WO2023056828A1 - 一种电流传感器 - Google Patents

一种电流传感器 Download PDF

Info

Publication number
WO2023056828A1
WO2023056828A1 PCT/CN2022/118643 CN2022118643W WO2023056828A1 WO 2023056828 A1 WO2023056828 A1 WO 2023056828A1 CN 2022118643 W CN2022118643 W CN 2022118643W WO 2023056828 A1 WO2023056828 A1 WO 2023056828A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
measured
current
conductor
sensor group
Prior art date
Application number
PCT/CN2022/118643
Other languages
English (en)
French (fr)
Inventor
曲品
薛松生
张久圆
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Publication of WO2023056828A1 publication Critical patent/WO2023056828A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Definitions

  • Embodiments of the present invention relate to the technical field of magnetic sensors, and in particular to a current sensor.
  • Patent application CN200410069833.X discloses a manufacturing method of an open-loop current sensor. Its working principle is to detect the change of the magnetic field generated by the conductor to be measured by a magnetic field detector placed in the air gap of the iron core to realize current detection.
  • Patent application CN201210409149.6 discloses a current sensor, which includes a magnetoresistive integrated chip, an operational amplifier, a resistor, a printed circuit board and a U-shaped current wire to be measured, and detects U through a magnetoresistive integrated chip with a full-bridge structure.
  • the differential magnetic field generated by the current wire to be measured can realize the detection of the current.
  • the above-mentioned current sensor has the following defects: multiple soft magnetic layers and compensation wire layers need to be installed, the process is complex and the requirements are relatively high; the anti-interference performance is not high, when the current sensor passes a large current or there is a certain intensity of external magnetic field interference around This leads to the saturation of one or two bridge arms of the magnetoresistive integrated chip, which affects the measurement accuracy.
  • An embodiment of the present invention provides a current sensor to solve the problems of the existing current sensor such as narrow measurement range, poor high-frequency characteristics, low measurement accuracy, and large size.
  • An embodiment of the present invention provides a current sensor, including:
  • the current conductor to be measured includes a first conductor segment and a second conductor segment with the same shape, and the area enclosed by the extended shapes of the first conductor segment and the second conductor segment is in a "U" shape distribution, the first conductor segment and the second conductor segment are distributed axially symmetrically with respect to the geometric center line of the current conductor to be measured;
  • a first magnetic sensor group and a second magnetic sensor group the first magnetic sensor group is arranged on one side or both sides of the first conductor segment, and the second magnetic sensor group is arranged on the second conductor segment On one side or both sides, the first magnetic sensor group and the second magnetic sensor group are distributed axisymmetrically with the geometric center line of the current conductor to be measured, and the first magnetic sensor group and the second magnetic sensor group The sensitive direction is the same;
  • a signal processor, a circuit board and a surrounding shielding cover the shielding cover is placed in the casing and wraps the current conductor to be measured, the first magnetic sensor group, the second magnetic sensor group, the signal a processor and said circuit board;
  • the first conductor segment and the second conductor segment respectively generate a magnetic field to be measured on the upper and lower sides along the geometric centerline direction, and the magnetic field to be measured has the same magnitude and
  • the geometric center line of the current conductor to be measured is distributed symmetrically in reverse, and the first magnetic sensor group is used to detect the first magnetic field to be measured generated by the first conductor segment of the current conductor to be measured when the current flows through it.
  • the second magnetic sensor group is used to detect the second magnetic field to be measured generated by the second conductor segment of the current conductor to be measured, the first magnetic field to be measured and the second magnetic field to be measured constitute a differential to be measured Measure the magnetic field, the differential magnetic field to be measured is converted into a differential voltage signal through the first magnetic sensor group and the second magnetic sensor group, and the differential voltage signal is processed by the signal processor and converted into a voltage proportional to the current to be measured relationship and real-time follow the output signal of the change of the current to be measured, the output signal is output through the lead wire connected on the circuit board.
  • the current conductor to be measured is a single-material metal conductor or a homogeneous alloy conductor.
  • cross-sectional shape of the symmetrical area of the current conductor to be measured is rectangle, trapezoid, circle or semicircle.
  • first magnetic sensor group and the second magnetic sensor group are symmetrically arranged on the circuit board, and the circuit board is symmetrically distributed on one side or both sides of the current conductor to be measured;
  • Both the first magnetic sensor group and the second magnetic sensor group are composed of M magnetic sensor units arranged at intervals on one side or both sides of the first conductor segment and connected in parallel, and the magnetic sensor units are attached to the On the circuit board, M is a positive integer;
  • the output signal of the first magnetic sensor group and the output signal of the second magnetic sensor group are the average value of the conversion signals of M magnetic sensor units, and the output signal of the first magnetic sensor group and the second magnetic sensor
  • the output signals of the sensor groups constitute the differential voltage signal.
  • the magnetic sensor unit is a Hall sensor, an anisotropic magnetic sensor, a giant magnetic sensor or a tunnel magnetic sensor.
  • the material of the shield is permalloy, silicon steel, pure iron, magnetically permeable metal material or alloy.
  • the signal processor includes a temperature compensation unit, a nonlinear compensation unit and an operational amplifier, and the differential voltage signals converted by the first magnetic sensor group and the second magnetic sensor group pass through the temperature compensation unit, The nonlinear compensation unit and the operational amplifier form an output signal of the current sensor.
  • the current conductor to be measured of the current sensor is distributed in a U shape, the first magnetic sensor group is arranged on one side or both sides of the first conductor segment, and the second magnetic sensor group is arranged on one side or both sides of the second conductor segment.
  • the first magnetic sensor group is arranged on one side or both sides of the first conductor segment
  • the second magnetic sensor group is arranged on one side or both sides of the second conductor segment.
  • the two magnetic fields to be measured constitute a differential magnetic field to be measured, which can effectively increase the current
  • the ability of the sensor to resist external magnetic field interference; the setting of the shield can effectively weaken or even eliminate the electromagnetic field interference from the surrounding environment without affecting the accurate detection of the current to be measured, and avoid the abnormal saturation of the magnetic sensor unit caused by external interference. Further improve the anti-interference ability of the external magnetic field of the current sensor.
  • Multiple magnetic sensor groups are set in the current sensor, which has a high signal-to-noise ratio and a high space error tolerance rate, which ensures the high precision and low temperature drift of the current sensor in low-frequency and high-frequency current measurement, and realizes accurate isolation of current detection, broaden the measurement range.
  • the current sensor provided by the embodiment of the present invention has the effects of small size, strong anti-interference ability, wide measurement range, low temperature drift, high frequency response, and high measurement accuracy.
  • FIG. 1 is a schematic diagram of a current sensor provided by an embodiment of the present invention
  • Fig. 2 is the forming schematic diagram of the current conductor to be measured in the embodiment of the present invention.
  • Fig. 3 is the forming schematic diagram of another kind of current conductor to be measured in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • the current sensor provided in this embodiment includes: a current conductor to be measured 101, the current conductor to be measured 101 includes a first conductor segment 102 and a second conductor segment 103 with the same shape, and the extension of the first conductor segment 102 and the second conductor segment 103 The area surrounded by the shape is distributed in a "U" shape, and the first conductor segment 102 and the second conductor segment 103 are distributed axially symmetrically with the geometric center line 104 of the current conductor 101 to be measured; the first magnetic sensor group 105 and the second magnetic sensor Group 106, the first magnetic sensor group 105 is arranged on one side or both sides of the first conductor segment 102, the second magnetic sensor group 106 is arranged on one side or both sides of the second conductor segment 103, the first magnetic sensor group 105 and The second magnetic sensor group 106 is axisymmetrically distributed with the geometric center line 104 of the current conductor 101
  • the first magnetic sensor group 105 is used to detect the first magnetic field to be measured generated by the first conductor section 102 of the current conductor 101 to be measured when the current flows through it.
  • the second magnetic sensor group 106 is used to detect the second magnetic field to be measured generated by the second conductor section 103 of the current conductor 101 to be measured.
  • the first magnetic field to be measured and the second magnetic field to be measured constitute a differential magnetic field to be measured, and the differential magnetic field to be measured passes through the second magnetic field to be measured.
  • the first magnetic sensor group 105 and the second magnetic sensor group 106 are converted into differential voltage signals.
  • the differential voltage signals are processed by the signal processor 108 and converted into output signals that are proportional to the current to be measured and follow the changes in the current to be measured in real time.
  • the output signal It is output through the lead wire 109 connected on the circuit board 107 .
  • the first conductor segment 102 and the second conductor segment 103 are identical in shape, and they constitute the current conductor 101 to be measured in a "U" shape.
  • FIG. 2 it is a schematic diagram of forming a current conductor to be tested in an embodiment of the present invention.
  • the extended shape of the first conductor segment 102 and the second conductor segment 103 is L-shaped, and then they are shaped to form a "U"-shaped current conductor 101 to be measured.
  • the geometric center line of the current conductor 101 to be measured is 104 , and the first conductor segment 102 and the second conductor segment 103 are distributed axisymmetrically with the geometric center line 104 as the axis.
  • FIG. 3 it is a schematic diagram of forming another current conductor to be tested in an embodiment of the present invention.
  • the extended shape of the first conductor segment 102 and the second conductor segment 103 is similar to a Z-shape, and the two are shaped to form a current conductor 101 to be measured which is similar to a "U" shape.
  • the geometric center line of the current conductor 101 to be measured is 104 , and the first conductor segment 102 and the second conductor segment 103 are distributed axisymmetrically with the geometric center line 104 as the axis.
  • the extended shape of the current conductor 101 to be tested can be U-shaped or similar to U-shaped.
  • the first conductor segment 102 and the second conductor segment 103 can be reasonably selected to form the current conductor 101 to be measured.
  • the first conductor segment 102 and the second conductor segment 103 are not two independent conductor segments, but a part of the current conductor 101 to be measured.
  • the complete current conductor 101 to be measured is virtually divided, then the U-shaped
  • the current measuring conductor 101 can be divided into a first conductor segment 102 and a second conductor segment 103 which are symmetrical and have the same shape.
  • the vertical projection of the first magnetic sensor group 105 on the plane X-Y of the current conductor 101 to be measured overlaps with the first conductor segment 102, that is, in the Z direction, the first A magnetic sensor group 105 is arranged in the upper area of the first conductor segment 102, and the vertical projection of the second magnetic sensor group 106 on the plane X-Y where the current conductor 101 to be measured overlaps with the second conductor segment 103, that is, in the Z direction, the second The two magnetic sensor groups 106 are disposed on the upper area of the second conductor segment 103 .
  • the current sensor also includes a circuit board 107 .
  • the optional first magnetic sensor group 105 and the second magnetic sensor group 106 are both composed of a magnetic sensor unit, which are respectively arranged symmetrically on the upper surface of the circuit board 107 .
  • the first magnetic sensor group 105 and the second magnetic sensor group 106 are arranged on the upper surface of the circuit board 107, and the circuit board 107 is located between the magnetic sensor group and the current conductor 101 to be measured.
  • the upper surface of the circuit board 107 is also provided with a signal processor 108 and lead wires 109 , the first magnetic sensor group 105 and the second magnetic sensor group 106 are electrically connected to the signal processor 108 and the lead wires 109 respectively through the circuit board 107 .
  • the first magnetic sensor group 105 and the second magnetic sensor group 106 located on the upper surface of the circuit board 107 are distributed axisymmetrically with the geometric center line 104 of the current conductor 101 to be measured as the axis.
  • the sensitive directions of the first magnetic sensor group 105 and the second magnetic sensor group 106 are the same.
  • first magnetic sensor group is disposed on both sides of the first conductor segment
  • second magnetic sensor group is disposed on both sides of the second conductor segment
  • the current flows into the starting end of the first conductor segment 102, passes through the first conductor segment 102 and the second conductor segment 103, and then flows out from the end of the second conductor segment 103, as shown in Fig. 1, the current flows into the current conductor to be measured
  • the direction of 101 is 110
  • the direction of current flowing out of the current conductor 101 to be measured is 111 .
  • the current flows into the first conductor segment 102 , so that the first conductor segment 102 generates a first magnetic field to be measured on the upper and lower sides along the geometric center line 104 , and the magnetic field direction of the first magnetic field to be measured is 112 at the location of the circuit board 107 .
  • the current flows into the second conductor segment 103 , so that the second conductor segment 103 generates a second magnetic field to be measured on the upper and lower sides along the geometric center line 104 , and the magnetic field direction of the second magnetic field to be measured is 113 at the location of the circuit board 107 .
  • the magnetic field direction 112 of the first magnetic field to be measured and the magnetic field direction 113 of the second magnetic field to be measured are the same in magnitude but opposite in direction, and the magnetic field directions of the two are antisymmetrically distributed with respect to the geometric center line 104 of the current conductor 101 to be measured.
  • the sensitive directions of the first magnetic sensor group 105 and the second magnetic sensor group 106 are the same, and both are the same as the magnetic field direction 112 of the first magnetic field to be measured.
  • the first magnetic sensor group 105 can be used to detect the first magnetic field to be measured generated by the first conductor segment 102 of the current conductor 101 to be measured when the current flows, and the second magnetic sensor group 106 can be used to detect the current flowing through the current conductor 101 to be measured.
  • the second magnetic field to be measured generated by the second conductor segment 103, the first magnetic field to be measured and the second magnetic field to be measured constitute a differential magnetic field to be measured.
  • the differential magnetic field to be measured is converted into a differential voltage signal through the first magnetic sensor group 105 and the second magnetic sensor group 106 .
  • the current sensor also includes a signal processor 108 electrically connected to the circuit board 107 .
  • the differential voltage signals generated by the first magnetic sensor group 105 and the second magnetic sensor group 106 according to the conversion of the first magnetic field to be measured and the second magnetic field to be measured are processed by the signal processor 108 and converted into a certain proportional relationship with the current to be measured and
  • the output signal follows the change of the current to be measured in real time, and the output signal is output through the lead wire 109 connected to the circuit board 107 .
  • the current sensor also includes a shielding cover 114 that is closed around.
  • the shielding cover 114 is placed in the shell 115 of insulating material.
  • the shielding cover 114 wraps the current conductor 101 to be measured, the first magnetic sensor group 105, the second magnetic sensor group 106, and the signal processor. 108 and circuit board 107 and other structures.
  • the shell 115 made of insulating material can improve the electrical safety performance of the current sensor. It can be understood that only part of the internal structure of the current sensor is shown in FIG. 1 . In practice, the entire internal structure of the current sensor is completely wrapped by the shielding case 114 , and then the shielding case 114 is wrapped by the insulating shell 115 . It should be noted that the lead wires 109 connected to the circuit board 107 pass through the shielding cover 114 and lead out of the housing 115 .
  • the current conductor 101 to be measured is a single-material metal conductor or a homogeneous alloy conductor. But not limited thereto, on the basis of ensuring the function of the current conductor to be tested, the material of the current conductor to be tested can be reasonably selected.
  • the cross-sectional shape of the symmetrical area of the current conductor 101 to be measured is a rectangle, a trapezoid, a circle or a semicircle. That is, the cross section of the first conductor section 102 and the second conductor section 103 of the current conductor 101 to be measured is taken on the X-Z plane, and the cross-sectional shape of the current conductor 101 to be measured can be rectangular, trapezoidal, circular or semicircular. But not limited thereto, on the basis of ensuring the function of the current conductor to be measured, the cross-sectional shape of the current conductor to be measured can be reasonably designed.
  • the optional shield material is permalloy, silicon steel, pure iron, magnetically permeable metal material or alloy. But not limited thereto, on the basis of ensuring the shielding function of the shielding case, the material of the shielding case can be reasonably selected.
  • the first magnetic sensor group consists of one or more magnetic sensor units
  • the second magnetic sensor group consists of one or more magnetic sensor units.
  • Optional magnetic sensor units are Hall sensors, anisotropic magnetic sensors, giant magnetic sensors or tunnel magnetic sensors. But not limited thereto, on the basis of ensuring the function of the current sensor, the magnetic sensor units constituting the magnetic sensor group can be reasonably selected.
  • the optional signal processor 108 includes a temperature compensation unit, a nonlinear compensation unit and an operational amplifier, and the differential voltage signals converted by the first magnetic sensor group 105 and the second magnetic sensor group 106 are sequentially passed through the temperature compensation unit, the nonlinear compensation unit and the operation amplifier.
  • Amplifier which forms the output signal of the current sensor.
  • the signal processor 108 is electrically connected to the circuit board 107, and temperature compensation is performed on the voltage signals of the first magnetic sensor group 105 and the second magnetic sensor group 106 through the temperature compensation unit in the signal processor 108.
  • the compensation unit performs nonlinear compensation on the temperature-compensated voltage signal, and the gain amplification of the nonlinear-compensated voltage signal through the operational amplifier can ensure the high precision and low temperature drift of the current sensor, and realize the isolated and accurate detection of the current.
  • the optional signal processor is a programmable conditioning chip, including a temperature compensation unit and a nonlinear compensation unit.
  • the current conductor to be measured of the current sensor is distributed in a U shape, the first magnetic sensor group is arranged on one side or both sides of the first conductor segment, and the second magnetic sensor group is arranged on one side or both sides of the second conductor segment.
  • the first magnetic sensor group is arranged on one side or both sides of the first conductor segment
  • the second magnetic sensor group is arranged on one side or both sides of the second conductor segment.
  • the two magnetic fields to be measured constitute a differential magnetic field to be measured, which can effectively increase the current
  • the ability of the sensor to resist external magnetic field interference; the setting of the shield can effectively weaken or even eliminate the electromagnetic field interference from the surrounding environment without affecting the accurate detection of the current to be measured, and avoid the abnormal saturation of the magnetic sensor unit caused by external interference. Further improve the anti-interference ability of the external magnetic field of the current sensor.
  • Multiple magnetic sensor groups are set in the current sensor, which has a high signal-to-noise ratio and a high space error tolerance rate, which ensures the high precision and low temperature drift of the current sensor in low-frequency and high-frequency current measurement, and realizes accurate isolation of current detection, broaden the measurement range.
  • the current sensor provided by the embodiment of the present invention has the effects of small size, strong anti-interference ability, wide measurement range, low temperature drift, high frequency response, and high measurement accuracy.
  • the optional first magnetic sensor group and the second magnetic sensor group are symmetrically arranged on the circuit board, and the circuit board is symmetrically distributed on one side or both sides of the current conductor to be measured;
  • the first Both the magnetic sensor group and the second magnetic sensor group are composed of M magnetic sensor units arranged at intervals on one side or both sides of the first conductor section and connected in parallel.
  • the magnetic sensor units are attached to the circuit board, and M is a positive integer;
  • the output signal of the sensor group and the output signal of the second magnetic sensor group are the average value of the converted signals of M magnetic sensor units, and the output signal of the first magnetic sensor group and the output signal of the second magnetic sensor group constitute a differential voltage signal.
  • the optional first magnetic sensor group and the second magnetic sensor group are both composed of M magnetic sensor units connected in parallel, where M is a positive integer.
  • the sensitive directions of the two magnetic sensor groups 106 are the same.
  • FIG. 4 it is a schematic diagram of another current sensor provided by an embodiment of the present invention.
  • the sensitive directions of the first magnetic sensor group and the second magnetic sensor group are the same, specifically, the sensitive directions of the magnetic sensor units 405 , 406 , 407 , 408 , 409 and 410 are the same.
  • the circuit board 411 is arranged on the upper side of the first conductor section 402 and the second conductor section 403 constituting the "U"-shaped current conductor 401 to be measured.
  • the upper side of a conductor segment 402 and the second conductor segment 403 generates a first magnetic field to be measured and a second magnetic field to be measured.
  • the two magnetic fields to be measured have the same magnitude and opposite directions, and are distributed axisymmetrically with respect to the geometric center line 404 of the current conductor 401 to be measured. , forming a differential magnetic field to be measured.
  • the output signal of the first magnetic sensor group is the average value of the output signals of the three magnetic sensor units 405, 406, 407
  • the output signal of the second magnetic sensor group is the average value of the output signals of the three magnetic sensor units 408, 409, 410
  • the output signal of the first magnetic sensor group and the output signal of the second magnetic sensor group constitute a differential magnetic field to be measured, and the differential magnetic field to be measured is converted into a differential voltage signal through the first magnetic sensor group and the second magnetic sensor group.
  • a plurality of magnetic sensor units are set in one magnetic sensor group, so that the measurement process has a higher signal-to-noise ratio and a higher space error tolerance rate, which ensures the high precision and high accuracy of the current sensor in low-frequency and high-frequency current measurement.
  • the low temperature drift realizes the isolated and accurate detection of the current and broadens the measurement range.
  • the first magnetic sensor group is arranged on both sides of the first conductor segment
  • the second magnetic sensor group is arranged on both sides of the second conductor segment.
  • FIG. 5 it is a schematic diagram of another current sensor provided by an embodiment of the present invention. The difference from FIG. 1 is that in the current sensor shown in FIG. 5 , the first magnetic sensor group is composed of two magnetic sensor units 504 and 505 connected in parallel, and the second magnetic sensor group is composed of two magnetic sensor units 506 and 507 connected in parallel. , respectively symmetrically arranged on the two circuit boards 508 and 509 .
  • the current conductor to be measured includes a first conductor segment 501 and a second conductor segment 502 , and the first conductor segment 501 and the second conductor segment 502 are distributed axisymmetrically with the geometric centerline 503 of the current conductor to be measured as the axis.
  • the two magnetic sensor units 504 and 505 in the first magnetic sensor group are arranged on the upper and lower sides of the plane where the first conductor segment 501 is located, and the two magnetic sensor units 506 and 507 in the second magnetic sensor group are arranged on the second conductor segment 502. top and bottom sides of the plane.
  • the sensitive directions of the magnetic sensor units 504 and 506 are the same, the sensitive directions of the magnetic sensor units 505 and 507 are the same, and the sensitive directions of the magnetic sensor units 504 and 507 are opposite.
  • the circuit board 508 is arranged on the upper side of the first conductor section 501 and the second conductor section 502 that constitute the "U"-shaped current conductor to be measured
  • the circuit board 509 is arranged on the first conductor that constitutes the "U"-shaped current conductor to be measured.
  • the lower side of the segment 501 and the second conductor segment 502 , and the circuit boards 508 and 509 are arranged symmetrically on the upper and lower sides of the first conductor segment 501 and the second conductor segment 502 .
  • Optional magnetic sensor unit 504 and magnetic sensor unit 506 are located on the upper surface of circuit board 508
  • magnetic sensor unit 505 and magnetic sensor unit 507 are located on the lower surface of circuit board 509 .
  • the current to be measured flows into the first conductor segment 501 in the current direction 510, and the current to be measured generates oppositely symmetrical magnetic fields 512 and 513 to be measured on the upper and lower sides of the first conductor segment 501, and the two magnetic fields to be measured 512 and 513 are separated by
  • the first conductor segments 501 are distributed axially symmetrically, are equal in size and opposite in direction, forming a differential magnetic field.
  • the current to be measured flows out of the second conductor segment 502 in the current direction 511, and then the current to be measured generates antisymmetrical magnetic fields 514 and 515 to be measured on the upper and lower sides of the second conductor segment 502. These two magnetic fields to be measured 514 and 515
  • the second conductor segments 502 are distributed axially symmetrically, have equal magnitudes and opposite directions, forming a differential magnetic field.
  • the magnetic fields to be measured 512 & 513 and the magnetic fields to be measured 514 & 515 are axisymmetrically distributed with respect to the geometric center line 503 of the current conductor to be measured, are equal in magnitude and opposite in direction, forming a differential magnetic field to be measured.
  • the first magnetic sensor group output signal is the mean value of the differential magnetic field conversion signals of the two magnetic sensor units 504 and 505
  • the second magnetic sensor group output signal is the mean value of the differential magnetic field conversion signals of the two magnetic sensor units 506 and 507
  • the first The output signal of the magnetic sensor group and the output signal of the second magnetic sensor group constitute a differential magnetic field to be measured
  • the differential magnetic field to be measured is converted into a differential voltage signal through the first magnetic sensor group and the second magnetic sensor group.
  • the current sensor provided by the embodiment of the present invention has the effects of small size, strong anti-interference ability, wide measurement range, low temperature drift, high frequency response, and high measurement accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明实施例公开了一种电流传感器,该传感器包括:待测电流导体,其包含形状相同的第一导体段和第二导体段,且两者的延伸形状所围成的区域呈U型分布,两个导体段以待测电流导体的几何中线呈轴对称分布;设置于第一导体段的一侧或两侧的第一磁传感器组以及设置于第二导体段的一侧或两侧的第二磁传感器组,两者以待测电流导体的几何中线呈轴对称分布,两个磁传感器组的敏感方向相同;四周封闭的屏蔽罩,屏蔽罩放置于绝缘材质的外壳内,且包裹待测电流导体、第一磁传感器组、第二磁传感器组、信号处理器和电路板。本发明实施例提供的电流传感器,具有体积小、抗干扰能力强、测量范围宽、低温漂、高频响、测量精度高的效果。

Description

一种电流传感器 技术领域
本发明实施例涉及磁传感器技术领域,尤其涉及一种电流传感器。
背景技术
长期以来,电流传感器在电力***、风电、光伏、变频器、轨道交通、工业控制等行业一直是一项普遍且重要的需求,并且随着人工智能及智慧物联网的蓬勃发展,对电流传感器要求将进一步提升,小型化、集成化、频响高、响应快是电流传感器未来的发展方向。
目前,常用于电流测量的分流器、电流互感器、霍尔电流传感器和磁通门电流传感器等,是通过不同的方式探测待测导体产生的电场或者磁场变化,以此实现电流检测。专利申请CN200410069833.X公布了一种开环电流传感器的制作方法,其工作原理是通过置于铁芯气隙中的磁场检测器探测待测导体产生的磁场变化从而实现电流的检测。但该方案存在如下缺陷:由于铁芯尺寸较大,导致整个电流传感器尺寸也比较大;成本较高;高频特性差,铁芯在高频分量下容易产生涡流,存在安全隐患。专利申请CN201210409149.6公布了一种电流传感器,该电流传感器包括磁电阻集成芯片、运算放大器、电阻、印刷线路板和U型的待测电流导线,通过一个全桥结构的磁电阻集成芯片检测U型待测电流导线产生的差分磁场从而实现电流的检测。但是上述电流传感器存在如下缺陷:需要设置多个软磁层及补偿导线层,工艺复杂且要求比较高;抗干扰性能不高,当电流传感器通过大电流或者周围存在一定强度外磁场干扰时,容易导致磁电阻集成芯片单个或者两个桥臂饱和,影响测量精度。
电流互感器、霍尔电流传感器、磁通门电流传感器需要借助聚磁环结构放大磁场提高测量精度,从而实现电流的隔离测量。测量电流时,被测电流导体需要穿过聚磁环的中心孔,导致测量装置体积依赖被测电流导体以及聚磁环的尺寸。同时,聚磁环自身的频率特性严重限制了测量装置的频响特性,致使测量装置难以实现快速响应和高测量带宽。而额定电流较大的这几类传感器,传感器更是体积庞大,价格昂贵,无法广泛应用,并且方案固化,难以灵活适用不同的电流测量场合。
发明内容
本发明实施例提供一种电流传感器,以解决现有电流传感器测量范围窄、高频特性差、测量精度低和尺寸大等问题。
本发明实施例提供了一种电流传感器,包括:
待测电流导体,所述待测电流导体包含形状相同的第一导体段和第二导体段,且所述第一导体段和第二导体段的延伸形状所围成的区域呈“U”型分布,所述第一导体段和第二导体段以所述待测电流导体的几何中线呈轴对称分布;
第一磁传感器组和第二磁传感器组,所述第一磁传感器组设置于所述第一导体段的一侧或两侧,所述第二磁传感器组设置于所述第二导体段的一侧或两侧,所述第一磁传感器组和第二磁传感器组以所述待测电流导体的几何中线呈轴对称分布,所述第一磁传感器组和所述第二磁传感器组的敏感方向相同;
信号处理器、电路板和四周封闭的屏蔽罩,所述屏蔽罩放置于外壳内,且包裹所述待测电流导体、所述第一磁传感器组、所述第二磁传感器组、所述信号处理器和所述电路板;
所述待测电流导体经电流流过后,所述第一导体段和所述第二导体段分别在各自沿所述几何中线方向的上下两侧产生待测磁场,该待测磁场的大小相同且以所述 待测电流导体的几何中线呈反向对称分布,所述第一磁传感器组用于检测电流流过所述待测电流导体的第一导体段所产生的第一待测磁场,所述第二磁传感器组用于检测电流流过所述待测电流导体的第二导体段所产生的第二待测磁场,所述第一待测磁场和所述第二待测磁场构成差分待测磁场,所述差分待测磁场经过所述第一磁传感器组和第二磁传感器组转化为差分电压信号,所述差分电压信号经过所述信号处理器处理,转换成与待测电流呈比例关系且实时跟随待测电流变化的输出信号,所述输出信号通过连接在所述电路板上的引出导线输出。
进一步地,所述待测电流导体是单材质金属导体或匀质合金导体。
进一步地,所述待测电流导体对称区域的截面形状是矩形、梯形、圆形或者半圆形。
进一步地,所述第一磁传感器组和所述第二磁传感器组对称设置在所述电路板上,所述电路板对称分布在所述待测电流导体的一侧或者两侧;
所述第一磁传感器组和所述第二磁传感器组均由M个间隔设置于所述第一导体段一侧或者两侧的磁传感器单元并联连接构成,所述磁传感器单元贴于所述电路板上,M为正整数;
所述第一磁传感器组的输出信号和所述第二磁传感器组的输出信号均为M个磁传感器单元的转换信号的均值,所述第一磁传感器组的输出信号和所述第二磁传感器组的输出信号构成所述差分电压信号。
进一步地,所述磁传感器单元为霍尔传感器、各向异性磁传感器、巨磁传感器或者隧道磁传感器。
进一步地,所述屏蔽罩材质为坡莫合金、硅钢、纯铁、导磁性金属材料或者合金。
进一步地,所述信号处理器包含温度补偿单元、非线性补偿单元和运算放大器,所述第一磁传感器组和所述第二磁传感器组转化的差分电压信号,依次经过所述温度补偿单元、所述非线性补偿单元和所述运算放大器,形成所述电流传感器的输出信号。
本发明实施例中,电流传感器的待测电流导体呈U型分布,第一磁传感器组设置于第一导体段一侧或两侧,第二磁传感器组设置于第二导体段一侧或两侧,无需聚磁结构,使得其整体结构尺寸较小且成本降低,同时显著提升了电流传感器的频响特性。电流传感器采用第一磁传感器组检测第一导体段的待测磁场,采用第二磁传感器组检测第二导体段的待测磁场,该两个待测磁场构成差分待测磁场,能够有效提高电流传感器的抗外磁场干扰能力;屏蔽罩的设置,在不影响待测电流的精确检测前提下,可以有效减弱甚至消除周围外界的电磁场干扰,避免因外部干扰引起的磁传感器单元的非正常饱和,进一步提升电流传感器的抗外磁场干扰能力。电流传感器中设置多个磁传感器组,具有较高信噪比,较高的空间容错率,保证了电流传感器在低频和高频电流测量中的高精度、低温漂,实现了对电流的隔离精确检测,拓宽了测量范围。本发明实施例提供的电流传感器,具有体积小、抗干扰能力强、测量范围宽、低温漂、高频响、测量精度高的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图虽然是本发明的一些具体的实施例,对于本领域的技术人员来说,可以根据本发明的各种实施例所揭示和提示的器件结构,驱动方法和制造方法的基本概念,拓展和延伸到其它的结构和附图,毋庸置疑这些都应该是在本发明的权利要求范围之 内。
图1是本发明实施例提供的一种电流传感器的示意图;
图2是本发明实施例中待测电流导体的成型示意图;
图3是本发明实施例中另一种待测电流导体的成型示意图;
图4是本发明实施例提供的另一种电流传感器的示意图;
图5是本发明实施例提供的又一种电流传感器的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下将参照本发明实施例中的附图,通过实施方式清楚、完整地描述本发明的技术方案,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例所揭示和提示的基本概念,本领域的技术人员所获得的所有其他实施例,都属于本发明保护的范围。
参考图1所示,为本发明实施例提供的一种电流传感器的示意图。本实施例提供的电流传感器包括:待测电流导体101,待测电流导体101包含形状相同的第一导体段102和第二导体段103,且第一导体段102和第二导体段103的延伸形状所围成的区域呈“U”型分布,第一导体段102和第二导体段103以待测电流导体101的几何中线104呈轴对称分布;第一磁传感器组105和第二磁传感器组106,第一磁传感器组105设置于第一导体段102的一侧或两侧,第二磁传感器组106设置于第二导体段103的一侧或两侧,第一磁传感器组105和第二磁传感器组106以待测电流导体101的几何中线104呈轴对称分布,第一磁传感器组105和第二磁传感器组106的敏感方向相同;信号处理器108、电路板107和四周封闭的屏蔽罩114,屏蔽罩114放置于外壳115内,且包裹待测电流导体101、第一磁传感器组105、 第二磁传感器组106、信号处理器108和电路板107;绝缘材质的外壳115;待测电流导体101经电流流过后,第一导体段102和第二导体段103分别在各自沿几何中线104方向的上下两侧产生待测磁场,该待测磁场的大小相同且以待测电流导体101的几何中线104呈反向对称分布,第一磁传感器组105用于检测电流流过待测电流导体101的第一导体段102所产生的第一待测磁场,第二磁传感器组106用于检测电流流过待测电流导体101的第二导体段103所产生的第二待测磁场,第一待测磁场和第二待测磁场构成差分待测磁场,差分待测磁场经过第一磁传感器组105和第二磁传感器组106转化为差分电压信号,差分电压信号经过信号处理器108处理,转换成与待测电流呈比例关系且实时跟随待测电流变化的输出信号,输出信号通过连接在电路板107上的引出导线109输出。
本实施例中,第一导体段102和第二导体段103形状完全相同,两者构成“U”型结构的待测电流导体101。
参考图2所示,为本发明实施例中待测电流导体的成型示意图。可选第一导体段102和第二导体段103的延伸形状为L型,则两者成型构成“U”型的待测电流导体101。该待测电流导体101的几何中线为104,第一导体段102和第二导体段103以几何中线104为轴呈轴对称分布。
参考图3所示,为本发明实施例中另一种待测电流导体的成型示意图。可选第一导体段102和第二导体段103的延伸形状类似于Z型,则两者成型构成类似“U”型的待测电流导体101。该待测电流导体101的几何中线为104,第一导体段102和第二导体段103以几何中线104为轴呈轴对称分布。
可以理解,待测电流导体101的延伸形状可以是U型或类似U型,在此基础上,可以合理选取第一导体段102和第二导体段103以构成待测电流导体101。在 此第一导体段102和第二导体段103并非是两个独立的导体段,而是待测电流导体101的局部,具体的对完整的待测电流导体101进行虚拟划分,则U型待测电流导体101可以划分为对称且形状相同的第一导体段102和第二导体段103。
以U型待测电流导体101所在平面为水平面X-Y,如图1所示,可选第一磁传感器组105和第二磁传感器组106设置于该待测电流导体101所在平面X-Y的同一侧。沿垂直于待测电流导体101所在平面X-Y的方向Z上,第一磁传感器组105在待测电流导体101所在平面X-Y的垂直投影与第一导体段102交叠,即在Z方向上,第一磁传感器组105设置于第一导体段102的上方区域,第二磁传感器组106在待测电流导体101所在平面X-Y的垂直投影与第二导体段103交叠,即在Z方向上,第二磁传感器组106设置于第二导体段103的上方区域。
电流传感器还包括电路板107。可选第一磁传感器组105和第二磁传感器组106均由一个磁传感器单元构成,分别对称设置在电路板107上表面。具体的,第一磁传感器组105和第二磁传感器组106设置于电路板107的上表面,电路板107位于磁传感器组和待测电流导体101之间。电路板107的上表面还设置有信号处理器108和引出导线109,第一磁传感器组105和第二磁传感器组106通过电路板107分别与信号处理器108和引出导线109实现电气连接。位于电路板107上表面的第一磁传感器组105和第二磁传感器组106还以待测电流导体101的几何中线104为轴呈轴对称分布。第一磁传感器组105和第二磁传感器组106的敏感方向相同。
在其他实施例中,还可选第一磁传感器组设置于第一导体段的两侧,第二磁传感器组设置于第二导体段的两侧。
给待测电流导体101通电。具体的,电流流入第一导体段102的起始端,经过第一导体段102和第二导体段103,再从第二导体段103的末端流出,参考图1所 示,电流流入待测电流导体101的方向为110,电流流出待测电流导体101的方向为111。电流流入第一导体段102,使第一导体段102在沿几何中线104方向的上下两侧产生第一待测磁场,该第一待测磁场在电路板107所在位置的磁场方向为112。电流流入第二导体段103,使第二导体段103在沿几何中线104方向的上下两侧产生第二待测磁场,该第二待测磁场在电路板107所在位置的磁场方向为113。第一待测磁场的磁场方向112和第二待测磁场的磁场方向113大小相同但方向相反,且两者的磁场方向还以待测电流导体101的几何中线104呈反向对称分布。
第一磁传感器组105和第二磁传感器组106的敏感方向相同,均与第一待测磁场的磁场方向112相同。第一磁传感器组105可用于检测电流流过待测电流导体101的第一导体段102所产生的第一待测磁场,第二磁传感器组106可用于检测电流流过待测电流导体101的第二导体段103所产生的第二待测磁场,第一待测磁场和第二待测磁场构成差分待测磁场。该差分待测磁场经过第一磁传感器组105和第二磁传感器组106转化为差分电压信号。
电流传感器还包括信号处理器108,信号处理器108与电路板107电连接。第一磁传感器组105和第二磁传感器组106根据第一待测磁场和第二待测磁场转化生成的差分电压信号,经过信号处理器108处理,转换成与待测电流呈一定比例关系且实时跟随待测电流变化的输出信号,该输出信号通过连接在电路板107上的引出导线109输出。
电流传感器还包括四周封闭的屏蔽罩114,屏蔽罩114放置于绝缘材质的外壳115内,屏蔽罩114包裹待测电流导体101、第一磁传感器组105、第二磁传感器组106、信号处理器108和电路板107等结构。绝缘材质的外壳115可以提升电流传感器的电气安全性能。可以理解,图1中仅示出了电流传感器内部的部分结构,实 际中电流传感器的全部内部结构由屏蔽罩114完全包裹,再由绝缘外壳115包裹屏蔽罩114。需要说明的是,连接在电路板107上的引出导线109穿过屏蔽罩114引出至外壳115之外。
可选待测电流导体101是单材质金属导体或匀质合金导体。但不限于此,在保证待测电流导体的功能的基础上,可以合理选取待测电流导体的材质。
可选待测电流导体101对称区域的截面形状是矩形、梯形、圆形或者半圆形。即采用X-Z平面对待测电流导体101的第一导体段102和第二导体段103进行截面,则可选待测电流导体101的截面形状为矩形、梯形、圆形或者半圆形。但不限于此,在保证待测电流导体的功能的基础上,可以合理设计待测电流导体的截面形状。
可选屏蔽罩材质为坡莫合金、硅钢、纯铁、导磁性金属材料或者合金。但不限于此,在保证屏蔽罩的屏蔽功能的基础上,可以合理选取屏蔽罩的材质。
可选第一磁传感器组由一个或多个磁传感器单元构成,第二磁传感器组由一个或多个磁传感器单元构成。可选磁传感器单元为霍尔传感器、各向异性磁传感器、巨磁传感器或者隧道磁传感器。但不限于此,在保证电流传感器的功能的基础上,可以合理选取构成磁传感器组的磁传感器单元。
可选信号处理器108包含温度补偿单元、非线性补偿单元和运算放大器,第一磁传感器组105和第二磁传感器组106转化的差分电压信号,依次经过温度补偿单元、非线性补偿单元和运算放大器,形成电流传感器的输出信号。
本实施例中,信号处理器108与电路板107电连接,通过信号处理器108中的温度补偿单元对第一磁传感器组105和第二磁传感器组106的电压信号进行温度补偿,通过非线性补偿单元对经过温度补偿的电压信号进行非线性补偿,通过运算放大器对经过非线性补偿的电压信号进行增益放大,可以保证电流传感器的高精度和 低温漂,实现对电流的隔离精确检测。可选信号处理器为可编程调理芯片,包含温度补偿单元和非线性补偿单元。
本发明实施例中,电流传感器的待测电流导体呈U型分布,第一磁传感器组设置于第一导体段一侧或两侧,第二磁传感器组设置于第二导体段一侧或两侧,无需聚磁结构,使得其整体结构尺寸较小且成本降低,同时显著提升了电流传感器的频响特性。电流传感器采用第一磁传感器组检测第一导体段的待测磁场,采用第二磁传感器组检测第二导体段的待测磁场,该两个待测磁场构成差分待测磁场,能够有效提高电流传感器的抗外磁场干扰能力;屏蔽罩的设置,在不影响待测电流的精确检测前提下,可以有效减弱甚至消除周围外界的电磁场干扰,避免因外部干扰引起的磁传感器单元的非正常饱和,进一步提升电流传感器的抗外磁场干扰能力。电流传感器中设置多个磁传感器组,具有较高信噪比,较高的空间容错率,保证了电流传感器在低频和高频电流测量中的高精度、低温漂,实现了对电流的隔离精确检测,拓宽了测量范围。本发明实施例提供的电流传感器,具有体积小、抗干扰能力强、测量范围宽、低温漂、高频响、测量精度高的效果。
示例性的,在上述技术方案的基础上,可选第一磁传感器组和第二磁传感器组对称设置在电路板上,电路板对称分布在待测电流导体的一侧或者两侧;第一磁传感器组和第二磁传感器组均由M个间隔设置于第一导体段一侧或者两侧的磁传感器单元并联连接构成,磁传感器单元贴于电路板上,M为正整数;第一磁传感器组的输出信号和第二磁传感器组的输出信号均为M个磁传感器单元的转换信号的均值,第一磁传感器组的输出信号和第二磁传感器组的输出信号构成差分电压信号。
本实施例中,可选第一磁传感器组和第二磁传感器组均由M个磁传感器单元并联连接构成,其中M为正整数。
如图1所示,M=1,即第一磁传感器组105和第二磁传感器组106均由一个磁传感器单元构成,分别对称设置在电路板107上表面,第一磁传感器组105和第二磁传感器组106敏感方向相同。
参考图4所示,为本发明实施例提供的另一种电流传感器的示意图。如图4所示,M大于1,可选M=3,则第一磁传感器组由3个磁传感器单元405、406和407并联连接构成,第二磁传感器组由3个磁传感器单元408、409和410并联连接构成,且以待测电流导体401的几何中线404为轴对称分布在电路板411的上表面。第一磁传感器组和第二磁传感器组的敏感方向相同,具体的,磁传感器单元405、406、407、408、409和410的敏感方向相同。
电路板411设置在构成“U”型待测电流导体401的第一导体段402和第二导体段403上侧,待测电流412沿图示箭头方向流入待测电流导体401,并分别在第一导体段402和第二导体段403上侧产生第一待测磁场和第二待测磁场,这两个待测磁场大小相同方向相反,且以待测电流导体401几何中线404呈轴对称分布,构成差分待测磁场。其中,第一磁传感器组输出信号为三个磁传感器单元405、406、407的输出信号的均值,第二磁传感器组输出信号为三个磁传感器单元408、409、410的输出信号的均值,第一磁传感器组输出信号和第二磁传感器组输出信号构成差分待测磁场,该差分待测磁场经过第一磁传感器组和第二磁传感器组转化为差分电压信号。
本实施例中,一个磁传感器组中设置多个磁传感器单元,使得测量过程具有较高信噪比,较高的空间容错率,保证了电流传感器在低频和高频电流测量中的高精度、低温漂,实现了对电流的隔离精确检测,拓宽了测量范围。
示例性的,在上述技术方案的基础上,还可选第一磁传感器组设置于第一导体 段的两侧,第二磁传感器组设置于第二导体段的两侧。参考图5所示,为本发明实施例提供的又一种电流传感器的示意图。与图1的区别在于,图5所示电流传感器中,第一磁传感器组由两个磁传感器单元504和505并联连接构成,第二磁传感器组由两个磁传感器单元506和507并联连接构成,分别对称设置在两个电路板508和509上。
如图5所示,待测电流导体包括第一导体段501和第二导体段502,第一导体段501和第二导体段502以待测电流导体的几何中线503为轴呈轴对称分布。第一磁传感器组中两个磁传感器单元504和505设置于第一导体段501所在平面的上下两侧,第二磁传感器组中两个磁传感器单元506和507设置于第二导体段502所在平面的上下两侧。磁传感器单元504和506的敏感方向相同,磁传感器单元505和507的敏感方向相同,且磁传感器单元504和507的敏感方向相反。
其中,电路板508设置在构成“U”型待测电流导体的第一导体段501和第二导体段502的上侧,电路板509设置在构成“U”型待测电流导体的第一导体段501和第二导体段502的下侧,且电路板508和509对称设置在第一导体段501和第二导体段502上下侧。可选磁传感器单元504和磁传感器单元506位于电路板508的上表面,磁传感器单元505和磁传感器单元507位于电路板509的下表面。
待测电流以电流方向510流入第一导体段501,则待测电流在第一导体段501的上下两侧产生反向对称的待测磁场512和513,这两个待测磁场512和513以第一导体段501呈轴对称分布,大小相等且方向相反,形成差分磁场。待测电流再以电流方向511流出第二导体段502,则待测电流在第二导体段502的上下两侧产生反向对称的待测磁场514和515,这两个待测磁场514和515以第二导体段502呈轴对称分布,大小相等且方向相反,形成差分磁场。
待测磁场512&513和待测磁场514&515以待测电流导体的几何中线503呈轴对称分布,大小相等且方向相反,形成差分待测磁场。第一磁传感器组输出信号为两个磁传感器单元504和505的差分磁场转换信号的均值,第二磁传感器组输出信号为两个磁传感器单元506和507的差分磁场转换信号的均值,第一磁传感器组输出信号和第二磁传感器组输出信号构成差分待测磁场,该差分待测磁场经过第一磁传感器组和第二磁传感器组转化为差分电压信号。
本发明实施例提供的电流传感器,具有体积小、抗干扰能力强、测量范围宽、低温漂、高频响、测量精度高的效果。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (7)

  1. 一种电流传感器,其特征在于,包括:
    待测电流导体,所述待测电流导体包含形状相同的第一导体段和第二导体段,且所述第一导体段和第二导体段的延伸形状所围成的区域呈“U”型分布,所述第一导体段和第二导体段以所述待测电流导体的几何中线呈轴对称分布;
    第一磁传感器组和第二磁传感器组,所述第一磁传感器组设置于所述第一导体段的一侧或两侧,所述第二磁传感器组设置于所述第二导体段的一侧或两侧,所述第一磁传感器组和第二磁传感器组以所述待测电流导体的几何中线呈轴对称分布,所述第一磁传感器组和所述第二磁传感器组的敏感方向相同;
    信号处理器、电路板和四周封闭的屏蔽罩,所述屏蔽罩放置于外壳内,且包裹所述待测电流导体、所述第一磁传感器组、所述第二磁传感器组、所述信号处理器和所述电路板;
    所述待测电流导体经电流流过后,所述第一导体段和所述第二导体段分别在各自沿所述几何中线方向的上下两侧产生待测磁场,该待测磁场的大小相同且以所述待测电流导体的几何中线呈反向对称分布,所述第一磁传感器组用于检测电流流过所述待测电流导体的第一导体段所产生的第一待测磁场,所述第二磁传感器组用于检测电流流过所述待测电流导体的第二导体段所产生的第二待测磁场,所述第一待测磁场和所述第二待测磁场构成差分待测磁场,所述差分待测磁场经过所述第一磁传感器组和第二磁传感器组转化为差分电压信号,所述差分电压信号经过所述信号处理器处理,转换成与待测电流呈比例关系且实时跟随待测电流变化的输出信号,所述输出信号通过连接在所述电路板上的引出导线输出。
  2. 根据权利要求1所述的电流传感器,其特征在于,所述待测电流导体是单 材质金属导体或匀质合金导体。
  3. 根据权利要求1所述的电流传感器,其特征在于,所述待测电流导体对称区域的截面形状是矩形、梯形、圆形或者半圆形。
  4. 根据权利要求1所述的电流传感器,其特征在于,所述第一磁传感器组和所述第二磁传感器组对称设置在所述电路板上,所述电路板对称分布在所述待测电流导体的一侧或者两侧;
    所述第一磁传感器组和所述第二磁传感器组均由M个间隔设置于所述第一导体段一侧或者两侧的磁传感器单元并联连接构成,所述磁传感器单元贴于所述电路板上,M为正整数;
    所述第一磁传感器组的输出信号和所述第二磁传感器组的输出信号均为M个磁传感器单元的转换信号的均值,所述第一磁传感器组的输出信号和所述第二磁传感器组的输出信号构成所述差分电压信号。
  5. 根据权利要求4所述的电流传感器,其特征在于,所述磁传感器单元为霍尔传感器、各向异性磁传感器、巨磁传感器或者隧道磁传感器。
  6. 根据权利要求1所述的电流传感器,其特征在于,所述屏蔽罩材质为坡莫合金、硅钢、纯铁、导磁性金属材料或者合金。
  7. 根据权利要求1所述的电流传感器,其特征在于,所述信号处理器包含温度补偿单元、非线性补偿单元和运算放大器,所述第一磁传感器组和所述第二磁传感器组转化的差分电压信号,依次经过所述温度补偿单元、所述非线性补偿单元和所述运算放大器,形成所述电流传感器的输出信号。
PCT/CN2022/118643 2021-10-08 2022-09-14 一种电流传感器 WO2023056828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111171549.3 2021-10-08
CN202111171549.3A CN113917215B (zh) 2021-10-08 2021-10-08 一种电流传感器

Publications (1)

Publication Number Publication Date
WO2023056828A1 true WO2023056828A1 (zh) 2023-04-13

Family

ID=79238084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118643 WO2023056828A1 (zh) 2021-10-08 2022-09-14 一种电流传感器

Country Status (2)

Country Link
CN (1) CN113917215B (zh)
WO (1) WO2023056828A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113917215B (zh) * 2021-10-08 2024-01-12 江苏多维科技有限公司 一种电流传感器
CN115902345B (zh) * 2022-10-18 2024-07-02 苏州纳芯微电子股份有限公司 电流检测模块、用电设备及电流检测方法
CN116482432A (zh) * 2023-03-13 2023-07-25 蚌埠希磁科技有限公司 电流传感器、电流检测电路及电源设备
CN117269559A (zh) * 2023-10-13 2023-12-22 珠海多创科技有限公司 一种电流传感装置、计量设备及在线监测设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046547A1 (ja) * 2010-10-08 2012-04-12 アルプス・グリーンデバイス株式会社 電流センサ
CN103487632A (zh) * 2013-10-11 2014-01-01 上海飞轩电子有限公司 屏蔽式开环无聚磁环隧道磁阻传感器
CN105044439A (zh) * 2015-08-26 2015-11-11 江苏多维科技有限公司 一种隧道磁电阻电流传感器
CN111562418A (zh) * 2020-05-29 2020-08-21 新纳传感***有限公司 单芯片电流传感器及其制造方法
CN111624386A (zh) * 2020-05-29 2020-09-04 新纳传感***有限公司 一种电流传感器
CN113917215A (zh) * 2021-10-08 2022-01-11 江苏多维科技有限公司 一种电流传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090850A (ja) * 2001-09-17 2003-03-28 Asahi Kasei Corp 電流センサ
CN103809008A (zh) * 2012-11-13 2014-05-21 郑律 Tmr电流传感器及电流检测方法
CN113125832A (zh) * 2019-12-31 2021-07-16 新纳传感***有限公司 全频段电流传感器
CN213600772U (zh) * 2020-09-01 2021-07-02 江苏多维科技有限公司 一种电流传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046547A1 (ja) * 2010-10-08 2012-04-12 アルプス・グリーンデバイス株式会社 電流センサ
CN103487632A (zh) * 2013-10-11 2014-01-01 上海飞轩电子有限公司 屏蔽式开环无聚磁环隧道磁阻传感器
CN105044439A (zh) * 2015-08-26 2015-11-11 江苏多维科技有限公司 一种隧道磁电阻电流传感器
CN111562418A (zh) * 2020-05-29 2020-08-21 新纳传感***有限公司 单芯片电流传感器及其制造方法
CN111624386A (zh) * 2020-05-29 2020-09-04 新纳传感***有限公司 一种电流传感器
CN113917215A (zh) * 2021-10-08 2022-01-11 江苏多维科技有限公司 一种电流传感器

Also Published As

Publication number Publication date
CN113917215B (zh) 2024-01-12
CN113917215A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2023056828A1 (zh) 一种电流传感器
US9417269B2 (en) Current sensor
JP5531215B2 (ja) 電流センサ
EP3255446B1 (en) A single-chip high-magnetic-field x-axis linear magnetoresistive sensor with calibration and initialization coil
US20200241087A1 (en) Cable condition monitoring sensor device method
WO2021036867A1 (zh) 一种基于电隔离隧道磁阻敏感元件的氢气传感器
CN102809682A (zh) 电流感应电路、印刷电路板组件以及电流传感器装置
JP2015038464A (ja) 電流センサ
WO2023116278A1 (zh) 一种电流传感器
JPH01206268A (ja) 電流検出装置
CN113325343B (zh) 一种单轴隧道磁阻电流测量方法
CN106018912A (zh) 一种高精度通用型交直流电流测量装置
CN112213679B (zh) 基于位置信息的磁敏电流互感器估值方法
CN117075008A (zh) 多轴磁场传感器以及多轴磁场传感器芯片
US20230123660A1 (en) Magnetic probe-based current measurement device, and measurement method
JP5678285B2 (ja) 電流センサ
JP3166987B2 (ja) 電流センサ
Li et al. Tunnel magnetoresistive sensor design and applications for current measurement
JPH0325375A (ja) 渦電流測定装置
JP2014202737A (ja) 電流センサ
JPH0581731U (ja) 電流センサ
JP6597076B2 (ja) 漏電検出器
JP2006189319A (ja) 電流測定方法
KR101300028B1 (ko) 박막 직교형 플럭스게이트 센서 소자
TW202401018A (zh) 電流測定裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022877848

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022877848

Country of ref document: EP

Effective date: 20240508