to below as the integral turbotor housing. Such a prior art design is shown in FIG.
Fig. 1 zeigt eine Ausführung eines Abgasturboladers 1 , der bei der Endmontage im Wesentlichen lediglich aus drei konstruktiven Komponenten bzw. Komponentenbaugruppen besteht, nämlich aus einem Integral-Turborotorgehäuse 3, einer Turborotorkartusche 10 und einem Verdichtergehäusedeckel 34. Die Turborotorkartusche 10, die als fertig vormontierte Baugruppe zur Endmontage bereitgestellt werden kann, weist ein Turbinenlaufrad 12, ein Verdichterlaufrad 13, eine Rotorwelle 14 mit einer Rotordrehachse 15 und eine Wellenlagerkartusche 40 auf. Dabei sind das Turbinenlaufrad 12 mit einem ersten Wellenende der Rotorwelle 14 und das Verdichterlaufrad 13 mit dem zweiten Wellenende der Rotorwelle 14 drehfest verbunden und die Rotorwelle 14 ist, zusammen mit dem Turbinenlaufrad 12 und dem Verdichterlaufrad 13, um die Rotordrehachse 15 drehbar in der Wellenlagerkartusche 40 gelagert. Die Rotordrehachse 15 gibt gleichzeitig die Turboladerachse 6 vor, mit der sie im montierten Zustand des Abgasturboladers zusammenfällt. Fig. 1 shows an embodiment of an exhaust gas turbocharger 1, which essentially consists of only three structural components or component assemblies during final assembly, namely an integral turbo rotor housing 3, a turbo rotor cartridge 10 and a compressor housing cover 34. The turbo rotor cartridge 10 , which can be provided as a completely preassembled assembly for final assembly, has a turbine wheel 12 , a compressor wheel 13 , a rotor shaft 14 with a rotor axis of rotation 15 and a shaft bearing cartridge 40 . The turbine wheel 12 is non-rotatably connected to a first shaft end of the rotor shaft 14 and the compressor wheel 13 to the second shaft end of the rotor shaft 14, and the rotor shaft 14, together with the turbine wheel 12 and the compressor wheel 13, can be rotated about the rotor axis of rotation 15 in the shaft bearing cartridge 40 stored. The rotor axis of rotation 15 simultaneously specifies the turbocharger axis 6, with which it coincides when the exhaust gas turbocharger is in the installed state.
Das Integral-Turborotorgehäuse 3 umfasst The integral turbotor housing 3 includes
- das Turbinengehäuse 21 der Abgasturbine 20, in dem das das damit zusammenwirkende Turbinenlaufrad 12 angeordnet ist und das in diesem Fall nur einen Turbinen-Spiralkanal 22 aufweist, - The turbine housing 21 of the exhaust gas turbine 20, in which the cooperating turbine impeller 12 is arranged and which in this case has only one turbine volute duct 22,
- das Verdichtergehäuse 31 des Luftverdichters 30, in dem das damit zusammenwirkende Verdichterlaufrad 13 angeordnet ist und das einen Verdichter-Spiralkanal 32 aufweist und - The compressor housing 31 of the air compressor 30, in which the cooperating compressor impeller 13 is arranged and which has a compressor spiral channel 32 and
- das Lagergehäuse 41 , das zwischen dem Turbinengehäuse 21 und dem Verdichtergehäuse 31 angeordnet ist und in dem die Wellenlagerkartusche 40 beziehungsweise die Turborotorkartusche 10 aufgenommen ist. - The bearing housing 41, which is arranged between the turbine housing 21 and the compressor housing 31 and in which the shaft bearing cartridge 40 or the turbo rotor cartridge 10 is accommodated.
Dabei ist das Integral-Turborotorgehäuse 3 als einteiliges Gehäuseteil ausgeführt und weist einen Rotor-Aufnahmeschacht 4 mit einer Erstreckung in Richtung der Turboladerachse 6 und eine Innengeometrie für die Turborotorkartusche 10 auf. Dabei ist die Innengeometrie des Rotor-Aufnahmeschachtes 4 des Integ- ral-Turborotorgehäuses 3 so ausgestaltet, dass die komplette Turborotorkartusche 10 als vormontierte Einheit, in nur einer in Richtung der Rotordrehachse 15 bzw. der Turboladerachse 6 verlaufenden, axialen Füge-Richtung, durch eine stirnseitige Montageöffnung 33, aufnehmbar bzw. montierbar ist. Der Verdichter-Spiralkanal 32 ist dabei so angeordnet, dass er das Lagergehäuse 41 bzw. den Rotor-Aufnahm e- schacht 4 in axialer Richtung übergreift, wodurch axialer Bauraum eingespart wird. The integral turbo rotor housing 3 is designed as a one-piece housing part and has a rotor receiving shaft 4 extending in the direction of the turbocharger axis 6 and an internal geometry for the turbo rotor cartridge 10 . The inner geometry of the rotor receiving shaft 4 of the integral turbotor housing 3 is designed in such a way that the complete turbo rotor cartridge 10 as a preassembled unit, in only one axial joining direction running in the direction of the rotor axis of rotation 15 or the turbocharger axis 6, by a front mounting opening 33, can be recorded or mounted. The compressor spiral channel 32 is arranged in such a way that it overlaps the bearing housing 41 or the rotor receptacle 4 in the axial direction, which saves on axial installation space.
Die Montageöffnung 33 ist mittels eines Verdichtergehäusedeckels 34 verschlossen, der zumindest eine, an das Verdichterlaufrad 13 angepasste, Verdichterlaufrad-Dichtkontur 35 und einen Saugrohr-Anschlussstutzen 37 aufweist und so das Turboladergehäuse 2 vervollständigt. Die Montageöffnung ist dabei lediglich so groß, dass die Turborotorkartusche 10 problemlos in axialer Richtung in den Rotor-Aufnahmeschacht 4 eingefügt werden kann. Dabei ist der Verdichter-Spiralkanal 32 vollständig inklusive der Spiralkanalzunge (in Fig. 1 nicht erkennbar) und der Diffusorspalt 38 zumindest teilweise in dem einteiligen Integral-Turborotorgehäuse 3 ausgeformt. The assembly opening 33 is closed by means of a compressor housing cover 34 which has at least one compressor impeller sealing contour 35 adapted to the compressor impeller 13 and an intake manifold connection piece 37 and thus completes the turbocharger housing 2 . The assembly opening is only so large that the turbo rotor cartridge 10 can be easily inserted into the rotor receiving shaft 4 in the axial direction. Here is the compressor spiral duct 32 are formed completely, including the spiral channel tongue (not visible in FIG. 1) and the diffuser gap 38, at least partially in the one-piece integral turbotortor housing 3.
Durch die vorgenannte Ausgestaltung des Abgasturboladers wird vorteilhaft die Gesamtzahl der Einzelbauteile und der erforderlichen Montagevorgänge reduziert. Des Weiteren wird auch die Anzahl der gegenüber der Umgebung abzudichtenden Gehäuseschnittstellen auf ein Minimum reduziert und in ihrer Gesamtlänge ebenfalls auf ein Minimum reduziert. Dies wirkt sich wiederum vorteilhaft auf die Herstellkosten sowie auf einen im Hinblick auf unerwünschte Emissionen verbesserten Betrieb aus. The aforementioned configuration of the exhaust gas turbocharger advantageously reduces the total number of individual components and the required assembly processes. Furthermore, the number of housing interfaces to be sealed off from the environment is also reduced to a minimum and their overall length is also reduced to a minimum. This in turn has an advantageous effect on the production costs and on operation that is improved with regard to undesired emissions.
Es hat sich jedoch gezeigt, dass die komplexe Geometrie eines solchen Integ- ral-Turborotorgehäuses sehr hohe Anforderungen an den Herstellprozess stellt. Eine solch komplexe Geometrie kann nur in einem hochgenauen Gießverfahren hergestellt werden. Dabei erhöht insbesondere die geschlossene Geometrie des Verdichter-Spiralkanals die Komplexität der Gestaltung einer entsprechenden Gießform und der erforderlichen Formkerne und stellt ein Hindernis bei der Entformung der Gußrohlinge dar. Dies erhöht die Herstellkosten und die Ausschussquote. However, it has been shown that the complex geometry of such an integral turbotor housing places very high demands on the manufacturing process. Such a complex geometry can only be produced in a high-precision casting process. In particular, the closed geometry of the compressor spiral channel increases the complexity of the design of a corresponding casting mold and the required mold cores and represents an obstacle when demoulding the cast blanks. This increases the manufacturing costs and the reject rate.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Turboladergehäuse und einen Abgasturbolader anzugeben, die sich durch ein Integ- ral-Turborotorgehäuse auszeichnen, das im Vergleich zum Stand der Technik jedoch einfacher und Kostengünstiger in einem Gießprozess herstellbar ist und so zur weiteren Reduzierung der Herstellkosten beiträgt. The present invention is therefore based on the object of specifying a turbocharger housing and an exhaust gas turbocharger which are characterized by an integral turbotor housing which, in comparison to the prior art, is simpler and cheaper to produce in a casting process and thus further reduces the production costs contributes.
Diese Aufgabe wird gelöst durch ein Turboladergehäuse und einen Abgasturbolader mit den Merkmalen gemäß den unabhängigen Patentansprüchen. Vorteilhafte Aus- und Weiterbildungen, welche einzeln oder in Kombination miteinander eingesetzt werden können, sind Gegenstand der abhängigen Ansprüche. This object is achieved by a turbocharger housing and an exhaust gas turbocharger with the features according to the independent patent claims. Advantageous training and developments, which can be used individually or in combination with one another, are the subject matter of the dependent claims.
Erfindungsgemäß zeichnet sich das Turboladergehäuse und der Abgasturbolader dadurch aus, dass das Turbinengehäuse, inclusive des Abgas-Spiralkanals, das Lagergehäuse und das Verdichtergehäuse, inclusive des Luft-Spiralkanals, zusammengefasst sind zu einem Integral-Turborotorgehäuse, das beispielsweise als einteiliges Gussteil ausgeführt ist und einen Rotor-Aufnahmeschacht mit einer Innengeometrie für eine Turborotorkartusche aufweist. Dabei ist die Innengeometrie des Rotor-Aufnahmeschachtes des Integral-Turborotorgehäuses zur Aufnahme der kompletten Turborotorkartusche, inclusive Verdichterlaufrad und Turbinenlaufrad, als vormontierte Einheit, in nur einer parallel zur Läuferwellendrehachse verlaufenden, axialen Füge-Richtung, durch eine stirnseitige Montageöffnung, ausgestaltet und der Verdichtergehäusedeckel weist zumindest einen Saugrohr-Anschlussstutzen und eine dem Rotor-Aufnahmeschacht zugewandte Deckel-Innenseite mit einer Verdichterlaufrad-Dichtkontur auf. According to the invention, the turbocharger housing and the exhaust gas turbocharger are characterized in that the turbine housing, including the exhaust gas spiral duct, the bearing housing and the compressor housing, including the air spiral duct, are combined to form an integral turbotor housing, which is designed, for example, as a one-piece cast part and a Having rotor receiving shaft with an internal geometry for a turbo rotor cartridge. Here is the inner geometry of the rotor receiving shaft of the integral turbo rotor housing for receiving the complete turbo rotor cartridge, including the compressor impeller and turbine impeller, as a preassembled unit, in only one axial joining direction running parallel to the rotor shaft axis of rotation, through an end assembly opening, and the compressor housing cover has at least one suction pipe Connection piece and a cover inside facing the rotor receiving shaft with a compressor impeller sealing contour.
Dabei ist der lichte Durchmesser der Montageöffnung zumindest bis in den äußeren Randbereich des Verdichter-Spiralkanals erweitert und auf der Deckel-Innenseite des Verdichtergehäusedeckels sind zumindest ein Teil einer Kontur einer Spiralkanalzunge und ein Teil des Gehäuserandes des Verdichter-Spiralkanals ausgeformt. The inside diameter of the assembly opening is enlarged at least to the outer edge area of the compressor spiral duct, and at least a part of a contour of a spiral duct tongue and a part of the housing edge of the compressor spiral duct are formed on the inside of the compressor housing cover.
Durch die vorgenannte Ausgestaltung des Turboladergehäuses und des Abgasturboladers wird vorteilhaft die Gesamtzahl der Einzelbauteile und der erforderlichen Montagevorgänge reduziert. Des Weiteren wird auch die Anzahl der gegenüber der Umgebung abzudichtenden Gehäuseschnittstellen auf ein Minimum reduziert und in ihrer Gesamtlänge ebenfalls auf ein Minimum reduziert. Darüber hinaus wird insbesondere durch die erfindungsgemäße Gestaltung der Montageöffnung und des Verdichtergehäusedeckels die Herstellung des Integ- ral-Turborotorgehäuses dadurch vereinfacht, dass weniger Hinterschneidungen zu beachten sind, welche die Gestaltung der Gießformen und Gießkernelemente verkomplizieren und somit das Turboladergehäuse und den Abgasturbolader verteuern. Die durch die erfindungsgemäße Gestaltung vereinfachte Entformung wird auch der Ausschussanteil in der Produktion verringert sowie die Lebensdauer der Gießformen verlängert. Dies alles wirkt sich letztlich vorteilhaft auf die Herstellkosten aus. The aforementioned configuration of the turbocharger housing and the exhaust gas turbocharger advantageously reduces the total number of individual components and the assembly processes required. Furthermore, the number of housing interfaces to be sealed off from the environment is also reduced to a minimum and their overall length is also reduced to a minimum. In addition, the production of the integral turbotor housing is simplified in particular by the inventive design of the assembly opening and the compressor housing cover in that fewer undercuts have to be considered, which complicate the design of the casting molds and casting core elements and thus make the turbocharger housing and the exhaust gas turbocharger more expensive. The demoulding simplified by the design according to the invention also reduces the proportion of rejects in production and extends the service life of the casting molds. All this ultimately has an advantageous effect on the production costs.
Die erfindungsgemäßen Gegenstände, Turboladergehäuse und Abgasturbolader sowie weiter vorteilhafte Ausgestaltungen und Fortbildungen der erfindungsgemäßen Gegenstände werden im Folgenden anhand der einzelnen Figuren der beigefügten Zeichnung dargestellt und erläutert. The objects according to the invention, turbocharger housings and exhaust gas turbochargers as well as further advantageous configurations and developments of the objects according to the invention are illustrated and explained below with reference to the individual figures of the attached drawing.
Die Zeichnung zeigt anhand der einzelnen Figuren eine Auswahl von Ausführungsbeispielen der Erfindung sowie verschiedene Kombinationsmöglichkeiten von Merkmalen verschiedener Ausführungen, gemäß der Ansprüche. Funktions- und Benennungsgleiche Teile sind dabei in den Figuren übergreifend mit denselben Bezugszeichen gekennzeichnet. Es zeigen: Using the individual figures, the drawing shows a selection of exemplary embodiments of the invention as well as various possible combinations of features of different designs, according to the claims. Parts with the same function and names are identified with the same reference symbols throughout the figures. Show it:
Fig. 1 einen Abgasturbolader mit den wesentlichen Komponenten, in vereinfachter schematischer Schnitt-Darstellung, zur Darstellung des Standes der Technik und zur Erläuterung der benutzten Begriffe; 1 shows an exhaust gas turbocharger with the essential components, in a simplified schematic sectional representation, for representing the prior art and for explaining the terms used;
Fig. 2 ein Ausführungsbeispiel eines erfindungsgemäßen Turboladergehäuses und Abgasturboladers in zerlegtem Zustand und vereinfachter Schnittdarstellung der Komponenten; 2 shows an exemplary embodiment of a turbocharger housing and exhaust gas turbocharger according to the invention in a disassembled state and a simplified sectional view of the components;
Fig. 3 eine Frontalansicht eines geöffneten Integral-Turborotorgehäuses mit eingesetzter Turborotorkartusche jedoch ohne Verdichtergehäusedeckel;3 shows a front view of an opened integral turbo rotor housing with an inserted turbo rotor cartridge but without a compressor housing cover;
Fig. 4 eine perspektivische Ansicht einer Ausführung des erfindungsgemäßen Verdichtergehäusedeckels; 4 shows a perspective view of an embodiment of the compressor housing cover according to the invention;
Fig. 5 die Ausführung des in Fig.4 dargestellten Verdichtergehäusedeckels in Halbschnitt-Darstellung. 5 shows the design of the compressor housing cover shown in FIG. 4 in a half-section illustration.
Die Darstellung in Fig. 1 zeigt schematisiert einen Abgasturbolader 1 mit einem herkömmlichen Integral-Turborotorgehäuse 3 in Schnitt-Darstellung, gemäß dem bekannten Stand der Technik und dient zur Erläuterung des prinzipiellen Aufbaus eines Abgasturboladers 1 aus Abgasturbine 20 Luftverdichter 30, Turborotorkartusche 10 und Wellenlagerkartusche 40. Der Aufbau im Detail wurde bereits einleitend oben beschrieben. The representation in Fig. 1 shows a schematic representation of an exhaust gas turbocharger 1 with a conventional integral turbotor housing 3 in a sectional representation, according to the known prior art and serves to explain the basic structure of an exhaust gas turbocharger 1 from exhaust gas turbine 20 air compressor 30, turbo rotor cartridge 10 and shaft bearing cartridge 40 The structure in detail has already been described in the introduction above.
Fig. 2 zeigt das Turboladergehäuse 2, für einen Abgasturbolader 1 eines Verbrennungsmotors, das ein Integral-Turborotorgehäuse 3 und einen Verdichtergehäusedeckel 34 aufweist. Das Integral-Turborotorgehäuse 3 ist einteilig ausgeführt und weist zumindest 2 shows the turbocharger housing 2 for an exhaust gas turbocharger 1 of an internal combustion engine, which has an integral turbotor housing 3 and a compressor housing cover 34 . The integral turbotortor housing 3 is made in one piece and has at least
- einen sich in Richtung einer Turboladerachse 6 axial erstreckenden Rotor-Aufnahmeschacht 4 für eine Turborotorkartusche 10, a rotor receiving shaft 4 for a turbo rotor cartridge 10, which axially extends in the direction of a turbocharger axis 6,
- ein Turbinengehäuse 21 mit zumindest einem Turbinen-Spiralkanal 22 an einem axialen Ende des Rotor-Aufnahmeschachtes 4 (in der Darstellung auf der rechten Seite), und - A turbine housing 21 with at least one turbine volute 22 at an axial end of the rotor receiving shaft 4 (on the right side in the illustration), and
- ein Verdichtergehäuse 31 mit einem Verdichter-Spiralkanal 32 und einem daran anschließenden Luftabführkanal 36 (nur angeschnitten erkennbar), an einem dem Turbinengehäuse 21 gegenüberliegenden axialen Ende des Rotor-Aufnahmeschachtes 4 (in der Darstellung auf der linken Seite); wobei das Integral-Turborotorgehäuse 3 auf der Seite des Verdichtergehäuses 31 eine stirnseitige Montageöffnung 33 aufweist, durch welche die Turborotorkartusche 10, in einer parallel zur Turboladerachse 6 verlaufenden, axialen Füge-Rich- tung (siehe Pfeil), in den Rotor-Aufnahmeschacht 4 des Integral-Turborotorgehäuses 3 eisetzbar ist. Dabei ist die Montageöffnung 33 mit dem Verdichtergehäusedeckel 34 verschließbar ausgebildet. - A compressor housing 31 with a compressor spiral duct 32 and an adjoining air discharge duct 36 (can only be seen in section) at an axial end of the rotor receiving shaft 4 opposite the turbine housing 21 (on the left-hand side in the illustration); wherein the integral turbo rotor housing 3 on the side of the compressor housing 31 has a front assembly opening 33 through which the turbo rotor cartridge 10, in a direction parallel to the turbocharger axis 6, axial joining direction direction (see arrow), in the rotor receiving shaft 4 of the integral turbotor housing 3 can be used. The assembly opening 33 can be closed with the compressor housing cover 34 .
Der Verdichtergehäusedeckel 34 weist zumindest einen Saugrohr-Anschlussstutzen 37 und eine dem Rotor-Aufnahmeschacht 4 zugewandte Deckel-Innenseite 34a mit einer Verdichterlaufrad-Dichtkontur 35 auf. The compressor housing cover 34 has at least one suction pipe connecting piece 37 and a cover inner side 34a facing the rotor receiving shaft 4 with a compressor impeller sealing contour 35 .
Die gezeigte erfindungsgemäße Ausführung ist dadurch gekennzeichnet, dass der lichte Durchmesser D der Montageöffnung 33 zumindest bis in den äußeren Randbereich des Verdichter-Spiralkanals 32, also zumindest bis zum Gehäuserand 32d des Verdichter-Spiralkanals 32 am Verdichtergehäuse 31 , erweitert ist und auf der Deckel-Innenseite 34a des Verdichtergehäusedeckels 34 zumindest ein Teil einer Kontur einer Spiralkanalzunge 32a und des Gehäuserandes 32c des Verdichter-Spiralkanals 32 ausgeformt ist. The embodiment according to the invention shown is characterized in that the clear diameter D of the assembly opening 33 is expanded at least up to the outer edge region of the compressor spiral channel 32, ie at least up to the housing edge 32d of the compressor spiral channel 32 on the compressor housing 31, and on the cover Inside 34a of the compressor housing cover 34 at least a part of a contour of a spiral channel tongue 32a and the housing edge 32c of the compressor spiral channel 32 is formed.
Die Turborotorkartusche 10 ist in der Darstellung außerhalb des Integ- ral-Turborotorgehäuses 3 dargestellt, in dessen Rotor-Aufnahmeschacht 4 sie in axialer Fügerichtung, die durch einen Pfeil symbolisiert ist, eingefügt wird. Die Turborotorkartusche 10 weist eine Wellenlagerkartusche 40, eine sich durch die Wellenlagerkartusche 40 erstreckende und darin um die Rotordrehachse 15 drehbar gelagerte Rotorwelle 14, ein an einem Ende der Rotorwelle 14 angeordnetes Turbinenlaufrad 12 und ein an einem gegenüberliegenden Ende der Rotorwelle 14 angeordnetes Verdichterlaufrad 13 auf. In the representation, the turbo rotor cartridge 10 is shown outside the integral turbo rotor housing 3, in the rotor receiving shaft 4 of which it is inserted in the axial joining direction, which is symbolized by an arrow. The turbo rotor cartridge 10 has a shaft bearing cartridge 40, a rotor shaft 14 which extends through the shaft bearing cartridge 40 and is rotatably mounted therein about the rotor axis of rotation 15, a turbine impeller 12 which is arranged at one end of the rotor shaft 14 and a compressor impeller 13 which is arranged at an opposite end of the rotor shaft 14.
Im zusammengebauten Zustand des Abgasturboladers 1 mit Integ- ral-Turborotorgehäuse 3, Turborotorkartusche 10 und Verdichtergehäusedeckel 34 stimmt die Rotordrehachse 15 mit der Turboladerachse 6 überein, das Turbinenlaufrad 12 ist im Turbinengehäuse 21 angeordnet. Das Verdichterlaufrad 13 ist im Verdichtergehäuse 31 angeordnet und die Montageöffnung 33 ist mittels des Verdichtergehäusedeckels 34 verschlossen. Die Verdichterlaufrad-Dichtkontur 35 umfasst die Beschaufelung des Verdichterlaufrads 13 und der Verdichter-Spiralkanal 32 wird durch den auf der Deckel-Innenseite 34a ausgeformten Teil des Gehäuserandes 32c des Verdichter-Spiralkanals 32 sowie durch den auf der Deckel-Innenseite 34a ausgeformten Teil der Kontur der Spiralkanalzunge 32a, vervollständigt. When the exhaust gas turbocharger 1 is assembled with the integral turbotor housing 3, turbo rotor cartridge 10 and compressor housing cover 34, the rotor axis of rotation 15 coincides with the turbocharger axis 6; the turbine impeller 12 is arranged in the turbine housing 21. The compressor impeller 13 is arranged in the compressor housing 31 and the assembly opening 33 is closed by means of the compressor housing cover 34 . The compressor impeller sealing contour 35 comprises the blading of the compressor impeller 13 and the compressor spiral duct 32 is formed by the part of the housing edge 32c of the compressor spiral duct 32 formed on the inside of the cover 34a and by the part of the contour of the compressor volute formed on the inside of the cover 34a Spiral channel tongue 32a, completed.
Auf diese Weise werden Hinterschneidungen in Bezug auf die Richtung der Turboladerachse 6 im Bereich des Verdichter-Spiralkanals 32 und dessen Spiralkanalzunge 32a vermieden, was die Herstellung des Integral-Turborotorgehäuses 3 erheblich vereinfacht. In this way, undercuts are avoided in relation to the direction of the turbocharger axis 6 in the area of the compressor spiral channel 32 and its spiral channel tongue 32a, which makes it easier to manufacture the integral turbotortor housing 3 considerably simplified.
Ein weiteres in Fig.2 gezeigtes Merkmal entspricht einer Ausführung, die dadurch gekennzeichnet ist, dass der Verdichter-Spiralkanal 32 so angeordnet ist, dass zumindest ein Teil des Verdichter-Spiralkanals 32 den Rotor-Aufnahmeschacht 4 in axialer Richtung, bezogen auf die Turboladerachse 6, zumindest teilweise übergreift. In der Darstellung der Fig. 2 ragt ein Teil des Verdichter-Spiralkanals 32 in Richtung der Turboladerachse 6 nach rechts ein Stück weit über den Rotor-Aufnahmeschacht und umgreift den Rotor-Aufnahmeschacht 4 über den Umfang. Eine solche Ausführung spart durch die Überlappung der Geometrien, in vorteilhafter Weise axialen Bauraum. A further feature shown in Fig. 2 corresponds to an embodiment which is characterized in that the compressor spiral channel 32 is arranged in such a way that at least a part of the compressor spiral channel 32 surrounds the rotor receiving shaft 4 in the axial direction, in relation to the turbocharger axis 6 , at least partially overlapping. In the representation of FIG. 2, a part of the compressor spiral channel 32 protrudes in the direction of the turbocharger axis 6 to the right a little way over the rotor receiving shaft and encompasses the rotor receiving shaft 4 over the circumference. Such an embodiment advantageously saves axial installation space due to the overlapping of the geometries.
In einer weiteren Ausführung des erfindungsgemäßen Turboladergehäuses 2 ist eine im Wesentlichen senkrecht zur Turboladerachse 6 liegende Teilungsebene T zwischen dem Integral-Turborotorgehäuse 3 und dem Verdichtergehäusedeckel (34) durch eine äußere Umfangslinie des Verdichter-Spiralkanals (32) gelegt ist, die, mit Bezug auf die Turboladerachse 6, entlang der radial äußersten Punkte einer Innenkontur des Verdichter-Spiralkanals (32) über dessen Umfang verläuft. Die radial äußersten Punkte der Innenkontur des Verdichter-Spiralkanals 32 sind die Punkte der Innenkontur des Verdichter-Spiralkanals 32 die an der jeweiligen Stelle über dessen Umfang den jeweils größten radialen Abstand zur Turboladerachse 6 aufweisen. Die Teilungsebene T ist in Fig. 2 mit gestrichelter Linie am Verdichtergehäuse 31 eingezeichnet. Zu erkennen ist, dass die Teilungsebene T in diesem Beispiel vom rechten Winkel gegenüber der Turboladerachse 6 leicht abweicht. Dies ergibt sich hier dadurch, dass die Teilungsebene T durch die äußere Umfangslinie des Verdichter-Spiralkanals 32 gelegt ist, wobei der Querschnitt des Verdichter-Spiralkanals 32 über den Umfang abnimmt und der Verdichter-Spiralkanal 32 einseitig überlappend zum Rotor-Aufnahmeschacht 4 angeordnet ist. Bei einer solchen Anordnung kann sich eine Winkelabweichung gegenüber der Senkrechten zur Turboladerachse 6 einstellen, die in der Regel kleiner gleich 22,5 Grad ist, was in diesem Zusammenhang als im Wesentlichen senkrecht zur Turboladerachse 6 verstanden wird. Bei anderer Anordnung des Verdichter-Spiralkanals 32 kann die Teilungsebene T gegebenenfalls auch senkrecht zur Turboladerachse 6 liegen. In a further embodiment of the turbocharger housing 2 according to the invention, a dividing plane T, which is essentially perpendicular to the turbocharger axis 6, is laid between the integral turbotor housing 3 and the compressor housing cover (34) through an outer peripheral line of the compressor spiral duct (32), which, with reference to the turbocharger axis 6, runs along the radially outermost points of an inner contour of the compressor spiral channel (32) over its circumference. The radially outermost points of the inner contour of the compressor volute duct 32 are the points of the inner contour of the compressor volute duct 32 which have the greatest radial distance from the turbocharger axis 6 at the respective point on its circumference. The parting plane T is shown in FIG. 2 with a dashed line on the compressor housing 31 . It can be seen that the parting plane T in this example deviates slightly from the right angle with respect to the turbocharger axis 6 . This results here from the fact that the dividing plane T is laid through the outer circumferential line of the compressor volute duct 32, the cross section of the compressor volute duct 32 decreasing over the circumference and the compressor volute duct 32 overlapping the rotor receiving shaft 4 on one side. With such an arrangement, an angular deviation from the perpendicular to the turbocharger axis 6 can occur, which is generally less than or equal to 22.5 degrees, which in this context is understood to be essentially perpendicular to the turbocharger axis 6 . With a different arrangement of the compressor spiral channel 32 , the parting plane T can optionally also be perpendicular to the turbocharger axis 6 .
Diese Lage der Teilungsebene T gewährleistet, dass sich sowohl auf der Seite des Verdichtergehäuses 31 als auch auf der Seite des Verdichtergehäusedeckels 34 keine Hinterschneidungen in Richtung der Turboladerachse 6, durch die Ausformung der jeweiligen Anteile des Gehäuserandes 32c, 32d ergeben. Dies verein- facht die Herstellung des Integral-Turborotorgehäuses 3 und des Verdichtergehäusedeckels 34 gleichermaßen, was sich vorteilhaft auf die Herstellkosten und die Qualität auswirkt. This position of the parting plane T ensures that there are no undercuts in the direction of the turbocharger axis 6 either on the side of the compressor housing 31 or on the side of the compressor housing cover 34 due to the shaping of the respective portions of the housing edge 32c, 32d. This combines simplifies the manufacture of the integral turbotor housing 3 and the compressor housing cover 34 alike, which has an advantageous effect on the manufacturing costs and the quality.
Eine weitere Ausführung des erfindungsgemäßen Turboladergehäuses 2 ist dadurch gekennzeichnet, dass das Integral-Turborotorgehäuse 3 integraler Bestandteil eines Zylinderkopfgehäuses 50 oder eines Motorgehäuses 51 eines Verbrennungsmotors ist. Dies ist in Fig. 2 durch eine das Integral-Turborotorgehäuse 3 umfassende, strichpunktierte Linie, die ein Zylinderkopfgehäuse oder ein Motorgehäuse 51 symbolisch verkörpert, dargestellt. Die Integration des Integral-Turborotorgehäuse 3 in das Zylinderkopfgehäuse 50 oder das Motorgehäuse 51 eines Verbrennungsmotors erhöht zwar die Komplexität des jeweiligen Gehäuses, reduziert jedoch die Teileanzahl und den Montageaufwand. Weiterhin wird die Anzahl der Schnittstellen zwischen Abgasturbolader 1 und Verbrennungsmotor reduziert und so ein Versagen dieser Schnittstellen in Bezug auf Dichtheit vermieden. A further embodiment of the turbocharger housing 2 according to the invention is characterized in that the integral turbotortor housing 3 is an integral part of a cylinder head housing 50 or an engine housing 51 of an internal combustion engine. This is shown in FIG. 2 by a dash-dotted line encompassing the integral turbotortor housing 3 and symbolically embodying a cylinder head housing or a motor housing 51 . The integration of the integral turbotortor housing 3 in the cylinder head housing 50 or the engine housing 51 of an internal combustion engine increases the complexity of the respective housing, but reduces the number of parts and the assembly effort. Furthermore, the number of interfaces between the exhaust gas turbocharger 1 and the internal combustion engine is reduced, and failure of these interfaces with regard to tightness is thus avoided.
Ein Integral-Turborotorgehäuse 3 mit eingefügter Turborotorkartusche 10 gemäß der Erfindung ist in Fig. 3 in Frontalansicht in Axialer Richtung auf die Montageöffnung 33 im Verdichtergehäuse 31 , bei entferntem Verdichtergehäusedeckel 34, dargestellt. Zu erkennen ist der Verdichter-Spiralkanal 32 und der im Verdichtergehäuse 31 ausgeformte Anteil der Spiralkanalzunge 32b, unterhalb welcher der Verdichter-Spiralkanal 32 beginnt, der in diesem Beispiel dann gegen den Urzeigersinn um die Turboladerachse 6 umläuft, wobei sich sein Querschnitt permanent vergrößert, bis er wiederum im Bereich der Spiralkanalzunge 32b tangential in den Luftabführkanal 36 übergeht, wobei die Spiralkanalzunge 32b den Luftabführkanal 36 vom Verdichter-Spiralkanal 32 trennt und ein strömungsführendes Element darstellt, das den Luftstrom vom Verdichter-Spiralkanal 32 in den Luftabführkanal 36 ableitet. An integral turbo rotor housing 3 with an inserted turbo rotor cartridge 10 according to the invention is shown in FIG. 3 in a front view in the axial direction of the assembly opening 33 in the compressor housing 31 with the compressor housing cover 34 removed. Compressor spiral channel 32 and the portion of spiral channel tongue 32b formed in compressor housing 31 can be seen, below which compressor spiral channel 32 begins, which in this example then runs counterclockwise around turbocharger axis 6, with its cross section permanently increasing until it in turn merges tangentially into the air discharge duct 36 in the area of the spiral duct tongue 32b, with the spiral duct tongue 32b separating the air discharge duct 36 from the compressor spiral duct 32 and representing a flow-guiding element that diverts the air flow from the compressor spiral duct 32 into the air discharge duct 36.
Zu erkennen ist auch, dass der lichte Durchmesser D der Montageöffnung 33 zumindest bis in den äußeren Randbereich des Verdichter-Spiralkanals 32 und über die Spiralkanalzunge 32b hinweg bis zum Gehäuserand 32d des Verdichter-Spiralkanals 32 am Verdichtergehäuse 31 erweitert ist. It can also be seen that the clear diameter D of the assembly opening 33 is enlarged at least as far as the outer edge area of the compressor volute duct 32 and beyond the volute duct tongue 32b to the housing edge 32d of the compressor volute duct 32 on the compressor housing 31.
Fig. 4 zeigt eine Ausführung eines Verdichtergehäusedeckels 34 gemäß der Erfindung in perspektivischer Darstellung mit Sicht auf die Deckel-Innenseite 34a mit der Verdichterlaufrad-Dichtkontur 35, die in den Luftabführkanal 36 übergeht. Gut zu erkennen ist auch, dass auf der Deckel-Innenseite 34a des Verdichtergehäu- sedeckels 34 zumindest ein Teil einer Kontur einer Spiralkanalzunge 32a und eines Gehäuserandes 32c des Verdichter-Spiralkanals 32 ausgeformt ist. 4 shows an embodiment of a compressor housing cover 34 according to the invention in a perspective representation with a view of the inside 34a of the cover with the compressor impeller sealing contour 35 which merges into the air discharge duct 36 . It is also easy to see that on the inside of the cover 34a of the compressor housing sedeckels 34 at least part of a contour of a spiral channel tongue 32a and a housing edge 32c of the compressor spiral channel 32 is formed.
Fig. 5 zeigt die Ausführung des in Fig.4 dargestellten Verdichtergehäusedeckels 34 in Halbschnitt-Darstellung. Auf der Deckel-Innenseite 34a ist die Verdichterlaufrad-Dichtkontur 35 angeordnet, die in den Luftabführkanal 36 übergeht. Gut zu erkennen ist auch, dass auf der Deckel-Innenseite 34a des Verdichtergehäusedeckels 34 zumindest ein Teil einer Kontur einer Spiralkanalzunge 32a und eines Gehäuserandes 32c des Verdichter-Spiralkanals 32 ausgeformt ist. Weiterhin ist der Saugrohr-Anschlussstutzen 37 erkennbar, über den das Turboladergehäuse 2 an die Luftversorgungseinheit eines Verbrennungsmotors anschließbar ist. FIG. 5 shows the design of the compressor housing cover 34 shown in FIG. 4 in a half-section illustration. The compressor impeller sealing contour 35 , which merges into the air discharge duct 36 , is arranged on the inside 34a of the cover. It can also be clearly seen that at least part of a contour of a spiral channel tongue 32a and a housing edge 32c of the compressor spiral channel 32 is formed on the inside 34a of the compressor housing cover 34 . Furthermore, the intake manifold connection piece 37 can be seen, via which the turbocharger housing 2 can be connected to the air supply unit of an internal combustion engine.
Bezugszeichenliste Reference List
1 Abgasturbolader 1 exhaust gas turbocharger
2 Turboladergehäuse 2 turbocharger housing
3 Integral-Turborotorgehäuse 3 integral turbotor housing
4 Rotor-Aufnahmeschacht 4 rotor mounting slot
6 Turboladerachse 6 turbocharger axis
10 Turborotorkartusche 10 turbo rotor cartridge
12 Turbinenlaufrad 12 turbine runner
13 Verdichterlaufrad 13 compressor impeller
14 Rotorwelle 14 rotor shaft
15 Rotordrehachse 15 rotor axis of rotation
20 Abgasturbine 20 exhaust turbine
21 Turbinengehäuse 21 turbine housing
22 Turbinen-Spiralkanal 22 Turbine Spiral Duct
30 Luftverdichter 30 air compressors
31 Verdichtergehäuse 31 compressor housing
32 Verdichter-Spiralkanal 32 compressor spiral channel
32a Spiralkanalzunge auf dem Verdichtergehäusedeckel 32a Spiral duct tab on the compressor casing cover
32b Spiralkanalzunge im Verdichtergehäuse 32b Spiral channel tongue in the compressor housing
32c Gehäuserand des Verdichter-Spiralkanals auf dem Verdichtergehäusedeckel 32c Compressor volute casing edge on compressor casing cover
32d Gehäuserand des Verdichter-Spiralkanals am Verdichtergehäuse32d Casing edge of the compressor volute on the compressor casing
33 Montageöffnung 33 mounting hole
34 Verdichtergehäusedeckel 34 compressor housing cover
34a Deckel-Innenseite 34a Cover inside
35 Verdichterlaufrad-Dichtkontur 35 compressor impeller sealing contour
36 Luftabführkanal 36 air discharge duct
37 Saugrohr-Anschlussstutzen 37 intake manifold connection piece
38 Diffusorspalt 38 diffuser gap
40 Wellenlagerkartusche 40 shaft bearing cartridge
41 Lagergehäuse 50 Zylinderkopfgehäuse 41 bearing housing 50 cylinder head housing
51 Motorgehäuse 51 motor housing
D Durchmesser der MontageöffnungD Mounting hole diameter
T Teilungsebene T division plane

Claims

Patentansprüche patent claims
1 . Turboladergehäuse (2), für einen Abgasturbolader (1 ) eines Verbrennungsmotors, das ein Integral-Turborotorgehäuse (3) und einen Verdichtergehäusedeckel (34) aufweist, wobei das Integral-Turborotorgehäuse (3) einteilig ausgeführt ist, und zumindest 1 . Turbocharger housing (2) for an exhaust gas turbocharger (1) of an internal combustion engine, which has an integral turbotor housing (3) and a compressor housing cover (34), the integral turbotor housing (3) being made in one piece, and at least
- einen sich in Richtung einer Turboladerachse (6) axial erstreckenden Rotor-Aufnahmeschacht (4) für eine Turborotorkartusche (10), - a rotor receiving shaft (4) for a turbo rotor cartridge (10) extending axially in the direction of a turbocharger axis (6),
- ein Turbinengehäuse (21 ) mit zumindest einem Turbinen-Spiralkanal (22) an einem axialen Ende des Rotor-Aufnahmeschachtes (4), und - A turbine housing (21) with at least one turbine spiral channel (22) at an axial end of the rotor receiving shaft (4), and
- ein Verdichtergehäuse (31 ) mit einem Verdichter-Spiralkanal (32) und einem daran anschließenden Luftabführkanal (36), an einem dem Turbinengehäuse (21 ) gegenüberliegenden axialen Ende des Rotor-Aufnahmeschachtes (4); wobei das Integral-Turborotorgehäuse (3) auf der Seite des Verdichtergehäuses (31 ) eine stirnseitige Montageöffnung (33) aufweist, durch welche die Turborotorkartusche (10), in einer parallel zur Turboladerachse (6) verlaufenden, axialen Füge-Richtung, in den Rotor-Aufnahmeschacht (4) des Integral-Turborotorge- häuses (3) eisetzbar ist, wobei die Montageöffnung (33) mit dem Verdichtergehäusedeckel (34) verschließbar ist, und wobei der Verdichtergehäusedeckel (34) zumindest einen Saug- rohr-Anschlussstutzen (37) und eine dem Rotor-Aufnahmeschacht (4) zugewandte Deckel-Innenseite (34a) mit einer Verdichterlaufrad-Dichtkontur (35) aufweist; dadurch gekennzeichnet, dass der lichte Durchmesser (D) der Montageöffnung (33) zumindest bis in den äußeren Randbereich des Verdichter-Spiralkanals (32) erweitert ist und auf der Deckel-Innenseite (34a) des Verdichtergehäusedeckels (34) zumindest ein Teil einer Kontur einer Spiralkanalzunge (32a) und eines Gehäuserandes (32c) des Verdichter-Spiralkanals (32) ausgeformt ist. - A compressor housing (31) with a compressor spiral duct (32) and an adjoining air discharge duct (36) on one of the turbine housing (21) opposite the axial end of the rotor receiving shaft (4); wherein the integral turbo rotor housing (3) has a front assembly opening (33) on the side of the compressor housing (31) through which the turbo rotor cartridge (10) can be inserted into the rotor in an axial joining direction running parallel to the turbocharger axis (6). - Receiving shaft (4) of the integral turbotor housing (3) can be used, with the installation opening (33) being closable with the compressor housing cover (34), and with the compressor housing cover (34) having at least one suction pipe connecting piece (37) and has a cover inner side (34a) facing the rotor receiving shaft (4) and having a compressor impeller sealing contour (35); characterized in that the clear diameter (D) of the assembly opening (33) is expanded at least to the outer edge area of the compressor spiral duct (32) and on the inside (34a) of the compressor housing cover (34) at least part of a contour of a Spiral channel tongue (32a) and a housing edge (32c) of the compressor spiral channel (32) is formed.
2. Turboladergehäuse (2) gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Verdichter-Spiralkanal (32) so angeordnet ist, dass zumindest ein Teil des Verdichter-Spiralkanals (32) den Rotor-Aufnahmeschacht (4) in axialer Richtung, bezogen auf die Turboladerachse (6), zumindest teilweise übergreift. 2. Turbocharger housing (2) according to claim 1, characterized in that the compressor volute (32) is arranged such that at least a part of the compressor volute (32) the rotor receiving shaft (4) in the axial direction, based on the Turbocharger axis (6), at least partially overlaps.
3. Turboladergehäuse (2) gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine im Wesentlichen senkrecht zur Turboladerachse (6) liegende Teil- ungsebene (T) zwischen dem Integral-Turborotorgehäuse (3) und dem Verdichtergehäusedeckel (34) durch eine äußere Umfangslinie des Verdichter-Spiralkanals (32) gelegt ist, die, mit Bezug auf die Turboladerachse (6), entlang der radial äußersten Punkte einer Innenkontur des Verdichter-Spiralkanals (32) über dessen Umfang verläuft. 3. Turbocharger housing (2) according to claim 1 or 2, characterized in that a substantially perpendicular to the turbocharger axis (6) lying partial ing plane (T) between the integral turbotor housing (3) and the compressor housing cover (34) is laid through an outer peripheral line of the compressor spiral duct (32), which, with respect to the turbocharger axis (6), along the radially outermost points of an inner contour of the compressor spiral channel (32) runs over its circumference.
4. Turboladergehäuse (2) gemäß einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass das Integral-Turborotorgehäuse (3) integraler Bestandteil eines Zylinderkopfgehäuses (50) oder eines Motorgehäuses (51 ) eines Verbrennungsmotors ist. 4. turbocharger housing (2) according to any one of the preceding claims, characterized in that the integral turbotortor housing (3) is an integral part of a cylinder head housing (50) or an engine housing (51) of an internal combustion engine.
5. Abgasturbolader (1 ), dadurch gekennzeichnet, dass er ein Turboladergehäuse (2) gemäß einem der vorausgehenden Ansprüche aufweist, in dem eine Turborotorkartusche (10) aufgenommen ist, die eine Wellenlagerkartusche 40, eine sich durch die Wellenlagerkartusche (40) erstreckende und darin um die Rotordrehachse (15) drehbar gelagerte Rotorwelle (14), ein an einem Ende der Rotorwelle (14) angeordnetes Turbinenlaufrad (12) und ein an einem gegenüberliegenden Ende der Rotorwelle (14) angeordnetes Verdichterlaufrad (13) aufweist. 5. The exhaust gas turbocharger (1), characterized in that it has a turbocharger housing (2) according to any one of the preceding claims, in which a turbo rotor cartridge (10) is accommodated, which has a shaft bearing cartridge 40, a shaft bearing cartridge (40) extending through and therein rotor shaft (14) rotatably mounted about the rotor axis of rotation (15), a turbine wheel (12) arranged at one end of the rotor shaft (14) and a compressor wheel (13) arranged at an opposite end of the rotor shaft (14).
PCT/EP2022/073171 2021-10-14 2022-08-19 Turbocharger housing and exhaust gas turbocharger with integral turborotor housing and compressor housing cover WO2023061641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021211624.8A DE102021211624A1 (en) 2021-10-14 2021-10-14 Turbocharger housing and exhaust gas turbocharger with integral turbotortor housing and compressor housing cover
DE102021211624.8 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023061641A1 true WO2023061641A1 (en) 2023-04-20

Family

ID=83271428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/073171 WO2023061641A1 (en) 2021-10-14 2022-08-19 Turbocharger housing and exhaust gas turbocharger with integral turborotor housing and compressor housing cover

Country Status (2)

Country Link
DE (1) DE102021211624A1 (en)
WO (1) WO2023061641A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734650A (en) * 1970-05-02 1973-05-22 Kuehnle Kopp Kausch Ag Exhaust-gas driven turbochargers
DE102007055617A1 (en) * 2007-11-20 2009-05-28 Inprosim Gmbh Radial compressor housing for exhaust gas turbocharger of internal combustion engine, has stabilization element exhibiting ribs, circularly surrounding wheel and designed as single piece with compressor- rear wall, front part and shell
DE102014214226A1 (en) * 2014-07-22 2016-01-28 Continental Automotive Gmbh Composite compressor housing
US9683482B2 (en) * 2010-12-09 2017-06-20 Continental Automotive Gmbh Turbocharger which is integrated into the cylinder head of an engine
DE102020202967A1 (en) 2020-03-09 2021-09-09 Vitesco Technologies GmbH Exhaust gas turbocharger with integral housing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193463B1 (en) 1999-06-30 2001-02-27 Alliedsignal, Inc. Die cast compressor housing for centrifugal compressors with a true volute shape
DE102010030516A1 (en) 2010-06-25 2011-12-29 Bayerische Motoren Werke Aktiengesellschaft Exhaust gas turbocharger for internal combustion engine, has turbine wheel rotatably arranged in bearing housing, compressor housing and turbine housing via drive shaft, where shaft is driven by compressor wheel
US9091200B2 (en) 2012-03-21 2015-07-28 Honeywell International Inc. Turbocharger and engine cylinder head assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734650A (en) * 1970-05-02 1973-05-22 Kuehnle Kopp Kausch Ag Exhaust-gas driven turbochargers
DE102007055617A1 (en) * 2007-11-20 2009-05-28 Inprosim Gmbh Radial compressor housing for exhaust gas turbocharger of internal combustion engine, has stabilization element exhibiting ribs, circularly surrounding wheel and designed as single piece with compressor- rear wall, front part and shell
US9683482B2 (en) * 2010-12-09 2017-06-20 Continental Automotive Gmbh Turbocharger which is integrated into the cylinder head of an engine
DE102014214226A1 (en) * 2014-07-22 2016-01-28 Continental Automotive Gmbh Composite compressor housing
DE102020202967A1 (en) 2020-03-09 2021-09-09 Vitesco Technologies GmbH Exhaust gas turbocharger with integral housing

Also Published As

Publication number Publication date
DE102021211624A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
DE60022044T2 (en) COMPRESSED CASING FOR CIRCULAR COMPRESSORS WITH ELEGANT SPIRAL FORM
EP2242931B1 (en) Circulation structure for a turbo compressor
DE112015001237B4 (en) Exhaust gas turbocharger
DE102018221812B4 (en) Exhaust gas turbine with an exhaust gas guide device for an exhaust gas turbocharger and an exhaust gas turbocharger
EP2859190B1 (en) Turbine housing for a turbocharger
DE102017201468A1 (en) Turbocharger for an internal combustion engine
EP3183079B1 (en) Housing casting pattern, housing series, method for producing a cast housing of a radial turbo-fluid engine
EP2112332B1 (en) Supporting ring for a guide vane assembly with an air-sealed channel
DE102020202967A1 (en) Exhaust gas turbocharger with integral housing
DE112011102809T5 (en) Bearing housing of an exhaust gas turbocharger
EP1500788A1 (en) Double flow scroll
DE102012022647A1 (en) Exhaust gas turbocharger for lifting cylinder internal combustion engine of motor vehicle, has portion limited by spine in axial direction, where spine comprises blade elements partially arranged in portion for compressing blade
WO2023061641A1 (en) Turbocharger housing and exhaust gas turbocharger with integral turborotor housing and compressor housing cover
DE102015012225A1 (en) Guide for a compressor of an exhaust gas turbocharger
DE102012205198A1 (en) Turbocharger for internal combustion engine, particularly gasoline engine or diesel engine of vehicle, comprises turbine housing, which has multiple outlet worms, where each outlet worm is adapted to generate turbulent flow of exhaust gas
DE60115025T2 (en) CAST SPIRAL HOUSING FOR A TURBOCHARGER
EP3601739B1 (en) Turbocharger for an internal combustion engine, and turbine wheel
DE102011111702A1 (en) Turbine for supercharger for reciprocating piston internal combustion engine of passenger car, has seal element arranged between wall regions of respective walls, where wall regions limit gap along axial direction of turbine wheel
DE102018222289B3 (en) Radial compressor with map stabilization for a charging device of an internal combustion engine and charging device
DE102020005110A1 (en) Exhaust gas recirculation device for an internal combustion engine, in particular for a motor vehicle
WO2016184549A1 (en) Radial compressor, in particular for an exhaust gas turbocharger of an internal combustion engine
DE102012212738A1 (en) Diffuser component for supercharger for combustion engine of motor car, has compressor stator comprising inlet region, and air circulation pipe and diffuser forming common flow channel for supplying fresh air
DE102009058102A1 (en) Compressor for supercharging device, particularly turbo charger for internal combustion engine, comprises compressor housing and ring element which is held at compressor housing by rod
WO2021032711A1 (en) Electric compressor with a bearing receiving sleeve
WO2021032714A1 (en) Electric compressor with a separate bearing receiving sleeve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22768354

Country of ref document: EP

Kind code of ref document: A1