WO2023056667A1 - 一种线性传输*** - Google Patents

一种线性传输*** Download PDF

Info

Publication number
WO2023056667A1
WO2023056667A1 PCT/CN2021/125923 CN2021125923W WO2023056667A1 WO 2023056667 A1 WO2023056667 A1 WO 2023056667A1 CN 2021125923 W CN2021125923 W CN 2021125923W WO 2023056667 A1 WO2023056667 A1 WO 2023056667A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing element
stator
mover
transmission system
phase
Prior art date
Application number
PCT/CN2021/125923
Other languages
English (en)
French (fr)
Inventor
池峰
Original Assignee
上海果栗自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海果栗自动化科技有限公司 filed Critical 上海果栗自动化科技有限公司
Publication of WO2023056667A1 publication Critical patent/WO2023056667A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors
    • B65G2203/044Optical

Definitions

  • the invention belongs to the technical field of conveying devices, and in particular relates to a linear conveying system.
  • the core actuator component of the motion control system is the linear motor. Under the action of electromagnetic thrust, the motor mover can drive the load to generate high-speed, high-thrust drive. Multiple linear motors can be combined to build two-dimensional or multi-dimensional motion.
  • the motor can be designed and constructed with precise linear transmission equipment and precise XY table, with simple and compact structure, small mechanical size, fast response speed and high precision, and because there is no relative friction between the mover and stator, there is no wear and long service life .
  • gratings or magnetic gratings are used for measurement.
  • the encoder read head is installed on the mover and moves with the mover.
  • the data information measured by the encoder needs to be connected to the controller through a cable. causing interference and reliability issues.
  • the present invention provides a linear transmission system with simple structure, ingenious design, improved thrust application efficiency and servo precision.
  • the technical solution adopted in the present invention is: a linear transmission system, the linear transmission system comprising:
  • stator base consisting of one or more sub-bases
  • stator coil assembly the stator coil assembly is fixed on the sub-base
  • a plurality of movers each of which is provided with a permanent magnet array and a position sensing element, wherein the magnetic field generated by the permanent magnet array and the excitation magnetic field generated by the stator coil assembly can interact to push the mover produce translational motion;
  • the guide rail is installed on the stator base, and the mover is arranged on the guide rail and moves along the guide rail;
  • a sensor array the sensor array is distributed along the guide rail and arranged to read the signal sent by the position sensing element arranged on the mover; and a controller, the controller and the stator coil assembly Both are electrically connected to the sensor array, and control the corresponding stator coil assembly to be energized according to the position information of the mover detected by the sensor array.
  • the stator base includes a linear stator base and an arc-shaped stator base, wherein the linear stator base is installed with a rectangular stator coil assembly to form a linear stator module, and the arc-shaped The stator base is fitted with an arc stator coil assembly to form an arc stator module.
  • each mover is equipped with a first sensing element and a second sensing element, wherein the first sensing element and the second sensing element are arranged as
  • the first signal sent by the first sensing element is read by the sensor array on the linear stator module
  • the second signal sent by the second sensing element is read by the sensor array on the arc-shaped stator module.
  • the installation positions of the first sensing element and the second sensing element on the mover are arranged so that at any time during the movement of the mover, the stator Both upper adjacent two sensors can collect the first signal sent by the first sensing element or the second signal sent by the second sensing element.
  • the distance between two adjacent sensors is smaller than the effective signal transmission distance of the first sensing element and the second sensing element of the mover.
  • the first sensor element and the second sensor element are magnetic grids
  • the sensor array is a magnetic grid read head, and every two adjacent magnetic grid read heads
  • the distance between the first sensing element and the second sensing element of the mover is less than the length; or, the first sensing element and the second sensing element are gratings
  • the sensor The array is a grating read head, and the distance between every two adjacent grating read heads is less than the length of the first sensing element and the second sensing element of the mover.
  • the shape of the first sensing element is linear, and the shape of the second sensing element is arc.
  • each mover is configured to be able to move independently relative to the stator.
  • the mover includes two upper and lower permanent magnet arrays, wherein the stator coil assembly is located between the two permanent magnet arrays.
  • the controller is electrically connected to the stator coil assembly and the sensor array through cables.
  • the guide rail is detachably installed on the stator base.
  • the linear transmission system further includes a mounting bracket, the mounting bracket is fixed on the stator base, and the sensor array is mounted on the mounting bracket.
  • the stator coil assembly includes at least two layers of coil units stacked on top of each other, and the adjacent two layers of coil units include a plurality of armature winding units, and each armature winding unit has Three coil windings, the three coil windings are the U-phase, V-phase and W-phase of the armature winding unit, wherein the U-phase and W-phase of the armature winding unit are adjacently arranged on the same layer, and the V-phase is on the U-phase
  • the upper or lower layer of phase and W phase is aligned with the center of U phase and W phase, and in the adjacent two-layer coil unit, if one armature in the two adjacent armature winding units
  • the V phase of the winding unit is on the upper layer of the U phase and the W phase of the armature winding unit
  • the V phase of the armature winding unit of another armature winding unit is on the lower layer of the U phase and the W phase of the armature winding unit
  • each coil winding is formed by stacking multiple layers of coils, wherein the connection interfaces of the coils between layers are vertically interconnected, so that the coils of each layer are connected in series.
  • the coil is an ironless coil, and the coil is manufactured by a printed circuit board process.
  • the mover includes:
  • the first auxiliary support plate is installed on the upper side of the base
  • the second auxiliary support plate is spaced apart from the first auxiliary support plate
  • the first back iron is installed on the first auxiliary support plate
  • the second back iron is installed on the second auxiliary support plate and spaced apart from the first back iron;
  • a back iron support plate the back iron support plate is placed between the first back iron and the second back iron and forms a U-shaped structure together with the first back iron and the second back iron;
  • the first permanent magnet array is arranged on the surface of the first back iron
  • a second permanent magnet array is arranged on the surface of the second back iron, wherein the first permanent magnet array and the second permanent magnet array are arranged face to face and spaced apart from each other.
  • each mover is equipped with a first sensing element and a second sensing element, wherein the first sensing element and the second sensing element are arranged as
  • the first signal sent by the first sensing element is read by the sensor array on the linear stator module
  • the second signal sent by the second sensing element is read by the sensor array on the arc-shaped stator module.
  • the first sensing element and the second sensing element are magnetic gratings
  • the encoder array is a magnetic grating read head, wherein the first sensing element is installed on The side of the base opposite to the side where the first back iron is located, and the second sensing element is installed on the side of the base perpendicular to the side where the first sensing element is installed on one side; or, the first sensing element and the second sensing element are gratings
  • the encoder array is a grating read head, wherein the first sensing element is installed on the base and The side opposite to the side where the first back iron is located, and the second sensing element is installed on a side of the base perpendicular to the side on which the first sensing element is installed.
  • an arc-shaped block is provided on the base, and the second sensing element is installed on an arc-shaped surface of the arc-shaped block.
  • the mover further includes a sliding seat and a roller, the sliding seat is installed on the lower side of the base, and the roller is installed on the sliding seat.
  • the mover further includes an anti-collision block, and the anti-collision block is installed on the base and is located on the same side and the opposite side to the moving direction of the mover.
  • the mover of the linear transmission system of the present invention does not have cable dragging. Compared with traditional linear motor products that use coils as movers and permanent magnet arrays as stators, there is no cable dragging, which improves the thrust application efficiency and Improving servo accuracy and reducing the number of permanent magnetic arrays due to the use of short magnetic array applications reduces costs.
  • the linear transmission system of the present invention realizes the application of standardized modules.
  • the stator adopts standard modular technology to realize free splicing and expansion between multiple stators, which can meet the application requirements of customers with any length. Multiple stators can run simultaneously on the stator. Mover.
  • the mover can switch motions on guide rails of different shapes, and there is no problem of continuous motion.
  • FIG. 1 is a schematic structural diagram of a linear transmission system according to an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a linear section of a linear motor according to an embodiment of the present invention.
  • Fig. 3 is a structural schematic diagram of the connection between the linear segment and the arc segment of the linear motor according to an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a stator coil according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a linear motor mover according to an embodiment of the present invention.
  • Fig. 6 is a magnet array distribution of a linear motor mover according to an embodiment of the present invention.
  • Fig. 7 is a magnet array distribution of a linear motor mover according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a linear motor module according to an embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of a linear motor module according to another embodiment of the present invention.
  • Fig. 10 is an example of the thrust constant effect curve of the linear motor of the present invention.
  • D1 direction used in the following description mainly refers to the direction parallel to the horizontal direction
  • D2 direction mainly refers to the direction parallel to the horizontal direction and perpendicular to the D1 direction
  • first direction or The term “first axis” mainly refers to a direction or coordinate axis parallel to the horizontal direction
  • second direction or “second axis” mainly refers to a direction or coordinate axis parallel to the horizontal direction and at the same time perpendicular to the first direction
  • third direction or “third axis” mainly refers to a direction or coordinate perpendicular to the horizontal direction.
  • Fig. 1 is a schematic structural diagram of a linear transmission system.
  • the linear transmission system includes a plurality of movers 108, two sections of linear motor stator modules 104 and two sections of constant radius arc motor stator modules 106, a magnetic grid or grating 110, a magnetic grid or grating encoder array 109 , the rail unit 103 , the fixing bracket 102 and the stator base 101 .
  • the mover 108 is installed on the stator module of the linear motor, and moves in translation along the direction of the guide rail through the roller guide rail 103.
  • Each mover 108 moves independently of all other movers.
  • the mover 108 includes a permanent magnet array installed on the outer surface of the mover yoke.
  • the linear motor stator module and the arc motor stator module composed of the stator modules 104 and 106 are connected to the fixed bracket 102 .
  • the fixing bracket 102 is mounted on the stator base 101 .
  • the roller guide rail 103 is fixed on the stator base 101 by fastening screws.
  • a magnetic grating or grating encoder array 109 is mounted on the fixed bracket 102 .
  • the signals from the encoder array 109 are used for position measurement of the mover.
  • the stator modules 104 and 106 are supplied with excitation current, so that the specified coil is activated and excited, and the excitation magnetic field generated by the coil interacts in the permanent magnetic field generated by the permanent magnet array of the mover unit 108 to form a thrust to make the mover unit 108 move along the guide rail. translational movement.
  • the combined functions of the stator modules 104 , 106 and the movers 108 as a motion control system independently control the movement of each mover 108 along the roller guide rail 103 .
  • the mover motion positioning control device further includes a controller (not shown in the figure), and the controller is electrically connected to the encoder array to obtain position information of the mover.
  • the controller is also electrically connected with the stator, so that according to the acquired position information of the mover and the given target position of the mover, the corresponding coils of the stator are activated and excited, so that the excitation magnetic field generated by the corresponding coils is in the same position as the permanent magnet array.
  • the interaction in the permanent magnetic field forms a thrust to make the mover produce translational motion.
  • Fig. 2 shows a schematic structural diagram of a linear section of a linear motor according to an embodiment of the present invention.
  • the straight section of the linear motor includes two movers 211 , 212 and a stator 200 .
  • the stator 200 is composed of a printed circuit board fixed on the stator base 101 , wherein 213 is a positioning mounting hole for screwing and fixing the stator 200 .
  • the stator coil assembly is composed of rectangular coil windings alternately stacked and arranged.
  • the stator coil assembly includes a plurality of armature winding units.
  • the coil windings 209a, 209b, and 209c are respectively the U, V, and W three-phase coils of one armature winding unit
  • the coil windings 210a, 210b, and 210c are respectively the U, V, and W coils of another armature winding unit. three-phase coil.
  • Coil windings 209b, 210a, and 210c are arranged adjacent to each other on the same layer, and coils 209a, 209c, and 210b are arranged adjacent to each other on the same layer, that is, corresponding to the V-phase coil on the upper or lower layer of U-phase and W-phase, and The centers of U phase and W phase are aligned.
  • the V-phase coils are arranged on the lower layer of the U-phase and W-phase, aligned with the geometric centers of the U-phase and W-phase.
  • U, V, W three-phase coils constitute the basic armature winding unit, the armature winding unit is repeatedly arranged along the horizontal cycle, 1 group, 2 groups, 3 groups, ..., the basic unit, and so on, according to the linear
  • the stroke of the motor requires the number of sets of armature winding units to be constructed.
  • each coil winding has a connection terminal, and the adjacent connection terminals are connected according to the UVW three-phase connection mode, delta or star connection mode.
  • Each winding of the coil windings 209a, 209b, 209c, 210a, 210b, 210c is manufactured by stacking layers of coils, and the connection interfaces of the coils between layers are vertically interconnected, so that each layer of coils is connected in series to form a winding.
  • the armature winding unit can be extended periodically and manufactured in one piece. Coil windings can be manufactured in standard length modules and spliced stator modules can be assembled for long travel applications. In addition, armature winding units can also be stacked one above the other for splicing applications, which can provide greater thrust. In particular, the armature winding unit is suitable for manufacture by printed circuit board technology. Moreover, the air gap of each coil of the armature winding unit is very small and relatively uniform. Therefore, the thrust ripple of the linear motor is very small, and the influence of cogging force is small, which is especially suitable for high-precision control application scenarios.
  • Fig. 10 shows an example of the thrust constant effect curve of the linear motor of the present invention. The data shown in the figure shows that the fluctuation of the thrust constant in this technology is less than 5%, which is far lower than that of the conventional iron-core linear motor, and even better than the traditional iron-core linear motor.
  • the permanent magnet arrays 211 and 212 of the mover unit are permanent magnet arrays of two movers, each array is composed of a group of periodically arranged NS arrays or Halbach arrays, and the permanent magnets
  • the width of the array unit is W m
  • the distance from the center of the N pole to the center of the adjacent S pole is denoted as ⁇
  • the length of the permanent magnet array is denoted as W m array width.
  • W m is the width of the mover permanent magnet array
  • p is the width of each coil on the centerline of the pitch circle
  • is the angle range corresponding to each coil based on the pitch circle width
  • R is the pitch circle radius.
  • is the pole pitch of the magnet, which is defined as the distance from the center of the S pole to the center of the N pole
  • n c is the number of coil windings
  • n m is the number of magnetic pole pairs of the magnet.
  • the linear transmission control system uses the actual position information of each mover measured by the position sensing element to pre-judge the stator coil area covered by the next operation of the mover, and pre-energize the coil in the area where the mover is about to run.
  • Fig. 3 shows a schematic structural diagram of the connection between the linear segment and the arc segment (180°) of the linear motor according to an embodiment of the present invention.
  • the linear motor stator 300 includes a stator base 301 , arc stator coil assemblies 302 , 303 , and straight segment stator coil assemblies 307 and 308 .
  • the straight segment stator coil assemblies 307 and 308 are respectively connected to the arc-shaped stator coil assemblies 302 and 303 with a constant radius arc (180°), and the connection between the two achieves a seamless interface connection.
  • the stator 300 is composed of a printed circuit board fixed on the stator base 301 , wherein the stator coil assemblies 302 and 303 in the arc section are sector rings with a constant central radius R. Wherein, the stator coil assemblies 302 and 303 are fixed on the stator base 301 with screws.
  • the stator coil assemblies 302 and 303 are composed of alternately stacked fan-shaped coil windings.
  • the center of each coil is arranged according to the pitch circle line 309 with a constant radius.
  • the width of each coil at the center line of the pitch circle is p, which is based on the pitch
  • the angle of the circle is ⁇ , and its conversion relationship with the pole pitch ⁇ of the magnet and the radius R of the pitch circle line 309 is as follows:
  • p is the width of each coil on the centerline of the pitch circle
  • is the angle range corresponding to each coil based on the pitch circle width
  • R is the pitch circle radius.
  • is the pole pitch of the magnet, which is defined as the distance from the center of the S pole to the center of the N pole
  • n c is the number of coil windings
  • n m is the number of magnetic pole pairs of the magnet.
  • the stator coil assembly includes a plurality of armature winding units, wherein the coil windings 304a, 304b, and 304c are U, V, and W three-phase coils of one group of armature winding units, respectively, and 305a, 305b, and 305c are respectively another group of armature winding units. U, V, W three-phase coils of the winding unit.
  • the coils 304a, 304b, and 304c are adjacently arranged on the same layer, and the coils 305a, 305b, and 305c are adjacently arranged on the same layer, that is, corresponding to the upper or lower layer of the V-phase coils on the U-phase and W-phase, Arranged in alignment with the center of U-phase and W-phase.
  • the U-phase and W-phase coils are adjacently arranged on the same layer, and the V-phase coils are arranged on a layer above or below the U-phase and W-phase, aligned with the geometric centers of the U-phase and W-phase.
  • the V-phase coils are arranged on the lower layer of the U-phase and W-phase, aligned with the geometric centers of the U-phase and W-phase.
  • the U, V, and W three-phase coils constitute the basic armature winding unit, and the stator coil assembly is repeatedly arranged along the transverse cycle, 1 group, 2 groups, 3 groups, ..., the basic unit, and so on,
  • the number of sets of coil units is constructed according to the stroke requirements of the linear motor.
  • each winding of the coil windings 304a, 304b, 304c, 305a, 305b, 305c is manufactured by lamination of multi-layer coils, and is connected according to UVW three-phase connection, delta or star connection.
  • the linear motor stator coil assembly with a constant radius arc (180°) can be periodically extended and manufactured in one piece.
  • the winding coil can also be assembled according to two sets of modules with standard 90° arc length, or it can be assembled from multiple winding coils, and spliced stator modules can be assembled for long stroke applications.
  • the stator coil assembly can also be stacked up and down for splicing applications, which can provide greater thrust.
  • the stator coil assembly is suitable for manufacture by printed circuit board processes.
  • the air gap of each coil of the stator coil assembly is very small and relatively uniform, so the thrust ripple of the linear motor is very small, and the influence of cogging force is small, which is especially suitable for high-precision control application scenarios.
  • the thrust constant fluctuation of the linear motor proposed by the present invention is far lower than that of conventional iron-core linear motors, or even better than traditional iron-core linear motors.
  • Fig. 4 shows a schematic structural diagram of a stator coil according to an embodiment of the present invention.
  • the stator coil is composed of multi-layer coils, including 501, 502, 503, 504, . . . , 508, . . .
  • the coil windings 511 , 512 , and 513 in the layers 501 and 502 are respectively U, V, and W three-phase coils of the armature winding unit.
  • U-phase and W-phase coils are adjacently arranged on the same layer, and V-phase coils are arranged on the upper or lower layer of U-phase and W-phase, aligned with the center of U-phase and W-phase.
  • the V-phase coils are arranged on the lower layer of the U-phase and W-phase, aligned with the centers of the U-phase and W-phase.
  • the three-phase coils of U, V, and W constitute the basic armature winding unit, and the armature winding unit is repeatedly arranged along the first axis direction X, 1 group, 2 groups, 3 groups, ..., the basic unit, so that By analogy, the number of groups of armature winding units is constructed according to the travel requirement of the linear motor.
  • the coil windings in the layers 503 and 504 are constructed in the same way as the three-phase windings, and the armature winding units are periodically arranged along the first axis direction X, 1 group, 2 groups, 3 groups Group, ..., basic unit, and so on, according to the stroke requirements of the linear motor, the number of groups of the armature winding unit is constructed.
  • the 505th, 506th, 507th, 508th, ... repeat the above process of layer-by-layer combination, which can be constructed with any number of layers.
  • the armature winding unit can be extended periodically and manufactured in one piece. Winding coils can be manufactured in standard length modules and spliced stator modules can be assembled for long stroke applications. In addition, the armature winding unit can also be stacked up and down for splicing application, which can provide greater thrust. In particular, the coil assembly described is suitable for manufacture by printed circuit board technology.
  • Fig. 5 is a schematic structural diagram of a linear motor mover according to an embodiment of the present invention.
  • the linear motor mover includes a base 100, a first permanent magnet array 130a, a second permanent magnet array 130b, a first back iron 131a, a second back iron 131b, a first auxiliary support plate 132a, a second Auxiliary support plate 132b, back iron support plate 129, guide rail guide roller 121, sliding seat 122 and anti-collision block 111.
  • the first auxiliary support plate 132 a is installed on the upper side of the base 100 .
  • the second auxiliary support plate 132b is spaced apart from the first auxiliary support plate 132a.
  • the first back iron 131a is installed on the first auxiliary support plate 132a.
  • the second back iron 131b is mounted on the second auxiliary support plate 132b and spaced apart from the first back iron 131a.
  • the back iron support plate 129 is placed between the first back iron 131a and the second back iron 131b and forms a U-shaped structure together with the first back iron and the second back iron.
  • the first permanent magnet array 130a of the linear motor is glued on the first back iron 131a.
  • the second permanent magnet array 130b of the linear motor is glued on the first back iron 131b.
  • the first permanent magnet array 130a and the second permanent magnet array 130b face each other to form a bilateral permanent magnet U-shaped mover.
  • the sliding seat 122 is mounted on the lower side of the base 100 .
  • a set of guide rail guide rollers 121 is installed on the lower side of the sliding seat 122 .
  • the anti-collision blocks 111 are mounted on two ends of the base 100 .
  • the anti-collision block 111 is made of soft materials such as polyurethane. When multiple movers run on the same closed track and an accidental collision occurs, the anti-collision block first deforms to absorb the impact energy, slows down the impact force, and protects the movers. Or the safety of materials on the mover.
  • the mover is provided with sensing elements such as a straight segment magnetic grid or grating 125 and/or an arc segment magnetic grid or grating 126 .
  • the linear segment magnetic grating or grating 125 is installed on the guide surface of the base 100, and can be detected and measured by the encoder array (ie magnetic grating or grating read head) installed on the linear segment.
  • the distance between two adjacent encoders is less than the effective signal transmission distance of the magnetic grid or grating of the mover. In this embodiment, the distance between two adjacent encoders is less than the length of the magnetic grid or grating.
  • the arc section magnetic grid or grating 126 is installed on the side of the base 100, has a curved surface arc consistent with the guide rail, and can be detected and measured by the encoder array installed on the arc section.
  • the linear segment and arc segment magnetic grid or grating and encoder do not interfere with each other in motion.
  • the sensing element includes a first sensing element and a second sensing element, wherein the first sensing element and the second sensing element are arranged so that when the mover moves on the linear stator module, the first sensing element sends One signal is read by the encoder array on the linear stator module, and when the mover moves on the arc stator module, the second signal sent by the second sensing element is read by the encoder array on the arc stator module .
  • the first sensing element and the second sensing element are installed on the mover, and their installation positions on the mover are arranged so that at any moment during the movement of the mover, two adjacent encoders on the stator can collect to the first signal from the first sensing element or the second signal from the second sensing element.
  • the permanent magnet array of the mover When working, the permanent magnet array of the mover generates a driving force under the current excitation of the stator coil, pushing the whole mover to move along the guide rail through the guide rail guide rollers 121 .
  • the guide rail guide roller 121 can move along the linear guide rail or along the arc guide rail.
  • the sensing element can detect the moving position of the mover.
  • Fig. 6 is a magnet array distribution of a linear motor mover according to an embodiment of the present invention.
  • the first permanent magnet array 131a and the second permanent magnet array 131b are two groups of face-to-face permanent magnet arrays, which include the first permanent magnet, the second permanent magnet and the third permanent magnet, wherein the first and the second permanent magnets
  • the second permanent magnet is the main magnet
  • the third permanent magnet is the auxiliary magnet.
  • the magnetization direction of the first permanent magnets 413a, 413b, 417a, 417b, 421a, 421b is from the S pole to the N pole, that is, along the third coordinate axis to the positive direction of the Z axis.
  • the magnetization direction of the second permanent magnets 415a, 415b, 419a, 419b, 423a, 423b is from the S pole to the N pole, that is, along the third coordinate axis to the negative direction of the Z axis.
  • the third permanent magnets 412a, 412b, 414a, 414b, 416a, 416b, 418a, 418b, 420a, 420b, 422a, 422b, 424a, 424b are auxiliary magnets whose magnetization direction is along the first coordinate axis X direction.
  • the magnetization direction of the third permanent magnets 412a, 414a points to the direction of the first permanent magnet 413a along the first coordinate axis, the magnetization direction of 412a points to the positive direction of the X axis, and the magnetization direction of 414a points to the negative direction of the X axis.
  • the magnetization directions of the third permanent magnets 414a and 416a point to the direction away from the second permanent magnet 415a along the first coordinate axis, and the magnetization directions of the third permanent magnets 416a point to the positive direction of the X-axis.
  • the magnetization direction of the third permanent magnet 416a, 418a points to the direction of the first permanent magnet 417a along the first coordinate axis, and the magnetization direction of 418a points to the negative direction of the X axis.
  • the magnetization direction of the third permanent magnet 418a, 420a points away from the second permanent magnet 419a along the first coordinate axis, and the magnetization direction of 420a points to the positive direction of the X axis.
  • the magnetization directions of the third permanent magnets 418a and 420a point to the direction away from the first permanent magnet 419a along the first coordinate axis, and the magnetization directions of the third permanent magnets 420a point to the positive direction of the X-axis.
  • the magnetization direction of the third permanent magnet 420a, 422a points to the direction of the second permanent magnet 421a along the first coordinate axis, and the magnetization direction of 422a points to the negative direction of the X axis.
  • the magnetization directions of the third permanent magnets 422a and 424a point to a direction away from the first permanent magnet 423a along the first coordinate axis, and the magnetization directions of the third permanent magnets 424a point to the positive direction of the X-axis.
  • the magnetization direction of the third permanent magnets 412b, 414b points away from the first permanent magnet 413b along the first coordinate axis, the magnetization direction of 412b points to the positive direction of the X axis, and the magnetization direction of 414b points to the negative direction of the X axis.
  • the magnetization direction of the third permanent magnet 414b, 416b points to the direction of the second permanent magnet 415b along the first coordinate axis, and the magnetization direction of 416b points to the negative direction of the X axis.
  • the magnetization direction of the third permanent magnets 416b, 418b points to a direction away from the first permanent magnet 417b along the first coordinate axis, and the magnetization direction of 418b points to the positive direction of the X-axis.
  • the magnetization direction of the third permanent magnet 418b, 420b points to the direction of the second permanent magnet 419b along the first coordinate axis, and the magnetization direction of 420b points to the negative direction of the X axis.
  • the magnetization direction of the third permanent magnets 420b and 422b points away from the second permanent magnet 421b along the first coordinate axis, and the magnetization direction of 422b points to the positive direction of the X-axis.
  • the magnetization direction of the third permanent magnet 422b, 424b points to the direction of the first permanent magnet 423b along the first coordinate axis, and the magnetization direction of 424b points to the negative direction of the X axis.
  • the first, second and third permanent magnets are typically composed of prismatic magnet blocks to form a Halbach array unit, which together form a permanent magnet array with a symmetrical layout of the mover.
  • the width of the Halbach array unit is W m
  • the distance from the N pole to the permanent magnet center of the adjacent S pole is denoted as ⁇
  • the length of the permanent magnet array is denoted as W m array width.
  • the first, second, and third permanent magnets construct a Halbach magnet group with a complete period, and the distribution is periodically repeated along the X direction of the first axis, 1 Halbach basic unit, 2 groups of Halbach basic units..., and so on , according to the thrust requirements of the linear motor to construct the number of groups of the mover magnet array.
  • the first back iron 403 and the second back iron 402 are materials with high magnetic permeability, such as steel and iron. It constructs a magnetic field line circuit with the magnetic flux of the Halbach basic unit in the direction of the back iron to reduce magnetic leakage.
  • the Halbach basic unit has a single-sided magnetic density characteristic, and the magnetic density distribution on the side facing the coil is higher than that of the traditional NS array, while the magnetic density on the side facing the back iron is very weak, so the thickness of the back iron
  • the application can make the back iron of the traditional NS magnetic array thinner. Using low-density high-strength materials as auxiliary supports can reduce the weight of the mover unit. In order to reduce the local magnetic leakage, the thickness of the back iron is kept at least 1mm.
  • the width of the third permanent magnets 412a, 412b, 424a, 424b along the direction of the third axis X is half of the width of the permanent magnets 414a, 414b.
  • the width of the first and second permanent magnets along the X direction is 0.5-0.9 times of ⁇ .
  • the first auxiliary support plate 401 and the second auxiliary support plate 404 are auxiliary support parts made of low-density high-rigidity material to strengthen the support rigidity of the back iron.
  • Fig. 7 is a magnet array distribution of a linear motor mover according to another embodiment of the present invention.
  • the magnet array unit of the mover is composed of two sets of basic units and yokes of NS permanent magnet arrays facing each other, the first permanent magnets 512a, 512b, 514a, 514b, 516a, 516b in the center of the basic unit, Its magnetization direction is from the S pole to the N pole, that is, along the third coordinate axis to the positive direction of the Z axis; the second permanent magnet 513a, 513b, 515a, 515b, 517a, 517b in the center of the basic unit has a magnetization direction from the S pole Point to the N pole, that is, point to the negative direction of the Z axis along the third coordinate axis.
  • the second permanent magnets are typically composed of prismatic magnet blocks to form NS basic units, which together form a permanent magnet array with a symmetrical layout of the mover unit.
  • the width of the NS permanent magnet array unit is W m
  • the distance from the N pole to the center of the adjacent S pole permanent magnet is denoted as ⁇ .
  • the first and second permanent magnets construct a complete cycle of NS magnet groups, which are distributed along the X-period repeated arrangement along the first axis direction, 1 NS basic unit, 2 groups of NS basic units..., and so on, according to the linear
  • the thrust requirements of the motor are used to construct the number of groups of the mover magnet array.
  • the back iron 601 and 602 are soft magnetic materials, such as cobalt-iron alloy, iron-nickel alloy, silicon steel, iron-aluminum-silicon alloy, etc.
  • the soft magnetic material refers to the IEC60404-1 standard, which constructs a magnetic field line circuit with the magnetic flux of the NS basic unit in the direction of the back iron .
  • the NS basic unit has two-way magnetic density characteristics. According to the electromagnetic thrust requirements, the magnetic density distribution on the side facing the coil needs to be as high as possible, and the magnetic density on the side facing the back iron should be as small as possible. Therefore, the back iron The thickness should be sufficient to reduce magnetic leakage, and its thickness should be kept at least 5mm.
  • the width of the first and second permanent magnets along the X direction is 0.5-1 times of ⁇ .
  • FIG. 8 is a schematic structural diagram of a linear motor module according to an embodiment of the present invention.
  • the linear motor module includes a mover and a stator module.
  • the mover module can adopt the mover structure as shown in Fig. 5 .
  • the stator module includes a base body and a stator coil assembly fixed on the base body, and the stator coil assembly includes at least two layers of coil units stacked on each other.
  • the coil unit can be made by a printed circuit board process from an ironless coil.
  • the stator coil assembly is operatively interposed between the first permanent magnet array and the second permanent magnet array.
  • Adjacent two-layer coil units include a plurality of armature winding units, and each armature winding unit has three coil windings 401a, 401b, 401c.
  • the three coil windings 401a, 401b, and 401c are the U phase, V phase, and W phase of the armature winding unit respectively, wherein the U phase and W phase of each armature winding unit are adjacently arranged on the same layer, and the V phase is on the U phase.
  • the upper or lower layer of phase and W phase is aligned with the center of U phase and W phase.
  • the V phase of one of the two adjacent armature winding units is on the upper layer of the U phase and W phase of the armature winding unit, the other armature winding
  • the V phase of the armature winding unit of the unit is in the lower layer of the U phase and the W phase of the armature winding unit.
  • U, V, W three-phase coils constitute the basic armature winding unit, which is periodically arranged along the first axis direction X, 1 group, 2 groups, 3 groups, ..., the basic unit, and so on, according to the linear motor
  • the stroke needs to be constructed with the number of groups of armature winding units.
  • Fig. 9 is a schematic structural diagram of a linear motor module according to another embodiment of the present invention.
  • the linear motor module includes a magnet mover and a stator coil unit.
  • the mover is composed of two sets of basic units of face-to-face permanent magnet arrays and a yoke.
  • the first permanent magnet 430a, 430b in the center of the basic unit has a magnetization direction from the S pole to the N pole, that is, along the third coordinate axis to the Z pole.
  • the positive direction of the axis; the second permanent magnet 431a, 431b in the center of the basic unit, its magnetization direction is from the S pole to the N pole, that is, along the third coordinate axis to the negative direction of the Z axis.
  • the second permanent magnets are typically composed of prismatic magnet blocks to form NS basic units, which together form a permanent magnet array with a symmetrical layout of the mover unit.
  • the width of the NS basic unit is W m , and its half-period length is denoted as ⁇ .
  • the first and second magnets form a complete cycle of NS magnet groups, which are distributed along the X-period of the first axis direction, 1 NS basic unit, 2 sets of NS basic units..., and so on, according to the linear motor The number of groups to construct the mover magnet array according to the thrust requirement.
  • the NS basic unit has bidirectional magnetic density characteristics. According to the requirement of electromagnetic thrust, the magnetic density distribution on the side facing the coil needs to be as high as possible, and the magnetic density on the side facing the back iron should be as small as possible. Therefore, the thickness of the back iron It should have sufficient thickness to reduce magnetic leakage, and its thickness should be kept at least 5mm. In addition, the width of the first and second types of permanent magnets along the X direction is 0.5-1 times of ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Linear Motors (AREA)

Abstract

本发明涉及一种线性传输***;该线性传输***包括:定子基座,定子基座由一个或多个子基座组成;定子线圈组件,定子线圈组件固定于子基座上;多个动子,各动子设有永磁铁阵列和位置传感元件,其中永磁铁阵列产生的磁场和定子线圈组件产生的励磁磁场能够相互作用而推动动子产生平移运动;导轨,导轨安装于定子基座上,并且动子布置于导轨上并沿导轨运动;传感器阵列,传感器阵列沿导轨分布并布置成读取设置于动子上的位置传感元件所发出的信号;以及控制器,控制器与定子线圈组件和传感器阵列均电连接,并根据来自传感器阵列所检测到的动子位置信息来控制相应的定子线圈组件通电。本发明的线性传输***伺服精度高,成本低。

Description

一种线性传输*** 技术领域
本发明属于输送装置技术领域,尤其涉及一种线性传输***。
背景技术
随着制造技术向高产率、高精密化方向发展,精密运动控制技术的研究变得越来越重要,相应地,运动定位控制***需求量也越来越大,广泛应用于自动化生产线、包装与运输、装配自动化、丝网印刷等行业,提供具有更高速度和加工柔性。传统驱动***采用旋转马达驱动结构,传递***中齿轮头、轴、键、链轮齿、链条、皮带等常用于传统旋转马达传动的部件非常的复杂笨重。线性马达应用了一种运动磁场来直接驱动运动部件,降低了结构复杂性,还降低了成本和因减小惯量、柔顺性、阻尼、摩擦和磨损而带来的速度增加等优点。
运动控制***的核心执行器部件——线性马达,它在电磁推力的作用下,电机动子能够带动负载产生高速、大推力的驱动,多个线性马达可以组合构建两维或多维运动,采用线性马达可以设计构造精密的线性传输设备、精密XY工作台,结构简单紧凑,机械尺寸小,响应速度快,精度高,而且由于动子和定子间无相对摩擦,因此不存在磨损,使用寿命很长。
传统采用线性马达的线性传输***中,采用光栅或磁栅测量,编码器读头安装于动子上跟随动子一起运动,编码器的测量的数据信息需要通过线缆连接到控制器,由此带来干扰和可靠性问题。
另外,现有的线性传输***中,当各动子在不同形状的导轨上进行运动切换时,会存在不能连续运动问题。
针对上述技术问题,故需要进行改进。
发明内容
本发明为了解决上述技术问题,提供了一种结构简单,设计巧妙,提高了推力应用效率和提高伺服精度的线性传输***。
为了达到以上目的,本发明所采用的技术方案是:一种线性传输***,所述线性传输***包括:
定子基座,所述定子基座由一个或多个子基座组成;
定子线圈组件,所述定子线圈组件固定于所述子基座上;
多个动子,各所述动子设有永磁铁阵列和位置传感元件,其中所述永磁铁阵列产生的的磁场和所述定子线圈组件产生的励磁磁场能够相互作用而推动所述动子产生平移运动;
导轨,所述导轨安装于所述定子基座上,并且所述动子布置于所述导轨上并沿所述导轨运动;
传感器阵列,所述传感器阵列沿所述导轨分布并布置成读取设置于所述动子上的所述位置传感元件所发出的信号;以及控制器,所述控制器与所述定子线圈组件和所述传感器阵列均电连接,并根据来自所述传感器阵列所检测到的动子位置信息来控制相应的定子线圈组件通电。
作为本发明的一种优选方案,所述定子基座包括直线定子基座和弧形定子基座,其中所述直线定子基座安装有矩形定子线圈组件而形成直线定子模块,以及所述弧形定子基座安装有弧形定子线圈组件而形成弧形定子模块。
作为本发明的一种优选方案,每个所述动子上安装有第一传感元件和第二传感元件,其中所述第一传感元件和所述第二传感元件布置成当所述动子在所述直线定子模块上移动时,由所述第一传感元件发出的第一信号被所述直线定子模块上的传感器阵列读取,而当所述动子在所述弧形定子基座上移动时,由所述第二传感元件发出的第二信号被所述弧形定子模块上的传感器阵列读取。
作为本发明的一种优选方案,所述第一传感元件和所述第二传感元件在所述动子上的安装位置布置成在所述动子的运动期间的任何时刻,所述定子上相邻的两个传感器均能够采集到所述第一传感元件发出的第一信号或者所述第二传感元件发出的第二信号。
作为本发明的一种优选方案,相邻的两个传感器之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的有效信号传递距离。
作为本发明的一种优选方案,所述第一传感元件和所述第二传感元件为磁栅,所述传感器阵列为磁栅读头,以及每相邻的两个磁栅读头之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的长度;或者,所述第一传感元件和所述第二传感元件为光栅,所述传感器阵列为光栅读头,以及每相邻的两个光栅读头之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的长度。
作为本发明的一种优选方案,所述第一传感元件的形状为直线形,以及所述第二传感元件的形状为弧形。
作为本发明的一种优选方案,各所述动子设置成能够独立地相对于所述定子运动。
作为本发明的一种优选方案,所述动子包含上下两个永磁铁阵列,其中所述定子线圈组件位于所述两个永磁铁阵列之间。
作为本发明的一种优选方案,所述控制器与所述定子线圈组件和所述传感器阵列均通过线缆电连接。
作为本发明的一种优选方案,所述导轨可拆卸地安装于所述定子基座上。
作为本发明的一种优选方案,所述线性传输***还包括安装支架,所述安装支架固定于所述定子基座上,且所述传感器阵列安装于所述安装支架上。
作为本发明的一种优选方案,所述定子线圈组件包含相互层叠排布的至少两层线圈单元,相邻的两层所述线圈单元包含多个电枢绕组单元,每个电枢绕组单元具有三个线圈绕组,所述三个线圈绕组分别为该电枢绕组单元的U相、V相和W相,其中电枢绕组单元的U相和W相相邻布置在同一层,V相在U相和W相的上一层或下一层,与U相和W相的中心对齐排布,以及相邻的两层线圈单元中,如果相邻的两个电枢绕组单元中的一个电枢绕组单元的V相在该电枢绕组单元的U相和W相的上层,则另一个电枢绕组单元的电枢绕组单元的V相在该电枢绕组单元的U相和W相的下层。
作为本发明的一种优选方案,所述每个线圈绕组由多层线圈叠加工而成,其中各层间线圈的连接接口垂向互联,使得各层线圈串联。
作为本发明的一种优选方案,所述线圈为无铁芯线圈,且所述线圈通过印制电路板工艺制造。
作为本发明的一种优选方案,所述动子包括:
基座;
第一辅助支撑板,所述第一辅助支撑板安装于所述基座的上侧;
第二辅助支撑板,所述第二辅助支撑板与所述第一辅助支撑板间隔开放置;
第一背铁,所述第一背铁安装于所述第一辅助支撑板;
第二背铁,所述第二背铁安装于所述第二辅助支撑板并与所述第一背铁间隔开;
背铁支撑板,所述背铁支撑板置于所述第一背铁与所述第二背铁之间并与所述第一背铁和所述第二背铁共同形成U字形结构;
第一永磁铁阵列,所述第一永磁铁阵列布置于所述第一背铁的表面上;
以及第二永磁铁阵列,所述第二永磁铁阵列布置于所述第二背铁的表面上,其中所述第一永磁铁阵列与所述第二永磁铁阵列面面相对布置并间隔开。
作为本发明的一种优选方案,每个所述动子上安装有第一传感元件和第二传感元件,其中所述第一传感元件和所述第二传感元件布置成当所述动子在所述直线定子模块上移动时,由所述第一传感元件发出的第一信号被所述直线定子模块上的传感器阵列读取,而当所述动子在所述弧形定子基座上移动时,由所述第二传感元件发出的第二信号被所述弧形定子模块 上的传感器阵列读取。
作为本发明的一种优选方案,所述第一传感元件和所述第二传感元件为磁栅,且所述编码器阵列为磁栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上;或者,所述第一传感元件和所述第二传感元件为光栅,所述编码器阵列为光栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上。
作为本发明的一种优选方案,所述基座上设有弧形块,所述第二传感元件安装在所述弧形块的弧形面上。
作为本发明的一种优选方案,所述动子进一步包括滑座和滚轮,所述滑座安装于所述基座的下侧,以及所述滚轮安装于所述滑座上。
作为本发明的一种优选方案,所述动子进一步包括防撞块,所述防撞块安装于所述基座上并位于与所述动子的运动方向相同和相反的侧面上。
本发明的有益效果是:
1.本发明的线性传输***的动子没有线缆拖动,相比于采用线圈作为动子,永磁阵列作为定子的传统线性马达产品,没有了线缆拖动,提高了推力应用效率和提高伺服精度,也因使用短磁阵列应用而减少了永磁阵列使用数量,使得成本降低。
2.本发明的线性传输***的实现了标准化模块应用,定子采用标准模块化技术,实现多个定子之间的自由拼接和扩展,可以满足客户任意长度的应用需求,定子上可以同时运行多个动子。
3.本发明的线性传输***中,动子能够在不同的形状的导轨上进行运动切换,且不会存在连续运动问题。
附图说明
图1是根据本发明的一实施例的线性传输***的结构示意图。
图2是根据本发明的一实施例的线性马达直线段的结构示意图。
图3是根据本发明的一实施例的线性马达直线段和弧形段衔接的结构示意图。
图4是根据本发明的一实施例的定子线圈的结构示意图。
图5是根据本发明的一实施例的线性马达动子的结构示意图。
图6是根据本发明的一实施例的线性马达动子的磁铁阵列分布。
图7是根据本发明的另一实施例的线性马达动子的磁铁阵列分布。
图8是根据本发明的一实施例的线性马达模块的结构示意图。
图9是根据本发明的另一实施例的线性马达模块的结构示意图。
图10是本发明的线性马达的推力常数效果曲线示例。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
在下文的描述中,出于说明各种公开的实施例的目的阐述了某些具体细节以提供对各种公开实施例的透彻理解。但是,相关领域技术人员将认识到可在无这些具体细节中的一个或多个细节的情况来实践实施例。在其它情形下,与线性马达相关联的熟知的装置、结构和技术可能并未详细地示出或描述从而避免不必要地混淆实施例的描述。
除非语境有其它需要,在整个说明书和权利要求中,词语“包括”和其变型,诸如“包含”和“具有”应被理解为开放的、包含的含义,即应解释为“包括,但不限于”。
在整个说明书中对“一个实施例”或“一实施例”的提及表示结合实施例所描述的特定特点、结构或特征包括于至少一个实施例中。因此,在整个说明书的各个位置“在一个实施例中”或“在一实施例”中的出现无需全都指相同实施例。另外,特定特点、结构或特征可在一个或多个实施例中以任何方式组合。
如该说明书和所附权利要求中所用的单数形式“一”和“所述”包括复数指代物,除非文中清楚地另外规定。应当指出的是术语“或”通常以其包括“和/或”的含义使用,除非文中清楚地另外规定。
在以下描述中,为了清楚展示本发明的结构及工作方式,将借助诸多方向性词语进行描述,但是应当将“前”、“后”、“左”、“右”、“外”、“内”、“向外”、“向内”、“上”、“下”等词语理解为方便用语,而不应当理解为限定性词语。
此外,在以下描述中所使用的“D1方向”一词主要指与水平向平行的方向;“D2方向”一词主要指与水平向平行同时与D1方向垂直的方向;“第一方向”或“第一轴”一词主要指与水平向平行的方向或坐标轴;“第二方向”或“第二轴”一词主要指与水平向平行且同时与第一方向垂直的方向或坐标轴;“第三方向”或“第三轴”一词主要指与水平向垂直的方向或坐标。
图1是一种线性传输***的结构示意图。如图1所示,该线性传输***包括多个动子108,两段直线马达定子模块104和两段恒定半径的弧形马达定子模块106,磁栅或光栅110,磁栅或光栅编码器阵列109,导轨单元103,固定支架102以及定子基座101。其中,动子108安 装于线性马达的定子模块之上,通过滚子导轨103沿着导轨方向平移运动。每个动子108相对于所有的其他动子是相互独立运动的。动子108包含永磁铁阵列,安装于动子磁轭外侧表面。定子模块104、106构成的直线马达定子模块和弧形马达定子模块与固定支架102相连。固定支架102安装于定子基座101之上。滚子导轨103通过紧固螺钉固定在定子基座101之上。磁栅或光栅编码器阵列109安装于固定支架102上。编码器阵列109的信号用于动子的位置测量。定子模块104、106通入励磁电流,使得指定线圈激活通电并励磁,线圈产生的励磁磁场在动子单元108的永磁阵列产生的永磁磁场中相互作用形成推力使得动子单元108沿着导轨平移运动。在实施例中,定子模块104,106与动子108作为运动控制***的组合功能独立控制每个动子108沿着滚子导轨103运动。
动子运动定位控制装置进一步包括控制器(图未示),控制器与编码器阵列电连接以获取动子的位置信息。控制器还与定子电连接,以根据所获取的动子的位置信息和给定的动子目标位置,使得定子的对应线圈激活通电并励磁,从而对应线圈产生的励磁磁场在永磁铁阵列产生的永磁磁场中相互作用形成推力使得动子产生平移运动。
图2示出根据本发明的一实施例的线性马达直线段的结构示意图。如图2所示,线性马达直线段包含两个动子211、212和定子200。定子200由一个固定于定子基座101上的印制电路板构成,其中,213为定位安装孔,用于螺钉连接和固定定子200。在印制电路板200上,定子线圈组件由矩形线圈绕组交替层叠排布构成。
定子线圈组件包括多个电枢绕组单元。一实施例中,线圈绕组209a、209b、209c分别为一个电枢绕组单元的U、V、W三相线圈,线圈绕组210a、210b、210c分别为另一个电枢绕组单元的U、V、W三相线圈。线圈绕组209b、210a和210c线圈在同一层相邻排列,209a、209c、210b线圈在同一层相邻排列,即对应于V相线圈在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。当所述的U相和W相线圈相邻排列在上面一层时,V相线圈在U相和W相的下面一层,与U相和W相两相的几何中心对齐排布。U、V、W三相线圈构成基本的电枢绕组单元,该电枢绕组单元沿着横向周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。其中,每个线圈绕组均有接线端子,相邻的接线端子根据UVW三相连接方式,三角形或星型连接方式进行连接。线圈绕组209a、209b、209c、210a、210b、210c的每一个绕组为多层线圈层叠加工制造而成,各层间线圈的连接接口垂向互联,使得每层线圈串联成一个绕组。
电枢绕组单元可以进行周期延展,可以一体成型制造。线圈绕组可以按照标准长度的模块制造,针对长行程应用可组装拼接定子模块。此外,电枢绕组单元还可以上下层叠的拼接 应用,可以提供更大的推力。特别地,电枢绕组单元可适用于通过印制电路板工艺制造。而且,电枢绕组单元的每个线圈的气隙非常小,且比较均匀,因而,线性马达的推力纹波非常小,齿槽力cogging的影响较小,尤其适应于高精密控制应用场景。图10示出本发明的线性马达的推力常数效果曲线示例。图中数据显示结果表明该技术中的推力常数的波动小于5%,远远低于常规的铁芯直线电机的推力波动,甚或优于传统的无铁芯直线电机。
还如图2所示,动子单元的永磁阵列211和212为两个动子的永磁阵列,每个阵列由一组周期性排布的NS阵列或Halbach阵列构成,所述的永磁阵列单元的宽度为W m,其N极中心到相邻S极中心的距离记为τ,所述永磁阵列的长度记为W m阵列宽度。以N极到N极中心具有2τ宽度作为基本单元,分布沿着第一轴X方向周期重复排布,1个基本单元、2组基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。磁铁阵列与线圈绕组之间的主要换算关系如下:
W m=n m·τ
Figure PCTCN2021125923-appb-000001
Figure PCTCN2021125923-appb-000002
其中,W m为动子永磁阵列宽度,p为每个线圈在节圆中心线的宽度,α为每个线圈基于节圆宽度对应的角度范围,R为节圆半径。τ为磁铁极距,定义为S极中心到N极中心的距离,n c为线圈绕组的个数,n m为磁铁的磁极对数。
当多个动子在定子线圈上方运行时,每个动子永磁铁覆盖区域的对应的线圈绕组通电励磁,产生水平推力。线性传输控制***通过位置传感元件测量得到的每个动子的实际位置信息,预先判断即将运动的下一运行覆盖的定子线圈区域,在动子即将运行的区域线圈预先通电。
图3示出根据本发明的一实施例的线性马达直线段和弧形段(180°)衔接的结构示意图。如图3所示,线性马达定子300包括定子基座301,弧形定子线圈组件302、303,直线段定子线圈组件307和308。直线段定子线圈组件307和308分别为与具有恒定半径弧型(180°)弧形定子线圈组件302和303相连,二者衔接实现无缝接口连接。
定子300由一个固定于定子基座301上的印制电路板构成,其中弧形段的定子线圈组件302、303为扇环形,具有恒定的中心半径R。其中,定子线圈组件302和303用螺钉固定于定子基座301上。定子线圈组件302、303由具有扇环形线圈绕组交替层叠排布构成,每个线 圈的中心按照恒定半径的节圆线309排布,每个线圈在节圆中心线的宽度为p,它基于节圆的角度为α,它与磁铁极距τ以及节圆线309半径R的换算关系如下式:
p=R·α
Figure PCTCN2021125923-appb-000003
其中,p为每个线圈在节圆中心线的宽度,α为每个线圈基于节圆宽度对应的角度范围,R为节圆半径。τ为磁铁极距,定义为S极中心到N极中心的距离,n c为线圈绕组的个数,n m为磁铁的磁极对数。
定子线圈组件包括多个电枢绕组单元,其中,线圈绕组304a、304b、304c分别为一组电枢绕组单元的U、V、W三相线圈,305a、305b、305c分别为另外一组电枢绕组单元的U、V、W三相线圈。所述的304a、304b、304c线圈在同一层相邻排列,305a、305b、305c线圈在同一层相邻排列,即对应于V相线圈在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。所述的U相和W相线圈在同一层相邻排列,V相线圈在U相和W相的上一层或下一层,与U相和W相两相的几何中心对齐排布。当所述的U相和W相线圈相邻排列在上面一层时,V相线圈在U相和W相的下面一层,与U相和W相两相的几何中心对齐排布。所述的U、V、W三相线圈构成基本的电枢绕组单元,该定子线圈组件沿着横向周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建线圈单元的组数。其其中,所述的线圈绕组304a、304b、304c、305a、305b、305c的每一个绕组为多层线圈层叠加工制造而成,根据UVW三相连接方式,三角形或星型连接方式进行连接。
具有恒定半径弧型(180°)线性马达定子线圈组件可以进行周期延展,可以一体成型制造。绕组线圈也可以按照两组标准90°弧形长度的模块组装而成,也可以由多个绕组线圈组装而成,针对长行程应用可组装拼接定子模块。此外,定子线圈组件还可以上下层叠的拼接应用,可以提供更大的推力。特别地,定子线圈组件可适用于通过印制电路板工艺制造。而且,定子线圈组件的每个线圈的气隙非常小,且比较均匀,因而,线性马达的推力纹波非常小,齿槽力cogging的影响较小,尤其适应于高精密控制应用场景。本发明提出的线性马达的推力常数的波动远低于常规的铁芯直线电机的推力波动,甚或优于传统的无铁芯直线电机。
图4示出根据本发明的一实施例的定子线圈的结构示意图。如图4所示,定子线圈由多层线圈组成,包括501、502、503、504,…,508,…。其中,第501和502所在的层中的线圈绕组511、512、513分别为电枢绕组单元的U、V、W三相线圈。U相和W相线圈在同一层相邻排列,V相线圈在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。 当所述的U相和W相线圈相邻排列在上面一层时,V相线圈在U相和W相的下面一层,与U相和W相的中心对齐排布。U、V、W三相线圈构成基本的电枢绕组单元,该电枢绕组单元沿着第一轴方向X周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。类似的,第503、504所在的层中的线圈绕组按照同样的方法进行三相绕组的构建,且该电枢绕组单元沿着第一轴方向X周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。以此类推,第505、506,第507、508,…,重复以上的过程层层重叠组合,可以是任意数量的层数构建。
电枢绕组单元可以进行周期延展,可以一体成型制造。绕组线圈可以按照标准长度的模块制造,针对长行程应用可组装拼接定子模块。此外,所述的电枢绕组单元还可以上下层叠的拼接应用,可以提供更大的推力。特别地,所述的线圈组件可适用于通过印制电路板工艺制造。
图5是根据本发明的一实施例的线性马达动子的结构示意图。如图5所示,线性马达动子包括基座100、第一永磁阵列130a、第二永磁阵列130b、第一背铁131a、第二背铁131b、第一辅助支撑板132a、第二辅助支撑板132b、背铁支撑板129、导轨导向滚子121、滑座122以及防撞块111。第一辅助支撑板132a安装于基座100的上侧。第二辅助支撑板132b与第一辅助支撑板132a间隔开放置。第一背铁131a安装于第一辅助支撑板132a上。第二背铁131b安装于第二辅助支撑板132b并与第一背铁131a间隔开。背铁支撑板129置于第一背铁131a与第二背铁131b之间并与第一背铁和第二背铁共同形成U字形结构。线性马达的第一永磁阵列130a粘接于第一背铁131a上。线性马达的第二永磁阵列130b粘接于第一背铁131b上。第一永磁阵列130a和第二永磁阵列130b面面相对构成双边永磁U型动子。滑座122安装于基座100的下侧。一组导轨导向滚子121安装于滑座122下侧。
防撞块111安装于基座100的两端。防撞块111采用诸如聚氨酯这样的软性材料,当多个动子运行于同一个闭合的运动轨道上,发生意外碰撞时,防撞块首先变形吸收冲击的能量,减缓撞击力,保护动子或动子上物料的安全。
动子上设有诸如直线段磁栅或光栅125和/或弧形段磁栅或光栅126的传感元件。直线段磁栅或光栅125安装于基座100的导向面上,可由安装于直线段的编码器阵列(即磁栅或光栅读头)进行检测测量。相邻的两个编码器之间的距离小于动子的磁栅或光栅的有效信号传递距离。本实施例中,相邻的两个编码器之间的距离小于磁栅或光栅的长度。弧形段磁栅或光栅126安装于基座100的侧向,具有与导轨一致的曲面弧形,可由安装于弧形段的编码器 阵列进行检测测量。直线段和弧形段磁栅或光栅与编码器在运动中互不干涉。
这里,直线段磁栅或光栅125和弧形段磁栅或光栅126可以由诸如霍尔传感元件的其他传感元件来替代。传感元件包括第一传感元件和第二传感元件,其中第一传感元件和第二传感元件布置成当动子在直线定子模块上移动时,由第一传感元件发出的第一信号被直线定子模块上的编码器阵列读取,而当动子在弧形定子模块上移动时,由第二传感元件发出的第二信号被弧形定子模块上的编码器阵列读取。
第一传感元件和第二传感元件安装在动子上,且其在动子上的安装位置布置成在动子的运动期间的任何时刻,定子上相邻的两个编码器均能够采集到第一传感元件发出的第一信号或者第二传感元件发出的第二信号。
工作时,动子的永磁阵列在定子线圈的电流励磁下产生驱动力,推动整个动子通过导轨导向滚子121沿着导轨运动。导轨导向滚子121可以沿着直线导轨运动也可以沿着弧形导轨运动。传感元件可以检测动子的运动位置。
图6是根据本发明的一实施例的线性马达动子的磁铁阵列分布。如图6所示,第一永磁阵列131a和第二永磁阵列131b为2组面对面的永磁阵列,其包含第一永磁铁、第二永磁铁和第三永磁铁,其中第一和第二永磁铁为主磁铁,第三永磁铁为辅助磁铁。第一永磁铁413a、413b、417a、417b、421a、421b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴正方向。第二永磁铁415a、415b、419a、419b、423a、423b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴负方向。
第三永磁铁412a、412b、414a、414b、416a、416b、418a、418b、420a、420b、422a、422b、424a、424b为辅助磁铁,其磁化方向沿着第一坐标轴X方向。
第三永磁铁412a、414a,其磁化方向沿着第一坐标轴指向第一永磁铁413a的方向,412a磁化方向指向X轴的正方向,414a磁化方向指向X轴的负方向。
第三永磁铁414a、416a,其磁化方向沿着第一坐标轴指向远离第二永磁铁415a的方向,416a磁化方向指向X轴的正方向。
第三永磁铁416a、418a,其磁化方向沿着第一坐标轴指向第一永磁铁417a的方向,418a磁化方向指向X轴的负方向。
第三永磁铁418a、420a,其磁化方向沿着第一坐标轴指向远离第二永磁铁419a的方向,420a磁化方向指向X轴的正方向。
第三永磁铁418a、420a,其磁化方向沿着第一坐标轴指向远离第一永磁铁419a的方向,420a磁化方向指向X轴的正方向。
第三永磁铁420a、422a,其磁化方向沿着第一坐标轴指向第二永磁铁421a的方向,422a磁化方向指向X轴的负方向。
第三永磁铁422a、424a,其磁化方向沿着第一坐标轴指向远离第一永磁铁423a的方向,424a磁化方向指向X轴的正方向。
第三永磁铁412b、414b,其磁化方向沿着第一坐标轴指向远离第一永磁铁413b的方向,412b磁化方向指向X轴的正方向,414b磁化方向指向X轴的负方向。
第三永磁铁414b、416b,其磁化方向沿着第一坐标轴指向第二永磁铁415b的方向,416b磁化方向指向X轴的负方向。
第三永磁铁416b、418b,其磁化方向沿着第一坐标轴指向远离第一永磁铁417b的方向,418b磁化方向指向X轴的正方向。
第三永磁铁418b、420b,其磁化方向沿着第一坐标轴指向第二永磁铁419b的方向,420b磁化方向指向X轴的负方向。
第三永磁铁420b、422b,其磁化方向沿着第一坐标轴指向远离第二永磁铁421b的方向,422b磁化方向指向X轴的正方向。
第三永磁铁422b、424b,其磁化方向沿着第一坐标轴指向第一永磁铁423b的方向,424b磁化方向指向X轴的负方向。
第一,第二,第三永磁铁典型地采用棱柱型磁铁块组合成Halbach阵列单元,它们共同组成动子的对称布局的永磁阵列。Halbach阵列单元的宽度为W m,其N极到相邻S极永磁中心的距离记为τ,所述永磁阵列的长度记为W m阵列宽度。该第一、第二、第三永磁铁构建具有完整周期的Halbach磁铁组,分布沿着第一轴X方向周期重复排布,1个Halbach基本单元、2组Halbach基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。
第一背铁403、第二背铁402为具有高磁导率材料,如钢、铁等材料。它将Halbach基本单元在背铁方向的磁通构建磁力线回路,减小磁泄露。所述的Halbach基本单元具有单侧磁密特性,其面向线圈侧的磁密分布比传统的NS阵列的磁密强度要高,而面向背铁侧的磁密则很弱,因此背铁的厚度应用可以传统NS磁阵列的背铁更薄。应用低密度高强度材料作辅助支撑,可以减小动子单元重量。为了减小局部磁泄露,背铁的厚度至少保持1mm。此外,为了减小边端漏磁影响,第三永磁铁412a、412b、424a、424b沿着第三轴X方向的宽度为永磁铁414a、414b宽度的一半。第一、二永磁铁沿着X方向的宽度为τ的0.5~0.9倍。第一辅助支撑板401和第二辅助支撑板404为低密度高刚性材料的辅助支撑部件,用以加强背铁的支 撑刚性。
图7是根据本发明的另一实施例的线性马达动子的磁铁阵列分布。如图7所示,动子的磁铁阵列单元由2组面对面的NS永磁阵列的基本单元和磁轭组成,该基本单元中心的第一永磁铁512a、512b、514a、514b、516a、516b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴正方向;该基本单元中心的第二永磁铁513a、513b、515a、515b、517a、517b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴负方向。
第一,第二永磁铁典型地采用棱柱型磁铁块组合成NS基本单元,它们共同组成动子单元的对称布局的永磁阵列。NS永磁阵列单元的宽度为W m,其N极到相邻S极永磁中心的距离记为τ。该第一、第二永磁铁构建一个完整周期的NS磁铁组,分布沿着第一轴方向X周期重复排布,1个NS基本单元、2组NS基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。
背铁601、602为软磁材料,例如钴铁合金、铁镍合金、硅钢、铁铝硅合金等,软磁材料参考IEC60404-1标准,它将NS基本单元在背铁方向的磁通构建磁力线回路。所述的NS基本单元具有双向磁密特性,根据电磁推力需要,其面向线圈侧的磁密强度分布需要越高越好,而面向背铁侧的磁密则希望越小越好,因此背铁厚度应具有足够厚度,以减小磁泄露,其厚度至少保持5mm。此外,所述的第一、二永磁铁沿着X方向的宽度为τ的0.5~1倍。
图8是根据本发明的一实施例的线性马达模块的结构示意图。如图8所示,线性马达模块包括动子和定子模块。动子模块可采用如图5所示的动子结构。定子模块包括基体和固定于基体上的定子线圈组件,定子线圈组件包含相互层叠排布的至少两层线圈单元。线圈单元可由无铁芯线圈通过印制电路板工艺制成。定子线圈组件可操作地置于第一永磁铁阵列与第二永磁铁阵列之间。
相邻的两层线圈单元包含多个电枢绕组单元,每个电枢绕组单元具有三个线圈绕组401a、401b、401c。三个线圈绕组401a、401b、401c分别为该电枢绕组单元的U相、V相和W相,其中每个电枢绕组单元的U相和W相相邻布置在同一层,V相在U相和W相的上一层或下一层,与U相和W相的中心对齐排布。相邻的两层线圈单元中,如果相邻的两个电枢绕组单元中的一个电枢绕组单元的V相在该电枢绕组单元的U相和W相的上层,则另一个电枢绕组单元的电枢绕组单元的V相在该电枢绕组单元的U相和W相的下层。
U、V、W三相线圈构成基本的电枢绕组单元沿着第一轴方向X周期重复排布,1组、2组、3组,……,基本单元,以此类推,根据线性马达的行程需求进行构建电枢绕组单元的组数。
图9是根据本发明的另一实施例的线性马达模块的结构示意图。如图9所示,线性马达模块包括磁铁动子和定子线圈单元。动子由2组面对面的永磁阵列的基本单元和磁轭组成,该基本单元中心的第一永磁铁430a、430b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴正方向;该基本单元中心的第二永磁铁431a、431b,其磁化方向从S极指向N极,即沿着第三坐标轴指向Z轴负方向。
第一,第二永磁铁典型地采用棱柱型磁铁块组合成NS基本单元,它们共同组成动子单元的对称布局的永磁阵列。NS基本单元的宽度为W m,其半周期长度记为τ。该第一、第二磁铁构建一个完整周期的NS磁铁组,分布沿着第一轴方向X周期重复排布,1个NS基本单元、2组NS基本单元……,以此类推,根据线性马达的推力需求进行构建动子磁铁阵列的组数。
NS基本单元具有双向磁密特性,根据电磁推力需要,其面向线圈侧的磁密磁密强度分布需要越高越好,而面向背铁侧的磁密则希望越小越好,因此背铁厚度应以具有足够厚度,减小磁泄露,其厚度至少保持5mm。此外,所述的第一、二类永磁铁沿着X方向的宽度为τ的0.5~1倍。
以上已详细描述了本发明的较佳实施例,但应理解到,若需要,能修改实施例的方面来采用各种专利、申请和出版物的方面、特征和构思来提供另外的实施例。
考虑到上文的详细描述,能对实施例做出这些和其它变化。一般而言,在权利要求中,所用的术语不应被认为限制在说明书和权利要求中公开的具体实施例,而是应被理解为包括所有可能的实施例连同这些权利要求所享有的全部等同范围。

Claims (21)

  1. 一种线性传输***,其特征在于,所述线性传输***包括:
    定子基座,所述定子基座由一个或多个子基座组成;
    定子线圈组件,所述定子线圈组件固定于所述子基座上;
    多个动子,各所述动子设有永磁铁阵列和位置传感元件,其中所述永磁铁阵列产生的的磁场和所述定子线圈组件产生的励磁磁场能够相互作用而推动所述动子产生平移运动;
    导轨,所述导轨安装于所述定子基座上,并且所述动子布置于所述导轨上并沿所述导轨运动;
    传感器阵列,所述传感器阵列沿所述导轨分布并布置成读取设置于所述动子上的所述位置传感元件所发出的信号;以及控制器,所述控制器与所述定子线圈组件和所述传感器阵列均电连接,并根据来自所述传感器阵列所检测到的动子位置信息来控制相应的定子线圈组件通电。
  2. 根据权利要求1所述的一种线性传输***,其特征在于,所述定子基座包括直线定子基座和弧形定子基座,其中所述直线定子基座安装有矩形定子线圈组件而形成直线定子模块,以及所述弧形定子基座安装有弧形定子线圈组件而形成弧形定子模块。
  3. 根据权利要求2所述的一种线性传输***,其特征在于,每个所述动子上安装有第一传感元件和第二传感元件,其中所述第一传感元件和所述第二传感元件布置成当所述动子在所述直线定子模块上移动时,由所述第一传感元件发出的第一信号被所述直线定子模块上的传感器阵列读取,而当所述动子在所述弧形定子基座上移动时,由所述第二传感元件发出的第二信号被所述弧形定子模块上的传感器阵列读取。
  4. 根据权利要求3所述的一种线性传输***,其特征在于,所述第一传感元件和所述第二传感元件在所述动子上的安装位置布置成在所述动子的运动期间的任何时刻,所述定子上相邻的两个传感器均能够采集到所述第一传感元件发出的第一信号或者所述第二传感元件发出的第二信号。
  5. 根据权利要求4所述的一种线性传输***,其特征在于,相邻的两个传感器之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的有效信号传递距离。
  6. 根据权利要求5所述的一种线性传输***,其特征在于,所述第一传感元件和所述第二传感元件为磁栅,所述传感器阵列为磁栅读头,以及每相邻的两个磁栅读头之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的长度;或者,所述第一传感元件和所述第二传感元件为光栅,所述传感器阵列为光栅读头,以及每相邻的两个光栅读头之间的距离小于所述动子的所述第一传感元件和所述第二传感元件的长度。
  7. 根据权利要求6所述的一种线性传输***,其特征在于,所述第一传感元件的形状为直线 形,以及所述第二传感元件的形状为弧形。
  8. 根据权利要求1所述的一种线性传输***,其特征在于,各所述动子设置成能够独立地相对于所述定子运动。
  9. 根据权利要求1所述的一种线性传输***,其特征在于,所述动子包含上下两个永磁铁阵列,其中所述定子线圈组件位于所述两个永磁铁阵列之间。
  10. 根据权利要求1所述的一种线性传输***,其特征在于,所述控制器与所述定子线圈组件和所述传感器阵列均通过线缆电连接。
  11. 根据权利要求1所述的一种线性传输***,其特征在于,所述导轨可拆卸地安装于所述定子基座上。
  12. 根据权利要求1所述的一种线性传输***,其特征在于,所述线性传输***还包括安装支架,所述安装支架固定于所述定子基座上,且所述传感器阵列安装于所述安装支架上。
  13. 根据权利要求1所述的一种线性传输***,其特征在于,所述定子线圈组件包含相互层叠排布的至少两层线圈单元,相邻的两层所述线圈单元包含多个电枢绕组单元,每个电枢绕组单元具有三个线圈绕组,所述三个线圈绕组分别为该电枢绕组单元的U相、V相和W相,其中电枢绕组单元的U相和W相相邻布置在同一层,V相在U相和W相的上一层或下一层,与U相和W相的中心对齐排布,以及相邻的两层线圈单元中,如果相邻的两个电枢绕组单元中的一个电枢绕组单元的V相在该电枢绕组单元的U相和W相的上层,则另一个电枢绕组单元的电枢绕组单元的V相在该电枢绕组单元的U相和W相的下层。
  14. 根据权利要求13所述的一种线性传输***,其特征在于,所述每个线圈绕组由多层线圈叠加工而成,其中各层间线圈的连接接口垂向互联,使得各层线圈串联。
  15. 根据权利要求13所述的一种线性传输***,其特征在于,所述线圈为无铁芯线圈,且所述线圈通过印制电路板工艺制造。
  16. 根据权利要求1所述的一种线性传输***,其特征在于,所述动子包括:
    基座;
    第一辅助支撑板,所述第一辅助支撑板安装于所述基座的上侧;
    第二辅助支撑板,所述第二辅助支撑板与所述第一辅助支撑板间隔开放置;
    第一背铁,所述第一背铁安装于所述第一辅助支撑板;
    第二背铁,所述第二背铁安装于所述第二辅助支撑板并与所述第一背铁间隔开;
    背铁支撑板,所述背铁支撑板置于所述第一背铁与所述第二背铁之间并与所述第一背铁和所述第二背铁共同形成U字形结构;
    第一永磁铁阵列,所述第一永磁铁阵列布置于所述第一背铁的表面上;
    以及第二永磁铁阵列,所述第二永磁铁阵列布置于所述第二背铁的表面上,其中所述第一永磁铁阵列与所述第二永磁铁阵列面面相对布置并间隔开。
  17. 根据权利要求16所述的一种线性传输***,其特征在于,每个所述动子上安装有第一传感元件和第二传感元件,其中所述第一传感元件和所述第二传感元件布置成当所述动子在所述直线定子模块上移动时,由所述第一传感元件发出的第一信号被所述直线定子模块上的传感器阵列读取,而当所述动子在所述弧形定子基座上移动时,由所述第二传感元件发出的第二信号被所述弧形定子模块上的传感器阵列读取。
  18. 根据权利要求17所述的一种线性传输***,其特征在于,所述第一传感元件和所述第二传感元件为磁栅,且所述编码器阵列为磁栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上;或者,所述第一传感元件和所述第二传感元件为光栅,所述编码器阵列为光栅读头,其中所述第一传感元件安装于所述基座的与所述第一背铁所在侧相反的一侧上,以及所述第二传感元件安装于所述基座的与安装有所述第一传感元件的一侧垂直的一侧上。
  19. 根据权利要求16所述的一种线性传输***,其特征在于,所述基座上设有弧形块,所述第二传感元件安装在所述弧形块的弧形面上。
  20. 根据权利要求16所述的一种线性传输***,其特征在于,所述动子进一步包括滑座和滚轮,所述滑座安装于所述基座的下侧,以及所述滚轮安装于所述滑座上。
  21. 根据权利要求16所述的一种线性传输***,其特征在于,所述动子进一步包括防撞块,所述防撞块安装于所述基座上并位于与所述动子的运动方向相同和相反的侧面上。
PCT/CN2021/125923 2021-10-09 2021-10-22 一种线性传输*** WO2023056667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111176778.4 2021-10-09
CN202111176778.4A CN113859892A (zh) 2021-10-09 2021-10-09 一种线性传输***

Publications (1)

Publication Number Publication Date
WO2023056667A1 true WO2023056667A1 (zh) 2023-04-13

Family

ID=79002220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125923 WO2023056667A1 (zh) 2021-10-09 2021-10-22 一种线性传输***

Country Status (2)

Country Link
CN (1) CN113859892A (zh)
WO (1) WO2023056667A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159067B (zh) * 2022-06-30 2023-09-12 瑞声光电科技(常州)有限公司 多动子直驱传输***及相关控制方法、设备和存储介质
EP4365116A1 (en) * 2022-09-21 2024-05-08 Shanghai Golytec Automation Co., Ltd. Mover and hybrid conveyor line having same
CN117446505A (zh) * 2023-11-01 2024-01-26 苏州纵苇科技有限公司 一种线性输送***及移动单元的供电方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023460A (zh) * 2018-02-02 2018-05-11 上海莫戈纳机电科技有限公司 线性电机
CN108328249A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 一种线性传输***
CN108336885A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 线性马达及其动子运动定位控制装置
CN111917268A (zh) * 2020-09-04 2020-11-10 上海隐冠半导体技术有限公司 长行程运动***
US20210249943A1 (en) * 2020-02-07 2021-08-12 Canon Kabushiki Kaisha Transport system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108328249A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 一种线性传输***
CN108336885A (zh) * 2017-07-06 2018-07-27 上海果栗自动化科技有限公司 线性马达及其动子运动定位控制装置
CN108023460A (zh) * 2018-02-02 2018-05-11 上海莫戈纳机电科技有限公司 线性电机
US20210249943A1 (en) * 2020-02-07 2021-08-12 Canon Kabushiki Kaisha Transport system
CN111917268A (zh) * 2020-09-04 2020-11-10 上海隐冠半导体技术有限公司 长行程运动***

Also Published As

Publication number Publication date
CN113859892A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
CN108328249B (zh) 一种线性传输***
WO2023056667A1 (zh) 一种线性传输***
CN108336885B (zh) 线性马达及其动子运动定位控制装置
CN109217518B (zh) 线性马达及其定子
CN109217767B (zh) 线性传输***及其控制装置和多动子协同控制***
WO2019007200A1 (zh) 线性马达及其动子
CN101610054B (zh) 采用三维永磁阵列的平面电机
US6734583B2 (en) Slider unit with built-in moving-coil linear motor
US8044541B2 (en) Multi-degree-of-freedom actuator and stage device
CN101741290B (zh) 六自由度磁悬浮微动平台
CN101610022B (zh) 一种采用槽型线圈的平面电机
WO2023056665A1 (zh) 线性马达、线性马达模块及其动子
CN102185443A (zh) 有限行程高动态平面电机
WO2023056666A1 (zh) 线性马达定子模块、线性马达及其定子
CN101752983A (zh) 长行程高精度多自由度平面电机
CN102739122B (zh) 双边初级结构磁悬浮平面电机
KR20210008041A (ko) 리니어 모터, 반송장치, 및 생산장치
CN1245794C (zh) 线性电动机
CN103997186A (zh) 直线电机、盘式旋转电机和电机平台
CN208955879U (zh) 一种双定子直线电机用动子组件
CN102223052B (zh) 多自由度短行程平面电机
CN104052233B (zh) 直线电机及电机平台
JP3817484B2 (ja) 駆動装置,搬送装置及びドアシステム
CN112928891B (zh) 一种六自由度磁浮台装置及其控制方法
CN114900008B (zh) 高响应长寿命平板直线电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE