WO2023058722A1 - モータ駆動用回路基板、モータおよびポンプ装置 - Google Patents

モータ駆動用回路基板、モータおよびポンプ装置 Download PDF

Info

Publication number
WO2023058722A1
WO2023058722A1 PCT/JP2022/037467 JP2022037467W WO2023058722A1 WO 2023058722 A1 WO2023058722 A1 WO 2023058722A1 JP 2022037467 W JP2022037467 W JP 2022037467W WO 2023058722 A1 WO2023058722 A1 WO 2023058722A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
region
board
circuit board
drive circuit
Prior art date
Application number
PCT/JP2022/037467
Other languages
English (en)
French (fr)
Inventor
敏 谷邑
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Publication of WO2023058722A1 publication Critical patent/WO2023058722A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P31/00Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a motor drive circuit board, a motor, and a pump device.
  • a motor drive circuit is provided with a signal system circuit including a control circuit and a power system circuit including a switching element that outputs a drive current.
  • a signal system circuit including a control circuit and a power system circuit including a switching element that outputs a drive current.
  • the signal system circuit and the power system circuit are provided on separate substrates in consideration of routing of wiring patterns (see Patent Document 1).
  • EMC Electromagnetic Compatibility
  • EMI Electromagnetic Interference
  • emission a phenomenon in which electromagnetic energy is emitted
  • EMS Electromagnetic Susceptibility
  • immunity the ability to operate without performance deterioration or malfunction due to external electromagnetic energy.
  • an object of the present invention is to provide a circuit board for driving a motor, a motor, and a pump that have excellent electromagnetic characteristics even when signal circuits and power circuits are mounted on a single board. It is to provide a device.
  • a signal system circuit including a motor control unit and a power system circuit including a switching element that outputs a drive current are provided on a multilayer substrate having a plurality of layers.
  • the ground pattern for the power system circuit and the ground pattern for the signal system circuit are integrated as a common ground pattern, and the common ground pattern is one of the plurality of layers. and a first conductive layer occupying an area of 75% or more of the substrate area in at least one layer.
  • the board since the board consists of a multilayer board, there is a high degree of freedom in designing the position of wiring in multiple layers. Therefore, ground patterns can be arranged in a wide range. Further, the ground pattern includes a common ground pattern composed of a first conductive layer electrically connected to both the signal system circuit and the power system circuit. Compared to the case where a ground pattern connected to each is provided, it is possible to continuously and integrally provide a wide range. Therefore, even when the drive circuit 150 is provided on one substrate, the EMC performance is excellent.
  • the common ground pattern includes a second conductive layer occupying an area of 40% or more of the substrate area in a layer different from the layer provided with the first conductive layer among the plurality of layers. .
  • a plurality of terminal holes into which connector terminals are fitted are arranged in a first area on one side with respect to the center of the multi-layer board along the edges of the board.
  • the switching element is arranged in a second region on the side opposite to the terminal with respect to the center of the, the motor control unit is arranged between the first region and the second region, the first region, the It is possible to employ a mode in which an electric element for noise countermeasures is mounted in a region in a direction intersecting a virtual line linearly extending through the center and the second region.
  • Another aspect of the present invention is a motor drive circuit board provided with a signal system circuit including a motor control unit and a power system circuit including a switching element for outputting a drive current, wherein the board has a center of the board.
  • a plurality of terminal holes into which connector terminals are fitted are arranged along the edge of the substrate in a first region on one side of the substrate, and a second region on the opposite side of the center of the substrate to the terminals. and the motor control unit is disposed between the first region and the second region, extending linearly through the first region, the center, and the second region.
  • a noise countermeasure electric element is mounted in a region in a direction intersecting the imaginary line.
  • the EMC performance is excellent. Further, when providing the noise countermeasure electric element, since the electric elements other than the noise countermeasure electric element are collectively arranged in the first area and the second area, it is possible to secure a space for arranging the noise countermeasure electric element. . Therefore, even when the drive circuit is provided on one substrate, the EMC performance is excellent.
  • the substrate is a single-sided substrate.
  • the substrate is a double-sided mounting substrate, and the electric element for the power circuit is mounted on one side of the double-sided mounting board, and the noise countermeasure electric element is mounted on the other side of the double-sided mounting board. Any aspect can be adopted.
  • the motor drive circuit board to which the present invention is applied is used for a motor
  • the motor is provided with a coil to which drive current output from the motor drive circuit board is supplied.
  • the pump device When a motor to which the present invention is applied is used in a pump device, the pump device has an impeller that is rotationally driven by the motor.
  • the substrate is a multi-layer substrate, there is a high degree of freedom in designing the position of wiring in multiple layers. Therefore, ground patterns can be arranged in a wide range. Further, the ground pattern includes a common ground pattern composed of a first conductive layer electrically connected to both the signal system circuit and the power system circuit. Compared to the case where a ground pattern connected to each is provided, it is possible to continuously and integrally provide a wide range. Therefore, even when the drive circuit 150 is provided on one substrate, the EMC performance is excellent.
  • the electrical element for noise countermeasures is provided, so the EMC performance is excellent. Further, when providing the noise countermeasure electric element, since the electric elements other than the noise countermeasure electric element are collectively arranged in the first area and the second area, it is possible to secure a space for arranging the noise countermeasure electric element. . Therefore, even when the drive circuit is provided on one substrate, the EMC performance is excellent.
  • FIG. 2 is a longitudinal sectional view of the pump device and motor shown in FIG. 1;
  • FIG. 2 is an exploded perspective view showing a state in which a cover is removed from the pump device shown in FIG. 1;
  • FIG. 4 is an explanatory diagram of a drive circuit of the motor drive circuit board shown in FIG. 3;
  • FIG. 4 is an explanatory view schematically showing a planar configuration of the motor drive circuit board shown in FIG. 3;
  • FIG. 4 is an explanatory diagram of a ground pattern of the motor drive circuit board shown in FIG. 3;
  • FIG. 4 is an explanatory diagram of a motor drive circuit board according to Embodiment 2 of the present invention;
  • FIG. 5 is an explanatory view schematically showing a planar configuration of a motor driving circuit board according to Embodiment 2 of the present invention
  • FIG. 5 is an explanatory view schematically showing a planar configuration of a motor drive circuit board according to Embodiment 4 of the present invention
  • a motor drive circuit board 19, a motor 10, and a pump device 1 according to an embodiment of the present invention will be described below with reference to the drawings.
  • the direction of the motor axis L means the direction in which the motor axis L extends
  • the radial inner and outer radial directions refer to the radial directions centered on the motor axis L.
  • the circumferential direction means the direction of rotation about the motor axis L.
  • FIG. 1 is a perspective view showing one aspect of a pump device 1 and a motor 10 to which the present invention is applied.
  • FIG. 2 is a longitudinal sectional view of pump device 1 and motor 10 shown in FIG.
  • FIG. 3 is an exploded perspective view of the pump device shown in FIG. 1 with the cover 18 removed.
  • the pump device 1 includes a case 2 having a suction pipe 21 and a discharge pipe 22, a motor 10 arranged on one side L1 of the case 2 in the direction of the motor axis L,
  • the impeller 25 is arranged in the internal pump chamber 20 , and the impeller 25 is rotationally driven around the motor axis L by the motor 10 .
  • the motor 10 includes a cylindrical stator 3, a rotor 4 arranged inside the stator 3, a resin housing 6 that covers the stator 3, and a support shaft 5 that rotatably supports the rotor 4. .
  • the stator 3 has a stator core 31, insulators 32 and 33 held by the stator core 31, and a coil 35 wound around the stator core 31 via the insulators 32 and 33.
  • the stator core 31 includes an annular portion 311 extending in an annular shape and a plurality of salient poles 312 protruding radially inward from the annular portion 311 .
  • Each of the insulators 32 and 33 overlaps the stator core 31 from both sides in the direction of the motor axis L and covers each of the plurality of salient poles 312 .
  • the coil 35 is wound around the salient pole 312 via insulators 32 and 33 .
  • Motor 10 is a three-phase motor.
  • the rotor 4 has a cylindrical portion 40 extending in the direction of the motor axis L.
  • a cylindrical magnet 47 is held on the outer peripheral surface of the cylindrical portion 40 so as to face the stator 3 radially inwardly.
  • a disk-shaped flange portion 45 is formed at the end of the cylindrical portion 40 on the other side L2 in the direction of the motor axis L, and the disk 26 is connected to the flange portion 45 from the other side L2 in the direction of the motor axis L. ing.
  • a plurality of blade portions 261 are formed at equal angular intervals on the surface of the disk 26 facing the flange portion 45 , and the disk 26 is fixed to the flange portion 45 via the blade portions 261 . Therefore, the impeller 25 connected to the cylindrical portion 40 of the rotor 4 is configured by the flange portion 45 and the disc 26 .
  • a cylindrical radial bearing 11 is held inside the cylindrical portion 40 in the radial direction of the rotor 4 , and the rotor 4 is rotatably supported by the support shaft 5 via the radial bearing 11 .
  • An end portion 51 on one side L1 of the support shaft 5 in the direction of the motor axis L is non-rotatably held by the bottom wall 63 of the housing 6 .
  • the case 2 includes a tubular portion 28 and a support portion 27 that supports the tubular portion 28.
  • An end portion 52 of the support shaft 5 on the other side L2 in the direction of the motor axis L is thrust to the tubular portion 28 of the case 2. It is supported via bearings 12 .
  • the housing 6 is a resin sealing member 60 that covers the stator 3 from both radial sides and both sides in the motor axis L direction. Accordingly, the housing 6 includes a first partition wall portion 61 forming a part of the wall surface of the pump chamber 20, a second partition wall portion 62 interposed between the stator 3 and the magnet 47, and the stator 3 from the outside in the radial direction. and a covering cylindrical body 66 .
  • FIG. 3 is an exploded perspective view showing a state in which the cover 18 is removed from the pump device 1 shown in FIG. 1.
  • FIG. 3 the direction of the motor axis L is vertically inverted with respect to FIGS. 1 and 2, and one side L1 of the direction of the motor axis L is the upper side of the drawing.
  • the cover 18 is fixed from one side L1 of the motor axis L direction to the end portion 64 of the housing 6 on the one side L1 of the motor axis L direction.
  • the motor drive circuit board 19 provided with a circuit for controlling power supply to the coil 35 and the like is arranged.
  • the motor drive circuit board 19 is fixed to the housing 6 by screws 91 and 92 which are tapping screws passing through the notches 197 and 198 . Further, the motor drive circuit board 19 is positioned in the circumferential direction by the protrusion 645 and the notch 199 of the housing 6 .
  • a plurality of metal winding terminals 71 protruding from the stator 3 through the bottom wall 63 of the housing 6 to one side L1 in the direction of the motor axis L are fitted and soldered to the motor drive circuit board 19.
  • terminal holes 190 are provided.
  • a total of four winding terminals 71 protrude from four terminal holes 190 .
  • Each of the three winding terminals 71 out of the four winding terminals 71 is connected to one end of the winding constituting the three coils 35 connected in series.
  • the remaining one winding terminal 71 is a common (C) terminal to which the other end of the winding is electrically connected.
  • the motor drive circuit board 19 is provided with a plurality of terminal holes 195 in which metal connector terminals 75 held by the housing 6 are fitted and soldered. Therefore, the motor drive circuit board 19 is formed with wirings and the like for electrically connecting the drive circuit and the like provided on the motor drive circuit board 19 to the winding terminals 71 and the connector terminals 75 .
  • a tubular connector housing 69 is formed in the housing 6 , and the ends of the connector terminals 75 are positioned inside the connector housing 69 . Therefore, when a signal or the like is supplied by connecting a connector to the connector housing 69 , the signal is input to the drive circuit through the connector terminal 75 , and as a result, the drive current generated by the drive circuit flows through the winding terminal 71 . It is supplied to each coil 35 . As a result, the rotor 4 rotates around the motor axis L. As a result, the impeller 25 rotates in the pump chamber 20 and the pressure inside the pump chamber 20 becomes negative, so that the fluid is sucked into the pump chamber 20 from the suction pipe 21 and discharged from the discharge pipe 22 .
  • FIG. 4 is an explanatory diagram of the drive circuit 150 of the motor drive circuit board 19 shown in FIG. FIG. 4 shows a schematic configuration of the drive circuit 150.
  • the three-phase coil 35 may be described with U, V, and W indicating each phase. It will be described as a coil 35 without attaching W.
  • the motor drive circuit board 19 shown in FIG. 3 includes a board 110 and a drive circuit 150 shown in FIG.
  • the drive circuit 150 supplies drive currents to the three-phase coils 35 based on the output signals from the motor control unit 161 that controls the rotation of the motor 10 by PWM signals and the motor control unit 161.
  • It comprises a power system circuit 170 consisting of an inverter, a drive voltage line 135 for supplying a drive voltage to the power system circuit 170, and a common line 140 connected to neutral points 165 of three-phase coils 35U, 35V, and 35W.
  • the drive voltage line 135 supplies a rated voltage of 12V to the motor control section 161 and the power system circuit 170 .
  • the drive circuit 150 also includes a control signal line 115 for inputting a PWM signal from an external device to the motor control unit 161, and an FG output for transmitting a rotational speed signal corresponding to the rotational speed of the motor 10 to the external device. line 116;
  • the motor drive circuit board 19 has four connector terminals 75 consisting of a constant voltage terminal 751, a first signal terminal 752, a second signal terminal 753, and a ground terminal 754, which will be described below.
  • the constant voltage terminal 751 is electrically connected to the driving voltage line 135, the first signal terminal 752 is electrically connected to the control signal line 115, and the second signal terminal 753 is electrically connected to the FG output line 116.
  • the ground terminal 754 is electrically connected to the ground pattern 100 of the motor drive circuit board 19 .
  • the drive voltage line 135 supplies electric power to the motor control section 161 via the first line 136 and the second line 137 .
  • a capacitor 127 is electrically connected between the drive voltage line 135 and the ground pattern 100 .
  • the first line 136 and the second line 137 are branched after the connecting position of the capacitor 127 , and the electrolytic capacitor 128 is connected between the first line 136 and the ground pattern 100 .
  • the second line 137 is electrically connected to the motor control section 161 via the resistor R32.
  • capacitors 122 and 123 are electrically connected in series.
  • a common line 140 is electrically connected between the capacitors 122 and 123 , and a ground terminal 754 to which a ground potential is applied is electrically connected between the capacitor 123 and the ground pattern 100 .
  • the control signal line 115 is electrically connected to the first signal terminal 752 and transmits the PWM signal from the external device to the motor control section 161 .
  • a resistor R3 is electrically connected in series to the control signal line 115 .
  • the control signal line 115 is electrically connected to the ground pattern 100 via the capacitor 124 between the resistor R3 and the motor controller 161 .
  • the first signal terminal 752 and the resistor R3 of the control signal line 115 are electrically connected to the ground pattern 100 via the capacitor 126.
  • the connection position of the capacitor 126 and the resistor R3 Between is electrically connected to the first line 136 via the third line 151 .
  • a resistor R2 is electrically connected in series to the third line 151 .
  • the FG output line 116 transmits the rotation speed signal of the motor 10 output from the motor control unit 161 to an external device.
  • a capacitor 125, a resistor R1, and a NOT gate Q7 are connected to the FG output line 116.
  • FIG. Capacitor 125 is electrically connected between FG output line 116 and ground pattern 100 .
  • the resistor R1 is electrically connected in series to the FG output line 116 between the connection position of the capacitor 125 and the motor control section 161 .
  • the NOT gate Q7 is electrically connected in series to the FG output line 116 between the resistor R1 and the motor control section 161.
  • the motor control unit 161 is composed of an IC chip or the like arranged on the motor drive circuit board 19 . Motor control unit 161 outputs an output signal for controlling power system circuit 170 based on a PWM signal input from an external device. Also, the motor control unit 161 outputs a rotational speed signal corresponding to the rotational speed of the rotor 4 to an external device. Based on the rotation speed signal, the external device outputs a PWM signal to the motor control unit 161 in order to set the motor 10 to a desired rotation speed.
  • the power system circuit 170 includes U-phase coil switching elements Q1 and Q2, V-phase coil switching elements Q3 and Q4, and W-phase coil switching elements Q5 and Q6.
  • MOSFETs for example, are used for the switching elements Q1 to Q6.
  • the drains of the switching elements Q1, Q3 and Q5 are connected to the driving voltage line 135, and the sources of the switching elements Q2, Q4 and Q6 are connected to the ground pattern 100 via the shunt resistor Rs. Both ends of the shunt resistor Rs are connected to the motor control section 161 via output lines 141 and 142 .
  • Resistors R33 and R34 are electrically connected in series to the output lines 141 and 142, respectively.
  • a capacitor 151 is connected between the source of switching element Q1 and the drain of switching element Q2, a capacitor 152 is connected between the source of switching element Q3 and the drain of switching element Q4, and the source of switching element Q5 and the drain of switching element Q6 are connected.
  • a capacitor 153 is connected to the drain.
  • Capacitors 151 to 153 serve as charge/discharge capacitors for the bootstrap circuit.
  • Bootstrap diodes D31 to D33 are connected between the capacitors 151 to 153 and the motor controller 161, respectively. Diodes D31 to D33 are connected to motor control section 161 via resistor R31.
  • Resistors R11 to R16 are connected between the gates and sources of the switching elements Q1 to Q6, respectively.
  • Resistors R21 to R26 are connected between the gates of the switching elements Q1 to Q6 and the motor control section 161, respectively.
  • Filters 141-146 are connected between the drains and sources of the switching elements Q1-Q6, respectively.
  • the filters 141-146 are composed of series-connected resistors and capacitors.
  • the switching elements Q1 to Q6 are switched based on the output signal output from the motor control section 161 to supply the coil 35 with a three-phase AC drive current.
  • FIG. 5 is an explanatory diagram schematically showing a planar configuration of the motor drive circuit board 19 shown in FIG.
  • FIG. 6 is an explanatory diagram of the ground pattern 100 of the motor drive circuit board 19 shown in FIG.
  • the drive circuit shown in FIG. 4 is configured, for example, on the substrate 110 shown in FIG.
  • Substrate 110 is a multi-layer substrate 110A having multiple layers.
  • a plurality of insulating layers laminated on the substrate body constitute a plurality of layers in which conductive layers such as wiring and electrodes are arranged, and the conductive layers formed in different layers pass through the insulating layers. They are electrically connected by contact holes.
  • Conductive layers such as wiring and electrodes are made of copper layers.
  • a plurality of terminal holes 195 into which the connector terminals 75 are fitted are arranged along the edges of the multilayer substrate 110A in the first region 101 on one side with respect to the center O of the multilayer substrate 110A. are placed.
  • the four terminal holes 195 are the first terminal hole 191 and the second terminal hole 191 into which the constant voltage terminal 751, the first signal terminal 752, the second signal terminal 753, and the ground terminal 754 shown in FIG. It consists of a terminal hole 192 , a third terminal hole 193 and a fourth terminal hole 194 .
  • the first terminal hole 191 corresponds to the constant voltage terminal 751
  • the second terminal hole 192 corresponds to the first signal terminal 752
  • the third terminal hole 193 corresponds to the second signal terminal 753
  • the second terminal hole 193 corresponds to the second signal terminal 753.
  • the 4-terminal hole 194 corresponds to the ground terminal 754 . Therefore, among the plurality of terminal holes 195, the first terminal holes 191 and the fourth terminal holes 194 on both sides correspond to constant voltage.
  • the switching elements Q1 to Q6 are mounted in the second region 102 on the side opposite to the first region 101 with respect to the center O.
  • a motor control unit 161 is provided between the first area 101 and the second area 102 .
  • a virtual line P extending linearly through the first region 101, the center O, and the second region 102 is defined as the center line, and two regions positioned on both sides in a direction intersecting the virtual line P are the third regions.
  • a plurality of terminal holes 190 in which the winding terminals 71 are fitted are arranged in the first region 101 and the third region 103 along the edges of the multilayer substrate 110A.
  • the electrolytic capacitor 128 shown in FIG. 4 is provided, the electrolytic capacitor 128 is arranged in the third region 103 .
  • the circuit including the motor control unit 161 is a relatively low voltage signal system circuit 160, and the circuit including the switching elements Q1 to Q6 for outputting the drive current is a relatively high voltage power system circuit.
  • the circuit 170 in this embodiment, as will be described below with reference to FIG. It is included.
  • the multilayer board 110A has four layers 111, 112, 113 and 114 shown in FIG.
  • the side layer 111 is formed with lands (not shown) on which the electric elements shown in FIG. 4 are mounted.
  • At least one of the four layers 111, 112, 113, and 114 of the multilayer board 110A includes a first conductive layer 106 occupying an area of 75% or more of the board area, and a signal circuit 160 and a power circuit. 170 are configured as a common ground pattern 100c electrically connected to both.
  • the common ground pattern 100 c functions both as the ground pattern 100 for the signal system circuit 160 and as the ground pattern 100 for the power system circuit 170 .
  • the second layer 112 from the upper layer side extends over the first region 101, the second region 102, the third region 103, and the fourth region 104.
  • a first conductive layer 106 is formed.
  • the first conductive layer 106 does not exist in the contact holes, the wiring, around the contact holes, and around the wiring, but the first conductive layer 106 has an area of 75% or more of the substrate area. , forming a continuous common ground pattern 100c.
  • the third layer 113 and the fourth layer 114 from the upper layer side include part of the third region 103, part of the fourth region 104, and a second conductive layer 107 extending over the first region 101 .
  • the first conductive layer 106 does not exist in the contact holes, wirings, around the contact holes, and around the wirings, but the second conductive layer 107 has an area of 40% or more of the substrate area. , forming a continuous common ground pattern 100c.
  • the board 110 is made of the multilayer board 110A, so that there is a high degree of freedom in designing the positions of the wirings in a plurality of layers. Therefore, the ground pattern 100 can be arranged over a wide range.
  • the ground pattern 100 includes a common ground pattern 100c composed of a first conductive layer 106 electrically connected to both the signal system circuit 160 and the power system circuit 170.
  • the common ground pattern 100c is used for the signal system Compared to the case where a ground pattern connected to each of the circuit 160 and the power system circuit 170 is provided, it can be provided continuously and integrally over a wide range. More specifically, it is possible to provide a common ground pattern 100c composed of the first conductive layer 106 that is continuous over a wide area that occupies 75% or more of the substrate area. Therefore, even when the drive circuit 150 is provided on one substrate 110, the EMC performance is excellent.
  • the ground pattern 100 includes a common ground pattern 100c composed of the second conductive layer 107 electrically connected to both the signal system circuit 160 and the power system circuit 170.
  • the common ground pattern 100c composed of the second conductive layer 107 is continuous over a wide range that occupies 40% or more of the substrate area. Therefore, even when the drive circuit 150 is provided on one substrate 110, the EMC performance is excellent.
  • the first terminal hole 191 and the fourth terminal hole 194 on both sides correspond to a constant voltage, so that the wires extending from the first terminal hole 191 and the fourth terminal hole 194 are arranged. can be used as shield wiring.
  • FIG. 7 is an explanatory diagram of the motor drive circuit board 19 according to Embodiment 2 of the present invention.
  • FIG. 7 shows a schematic configuration of the drive circuit 150.
  • FIG. 8 is an explanatory view schematically showing a planar configuration of the motor drive circuit board 19 according to Embodiment 2 of the present invention. Since the basic configuration of this embodiment is the same as that of the first embodiment, common parts are denoted by the same reference numerals and descriptions thereof are omitted.
  • the drive circuit 150 is provided with noise countermeasure electric elements 180 such as an inductor 118, an electrolytic capacitor 121, and a diode 131.
  • FIG. 1 noise countermeasure electric elements 180 such as an inductor 118, an electrolytic capacitor 121, and a diode 131.
  • Ferrite beads 119 may also be provided as electrical elements 180 for noise countermeasures.
  • Electrolytic capacitor 121 has a capacitance of 150 ⁇ F.
  • Inductor 118 is electrically connected in series to drive voltage line 135 , and electrolytic capacitor 121 and diode 131 are each arranged between drive voltage line 135 and ground pattern 100 .
  • ferrite bead 119 and capacitor 126 are provided, ferrite bead 119 is electrically connected to control signal line 115 between the connection position of capacitor 126 and the branch position of third line 151 .
  • the board 110 is the multilayer board 110A, and the common ground pattern 100c described in the first embodiment is provided, as in the first embodiment.
  • a plurality of terminal holes 195 into which the connector terminals 75 are fitted are formed along the edge of the multilayer substrate 110A in the first region 101 on one side with respect to the center O of the multilayer substrate 110A.
  • Switching elements Q1 to Q6 are mounted in a second region 102 opposite to the first region 101 with respect to the center O.
  • the first terminal hole 191 corresponds to the constant voltage terminal 751 and the fourth terminal hole 194 corresponds to the ground terminal 754 . Therefore, among the plurality of terminal holes 195, the first terminal holes 191 and the fourth terminal holes 194 on both sides correspond to constant voltage.
  • a motor control unit 161 is provided between the first area 101 and the second area 102 .
  • a virtual line P extending linearly through the first region 101, the center O, and the second region 102 is defined as the center line, and two regions positioned on both sides in a direction intersecting the virtual line P are the third regions.
  • a plurality of terminal holes 190 in which the winding terminals 71 are fitted are arranged in the first region 101 and the third region 103 along the edges of the multilayer substrate 110A.
  • An electrolytic capacitor 128 is arranged in the third region 103 .
  • noise countermeasure electric elements 180 such as the electrolytic capacitor 121, the inductor 118, the diode 131, and the ferrite bead 119 are arranged in the fourth region 104. .
  • the electrical element 180 for noise countermeasures is provided in addition to the common ground pattern 100c, so that the EMC performance is excellent.
  • the noise countermeasure electric element 180 since the electric elements other than the noise countermeasure electric element 180 are collectively arranged in the first region 101, the second region 102, and the third region 103, the fourth region 104 is It can be used as an arrangement space for the electrical element 180 for noise countermeasures. Therefore, even when the drive circuit 150 is provided on one substrate 110, the EMC performance is excellent.
  • the noise countermeasure electric element 180 can be arranged near the first terminal hole 191 corresponding to the constant voltage (power supply), thereby improving the EMC performance.
  • the inductor 118 can be arranged near the first terminal hole 191 corresponding to the constant voltage to particularly improve the EMC performance.
  • the noise countermeasure electric element 180 is provided for the motor drive circuit board 19 provided with the common ground pattern 100c described in the first embodiment.
  • the motor drive circuit board 19 including the multilayer board 110A without the common ground pattern 100c using the fourth region 104, the inductor 118, the electrolytic capacitor 121, the diode 131, and the A noise countermeasure electric element 180 such as a ferrite bead 119 may be provided.
  • the substrate 110 is a multilayer single-sided substrate, but the present invention may be applied to a case where the substrate 110 is a single-layer single-sided substrate.
  • FIG. 9 is an explanatory view schematically showing the planar configuration of the motor drive circuit board 19 according to Embodiment 4 of the present invention.
  • FIG. 9 shows the layout (a) of the electrical elements on the first surface 110B1 of the double-sided mounting board 110B used for the motor driving circuit board 19, and the second surface of the double-sided mounting board 110B used for the motor driving circuit board 19.
  • Layout (b) of the electrical elements in 110B2 is shown. It should be noted that layouts (a) and (b) shown in FIGS.
  • the board 110 is a double-sided mounting board 110B.
  • a plurality of terminal holes 195 into which the connector terminals 75 are fitted are arranged in the first area 101 on one side with respect to the center O along the edges of the double-sided mounting board 110B.
  • the switching elements Q1 to Q6 are mounted in the second area 102 on the side opposite to the first area 101 with respect to the center O.
  • a motor control unit 161 is provided between the first area 101 and the second area 102 .
  • the first terminal hole 191 corresponds to the constant voltage terminal 751 and the fourth terminal hole 194 corresponds to the ground terminal 754 . Therefore, among the plurality of terminal holes 195, the first terminal holes 191 and the fourth terminal holes 194 on both sides correspond to constant voltage.
  • a virtual line P extending linearly through the first region 101, the center O, and the second region 102 is defined as the center line, and two regions located on both sides of the direction intersecting the virtual line P are defined as the center line.
  • the winding terminal 71 is provided between the end of the first region 101 on the third region 103 side and the end of the first region 101 on the fourth region 104 side.
  • a plurality of terminal holes 190 for fitting are arranged along the edges of the double-sided mounting board 110B.
  • an electrolytic capacitor 128 may be arranged in the third region 103 .
  • noise countermeasure electric elements 180 such as the electrolytic capacitor 121, the inductor 118, the diode 131, and the ferrite bead 119 are arranged in the fourth region 104. .
  • the electrical elements other than the noise countermeasure electrical element 180 are collectively arranged in the first area 101, the second area 102, and the third area 103, so that the fourth area 104 is arranged. It can be used as an arrangement space for the electrical element 180 for noise countermeasures. Therefore, even when the drive circuit 150 is provided on one substrate 110, the EMC performance is excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

信号系回路とパワー系回路とを1枚の基板に搭載した場合でも、電磁面での特性に優れたモータ駆動用回路基板、モータおよびポンプ装置を提供すること。 モータ駆動用回路基板19において、グランドパターン100は、多層基板110Aの層112に、信号系回路およびパワー系回路の双方に電気的に接続する第1導電層106からなる共通グランドパターン100cを備えており、第1導電層106は、基板面積の75%以上を占める広い範囲で連続している。また、グランドパターン100は、多層基板110Aの層113、114に、信号系回路およびパワー系回路の双方に電気的に接続する第2導電層107からなる共通グランドパターン100cを備えており、第2導電層107は、基板面積の40%以上を占める広い範囲で連続している。

Description

モータ駆動用回路基板、モータおよびポンプ装置
 本発明は、モータ駆動用回路基板、モータおよびポンプ装置に関するものである。
 モータの駆動回路には、制御回路を含む信号系回路と、駆動電流を出力するスイッチング素子を含むパワー系回路とが設けられている。かかる駆動回路において、配線パターンの引き回し等を考慮して、信号系回路およびパワー系回路を別の基板に設けた態様が提案されている(特許文献1参照)。
特開平4-61366号公報
 近年、モータに対し、回路モジュールの小型化が求められるとともに、EMC(Electromagnetic Compatibility;電磁両立性)が求められることがある。EMCとは、EMI(Electromagnetic Interference;エミッション、電磁エネルギーが放出する現象)とEMS(Electromagnetic Susceptibility;イミュニティ、外部からの電磁エネルギーによって性能低下や誤動作を起こさずに動作できる能力)との両立のことである。前者に対しては、両面実装基板や多層基板によって対応可能であるが、後者に対しては、従来の回路構成では対応できない。
 以上の問題点に鑑みて、本発明の課題は、信号系回路とパワー系回路とを1枚の基板に搭載した場合でも、電磁面での特性に優れたモータ駆動用回路基板、モータおよびポンプ装置を提供することにある。
 上記課題を解決するために、本発明の一態様は、モータ制御部を含む信号系回路と、駆動電流を出力するスイッチング素子を含むパワー系回路とが、複数の層を有する多層基板に設けられたモータ駆動用回路基板において、前記多層基板では、前記パワー系回路に対するグランドパターン、および信号系回路のグランドパターンが一体の共通グランドパターンとして構成され、前記共通グランドパターンは、前記複数の層のうち、少なくとも1つの層において基板面積の75%以上の面積を占める第1導電層を含むことを特徴とする。
 本発明では、基板が多層基板からなるため、複数の層において配線を配置する位置等に対する設計の自由度が高い。従って、グランドパターンを広い範囲に配置できる。また、グランドパターンは、信号系回路およびパワー系回路の双方に電気的に接続する第1導電層からなる共通グランドパターンを備えており、共通グランドパターンであれば、信号系回路およびパワー系回路の各々に接続するグランドパターンを設けた場合と比較して、広い範囲に連続して一体に設けることができる。従って、1つの基板に駆動回路150を設けた場合でも、EMC性能に優れている。
 本発明において、前記共通グランドパターンは、前記複数の層のうち、前記第1導電層が設けられた層と異なる層において基板面積の40%以上の面積を占める第2導電層を含むことが好ましい。
 本発明において、前記多層基板では、前記多層基板の中心に対して一方側の第1領域にコネクタ用の端子が嵌る複数の端子穴が前記基板の端部に沿うように配置され、前記多層基板の中心に対して前記端子とは反対側の第2領域に前記スイッチング素子が配置され、前記第1領域と前記第2領域との間に前記モータ制御部が配置され、前記第1領域、前記中心、および前記第2領域を通って直線的に延在する仮想線に対して、前記仮想線と交差する方向の領域にノイズ対策用電気素子が実装されている態様を採用することができる。
 本発明の別態様は、モータ制御部を含む信号系回路、および駆動電流を出力するスイッチング素子を含むパワー系回路が基板に設けられたモータ駆動用回路基板において、前記基板では、前記基板の中心に対して一方側の第1領域にコネクタ用の端子が嵌る複数の端子穴が前記基板の端部に沿うように配置され、前記基板の中心に対して前記端子とは反対側の第2領域に前記スイッチング素子が配置され、前記第1領域と前記第2領域との間に前記モータ制御部が配置され、前記第1領域、前記中心、および前記第2領域を通って直線的に延在する仮想線に対して、前記仮想線と交差する方向の領域にノイズ対策用電気素子が実装されていることを特徴とする。
 本発明では、ノイズ対策用電気素子が設けられているため、EMC性能に優れている。また、ノイズ対策用電気素子を設けるにあたっては、ノイズ対策用電気素子以外の電気素子を第1領域および第2領域に纏めて配置したため、ノイズ対策用電気素子を配置するスペースを確保することができる。従って、1つの基板に駆動回路を設けた場合でも、EMC性能に優れている。
 本発明において、前記基板は片面基板である態様を採用することができる。
 本発明において、前記基板は両面実装基板であり、前記両面実装基板における一方面に前記パワー系回路の電気素子が実装され、前記両面実装基板における他方面に前記ノイズ対策用電気素子が実装されている態様を採用することができる。
 本発明において、前記複数の端子穴のうち、両側に配置された端子穴には、前記端子として、定電圧が印加される端子が嵌る態様を採用することができる。
 本発明を適用したモータ駆動用回路基板をモータに用いる場合、モータは、前記モータ駆動用回路基板から出力される駆動電流が供給されるコイルを備える。
 本発明を適用したモータをポンプ装置に用いる場合、ポンプ装置は、前記モータによって回転駆動されるインペラを有する。
 本発明の一態様では、基板が多層基板からなるため、複数の層において配線を配置する位置等に対する設計の自由度が高い。従って、グランドパターンを広い範囲に配置できる。また、グランドパターンは、信号系回路およびパワー系回路の双方に電気的に接続する第1導電層からなる共通グランドパターンを備えており、共通グランドパターンであれば、信号系回路およびパワー系回路の各々に接続するグランドパターンを設けた場合と比較して、広い範囲に連続して一体に設けることができる。従って、1つの基板に駆動回路150を設けた場合でも、EMC性能に優れている。
 本発明の別態様では、ノイズ対策用電気素子が設けられているため、EMC性能に優れている。また、ノイズ対策用電気素子を設けるにあたっては、ノイズ対策用電気素子以外の電気素子を第1領域および第2領域に纏めて配置したため、ノイズ対策用電気素子を配置するスペースを確保することができる。従って、1つの基板に駆動回路を設けた場合でも、EMC性能に優れている。
本発明を適用したポンプ装置およびモータの一態様を示す斜視図。 図1に示すポンプ装置およびモータの縦断面図。 図1に示すポンプ装置からカバーを外した状態を示す分解斜視図。 図3に示すモータ駆動用回路基板の駆動回路の説明図。 図3に示すモータ駆動用回路基板の平面構成を模式的に示す説明図。 図3に示すモータ駆動用回路基板のグランドパターンの説明図。 本発明の実施形態2に係るモータ駆動用回路基板の説明図。 本発明の実施形態2に係るモータ駆動用回路基板の平面構成を模式的に示す説明図。 本発明の実施形態4に係るモータ駆動用回路基板の平面構成を模式的に示す説明図。
 以下、図面を参照して、本発明の実施の形態に係るモータ駆動用回路基板19、モータ10およびポンプ装置1を説明する。以下の説明において、モータ軸線L方向とは、モータ軸線Lが延在している方向を意味し、径方向の内側および径方向の外側における径方向とは、モータ軸線Lを中心とする半径方向を意味し、周方向とは、モータ軸線Lを中心とする回転方向を意味する。
[実施形態1]
(全体構成)
 図1は、本発明を適用したポンプ装置1およびモータ10の一態様を示す斜視図である。図2は、図1に示すポンプ装置1およびモータ10の縦断面図である。図3は、図1に示すポンプ装置からカバー18を外した状態を示す分解斜視図である。図1および図2において、ポンプ装置1は、吸入管21および吐出管22を備えたケース2と、ケース2に対してモータ軸線L方向の一方側L1に配置されたモータ10と、ケース2の内部のポンプ室20に配置されたインペラ25とを有しており、インペラ25は、モータ10によってモータ軸線L周りに回転駆動される。モータ10は、円筒状のステータ3と、ステータ3の内側に配置されたロータ4と、ステータ3を覆う樹脂製のハウジング6と、ロータ4を回転可能に支持する支軸5とを備えている。
 モータ10において、ステータ3は、ステータコア31と、ステータコア31に保持されたインシュレータ32、33と、ステータコア31にインシュレータ32、33を介して巻回されたコイル35とを有している。ステータコア31は、円環状に延在する円環部311と、円環部311から径方向の内側へ突出する複数の突極312とを備えている。インシュレータ32、33は各々、ステータコア31に対してモータ軸線L方向の両側から重なり、複数の突極312の各々に被さっている。コイル35は、インシュレータ32、33を介して突極312に巻回されている。モータ10は3相モータである。
 ロータ4は、モータ軸線L方向に延在する円筒部40を備えており、円筒部40の外周面には、ステータ3に径方向の内側で対向するように円筒状の磁石47が保持されている。円筒部40のモータ軸線L方向の他方側L2の端部には、円板状のフランジ部45が形成され、フランジ部45には、モータ軸線L方向の他方側L2から円板26が連結されている。円板26のフランジ部45と対向する面には、複数の羽根部261が等角度間隔に形成されており、円板26は、羽根部261を介してフランジ部45に固定されている。従って、フランジ部45と円板26とによって、ロータ4の円筒部40に接続されたインペラ25が構成される。
 ロータ4において、円筒部40の径方向の内側には円筒状のラジアル軸受11が保持されており、ロータ4は、ラジアル軸受11を介して支軸5に回転可能に支持されている。支軸5のモータ軸線L方向の一方側L1の端部51は、ハウジング6の底壁63に回転不能に保持されている。ケース2は、筒部28と、筒部28を支持する支持部27とを備えており、支軸5のモータ軸線L方向の他方側L2の端部52は、ケース2の筒部28にスラスト軸受12を介して支持されている。
 ハウジング6は、ステータ3を径方向の両側、およびモータ軸線L方向の両側から覆う樹脂封止部材60である。従って、ハウジング6は、ポンプ室20の壁面の一部を構成する第1隔壁部61と、ステータ3と磁石47との間に介在する第2隔壁部62と、ステータ3を径方向の外側から覆う円筒状の胴部66とを備えている。
 (モータ駆動用回路基板19等の構成)
 図3は、図1に示すポンプ装置1からカバー18を外した状態を示す分解斜視図である。なお、図3は、図1および図2に対してモータ軸線L方向を上下反転してあり、モータ軸線L方向の一方側L1を図面の上側としてある。
 図2および図3に示すように、ハウジング6のモータ軸線L方向の一方側L1の端部64には、モータ軸線L方向の一方側L1からカバー18が固定され、カバー18とハウジング6の底壁63との間には、コイル35に対する給電を制御する回路等が設けられたモータ駆動用回路基板19が配置されている。モータ駆動用回路基板19は、切り欠き197、198を貫通するタッピングねじからなるねじ91、92によってハウジング6に固定されている。また、モータ駆動用回路基板19は、ハウジング6の突部645と切り欠き199とによって周方向で位置決めされている。
 モータ駆動用回路基板19には、ステータ3からハウジング6の底壁63を貫通してモータ軸線L方向の一方側L1に突出した金属製の巻線端子71が嵌った状態でハンダ付けされた複数の端子穴190が設けられている。本形態では、計4つの巻線端子71が4つの端子穴190から突出している。4つの巻線端子71のうち、3つの巻線端子71の各々には、直列に接続された3つのコイル35を構成する巻線の一方の端部が接続されている。残りの1つの巻線端子71は、コモン(C)の端子であり、巻線の他方の端部が電気的に接続されている。
 モータ駆動用回路基板19には、ハウジング6に保持された金属製のコネクタ端子75が嵌った状態でハンダ付けされた複数の端子穴195が設けられている。従って、モータ駆動用回路基板19には、モータ駆動用回路基板19に設けられた駆動回路等を巻線端子71およびコネクタ端子75と電気的に接続する配線等が形成されている。
 ハウジング6には、筒状のコネクタハウジング69が形成されており、コネクタハウジング69の内側にコネクタ端子75の端部が位置する。従って、コネクタハウジング69にコネクタを連結して信号等を供給すると、かかる信号がコネクタ端子75を介して駆動回路に入力される結果、駆動回路で生成された駆動電流が巻線端子71を介して各コイル35に供給される。その結果、ロータ4がモータ軸線L周りに回転する。これにより、ポンプ室20内でインペラ25が回転してポンプ室20の内部が負圧となるため、流体は吸入管21からポンプ室20に吸い込まれて、吐出管22から吐出される。
(駆動回路150の構成例)
 図4は、図3に示すモータ駆動用回路基板19の駆動回路150の説明図である。図4には、駆動回路150の概略構成を示してある。以下の説明において、3相のコイル35には、各相を示すU、V、Wを付して説明することがあるが、相を特定する必要がない場合、各相を示すU、V、Wを付さずに、コイル35として説明する。
 図3に示すモータ駆動用回路基板19は、基板110と、図4に示す駆動回路150とを備える。図4に示すように、駆動回路150は、モータ10の回転をPWM信号により制御するモータ制御部161と、モータ制御部161からの出力信号に基づいて3相のコイル35に駆動電流を供給するインバータからなるパワー系回路170と、駆動電圧をパワー系回路170に供給する駆動電圧線135と、3相のコイル35U、35V、35Wの中性点165に接続されるコモン線140とを備える。
 駆動電圧線135は、モータ制御部161およびパワー系回路170に定格12Vの電圧を供給する。また、駆動回路150は、外部機器からのPWM信号をモータ制御部161に入力するための制御信号線115と、モータ10の回転数に応じた回転数信号を外部機器に伝達するためのFG出力線116とを備える。
 モータ駆動用回路基板19は、以下に説明する定電圧用端子751、第1信号端子752、第2信号端子753、およびグランド端子754からなる4つのコネクタ端子75を備える。定電圧用端子751は駆動電圧線135に電気的に接続され、第1信号端子752は制御信号線115に電気的に接続され、第2信号端子753はFG出力線116に電気的に接続され、グランド端子754は、モータ駆動用回路基板19のグランドパターン100に電気的に接続されている。
 駆動電圧線135は、第1線136および第2線137を介してモータ制御部161に電力を供給する。駆動電圧線135とグランドパターン100との間にはコンデンサ127が電気的に接続されている。駆動電圧線135では、コンデンサ127の接続位置より後段で第1線136と第2線137とが分岐し、第1線136とグランドパターン100との間に電解コンデンサ128が接続されている。第2線137は、抵抗R32を介してモータ制御部161と電気的に接続している。
 駆動電圧線135とグランドパターン100との間では、コンデンサ122、123が直列に電気的に接続している。コンデンサ122、123の間にはコモン線140が電気的に接続し、コンデンサ123とグランドパターン100との間には、グランド電位が印加されるグランド端子754が電気的に接続されている。
 制御信号線115は、第1信号端子752に電気的に接続されており、外部機器からのPWM信号をモータ制御部161に伝達する。制御信号線115には、抵抗R3が直列に電気的に接続されている。制御信号線115のうち、抵抗R3とモータ制御部161との間はコンデンサ124を介してグランドパターン100に電気的に接続している。制御信号線115のうち、第1信号端子752と抵抗R3との間をコンデンサ126を介してグランドパターン100に電気的に接続する場合があり、この場合、コンデンサ126の接続位置と抵抗R3との間は、第3線151を介して第1線136に電気的に接続される。第3線151には抵抗R2が直列に電気的に接続されている。
 FG出力線116は、モータ制御部161から出力されたモータ10の回転数信号を外部機器に伝達する。FG出力線116には、コンデンサ125、抵抗R1、およびNOTゲートQ7が接続されている。コンデンサ125は、FG出力線116とグランドパターン100との間に電気的に接続されている。抵抗R1は、コンデンサ125の接続位置とモータ制御部161との間において、FG出力線116に直列に電気的に接続されている。NOTゲートQ7は、抵抗R1とモータ制御部161との間において、FG出力線116に直列に電気的に接続されている。
 モータ制御部161は、モータ駆動用回路基板19に配置されたICチップ等からなる。モータ制御部161は、外部機器から入力されるPWM信号に基づいて、パワー系回路170を制御するための出力信号を出力する。また、モータ制御部161は、ロータ4の回転数に応じた回転数信号を外部機器に出力する。外部機器は、回転数信号に基づいて、モータ10を所望の回転数にするために、PWM信号をモータ制御部161に出力する。
 パワー系回路170は、U相のコイル用のスイッチング素子Q1、Q2と、V相のコイル用のスイッチング素子Q3、Q4と、W相のコイル用のスイッチング素子Q5、Q6とを備える。スイッチング素子Q1~Q6には、例えば、MOS型FETが使用されている。スイッチング素子Q1、Q3、Q5のドレインは、駆動電圧線135と接続し、スイッチング素子Q2、Q4、Q6のソースは、シャント抵抗Rsを介してグランドパターン100と接続している。シャント抵抗Rsの両端は、出力線141、142を介してモータ制御部161に接続されている。出力線141、142には、抵抗R33、R34が直列に電気的に接続されている。
 スイッチング素子Q1のソースとスイッチング素子Q2のドレインとにはコンデンサ151が接続され、スイッチング素子Q3のソースとスイッチング素子Q4のドレインとにはコンデンサ152が接続され、スイッチング素子Q5のソースとスイッチング素子Q6のドレインとにはコンデンサ153が接続されている。コンデンサ151~153は、ブートストラップ回路の充放電用コンデンサとなる。コンデンサ151~153とモータ制御部161との間には、ブートストラップ用のダイオードD31~D33がそれぞれ接続されている。ダイオードD31~D33は、抵抗R31を介して、モータ制御部161と接続している。
 各スイッチング素子Q1~Q6のゲートとソースとの間には、抵抗R11~R16がそれぞれ接続されている。各スイッチング素子Q1~Q6のゲートとモータ制御部161との間には、抵抗R21~R26がそれぞれ接続されている。各スイッチング素子Q1~Q6のドレインとソースとの間には、フィルタ141~146がそれぞれ接続されている。フィルタ141~146は、直列接続された抵抗とコンデンサとから構成されている。
 かかるパワー系回路170において、スイッチング素子Q1~Q6は、モータ制御部161が出力した出力信号に基づいてスイッチングし、3相交流の駆動電流をコイル35に供給する。
(基板110等の構成例)
 図5は、図3に示すモータ駆動用回路基板19の平面構成を模式的に示す説明図である。図6は、図3に示すモータ駆動用回路基板19のグランドパターン100の説明図である。
 図4に示す駆動回路は、例えば、図5に示す基板110に構成される。基板110は、複数の層を有する多層基板110Aである。多層基板110Aでは、基板本体に積層された複数の絶縁層によって、配線や電極等の導電層が配置される複数の層が構成され、異なる層に形成された導電層は、絶縁層を貫通するコンタクトホールによって電気的に接続されている。配線や電極等の導電層は銅層からなる。
 図5に示すように、多層基板110Aでは、多層基板110Aの中心Oに対して一方側の第1領域101にコネクタ端子75が嵌る複数の端子穴195が多層基板110Aの端部に沿うように配置されている。4つの端子穴195は、コネクタ端子75のうち、図4に示す定電圧用端子751、第1信号端子752、第2信号端子753、およびグランド端子754が各々嵌る第1端子穴191、第2端子穴192、第3端子穴193、および第4端子穴194からなる。本形態において、第1端子穴191は定電圧用端子751に対応し、第2端子穴192は第1信号端子752に対応し、第3端子穴193は第2信号端子753に対応し、第4端子穴194はグランド端子754に対応する。従って、複数の端子穴195のうち、両側の第1端子穴191、および第4端子穴194は定電圧に対応する。
 多層基板110Aにおいて、中心Oに対して第1領域101とは反対側の第2領域102にはスイッチング素子Q1~Q6が実装されている。第1領域101と第2領域102との間にはモータ制御部161が設けられている。第1領域101、中心O、および第2領域102を通って直線的に延在する仮想線Pを中心線とし、仮想線Pに対して交差する方向の両側に位置する2つの領域を第3領域103および第4領域104としたとき、第1領域101および第3領域103には、巻線端子71が嵌る複数の端子穴190が多層基板110Aの端部に沿うように配置されている。また、図4に示す電解コンデンサ128が設けられる場合、電解コンデンサ128は第3領域103に配置される。
 ここで、図4に示すように、モータ制御部161を含む回路を比較的低電圧の信号系回路160とし、駆動電流を出力するスイッチング素子Q1~Q6を含む回路を比較的高電圧のパワー系回路170としたとき、本形態では、図6を参照して以下に説明するように、グランドパターン100には、信号系回路160およびパワー系回路170の双方に電気的に接続する共通グランドパターン100cが含まれている。
 本形態のモータ駆動用回路基板19において、多層基板110Aは、図6に示す4つの層111、112、113、114を備えており、これらの層111、112、113、114のうち、最も上層側の層111には、図4に示す電気素子が実装されるランド等(図示せず)が形成されている。また、多層基板110Aの4つの層111、112、113、114のうち、少なくとも1つの層には、基板面積の75%以上の面積を占める第1導電層106が信号系回路160およびパワー系回路170の双方に電気的に接続する共通グランドパターン100cとして構成されている。共通グランドパターン100cは、信号系回路160のグランドパターン100としての機能と、パワー系回路170に対するに対するグランドパターン100としての機能の双方を担っている。
 本形態では、4つの層111、112、113、114のうち、上層側から第2番目の層112に、第1領域101、第2領域102、第3領域103、および第4領域104に跨る第1導電層106が形成されている。第1導電層106において、コンタクトホール、配線、コンタクトホールの周り、および配線の周りには第1導電層106が存在しないが、それでも、第1導電層106は、基板面積の75%以上の面積を占めて連続する共通グランドパターン100cを構成している。
 さらに、4つの層111、112、113、114のうち、上層側から第3番目の層113および第4番目の層114には、第3領域103の一部、第4領域104の一部、および第1領域101に跨る第2導電層107が形成されている。第2導電層107において、コンタクトホール、配線、コンタクトホールの周り、および配線の周りには第1導電層106が存在しないが、それでも、第2導電層107は、基板面積の40%以上の面積を占めて連続する共通グランドパターン100cを構成している。
 (本形態の主な効果)
 以上説明したように、本形態のモータ駆動用回路基板19では、基板110が多層基板110Aからなるため、複数の層において配線を配置する位置等に対する設計の自由度が高い。従って、グランドパターン100を広い範囲に配置できる。
 また、グランドパターン100は、信号系回路160およびパワー系回路170の双方に電気的に接続する第1導電層106からなる共通グランドパターン100cを備えており、共通グランドパターン100cであれば、信号系回路160およびパワー系回路170の各々に接続するグランドパターンを設けた場合と比較して、広い範囲に連続して一体に設けることができる。より具体的には、基板面積の75%以上を占める広い範囲で連続した第1導電層106からなる共通グランドパターン100cを設けることができる。従って、1つの基板110に駆動回路150を設けた場合でも、EMC性能に優れている。
 さらに、本形態のモータ駆動用回路基板19において、グランドパターン100は、信号系回路160およびパワー系回路170の双方に電気的に接続する第2導電層107からなる共通グランドパターン100cを備えており、第2導電層107からなる共通グランドパターン100cは、基板面積の40%以上を占める広い範囲で連続している。従って、1つの基板110に駆動回路150を設けた場合でも、EMC性能に優れている。
 また、複数の端子穴195のうち、両側の第1端子穴191、および第4端子穴194は、定電圧に対応するため、第1端子穴191、および第4端子穴194から延在する配線をシールド配線として利用することができる。
[実施形態2]
 図7は、本発明の実施形態2に係るモータ駆動用回路基板19の説明図である。図7には、駆動回路150の概略構成を示してある。図8は、本発明の実施形態2に係るモータ駆動用回路基板19の平面構成を模式的に示す説明図である。なお、本形態の基本的な構成は、実施形態1と同様であるため、共通する部分には、同一の符号を付してそれらの説明を省略する。図7に示すように、本形態のモータ駆動用回路基板19において、駆動回路150には、インダクタ118、電解コンデンサ121、ダイオード131等のノイズ対策用電気素子180が設けられている。また、ノイズ対策用電気素子180として、フェライトビーズ119が設けられることもある。電解コンデンサ121の静電容量は150μFである。インダクタ118は、駆動電圧線135に直列に電気的に接続され、電解コンデンサ121およびダイオード131は各々、駆動電圧線135とグランドパターン100との間に配置されている。なお、フェライトビーズ119およびコンデンサ126が設けられる場合、フェライトビーズ119は、制御信号線115に対し、コンデンサ126の接続位置と第3線151の分岐位置との間で電気的に接続される。
 このように構成したモータ駆動用回路基板19においては、実施形態1と同様、基板110が多層基板110Aであり、実施形態1で説明した共通グランドパターン100cが設けられている。また、図8に示すように、多層基板110Aでは、多層基板110Aの中心Oに対して一方側の第1領域101にコネクタ端子75が嵌る複数の端子穴195が多層基板110Aの端部に沿うように配置され、中心Oに対して第1領域101とは反対側の第2領域102にはスイッチング素子Q1~Q6が実装されている。複数の端子穴195のうち、第1端子穴191は定電圧用端子751に対応し、第4端子穴194はグランド端子754に対応する。従って、複数の端子穴195のうち、両側の第1端子穴191、および第4端子穴194は、定電圧に対応する。
 第1領域101と第2領域102との間にはモータ制御部161が設けられている。第1領域101、中心O、および第2領域102を通って直線的に延在する仮想線Pを中心線とし、仮想線Pに対して交差する方向の両側に位置する2つの領域を第3領域103および第4領域104としたとき、第1領域101および第3領域103には、巻線端子71が嵌る複数の端子穴190が多層基板110Aの端部に沿うように配置されている。第3領域103には、電解コンデンサ128が配置されている。従って、第4領域104はスペース的に余裕があることから、第4領域104には、電解コンデンサ121、インダクタ118、ダイオード131、およびフェライトビーズ119等のノイズ対策用電気素子180が配置されている。
 このように構成したモータ駆動用回路基板19では、共通グランドパターン100cに加えて、ノイズ対策用電気素子180が設けられているため、EMC性能に優れている。また、ノイズ対策用電気素子180を設けるにあたっては、ノイズ対策用電気素子180以外の電気素子を第1領域101、第2領域102、および第3領域103に纏めて配置したため、第4領域104をノイズ対策用電気素子180の配置スペースとして利用できる。従って、1つの基板110に駆動回路150を設けた場合でも、EMC性能に優れている。また、ノイズ対策用電気素子180については、定電圧(電源)に対応する第1端子穴191の近くに配置することによって、EMC性能を向上することができる。特に、ノイズ対策用電気素子180のうち、インダクタ118については、定電圧に対応する第1端子穴191の近くに配置することによって、EMC性能を特に向上することができる。
 [実施形態3]
 実施形態2では、実施形態1で説明した共通グランドパターン100cが設けられているモータ駆動用回路基板19に対して、ノイズ対策用電気素子180が設けられている場合を説明した。これに対して、共通グランドパターン100cが設けられていない多層基板110Aを備えたモータ駆動用回路基板19に対して、第4領域104を利用して、インダクタ118、電解コンデンサ121、ダイオード131、およびフェライトビーズ119等のノイズ対策用電気素子180が設けてもよい。この場合も、1つの基板110に駆動回路150を設けた場合でも、EMC性能に優れたモータ駆動用回路基板19を実現することができる。なお、本形態では、基板110が多層の片面基板であったが、基板110が単層の片面基板である場合に本発明を適用してもよい。
[実施形態4]
 図9は、本発明の実施形態4に係るモータ駆動用回路基板19の平面構成を模式的に示す説明図である。図9には、モータ駆動用回路基板19に用いた両面実装基板110Bの第1面110B1における電気素子のレイアウト(a)と、モータ駆動用回路基板19に用いた両面実装基板110Bの第2面110B2における電気素子のレイアウト(b)とを示してある。なお、図9に示すレイアウト(a)、(b)のいずれにおいても、第1面110B1の側からみた様子を示してある。
 図9に示すモータ駆動用回路基板19において、基板110は両面実装基板110Bである。両面実装基板110Bの第1面110B1において、中心Oに対して一方側の第1領域101にコネクタ端子75が嵌る複数の端子穴195が両面実装基板110Bの端部に沿うように配置され、両面実装基板110Bの第2面110B2において、中心Oに対して第1領域101とは反対側の第2領域102にはスイッチング素子Q1~Q6が実装されている。第1領域101と第2領域102との間にはモータ制御部161が設けられている。複数の端子穴195のうち、第1端子穴191は定電圧用端子751に対応し、第4端子穴194はグランド端子754に対応する。従って、複数の端子穴195のうち、両側の第1端子穴191、および第4端子穴194は、定電圧に対応する。
 また、第1領域101、中心O、および第2領域102を通って直線的に延在する仮想線Pを中心線とし、仮想線Pに対して交差する方向の両側に位置する2つの領域を第3領域103および第4領域104としたとき、第1領域101の第3領域103側の端部と第1領域101の第4領域104側の端部との間には、巻線端子71が嵌る複数の端子穴190が両面実装基板110Bの端部に沿うように配置されている。また、第3領域103に電解コンデンサ128が配置されることがある。従って、第4領域104はスペース的に余裕があることから、第4領域104には、電解コンデンサ121、インダクタ118、ダイオード131、およびフェライトビーズ119等のノイズ対策用電気素子180が配置されている。
 このように構成したモータ駆動用回路基板19では、ノイズ対策用電気素子180以外の電気素子を第1領域101、第2領域102、および第3領域103に纏めて配置したため、第4領域104をノイズ対策用電気素子180の配置スペースとして利用できる。従って、1つの基板110に駆動回路150を設けた場合でも、EMC性能に優れている。
[他の実施の形態]
 上記実施形態では、ポンプ装置1に用いるモータ10を例示したが、他の機器に搭載されるモータに本発明を適用してもよい。
1…ポンプ装置、2…ケース、3…ステータ、4…ロータ、6…ハウジング、10…モータ、18…カバー、19…モータ駆動用回路基板、20…ポンプ室、25…インペラ、32,33…インシュレータ、35,35U,35V,35W…コイル、47…磁石、60…樹脂封止部材、71…巻線端子、75…コネクタ端子、100…グランドパターン、100c…共通グランドパターン、101…第1領域、102…第2領域、103…第3領域、104…第4領域、106…第1導電層、107…第2導電層、110…基板、110A…多層基板、110B…両面実装基板、110B1…第1面、110B2…第2面、111,112,113,114…層、131…ダイオード、118…インダクタ、119…フェライトビーズ、121…電解コンデンサ、150…駆動回路、160…信号系回路、161…モータ制御部、170…パワー系回路、180…ノイズ対策用電気素子、190,195…端子穴、191…第1端子穴、192…第2端子穴、193…第3端子穴、194…第4端子穴、751…定電圧用端子、752…第1信号端子、753…第2信号端子、754…グランド端子、L…モータ軸線、O…中心、P…仮想線、Q1~Q6…スイッチング素子、FET…MOS型、Rs…シャント抵抗

Claims (8)

  1.  モータ制御部を含む信号系回路と、駆動電流を出力するスイッチング素子を含むパワー系回路とが、複数の層を有する多層基板に設けられたモータ駆動用回路基板において、
     前記多層基板では、前記パワー系回路に対するグランドパターン、および信号系回路のグランドパターンが一体の共通グランドパターンとして構成され、
     前記共通グランドパターンは、前記複数の層のうち、少なくとも1つの層において基板面積の75%以上の面積を占める第1導電層を含むことを特徴とするモータ駆動用回路基板。
  2.  請求項1に記載のモータ駆動用回路基板において、
     前記共通グランドパターンは、前記複数の層のうち、前記第1導電層が設けられた層と異なる層において基板面積の40%以上の面積を占める第2導電層を含むことを特徴とするモータ駆動用回路基板。
  3.  請求項1または2に記載のモータ駆動用回路基板において、
     前記多層基板では、前記多層基板の中心に対して一方側の第1領域にコネクタ用の端子が嵌る複数の端子穴が前記基板の端部に沿うように配置され、前記多層基板の中心に対して前記端子とは反対側の第2領域に前記スイッチング素子が配置され、前記第1領域と前記第2領域との間に前記モータ制御部が配置され、前記第1領域、前記中心、および前記第2領域を通って直線的に延在する仮想線に対して、前記仮想線と交差する方向の領域にノイズ対策用電気素子が実装されていることを特徴とするモータ駆動用回路基板。
  4.  モータ制御部を含む信号系回路、および駆動電流を出力するスイッチング素子を含むパワー系回路が基板に設けられたモータ駆動用回路基板において、
     前記基板では、前記基板の中心に対して一方側の第1領域にコネクタ用の端子が嵌る複数の端子穴が前記基板の端部に沿うように配置され、前記基板の中心に対して前記端子とは反対側の第2領域に前記スイッチング素子が配置され、前記第1領域と前記第2領域との間に前記モータ制御部が配置され、前記第1領域、前記中心、および前記第2領域を通って直線的に延在する仮想線に対して、前記仮想線と交差する方向の領域にノイズ対策用電気素子が実装されていることを特徴とするモータ駆動用回路基板。
  5.  請求項4に記載のモータ駆動用回路基板において、
     前記基板は片面基板であることを特徴とするモータ駆動用回路基板。
  6.  請求項4に記載のモータ駆動用回路基板において、
     前記基板は両面実装基板であり、
     前記両面実装基板における一方面に前記パワー系回路の電気素子が実装され、
     前記両面実装基板における他方面に前記ノイズ対策用電気素子が実装されていることを特徴とするモータ駆動用回路基板。
  7.  請求項1から6までの何れか一項に記載のモータ駆動用回路基板を備えたモータであって、
     前記モータ駆動用回路基板から出力される駆動電流が供給されるコイルを備えることを特徴とするモータ。
  8.  請求項7に記載のモータを備えたポンプ装置であって、
     前記モータによって回転駆動されるインペラを有することを特徴とするポンプ装置。
PCT/JP2022/037467 2021-10-08 2022-10-06 モータ駆動用回路基板、モータおよびポンプ装置 WO2023058722A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166007 2021-10-08
JP2021166007A JP2023056661A (ja) 2021-10-08 2021-10-08 モータ駆動用回路基板、モータおよびポンプ装置

Publications (1)

Publication Number Publication Date
WO2023058722A1 true WO2023058722A1 (ja) 2023-04-13

Family

ID=85804291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037467 WO2023058722A1 (ja) 2021-10-08 2022-10-06 モータ駆動用回路基板、モータおよびポンプ装置

Country Status (2)

Country Link
JP (1) JP2023056661A (ja)
WO (1) WO2023058722A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080471A (ja) * 2017-10-27 2019-05-23 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置
JP2020167920A (ja) * 2019-03-29 2020-10-08 日本電産トーソク株式会社 電動オイルポンプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019080471A (ja) * 2017-10-27 2019-05-23 オムロンオートモーティブエレクトロニクス株式会社 負荷駆動装置
JP2020167920A (ja) * 2019-03-29 2020-10-08 日本電産トーソク株式会社 電動オイルポンプ

Also Published As

Publication number Publication date
JP2023056661A (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
EP3352362B1 (en) Integrated electric power steering apparatus
US11831209B2 (en) Motor control device including a shield plate, and electric power steering control device
CN110100372B (zh) 层叠型定子、超薄型马达和空气净化***用送风机
JP5206732B2 (ja) インバータ装置、及び、それを用いた駆動装置
JP5201171B2 (ja) 半導体モジュール、および、それを用いた駆動装置
JP5177711B2 (ja) 電動装置
JP5455784B2 (ja) Dcモータおよび換気扇
US10375817B2 (en) Semiconductor device
US11465669B2 (en) Electric power steering device
US11404941B2 (en) Power conversion device
JP2016163414A (ja) モータユニット
JP2016163416A (ja) モータユニット
CN111971880B (zh) 电动助力转向装置
JP6181639B2 (ja) 電気モーターの接続を保証すべく意図された印刷回路及び印刷回路を含む電気モーター
US11728713B2 (en) Power conversion device
US10250177B2 (en) Floating ground assembly for electric motor control assembly
WO2023058722A1 (ja) モータ駆動用回路基板、モータおよびポンプ装置
JP2020195236A (ja) 電動ステアリング装置
WO2024070595A1 (ja) モータ駆動用回路基板、モータおよびポンプ装置
KR20180073102A (ko) 다층 인쇄회로기판을 이용한 적층형 스테이터, 이를 이용한 단상 모터와 인카 센서
JP2016163415A (ja) モータユニット
JP6874533B2 (ja) 電動圧縮機
WO2023209787A1 (ja) 電動パワーステアリング装置
JP2022001002A (ja) 回転電機
JP2020120505A (ja) モータユニットおよびファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE