WO2023054226A1 - Photosensitive resin composition, microlens - Google Patents

Photosensitive resin composition, microlens Download PDF

Info

Publication number
WO2023054226A1
WO2023054226A1 PCT/JP2022/035589 JP2022035589W WO2023054226A1 WO 2023054226 A1 WO2023054226 A1 WO 2023054226A1 JP 2022035589 W JP2022035589 W JP 2022035589W WO 2023054226 A1 WO2023054226 A1 WO 2023054226A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
compound
compound particles
group
Prior art date
Application number
PCT/JP2022/035589
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 福▲崎▼
小林秀行
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280058015.6A priority Critical patent/CN117859098A/en
Publication of WO2023054226A1 publication Critical patent/WO2023054226A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface

Definitions

  • the present invention relates to a photosensitive resin composition, a microlens obtained by curing it, and a light-emitting device, solid-state imaging device, and fingerprint authentication device having the same.
  • Biometric authentication is essential for unlocking and other personal authentication for various mobile display terminals such as smartphones and tablet PCs (personal computers).
  • fingerprint authentication is installed in many terminals because of its low cost, small size, and high convenience.
  • Authentication methods for under-display type fingerprint authentication devices include optical methods and ultrasonic methods. Among them, optical methods are particularly applicable not only to organic light-emitting diode (OLED) displays, but also to liquid crystal displays and the like. It has become mainstream due to its versatility that can also be introduced.
  • OLED organic light-emitting diode
  • Patent Document 1 a thin optical under-display fingerprint authentication device that has high authentication accuracy and can be installed in a very narrow area between the battery and the screen has been proposed (for example, Patent Document 1 and Patent Document 2), these devices incorporate a microlens (lens with a diameter ranging from 1 ⁇ m to 500 ⁇ m) as a member for improving the authentication system.
  • a microlens lacs with a diameter ranging from 1 ⁇ m to 500 ⁇ m
  • Patent Document 1 and Patent Document 2 provide a fingerprint authentication device with excellent authentication accuracy, in order to achieve further improvement in authentication accuracy, the microlenses must have a high refractive index. is necessary.
  • the diameter of the microlens applied to the fingerprint authentication device is about 10 ⁇ m to 40 ⁇ m, which is considerably larger than the microlens with a diameter of about several ⁇ m applied to the CMOS image sensor. Since there is a restriction in the heat resistance of the resin layer that forms the collimator, etc., it is necessary to bake at a temperature of 230° C. or less, so a material with excellent fluidity during baking is required.
  • a siloxane resin composition containing metal compound particles (see, for example, Patent Document 3) is disclosed as a photosensitive material having a high refractive index and transparency. It was difficult to form a microlens with a large .
  • a siloxane resin composition containing metal compound particles As a photosensitive material having a high refractive index and capable of forming a lens, a siloxane resin composition containing metal compound particles (see, for example, Patent Document 4) is disclosed. , the fluidity was low, and the formation of microlenses was difficult.
  • the present invention was invented in view of such problems of the prior art, and forms a large microlens with a diameter of 10 ⁇ m or more, which has a high refractive index and transparency, has high fluidity even at a firing temperature of 230° C. or less. It is an object of the present invention to provide a photosensitive resin composition capable of
  • a photosensitive resin composition containing the following (A) to (E).
  • a microlens array having a plurality of microlenses arranged two-dimensionally, wherein the microlenses have a refractive index of 1.60 or more and 1.80 or less at a wavelength of 633 nm, and a diameter of the microlenses of 10 ⁇ m or more and 50 ⁇ m. and the distance between the microlenses is 0.01 ⁇ m or more and 5.0 ⁇ m or less.
  • A a siloxane resin containing an organosilane unit having a diphenyl group;
  • B at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or , Composite metal compound particles of at least one metal compound and silicon compound selected from the group consisting of titanium compounds, zirconium compounds, tin compounds and aluminum compounds
  • C photosensitive agent
  • D condensed polycyclic aromatic group Organosilane compound [16]
  • a fingerprint authentication device comprising the microlens array of [14] or [15].
  • the photosensitive resin composition of the present invention has a high refractive index and transparency, has high fluidity even at a baking temperature of 230° C. or less, and can form large microlenses with a diameter of 10 ⁇ m or more. be.
  • FIG. 4 is a cross-sectional view showing an example of the shape of a microlens
  • FIG. 4 is a cross-sectional view showing an example of a shape that is not a microlens
  • the photosensitive resin composition of the present invention is a photosensitive resin composition containing the following (A) to (E).
  • A a siloxane resin containing an organosilane unit having a diphenyl group
  • B At least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or from the group consisting of titanium compounds, zirconium compounds, tin compounds and aluminum compounds
  • Composite metal compound particles of at least one selected metal compound and silicon compound (C) a photosensitizer;
  • D an organosilane compound having a condensed polycyclic aromatic group;
  • E an organic solvent;
  • a siloxane resin containing an organosilane unit having a diphenyl group may hereinafter be simply abbreviated as (A) a siloxane resin.
  • a siloxane resin by including (A) the siloxane resin, it is possible to form a microlens having high transparency and excellent heat resistance and weather resistance. This is because (A) the siloxane resin has a siloxane skeleton in its main chain. Furthermore, compared with a siloxane resin composed only of trifunctional T units in which three-dimensional cross-linking proceeds, (A) a siloxane resin containing an organosilane unit having a diphenyl group has a bifunctional diphenyl group.
  • the diphenyl group Since it is a D unit, three-dimensional cross-linking can be appropriately suppressed, and the fluidity of the photosensitive resin composition during baking can be improved. It is possible to control gender.
  • the diphenyl group since the diphenyl group has an increased polarizability due to the ⁇ electrons of the diphenyl group as compared with a dimethyl group, which is also a difunctional D unit, the refractive index of the cured product can be improved.
  • the photosensitive resin composition of the present invention contains (A) a siloxane resin containing an organosilane unit having a diphenyl group.
  • a siloxane resin refers to a polymer having a repeating unit having a siloxane skeleton.
  • the (A) siloxane resin in the present invention contains an organosilane unit having a diphenyl group, and is a resin obtained by hydrolyzing and then condensing an organosilane compound having a diphenyl group and another organosilane compound. is preferred.
  • organosilane compounds having a diphenyl group include diphenylsilanediol and dimethoxydiphenylsilane.
  • the content of the diphenyl group-containing organosilane unit in the siloxane resin (A) is preferably 5 mol % or more, more preferably 8 mol % or more, and even more preferably 10 mol % or more. From the viewpoint of suppressing residue during development and improving resolution, it is preferably 40 mol % or less, more preferably 35 mol % or less, and even more preferably 30 mol % or less.
  • organosilane compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltri(methoxyethoxy)silane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyltrimethoxysilane.
  • ethyltriethoxysilane hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3- aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-(N,N-diglycidyl)aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino propyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 2-cyanoethyltriethoxysilane,
  • 3-trimethoxysilylpropylsuccinic anhydride 3-triethoxysilylpropylsuccinic anhydride, and 3-triphenoxysilylpropylsuccinic anhydride are used from the viewpoint of suppressing residue during development and improving resolution.
  • Organosilane compounds having a carboxyl group and/or a dicarboxylic acid anhydride structure such as cyclohexyldicarboxylic anhydride, 3-trimethoxysilylpropylcyclohexyldicarboxylic anhydride, and 3-trimethoxysilylpropylphthalic anhydride are preferred.
  • the siloxane resin contains an organosilane unit having a carboxyl group and/or a dicarboxylic anhydride structure.
  • the siloxane resin can suppress residue during development and improve adhesion to the substrate and the resin layer.
  • the siloxane resin can be obtained by hydrolyzing an organosilane compound and then condensing it.
  • it can be obtained by hydrolyzing an organosilane compound and then subjecting the obtained silanol compound to a condensation reaction in the presence or absence of an organic solvent.
  • Various conditions for the hydrolysis reaction can be appropriately set in consideration of the reaction scale, the size and shape of the reaction vessel, and so on. For example, it is preferable to add an acid catalyst and water to an organosilane compound in a solvent over 1 to 180 minutes, and then react the mixture at room temperature to 110° C. for 1 to 180 minutes. By carrying out the hydrolysis reaction under such conditions, a rapid reaction can be suppressed.
  • the reaction temperature is more preferably 30-105°C.
  • the hydrolysis reaction is preferably carried out in the presence of an acid catalyst.
  • an acid catalyst an acidic aqueous solution containing formic acid, acetic acid, phosphoric acid and nitric acid is preferred.
  • the amount of the acid catalyst to be added is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of all the organosilane compounds used in the hydrolysis reaction. By setting the amount of the acid catalyst within the above range, the hydrolysis reaction can proceed more efficiently.
  • the reaction solution After obtaining the silanol compound by the hydrolysis reaction of the organosilane compound, it is preferable to heat the reaction solution as it is at 50°C or higher and below the boiling point of the solvent for 1 to 100 hours to carry out the condensation reaction. Moreover, in order to increase the degree of polymerization of the siloxane resin, reheating or addition of a base catalyst may be performed.
  • Examples of the organic solvent used for the hydrolysis reaction of the organosilane compound and the condensation reaction of the silanol compound include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, and 4-methyl-2-pen.
  • alcohols such as tanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, 1-t-butoxy-2-propanol, diacetone alcohol; glycols such as ethylene glycol and propylene glycol; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether, etc.
  • ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone; amides such as dimethylformamide and dimethylacetamide; ethyl acetate, propyl acetate Acetates such as , butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate; toluene , xylene, hexane, cyclohexane and other aromatic or aliphatic hydrocarbons, ⁇ -butyrolactone, N-methyl-2-
  • the cured product obtained by curing the photosensitive resin composition of the present invention can have high transmittance and excellent crack resistance, diacetone alcohol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , propylene glycol monoethyl ether, propylene glycol mono-t-butyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, ⁇ -butyrolactone and the like are preferably used.
  • the cured product obtained by curing the photosensitive resin composition of the present invention has high transmittance and excellent crack resistance, so that the cured film and microlens using the same have these properties.
  • cured film refers to a cured product in the form of a film that is cured in the form of a film over the entire surface without forming microlenses.
  • a solvent When a solvent is generated by the hydrolysis reaction, it is possible to hydrolyze without a solvent. After completion of the reaction, it is also preferable to adjust the concentration to be appropriate for the resin composition by further adding a solvent. Further, depending on the purpose, after hydrolysis, an appropriate amount of the alcohol produced may be distilled off under heating and/or under reduced pressure, and then a suitable solvent may be added.
  • the amount of solvent used in the hydrolysis reaction is preferably 80 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the total organosilane compound. By setting the amount of the solvent within the above range, the hydrolysis reaction can proceed more efficiently.
  • the water used for the hydrolysis reaction is preferably ion-exchanged water.
  • the amount of water is preferably 1.0 to 4.0 mol per 1 mol of silane atoms.
  • the photosensitive resin composition of the present invention includes (B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or a titanium compound and a zirconium compound. , at least one selected from the group consisting of tin compounds and aluminum compounds, composite metal compound particles of a metal compound and a silicon compound (hereinafter sometimes abbreviated as (B) metal compound particles or composite metal compound particles) Contains a siloxane resin containing
  • Composite metal compound particles of a metal compound and a silicon compound include silicon oxide-metal compound composite particles obtained by synthesizing metal particles in the presence of a silicon oxide compound, and silane surface-coated metal compound particles obtained by reacting metal particles with a silane coupling agent. etc.
  • titanium compound particles, zirconium compound particles, or composite particles of a titanium compound or a zirconium compound and a silicon compound are preferred.
  • metal compound particles examples include "Nanouse” (registered trademark) OT-RB300M7-20, which is a composite particle of tin oxide, titanium oxide, and silicon oxide, and composite particles of tin oxide, titanium oxide, zirconium oxide, and silicon oxide.
  • the number average particle diameter of the metal compound particles or composite metal compound particles is preferably 1 nm or more from the viewpoint of suppressing crack generation during thick film formation. From the viewpoint of further improving the transparency to visible light of a cured product, particularly a cured film or microlens using the cured product, it is preferably 70 nm or less, more preferably 50 nm or less.
  • the number average particle size of the metal compound particles is measured by a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a method of directly measuring the particle size with a transmission electron microscope or a scanning electron microscope, or the like. be able to. In the present invention, it refers to the value measured by the dynamic light scattering method.
  • the equipment used is not particularly limited, but examples include a dynamic light scattering altimeter DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
  • the metal compound particles or the composite metal compound particles are preferably 20 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the total amount of the siloxane resin. It is more preferable that the amount is not less than 55 parts by weight and not more than 55 parts by weight. This makes it possible to further improve the transmittance and refractive index of the cured film and microlenses while maintaining high sensitivity, resolution and fluidity of the photosensitive resin composition.
  • the refractive index of the cured product obtained by curing the photosensitive resin composition of the present invention at a wavelength of 633 nm is preferably 1.60 or more and 1.80 or less. This is because, when the cured product has such a high refractive index, a high refractive index microlens can be formed.
  • the siloxane resin may be synthesized by hydrolyzing and partially condensing organosilane in the presence of (B) metal compound particles or composite metal compound particles.
  • the particles are surface-treated with the siloxane resin, and a photosensitive resin composition having excellent dispersion stability can be obtained. It is considered that this is because the matrix siloxane resin and the metal compound particles are bonded. This bonded state can be known by observing the interface between the metal compound particles and the siloxane resin with a scanning electron microscope or a transmission electron microscope. When both are bonded, the interface between the two is unclear.
  • the photosensitive resin composition of the present invention contains (C) a photosensitive agent.
  • C) A naphthoquinonediazide compound is preferable as the photosensitive agent.
  • the naphthoquinonediazide compound in addition to exhibiting positive photosensitivity in which the exposed areas are removed by the developer, the dissolution suppression effect is also achieved in the unexposed areas due to the interaction of the silanol groups of the siloxane resin, resulting in improved resolution. It can be improved further.
  • the naphthoquinonediazide compound a compound in which naphthoquinonediazide sulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group is preferable.
  • a naphthoquinonediazide compound can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazide sulfonyl chloride.
  • naphthoquinonediazidesulfonic acid chloride as a raw material, 4-naphthoquinonediazidesulfonic acid chloride or 5-naphthoquinonediazidesulfonic acid chloride can be used.
  • a 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength: 365 nm) region, and is therefore suitable for i-line exposure.
  • 5-naphthoquinonediazide sulfonic acid ester compounds have absorption in a wide range of wavelengths, so they are suitable for exposure over a wide range of wavelengths. It is preferable to select a 4-naphthoquinonediazide sulfonic acid ester compound or a 5-naphthoquinonediazide sulfonic acid ester compound depending on the wavelength of exposure.
  • a 4-naphthoquinonediazide sulfonic acid ester compound and a 5-naphthoquinonediazide sulfonic acid ester compound can also be used in combination.
  • the content of the (C) photosensitive agent in the photosensitive resin composition of the present invention is not particularly limited, but is preferably 1% by weight or more, more preferably 3% by weight or more, relative to the total 100% by weight of the (A) siloxane resin. .
  • (A) from the viewpoint of suppressing deterioration of compatibility with siloxane resins and coloring due to decomposition during heat curing, and further improving the transparency of photosensitive resin compositions and cured products, especially cured films and microlenses. , is preferably 30% by weight or less, more preferably 20% by weight or less.
  • the photosensitive resin composition of the present invention contains (D) an organosilane compound having a condensed polycyclic aromatic group.
  • (D) By containing an organosilane compound having a condensed polycyclic aromatic group, bulky substituents are introduced at the ends of the siloxane resin by heating, and cross-linking between the ends is suppressed. The fluidity can be further improved, and the high hydrophobicity of the condensed polycyclic aromatic group enables the formation of microlenses with excellent high-temperature and high-humidity resistance.
  • organosilane compound having a condensed polycyclic aromatic group include the following compounds. 1-naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 1-naphthyltri-n-propoxysilane, 2-naphthyltrimethoxysilane, 1-anthracenyltrimethoxysilane, 9-anthracenyltrimethoxysilane, 9-phenanth renyltrimethoxysilane, 9-fluorenyltrimethoxysilane, 2-fluorenyltrimethoxysilane, 1-pyrenyltrimethoxysilane, 2-indenyltrimethoxysilane, 5-acenaphthenyltrimethoxysilane and the like. . You may contain 2 or more types of these.
  • the content of (D) an organosilane compound having a condensed polycyclic aromatic group in the photosensitive resin composition of the present invention is not particularly limited, but from the viewpoint of improving fluidity, the total amount of (A) siloxane resin is 100% by weight. 0.5% by weight or more is preferable, and 1% by weight or more is more preferable. From the viewpoint of suppressing residue during development and improving resolution, it is preferably 15% by weight or less, more preferably 10% by weight or less.
  • the photosensitive resin composition of the present invention contains (E) an organic solvent.
  • the organic solvent is not particularly limited, a compound having an alcoholic hydroxyl group is preferred.
  • the use of an organic solvent having an alcoholic hydroxyl group improves the solubility of (A) the siloxane resin, (B) the metal compound particles, and (C) the photosensitive agent, and improves the transparency of the coating film obtained from the photosensitive resin composition. can be improved.
  • the organic solvent having an alcoholic hydroxyl group is not particularly limited, compounds having a boiling point of 110 to 250°C under atmospheric pressure are preferred. If the boiling point is 110° C. or higher, drying at the time of coating film formation proceeds appropriately, and a coating film with good surface appearance can be easily obtained. On the other hand, if the boiling point is 250° C. or less, the removal of the organic solvent is easy.
  • organic solvents having an alcoholic hydroxyl group include acetol (boiling point: 147°C), 3-hydroxy-3-methyl-2-butanone (boiling point: 140°C), and 4-hydroxy-3-methyl-2-butanone.
  • organic solvents may be contained together with the organic solvent or instead of the organic solvent.
  • organic solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1.
  • esters such as butyl acetate and ethyl acetoacetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether ethers, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, propylene carbonate, N-methylpyrrolidone, cyclopentanone, cyclohexanone, cycloheptanone and the like.
  • ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone
  • diethyl ether diisopropyl ether
  • the content of the (E) organic solvent in the photosensitive resin composition of the present invention is not particularly limited, but is preferably 10 to 2,000 parts per 100 parts by weight of the total of (A) the siloxane resin and (B) the metal compound particles. 000 parts by weight.
  • the photosensitive resin composition of the present invention may contain an organosilane compound other than (D) the organosilane compound having a condensed polycyclic aromatic group as an adhesion improver.
  • an organosilane compound other than (D) the organosilane compound having a condensed polycyclic aromatic group as an adhesion improver.
  • Organosilane compounds include, for example, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldiisopropoxysilane, diphenyldi-n-butoxysilane, diphenylsilanediol, bis(4-methylphenyl)dimethoxysilane, bis(4-methylphenyl ) diethoxysilane, bis(4-methylphenyl)diisopropoxysilane, bis(4-methylphenyl)silanediol, bis(4-biphenyl)dimethoxysilane, bis(4-biphenyl)diethoxysilane, triphenylmethoxysilane , triphenylethoxysilane, triphenylsilanol, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyld
  • the photosensitive resin composition of the present invention may contain a dissolution accelerator.
  • a dissolution accelerator By containing the dissolution accelerator, it is possible to suppress the residue during development and improve the resolution.
  • a compound having a phenolic hydroxyl group is preferable from the viewpoint of compatibility with (A) the siloxane resin and (C) the photosensitive agent.
  • Specific examples of compounds having a phenolic hydroxyl group include the following compounds (all available from Honshu Chemical Industry Co., Ltd.).
  • the photosensitive resin composition of the present invention may contain a surfactant.
  • a surfactant By containing a surfactant, it is possible to improve flowability during application.
  • surfactants include fluorine-based surfactants; silicone-based surfactants; silicone-modified acrylic surfactants; fluorine-containing thermally decomposable surfactants; polyether-modified siloxane-based surfactants; Surfactants; poly(meth)acrylate surfactants; anionic surfactants such as ammonium lauryl sulfate and triethanolamine polyoxyethylene alkyl ether sulfate; cationic surfactants such as stearylamine acetate and lauryltrimethylammonium chloride; amphoteric surfactants such as lauryl dimethylamine oxide and lauryl carboxymethyl hydroxyethylimidazolium betaine; and nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether and sorbitan monoste
  • fluorine-based surfactants silicone-based surfactants, and fluorine-containing thermally decomposable interfaces are used from the viewpoint of suppressing poor coating properties such as repellency and reducing surface tension to suppress unevenness during drying of the coating film.
  • An active agent a polyether-modified siloxane-based surfactant, is preferred.
  • fluorosurfactants include, for example, "Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (manufactured by DIC Corporation). ), NBX-15, FTX-218 (manufactured by Neos Co., Ltd.) and the like.
  • silicone-based surfactants examples include “BYK” (registered trademark)-333, BYK-301, BYK-331, BYK-345, and BYK-307 (manufactured by BYK-Chemie Japan Co., Ltd.). be done.
  • fluorine-containing thermally decomposable surfactants include, for example, "Megafac” (registered trademark) DS-21 (manufactured by DIC Corporation).
  • silicone-modified acrylic surfactants include “BYK” (registered trademark)-3550 (manufactured by BYK-Chemie Japan Co., Ltd.).
  • polyether-modified siloxane-based surfactants include, for example, “BYK” (registered trademark)-345, BYK-346, BYK-347, BYK-348, BYK-349 (manufactured by BYK-Chemie Japan Co., Ltd.). (manufactured by Nissin Kagaku Kogyo Co., Ltd.), and "Silface” (registered trademark) SAG002, SAG005, SAG0503A and SAG008 (manufactured by Nissin Chemical Industry Co., Ltd.).
  • the photosensitive resin composition of the present invention may contain a dispersant.
  • dispersants include polyacrylic acid-based dispersants, polycarboxylic acid-based dispersants, phosphoric acid-based dispersants, and silicone-based dispersants.
  • the photosensitive resin composition of the present invention may contain (A) a resin other than the siloxane resin, such as an acrylic resin or an epoxy resin.
  • the photosensitive resin composition of the present invention may optionally contain components other than those listed above such as a cross-linking agent, a cross-linking accelerator, a sensitizer, a thermal radical generator, a dissolution inhibitor, a stabilizer, and an antifoaming agent. Additives such as agents can also be contained.
  • the method for producing the photosensitive resin composition of the present invention includes (A) a siloxane resin, (B) metal compound particles, (C) a photosensitive agent, (D) an organosilane compound having a condensed polycyclic aromatic group, ( E) A common method is to stir and mix an organic solvent and, if necessary, other components.
  • the formation of the dry film is carried out through the process of applying the photosensitive resin composition onto the substrate.
  • a coating film is obtained by coating a photosensitive resin composition on a glass substrate, a silicon wafer substrate, or a resin layer formed on a glass substrate and a silicon wafer.
  • Examples of the method of applying the photosensitive resin composition used at this time include spin coating using a spinner, spray coating, inkjet coating, dispenser coating, die coating, and roll coating.
  • the film thickness of the coating film can be appropriately selected depending on the coating method and the like.
  • the film thickness after drying is generally 1 to 150 ⁇ m.
  • the obtained coating film is dried to obtain a dry film.
  • the drying method include heat drying, air drying, reduced pressure drying, and infrared irradiation.
  • heat drying devices include ovens and hot plates.
  • the drying temperature is preferably 50 to 160° C., and the drying time is preferably 1 minute to several hours.
  • Formation of the cured film is preferably carried out through the following exposure step. That is, the dried film obtained above is exposed (hereinafter referred to as bleaching exposure) to about 100 to 20,000 J/m 2 (converted to a wavelength of 365 nm) using an ultraviolet-visible exposure machine such as PLA. is preferred.
  • the bleaching exposure photolyzes the unreacted naphthoquinonediazide compound remaining in the dry film, thereby further improving the transparency of the resulting cured film.
  • a cured film can be obtained by heating (curing) the bleached dry film in a temperature range of 100 to 450°C for about 30 seconds to 2 hours with a heating device such as a hot plate or an oven.
  • a microlens manufacturing method includes steps of exposing and developing a dry film obtained through the step of applying the photosensitive resin composition onto a substrate, and forming microlenses having a diameter of 10 ⁇ m or more and 50 ⁇ m or less. It is done through the process.
  • the dry film obtained above is irradiated (exposed) with actinic rays through a mask having a desired pattern to obtain an exposed film.
  • Such an exposure operation is called patterning exposure.
  • Actinic rays for patterning exposure include, for example, ultraviolet rays, visible rays, electron beams, and X-rays.
  • a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA) or other UV-visible exposure machine is used, and the exposure is 10 to 10,000 J through a desired mask. It is preferable to carry out patterning exposure under the condition of about /m 2 (converted to a wavelength of 365 nm exposure amount).
  • the obtained exposed film is developed using an alkaline developer or the like to remove the exposed portions, and a plurality of photosensitive resin compositions arranged two-dimensionally based on the pattern, which are the base of the microlenses, are formed. Get a column.
  • the arrangement pattern of the two-dimensionally arranged columns of the photosensitive resin composition is not particularly limited, and the arrangement interval and the size and shape of the bottoms of the columns may be set according to the object to be detected. . These can be arbitrarily set by the pattern of the mask.
  • alkaline compounds used in the alkaline developer include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; ethylamine, n-propylamine, and the like.
  • secondary amines such as diethylamine and di-n-propylamine; tertiary amines such as triethylamine and methyldiethylamine; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH), choline quaternary ammonium salts such as; alcohol amines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol and diethylaminoethanol; Examples include organic alkalis such as cyclic amines such as 1,5-diazabicyclo[4,3,0]-5-nonane and morpholine.
  • the concentration of the alkaline compound in the alkaline developer is generally 0.01-50% by weight, preferably 0.02-3% by weight.
  • a surfactant such as a nonionic surfactant may be added in an amount of 0.1 to 5% by weight.
  • a water-soluble organic solvent such as ethanol, ⁇ -butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone, etc. may be added to the developer.
  • Examples of developing methods include immersion, spray, and paddle methods.
  • the obtained pattern may be rinsed with pure water or the like.
  • the obtained pattern is preferably exposed (bleaching exposure) to the entire surface at about 100 to 20,000 J/m 2 (converted to a wavelength of 365 nm) using an ultraviolet-visible exposure machine such as PLA.
  • bleaching exposure the unreacted naphthoquinonediazide compound remaining in the developed film is photolyzed, and the transparency of the resulting microlens can be further improved.
  • Step of forming a microlens with a diameter of 10 ⁇ m or more and 50 ⁇ m or less The pattern exposed by bleaching is heated (cured) in a temperature range of 100 to 450° C. for about 30 seconds to 2 hours with a heating device such as a hot plate or an oven to melt the columnar bodies of the photosensitive resin composition, Due to the surface tension of the molten photosensitive resin composition, it is possible to form microlenses having a diameter of 10 ⁇ m or more and 50 ⁇ m or less by flowing. In addition, even when the distance between adjacent microlenses is very small, independent arrayed microlenses can be formed without the adjacent columnar bodies being combined due to moderate flow in the molten state.
  • the side cross-sectional shape (curvature radius of the lens) of the microlens can be arbitrarily adjusted by appropriately setting the ratio between the bottom area and the volume of the columnar body of the photosensitive resin composition. These can be arbitrarily set according to the pattern of the mask (the bottom area of the columnar body) and the thickness of the dry film.
  • the photosensitive resin composition of the present invention is suitably used for light-emitting devices such as organic EL light-emitting devices and display devices. More specifically, a cured film, a microlens, and the like formed in the organic EL device for the purpose of improving light extraction efficiency can be mentioned.
  • a cured film or a microlens made of a cured product obtained by curing the photosensitive resin composition of the present invention is suitably used for a solid-state imaging device. More specifically, a cured film or a microlens can be used for a light-collecting microlens formed in a solid-state imaging device or the like, a white (transparent) color filter, an optical waveguide, an antireflection film installed as an optical filter, or the like. is mentioned. Among these, it has a high refractive index and transparency, and it is possible to form a lens shape even in a large microlens with a diameter of 10 ⁇ m or more.
  • a cured film or a microlens made of the cured product is particularly suitably used as a light-condensing microlens formed on a solid-state imaging device in a fingerprint authentication device.
  • a fingerprint authentication device applied to a smartphone equipped with an OLED display
  • uniform fingerprints are placed under the OLED display elements arranged in pentiles or stripes so as to be positioned in the gaps between the sub-pixels of the OLED display elements. It is preferable to arrange a plurality of shaped microlenses two-dimensionally.
  • a group of microlenses arranged two-dimensionally is called a microlens array.
  • the microlenses forming the microlens array preferably have a refractive index of 1.60 or more and 1.80 or less at a wavelength of 633 nm. More preferably, the diameter of the microlens is 10 ⁇ m or more and 50 ⁇ m or less, and the space distance between the microlenses is 0.01 ⁇ m or more and 5.0 ⁇ m or less.
  • the microlenses are preferably made of a cured product obtained by curing a photosensitive resin composition containing (A) to (D) below.
  • A a siloxane resin containing an organosilane unit having a diphenyl group
  • B at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or , Composite metal compound particles of at least one metal compound and silicon compound selected from the group consisting of titanium compounds, zirconium compounds, tin compounds and aluminum compounds
  • C photosensitive agent
  • D condensed polycyclic aromatic group
  • the microlens array of the present invention is suitable for use in a fingerprint authentication device as described above.
  • the molten photosensitive resin composition of the present invention flows moderately, making it possible to form microlenses with a very small distance between adjacent microlenses. Therefore, etching is unnecessary, the work can be simplified, and deterioration of the wiring portion due to the etching chemical or plasma can be avoided.
  • the photosensitive resin composition obtained in each example and comparative example was spin-coated on the resin layer-coated substrate and dried at 110° C. for 3 minutes. to prepare a dry film.
  • the obtained dry film was patterned and exposed through a reticle having a circle (diameter of 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m)/space (2 ⁇ m).
  • a reticle having a circle (diameter of 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m)/space (2 ⁇ m).
  • Mark-7 manufactured by Tokyo Electron Co., Ltd.
  • shower development was performed with a 2.38% by weight TMAH aqueous solution for 120 seconds, and then rinsed with water for 30 seconds to prepare a film after development.
  • PLA PLA-501F manufactured by Canon Inc.
  • 500 mJ 500 mJ (converted to a wavelength of 365 nm exposure).
  • A All patterns of 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, and 40 ⁇ m have microlens cross-sectional shapes.
  • B Patterns of 10 ⁇ m and 20 ⁇ m have microlens cross-sectional shapes, but patterns of 30 ⁇ m and 40 ⁇ m have microlens shapes.
  • C 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, and 40 ⁇ m all of the patterns do not have a microlens shape in cross section.
  • the photosensitive resin composition obtained in each example and comparative example was spin-coated on an 8-inch silicon wafer substrate and dried at 110° C. for 3 minutes to prepare a dry film.
  • PLA was used to expose the entire surface of the film to an ultra-high pressure mercury lamp at 500 mJ (converted to a wavelength of 365 nm exposure).
  • the refractive index at 22° C. and 550 nm was measured using a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd.
  • the photosensitive resin composition obtained in each example and comparative example was spin-coated using Mark-7 and at 110 ° C. Drying was performed for 3 minutes to prepare a dry film.
  • the film was subjected to shower development with a 2.38% by weight TMAH aqueous solution using Mark-7 for 120 seconds and then rinsed with water for 30 seconds to prepare a post-development film.
  • PLA was used to expose the entire surface of the film to an ultra-high pressure mercury lamp at 500 mJ (converted to a wavelength of 365 nm exposure).
  • the photosensitive resin composition obtained in each example and comparative example was spin-coated using Mark-7 and at 110 ° C. Drying was performed for 3 minutes to prepare a dry film.
  • PLA was used to expose the entire surface of the film to an ultra-high pressure mercury lamp at 500 mJ (converted to a wavelength of 365 nm exposure). Then, it was cured at 200° C. for 30 minutes using an oven to prepare a cured film having a thickness of 5.0 ⁇ m.
  • the resulting cured film was put into a high-temperature and high-humidity tester (trade name “Q-Sun”, manufactured by Q-Lab) under conditions of 85° C./85% for 240 hours. Adhesion was evaluated for the formed cured film. That is, on the surface of the cured film on the resin layer-formed substrate, 11 vertical and horizontal parallel straight lines were drawn at intervals of 1 mm with a cutter knife so as to reach the substrate of the silicon wafer, and a grid of 1 mm ⁇ 1 mm was formed. 100 were produced.
  • a cured film and microlenses were produced by the method described above and evaluated by the method described above.
  • Example 2 A photosensitive resin composition A-2 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-2) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-2.
  • Example 3 A photosensitive resin composition A-3 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-3) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-3.
  • Example 4 A photosensitive resin composition A-4 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-4) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-4.
  • Example 5 A photosensitive resin composition A-5 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-5) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-5.
  • Example 6 Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 53.12 g and the amount of the metal compound particle dispersion (T-1) added was changed to 30.14 g. A resin composition A-6 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-6.
  • Example 7 Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 59.78 g and the amount of the metal compound particle dispersion (T-1) added was changed to 23.48 g. A resin composition A-7 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-7.
  • Example 8 Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 39.80 g and the amount of the metal compound particle dispersion (T-1) added was changed to 43.46 g. A resin composition A-8 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-8.
  • Example 9 Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 33.14 g and the amount of the metal compound particle dispersion (T-1) added was changed to 50.12 g. A resin composition A-9 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-9.
  • Example 10 First, under a yellow light, the following raw materials were mixed and stirred. ⁇ A mixed solution of 2.76 g of DAA and 5.34 g of EAA using 2.05 g of naphthoquinone diazide compound (QD-1), 1.37 g of naphthoquinone diazide compound (QD-2), and 1.71 g of phenol compound TrisP-PA as an organic solvent. the solution used and dissolved therein, - As an organosilane compound having a condensed polycyclic aromatic group, trade name "Z-6874" manufactured by Dow Toray Industries, Inc.
  • the obtained photosensitive resin composition A-10 was evaluated in the same manner as in Example 1.
  • Example 11 First, under a yellow light, the following raw materials were mixed and stirred. ⁇ A mixed solution of 6.04 g of DAA and 5.34 g of EAA using 1.92 g of naphthoquinone diazide compound (QD-1), 1.28 g of naphthoquinone diazide compound (QD-2), and 1.60 g of phenol compound TrisP-PA as an organic solvent. the solution used and dissolved therein, - As an organosilane compound having a condensed polycyclic aromatic group, trade name "Z-6874" manufactured by Dow Toray Industries, Inc.
  • the obtained photosensitive resin composition A-11 was evaluated in the same manner as in Example 1.
  • a photosensitive resin composition A-12 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-6) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-12.
  • the obtained photosensitive resin composition A-11 was evaluated in the same manner as in Example 1.
  • a photosensitive resin composition A-14 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-7) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-14.
  • a photosensitive resin composition A-15 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-8) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-15.
  • the obtained photosensitive resin composition A-16 was evaluated in the same manner as in Example 1.
  • the obtained photosensitive resin composition A-17 was evaluated in the same manner as in Example 1.
  • Example 10 Same as Example 1 except that vinyltris(2-methoxyethoxy)silane (trade name “KBC-103” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of “Z-6874” manufactured by Dow Toray Industries, Inc. (trade name).
  • a photosensitive resin composition A-21 was prepared in the same manner. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-21.
  • Example 11 Same as Example 1 except that 3-methacryloxypropyltrimethoxysilane (trade name “KBM-503” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of “Z-6874” manufactured by Dow Toray Industries, Inc. (trade name).
  • a photosensitive resin composition A-22 was prepared in the same manner. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-22.
  • Example 12 Same as Example 1 except that 3-methacryloxyoctyltrimethoxysilane (trade name “KBM-5803” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of “Z-6874” manufactured by Dow Toray Industries, Inc. (trade name).
  • a photosensitive resin composition A-23 was prepared in the same manner. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-23.
  • Tables 1 and 2 show the composition of the resin composition in each example and comparative example, and Table 3 shows the evaluation results.
  • the photosensitive resin composition produced in the examples it has a high refractive index and transparency, and has high fluidity even at a baking temperature of 230° C. or less. can be formed.
  • the photosensitive resin composition of the present invention has a high refractive index and transparency, high fluidity even at a baking temperature of 230° C. or less, and forms a lens shape even in large microlenses with a diameter of 10 ⁇ m or more. Therefore, it can be suitably used as a microlens used in a CMOS image sensor or a fingerprint authentication device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention addresses the problem of providing a photosensitive resin composition having a high refractive index and transparency, having high fluidity even at a firing temperature of 230°C or less, and being capable of forming a large microlens having a diameter of 10 μm or more. A photosensitive resin composition characterized by including: (A) a siloxane resin containing an organosilane unit having a diphenyl group; (B) composite metal compound particles of a metal compound and a silicon compound of at least one type selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles, and aluminum compound particles or at least one type selected from the group consisting of titanium compounds, zirconium compounds, tin compounds, and aluminum compounds; (C) a photosensitizer; (D) an organosilane compound having a condensed polycyclic aromatic group; and (E) an organic solvent.

Description

感光性樹脂組成物、マイクロレンズPhotosensitive resin composition, microlens
 本発明は、感光性樹脂組成物、それを硬化させてなるマイクロレンズならびにそれを具備する発光素子、固体撮像素子および指紋認証装置に関する。 The present invention relates to a photosensitive resin composition, a microlens obtained by curing it, and a light-emitting device, solid-state imaging device, and fingerprint authentication device having the same.
 スマートフォンやタブレットPC(パーソナルコンピューター)などの各種携帯表示端末には、ロック解除やその他の本人認証のため、生体認証は必要不可欠である。特に指紋認証は、コストが安く小型であり、かつ利便性も高いため、多くの端末に搭載されている。 Biometric authentication is essential for unlocking and other personal authentication for various mobile display terminals such as smartphones and tablet PCs (personal computers). In particular, fingerprint authentication is installed in many terminals because of its low cost, small size, and high convenience.
 従来は、ディスプレイのベゼル部分(ディスプレイの周辺)に静電容量型の指紋認証装置を搭載するのが一般的であった。しかし、スマートフォンにおいては、ディスプレイのフルスクリーン化がトレンドとなり、従来指紋認証装置を搭載していたベゼルが無くなる傾向にある。そのため、指紋認証装置はディスプレイの下部に設置する(この構成を「アンダーディスプレイ型」という)必要が出てきた。 Conventionally, it was common to mount a capacitive fingerprint authentication device on the bezel of the display (around the display). However, in smartphones, full-screen displays have become a trend, and there is a tendency to eliminate the bezel that used to have a fingerprint authentication device. Therefore, it has become necessary to install the fingerprint authentication device below the display (this configuration is called an "under-display type").
 アンダーディスプレイ型指紋認証装置の認証方式としては、光学式や超音波式が挙げられるが、その中でも特に、光学式は、有機発光ダイオード(以降OLEDと略記する)ディスプレイだけでなく、液晶ディスプレイ等にも導入可能な汎用性から、主流となっている。 Authentication methods for under-display type fingerprint authentication devices include optical methods and ultrasonic methods. Among them, optical methods are particularly applicable not only to organic light-emitting diode (OLED) displays, but also to liquid crystal displays and the like. It has become mainstream due to its versatility that can also be introduced.
 このような、アンダーディスプレイ型指紋認証装置に関し、認証精度が高く、バッテリーとスクリーンの間の非常に狭い領域に設置できる薄型の光学式アンダーディスプレイ型指紋認証装置が提案されており(例えば、特許文献1、特許文献2参照)、これらの装置には、認証制度を向上させる部材として、マイクロレンズ(直径1μm~500μmの範囲のレンズ)が組み込まれている。 Regarding such an under-display fingerprint authentication device, a thin optical under-display fingerprint authentication device that has high authentication accuracy and can be installed in a very narrow area between the battery and the screen has been proposed (for example, Patent Document 1 and Patent Document 2), these devices incorporate a microlens (lens with a diameter ranging from 1 μm to 500 μm) as a member for improving the authentication system.
 特許文献1や特許文献2に記載された光学式アンダーディスプレイ型指紋認証装置に適用されるマイクロレンズの形成方法としては、CVD法などにより形成した無機膜をドライエッチングで加工する方法や、感光性材料を塗布し加工する方法が挙げられるが、前者の方法では、基板サイズが大きい基板では複数のマイクロレンズを均一な形状に形成することが困難であるため、後者の方法が注目されている。 As a method of forming a microlens applied to the optical under-display type fingerprint authentication device described in Patent Document 1 and Patent Document 2, a method of processing an inorganic film formed by a CVD method or the like by dry etching, a method of processing a photosensitive There is a method of coating and processing a material, but with the former method, it is difficult to form a plurality of microlenses in a uniform shape on a substrate with a large substrate size, so the latter method is attracting attention.
 特許文献1や特許文献2に記載された技術により、認証精度に優れた指紋認証装置が得られるものの、さらなる認証精度の向上を達成するには、マイクロレンズを高い屈折率を有するものとすることが必要である。 Although the techniques described in Patent Document 1 and Patent Document 2 provide a fingerprint authentication device with excellent authentication accuracy, in order to achieve further improvement in authentication accuracy, the microlenses must have a high refractive index. is necessary.
 また、CMOSイメージセンサなどに適用される数μm程度の直径のマイクロレンズと比較して、指紋認証装置に適用されるマイクロレンズの直径は10μm~40μm程度とかなり大きいこと、レンズの下に形成されるコリメータなどを形成する樹脂層の耐熱性の観点での制約があるため230℃以下の温度で焼成する必要があることから、焼成時の流動性に優れた材料が必要である。 In addition, the diameter of the microlens applied to the fingerprint authentication device is about 10 μm to 40 μm, which is considerably larger than the microlens with a diameter of about several μm applied to the CMOS image sensor. Since there is a restriction in the heat resistance of the resin layer that forms the collimator, etc., it is necessary to bake at a temperature of 230° C. or less, so a material with excellent fluidity during baking is required.
 高い屈折率と透明性を有する感光性材料として、金属化合物粒子を含有するシロキサン樹脂組成物(例えば、特許文献3参照)が開示されているが、指紋センサに用いられるような直径10μm以上のサイズの大きいマイクロレンズの形成は困難であった。 A siloxane resin composition containing metal compound particles (see, for example, Patent Document 3) is disclosed as a photosensitive material having a high refractive index and transparency. It was difficult to form a microlens with a large .
 高い屈折率を有し、かつ、レンズ形成可能な感光性材料として、金属化合物粒子を含有するシロキサン樹脂組成物(例えば、特許文献4参照)が開示されているが、230℃以下の焼成温度では、流動性が低く、マイクロレンズの形成が困難であった。 As a photosensitive material having a high refractive index and capable of forming a lens, a siloxane resin composition containing metal compound particles (see, for example, Patent Document 4) is disclosed. , the fluidity was low, and the formation of microlenses was difficult.
特開2020-35327号Japanese Patent Application Laid-Open No. 2020-35327 WO2020/038408号WO2020/038408 WO2011/040248号WO2011/040248 特開2015-127803号JP 2015-127803
 本発明は、かかる従来技術の課題に鑑み創案されたもので、高い屈折率と透明性を有するとともに、230℃以下の焼成温度でも流動性が高く、直径10μm以上のサイズの大きいマイクロレンズを形成することが可能な感光性樹脂組成物を提供することである。 The present invention was invented in view of such problems of the prior art, and forms a large microlens with a diameter of 10 μm or more, which has a high refractive index and transparency, has high fluidity even at a firing temperature of 230° C. or less. It is an object of the present invention to provide a photosensitive resin composition capable of
 本発明の目的は以下の構成により達成される。すなわち、
[1] 以下の(A)~(E)を含む感光性樹脂組成物。
(A)ジフェニル基を有するオルガノシラン単位を含有する、シロキサン樹脂、
(B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、
チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物と、ケイ素化合物との、複合金属化合物粒子、
(C)感光剤、
(D)縮合多環式芳香族基を有する、オルガノシラン化合物、
(E)有機溶媒
[2] 前記(A)シロキサン樹脂がジフェニル基を有するオルガノシラン単位を5mol%以上40mol%以下含有する前記[1]に記載の感光性樹脂組成物。
[3] 前記(A)シロキサン樹脂がカルボキシル基および/またはジカルボン酸無水物構造を有するオルガノシラン単位を含有する前記[1]または[2]に記載の感光性樹脂組成物。
[4] 前記(B)金属化合物粒子または複合金属化合物粒子の数平均粒子径が、1nm~70nmである前記[1]~[3]のいずれかに記載の感光性樹脂組成物。
[5] 前記(B)金属化合物粒子または複合金属化合物粒子がシロキサン樹脂の合計量100重量部に対して、20重量部以上60重量部以下である前記[1]~[4]のいずれかに記載の感光性樹脂組成物。
[6] 前記(C)感光剤がナフトキノンジアジド化合物である前記[1]~[5]のいずれかに記載の感光性樹脂組成物。
[7] 前記[1]~[6]のいずれかに記載の感光性樹脂組成物を硬化させてなる硬化物。
[8] 波長633nmにおける屈折率が1.60以上で1.80以下である前記[7]に記載の硬化物。
[9] 前記[7]または[8]の硬化物からなる硬化膜。
[10] 前記[7]または[8]の硬化物からなるマイクロレンズ。
[11][1]~[6]のいずれかに記載の感光性樹脂組成物を基材上に塗布する工程、露光する工程、現像する工程および直径10μm以上50μm以下のマイクロレンズを形成する工程を有するマイクロレンズの製造方法。
[12] 前記[9]に記載の硬化膜または前記[10]に記載のマイクロレンズを具備する固体撮像素子。
[13] 前記[9]に記載の硬化膜または前記[10]に記載のマイクロレンズを具備する指紋認証装置。
[14] 2次元に配列された複数のマイクロレンズを有するマイクロレンズアレイであって、マイクロレンズは波長633nmにおける屈折率が1.60以上1.80以下であり、マイクロレンズの直径が10μm以上50μm以下であり、マイクロレンズ間の距離が0.01μm以上で5.0μm以下であるマイクロレンズアレイ。
[15]前記マイクロレンズは、以下の(A)~(D)を含む感光性樹脂組成物を硬化させてなる硬化物からなる、前記[14]に記載のマイクロレンズアレイ。
(A)ジフェニル基を有するオルガノシラン単位を含有する、シロキサン樹脂
(B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、
チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物と、ケイ素化合物との、複合金属化合物粒子
(C)感光剤
(D)縮合多環式芳香族基を有する、オルガノシラン化合物
[16]前記[14]または[15]のマイクロレンズアレイを具備する指紋認証装置。
The object of the present invention is achieved by the following configurations. i.e.
[1] A photosensitive resin composition containing the following (A) to (E).
(A) a siloxane resin containing an organosilane unit having a diphenyl group;
(B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or
Composite metal compound particles of at least one metal compound selected from the group consisting of a titanium compound, a zirconium compound, a tin compound and an aluminum compound, and a silicon compound,
(C) a photosensitizer;
(D) an organosilane compound having a condensed polycyclic aromatic group;
(E) Organic solvent [2] The photosensitive resin composition according to [1] above, wherein the siloxane resin (A) contains 5 mol % or more and 40 mol % or less of an organosilane unit having a diphenyl group.
[3] The photosensitive resin composition according to [1] or [2] above, wherein the siloxane resin (A) contains an organosilane unit having a carboxyl group and/or a dicarboxylic anhydride structure.
[4] The photosensitive resin composition according to any one of [1] to [3], wherein the (B) metal compound particles or composite metal compound particles have a number average particle size of 1 nm to 70 nm.
[5] Any of the above [1] to [4], wherein the (B) metal compound particles or composite metal compound particles are 20 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the total amount of the siloxane resin The photosensitive resin composition described.
[6] The photosensitive resin composition according to any one of [1] to [5], wherein (C) the photosensitive agent is a naphthoquinone diazide compound.
[7] A cured product obtained by curing the photosensitive resin composition according to any one of [1] to [6].
[8] The cured product according to [7], which has a refractive index of 1.60 or more and 1.80 or less at a wavelength of 633 nm.
[9] A cured film comprising the cured product of [7] or [8] above.
[10] A microlens made of the cured product of [7] or [8].
[11] The step of applying the photosensitive resin composition according to any one of [1] to [6] onto a substrate, the step of exposing, the step of developing, and the step of forming microlenses having a diameter of 10 μm or more and 50 μm or less. A method for manufacturing a microlens having
[12] A solid-state imaging device comprising the cured film of [9] or the microlens of [10].
[13] A fingerprint authentication device comprising the cured film according to [9] or the microlens according to [10].
[14] A microlens array having a plurality of microlenses arranged two-dimensionally, wherein the microlenses have a refractive index of 1.60 or more and 1.80 or less at a wavelength of 633 nm, and a diameter of the microlenses of 10 μm or more and 50 μm. and the distance between the microlenses is 0.01 μm or more and 5.0 μm or less.
[15] The microlens array according to [14] above, wherein the microlenses are made of a cured product obtained by curing a photosensitive resin composition containing (A) to (D) below.
(A) a siloxane resin containing an organosilane unit having a diphenyl group; (B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or ,
Composite metal compound particles of at least one metal compound and silicon compound selected from the group consisting of titanium compounds, zirconium compounds, tin compounds and aluminum compounds (C) photosensitive agent (D) condensed polycyclic aromatic group Organosilane compound [16] A fingerprint authentication device comprising the microlens array of [14] or [15].
 本発明の感光性樹脂組成物によれば、高い屈折率と透明性を有するとともに、230℃以下の焼成温度でも流動性が高く、直径10μm以上のサイズの大きいマイクロレンズを形成することが可能である。 According to the photosensitive resin composition of the present invention, it has a high refractive index and transparency, has high fluidity even at a baking temperature of 230° C. or less, and can form large microlenses with a diameter of 10 μm or more. be.
マイクロレンズの形状の例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of the shape of a microlens; マイクロレンズではない形状の例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a shape that is not a microlens;
 以下、本発明を更に詳細に説明する。 The present invention will be described in further detail below.
 本発明の感光性樹脂組成物は、以下の(A)~(E)を含む感光性樹脂組成物である。
(A)ジフェニル基を有するオルガノシラン単位を含有するシロキサン樹脂、
(B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物とケイ素化合物との複合金属化合物粒子、
(C)感光剤、
(D)縮合多環式芳香族基を有するオルガノシラン化合物、
(E)有機溶媒。
The photosensitive resin composition of the present invention is a photosensitive resin composition containing the following (A) to (E).
(A) a siloxane resin containing an organosilane unit having a diphenyl group;
(B) At least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or from the group consisting of titanium compounds, zirconium compounds, tin compounds and aluminum compounds Composite metal compound particles of at least one selected metal compound and silicon compound,
(C) a photosensitizer;
(D) an organosilane compound having a condensed polycyclic aromatic group;
(E) an organic solvent;
 (A)ジフェニル基を有するオルガノシラン単位を含有するシロキサン樹脂を以降、単に、(A)シロキサン樹脂と略記する場合もある。本発明において、(A)シロキサン樹脂を含有することにより、透明性が高く、耐熱性、耐候性に優れたマイクロレンズを形成することができる。これは(A)シロキサン樹脂がシロキサン骨格を主鎖に有することによる。さらに、3次元架橋が進行する3官能性のT単位のみで構成されたシロキサン樹脂と比較して、(A)ジフェニル基を有するオルガノシラン単位を含有するシロキサン樹脂は、ジフェニル基が2官能性のD単位であるため、3次元架橋を適度に抑制でき、焼成時における感光性樹脂組成物の流動性を向上させることができるとともに、ジフェニル基を有するオルガノシラン単位の含有率を調整することで流動性を制御することが可能である。また、ジフェニル基は同じ2官能性のD単位であるジメチル基等と比較してジフェニル基のπ電子によって分極率が増加するため、硬化物の屈折率を向上させることができる。 (A) A siloxane resin containing an organosilane unit having a diphenyl group may hereinafter be simply abbreviated as (A) a siloxane resin. In the present invention, by including (A) the siloxane resin, it is possible to form a microlens having high transparency and excellent heat resistance and weather resistance. This is because (A) the siloxane resin has a siloxane skeleton in its main chain. Furthermore, compared with a siloxane resin composed only of trifunctional T units in which three-dimensional cross-linking proceeds, (A) a siloxane resin containing an organosilane unit having a diphenyl group has a bifunctional diphenyl group. Since it is a D unit, three-dimensional cross-linking can be appropriately suppressed, and the fluidity of the photosensitive resin composition during baking can be improved. It is possible to control gender. In addition, since the diphenyl group has an increased polarizability due to the π electrons of the diphenyl group as compared with a dimethyl group, which is also a difunctional D unit, the refractive index of the cured product can be improved.
 そして、(B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物とケイ素化合物との複合金属化合物粒子を含有することにより、高屈折率な硬化物を得ることができ、これにより高屈折率なマイクロレンズを形成することができる。 and (B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or a titanium compound, a zirconium compound, a tin compound and an aluminum compound. By containing at least one composite metal compound particle of a metal compound and a silicon compound selected from the group, a high refractive index cured product can be obtained, thereby forming a high refractive index microlens. can be done.
 (C)感光剤を含有することにより、光照射部が現像液で除去されるポジ型の感光性を示し、ポジ型のパターン加工を可能にすることができる。 (C) By containing a photosensitizer, it exhibits positive photosensitivity in which the light-irradiated portion is removed with a developer, making it possible to perform positive pattern processing.
 さらに、(D)縮合多環式芳香族基を有するオルガノシラン化合物を含有することで、加熱によりシロキサン樹脂末端に嵩高い置換基が導入され、末端同士の架橋が抑制されるため、焼成時における感光性樹脂組成物の流動性をさらに向上させることができるとともに、縮合多環式芳香族基の高い疎水性により、高温高湿耐性に優れたマイクロレンズを形成することができる。 Furthermore, by containing (D) an organosilane compound having a condensed polycyclic aromatic group, bulky substituents are introduced at the ends of the siloxane resin by heating, and cross-linking between the ends is suppressed. The fluidity of the photosensitive resin composition can be further improved, and the high hydrophobicity of the condensed polycyclic aromatic group enables the formation of microlenses with excellent high-temperature and high-humidity resistance.
 また、(E)有機溶媒を含有することにより、スピン塗布や、スリット塗布のようなウェットコーティングが可能であり、樹脂組成物を塗布に適した粘度に容易に調整し、塗布膜の均一性を向上させることができる。 In addition, by containing (E) an organic solvent, wet coating such as spin coating and slit coating is possible, the viscosity of the resin composition is easily adjusted to suit coating, and the uniformity of the coating film is improved. can be improved.
 本発明の感光性樹脂組成物は、(A)ジフェニル基を有するオルガノシラン単位を含有するシロキサン樹脂を含有する。シロキサン樹脂とは、シロキサン骨格を有する繰り返し単位を有するポリマを言う。本発明における(A)シロキサン樹脂は、ジフェニル基を有するオルガノシラン単位を含有するものであるが、ジフェニル基を有するオルガノシラン化合物とその他のオルガノシラン化合物とが加水分解した後、縮合した樹脂であることが好ましい。 The photosensitive resin composition of the present invention contains (A) a siloxane resin containing an organosilane unit having a diphenyl group. A siloxane resin refers to a polymer having a repeating unit having a siloxane skeleton. The (A) siloxane resin in the present invention contains an organosilane unit having a diphenyl group, and is a resin obtained by hydrolyzing and then condensing an organosilane compound having a diphenyl group and another organosilane compound. is preferred.
 ジフェニル基を有するオルガノシラン化合物の具体例としては、例えば、ジフェニルシランジオール、ジメトキシジフェニルシランなどが挙げられる。(A)シロキサン樹脂におけるジフェニル基を有するオルガノシラン単位の含有量は流動性を向上させる観点から、5mol%以上が好ましく、8mol%以上がより好ましく、10mol%以上がさらに好ましい。また、現像時の残渣を抑制し、解像度を向上させる観点から、40mol%以下が好ましく、35mol%以下がより好ましく、30mol%以下がさらに好ましい。 Specific examples of organosilane compounds having a diphenyl group include diphenylsilanediol and dimethoxydiphenylsilane. From the viewpoint of improving fluidity, the content of the diphenyl group-containing organosilane unit in the siloxane resin (A) is preferably 5 mol % or more, more preferably 8 mol % or more, and even more preferably 10 mol % or more. From the viewpoint of suppressing residue during development and improving resolution, it is preferably 40 mol % or less, more preferably 35 mol % or less, and even more preferably 30 mol % or less.
 その他のオルガノシラン化合物の具体例としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ(メトキシエトキシ)シラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、2-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、1-グリシドキシエチルトリメトキシシラン、1-グリシドキシエチルトリエトキシシラン、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、1-グリシドキシプロピルトリメトキシシラン、1-グリシドキシプロピルトリエトキシシラン、2-グリシドキシプロピルトリメトキシシラン、2-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリプロポキシシシラン、3-グリシドキシプロピルトリイソプロポキシシシラン、3-グリシドキシプロピルトリブトキシシラン、3-グリシドキシプロピルトリ(メトキシエトキシ)シラン、1-グリシドキシブチルトリメトキシシラン、1-グリシドキシブチルトリエトキシシラン、2-グリシドキシブチルトリメトキシシラン、2-グリシドキシブチルトリエトキシシラン、3-グリシドキシブチルトリメトキシシラン、3-グリシドキシブチルトリエトキシシラン、4-グリシドキシブチルトリメトキシシラン、4-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、1-グリシドキシエチルメチルジメトキシシラン、1-グリシドキシエチルメチルジエトキシシラン、2-グリシドキシエチルメチルジメトキシシラン、2-グリシドキシエチルメチルジエトキシシラン、1-グリシドキシプロピルメチルジメトキシシラン、1-グリシドキシプロピルメチルジエトキシシラン、2-グリシドキシプロピルメチルジメトキシシラン、2-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジプロポキシシラン、2-グリシドキシプロピルメチルジブトキシシラン、3-グリシドキシプロピルメチルジ(メトキシエトキシ)シラン、3-グリシドキシプロピルエチルジメトキシシラン、3-グリシドキシプロピルエチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロプロピルトリメトキシシラン、パーフルオロプロピルトリエトキシシラン、パーフルオロペンチルトリメトキシシラン、パーフルオロペンチルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、トリデカフルオロオクチルトリプロポキシシラン、トリデカフルオロオクチルトリイソプロポキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン、ビス(トリフルオロメチル)ジメトキシシラン、ビス(トリフルオロプロピル)ジメトキシシラン、ビス(トリフルオロプロピル)ジエトキシシラン、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルメチルジエトキシシラン、トリフルオロプロピルエチルジメトキシシラン、トリフルオロプロピルエチルジエトキシシラン、ヘプタデカフルオロデシルメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物、3-トリメトキシシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシシリルプロピルフタル酸無水物、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジ(メトキシエトキシ)シラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ(メトキシエトキシ)シラン、フェニルメチルジメトキシシラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、アリルメチルジ(メトキシエトキシ)シラン、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルトリ(メトキシエトキシ)シラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、スチリルメチルジ(メトキシエトキシ)シラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリ(メトキシエトキシ)シラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリ(メトキシエトキシ)シラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピル(メトキシエトキシ)シラン、1-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、1-ナフチルトリ-n-プロポキシシラン、2-ナフチルトリメトキシシラン、1-アントラセニルトリメトキシシラン、9-アントラセニルトリメトキシシラン、9-フェナントレニルトリメトキシシラン、9-フルオレニルトリメトキシシラン、2-フルオレニルトリメトキシシラン、2-フルオレノンイルトリメトシキシラン、1-ピレニルトリメトキシシラン、2-インデニルトリメトキシシラン、5-アセナフテニルトリメトキシシランなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、現像時の残渣を抑制し、解像度を向上させる観点から、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物、3-トリメトキシシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシシリルプロピルフタル酸無水物のようなカルボキシル基および/またはジカルボン酸無水物構造を有するオルガノシラン化合物が好ましい。かかる化合物を用いることにより、(A)シロキサン樹脂が、カルボキシル基および/またはジカルボン酸無水物構造を有するオルガノシラン単位を含有するものとなる。(A)シロキサン樹脂が、かかる構造を有することにより現像時の残渣を抑制するとともに、基板や樹脂層との密着性を向上させることができる。 Specific examples of other organosilane compounds include methyltrimethoxysilane, methyltriethoxysilane, methyltri(methoxyethoxy)silane, methyltripropoxysilane, methyltriisopropoxysilane, methyltributoxysilane, and ethyltrimethoxysilane. , ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3- aminopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-(N,N-diglycidyl)aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino propyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 2-cyanoethyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, 1-glycidoxysilane ethyltrimethoxysilane, 1-glycidoxyethyltriethoxysilane, 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, 1-glycidoxypropyltrimethoxysilane, 1-glycidoxy propyltriethoxysilane, 2-glycidoxypropyltrimethoxysilane, 2-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxysilane Propyltripropoxysilane, 3-glycidoxypropyltriisopropoxysilane, 3-glycidoxypropyltributoxysilane, 3-glycidoxypropyltri(methoxyethoxy)silane, 1-glycidoxybutyltrimethoxysilane , 1-glycidoxybutyltriethoxysilane, 2-glycidoxybutyltrimethoxysilane, 2-glycidoxybutyltriethoxysilane, 3-glycidoxybutyltrimethoxysilane, 3-glycidoxybutyltriethoxysilane , 4-glycidoxybutyltrimethoxysilane, 4-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl)methyltrimethoxysilane, (3,4-epoxycyclohexyl)methyltriethoxysilane, 2-( 3,4-epoxycyclohexyl)ethyltripropoxysilane, 2-(3,4-epoxycyclohexyl)ethyltributoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxy cyclohexyl)ethyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriphenoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltriethoxysilane Silane, 4-(3,4-epoxycyclohexyl)butyltrimethoxysilane, 4-(3,4-epoxycyclohexyl)butyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane , 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, glycidoxymethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane , 1-glycidoxyethylmethyldimethoxysilane, 1-glycidoxyethylmethyldiethoxysilane, 2-glycidoxyethylmethyldimethoxysilane, 2-glycidoxyethylmethyldiethoxysilane, 1-glycidoxypropylmethyl Dimethoxysilane, 1-glycidoxypropylmethyldiethoxysilane, 2-glycidoxypropylmethyldimethoxysilane, 2-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxy Propylmethyldiethoxysilane, 3-glycidoxypropylmethyldipropoxysilane, 2-glycidoxypropylmethyldibutoxysilane, 3-glycidoxypropylmethyldi(methoxyethoxy)silane, 3-glycidoxypropylethyldimethoxysilane Silane, 3-glycidoxypropylethyldiethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane, cyclohexylmethyldimethoxysilane, octadecylmethyldimethoxysilane, tetramethoxysilane, tetraethoxysilane, trifluoro methyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluoropropyltrimethoxysilane, perfluoropropyltriethoxysilane, perfluoropentyltrimethoxysilane, perfluoropentyl triethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, tridecafluorooctyltripropoxysilane, tridecafluorooctyltriisopropoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltri Ethoxysilane, bis(trifluoromethyl)dimethoxysilane, bis(trifluoropropyl)dimethoxysilane, bis(trifluoropropyl)diethoxysilane, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldiethoxysilane, trifluoropropylethyl Dimethoxysilane, trifluoropropylethyldiethoxysilane, heptadecafluorodecylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, 3-triphenoxysilylpropylsuccinic anhydride 3-trimethoxysisilylpropylcyclohexyldicarboxylic anhydride, 3-trimethoxysisilylpropylphthalic anhydride, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri(methoxyethoxy)silane, vinylmethyldimethoxysilane, vinyl Methyldiethoxysilane, Vinylmethyldi(methoxyethoxy)silane, Allyltrimethoxysilane, Allyltriethoxysilane, Allyltri(methoxyethoxy)silane, Phenylmethyldimethoxysilane, Allylmethyldimethoxysilane, Allylmethyldiethoxysilane, Allylmethyldi(methoxyethoxy) Silane, styryltrimethoxysilane, styryltriethoxysilane, styryltri(methoxyethoxy)silane, styrylmethyldimethoxysilane, styrylmethyldiethoxysilane, styrylmethyldi(methoxyethoxy)silane, 3-acryloxypropyltrimethoxysilane, 3- acryloxypropyltriethoxysilane, 3-acryloxypropyltri(methoxyethoxy)silane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltri(methoxyethoxy)silane, 3 -methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl(methoxyethoxy)silane, 1- naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 1-naphthyltri-n-propoxysilane, 2-naphthyltrimethoxysilane, 1-anthracenyltrimethoxysilane, 9-anthracenyltrimethoxysilane, 9-phenanthrenyltri methoxysilane, 9-fluorenyltrimethoxysilane, 2-fluorenyltrimethoxysilane, 2-fluorenonyltrimethoxysilane, 1-pyrenyltrimethoxysilane, 2-indenyltrimethoxysilane, 5-acenaphthenyltri methoxysilane and the like. You may use 2 or more types of these. Among these, 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, and 3-triphenoxysilylpropylsuccinic anhydride are used from the viewpoint of suppressing residue during development and improving resolution. Organosilane compounds having a carboxyl group and/or a dicarboxylic acid anhydride structure such as cyclohexyldicarboxylic anhydride, 3-trimethoxysilylpropylcyclohexyldicarboxylic anhydride, and 3-trimethoxysilylpropylphthalic anhydride are preferred. By using such a compound, (A) the siloxane resin contains an organosilane unit having a carboxyl group and/or a dicarboxylic anhydride structure. (A) By having such a structure, the siloxane resin can suppress residue during development and improve adhesion to the substrate and the resin layer.
 (A)シロキサン樹脂は、オルガノシラン化合物を加水分解した後縮合することにより得ることができる。例えば、オルガノシラン化合物を加水分解した後、得られるシラノール化合物を有機溶媒の存在下または無溶媒で縮合反応させることによって得ることができる。 (A) The siloxane resin can be obtained by hydrolyzing an organosilane compound and then condensing it. For example, it can be obtained by hydrolyzing an organosilane compound and then subjecting the obtained silanol compound to a condensation reaction in the presence or absence of an organic solvent.
 加水分解反応の各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して適宜設定することができる。例えば、溶媒中、オルガノシラン化合物に酸触媒および水を1~180分間かけて添加した後、室温~110℃で1~180分間反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、より好ましくは30~105℃である。 Various conditions for the hydrolysis reaction can be appropriately set in consideration of the reaction scale, the size and shape of the reaction vessel, and so on. For example, it is preferable to add an acid catalyst and water to an organosilane compound in a solvent over 1 to 180 minutes, and then react the mixture at room temperature to 110° C. for 1 to 180 minutes. By carrying out the hydrolysis reaction under such conditions, a rapid reaction can be suppressed. The reaction temperature is more preferably 30-105°C.
 加水分解反応は、酸触媒の存在下で行うことが好ましい。酸触媒としては、蟻酸、酢酸、リン酸、硝酸を含む酸性水溶液が好ましい。酸触媒の添加量は、加水分解反応時に使用される全オルガノシラン化合物100重量部に対して、0.05~5重量部が好ましい。酸触媒の量を上記範囲とすることにより、加水分解反応をより効率的に進めることができる。 The hydrolysis reaction is preferably carried out in the presence of an acid catalyst. As the acid catalyst, an acidic aqueous solution containing formic acid, acetic acid, phosphoric acid and nitric acid is preferred. The amount of the acid catalyst to be added is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of all the organosilane compounds used in the hydrolysis reaction. By setting the amount of the acid catalyst within the above range, the hydrolysis reaction can proceed more efficiently.
 オルガノシラン化合物の加水分解反応によりシラノール化合物を得た後、反応液をそのまま50℃以上、溶媒の沸点以下で1~100時間加熱し、縮合反応を行うことが好ましい。また、シロキサン樹脂の重合度を上げるために、再加熱または塩基触媒添加を行ってもよい。 After obtaining the silanol compound by the hydrolysis reaction of the organosilane compound, it is preferable to heat the reaction solution as it is at 50°C or higher and below the boiling point of the solvent for 1 to 100 hours to carry out the condensation reaction. Moreover, in order to increase the degree of polymerization of the siloxane resin, reheating or addition of a base catalyst may be performed.
 オルガノシラン化合物の加水分解反応およびシラノール化合物の縮合反応に用いられる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、1-t-ブトキシ-2-プロパノール、ダイアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族あるいは脂肪族炭化水素、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどを挙げることができる。これらを2種以上用いてもよい。本発明の感光性樹脂組成物を硬化して得られる硬化物が高い透過率、優れた耐クラック性を有するものとすることができるため、ダイアセトンアルコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノt-ブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、γ-ブチロラクトンなどが好ましく用いられる。 Examples of the organic solvent used for the hydrolysis reaction of the organosilane compound and the condensation reaction of the silanol compound include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, and 4-methyl-2-pen. alcohols such as tanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, 1-t-butoxy-2-propanol, diacetone alcohol; glycols such as ethylene glycol and propylene glycol; Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether, etc. Ethers; ketones such as methyl ethyl ketone, acetylacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone; amides such as dimethylformamide and dimethylacetamide; ethyl acetate, propyl acetate Acetates such as , butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate; toluene , xylene, hexane, cyclohexane and other aromatic or aliphatic hydrocarbons, γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylsulfoxide, and the like. You may use 2 or more types of these. Since the cured product obtained by curing the photosensitive resin composition of the present invention can have high transmittance and excellent crack resistance, diacetone alcohol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , propylene glycol monoethyl ether, propylene glycol mono-t-butyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, γ-butyrolactone and the like are preferably used.
 本発明の感光性樹脂組成物を硬化して得られる硬化物が高い透過率、優れた耐クラック性を有することで、それを用いた硬化膜やマイクロレンズがそれらの特性を有するものとなることから好ましい。ここでいう硬化膜とは、マイクロレンズを形成することなく、全面膜の形態で硬化させた膜形態の硬化物のことを言う。 The cured product obtained by curing the photosensitive resin composition of the present invention has high transmittance and excellent crack resistance, so that the cured film and microlens using the same have these properties. preferred from The term "cured film" as used herein refers to a cured product in the form of a film that is cured in the form of a film over the entire surface without forming microlenses.
 加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解させることも可能である。反応終了後に、さらに溶媒を添加することにより、樹脂組成物として適切な濃度に調整することも好ましい。また、目的に応じて加水分解後に、生成アルコールなどを加熱および/または減圧下にて適量を留出、除去し、その後好適な溶媒を添加してもよい。 When a solvent is generated by the hydrolysis reaction, it is possible to hydrolyze without a solvent. After completion of the reaction, it is also preferable to adjust the concentration to be appropriate for the resin composition by further adding a solvent. Further, depending on the purpose, after hydrolysis, an appropriate amount of the alcohol produced may be distilled off under heating and/or under reduced pressure, and then a suitable solvent may be added.
 加水分解反応において使用する溶媒の量は、全オルガノシラン化合物100重量部に対して80重量部以上、500重量部以下が好ましい。溶媒の量を上記範囲とすることにより、加水分解反応をより効率的に進めることができる。 The amount of solvent used in the hydrolysis reaction is preferably 80 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the total organosilane compound. By setting the amount of the solvent within the above range, the hydrolysis reaction can proceed more efficiently.
 また、加水分解反応に用いる水は、イオン交換水が好ましい。水の量は、シラン原子1モルに対して、1.0~4.0モルが好ましい。 Also, the water used for the hydrolysis reaction is preferably ion-exchanged water. The amount of water is preferably 1.0 to 4.0 mol per 1 mol of silane atoms.
 本発明の感光性樹脂組成物は、(B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物とケイ素化合物との複合金属化合物粒子(以降、(B)金属化合物粒子または複合金属化合物粒子と、略記することもある)を含有するシロキサン樹脂を含有する。 The photosensitive resin composition of the present invention includes (B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or a titanium compound and a zirconium compound. , at least one selected from the group consisting of tin compounds and aluminum compounds, composite metal compound particles of a metal compound and a silicon compound (hereinafter sometimes abbreviated as (B) metal compound particles or composite metal compound particles) Contains a siloxane resin containing
 金属化合物とケイ素化合物との複合金属化合物粒子としては、酸化ケイ素化合物存在下で金属粒子を合成した酸化ケイ素-金属化合物複合粒子、金属粒子とシランカップリング剤を反応させたシラン表面被覆金属化合物粒子等が挙げられる。これらの中でも、チタン化合物粒子、ジルコニウム化合物粒子またはチタン化合物もしくはジルコニウム化合物とケイ素化合物との複合粒子であることが好ましい。またこれらを2種以上含有してもよい。上記のような金属化合物粒子を含有することにより、硬化物に高い屈折率をもたらすことができる。硬化物が高い屈折率を有するものであれば、それを用いた硬化膜やマイクロレンズに高い屈折率をもたらすことができる。 Composite metal compound particles of a metal compound and a silicon compound include silicon oxide-metal compound composite particles obtained by synthesizing metal particles in the presence of a silicon oxide compound, and silane surface-coated metal compound particles obtained by reacting metal particles with a silane coupling agent. etc. Among these, titanium compound particles, zirconium compound particles, or composite particles of a titanium compound or a zirconium compound and a silicon compound are preferred. Moreover, you may contain 2 or more types of these. By containing the metal compound particles as described above, the cured product can have a high refractive index. If the cured product has a high refractive index, a cured film or microlens using it can have a high refractive index.
 金属化合物粒子の例としては、例えば、酸化スズ、酸化チタン、酸化ケイ素の複合粒子である”ナノユース”(登録商標)OT-RB300M7-20、酸化スズ、酸化チタン、酸化ジルコニウム、酸化ケイ素の複合粒子である”ナノユース”OT-RA-305M7-20(いずれも日産化学(株)製)、酸化スズ、酸化チタンの複合粒子である”オプトレイク”(登録商標)TR-502、”オプトレイク”TR-504、酸化チタン、酸化ケイ素複合粒子の”オプトレイク”TR-503 、”オプトレイク”TR-513 、”オプトレイク”TR-520、”オプトレイク”TR-527、”オプトレイク”TR-528、”オプトレイク”TR-529、”オプトレイク”TR-543、”オプトレイク”TR-544、”オプトレイク”TR-550、酸化チタン粒子の”オプトレイク”TR-505(いずれも触媒化成工業(株)製)、酸化ジルコニウム粒子である”ナノユース”OZ-S30M(日産化学(株)製)、DLZ-003W(大研化学工業(株)製)、SZR-M(堺化学工業(株)製)、等が挙げられる。これらを2種以上含有してもよい。 Examples of metal compound particles include "Nanouse" (registered trademark) OT-RB300M7-20, which is a composite particle of tin oxide, titanium oxide, and silicon oxide, and composite particles of tin oxide, titanium oxide, zirconium oxide, and silicon oxide. "Nanouse" OT-RA-305M7-20 (both manufactured by Nissan Chemical Co., Ltd.), "Optolake" (registered trademark) TR-502, which is a composite particle of tin oxide and titanium oxide, "Optolake" TR -504, titanium oxide, silicon oxide composite particles "Optolake" TR-503, "Optolake" TR-513, "Optolake" TR-520, "Optolake" TR-527, "Optolake" TR-528 , ``Optolake'' TR-529, ``Optolake'' TR-543, ``Optolake'' TR-544, ``Optolake'' TR-550, titanium oxide particles ``Optolake'' TR-505 Co., Ltd.), zirconium oxide particles "Nanouse" OZ-S30M (manufactured by Nissan Chemical Industries, Ltd.), DLZ-003W (manufactured by Daiken Chemical Industry Co., Ltd.), SZR-M (Sakai Chemical Industry Co., Ltd.) made), etc. You may contain 2 or more types of these.
 (B)金属化合物粒子または複合金属化合物粒子の数平均粒子径は、厚膜形成時のクラック発生を抑制する観点から1nm以上が好ましい。また、硬化物、とりわけそれを用いた硬化膜やマイクロレンズ、の可視光に対する透明性をより向上させる観点から70nm以下が好ましく、50nm以下がより好ましい。ここで、金属化合物粒子の数平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡や走査型電子顕微鏡により粒子径を直接測定する方法等により測定することができる。本発明においては、動的光散乱法により測定した値を指す。用いる機器は特に限定されないが、ダイナミック光散乱高度計DLS-8000(大塚電子(株)製)などを挙げることができる。 (B) The number average particle diameter of the metal compound particles or composite metal compound particles is preferably 1 nm or more from the viewpoint of suppressing crack generation during thick film formation. From the viewpoint of further improving the transparency to visible light of a cured product, particularly a cured film or microlens using the cured product, it is preferably 70 nm or less, more preferably 50 nm or less. Here, the number average particle size of the metal compound particles is measured by a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a method of directly measuring the particle size with a transmission electron microscope or a scanning electron microscope, or the like. be able to. In the present invention, it refers to the value measured by the dynamic light scattering method. The equipment used is not particularly limited, but examples include a dynamic light scattering altimeter DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
 本発明の感光性組成物においては、(B)金属化合物粒子または複合金属化合物粒子が、シロキサン樹脂の合計量100重量部に対して、20重量部以上60重量部以下であることが好ましく、25重量部以上55重量部以下であることがより好ましい。これにより感光性樹脂組成物の高い感度、解像度、流動性を維持しながら、硬化膜やマイクロレンズの透過率、屈折率をさらに向上させることができる。 In the photosensitive composition of the present invention, (B) the metal compound particles or the composite metal compound particles are preferably 20 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the total amount of the siloxane resin. It is more preferable that the amount is not less than 55 parts by weight and not more than 55 parts by weight. This makes it possible to further improve the transmittance and refractive index of the cured film and microlenses while maintaining high sensitivity, resolution and fluidity of the photosensitive resin composition.
 本発明の感光性樹脂組成物を硬化させてなる硬化物の波長633nmにおける屈折率は1.60以上で1.80以下であることが好ましい。硬化物がかかる高い屈折率を有することにより、高屈折率なマイクロレンズを形成することができるためである。 The refractive index of the cured product obtained by curing the photosensitive resin composition of the present invention at a wavelength of 633 nm is preferably 1.60 or more and 1.80 or less. This is because, when the cured product has such a high refractive index, a high refractive index microlens can be formed.
 本発明の感光性組成物においては、(B)金属化合物粒子または複合金属化合物粒子の存在下で(A)シロキサン樹脂がオルガノシランの加水分解、部分縮合させることによって合成してもよい。これにより、粒子がシロキサン樹脂で表面処理され、分散安定性に非常に優れた感光性樹脂組成物を得ることができる。これは、マトリックスのシロキサン樹脂と金属化合物粒子が結合しているためと考えられる。この結合した状態は、走査型電子顕微鏡や透過型電子顕微鏡で金属化合物粒子とシロキサン樹脂との境界部分を観察することによって知ることができる。両者が結合している場合には両者界面が不明瞭である。 In the photosensitive composition of the present invention, (A) the siloxane resin may be synthesized by hydrolyzing and partially condensing organosilane in the presence of (B) metal compound particles or composite metal compound particles. As a result, the particles are surface-treated with the siloxane resin, and a photosensitive resin composition having excellent dispersion stability can be obtained. It is considered that this is because the matrix siloxane resin and the metal compound particles are bonded. This bonded state can be known by observing the interface between the metal compound particles and the siloxane resin with a scanning electron microscope or a transmission electron microscope. When both are bonded, the interface between the two is unclear.
 本発明の感光性樹脂組成物は、(C)感光剤を含有する。(C)感光剤としてはナフトキノンジアジド化合物が好ましい。ナフトキノンジアジド化合物を含有することにより、露光部が現像液で除去されるポジ型の感光性を示すことに加え、未露光部においてシロキサン樹脂のシラノール基の相互作用により溶解抑止効果も果たすため解像度をさらに向上させることができる。ナフトキノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物が好ましい。 The photosensitive resin composition of the present invention contains (C) a photosensitive agent. (C) A naphthoquinonediazide compound is preferable as the photosensitive agent. By containing the naphthoquinone diazide compound, in addition to exhibiting positive photosensitivity in which the exposed areas are removed by the developer, the dissolution suppression effect is also achieved in the unexposed areas due to the interaction of the silanol groups of the siloxane resin, resulting in improved resolution. It can be improved further. As the naphthoquinonediazide compound, a compound in which naphthoquinonediazide sulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group is preferable.
 フェノール性水酸基を有する化合物の具体例としては、以下の化合物(いずれも本州化学工業(株)製を入手可能)が挙げられる。 Specific examples of compounds with phenolic hydroxyl groups include the following compounds (all available from Honshu Chemical Industry Co., Ltd.).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ナフトキノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。原料となるナフトキノンジアジドスルホン酸クロリドとしては、4-ナフトキノンジアジドスルホン酸クロリドあるいは5-ナフトキノンジアジドスルホン酸クロリドを用いることができる。4-ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5-ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4-ナフトキノンジアジドスルホン酸エステル化合物、5-ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4-ナフトキノンジアジドスルホン酸エステル化合物と5-ナフトキノンジアジドスルホン酸エステル化合物を組み合わせて用いることもできる。 A naphthoquinonediazide compound can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazide sulfonyl chloride. As naphthoquinonediazidesulfonic acid chloride as a raw material, 4-naphthoquinonediazidesulfonic acid chloride or 5-naphthoquinonediazidesulfonic acid chloride can be used. A 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength: 365 nm) region, and is therefore suitable for i-line exposure. In addition, 5-naphthoquinonediazide sulfonic acid ester compounds have absorption in a wide range of wavelengths, so they are suitable for exposure over a wide range of wavelengths. It is preferable to select a 4-naphthoquinonediazide sulfonic acid ester compound or a 5-naphthoquinonediazide sulfonic acid ester compound depending on the wavelength of exposure. A 4-naphthoquinonediazide sulfonic acid ester compound and a 5-naphthoquinonediazide sulfonic acid ester compound can also be used in combination.
 本発明の感光性樹脂組成物における(C)感光剤の含有量は特に制限されないが、(A)シロキサン樹脂の合計100重量%に対して1重量%以上が好ましく、3重量%以上がより好ましい。また、(A)シロキサン樹脂との相溶性低下や、熱硬化時の分解による着色を抑制し、感光性樹脂組成物や硬化物、とりわけ硬化膜やマイクロレンズ、の透明性をより向上させる観点から、30重量%以下が好ましく、20重量%以下がより好ましい。 The content of the (C) photosensitive agent in the photosensitive resin composition of the present invention is not particularly limited, but is preferably 1% by weight or more, more preferably 3% by weight or more, relative to the total 100% by weight of the (A) siloxane resin. . In addition, (A) from the viewpoint of suppressing deterioration of compatibility with siloxane resins and coloring due to decomposition during heat curing, and further improving the transparency of photosensitive resin compositions and cured products, especially cured films and microlenses. , is preferably 30% by weight or less, more preferably 20% by weight or less.
 本発明の感光性樹脂組成物は、(D)縮合多環式芳香族基を有するオルガノシラン化合物を含有する。(D)縮合多環式芳香族基を有するオルガノシラン化合物を含有することで、加熱によりシロキサン樹脂末端に嵩高い置換基が導入され、末端同士の架橋が抑制されるため、焼成時における膜の流動性をさらに向上させることができるとともに、縮合多環式芳香族基の高い疎水性により、高温高湿耐性に優れたマイクロレンズを形成することができる。 The photosensitive resin composition of the present invention contains (D) an organosilane compound having a condensed polycyclic aromatic group. (D) By containing an organosilane compound having a condensed polycyclic aromatic group, bulky substituents are introduced at the ends of the siloxane resin by heating, and cross-linking between the ends is suppressed. The fluidity can be further improved, and the high hydrophobicity of the condensed polycyclic aromatic group enables the formation of microlenses with excellent high-temperature and high-humidity resistance.
 (D)縮合多環式芳香族基を有するオルガノシラン化合物の具体例としては、以下の化合物が挙げられる。1-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、1-ナフチルトリ-n-プロポキシシラン、2-ナフチルトリメトキシシラン、1-アントラセニルトリメトキシシラン、9-アントラセニルトリメトキシシラン、9-フェナントレニルトリメトキシシラン、9-フルオレニルトリメトキシシラン、2-フルオレニルトリメトキシシラン、1-ピレニルトリメトキシシラン、2-インデニルトリメトキシシラン、5-アセナフテニルトリメトキシシラン等が挙げられる。これらを2種以上含有してもよい。 (D) Specific examples of the organosilane compound having a condensed polycyclic aromatic group include the following compounds. 1-naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 1-naphthyltri-n-propoxysilane, 2-naphthyltrimethoxysilane, 1-anthracenyltrimethoxysilane, 9-anthracenyltrimethoxysilane, 9-phenanth renyltrimethoxysilane, 9-fluorenyltrimethoxysilane, 2-fluorenyltrimethoxysilane, 1-pyrenyltrimethoxysilane, 2-indenyltrimethoxysilane, 5-acenaphthenyltrimethoxysilane and the like. . You may contain 2 or more types of these.
 本発明の感光性樹脂組成物における(D)縮合多環式芳香族基を有するオルガノシラン化合物の含有量は特に制限されないが、流動性を向上させる観点から(A)シロキサン樹脂の合計100重量%に対して0.5重量%以上が好ましく、1重量%以上がより好ましい。また、現像時の残渣を抑制し、解像度を向上させる観点から、15重量%以下が好ましく、10重量%以下がより好ましい。 The content of (D) an organosilane compound having a condensed polycyclic aromatic group in the photosensitive resin composition of the present invention is not particularly limited, but from the viewpoint of improving fluidity, the total amount of (A) siloxane resin is 100% by weight. 0.5% by weight or more is preferable, and 1% by weight or more is more preferable. From the viewpoint of suppressing residue during development and improving resolution, it is preferably 15% by weight or less, more preferably 10% by weight or less.
 本発明の感光性樹脂組成物は、(E)有機溶媒を含有する。有機溶媒は特に制限はないが、アルコール性水酸基を有する化合物が好ましい。アルコール性水酸基を有する有機溶媒を用いると、(A)シロキサン樹脂、(B)金属化合物粒子、(C)感光剤の溶解性を向上させ、感光性樹脂組成物から得られる塗布膜の透明性をより向上させることができる。 The photosensitive resin composition of the present invention contains (E) an organic solvent. Although the organic solvent is not particularly limited, a compound having an alcoholic hydroxyl group is preferred. The use of an organic solvent having an alcoholic hydroxyl group improves the solubility of (A) the siloxane resin, (B) the metal compound particles, and (C) the photosensitive agent, and improves the transparency of the coating film obtained from the photosensitive resin composition. can be improved.
 アルコール性水酸基を有する有機溶媒は特に制限されないが、大気圧下の沸点が110~250℃である化合物が好ましい。沸点が110℃以上であれば、塗布膜形成時の乾燥が適度に進み、表面外観の良好な塗布膜を容易に得ることができる。一方、沸点が250℃以下であれば、有機溶媒の除去が容易である。 Although the organic solvent having an alcoholic hydroxyl group is not particularly limited, compounds having a boiling point of 110 to 250°C under atmospheric pressure are preferred. If the boiling point is 110° C. or higher, drying at the time of coating film formation proceeds appropriately, and a coating film with good surface appearance can be easily obtained. On the other hand, if the boiling point is 250° C. or less, the removal of the organic solvent is easy.
 アルコール性水酸基を有する有機溶媒の具体例としては、アセトール(沸点:147℃)、3-ヒドロキシ-3-メチル-2-ブタノン(沸点:140℃)、4-ヒドロキシ-3-メチル-2-ブタノン(沸点:73℃)、5-ヒドロキシ-2-ペンタノン(沸点:144℃)、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)(沸点:166℃)、乳酸エチル(沸点:151℃)、乳酸ブチル(沸点:186℃)、プロピレングリコールモノメチルエーテル(沸点:118℃)、プロピレングリコールモノエチルエーテル(沸点:132℃)、プロピレングリコールモノn-プロピルエーテル(沸点:約150℃)、プロピレングリコールモノn-ブチルエーテル(沸点:170℃)、ジエチレングリコールモノメチルエーテル(沸点:194℃)、ジエチレングリコールモノエチルエーテル(沸点:202℃)、ジプロピレングリコールモノメチルエーテル(沸点:約190℃)、3-メトキシ-1-ブタノール(沸点:161℃)、3-メチル-3-メトキシ-1-ブタノール(沸点:174℃)等が挙げられる。これらを2種以上含有してもよい。 Specific examples of organic solvents having an alcoholic hydroxyl group include acetol (boiling point: 147°C), 3-hydroxy-3-methyl-2-butanone (boiling point: 140°C), and 4-hydroxy-3-methyl-2-butanone. (boiling point: 73 ° C.), 5-hydroxy-2-pentanone (boiling point: 144 ° C.), 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol) (boiling point: 166 ° C.), ethyl lactate (boiling point: 151 ° C.), butyl lactate (boiling point: 186° C.), propylene glycol monomethyl ether (boiling point: 118° C.), propylene glycol monoethyl ether (boiling point: 132° C.), propylene glycol mono-n-propyl ether (boiling point: about 150° C.), Propylene glycol mono-n-butyl ether (boiling point: 170°C), diethylene glycol monomethyl ether (boiling point: 194°C), diethylene glycol monoethyl ether (boiling point: 202°C), dipropylene glycol monomethyl ether (boiling point: about 190°C), 3-methoxy -1-butanol (boiling point: 161°C), 3-methyl-3-methoxy-1-butanol (boiling point: 174°C), and the like. You may contain 2 or more types of these.
 また、上記有機溶媒とともに、または上記有機溶媒にかえて、その他の有機溶媒を含有してもよい。その他の有機溶媒としては、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-1-ブチルアセテート、3-メチル-3-メトキシ-1-ブチルアセテート、アセト酢酸エチル等のエステル類、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトン等のケトン類、ジエチルエーテル、ジイソプロピルエーテル、ジn-ブチルエーテル、ジフェニルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン等が挙げられる。 In addition, other organic solvents may be contained together with the organic solvent or instead of the organic solvent. Other organic solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1. - esters such as butyl acetate and ethyl acetoacetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, diethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether ethers, γ-butyrolactone, γ-valerolactone, δ-valerolactone, propylene carbonate, N-methylpyrrolidone, cyclopentanone, cyclohexanone, cycloheptanone and the like.
 本発明の感光性樹脂組成物における(E)有機溶媒の含有量に特に制限はないが、好ましくは(A)シロキサン樹脂、(B)金属化合物粒子の合計100重量部に対して10~2,000重量部の範囲である。 The content of the (E) organic solvent in the photosensitive resin composition of the present invention is not particularly limited, but is preferably 10 to 2,000 parts per 100 parts by weight of the total of (A) the siloxane resin and (B) the metal compound particles. 000 parts by weight.
 本発明の感光性樹脂組成物は、(D)縮合多環式芳香族基を有するオルガノシラン化合物以外のオルガノシラン化合物を密着性改良剤として含有してもよい。オルガノシラン化合物を含有させることで、下地との密着性を向上させることができる。オルガノシラン化合物としては、例えば、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジイソプロポキシシラン、ジフェニルジn-ブトキシシラン、ジフェニルシランジオール、ビス(4-メチルフェニル)ジメトキシシラン、ビス(4-メチルフェニル)ジエトキシシラン、ビス(4-メチルフェニル)ジイソプロポキシシラン、ビス(4-メチルフェニル)シランジオール、ビス(4-ビフェニル)ジメトキシシラン、ビス(4-ビフェニル)ジエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン、トリフェニルシラノール、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-メルカプトプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、p-スリチルトリメトキシシランなどが挙げられる。これらを2種以上含有してもよい。 The photosensitive resin composition of the present invention may contain an organosilane compound other than (D) the organosilane compound having a condensed polycyclic aromatic group as an adhesion improver. By containing the organosilane compound, the adhesiveness to the base can be improved. Organosilane compounds include, for example, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldiisopropoxysilane, diphenyldi-n-butoxysilane, diphenylsilanediol, bis(4-methylphenyl)dimethoxysilane, bis(4-methylphenyl ) diethoxysilane, bis(4-methylphenyl)diisopropoxysilane, bis(4-methylphenyl)silanediol, bis(4-biphenyl)dimethoxysilane, bis(4-biphenyl)diethoxysilane, triphenylmethoxysilane , triphenylethoxysilane, triphenylsilanol, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane , 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane , N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltri Methoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, 3-mercaptopropyltrimethoxysilane, 3-ureido propyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, p-thrityltrimethoxysilane and the like. You may contain 2 or more types of these.
 本発明の感光性樹脂組成物は、溶解促進剤を含有してもよい。溶解促進剤を含有することにより、現像時の残渣を抑制し、解像度を向上させることができる。溶解促進剤としては、(A)シロキサン樹脂や(C)感光剤との相溶性から、フェノール性水酸基を有する化合物が好ましい。フェノール性水酸基を有する化合物の具体例としては、以下の化合物(いずれも本州化学工業(株)製を入手可能)が挙げられる。 The photosensitive resin composition of the present invention may contain a dissolution accelerator. By containing the dissolution accelerator, it is possible to suppress the residue during development and improve the resolution. As the dissolution accelerator, a compound having a phenolic hydroxyl group is preferable from the viewpoint of compatibility with (A) the siloxane resin and (C) the photosensitive agent. Specific examples of compounds having a phenolic hydroxyl group include the following compounds (all available from Honshu Chemical Industry Co., Ltd.).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本発明の感光性樹脂組成物は、界面活性剤を含有してもよい。界面活性剤を含有することにより、塗布時のフロー性を向上させることができる。界面活性剤としては、例えば、フッ素系界面活性剤;シリコーン系界面活性剤;シリコーン変性アクリル系界面活性剤;含フッ素熱分解性界面活性剤;ポリエーテル変性シロキサン系界面活性剤;ポリアルキレンオキシド系界面活性剤;ポリ(メタ)アクリレート系界面活性剤;ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミンなどの陰イオン界面活性剤;ステアリルアミンアセテート、ラウリルトリメチルアンモニウムクロライドなどの陽イオン界面活性剤;ラウリルジメチルアミンオキサイド、ラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタインなどの両性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ソルビタンモノステアレートなどの非イオン界面活性剤などが挙げられる。これらを2種以上含有してもよい。 The photosensitive resin composition of the present invention may contain a surfactant. By containing a surfactant, it is possible to improve flowability during application. Examples of surfactants include fluorine-based surfactants; silicone-based surfactants; silicone-modified acrylic surfactants; fluorine-containing thermally decomposable surfactants; polyether-modified siloxane-based surfactants; Surfactants; poly(meth)acrylate surfactants; anionic surfactants such as ammonium lauryl sulfate and triethanolamine polyoxyethylene alkyl ether sulfate; cationic surfactants such as stearylamine acetate and lauryltrimethylammonium chloride; amphoteric surfactants such as lauryl dimethylamine oxide and lauryl carboxymethyl hydroxyethylimidazolium betaine; and nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether and sorbitan monostearate. You may contain 2 or more types of these.
 これらの中でも、はじき等の塗布性不良を抑制するとともに、表面張力を低減し塗膜乾燥時のムラを抑制する観点から、フッ素系界面活性剤、シリコーン系界面活性剤、含フッ素熱分解性界面活性剤、ポリエーテル変性シロキサン系界面活性剤が好ましい。 Among these, fluorine-based surfactants, silicone-based surfactants, and fluorine-containing thermally decomposable interfaces are used from the viewpoint of suppressing poor coating properties such as repellency and reducing surface tension to suppress unevenness during drying of the coating film. An active agent, a polyether-modified siloxane-based surfactant, is preferred.
 フッ素系界面活性剤の市販品としては、例えば、“メガファック”(登録商標)F142D、同F172、同F173、同F183、同F445、同F470、同F475、同F477(以上、DIC(株)製)、NBX-15、FTX-218((株)ネオス製)などが挙げられる。 Commercially available fluorosurfactants include, for example, "Megafac" (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (manufactured by DIC Corporation). ), NBX-15, FTX-218 (manufactured by Neos Co., Ltd.) and the like.
 シリコーン系界面活性剤の市販品としては、例えば、“BYK”(登録商標)-333、BYK-301、BYK-331、BYK-345、BYK-307(ビックケミー・ジャパン(株)製)などが挙げられる。 Examples of commercially available silicone-based surfactants include "BYK" (registered trademark)-333, BYK-301, BYK-331, BYK-345, and BYK-307 (manufactured by BYK-Chemie Japan Co., Ltd.). be done.
 含フッ素熱分解性界面活性剤の市販品としては、例えば、“メガファック”(登録商標)DS-21(DIC(株)製)などが挙げられる。シリコーン変性アクリル系界面活性剤の市販品としては、例えば、“BYK”(登録商標)-3550(ビックケミー・ジャパン(株)製)などが挙げられる。 Commercially available fluorine-containing thermally decomposable surfactants include, for example, "Megafac" (registered trademark) DS-21 (manufactured by DIC Corporation). Examples of commercially available silicone-modified acrylic surfactants include “BYK” (registered trademark)-3550 (manufactured by BYK-Chemie Japan Co., Ltd.).
 ポリエーテル変性シロキサン系界面活性剤の市販品としては、例えば、“BYK”(登録商標)-345、BYK-346、BYK-347、BYK-348、BYK-349(以上、ビックケミー・ジャパン(株)製)、“シルフェイス”(登録商標)SAG002、同SAG005、同SAG0503A、同SAG008(以上、日信化学工業(株)製)などが挙げられる。 Commercially available polyether-modified siloxane-based surfactants include, for example, “BYK” (registered trademark)-345, BYK-346, BYK-347, BYK-348, BYK-349 (manufactured by BYK-Chemie Japan Co., Ltd.). (manufactured by Nissin Kagaku Kogyo Co., Ltd.), and "Silface" (registered trademark) SAG002, SAG005, SAG0503A and SAG008 (manufactured by Nissin Chemical Industry Co., Ltd.).
 本発明の感光性樹脂組成物は、分散剤を含有してもよい。分散剤としては、例えば、ポリアクリル酸系分散剤、ポリカルボン酸系分散剤、リン酸系分散剤、シリコーン系分散剤などが挙げられる。 The photosensitive resin composition of the present invention may contain a dispersant. Examples of dispersants include polyacrylic acid-based dispersants, polycarboxylic acid-based dispersants, phosphoric acid-based dispersants, and silicone-based dispersants.
 本発明の感光性樹脂組成物は、(A)シロキサン樹脂以外の樹脂を含有してもよく、例えば、アクリル樹脂やエポキシ樹脂等を含有してもよい。 The photosensitive resin composition of the present invention may contain (A) a resin other than the siloxane resin, such as an acrylic resin or an epoxy resin.
 さらに、本発明の感光性樹脂組成物は、必要に応じて、先に挙げた以外の成分として架橋剤、架橋促進剤、増感剤、熱ラジカル発生剤、溶解抑止剤、安定剤、消泡剤等の添加剤を含有することもできる。 Furthermore, the photosensitive resin composition of the present invention may optionally contain components other than those listed above such as a cross-linking agent, a cross-linking accelerator, a sensitizer, a thermal radical generator, a dissolution inhibitor, a stabilizer, and an antifoaming agent. Additives such as agents can also be contained.
 次に、本発明の感光性樹脂組成物の製造方法について説明する。本発明の感光性樹脂組成物の製造方法としては、(A)シロキサン樹脂、(B)金属化合物粒子、(C)感光剤、(D)縮合多環式芳香族基を有するオルガノシラン化合物、(E)有機溶媒、および必要に応じてその他成分を撹拌・混合する方法が一般的である。 Next, the method for producing the photosensitive resin composition of the present invention will be explained. The method for producing the photosensitive resin composition of the present invention includes (A) a siloxane resin, (B) metal compound particles, (C) a photosensitive agent, (D) an organosilane compound having a condensed polycyclic aromatic group, ( E) A common method is to stir and mix an organic solvent and, if necessary, other components.
 次に、本発明の感光性樹脂組成物から硬化膜、および、マイクロレンズ(マイクロレンズアレイを含む)を製造する方法について、例を挙げて説明する。 Next, a method for producing a cured film and a microlens (including a microlens array) from the photosensitive resin composition of the present invention will be described with examples.
 [乾燥膜の形成]
 乾燥膜の形成までは、硬化膜、マイクロレンズ共通の工程である。
[Formation of dry film]
The processes up to the formation of the dry film are common to the cured film and the microlens.
 乾燥膜の形成は、感光性樹脂組成物を基材上に塗布する工程を経て行われる。 The formation of the dry film is carried out through the process of applying the photosensitive resin composition onto the substrate.
 まず、感光性樹脂組成物をガラス基板上、シリコンウエハ基板上、またはガラス基板およびシリコンウエハ上に製膜された樹脂層上に塗布して、塗膜を得る。 First, a coating film is obtained by coating a photosensitive resin composition on a glass substrate, a silicon wafer substrate, or a resin layer formed on a glass substrate and a silicon wafer.
 このとき用いられる感光性樹脂組成物の塗布方法としては、例えば、スピンナーを用いた回転塗布、スプレー塗布、インクジェット塗布、ディスペンサー塗布、ダイコーティング、ロールコーティングなどが挙げられる。塗膜の膜厚は、塗布方法等によって適宜選択することができる。乾燥後の膜厚を1~150μmとすることが一般的である。 Examples of the method of applying the photosensitive resin composition used at this time include spin coating using a spinner, spray coating, inkjet coating, dispenser coating, die coating, and roll coating. The film thickness of the coating film can be appropriately selected depending on the coating method and the like. The film thickness after drying is generally 1 to 150 μm.
 次に、得られた塗膜を乾燥して、乾燥膜を得る。乾燥方法としては、例えば、加熱乾燥、風乾、減圧乾燥、赤外線照射等が挙げられる。加熱乾燥装置としては、例えば、オーブン、ホットプレートなどが挙げられる。乾燥温度は50~160℃が好ましく、乾燥時間は1分間~数時間が好ましい。 Next, the obtained coating film is dried to obtain a dry film. Examples of the drying method include heat drying, air drying, reduced pressure drying, and infrared irradiation. Examples of heat drying devices include ovens and hot plates. The drying temperature is preferably 50 to 160° C., and the drying time is preferably 1 minute to several hours.
 [硬化膜の形成]
 硬化膜の形成は、次に示す露光する工程を経て行われることが好ましい。すなわち、上記で得られた乾燥膜にPLA等の紫外可視露光機を用いて、全面に100~20,000J/m程度(波長365nm露光量換算)露光(以降、ブリーチング露光と記す)することが好ましい。ブリーチング露光を行うことによって、乾燥膜中に残存する未反応のナフトキノンジアジド化合物を光分解して、得られる硬化膜の透明性をより向上させることができる。
[Formation of cured film]
Formation of the cured film is preferably carried out through the following exposure step. That is, the dried film obtained above is exposed (hereinafter referred to as bleaching exposure) to about 100 to 20,000 J/m 2 (converted to a wavelength of 365 nm) using an ultraviolet-visible exposure machine such as PLA. is preferred. The bleaching exposure photolyzes the unreacted naphthoquinonediazide compound remaining in the dry film, thereby further improving the transparency of the resulting cured film.
 ブリーチングした乾燥膜を、ホットプレート、オーブン等の加熱装置で100~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、硬化膜を得ることができる。 A cured film can be obtained by heating (curing) the bleached dry film in a temperature range of 100 to 450°C for about 30 seconds to 2 hours with a heating device such as a hot plate or an oven.
 [マイクロレンズの形成]
 マイクロレンズの製造方法は、上記の感光性樹脂組成物を基材上に塗布する工程を経て得られた乾燥膜を、露光する工程、現像する工程および直径10μm以上50μm以下のマイクロレンズを形成する工程を経て行われる。
[Formation of microlens]
A microlens manufacturing method includes steps of exposing and developing a dry film obtained through the step of applying the photosensitive resin composition onto a substrate, and forming microlenses having a diameter of 10 μm or more and 50 μm or less. It is done through the process.
 (露光する工程)
 上記で得られた乾燥膜に、所望のパターンを有するマスクを介して化学線を照射(露光)して、露光膜を得る。このような露光操作を、パターニング露光という。パターニング露光において照射する化学線としては、例えば、紫外線、可視光線、電子線、X線などが挙げられる。本発明の感光性樹脂組成物に対しては、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)等の紫外可視露光機を用い、所望のマスクを介して10~10、000J/m程度(波長365nm露光量換算)の条件でパターニング露光することが好ましい。
(Process of exposing)
The dry film obtained above is irradiated (exposed) with actinic rays through a mask having a desired pattern to obtain an exposed film. Such an exposure operation is called patterning exposure. Actinic rays for patterning exposure include, for example, ultraviolet rays, visible rays, electron beams, and X-rays. For the photosensitive resin composition of the present invention, a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA) or other UV-visible exposure machine is used, and the exposure is 10 to 10,000 J through a desired mask. It is preferable to carry out patterning exposure under the condition of about /m 2 (converted to a wavelength of 365 nm exposure amount).
 (現像する工程)
 得られた露光膜を、アルカリ性現像液等を用いて現像することにより露光部を除去し、マイクロレンズの素となる、前記パターンに基づき2次元に配列された、感光性樹脂組成物の複数の柱状体を得る。なお、かかる2次元に配列された感光性樹脂組成物の柱状体の配列パターンについては特に限定されず、検出対象に応じた配列間隔と柱状体の底面のサイズと底面の形状を設定すればよい。これらは、前記マスクのパターンにより任意に設定することが可能である。アルカリ性現像液に用いられるアルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類;エチルアミン、n-プロピルアミン等の1級アミン類;ジエチルアミン、ジ-n-プロピルアミン等の2級アミン類;トリエチルアミン、メチルジエチルアミン等の3級アミン類;テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類、コリン等の4級アンモニウム塩;トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール、ジエチルアミノエタノール等のアルコールアミン類;ピロール、ピペリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノナン、モルホリン等の環状アミン類等の有機アルカリ類が挙げられる。
(Process of developing)
The obtained exposed film is developed using an alkaline developer or the like to remove the exposed portions, and a plurality of photosensitive resin compositions arranged two-dimensionally based on the pattern, which are the base of the microlenses, are formed. Get a column. The arrangement pattern of the two-dimensionally arranged columns of the photosensitive resin composition is not particularly limited, and the arrangement interval and the size and shape of the bottoms of the columns may be set according to the object to be detected. . These can be arbitrarily set by the pattern of the mask. Examples of alkaline compounds used in the alkaline developer include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia; ethylamine, n-propylamine, and the like. secondary amines such as diethylamine and di-n-propylamine; tertiary amines such as triethylamine and methyldiethylamine; tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH), choline quaternary ammonium salts such as; alcohol amines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol and diethylaminoethanol; Examples include organic alkalis such as cyclic amines such as 1,5-diazabicyclo[4,3,0]-5-nonane and morpholine.
 アルカリ性現像液におけるアルカリ性化合物の濃度は0.01~50重量%が一般的であり、0.02~3重量%が好ましい。また、現像後のパターン形状をより良好なものとするため、非イオン系界面活性剤等の界面活性剤を0.1~5重量%添加しても構わない。さらに現像液がアルカリ水溶液の場合には、現像液にエタノール、γ-ブチロラクトン、ジメチルホルムアミド、N-メチル-2-ピロリドン等の水溶性有機溶媒を添加しても構わない。 The concentration of the alkaline compound in the alkaline developer is generally 0.01-50% by weight, preferably 0.02-3% by weight. In order to improve the pattern shape after development, a surfactant such as a nonionic surfactant may be added in an amount of 0.1 to 5% by weight. Furthermore, when the developer is an alkaline aqueous solution, a water-soluble organic solvent such as ethanol, γ-butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone, etc. may be added to the developer.
 現像方法としては、例えば、浸漬法、スプレー法、パドル法などが挙げられる。得られたパターンに、純水等を用いてリンス洗浄をしても構わない。 Examples of developing methods include immersion, spray, and paddle methods. The obtained pattern may be rinsed with pure water or the like.
 その後、得られたパターンをPLA等の紫外可視露光機を用いて、全面に100~20,000J/m程度(波長365nm露光量換算)露光(ブリーチング露光)することが好ましい。ブリーチング露光を行うことによって、現像膜中に残存する未反応のナフトキノンジアジド化合物を光分解して、得られるマイクロレンズの透明性をより向上させることができる。 Thereafter, the obtained pattern is preferably exposed (bleaching exposure) to the entire surface at about 100 to 20,000 J/m 2 (converted to a wavelength of 365 nm) using an ultraviolet-visible exposure machine such as PLA. By performing bleaching exposure, the unreacted naphthoquinonediazide compound remaining in the developed film is photolyzed, and the transparency of the resulting microlens can be further improved.
 (直径10μm以上50μm以下のマイクロレンズを形成する工程)
 ブリーチング露光したパターンを、ホットプレート、オーブン等の加熱装置で100~450℃の温度範囲で30秒~2時間程度加熱(キュア)することで、感光性樹脂組成物の柱状体を溶融させ、溶融状態の感光性樹脂組成物の表面張力により、流動することで直径10μm以上50μm以下のマイクロレンズの形状を形成することができる。また、溶融状態における適度な流動により隣接するマイクロレンズ間の距離が非常に小さい場合であっても隣接する柱状体が結合してしまうことなく独立して配列したマイクロレンズを形成することができる。マイクロレンズの側断面形状(レンズの曲率半径)については、感光性樹脂組成物の柱状体の底面積と体積との比率を適宜設定することにより、任意に調整が可能である。これらは、前記マスクのパターン(柱状体の底面積)と前述の乾燥膜の厚みにより任意に設定することが可能である。
(Step of forming a microlens with a diameter of 10 μm or more and 50 μm or less)
The pattern exposed by bleaching is heated (cured) in a temperature range of 100 to 450° C. for about 30 seconds to 2 hours with a heating device such as a hot plate or an oven to melt the columnar bodies of the photosensitive resin composition, Due to the surface tension of the molten photosensitive resin composition, it is possible to form microlenses having a diameter of 10 μm or more and 50 μm or less by flowing. In addition, even when the distance between adjacent microlenses is very small, independent arrayed microlenses can be formed without the adjacent columnar bodies being combined due to moderate flow in the molten state. The side cross-sectional shape (curvature radius of the lens) of the microlens can be arbitrarily adjusted by appropriately setting the ratio between the bottom area and the volume of the columnar body of the photosensitive resin composition. These can be arbitrarily set according to the pattern of the mask (the bottom area of the columnar body) and the thickness of the dry film.
 本発明の感光性樹脂組成物は、有機EL発光素子及び表示素子等の発光素子に好適に用いられる。より具体的には、有機EL素子に、光の取り出し効率向上を目的として形成される硬化膜やマイクロレンズ等が挙げられる。 The photosensitive resin composition of the present invention is suitably used for light-emitting devices such as organic EL light-emitting devices and display devices. More specifically, a cured film, a microlens, and the like formed in the organic EL device for the purpose of improving light extraction efficiency can be mentioned.
 本発明の感光性樹脂組成物を硬化させてなる硬化物からなる、硬化膜またマイクロレンズは、固体撮像素子に好適に用いられる。より具体的には、固体撮像素子等に形成される集光用マイクロレンズ、白色(透明)カラーフィルターや光導波路、光学フィルターとして設置される反射防止膜等に、硬化膜またマイクロレンズを用いることが挙げられる。これらの中でも、高い屈折率と透明性を有するとともに、直径10μm以上のサイズの大きいマイクロレンズにおいても、レンズ形状を形成することが可能なことから、本発明の感光性樹脂組成物を硬化させてなる硬化物からなる、硬化膜またマイクロレンズは、指紋認証装置における固体撮像素子上に形成される集光用マイクロレンズして特に好適に用いられる。OLEDディスプレイを搭載するスマートフォンに適用される指紋認証装置の場合、ペンタイルやストライプ状に配列されるOLEDの表示素子の下部に、前記OLEDの表示素子のサブピクセル間の隙間に位置するように均一な形状の複数のマイクロレンズを、2次元に配置することが好ましい。 A cured film or a microlens made of a cured product obtained by curing the photosensitive resin composition of the present invention is suitably used for a solid-state imaging device. More specifically, a cured film or a microlens can be used for a light-collecting microlens formed in a solid-state imaging device or the like, a white (transparent) color filter, an optical waveguide, an antireflection film installed as an optical filter, or the like. is mentioned. Among these, it has a high refractive index and transparency, and it is possible to form a lens shape even in a large microlens with a diameter of 10 μm or more. A cured film or a microlens made of the cured product is particularly suitably used as a light-condensing microlens formed on a solid-state imaging device in a fingerprint authentication device. In the case of a fingerprint authentication device applied to a smartphone equipped with an OLED display, uniform fingerprints are placed under the OLED display elements arranged in pentiles or stripes so as to be positioned in the gaps between the sub-pixels of the OLED display elements. It is preferable to arrange a plurality of shaped microlenses two-dimensionally.
 2次元に配置されたマイクロレンズ群をマイクロレンズアレイと呼ぶ。マイクロレンズアレイを構成するマイクロレンズは波長633nmにおける屈折率が1.60以上1.80以下であることが好ましい。また、マイクロレンズの直径は、10μm以上50μm以下であり、マイクロレンズ間のスペース距離が0.01μm以上で5.0μm以下であることがより好ましい。 A group of microlenses arranged two-dimensionally is called a microlens array. The microlenses forming the microlens array preferably have a refractive index of 1.60 or more and 1.80 or less at a wavelength of 633 nm. More preferably, the diameter of the microlens is 10 μm or more and 50 μm or less, and the space distance between the microlenses is 0.01 μm or more and 5.0 μm or less.
 また、本発明のマイクロレンズアレイにおいてマイクロレンズは、以下の(A)~(D)を含む感光性樹脂組成物を硬化させてなる硬化物からなることが好ましい。
(A)ジフェニル基を有するオルガノシラン単位を含有する、シロキサン樹脂
(B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、
チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物と、ケイ素化合物との、複合金属化合物粒子
(C)感光剤
(D)縮合多環式芳香族基を有する、オルガノシラン化合物
 本発明のマイクロレンズアレイは、前述の通り指紋認証装置に好適に用いられる。
In the microlens array of the present invention, the microlenses are preferably made of a cured product obtained by curing a photosensitive resin composition containing (A) to (D) below.
(A) a siloxane resin containing an organosilane unit having a diphenyl group; (B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or ,
Composite metal compound particles of at least one metal compound and silicon compound selected from the group consisting of titanium compounds, zirconium compounds, tin compounds and aluminum compounds (C) photosensitive agent (D) condensed polycyclic aromatic group The microlens array of the present invention is suitable for use in a fingerprint authentication device as described above.
 本発明の感光性樹脂組成物は、パターニング後のキュア処理により、溶融状態の感光性樹脂組成物が適度に流動し、隣接するマイクロレンズ間の距離が非常に小さいマイクロレンズを形成することが可能であるため、エッチングが不要であり作業の簡略化が可能であり、エッチング薬液やプラズマによる配線部の劣化も回避することができる。 When the photosensitive resin composition of the present invention is subjected to a curing treatment after patterning, the molten photosensitive resin composition flows moderately, making it possible to form microlenses with a very small distance between adjacent microlenses. Therefore, etching is unnecessary, the work can be simplified, and deterioration of the wiring portion due to the etching chemical or plasma can be avoided.
 以下、実施例および比較例を用いて、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。合成例および実施例に用いた化合物のうち、略語を使用しているものについて、以下に示す。 The present invention will be described in more detail below using examples and comparative examples, but the present invention is not limited to the following examples. Among the compounds used in Synthesis Examples and Examples, those using abbreviations are shown below.
 DAA:ダイアセトンアルコール
 EAA:アセト酢酸エチル
 また評価方法においては、評価n数の記載がないものは、n=1の評価であり、評価および合成等の各条件において温度が特定されていないものは室温下での実施である。
DAA: Diacetone alcohol EAA: Ethyl acetoacetate In the evaluation method, if the evaluation n number is not described, the evaluation is n = 1, and if the temperature is not specified in each condition such as evaluation and synthesis It is carried out at room temperature.
 <評価方法>
 「マイクロレンズの形状」
 8インチシリコンウェハー基板上にシロキサン樹脂およびシリカ粒子を含有する架橋物からなる膜厚が5μmの透明樹脂層を特開2019-214492号の実施例8に示される方法で製膜した基板(以下、「樹脂層製膜基板」と記載する。)を準備した。
<Evaluation method>
"Microlens shape"
A substrate obtained by forming a transparent resin layer having a thickness of 5 μm made of a crosslinked product containing siloxane resin and silica particles on an 8-inch silicon wafer substrate by the method described in Example 8 of JP-A-2019-214492 (hereinafter referred to as (referred to as "resin layer film-formed substrate") was prepared.
 樹脂層製膜基板上に、各実施例および比較例により得られた感光性樹脂組成物をMark-7(東京エレクトロン(株)製)を用いて、スピン塗布と110℃で3分間の乾燥を行い、乾燥膜を作製した。 Using Mark-7 (manufactured by Tokyo Electron Co., Ltd.), the photosensitive resin composition obtained in each example and comparative example was spin-coated on the resin layer-coated substrate and dried at 110° C. for 3 minutes. to prepare a dry film.
 i線ステッパー((株)ニコン社製NSR-2009i9C)を用いて、サークル(直径10μm、20μm、30μm、40μm)/スペース(2μm)を有するレチクルを介して得られた乾燥膜をパターニング露光した後、Mark-7(東京エレクトロン(株)製)を用いて2.38重量%TMAH水溶液で120秒間シャワー現像し、次いで水で30秒間リンスし現像後膜を作製した。 Using an i-line stepper (NSR-2009i9C manufactured by Nikon Corporation), the obtained dry film was patterned and exposed through a reticle having a circle (diameter of 10 μm, 20 μm, 30 μm, 40 μm)/space (2 μm). , Mark-7 (manufactured by Tokyo Electron Co., Ltd.), shower development was performed with a 2.38% by weight TMAH aqueous solution for 120 seconds, and then rinsed with water for 30 seconds to prepare a film after development.
 その後、ブリーチング露光として、PLA(キヤノン(株)製PLA-501F)を用いて、膜全面に超高圧水銀灯を500mJ(波長365nm露光量換算)露光した。 After that, as bleaching exposure, PLA (PLA-501F manufactured by Canon Inc.) was used to expose the entire surface of the film to an ultra-high pressure mercury lamp at 500 mJ (converted to a wavelength of 365 nm exposure).
 その後、オーブンを用いて200℃で30分間キュアして膜厚5.0μmのマイクロレンズを作製した。各マイクロレンズについて、FE-SEM(日立(株)製S-4800)を用いて断面を観察し、底面の直径がそれぞれ10μm、20μm、30μm、40μmの断面形状を確認し、パターン形成の状況を評価した。断面形状については、図1のような形状をマイクロレンズの形状を有しているもの、図2のような形状をマイクロレンズの形状を有していないものと判定し、工業的利用の観点から、AおよびBを合格とした。
A:10μm、20μm、30μm、40μm全てのパターンで断面形状がマイクロレンズ形状を有している
B:10μm、20μmのパターンで断面形状がマイクロレンズ形状を有しているが、30μm、40μmのパターンで断面形状がマイクロレンズ形状を有していない
C:10μm、20μm、30μm、40μm全てのパターンで断面形状がマイクロレンズ形状を有していない。
After that, it was cured at 200° C. for 30 minutes using an oven to fabricate a microlens with a film thickness of 5.0 μm. The cross-section of each microlens was observed using an FE-SEM (S-4800 manufactured by Hitachi, Ltd.), and the cross-sectional shapes with bottom diameters of 10 μm, 20 μm, 30 μm, and 40 μm were confirmed, and the state of pattern formation was observed. evaluated. Regarding the cross-sectional shape, the shape shown in FIG. 1 is judged to have a microlens shape, and the shape shown in FIG. 2 is judged to have no microlens shape. , A and B were accepted.
A: All patterns of 10 μm, 20 μm, 30 μm, and 40 μm have microlens cross-sectional shapes. B: Patterns of 10 μm and 20 μm have microlens cross-sectional shapes, but patterns of 30 μm and 40 μm have microlens shapes. C: 10 μm, 20 μm, 30 μm, and 40 μm all of the patterns do not have a microlens shape in cross section.
 「屈折率」
 8インチシリコンウェハー基板上に、各実施例および比較例により得られた感光性樹脂組成物をMark-7を用いて、スピン塗布と110℃で3分間の乾燥を行い、乾燥膜を作製した。
"refractive index"
Using Mark-7, the photosensitive resin composition obtained in each example and comparative example was spin-coated on an 8-inch silicon wafer substrate and dried at 110° C. for 3 minutes to prepare a dry film.
 その後、ブリーチング露光として、PLAを用いて、膜全面に超高圧水銀灯を500mJ(波長365nm露光量換算)露光した。 After that, as bleaching exposure, PLA was used to expose the entire surface of the film to an ultra-high pressure mercury lamp at 500 mJ (converted to a wavelength of 365 nm exposure).
 その後、オーブンを用いて200℃で30分間キュアして膜厚1.0μmの硬化膜を作製した。各硬化膜について、大塚電子(株)製分光エリプソメータFE5000を用いて、22℃での550nmにおける屈折率を測定した。 After that, it was cured at 200°C for 30 minutes using an oven to prepare a cured film with a film thickness of 1.0 µm. For each cured film, the refractive index at 22° C. and 550 nm was measured using a spectroscopic ellipsometer FE5000 manufactured by Otsuka Electronics Co., Ltd.
 「解像度」
 上記のレンズ形状評価と同様の方法にて作成した樹脂層製膜基板上に、各実施例および比較例により得られた感光性樹脂組成物をMark-7を用いて、スピン塗布と110℃で3分間の乾燥を行い、乾燥膜を作製した。
"resolution"
On the resin layer film-coated substrate prepared by the same method as the above lens shape evaluation, the photosensitive resin composition obtained in each example and comparative example was spin-coated using Mark-7 and at 110 ° C. Drying was performed for 3 minutes to prepare a dry film.
 i線ステッパーを用いて、パターニング露光した後、Mark-7を用いて2.38重量%TMAH水溶液で120秒間シャワー現像し、次いで水で30秒間リンスし現像後膜を作製した。 After patterning exposure using an i-line stepper, the film was subjected to shower development with a 2.38% by weight TMAH aqueous solution using Mark-7 for 120 seconds and then rinsed with water for 30 seconds to prepare a post-development film.
 その後、ブリーチング露光として、PLAを用いて、膜全面に超高圧水銀灯を500mJ(波長365nm露光量換算)露光した。 After that, as bleaching exposure, PLA was used to expose the entire surface of the film to an ultra-high pressure mercury lamp at 500 mJ (converted to a wavelength of 365 nm exposure).
 その後、オーブンを用いて200℃で30分間キュアして膜厚5.0μmのマイクロレンズを作製した。各マイクロレンズについて、最適露光量におけるキュア後の最小パターン寸法を解像度とし、工業的利用の観点から、AおよびBを合格とした。
A:解像度5μm未満
B:解像度5μm以上10μm未満
C:解像度10μm以上
 「高温高湿耐性」
 上記のレンズ形状評価と同様の方法にて作成した樹脂層製膜基板上に、各実施例および比較例により得られた感光性樹脂組成物をMark-7を用いて、スピン塗布と110℃で3分間の乾燥を行い、乾燥膜を作製した。
After that, it was cured at 200° C. for 30 minutes using an oven to fabricate a microlens with a film thickness of 5.0 μm. For each microlens, the minimum pattern dimension after curing at the optimum exposure dose was defined as the resolution, and from the viewpoint of industrial use, A and B were accepted.
A: Resolution less than 5 μm B: Resolution 5 μm or more and less than 10 μm C: Resolution 10 μm or more “High temperature and high humidity resistance”
On the resin layer film-coated substrate prepared by the same method as the above lens shape evaluation, the photosensitive resin composition obtained in each example and comparative example was spin-coated using Mark-7 and at 110 ° C. Drying was performed for 3 minutes to prepare a dry film.
 その後、ブリーチング露光として、PLAを用いて、膜全面に超高圧水銀灯を500mJ(波長365nm露光量換算)露光した。その後、オーブンを用いて200℃で30分間キュアして膜厚5.0μmの硬化膜を作製した。 After that, as bleaching exposure, PLA was used to expose the entire surface of the film to an ultra-high pressure mercury lamp at 500 mJ (converted to a wavelength of 365 nm exposure). Then, it was cured at 200° C. for 30 minutes using an oven to prepare a cured film having a thickness of 5.0 μm.
 得られた硬化膜を85℃/85%の条件で、高温高湿試験機(商品名「Q-Sun」、Q-Lab社製)に240時間試験投入した後、樹脂層製膜基板上に製膜された硬化膜について密着性を評価した。すなわち、樹脂層製膜基板上の硬化膜表面に、カッターナイフでシリコンウェハーの素地に到達するように、直交する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。切られた硬化膜表面にセロハン粘着テープ(幅=18mm、粘着力=3.7N/10mm)を張り付け、消しゴム(JIS S6050合格品)で擦って密着させ、テープの一端を持ち、板に直角に保ち瞬間的に剥離した際のマス目の残存数を目視によって計数した。マス目の剥離面積により以下のように判定し、4Bおよび5Bを合格とした。
5B:剥離面積=0%
4B:剥離面積=0%を超え5%未満
3B:剥離面積=5%以上15%未満
2B:剥離面積=15%以上35%未満
1B:剥離面積=35%以上65%未満
0B:剥離面積=65%以上100%未満。
The resulting cured film was put into a high-temperature and high-humidity tester (trade name “Q-Sun”, manufactured by Q-Lab) under conditions of 85° C./85% for 240 hours. Adhesion was evaluated for the formed cured film. That is, on the surface of the cured film on the resin layer-formed substrate, 11 vertical and horizontal parallel straight lines were drawn at intervals of 1 mm with a cutter knife so as to reach the substrate of the silicon wafer, and a grid of 1 mm × 1 mm was formed. 100 were produced. A cellophane adhesive tape (width = 18 mm, adhesive strength = 3.7 N/10 mm) is attached to the surface of the cut cured film, rubbed with an eraser (JIS S6050 acceptable product) to adhere, hold one end of the tape, and perpendicular to the plate. The number of remaining squares when the sheet was held and instantaneously peeled off was visually counted. The peeling area of the squares was evaluated as follows, and 4B and 5B were accepted.
5B: Peeling area = 0%
4B: peeling area = more than 0% and less than 5% 3B: peeling area = 5% or more and less than 15% 2B: peeling area = 15% or more and less than 35% 1B: peeling area = 35% or more and less than 65% 0B: peeling area = 65% or more and less than 100%.
 〔合成例1〕
 500mLの三口フラスコにDAAを171.85g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを76.15g(0.48mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)、ジフェニルシランジオールを8.65g(0.05mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水42.05gにリン酸0.72g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計96g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-1)を得た。
[Synthesis Example 1]
171.85 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 76.15 g (0.48 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) of diphenylsilanediol and 8.65 g (0.05 mol) of diphenylsilanediol were charged, and 0.72 g of phosphoric acid (0.05 mol) of phosphoric acid was added to 42.05 g of water while stirring in an oil bath at 40°C. .5% by weight) was added with a dropping funnel over 10 minutes. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 96 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-1).
 〔合成例2〕
 500mLの三口フラスコにDAAを175.08g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを68.22g(0.43mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)、ジフェニルシランジオールを17.30g(0.10mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水39.89gにリン酸0.71g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計91g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-2)を得た。
[Synthesis Example 2]
175.08 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 68.22 g (0.43 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) of diphenylsilanediol and 17.30 g (0.10 mol) of diphenylsilanediol were placed in an oil bath at 40°C and stirred while adding 0.71 g of phosphoric acid (0.07 mol) to 39.89 g of water. .5% by weight) was added with a dropping funnel over 10 minutes. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 91 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-2).
 〔合成例3〕
 500mLの三口フラスコにDAAを181.56g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを52.35g(0.33mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)、ジフェニルシランジオールを34.61g(0.20mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水35.57gにリン酸0.73g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計81g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-3)を得た。
[Synthesis Example 3]
181.56 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 52.35 g (0.33 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) of diphenylsilanediol and 34.61 g (0.20 mol) of diphenylsilanediol were placed in an oil bath at 40°C and stirred while adding 0.73 g of phosphoric acid to 35.57 g of water. .5% by weight) was added with a dropping funnel over 10 minutes. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 81 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-3).
 〔合成例4〕
 500mLの三口フラスコにDAAを188.03g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを36.49g(0.23mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)、ジフェニルシランジオールを51.91g(0.30mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水31.25gにリン酸0.73g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計71g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-4)を得た。
[Synthesis Example 4]
188.03 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 36.49 g (0.23 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) of diphenylsilanediol and 51.91 g (0.30 mol) of diphenylsilanediol were placed in an oil bath at 40°C and stirred while adding 0.73 g of phosphoric acid to 31.25 g of water. .5% by weight) was added with a dropping funnel over 10 minutes. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 71 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-4).
 〔合成例5〕
 500mLの三口フラスコにDAAを194.51g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを20.62g(0.13mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)、ジフェニルシランジオールを69.22g(0.40mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水26.93gにリン酸0.74g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計61g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-5)を得た。
[Synthesis Example 5]
194.51 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 20.62 g (0.13 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) of diphenylsilanediol and 69.22 g (0.40 mol) of diphenylsilanediol were placed in an oil bath at 40°C and stirred while adding 0.74 g of phosphoric acid (0.07 mol) to 26.93 g of water. .5% by weight) was added with a dropping funnel over 10 minutes. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 61 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-5).
 〔合成例6〕
 500mLの三口フラスコにDAAを168.61g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを84.08g(0.53mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水44.21gにリン酸0.71g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計101g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-6)を得た。
[Synthesis Example 6]
168.61 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 84.08 g (0.53 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) was charged, and while being immersed in an oil bath at 40°C and stirred, a phosphoric acid aqueous solution in which 0.71 g of phosphoric acid (0.5% by weight based on the charged monomer) was dissolved in 44.21 g of water was added dropwise. Add over 10 minutes on the funnel. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 101 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-6).
 〔合成例7〕
 500mLの三口フラスコにDAAを158.57g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを52.35g(0.33mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)、ジメチルジメトキシシランを19.24g(0.20mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水35.57gにリン酸0.65g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計81g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-7)を得た。
[Synthesis Example 7]
158.57 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 52.35 g (0.33 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) of dimethyldimethoxysilane and 19.24 g (0.20 mol) of dimethyldimethoxysilane were placed in an oil bath at 40°C and stirred while adding 0.65 g of phosphoric acid to 35.57 g of water. .5% by weight) was added with a dropping funnel over 10 minutes. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 81 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-7).
 〔合成例8〕
 500mLの三口フラスコにDAAを189.22g、メチルトリメトキシシランを43.58g(0.40mol)、フェニルトリメトキシシランを52.35g(0.33mol)、3-トリメトキシシリルプロピルコハク酸を14.69g(0.07mol)、ナフチルトリメトキシシランを39.74g(0.20mol)仕込み、40℃のオイルバスに漬けて撹拌しながら、水35.57gにリン酸0.75g(仕込みモノマに対して0.5重量%)を溶かしたリン酸水溶液を滴下ロートで10分間かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール及び水が合計81g留出した。得られたポリシロキサンのDAA溶液に、固形分濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(PS-8)を得た。
[Synthesis Example 8]
189.22 g of DAA, 43.58 g (0.40 mol) of methyltrimethoxysilane, 52.35 g (0.33 mol) of phenyltrimethoxysilane, and 14 g of 3-trimethoxysilylpropylsuccinic acid were placed in a 500 mL three-necked flask. 69 g (0.07 mol) of naphthyltrimethoxysilane and 39.74 g (0.20 mol) of naphthyltrimethoxysilane were placed in an oil bath at 40°C and stirred while adding 0.75 g of phosphoric acid to 35.57 g of water. 0.5% by weight) was added with a dropping funnel over 10 minutes. After stirring at 40° C. for 1 hour, the temperature of the oil bath was set to 70° C., stirring was continued for 1 hour, and the temperature of the oil bath was increased to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.). A total of 81 g of methanol and water, which are by-products, were distilled during the reaction. DAA was added to the obtained polysiloxane DAA solution so that the solid content concentration was 40% by mass to obtain a siloxane resin solution (PS-8).
 〔合成例9〕
 酸化スズ、酸化チタン、酸化ケイ素の複合粒子である”ナノユース”(登録商標)OT-RB300M7-20(濃度30重量%メタノール分散液)500gを、ロータリーエバポレーターを用いて圧力150mbarでDAAを添加しながら溶媒置換を行った。さらに、固形分濃度が40重量%になるようロータリーエバポレーターを用いて圧力20mbarで濃縮し、金属化合物粒子分散液(T-1)を得た。
[Synthesis Example 9]
500 g of "Nanouse" (registered trademark) OT-RB300M7-20 (concentration of 30% by weight methanol dispersion), which is a composite particle of tin oxide, titanium oxide, and silicon oxide, was added using a rotary evaporator at a pressure of 150 mbar while adding DAA. Solvent replacement was performed. Furthermore, it was concentrated at a pressure of 20 mbar using a rotary evaporator so that the solid content concentration became 40% by weight, to obtain a metal compound particle dispersion (T-1).
 〔合成例10〕
 乾燥窒素気流下、Ph-cc-AP-MF(商品名、本州化学工業(株)製)15.32g(0.05mol)と5-ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4-ジオキサン450gに溶解させた。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン15.58g(0.154mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、濾液を水に投入した。その後、析出した沈殿を濾取した。この沈殿を真空乾燥機で乾燥させ、下記構造のナフトキノンジアジド化合物(QD-1)を得た。
[Synthesis Example 10]
Under a stream of dry nitrogen, 15.32 g (0.05 mol) of Ph-cc-AP-MF (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 37.62 g (0.14 mol) of 5-naphthoquinonediazide sulfonyl chloride were mixed together. , 4-dioxane 450 g. To this, 15.58 g (0.154 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the inside of the system did not reach 35° C. or higher. After dropping, the mixture was stirred at 30°C for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. After that, the deposited precipitate was collected by filtration. This precipitate was dried in a vacuum dryer to obtain a naphthoquinonediazide compound (QD-1) having the following structure.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 〔合成例11〕
 乾燥窒素気流下、TrisP-HAP(商品名、本州化学工業(株)製)15.32g(0.05mol)と5-ナフトキノンジアジドスルホニル酸クロリド22.84g(0.085mol)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合させたトリエチルアミン9.46g(0.0935mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入した。その後、析出した沈殿を濾取した。この沈殿を真空乾燥機で乾燥させ、下記構造のナフトキノンジアジド化合物(QD-2)を得た。
[Synthesis Example 11]
Under a stream of dry nitrogen, 15.32 g (0.05 mol) of TrisP-HAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 22.84 g (0.085 mol) of 5-naphthoquinonediazidosulfonyl chloride were added to 1,4-dioxane. Dissolve in 450 g and bring to room temperature. 9.46 g (0.0935 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise thereto so that the inside of the system did not reach 35° C. or higher. After dropping, the mixture was stirred at 30°C for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. After that, the deposited precipitate was collected by filtration. This precipitate was dried in a vacuum dryer to obtain a naphthoquinonediazide compound (QD-2) having the following structure.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 〔実施例1〕
まず、黄色灯下にて、以下の各原料を混合し、撹拌した。
・合成例10により得られたナフトキノンジアジド化合物(QD-1)2.00g、合成例11により得られたナフトキノンジアジド化合物(QD-2)1.33g、および、フェノール化合物TrisP-PA1.67gを、有機溶媒としてDAA4.04gとEAA5.34gとの混合溶媒を使用し、これに溶解させた溶液、
・縮合多環式芳香族基を有するオルガノシラン化合物として1-ナフチルトリメトキシシラン(商品名「Z-6874」ダウ・東レ(株)製)1.67g、
・界面活性剤として含フッ素熱分解性界面活性剤(商品名「DS-21」DIC(株)製)のEAA5重量%溶液0.10g、および、シリコーン変性アクリル系界面活性剤(商品名「“BYK”(登録商標)-3550」ビックケミージャパン(株)製)のEAA5重量%溶液0.60g、
・合成例1により得られたシロキサン樹脂溶液(PS-1)46.46g、
・合成例9により得られた金属化合物粒子分散液(T-1)36.80g
 次いで1.0μmのフィルターでろ過を行い、固形分濃度40重量%の感光性樹脂組成物A-1を調製した。
[Example 1]
First, under a yellow light, the following raw materials were mixed and stirred.
2.00 g of the naphthoquinone diazide compound (QD-1) obtained in Synthesis Example 10, 1.33 g of the naphthoquinone diazide compound (QD-2) obtained in Synthesis Example 11, and 1.67 g of the phenol compound TrisP-PA, Using a mixed solvent of 4.04 g of DAA and 5.34 g of EAA as an organic solvent, a solution dissolved in this,
1.67 g of 1-naphthyltrimethoxysilane (trade name “Z-6874” manufactured by Dow Toray Industries, Inc.) as an organosilane compound having a condensed polycyclic aromatic group;
・ As a surfactant, 0.10 g of an EAA 5% by weight solution of a fluorine-containing thermally decomposable surfactant (trade name “DS-21” manufactured by DIC Corporation) and a silicone-modified acrylic surfactant (trade name ““ BYK "(registered trademark)-3550" BYK Chemie Japan Co., Ltd.) EAA 5% by weight solution 0.60 g,
- 46.46 g of the siloxane resin solution (PS-1) obtained in Synthesis Example 1,
- 36.80 g of the metal compound particle dispersion (T-1) obtained in Synthesis Example 9
Then, the mixture was filtered through a 1.0 μm filter to prepare a photosensitive resin composition A-1 having a solid concentration of 40% by weight.
 得られた感光性樹脂組成物A-1について、前記方法で硬化膜およびマイクロレンズを作製し、前述の方法により評価した。 For the resulting photosensitive resin composition A-1, a cured film and microlenses were produced by the method described above and evaluated by the method described above.
 〔実施例2〕
 シロキサン樹脂溶液(PS-1)の代わりにシロキサン樹脂溶液(PS-2)を用いた以外は実施例1と同様にして感光性樹脂組成物A-2を調製した。得られた感光性樹脂組成物A-2を用いて、実施例1と同様に評価を行った。
[Example 2]
A photosensitive resin composition A-2 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-2) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-2.
 〔実施例3〕
 シロキサン樹脂溶液(PS-1)の代わりにシロキサン樹脂溶液(PS-3)を用いた以外は実施例1と同様にして感光性樹脂組成物A-3を調製した。得られた感光性樹脂組成物A-3を用いて、実施例1と同様に評価を行った。
[Example 3]
A photosensitive resin composition A-3 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-3) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-3.
 〔実施例4〕
 シロキサン樹脂溶液(PS-1)の代わりにシロキサン樹脂溶液(PS-4)を用いた以外は実施例1と同様にして感光性樹脂組成物A-4を調製した。得られた感光性樹脂組成物A-4を用いて、実施例1と同様に評価を行った。
[Example 4]
A photosensitive resin composition A-4 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-4) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-4.
 〔実施例5〕
 シロキサン樹脂溶液(PS-1)の代わりにシロキサン樹脂溶液(PS-5)を用いた以外は実施例1と同様にして感光性樹脂組成物A-5を調製した。得られた感光性樹脂組成物A-5を用いて、実施例1と同様に評価を行った。
[Example 5]
A photosensitive resin composition A-5 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-5) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-5.
 〔実施例6〕
 シロキサン樹脂溶液(PS-3)の添加量を53.12g、(B)金属化合物粒子分散液(T-1)の添加量を30.14gに変更した以外は実施例3と同様にして感光性樹脂組成物A-6を調製した。得られた感光性樹脂組成物A-6を用いて、実施例1と同様に評価を行った。
[Example 6]
Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 53.12 g and the amount of the metal compound particle dispersion (T-1) added was changed to 30.14 g. A resin composition A-6 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-6.
 〔実施例7〕
 シロキサン樹脂溶液(PS-3)の添加量を59.78g、(B)金属化合物粒子分散液(T-1)の添加量を23.48gに変更した以外は実施例3と同様にして感光性樹脂組成物A-7を調製した。得られた感光性樹脂組成物A-7を用いて、実施例1と同様に評価を行った。
[Example 7]
Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 59.78 g and the amount of the metal compound particle dispersion (T-1) added was changed to 23.48 g. A resin composition A-7 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-7.
 〔実施例8〕
 シロキサン樹脂溶液(PS-3)の添加量を39.80g、(B)金属化合物粒子分散液(T-1)の添加量を43.46gに変更した以外は実施例3と同様にして感光性樹脂組成物A-8を調製した。得られた感光性樹脂組成物A-8を用いて、実施例1と同様に評価を行った。
[Example 8]
Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 39.80 g and the amount of the metal compound particle dispersion (T-1) added was changed to 43.46 g. A resin composition A-8 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-8.
 〔実施例9〕
 シロキサン樹脂溶液(PS-3)の添加量を33.14g、(B)金属化合物粒子分散液(T-1)の添加量を50.12gに変更した以外は実施例3と同様にして感光性樹脂組成物A-9を調製した。得られた感光性樹脂組成物A-9を用いて、実施例1と同様に評価を行った。
[Example 9]
Photosensitivity was obtained in the same manner as in Example 3 except that the amount of the siloxane resin solution (PS-3) added was changed to 33.14 g and the amount of the metal compound particle dispersion (T-1) added was changed to 50.12 g. A resin composition A-9 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-9.
 〔実施例10〕
 まず、黄色灯下にて、以下の各原料を混合し、撹拌した。
・ナフトキノンジアジド化合物(QD-1)2.05g、ナフトキノンジアジド化合物(QD-2)1.37g、および、フェノール化合物TrisP-PA1.71gを有機溶媒としてDAA2.76gとEAA5.34gとの混合溶液を使用し、これに溶解させた溶液、
・縮合多環式芳香族基を有するオルガノシラン化合物として商品名「Z-6874」ダウ・東レ(株)製0.68g、
・界面活性剤として商品名「DS-21」DIC(株)製のEAA5重量%溶液0.10g、および、商品名「“BYK”(登録商標)-3550」ビックケミージャパン(株)製のEAA5重量%溶液0.60g、
・シロキサン樹脂溶液(PS-3)47.65g、
・金属化合物粒子分散液(T-1)37.74g
 次いで1.0μmのフィルターでろ過を行い、固形分濃度40重量%の感光性樹脂組成物A-10を調製した。
[Example 10]
First, under a yellow light, the following raw materials were mixed and stirred.
・ A mixed solution of 2.76 g of DAA and 5.34 g of EAA using 2.05 g of naphthoquinone diazide compound (QD-1), 1.37 g of naphthoquinone diazide compound (QD-2), and 1.71 g of phenol compound TrisP-PA as an organic solvent. the solution used and dissolved therein,
- As an organosilane compound having a condensed polycyclic aromatic group, trade name "Z-6874" manufactured by Dow Toray Industries, Inc. 0.68 g,
・ As a surfactant, the product name “DS-21” DIC Corporation 5% by weight solution of EAA 0.10 g, and the product name “BYK” (registered trademark)-3550” EAA5 manufactured by BYK Chemie Japan Co., Ltd. 0.60 g of wt% solution,
- Siloxane resin solution (PS-3) 47.65 g,
・Metal compound particle dispersion (T-1) 37.74 g
Then, the mixture was filtered through a 1.0 μm filter to prepare a photosensitive resin composition A-10 having a solid concentration of 40% by weight.
 得られた感光性樹脂組成物A-10について、実施例1と同様に評価を行った。 The obtained photosensitive resin composition A-10 was evaluated in the same manner as in Example 1.
 〔実施例11〕
 まず、黄色灯下にて、以下の各原料を混合し、撹拌した。
・ナフトキノンジアジド化合物(QD-1)1.92g、ナフトキノンジアジド化合物(QD-2)1.28g、および、フェノール化合物TrisP-PA1.60gを有機溶媒としてDAA6.04gとEAA5.34gとの混合溶液を使用し、これに溶解させた溶液、
・縮合多環式芳香族基を有するオルガノシラン化合物として商品名「Z-6874」ダウ・東レ(株)製3.20g、
・界面活性剤として商品名「DS-21」DIC(株)製のEAA5重量%溶液0.10g、および、商品名「“BYK”(登録商標)-3550」ビックケミージャパン(株)製のEAA5重量%溶液0.60g、
・シロキサン樹脂溶液(PS-3)44.60g、
・金属化合物粒子分散液(T-1)35.33g。
[Example 11]
First, under a yellow light, the following raw materials were mixed and stirred.
・ A mixed solution of 6.04 g of DAA and 5.34 g of EAA using 1.92 g of naphthoquinone diazide compound (QD-1), 1.28 g of naphthoquinone diazide compound (QD-2), and 1.60 g of phenol compound TrisP-PA as an organic solvent. the solution used and dissolved therein,
- As an organosilane compound having a condensed polycyclic aromatic group, trade name "Z-6874" manufactured by Dow Toray Industries, Inc. 3.20g,
・ As a surfactant, the product name “DS-21” DIC Corporation 5% by weight solution of EAA 0.10 g, and the product name “BYK” (registered trademark)-3550” EAA5 manufactured by BYK Chemie Japan Co., Ltd. 0.60 g of wt% solution,
- Siloxane resin solution (PS-3) 44.60 g,
• 35.33 g of metal compound particle dispersion (T-1).
 次いで1.0μmのフィルターでろ過を行い、固形分濃度40重量%の感光性樹脂組成物A-11を調製した。 Then, it was filtered through a 1.0 μm filter to prepare a photosensitive resin composition A-11 with a solid content concentration of 40% by weight.
 得られた感光性樹脂組成物A-11について、実施例1と同様に評価を行った。 The obtained photosensitive resin composition A-11 was evaluated in the same manner as in Example 1.
 〔比較例1〕
 シロキサン樹脂溶液(PS-1)の代わりにシロキサン樹脂溶液(PS-6)を用いた以外は実施例1と同様にして感光性樹脂組成物A-12を調製した。得られた感光性樹脂組成物A-12を用いて、実施例1と同様に評価を行った。
[Comparative Example 1]
A photosensitive resin composition A-12 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-6) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-12.
 〔比較例2〕
 まず、黄色灯下にて、以下の各原料を混合し、撹拌した。
・ナフトキノンジアジド化合物(QD-1)1.92g、ナフトキノンジアジド化合物(QD-2)1.28g、および、フェノール化合物TrisP-PA1.60gを有機溶媒としてDAA6.04gとEAA5.34gとの混合溶液を使用し、これに溶解させた溶液、
・縮合多環式芳香族基を有するオルガノシラン化合物として商品名「Z-6874」ダウ・東レ(株)製1.60g、
・ジメトキシジフェニルシラン(商品名「KBM-202SS」信越化学工業(株)製)1.60g、
・界面活性剤として商品名「DS-21」DIC(株)製のEAA5重量%溶液0.10g、および、商品名「“BYK”(登録商標)-3550」ビックケミージャパン(株)製のEAA5重量%溶液0.60g、
・シロキサン樹脂溶液(PS-3)44.60g、
・金属化合物粒子分散液(T-1)35.33g。
[Comparative Example 2]
First, under a yellow light, the following raw materials were mixed and stirred.
・ A mixed solution of 6.04 g of DAA and 5.34 g of EAA using 1.92 g of naphthoquinone diazide compound (QD-1), 1.28 g of naphthoquinone diazide compound (QD-2), and 1.60 g of phenol compound TrisP-PA as an organic solvent. the solution used and dissolved therein,
- 1.60 g of product name "Z-6874" manufactured by Dow Toray Industries, Inc. as an organosilane compound having a condensed polycyclic aromatic group;
・ Dimethoxydiphenylsilane (trade name “KBM-202SS” manufactured by Shin-Etsu Chemical Co., Ltd.) 1.60 g,
・ As a surfactant, the product name “DS-21” DIC Corporation 5% by weight solution of EAA 0.10 g, and the product name “BYK” (registered trademark)-3550” EAA5 manufactured by BYK Chemie Japan Co., Ltd. 0.60 g of wt% solution,
- Siloxane resin solution (PS-3) 44.60 g,
• 35.33 g of metal compound particle dispersion (T-1).
 次いで1.0μmのフィルターでろ過を行い、固形分濃度40重量%の感光性樹脂組成物A-11を調製した。 Then, it was filtered through a 1.0 μm filter to prepare a photosensitive resin composition A-11 with a solid content concentration of 40% by weight.
 得られた感光性樹脂組成物A-11について、実施例1と同様に評価を行った。 The obtained photosensitive resin composition A-11 was evaluated in the same manner as in Example 1.
 〔比較例3〕
 シロキサン樹脂溶液(PS-1)の代わりにシロキサン樹脂溶液(PS-7)を用いた以外は実施例1と同様にして感光性樹脂組成物A-14を調製した。得られた感光性樹脂組成物A-14を用いて、実施例1と同様に評価を行った。
[Comparative Example 3]
A photosensitive resin composition A-14 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-7) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-14.
 〔比較例4〕
 シロキサン樹脂溶液(PS-1)の代わりにシロキサン樹脂溶液(PS-8)を用いた以外は実施例1と同様にして感光性樹脂組成物A-15を調製した。得られた感光性樹脂組成物A-15を用いて、実施例1と同様に評価を行った。
[Comparative Example 4]
A photosensitive resin composition A-15 was prepared in the same manner as in Example 1, except that the siloxane resin solution (PS-8) was used instead of the siloxane resin solution (PS-1). Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-15.
 〔比較例5〕
 まず、黄色灯下にて、以下の各原料を混合し、撹拌した。
・ナフトキノンジアジド化合物(QD-1)2.00g、ナフトキノンジアジド化合物(QD-2)1.33g、および、フェノール化合物TrisP-PA1.67gを有機溶媒としてDAA4.04gとEAA5.34gとの混合溶液を使用し、これに溶解させた溶液、
・縮合多環式芳香族基を有するオルガノシラン化合物として商品名「Z-6874」ダウ・東レ(株)製1.67g、
・界面活性剤として商品名「DS-21」DIC(株)製のEAA5重量%溶液0.10g、および、商品名「“BYK”(登録商標)-3550」ビックケミージャパン(株)製のEAA5重量%溶液0.60g、
・シロキサン樹脂溶液(PS-3)83.26g。
[Comparative Example 5]
First, under a yellow light, the following raw materials were mixed and stirred.
・ A mixed solution of 4.04 g of DAA and 5.34 g of EAA using 2.00 g of naphthoquinone diazide compound (QD-1), 1.33 g of naphthoquinone diazide compound (QD-2), and 1.67 g of phenol compound TrisP-PA as an organic solvent. the solution used and dissolved therein,
- As an organosilane compound having a condensed polycyclic aromatic group, trade name "Z-6874" manufactured by Dow Toray Industries, Inc. 1.67 g,
・ As a surfactant, the product name “DS-21” DIC Corporation 5% by weight solution of EAA 0.10 g, and the product name “BYK” (registered trademark)-3550” EAA5 manufactured by BYK Chemie Japan Co., Ltd. 0.60 g of wt% solution,
- Siloxane resin solution (PS-3) 83.26 g.
 次いで1.0μmのフィルターでろ過を行い、固形分濃度40重量%の感光性樹脂組成物A-16を調製した。 Then, it was filtered through a 1.0 μm filter to prepare a photosensitive resin composition A-16 with a solid content concentration of 40% by weight.
 得られた感光性樹脂組成物A-16について、実施例1と同様に評価を行った。 The obtained photosensitive resin composition A-16 was evaluated in the same manner as in Example 1.
 〔比較例6〕
 まず、黄色灯下にて、以下の各原料を混合し、撹拌した。
・ナフトキノンジアジド化合物(QD-1)2.09g、ナフトキノンジアジド化合物(QD-2)1.39g、および、フェノール化合物TrisP-PA1.74gを有機溶媒としてDAA1.87gとEAA5.34gとの混合溶液を使用し、これに溶解させた溶液、
・縮合多環式芳香族基を有するオルガノシラン化合物として商品名「Z-6874」ダウ・東レ(株)製3.20g、
・界面活性剤として商品名「DS-21」DIC(株)製のEAA5重量%溶液0.10g、および、商品名「“BYK”(登録商標)-3550」ビックケミージャパン(株)製のEAA5重量%溶液0.60g、
・シロキサン樹脂溶液(PS-3)48.48g、
・金属化合物粒子分散液(T-1)38.40g。
[Comparative Example 6]
First, under a yellow light, the following raw materials were mixed and stirred.
・ A mixed solution of 1.87 g of DAA and 5.34 g of EAA using 2.09 g of naphthoquinone diazide compound (QD-1), 1.39 g of naphthoquinone diazide compound (QD-2), and 1.74 g of phenol compound TrisP-PA as an organic solvent. the solution used and dissolved therein,
- As an organosilane compound having a condensed polycyclic aromatic group, trade name "Z-6874" manufactured by Dow Toray Industries, Inc. 3.20g,
・ As a surfactant, the product name “DS-21” DIC Corporation 5% by weight solution of EAA 0.10 g, and the product name “BYK” (registered trademark)-3550” EAA5 manufactured by BYK Chemie Japan Co., Ltd. 0.60 g of wt% solution,
- Siloxane resin solution (PS-3) 48.48 g,
• 38.40 g of metal compound particle dispersion (T-1).
 次いで1.0μmのフィルターでろ過を行い、固形分濃度40重量%の感光性樹脂組成物A-17を調製した。 Then, it was filtered through a 1.0 μm filter to prepare a photosensitive resin composition A-17 with a solid content concentration of 40% by weight.
 得られた感光性樹脂組成物A-17について、実施例1と同様に評価を行った。 The obtained photosensitive resin composition A-17 was evaluated in the same manner as in Example 1.
 〔比較例7〕
 商品名「Z-6874」ダウ・東レ(株)製の代わりにフェニルトリメトキシシラン(商品名「KBM-103」信越化学工業(株)製)を用いた以外は実施例1と同様にして感光性樹脂組成物A-18を調製した。得られた感光性樹脂組成物A-18を用いて、実施例1と同様に評価を行った。
[Comparative Example 7]
Photosensitizing in the same manner as in Example 1 except that phenyltrimethoxysilane (trade name "KBM-103" manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of trade name "Z-6874" manufactured by Dow Toray Co., Ltd. A flexible resin composition A-18 was prepared. Evaluation was performed in the same manner as in Example 1 using the obtained photosensitive resin composition A-18.
 〔比較例8〕
 商品名「Z-6874」ダウ・東レ(株)製の代わりに商品名「KBM-202SS」信越化学工業(株)製を用いた以外は実施例1と同様にして感光性樹脂組成物A-19を調製した。得られた感光性樹脂組成物A-19を用いて、実施例1と同様に評価を行った。
[Comparative Example 8]
A photosensitive resin composition A- 19 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-19.
 〔比較例9〕
 商品名「Z-6874」ダウ・東レ(株)製の代わりにテトラプロポキシシラン(商品名「N-POS」扶桑化学工業(株)製)を用いた以外は実施例1と同様にして感光性樹脂組成物A-20を調製した。得られた感光性樹脂組成物A-20を用いて、実施例1と同様に評価を行った。
[Comparative Example 9]
Photosensitivity was obtained in the same manner as in Example 1 except that tetrapropoxysilane (trade name "N-POS" manufactured by Fuso Chemical Industry Co., Ltd.) was used instead of trade name "Z-6874" manufactured by Dow Toray Co., Ltd. A resin composition A-20 was prepared. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-20.
 〔比較例10〕
 商品名「Z-6874」ダウ・東レ(株)製の代わりにビニルトリス(2-メトキシエトキシ)シラン(商品名「KBC-103」信越化学工業(株)製)を用いた以外は実施例1と同様にして感光性樹脂組成物A-21を調製した。得られた感光性樹脂組成物A-21を用いて、実施例1と同様に評価を行った。
[Comparative Example 10]
Same as Example 1 except that vinyltris(2-methoxyethoxy)silane (trade name “KBC-103” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of “Z-6874” manufactured by Dow Toray Industries, Inc. (trade name). A photosensitive resin composition A-21 was prepared in the same manner. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-21.
 〔比較例11〕
 商品名「Z-6874」ダウ・東レ(株)製の代わりに3-メタクリロキシプロピルトリメトキシシラン(商品名「KBM-503」信越化学工業(株)製)を用いた以外は実施例1と同様にして感光性樹脂組成物A-22を調製した。得られた感光性樹脂組成物A-22を用いて、実施例1と同様に評価を行った。
[Comparative Example 11]
Same as Example 1 except that 3-methacryloxypropyltrimethoxysilane (trade name “KBM-503” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of “Z-6874” manufactured by Dow Toray Industries, Inc. (trade name). A photosensitive resin composition A-22 was prepared in the same manner. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-22.
 〔比較例12〕
 商品名「Z-6874」ダウ・東レ(株)製の代わりに3-メタクリロキシオクチルトリメトキシシラン(商品名「KBM-5803」信越化学工業(株)製)を用いた以外は実施例1と同様にして感光性樹脂組成物A-23を調製した。得られた感光性樹脂組成物A-23を用いて、実施例1と同様に評価を行った。
[Comparative Example 12]
Same as Example 1 except that 3-methacryloxyoctyltrimethoxysilane (trade name “KBM-5803” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of “Z-6874” manufactured by Dow Toray Industries, Inc. (trade name). A photosensitive resin composition A-23 was prepared in the same manner. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-23.
 〔比較例13〕
 商品名「Z-6874」ダウ・東レ(株)製の代わりに(3-メタクリロキシプロピル)メチルジメトキシシラン(商品名「KBM-502」信越化学工業(株)製)を用いた以外は実施例1と同様にして感光性樹脂組成物A-24を調製した。得られた感光性樹脂組成物A-24を用いて、実施例1と同様に評価を行った。
[Comparative Example 13]
Examples except that (3-methacryloxypropyl)methyldimethoxysilane (trade name “KBM-502” manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of the trade name “Z-6874” manufactured by Dow Toray Co., Ltd. A photosensitive resin composition A-24 was prepared in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1 using the resulting photosensitive resin composition A-24.
 各実施例および比較例における樹脂組成物の組成を表1、2に、評価結果を表3に示す。 Tables 1 and 2 show the composition of the resin composition in each example and comparative example, and Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例において作製した感光性樹脂組成物によれば、高い屈折率と透明性を有するとともに、230℃以下の焼成温度でも流動性が高く、直径10μm以上のサイズの大きいマイクロレンズにおいても、レンズ形状を形成することができることがわかる。 According to the photosensitive resin composition produced in the examples, it has a high refractive index and transparency, and has high fluidity even at a baking temperature of 230° C. or less. can be formed.
 本発明の感光性樹脂組成物によれば、高い屈折率と透明性を有するとともに、230℃以下の焼成温度でも流動性が高く、直径10μm以上のサイズの大きいマイクロレンズにおいても、レンズ形状を形成することができるため、CMOSイメージセンサや指紋認証装置に用いられるマイクロレンズとして好適に用いることができる。 The photosensitive resin composition of the present invention has a high refractive index and transparency, high fluidity even at a baking temperature of 230° C. or less, and forms a lens shape even in large microlenses with a diameter of 10 μm or more. Therefore, it can be suitably used as a microlens used in a CMOS image sensor or a fingerprint authentication device.

Claims (16)

  1. 以下の(A)~(E)を含む感光性樹脂組成物。
    (A)ジフェニル基を有するオルガノシラン単位を含有する、シロキサン樹脂、
    (B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、
    チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物と、ケイ素化合物との、複合金属化合物粒子、
    (C)感光剤、
    (D)縮合多環式芳香族基を有する、オルガノシラン化合物、
    (E)有機溶媒
    A photosensitive resin composition containing the following (A) to (E).
    (A) a siloxane resin containing an organosilane unit having a diphenyl group;
    (B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or
    Composite metal compound particles of at least one metal compound selected from the group consisting of a titanium compound, a zirconium compound, a tin compound and an aluminum compound, and a silicon compound,
    (C) a photosensitizer;
    (D) an organosilane compound having a condensed polycyclic aromatic group;
    (E) organic solvent
  2. 前記(A)シロキサン樹脂がジフェニル基を有するオルガノシラン単位を5mol%以上40mol%以下含有する請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the (A) siloxane resin contains 5 mol% or more and 40 mol% or less of an organosilane unit having a diphenyl group.
  3. 前記(A)シロキサン樹脂がカルボキシル基および/またはジカルボン酸無水物構造を有するオルガノシラン単位を含有する請求項1または2に記載の感光性樹脂組成物。 3. The photosensitive resin composition according to claim 1, wherein the (A) siloxane resin contains an organosilane unit having a carboxyl group and/or a dicarboxylic anhydride structure.
  4. 前記(B)金属化合物粒子または複合金属化合物粒子の数平均粒子径が、1nm~70nmである請求項1に記載の感光性樹脂組成物。 2. The photosensitive resin composition according to claim 1, wherein the (B) metal compound particles or composite metal compound particles have a number average particle size of 1 nm to 70 nm.
  5. 前記(B)金属化合物粒子または複合金属化合物粒子がシロキサン樹脂の合計量100重量部に対して、20重量部以上60重量部以下である請求項1に記載の感光性樹脂組成物。 2. The photosensitive resin composition according to claim 1, wherein the (B) metal compound particles or composite metal compound particles are 20 parts by weight or more and 60 parts by weight or less per 100 parts by weight of the total amount of the siloxane resin.
  6. 前記(C)感光剤がナフトキノンジアジド化合物である請求項1に記載の感光性樹脂組成物。 2. The photosensitive resin composition according to claim 1, wherein the photosensitive agent (C) is a naphthoquinone diazide compound.
  7. 請求項1~6のいずれかに記載の感光性樹脂組成物を硬化させてなる硬化物。 A cured product obtained by curing the photosensitive resin composition according to any one of claims 1 to 6.
  8. 波長633nmにおける屈折率が1.60以上で1.80以下である請求項7に記載の硬化物。 8. The cured product according to claim 7, which has a refractive index of 1.60 or more and 1.80 or less at a wavelength of 633 nm.
  9. 請求項7の硬化物からなる硬化膜。 A cured film comprising the cured product of claim 7 .
  10. 請求項7の硬化物からなるマイクロレンズ。 A microlens made of the cured product according to claim 7 .
  11. 請求項1~6のいずれかに記載の感光性樹脂組成物を基材上に塗布する工程、露光する工程、現像する工程および直径10μm以上50μm以下のマイクロレンズを形成する工程を有するマイクロレンズの製造方法。 A microlens comprising the steps of applying the photosensitive resin composition according to any one of claims 1 to 6 on a substrate, exposing, developing, and forming a microlens having a diameter of 10 μm or more and 50 μm or less. Production method.
  12. 請求項9に記載の硬化膜を具備する固体撮像素子。 A solid-state imaging device comprising the cured film according to claim 9 .
  13. 請求項9に記載の硬化膜を具備する指紋認証装置。 A fingerprint authentication device comprising the cured film according to claim 9 .
  14. 2次元に配列された複数のマイクロレンズを有するマイクロレンズアレイであって、マイクロレンズは波長633nmにおける屈折率が1.60以上1.80以下であり、マイクロレンズの直径が10μm以上50μm以下であり、マイクロレンズ間の距離が0.01μm以上で5.0μm以下であるマイクロレンズアレイ。 A microlens array having a plurality of microlenses arranged two-dimensionally, wherein the microlenses have a refractive index of 1.60 or more and 1.80 or less at a wavelength of 633 nm, and a diameter of the microlenses of 10 μm or more and 50 μm or less. , a microlens array in which the distance between microlenses is 0.01 μm or more and 5.0 μm or less.
  15. 前記マイクロレンズは、以下の(A)~(D)を含む感光性樹脂組成物を硬化させてなる硬化物からなる、請求項14に記載のマイクロレンズアレイ。
    (A)ジフェニル基を有するオルガノシラン単位を含有する、シロキサン樹脂
    (B)チタン化合物粒子、ジルコニウム化合物粒子、スズ化合物粒子およびアルミニウム化合物粒子からなる群より選ばれる少なくとも1種の、金属化合物粒子、または、
    チタン化合物、ジルコニウム化合物、スズ化合物およびアルミニウム化合物からなる群より選ばれる少なくとも1種の、金属化合物と、ケイ素化合物との、複合金属化合物粒子
    (C)感光剤
    (D)縮合多環式芳香族基を有する、オルガノシラン化合物
    15. The microlens array according to claim 14, wherein the microlenses are made of a cured product obtained by curing a photosensitive resin composition containing the following (A) to (D).
    (A) a siloxane resin containing an organosilane unit having a diphenyl group; (B) at least one metal compound particle selected from the group consisting of titanium compound particles, zirconium compound particles, tin compound particles and aluminum compound particles, or ,
    Composite metal compound particles of at least one metal compound and silicon compound selected from the group consisting of titanium compounds, zirconium compounds, tin compounds and aluminum compounds (C) photosensitive agent (D) condensed polycyclic aromatic group an organosilane compound having
  16. 請求項14に記載のマイクロレンズアレイを有する指紋認証装置。 A fingerprint authentication device having the microlens array according to claim 14.
PCT/JP2022/035589 2021-09-29 2022-09-26 Photosensitive resin composition, microlens WO2023054226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058015.6A CN117859098A (en) 2021-09-29 2022-09-26 Photosensitive resin composition and microlens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158862 2021-09-29
JP2021-158862 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054226A1 true WO2023054226A1 (en) 2023-04-06

Family

ID=85782646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035589 WO2023054226A1 (en) 2021-09-29 2022-09-26 Photosensitive resin composition, microlens

Country Status (3)

Country Link
CN (1) CN117859098A (en)
TW (1) TW202323395A (en)
WO (1) WO2023054226A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127803A (en) * 2013-11-29 2015-07-09 東レ株式会社 Photosensitive resin composition, cured film obtained by curing the same, and light-emitting element and solid-state imaging device including the cured film
WO2018216570A1 (en) * 2017-05-24 2018-11-29 東レ株式会社 Negative photosensitive resin composition and cured film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127803A (en) * 2013-11-29 2015-07-09 東レ株式会社 Photosensitive resin composition, cured film obtained by curing the same, and light-emitting element and solid-state imaging device including the cured film
WO2018216570A1 (en) * 2017-05-24 2018-11-29 東レ株式会社 Negative photosensitive resin composition and cured film

Also Published As

Publication number Publication date
TW202323395A (en) 2023-06-16
CN117859098A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP7201062B2 (en) Substrate with partition wall and display device
JP4973093B2 (en) Siloxane resin composition, optical article, and method for producing siloxane resin composition
JP5423802B2 (en) Positive photosensitive resin composition, cured film and optical device using the same
KR101839397B1 (en) Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component
JP5509675B2 (en) Siloxane resin composition and optical device using the same
WO2007049440A1 (en) Siloxane resin composition and method for producing same
TWI734763B (en) Negative type photosensitive composition curable at low temperature ane method for manufacturing cured film
JP2017173741A (en) Photosensitive siloxane composition
JP5418617B2 (en) Siloxane resin composition, cured film and optical article
KR20150068899A (en) Positive photosensitive compositions
TW201807490A (en) Resin composition, cured film of same and method for manufacturing same, and solid-state imaging element
JP6569211B2 (en) Photosensitive resin composition, cured film obtained by curing the same, and light emitting device and solid-state imaging device comprising the same
CN110546207B (en) Transparent resin composition, transparent coating film and transparent resin-coated glass substrate
TWI628233B (en) Positive photosensitive resin composition, cured film, and optical device
WO2023054226A1 (en) Photosensitive resin composition, microlens
JP7063391B2 (en) Photosensitive resin composition, cured film and display device
KR20240072125A (en) Photosensitive resin composition, micro lens
US11789363B2 (en) Positive photosensitive resin composition, cured film therefrom, and solid state image sensor comprising the same
JP6186766B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
JP2020100819A (en) Resin composition, cured film and method for producing the same
JP2023137277A (en) Photosensitive resin composition and cured film
WO2020196601A1 (en) Positive-type photosensitive resin composition, cured film thereof, and optical device including same
JP2010222431A (en) Siloxane-based resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022575336

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280058015.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE