WO2023054078A1 - 車両用センサ装置 - Google Patents

車両用センサ装置 Download PDF

Info

Publication number
WO2023054078A1
WO2023054078A1 PCT/JP2022/035064 JP2022035064W WO2023054078A1 WO 2023054078 A1 WO2023054078 A1 WO 2023054078A1 JP 2022035064 W JP2022035064 W JP 2022035064W WO 2023054078 A1 WO2023054078 A1 WO 2023054078A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cover
vehicle
sensor unit
control unit
sensor
Prior art date
Application number
PCT/JP2022/035064
Other languages
English (en)
French (fr)
Inventor
裕一 綿野
治 久保山
善弘 桂田
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to CN202280066033.9A priority Critical patent/CN118043697A/zh
Priority to JP2023551357A priority patent/JPWO2023054078A1/ja
Publication of WO2023054078A1 publication Critical patent/WO2023054078A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/62Other vehicle fittings for cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Definitions

  • the present invention relates to a vehicle sensor device.
  • Patent Literature 1 discloses such a vehicle sensor device.
  • the vehicle sensor device disclosed in Patent Document 1 below includes a lighting unit that emits light toward the front of the vehicle, a radar device that detects an object positioned in front of the vehicle using electromagnetic waves, and a sensor that measures the intensity of the reflected electromagnetic waves. It includes a reflected wave intensity acquisition unit to acquire, a control unit, and an outer cover.
  • the radar device detects an object, if there is ice or snow on the outer cover, the amount of reflected electromagnetic waves reflected by the outer cover is affected by the amount of the reflected waves compared to when there is no adhesion on the outer cover.
  • the control unit determines whether a substance is attached to the outer cover based on the intensity of the reflected wave acquired by the reflected wave intensity acquisition unit. If there is a deposit, the controller turns on the lamp unit and melts the deposit by heating the outer cover with radiant heat from the lamp unit.
  • the above radar device detects an object, even if there is no deposit on the outer cover, the closer the object is to the vehicle, the more the amount of reflected electromagnetic waves reflected by the object tends to increase. As the amount of reflected waves increases, the intensity of the reflected waves received by the reflected wave intensity acquisition unit tends to increase. Therefore, if the intensity of the reflected wave of the electromagnetic wave reflected from the object is close to the intensity of the reflected wave of the electromagnetic wave reflected from the attached object when there is no deposit on the outer cover, the abnormality of the vehicle such as the presence of deposit on the outer cover is detected. hard to be Therefore, there is a demand for making it easier to detect vehicle abnormalities.
  • an object of the present invention is to provide a vehicle sensor device that can easily detect an abnormality in the vehicle.
  • the vehicle sensor device of the present invention includes an outer cover, and is arranged inside the vehicle from the outer cover, detects an object by electromagnetic waves transmitted and received through the outer cover, and detects the object. and a control unit, wherein the control unit receives the object detected by the sensor unit from a camera mounted on the vehicle and photographing the detection range of the sensor unit It is characterized by determining whether or not the image signal is included in the image signal.
  • the control section determines whether or not the object detected by the sensor section is included in the image signal. Since the camera does not capture deposits, if the object detected by the sensor is not included in the image signal, there is a high possibility that the deposits are on the outer cover. An abnormality of the vehicle can be detected by the above determination. Thus, in this vehicle sensor device, it is possible to easily detect an abnormality in the vehicle, compared to the case of detecting an abnormality in the vehicle using only the intensity of the reflected wave of the electromagnetic wave from the adhering matter.
  • a heater may be provided on the outer cover, and the control unit may drive the heater when the object detected by the sensor unit is not included in the image signal.
  • the outer cover When the heater is driven, the outer cover is warmed, and deposits such as water droplets and ice and snow are melted by the heat and removed from the outer cover.
  • the position of the object can be detected by each of the sensor section and the camera, and the use of information on the position detected by each can improve the safety of the vehicle during travel.
  • a cleaner for injecting at least one of a liquid and a gas from the outside of the vehicle toward the outer cover is further provided, and the control unit controls that the object detected by the sensor unit is not included in the image signal.
  • the cleaner may be driven.
  • deposits such as dust, water droplets, ice, snow, and mud can be removed from the outer cover by jetted liquid or gas.
  • the position of the object can be detected by each of the sensor section and the camera, and the use of information on the position detected by each can improve the safety of the vehicle during travel.
  • the vehicle sensor device further includes a heater provided in the outer cover, and a cleaner that injects at least one of liquid and gas toward the outer cover from the outside of the vehicle
  • the control unit includes: driving at least one of the heater and the cleaner when the object detected by the sensor unit is not included in an image signal from a camera mounted on the vehicle that captures the detection range of the sensor unit; and when the judgment is made again after the cleaner is driven, and if it is judged that the object detected by the sensor unit is not included in the image signal, a camera failure signal related to the failure of the camera is generated. may be output.
  • the object is detected by the sensor unit after removing the adhering matter and the object detected by the sensor unit is not included in the image signal, it is highly likely that the camera is out of order.
  • the camera is out of order, for example, if a camera failure signal is input to a monitor visible to the driver, information indicating that the camera is likely out of order is sent to the driver through the monitor. to be notified.
  • the vehicular sensor device further includes a heater provided in the outer cover, and a cleaner that injects at least one of liquid and gas toward the outer cover from the outside of the vehicle
  • the control unit includes: driving at least one of the heater and the cleaner when the object detected by the sensor unit is not included in an image signal from a camera mounted on the vehicle that captures the detection range of the sensor unit; and determining whether or not the object included in the image signal is detected by the sensor unit after the cleaner is driven, and in the determination, the object included in the image signal is not detected by the sensor unit. If it is determined that the sensor unit has failed, a sensor failure signal may be output.
  • the sensor unit is out of order, for example, if a sensor failure signal is input to a monitor visible to the driver, information indicating that the camera is likely out of order is displayed on the monitor. person may be notified.
  • control unit may make the determination by comparing the position of the object detected by the sensor unit and the position of the object included in the image signal.
  • control unit makes the determination based on whether or not the object detected by the sensor unit and reflecting the electromagnetic wave as a reflected wave having a predetermined intensity or more is included in the image signal. good too.
  • the vehicle sensor device of the present invention includes an outer cover, and is arranged inside the vehicle from the outer cover, detects an object by electromagnetic waves transmitted and received through the outer cover, and outputs a detection signal related to the detection of the object.
  • a sensor unit for outputting a heater provided on the outer cover; a cleaner for injecting at least one of liquid and gas from the outside of the vehicle toward the outer cover; , when the object detected by the sensor unit is not included in the image signal from the camera mounted on the vehicle and capturing the detection range of the sensor unit, at least one of the heater and the cleaner is driven. good.
  • the outer cover is covered with an object.
  • the heater is driven, the outer cover is warmed, and deposits such as water droplets and ice and snow are melted by the heat and removed from the outer cover.
  • the cleaner is activated, deposits such as dust, water droplets, ice, snow, and mud can be removed from the outer cover by the jetted liquid or gas.
  • the position of the object can be detected by each of the sensor section and the camera, and the safety of the vehicle VE while traveling can be improved by using the positional information detected by each.
  • FIG. 1 is a diagram schematically showing a vehicle lamp provided with a vehicle sensor device according to an embodiment of the present invention
  • FIG. It is a figure which shows an example of the control flowchart of the control part in embodiment.
  • 4 is a control flowchart of a control unit in a removal operation; It is a timing chart which shows a 2nd operation typically. It is a timing chart which shows a modification of the 3rd operation typically. It is a timing chart which shows a 5th operation typically.
  • FIG. 1 is a diagram schematically showing a vehicle lamp according to an embodiment of the invention.
  • the vehicle lamp VL of this embodiment is an automobile headlamp.
  • An automobile headlamp is generally provided in each of the left and right directions on the front portion of the vehicle VE, and the left and right headlamps are generally symmetrical in the left and right direction. Therefore, one vehicle lamp VL will be described.
  • the vehicle lamp VL mainly includes a housing 10, a light source unit 17, a sensor section 20, a heater 30, a cleaner 40, and a control section CO.
  • the housing 10 and the light source unit 17 constitute the lamp unit LU, and the housing 10, the sensor section 20, the heater 30, the cleaner 40, and the control section CO constitute the vehicle sensor device 1.
  • FIG. 1 the housing
  • the housing 10 of this embodiment includes a housing 11 and an outer cover 12 as main components.
  • the housing 11 and the outer cover 12 are made of different resins, for example. Most of the outer surface 12o of the outer cover 12 is exposed outside the vehicle VE and is part of the outer surface of the vehicle VE.
  • the housing 11 is configured in a box shape having an opening in front, and an outer cover 12 is fixed to the housing 11 so as to close the opening.
  • a housing space 13 surrounded by the housing 11 and the outer cover 12 is formed in the housing 10 , and the light source unit 17 and the sensor section 20 are arranged in the housing space 13 .
  • the outer cover 12 is made of a material that transmits light emitted from the light source unit 17 and electromagnetic waves emitted from the sensor section 20 .
  • the light source unit 17 is configured to emit light L having a predetermined light distribution pattern forward.
  • the light source unit 17 switches between emission and non-emission of the light L in accordance with the control signal from the control unit CO, and changes the light distribution pattern of the emitted light L between the low beam light distribution pattern and the high beam light distribution pattern. configured to switch between patterns.
  • a light source unit 17 for example, a configuration including a light source section in which a plurality of light emitting elements are arranged in a matrix and a lens through which light emitted from the light source section is transmitted can be given.
  • an LED (Light Emitting Diode) array can be used as the light source.
  • the light L emitted from the light source unit is irradiated forward of the vehicle VE through the lens and the outer cover 12 .
  • the sensor section 20 is arranged inside the vehicle VE relative to the outer cover 12 .
  • the sensor unit 20 detects an object by electromagnetic waves transmitted and received through the outer cover 12, and outputs a detection signal related to the detection of the object.
  • the sensor unit 20 mainly includes a housing 21 having an accommodation space, a transmitter 25 , a receiver 26 and a detector 27 .
  • the transmitter 25 , receiver 26 and detector 27 are arranged in the housing space of the housing 21 .
  • the sensor unit 20 detects the front of the vehicle VE.
  • radio waves are used as electromagnetic waves, and the radio waves are millimeter waves.
  • the transmission unit 25 emits radio waves EW1.
  • the frequency of the radio wave EW1 is, for example, 30 GHz or more and 300 GHz or less.
  • the radio wave EW1 propagates from the electromagnetic wave transmitting portion 22 facing the outer cover 12 in the housing 21 toward the outer cover 12, passes through the outer cover 12, and is emitted forward of the vehicle VE.
  • the transmission section 25 is configured such that radio waves that spread at a predetermined angle in the lateral direction of the vehicle VE are emitted from the electromagnetic wave transmitting section 22 and that the frequency of the radio waves can be changed.
  • the transmitter 25 has an antenna (not shown).
  • the transmitter 25 emits a radio wave whose intensity is substantially constant and whose frequency repeatedly increases and decreases at a predetermined cycle according to a control signal sent from the controller CO via the detector 27 .
  • the transmission unit 25 After emitting the radio wave EW1, the transmission unit 25 outputs a signal related to the radio wave EW1 to the detection unit 27. As shown in FIG. This signal may include information on the intensity of the radio wave EW1 and information on the phase of the radio wave EW1.
  • the receiving unit 26 includes a plurality of antennas (not shown).
  • the plurality of antennas are arranged, for example, in the lateral direction of the vehicle VE.
  • Part of the radio waves EW2 that enter the housing space 13 through the outer cover 12 from the outside of the vehicle VE are received by the antenna of the receiving section 26 via the electromagnetic wave transmitting section 22 .
  • the receiving portion 26 When each antenna receives the radio wave EW2 incident on the electromagnetic wave transmitting portion 22, the receiving portion 26 outputs a signal related to the radio wave EW2 to the detecting portion 27.
  • This signal may include information on the intensity of the radio wave EW2 and information on the phase of the radio wave EW2.
  • the detection unit 27 detects an object located in front of the vehicle VE and calculates the position of the object with respect to the vehicle VE based on the signals from the transmission unit 25 and the reception unit 26, for example, by the FMCW (Frequency Modulated Continuous Wave) method.
  • FMCW Frequency Modulated Continuous Wave
  • the detection unit 27 outputs a detection signal related to object detection to the control unit CO.
  • the detection signal includes, for example, information regarding the presence or absence of an object, the position of the object with respect to the vehicle VE, the azimuth of the object with respect to the vehicle VE, and the distance between the object and the vehicle VE.
  • the detection signal also includes information on the intensity of the received radio wave EW2. Note that when there is an adhering substance on the outer cover 12 , noise due to the effect of the adhering substance is added to the signal from the receiving section 26 . Therefore, the detection unit 27 detects the presence of the adhering matter based on the noise-added signal. As a configuration of such a detection unit, for example, a configuration similar to that of the control unit CO can be cited.
  • the sensor section 20 only needs to transmit and receive electromagnetic waves through the outer cover 12 and output detection signals, and the configuration of the sensor section 20 is not particularly limited.
  • the transmitter 25 may be configured to repeatedly emit pulsed radio waves.
  • the detection unit 27 detects the object and calculates the distance between the object and the vehicle VE using, for example, the ToF (Time of Flight) method.
  • the sensor unit 20 may be a LiDAR (Light Detection and Ranging) that emits laser light as an electromagnetic wave and receives the laser light.
  • the electromagnetic waves transmitted and received by the sensor unit 20 may be infrared rays or ultraviolet rays. That is, the signals from the transmitter 25 and the receiver 26 include not only signals related to the radio waves EW1 and EW2 as described above, but also signals related to electromagnetic waves transmitted and received by the sensor unit 20 via the outer cover 12 .
  • a heater 30 is provided on the outer cover 12 .
  • the heater 30 heats the transmission area AR of the outer cover 12 through which electromagnetic waves emitted from the sensor section 20 are transmitted.
  • the transmission area AR is an area of the outer surface 12o of the outer cover 12 through which the radio waves EW1 and EW2 are transmitted.
  • the heater 30 includes a heating wire 31 and a power supply circuit 32 as main components.
  • the heating wire 31 of this embodiment is provided on the inner surface 12 i of the outer cover 12 and connected to the power supply circuit 32 via the connector 33 .
  • the heating wire 31 is not particularly limited as long as it is configured to generate heat when an electric current flows, and may be composed of a conductor paste, or may be composed of a metal wire or the like.
  • the power supply circuit 32 applies a voltage to the heating wire 31 according to a control signal from the control unit CO.
  • the heating wire 31 When a voltage is applied and current flows through the heating wire 31, the heating wire 31 generates heat to heat the transmissive region AR.
  • the transmission area AR overlaps with a portion of the heating wire 31 in the propagation direction of the radio wave EW1.
  • the amount of heat generated by the heating wire 31 is such that the outer cover 12 is not deformed or burned due to heat.
  • the transmission area AR is described as an area through which the radio waves EW1 and EW2 are transmitted, but as described above, the sensor unit 20 also includes a mode for transmitting and receiving laser light as electromagnetic waves. Therefore, the transmission area AR is an area through which electromagnetic waves emitted from the sensor section 20 are transmitted.
  • the heating wire 31 only needs to be able to heat the transmissive area AR, and may heat areas of the outer cover 12 other than the transmissive area AR. In this case, the heat of the heating wire 31 is transferred to the transmissive area AR through the area other than the transmissive area AR. Further, the heating wire 31 may be attached to the outer surface 12o or the inside of the outer cover 12, for example, the transmission region AR and the heating wire 31 may not overlap in the propagation direction of the radio wave EW1. Thus, the heater 30 only needs to heat the outer cover 12 .
  • the cleaner 40 is configured to inject at least one of liquid and gas from the outside of the vehicle VE toward the transmission area AR on the outer surface 12o of the outer cover 12.
  • the vehicle sensor device 1 can remove deposits adhering to the transmission area AR by the liquid or gas jetted from the cleaner 40 .
  • the cleaner 40 is configured to be able to jet the liquid and the gas individually toward the transmission area AR. It has a gas unit 45 for injecting.
  • the liquid unit 41 injects liquid toward the transmission area AR and the gas unit 45 injects gas toward the transmission area AR will be used. It suffices to flow through the outer surface 12o to the transmissive area AR. Therefore, the cleaner 40 may inject at least one of liquid and gas toward the outer cover 12 from the outside of the vehicle VE.
  • the liquid unit 41 of this embodiment mainly includes a tank 41a that stores liquid, a pump 41b, and an injection nozzle 41c.
  • a pipe 42a connected to the tank 41a and a pipe 42b connected to the injection nozzle 41c are connected to the pump 41b.
  • the pump 41b pumps the liquid in the tank 41a to the injection nozzle 41c.
  • the pump 41b adjusts the amount of liquid to be pressure-fed to the injection nozzle 41c or stops the pressure-feeding of the liquid, according to a control signal from the control unit CO.
  • the injection nozzle 41c is attached to a portion of the support base 15 positioned in front of the outer cover 12 so that the liquid pumped from the tank 41a is injected toward the transmission area AR.
  • the injection nozzle 41c is positioned below the transmissive area AR. Therefore, the pump 41b pressure-feeds the liquid to the injection nozzle 41c, so that the liquid is injected from below toward the transmission area AR.
  • the liquid stored in the tank 41a include water and windshield washer liquid. If this liquid is a windshield washer liquid, the tank 41a may be a windshield washer tank provided in the vehicle VE. It should be noted that the liquid unit 41 is not particularly limited as long as the liquid can be jetted from the outer cover 12 toward the outer cover 12 from the outside of the vehicle VE.
  • the gas unit 45 of this embodiment mainly includes a tank 45a that stores gas at a pressure higher than the atmospheric pressure, a valve 45b, and an injection nozzle 45c.
  • a pipe 46a connected to the tank 45a and a pipe 46b connected to the injection nozzle 45c are connected to the valve 45b.
  • the valve 45b adjusts the degree of opening/closing of the valve 45b according to a control signal from the controller CO.
  • the injection nozzle 45c is attached to a portion of the support base 15 located in front of the outer cover 12 so that the gas pumped from the tank 45a is injected toward the permeation area AR.
  • the injection nozzle 45c is positioned below the transmissive area AR. Therefore, by opening the valve 45b, the gas is jetted from below toward the transmission area AR.
  • Air etc. are mentioned as gas stored in the tank 41a, for example.
  • a compressor may be connected to the tank 41a to maintain the pressure of the air in the tank 41a within a predetermined range.
  • the gas unit 45 is not particularly limited as long as it can inject gas from the outer cover 12 toward the outer cover 12 from the outside of the vehicle VE.
  • the control unit CO consists of integrated circuits such as microcontrollers, ICs (Integrated Circuits), LSIs (Large-scale Integrated Circuits), ASICs (Application Specific Integrated Circuits), and NC (Numerical Control) devices. Further, when the NC device is used, the controller CO may use a machine learning device or may not use a machine learning device.
  • the controller CO controls several configurations of the vehicle lamp VL.
  • An ECU (Electronic Control Unit) 100 of the vehicle VE is connected to the control unit CO.
  • the control unit CO may input the detection signal from the sensor unit 20 to the ECU 100 .
  • the ECU 100 assists the running of the vehicle VE based on the detection signal.
  • a temperature sensor 50 for measuring the temperature outside the vehicle VE is connected to the control unit CO, and the temperature sensor 50 outputs a temperature signal indicating the measured temperature to the control unit CO.
  • a temperature sensor 50 for example, a thermistor is used.
  • the temperature sensor 50 of this embodiment is attached to the front bumper of the vehicle VE, for example.
  • the configuration and mounting position of the temperature sensor 50 are not particularly limited. Therefore, a signal indicating the temperature may be input from the ECU 100 to the control unit CO.
  • a camera 51 is also connected to the control unit CO.
  • the camera 51 is attached to the upper part of the vehicle outside the housing 10, for example.
  • Examples of the camera 51 include a stereo camera. Note that the mounting position and configuration of the camera 51 are not particularly limited.
  • the imaging range of the camera 51 is included in the detection range of the sensor section 20 , but may include the detection range of the sensor section 20 .
  • the detection range of the sensor unit 20 is the range over which the radio wave EW1 from the transmission unit 25 spreads. Since the sensor unit 20 detects the front of the vehicle VE as described above, the camera 51 photographs the front of the vehicle VE.
  • the image of the camera 51 is converted into an image signal and input to the control unit CO.
  • the object When an object such as a preceding vehicle or a person is positioned in front of the vehicle VE, the object appears in the image, and the image signal includes the object.
  • the image signal When an object appears in the image, the image signal includes information on the position of the object with respect to the vehicle VE and the orientation of the object with respect to the vehicle VE.
  • the control unit CO detects an object, calculates the position of the object with respect to the vehicle VE, calculates the azimuth of the object with respect to the vehicle VE, and measures the distance between the object and the vehicle from the image signal.
  • a monitor 53 is connected to the camera 51 .
  • a monitor 53 displays an image captured by the camera 51 .
  • the monitor 53 is installed at a position visible to the driver.
  • FIG. 2 is a diagram showing an example of a control flowchart of the control unit CO in this embodiment. As shown in FIG. 2, the control flow of this embodiment includes steps SP11 to SP17.
  • the camera 51 captures an image of the front of the vehicle VE
  • the sensor unit 20 transmits and receives electromagnetic waves to detect the object
  • the image from the camera 51 is detected. It is assumed that the signal and the detection signal from the sensor unit 20 are input to the control unit CO. Assume that the image signal and the detection signal are input to the control unit CO in each step.
  • Step SP11 This step is a step in which the control unit CO determines the case according to whether the object detected by the sensor unit 20 is included in the image signal of the camera 51 and changes the next step. Therefore, in this step, the control unit CO determines whether or not the object detected by the sensor unit 20 is included in the image signal. Specifically, as will be described later, when an object is included in the image signal, the control unit CO terminates the control flow because it is unlikely that the sensor unit 20 and the camera 51 are out of order. On the other hand, when the object is not included in the image signal, the control unit CO detects an abnormality of the vehicle VE such as adhesion of a substance to the outer cover 12, and advances the control flow to step SP12, as will be described later. Thus, the control unit CO detects whether or not the vehicle VE has an abnormality according to whether or not the object detected by the sensor unit 20 is included in the image signal of the camera 51 .
  • the sensor unit 20 and the camera 51 photograph the object when there is no attached matter on the outer cover 12 . Therefore, the object detected by the sensor unit 20 is photographed by the camera 51 and included in the image signal of the camera 51 .
  • the control unit CO terminates the control flow.
  • the sensor section 20 tends to detect the adhering substance. Therefore, there is a high possibility that the attached matter detected by the sensor unit 20 is not captured by the camera 51 and is not included in the image signal of the camera 51 .
  • the outer cover 12 is free of adhering matter and the camera 51 is highly likely to be out of order, the object detected by the sensor unit 20 is not photographed by the camera 51 and is not included in the image signal of the camera 51. there is a possibility.
  • the control unit CO detects an abnormality of the vehicle VE such as adhesion of a substance to the outer cover 12 . Then, the control unit CO advances the control flow to step SP12.
  • Step SP12 the control unit CO classifies cases according to whether the intensity of the radio wave EW2 indicated by the signal input from the receiving unit 26 is less than the first threshold value, and changes the next step as described later. do.
  • the radio wave EW1 emitted from the sensor unit 20 propagates toward the transmissive area AR. Part of the radio wave EW1 passes through the transmission area AR and illuminates the front of the vehicle VE. Another part of the radio wave EW1 is reflected by the transmission area AR and received by the sensor unit 20 as the radio wave EW2. Further, when there is an adhering substance in the transmissive area AR, another part of the radio wave EW1 is reflected by the adhering substance and received by the sensor unit 20 as the radio wave EW2.
  • the intensity of the radio wave EW2 received by the sensor unit 20 tends to be higher than when there is no adhering matter in the transmissive area AR. Further, the intensity of the radio wave EW2 received by the sensor unit 20 when there is an adhering substance in the transmissive area AR tends to change depending on the adhering substance. Examples of deposits include dust, water droplets, ice and snow, and mud. Generally, when dust or water droplets are attached to the transmission area AR, when ice and snow are attached to the transmission area AR, and when mud is attached to the transmission area AR, the sensor unit 20 The intensity of the received radio waves EW2 tends to increase. In this embodiment, the first threshold is set to a value lower than the intensity of the radio wave EW2 received by the sensor unit 20 when a predetermined amount of dust or water droplets adheres to the transmissive area AR.
  • the control unit CO advances the control flow to step SP13 for removing the adhering matter.
  • the control unit CO advances the control flow to step SP15 for notifying that the camera 51 is out of order.
  • Step SP13 In this step, as described above, since the intensity of the radio wave EW2 is equal to or greater than the first threshold value, the adhering matter is present in the transmission area AR. Therefore, the controller CO controls the heater 30 and the cleaner 40 to perform a removing operation to remove the deposits in the transmissive area AR. Control of the heater 30 and the cleaner 40 in the removal operation will be described later. When the removal operation is completed, the control unit CO advances the control flow to step SP14.
  • Step SP14 In this step, the attached matter has already been removed, so if the sensor unit 20 is normal, the sensor unit 20 will detect the object. Therefore, when the sensor unit 20 detects an object, the control unit CO determines whether or not there is a high possibility that the camera 51 is out of order. Specifically, the control unit CO determines whether or not the object detected by the sensor unit 20 is included in the image signal. More specifically, as will be described later, when an object detected by the sensor unit 20 is not included in the image signal, the control unit CO is likely to have a failure in the camera 51, so the control flow is executed. Proceed to step SP15.
  • step SP16 is a step in which the control unit CO determines the case according to whether or not the object included in the image signal is detected by the sensor unit 20, and changes the next step.
  • step SP15 for notifying that there is a high possibility that the camera 51 is out of order.
  • step SP16 if the object detected by the sensor unit 20 is included in the image signal, the control unit CO advances the control flow to step SP16.
  • Step SP15 the controller CO outputs a camera failure signal related to the failure of the camera 51 to the monitor 53 .
  • the driver is notified of information indicating that the camera 51 is likely to be out of order.
  • the control unit CO outputs the camera failure signal to the monitor 53, the control flow ends.
  • Step SP16 the control unit CO determines whether or not there is a high possibility that the sensor unit 20 is out of order when the camera 51 is normal and detects the object. Specifically, the control unit CO determines whether or not the object included in the image signal is detected by the sensor unit 20 . More specifically, as will be described later, when an object included in the image signal is detected by the sensor unit 20, the control unit CO determines that the sensor unit 20 and the camera 51 are unlikely to be out of order. End the control flow. Further, when the object included in the image signal is not detected by the sensor unit 20, the control unit CO indicates that the sensor unit 20 is highly likely to be out of order because it is highly likely that the sensor unit 20 is out of order. The control flow advances to step SP17 of notifying. As described above, this step is a step in which the control unit CO determines the case according to whether or not the object included in the image signal is detected by the sensor unit 20, and changes the next step.
  • the sensor unit 20 and camera 51 photograph the object. Therefore, the object photographed by the camera 51 is included in the image signal of the camera 51 and detected by the sensor section 20 . If the object included in the image signal is detected by the sensor unit 20, the sensor unit 20 and the camera 51 are unlikely to be out of order, so the control unit CO ends the control flow.
  • control unit CO advances the control flow to step SP17 to notify that the sensor unit 20 is likely to be out of order.
  • Step SP17 the control unit CO outputs a sensor failure signal regarding the failure of the sensor unit 20 .
  • the monitor 53 notifies the driver of information indicating that there is a high possibility that the sensor section 20 is out of order.
  • the control unit CO outputs the sensor failure signal to the monitor 53, the control flow ends.
  • FIG. 3 is a control flowchart of the control unit CO in the removal operation. As shown in FIG. 3, the control flow includes steps SP21 to SP29.
  • Step SP21 In this step, if the intensity of the radio wave EW2 indicated by the detection signal from the sensor unit 20 is within a first range that is greater than or equal to a first threshold and less than a second threshold larger than the first threshold, the control unit CO The flow advances to step SP22. If the intensity of the radio wave EW2 is not within the first range, the control unit CO advances the control flow to step SP23. When dust or water droplets adhere to the transmissive area AR, the intensity of the radio wave EW2 indicated by the detection signal can be included in the first range.
  • Step SP22 the control unit CO advances the control flow to step SP24 if the temperature indicated by the temperature signal from the temperature sensor 50 exceeds a predetermined temperature, and advances the control flow to step SP24 if the temperature is equal to or lower than the predetermined temperature. Proceed to SP25.
  • the predetermined temperature is, for example, the temperature at which water or the like begins to freeze, or a temperature close to that temperature, and is zero degrees Celsius in the present embodiment.
  • Step SP24 the control unit CO controls the heater 30 and the cleaner 40 so that the first operation is the combination of the operation of the heater 30 and the operation of the cleaner 40 in a predetermined period.
  • the predetermined period may be constant, or may vary according to the intensity of the radio wave EW2 indicated by the detection signal from the sensor section 20 .
  • the first operation at least the cleaner 40 is driven during at least part of the predetermined period.
  • the first operation is an operation in which the heater 30 is not driven and the cleaner 40 jets gas from the gas unit 45 toward the transmission area AR for, for example, three seconds. Therefore, the gas is jetted from the jet nozzle 45c toward the permeation area AR to remove the dust.
  • the predetermined period in the first operation is the above-described three seconds, and the cleaner 40 is driven during the entire predetermined period.
  • control unit CO may start the injection of the liquid after finishing the injection of the gas, and end the injection of the gas after, for example, one second has passed since the start. For this reason, the dust adhering to the outer cover 12 without being removed by the gas injection is removed by the liquid injection, and the dust is more reliably removed.
  • the liquid injection period may be shorter than the gas injection period or longer than the gas injection period.
  • the cleaner 40 may jet only the liquid without driving the heater 30 . Note that the heater 30 may be driven in this step.
  • control unit CO After completing the first operation, the control unit CO advances the control flow to step SP14.
  • Step SP25 This step is a step in which the controller CO controls the heater 30 and the cleaner 40 so that the second operation is an operation consisting of a combination of the operation of the heater 30 and the operation of the cleaner 40 in a predetermined period. In this second operation, at least the cleaner 40 is driven during at least part of the predetermined period.
  • the second operation is the operation shown in FIG. 4, and the controller CO controls the heater 30 and the cleaner 40 so that they operate as shown in FIG.
  • FIG. 4 is a timing chart schematically showing the second operation.
  • the heater 30 starts driving at time t201 to heat the outer cover 12, and stops driving at time t204.
  • the cleaner 40 starts injecting gas at time t202, which is later than time t201 and earlier than time t204, and finishes injecting gas at time t203, which is earlier than time t204. Also, the cleaner 40 does not jet liquid.
  • the drive period of the heater 30 is indicated by the drive period TH
  • the gas injection period of the cleaner 40 is indicated by the injection period TA.
  • the predetermined period is the period from time t201 to time t204, and the outer cover 12 is heated before the gas is jetted toward the outer cover 12. If the temperature outside the vehicle VE is such that water or the like freezes, there is a tendency that ice adheres to the dust. In this step, the gas is injected after the ice adhering to the dust adhering to the outer cover 12 is melted by heating the outer cover 12 . Therefore, it is useful when ice adheres to the dust adhering to the outer cover 12 .
  • the heater 30 may finish driving before the start of gas injection by the cleaner 40, and the cleaner 40 may inject liquid instead of gas.
  • control unit CO advances the control flow to step SP14.
  • Step SP23 In this step, if the intensity of the radio wave EW2 indicated by the detection signal from the sensor unit 20 is within a second range that is greater than or equal to a second threshold and less than a third threshold larger than the second threshold, the control unit CO The flow advances to step SP26. Further, when the intensity of the radio wave EW2 is in the third range equal to or higher than the third threshold, the control unit CO advances the control flow to step SP27.
  • the third threshold is higher than the intensity of the radio wave EW2 received by the sensor unit 20 when a predetermined amount of ice and snow adheres to the transmission area AR, and a predetermined amount of mud adheres to the transmission area AR.
  • the intensity indicated by the detection signal from the sensor unit 20 can be included in the second range. Further, when mud adheres to the transmission area AR, the intensity indicated by the detection signal from the sensor unit 20 can be included in the third range.
  • Step SP26 the control unit CO controls the heater 30 and the cleaner 40 so that the operation consisting of the combination of the operation of the heater 30 and the operation of the cleaner 40 during the predetermined period is the third operation.
  • the predetermined period in the third operation may be constant, or may vary according to the intensity of the radio wave EW2 indicated by the detection signal from the sensor unit 20, and may be the same as the predetermined period in the first operation. may be different.
  • This third operation differs from the first operation in step SP24 in that the heater 30 is driven during at least part of the predetermined period.
  • the third operation of this embodiment is an operation in which the cleaner 40 is not driven and the heater 30 is driven for, for example, 15 minutes.
  • control unit CO controls the power supply circuit 32 so that current flows through the heating wire 31 for 15 minutes.
  • the heating wire 31 generates heat to heat the outer cover 12 and remove ice and snow.
  • the predetermined period in the third operation is the 15 minutes described above, and the heater 30 is driven during the entire predetermined period.
  • the third operation may be the operation shown in FIG. 5, and the controller CO may control the heater 30 and the cleaner 40 so that they operate as shown in FIG.
  • FIG. 5 is a timing chart schematically showing a modification of the third operation.
  • the heater 30 starts driving at time t211 to heat the outer cover 12 .
  • the cleaner 40 starts ejecting liquid at time t212, which is later than time t211, and finishes ejecting liquid at time t213, for example, three seconds after time t212. Therefore, the cleaner 40 jets the liquid toward the transmissive area AR for three seconds from time t212.
  • the liquid injection period of the cleaner 40 is indicated by the injection period TW.
  • the cleaner 40 starts injecting gas at time t214 later than time t213, and finishes injecting gas at time t215, for example, three seconds after time t214. Therefore, the cleaner 40 injects gas toward the transmission area AR for three seconds from time t214.
  • the heater 30 stops driving at time t216 later than time t215. Therefore, the heater 30 heats the outer cover 12 during the period from time t211 to time t216.
  • the predetermined period is the period from time t211 to time t216, and time t212, which is the timing at which the cleaner 40 starts ejecting liquid, is later than time t211, which is the timing at which the heater 30 starts to be driven.
  • the adhesion of ice and snow to the outer cover 12 when water is interposed at least partially between the ice and snow and the outer cover 12 is smaller than when no water is interposed between the ice and snow and the outer cover 12. There is a tendency. Therefore, with such a configuration, ice and snow can be easily removed compared to the case where the outer cover 12 is not heated before the liquid is jetted toward the outer cover 12 .
  • control unit CO advances the control flow to step SP14.
  • Step SP27 In this step, similarly to step SP22, the control unit CO advances the control flow to step SP28 when the temperature indicated by the temperature signal from the temperature sensor 50 exceeds the predetermined temperature. If there is, the control flow advances to step SP29.
  • Step SP28 the control unit CO controls the heater 30 and the cleaner 40 so that the fourth operation is the combination of the operation of the heater 30 and the operation of the cleaner 40 during the predetermined period.
  • the predetermined period in the fourth operation may be constant or may vary according to the intensity of the radio wave EW2 indicated by the detection signal from the sensor unit 20, and is the same as the predetermined period in the other operations described above. There may be, and it may be different.
  • This fourth operation differs from the third operation in step SP26 in that the cleaner 40 is driven during at least part of the predetermined period. That is, the first action and the fourth action are different from the third action.
  • the fourth operation of the present embodiment is an operation in which the heater 30 is not driven and the liquid is ejected from the liquid unit 41 of the cleaner 40 toward the transmission area AR for, for example, three seconds. Therefore, the controller CO controls the pump 41b so that the pump 41b operates only for 3 seconds. As a result, liquid is injected from the injection nozzle 41c toward the transmission area AR for 3 seconds to remove the mud. Note that the predetermined period in the fourth operation is 3 seconds as described above, and the cleaner 40 is driven during the entire predetermined period.
  • control unit CO After completing the fourth operation, the control unit CO advances the control flow to step SP14.
  • Step SP29 the control unit CO controls the heater 30 and the cleaner 40 so that the fifth operation is the combination of the operation of the heater 30 and the operation of the cleaner 40 during the predetermined period.
  • this fifth operation at least the cleaner 40 is driven during at least part of the predetermined period, and this fifth operation differs from the third operation in step SP26.
  • the fifth operation of this embodiment is the operation shown in FIG. 6, and the controller CO controls the heater 30 and the cleaner 40 so that they operate as shown in FIG.
  • FIG. 6 is a timing chart schematically showing the fifth operation.
  • the cleaner 40 starts ejecting liquid at time t221 and ends ejecting liquid at time t222, for example, five seconds after time t221. Also, the cleaner 40 does not inject gas.
  • the heater 30 starts driving at time t223 later than time t222 to heat the outer cover 12, and stops driving at time t224, for example, 15 minutes after time t213.
  • the predetermined period is the period from time t221 to time t224, and there is a period in which the heater 30 is driven after time t222, which is the timing at which the cleaner 40 finishes jetting the liquid. Therefore, the outer cover 12 is heated after the injection of the liquid to the outer cover 12 is finished. Therefore, by adopting such a configuration, freezing of the liquid adhering to the outer cover 12 after the liquid jetting to the outer cover 12 is completed, for example, the liquid from the cleaner 40 is suppressed, and the liquid is vaporized. removed.
  • time t221 which is the timing at which the cleaner 40 starts ejecting the liquid
  • time t223 which is the timing at which the heater 30 starts to be driven. Therefore, the outer cover 12 is not heated before the liquid is jetted toward the outer cover 12 .
  • the outer cover 12 is heated and the water content of the dirt such as mud adhering to the outer cover 12 decreases, the adhesion of the dirt such as mud to the outer cover tends to increase. Therefore, with such a configuration, dirt such as mud can be easily removed compared to the case where the liquid is sprayed toward the outer cover 12 after heating the outer cover 12 .
  • the heater 30 may start driving during the period TW when the cleaner 40 is injecting the liquid.
  • the cleaner 40 that injects liquid may be driven during the driving period of the heater 30 . Therefore, the outer cover 12 is heated before the liquid is jetted onto the outer cover 12 .
  • the temperature outside the vehicle VE is such that water or the like freezes, water in the mud adhering to the outer cover 12 tends to freeze.
  • the liquid can be jetted after the water in the mud adhering to the outer cover 12 is dissolved by heating the outer cover 12 . Therefore, it is useful when the water in the mud adhering to the outer cover 12 is frozen.
  • the cleaner 40 may start injecting gas between time t222 and time t223, and stop injecting gas between time t223 and time t224. Therefore, the gas is jetted toward the outer cover 12 after the cleaner 40 finishes jetting the liquid. With such a configuration, the liquid adhering to the outer cover 12 is removed by the gas from the cleaner 40 after the jetting of the liquid to the outer cover 12 is finished.
  • control unit CO advances the control flow to step SP14.
  • control unit CO of the vehicle sensor device 1 receives an image signal from the camera 51 that captures the detection range of the sensor unit 20 in which the object detected by the sensor unit 20 is mounted on the vehicle VE. determines whether or not it is included in
  • the control unit CO determines whether or not the object detected by the sensor unit 20 is included in the image signal. Since the camera 51 does not capture the adhering matter, if the object detected by the sensor unit 20 is not included in the image signal, there is a high possibility that the adhering matter is on the outer cover. Abnormality of the vehicle VE such as adhesion of clothes can be detected by the above determination. In this way, the vehicle sensor device 1 can make it easier to detect an abnormality in the vehicle VE than when detecting an abnormality in the vehicle VE using only the intensity of the reflected wave of the electromagnetic wave from the adhering matter.
  • control unit CO drives the heater 30 when the object detected by the sensor unit 20 is not included in the image signal.
  • the control unit CO may not drive the heater 30 when the object detected by the sensor unit 20 is not included in the image signal.
  • control unit CO drives the cleaner 40 when the object detected by the sensor unit 20 is not included in the image signal.
  • control unit CO makes the above determination again after the heater 30 and the cleaner 40 are driven, and if it is determined that the object detected by the sensor unit 20 is not included in the image signal, the camera 51 Outputs a camera failure signal associated with the failure.
  • the control unit CO may output a camera failure signal to the ECU 100 . Further, the control unit CO makes the above determination again after the heater 30 and the cleaner 40 are driven, and if it is determined that the object detected by the sensor unit 20 is not included in the image signal, the camera 51 It is not necessary to output a camera failure signal related to the failure.
  • control unit CO determines whether or not the object included in the image signal is detected by the sensor unit 20 after the heater 30 and the cleaner 40 are driven. When it is determined that the detection is not made by the unit 20, a sensor failure signal related to the failure of the sensor unit 20 is output.
  • the control unit CO may output a sensor failure signal to the ECU 100 . Further, the control unit CO determines whether or not the object included in the image signal is detected by the sensor unit 20 after the heater 30 and the cleaner 40 are driven. If it is determined that the sensor unit 20 does not detect it, the sensor failure signal related to the failure of the sensor unit 20 may not be output.
  • control unit CO calculates the position of the object with respect to the vehicle VE from the detection signal of the sensor unit 20 and the image signal of the camera 51. Therefore, in step SP11 of the control flow shown in FIG. 2, the control unit CO makes the above determination by comparing the position of the object detected by the sensor unit 20 with the position of the object included in the image signal. may Note that the control unit CO does not need to make the above determination by comparing the position of the object detected by the sensor unit 20 and the position of the object included in the image signal.
  • the control unit CO may make the above determination based on whether or not the image signal includes an object that is detected by the sensor unit 20 and reflects an electromagnetic wave with a reflected wave having a predetermined intensity or more. If the predetermined intensity is the intensity of the radio wave EW2 received by the sensor unit 20 when a predetermined amount of mud adheres to the outer cover 12, the object detected by the sensor unit 20 is not an adhering object but an object in front of the vehicle. It is likely to be detected as a positioned object. Therefore, in the vehicle sensor device 1 , the object can be easily detected by the sensor section 20 , and an abnormality of the vehicle VE such as adherence of a substance to the outer cover 12 can be easily detected. In step SP11, the control unit CO does not need to make the above determination depending on whether or not the image signal includes an object that is detected by the sensor unit 20 and reflects the electromagnetic wave with a reflected wave having a predetermined intensity or more. .
  • control unit CO of the vehicle sensor device 1 of the present embodiment is configured so that the object detected by the sensor unit 20 is included in the image signal from the camera 51 mounted on the vehicle VE and capturing the detection range of the sensor unit 20. If not, at least one of heater 30 and cleaner 40 is driven.
  • the outer cover is covered with an adhering matter.
  • the transmissive area AR is warmed, and deposits such as water droplets and ice and snow are melted by the heat and removed from the outer cover 12 .
  • the cleaner 40 is driven, deposits such as dust, water droplets, ice, snow, and mud can be removed from the outer cover 12 by jetted liquid or gas.
  • the adhering matter is removed, the position of the object can be detected by each of the sensor unit 20 and the camera 51, and the safety of the vehicle VE while traveling can be improved by using the positional information detected by each.
  • the control unit CO may make the failure determination of the camera 51 in step SP14 after determining the failure of the sensor unit 20 in step SP16.
  • the control flow proceeds to step SP14.
  • the control flow ends.
  • at least one of step SP14 and step SP16 may be omitted. If step SP14 is omitted, step SP15 is also omitted, and if step SP16 is omitted, step SP17 is also omitted.
  • the control unit CO determines whether or not an object detected by the sensor unit 20 is included in the image signal from the camera 51.
  • the control unit CO determines whether or not the object detected by the sensor unit 20 is included in the image signal from the camera 51.
  • the control unit CO controls at least the heater 30 and the cleaner 40 when the object detected by the sensor unit 20 is not included in the image signal from the camera 51 .
  • driving one can be realized.
  • the experiment in which the control unit CO drives at least one of the heater 30 and the cleaner 40 when the object detected by the sensor unit 20 is not included in the image signal from the camera 51 is not limited to this.
  • a vehicle sensor device that can easily detect an abnormality in a vehicle is provided, and can be used in fields such as automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

車両用センサ装置(1)は、アウターカバー(12)と、アウターカバー(12)より車両(VE)の内側に配置され、アウターカバー(12)を介して送受信する電磁波によって物体を検知し、物体の検知に係る検知信号を出力するセンサ部(20)と、制御部(CO)とを備える。制御部(CO)は、センサ部(20)によって検知される物体が車両(VE)に搭載されてセンサ部(20)の検知範囲を撮影するカメラ(51)からの画像信号に含まれるか否かの判断を行う。

Description

車両用センサ装置
 本発明は、車両用センサ装置に関する。
 電磁波を用いて車外の物体を検知する車両用センサ装置が知られている。例えば、下記特許文献1には、このような車両用センサ装置が開示されている。
 下記特許文献1の車両用センサ装置は、車両の前方に向けて光を出射する灯具ユニットと、電磁波を用いて車両の前方に位置する物体を検知するレーダ装置と、電磁波の反射波の強度を取得する反射波強度取得部と、制御部と、アウターカバーと、を備える。レーダ装置が物体を検知する際にアウターカバーに氷雪等の付着物がある場合、アウターカバーに付着物がない場合に比べて、アウターカバーにて反射する電磁波の反射波の量は付着物の影響により増大する傾向にある。そこで、この車両用センサ装置では、制御部は、反射波強度取得部によって取得された反射波の強度に基づいてアウターカバーにおける付着物の付着を判断する。付着物が付着している場合、制御部は、灯具ユニットをONに制御し、灯具ユニットの輻射熱によってアウターカバーを加熱することで付着物を溶かす。
特開2020-50271号公報
 上記のレーダ装置が物体を検知する際、アウターカバーに付着物がない場合であっても、物体が車両に近いほど、物体にて反射する電磁波の反射波の量は増大する傾向にある。反射波の量が増大すると、反射波強度取得部で受信される反射波の強度は高くなる傾向にある。従って、アウターカバーに付着物がない場合に物体から反射した電磁波の反射波の強度が付着物から反射した電磁波の反射波の強度に近い場合、アウターカバーに付着物があるといった車両の異常は検知され難い。このため、車両の異常を検知し易くしたいとの要望がある。
 そこで、本発明は、車両の異常を検知し易くし得る車両用センサ装置を提供することを目的とする。
 上記目的の達成のため、本発明の車両用センサ装置は、アウターカバーと、前記アウターカバーより車両の内側に配置され、前記アウターカバーを介して送受信する電磁波によって物体を検知し、前記物体の検知に係る検知信号を出力するセンサ部と、制御部と、を備え、前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれるか否かの判断を行うことを特徴とするものである。
 アウターカバーに付着物がある場合、センサ部は付着物を検知してしまう傾向にある。そこで、上記の構成では、制御部は、センサ部によって検知された物体が画像信号に含まれるか否かの判断を行う。カメラは付着物を写さないため、センサ部によって検知される物体が画像信号に含まれない場合、付着物がアウターカバーにある可能性が高く、制御部はアウターカバーへの付着物の付着といった車両の異常を上記判断によって検知し得る。このように、この車両用センサ装置では、付着物からの電磁波の反射波の強度のみを用いて車両の異常を検知する場合に比べて、車両の異常を検知し易くし得る。
 また、前記アウターカバーに設けられるヒータをさらに備え、前記制御部は、前記センサ部によって検知される前記物体が前記画像信号に含まれない場合、前記ヒータを駆動させてもよい。
 ヒータが駆動すると、アウターカバーが暖められ、水滴及び氷雪といった付着物は熱によって溶けてアウターカバーから除去され得る。付着物が除去されると、センサ部とカメラとのそれぞれから物体の位置が検知され得、それぞれから検知された位置の情報の利用により車両の走行時の安全性が向上し得る。
 また、前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナをさらに備え、前記制御部は、前記センサ部によって検知される前記物体が前記画像信号に含まれない場合、前記クリーナを駆動させてもよい。
 クリーナが駆動すると、粉塵、水滴、氷雪、及び泥といった付着物は噴射される液体や気体によってアウターカバーから除去され得る。付着物が除去されると、センサ部とカメラとのそれぞれから物体の位置が検知され得、それぞれから検知された位置の情報の利用により車両の走行時の安全性が向上し得る。
 また、車両用センサ装置は、前記アウターカバーに設けられるヒータと、前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナと、をさらに備え、前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれない場合、前記ヒータ及び前記クリーナの少なくとも一方を駆動し、前記ヒータ及び前記クリーナの駆動終了より後に前記判断を再度行い、当該判断において前記センサ部によって検知される前記物体が前記画像信号に含まれないと判断される場合、前記カメラの故障に係るカメラ故障信号を出力してもよい。
 付着物の除去後に、物体がセンサ部によって検知され、センサ部によって検知される物体が画像信号に含まれない場合、カメラが故障している可能性が高い。カメラが故障している可能性が高い場合、例えば、運転者が視認可能なモニタにカメラ故障信号が入力されると、カメラが故障している可能性が高い旨を示す情報がモニタを通じて運転者に通知され得る。
 或いは、車両用センサ装置は、前記アウターカバーに設けられるヒータと、前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナと、をさらに備え、前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれない場合、前記ヒータ及び前記クリーナの少なくとも一方を駆動し、前記ヒータ及び前記クリーナの駆動終了より後に前記画像信号に含まれる前記物体が前記センサ部によって検知されるか否かの判断を行い、当該判断において前記画像信号に含まれる前記物体が前記センサ部によって検知されないと判断される場合、前記センサ部の故障に係るセンサ故障信号を出力してもよい。
 付着物の除去後に、物体がカメラによって写され、画像信号に含まれる物体がセンサ部によって検知されない場合、センサ部が故障している可能性が高い。センサ部が故障している可能性が高い場合、例えば、運転者が視認可能なモニタにセンサ故障信号が入力されると、カメラが故障している可能性が高い旨を示す情報がモニタを通じて運転者に通知され得る。
 また、前記制御部は、前記センサ部によって検知される前記物体の位置と、前記画像信号に含まれる前記物体の位置との比較を行うことにより前記判断を行ってもよい。
 或いは、前記制御部は、前記判断において、前記センサ部によって検知されると共に前記電磁波を所定強度以上の反射波で反射する前記物体が前記画像信号に含まれているか否かにより前記判断を行ってもよい。
 また、本発明の車両用センサ装置は、アウターカバーと、前記アウターカバーより車両の内側に配置され、前記アウターカバーを介して送受信する電磁波によって物体を検知し、前記物体の検知に係る検知信号を出力するセンサ部と、前記アウターカバーに設けられるヒータと、前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナと、制御部と、を備え、前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれない場合、前記ヒータ及び前記クリーナの少なくとも一方を駆動してもよい。
 上記したように、センサ部によって検知される物体が画像信号に含まれない場合、付着物がアウターカバーにある可能性が高い。この場合に、ヒータが駆動すると、アウターカバーが暖められ、水滴及び氷雪といった付着物は熱によって溶けてアウターカバーから除去され得る。また、クリーナが駆動すると、粉塵、水滴、氷雪、及び泥といった付着物は噴射される液体や気体によってアウターカバーから除去され得る。付着物が除去されると、センサ部とカメラとのそれぞれから物体の位置が検知され得、それぞれから検知された位置の情報の利用により車両VEの走行時の安全性が向上し得る。
 以上のように本発明によれば、車両の異常を検知し易くし得る車両用センサ装置を提供できる。
本発明の実施形態における車両用センサ装置を備える車両用灯具を概略的に示す図である。 実施形態における制御部の制御フローチャートの一例を示す図である。 除去動作における制御部の制御フローチャートである。 第2動作を模式的に示すタイミングチャートである。 第3動作の変形例を模式的に示すタイミングチャートである。 第5動作を模式的に示すタイミングチャートである。
 以下、本発明に係る車両用センサ装置の好適な実施形態について図面を参照しながら詳細に説明する。以下に例示する実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができる。また、本発明は、以下に例示する各実施形態における構成要素を適宜組み合わせてもよい。なお、以下で参照する図面では、理解を容易にするために、各部材の寸法を変えて示す場合がある。
 図1は、本発明の実施形態における車両用灯具を概略的に示す図である。本実施形態の車両用灯具VLは自動車用の前照灯である。自動車用の前照灯は、一般的に車両VEの前部における左右方向のそれぞれに1つずつ設けられ、左右の前照灯は左右方向に概ね対称の構成とされる。このため、一方の車両用灯具VLについて説明する。
 図1に示すように、車両用灯具VLは、筐体10と、光源ユニット17と、センサ部20と、ヒータ30と、クリーナ40と、制御部COと、を主な構成として備える。筐体10及び光源ユニット17で灯具ユニットLUが構成され、筐体10、センサ部20、ヒータ30、クリーナ40、及び制御部COで車両用センサ装置1が構成される。なお、図1では、筐体10は、鉛直断面にて示されている。
 本実施形態の筐体10は、ハウジング11及びアウターカバー12を主な構成として備える。ハウジング11及びアウターカバー12は、例えば、互いに種類の異なる樹脂から構成されている。アウターカバー12の外面12oの大部分は、車両VEの外に露出しており、車両VEの外面の一部である。ハウジング11は前方に開口を有する箱状に構成され、当該開口を塞ぐようにアウターカバー12がハウジング11に固定される。そして、筐体10には、ハウジング11とアウターカバー12とによって囲われる収容空間13が形成されており、当該収容空間13に光源ユニット17及びセンサ部20が配置されている。アウターカバー12は、光源ユニット17から出射する光及びセンサ部20から出射する電磁波を透過する材料から構成される。
 光源ユニット17は、前方に向かって所定の配光パターンの光Lを出射するように構成される。本実施形態では、光源ユニット17は、制御部COからの制御信号により、光Lの出射と非出射とを切り替えると共に、出射する光Lの配光パターンをロービームの配光パターンとハイビームの配光パターンとのいずれかに切り替えるように構成される。このような光源ユニット17として、例えば、複数の発光素子がマトリックス状に配置された光源部と光源部から出射する光が透過するレンズとを備える構成が挙げられる。この光源部として、例えばLED(Light Emitting Diode)アレイが挙げられる。光源部から出射する光Lは、レンズ及びアウターカバー12を介して車両VEの前方に照射される。
 センサ部20は、アウターカバー12よりも車両VEの内側に配置される。センサ部20は、アウターカバー12を介して送受信する電磁波によって物体を検知し、物体の検知に係る検知信号を出力する。センサ部20は、収容空間を有する筐体21、送信部25、受信部26、及び検知部27を主な構成として備える。送信部25、受信部26、及び検知部27は、筐体21の収容空間に配置される。本実施形態では、センサ部20は、車両VEの前方を検知する。また、本実施形態では、電磁波として電波が用いられ、当該電波はミリ波とされる。
 送信部25は、電波EW1を出射する。電波EW1の周波数は、例えば、30GHz以上300GHz以下である。電波EW1は、筐体21におけるアウターカバー12と対向する電磁波透過部22からアウターカバー12に向かって伝搬し、当該アウターカバー12を透過して車両VEの前方に照射される。本実施形態では、送信部25は、車両VEの左右方向に所定の角度で広がる電波が電磁波透過部22から出射すると共に、当該電波の周波数を変化可能に構成される。送信部25は、図示しないアンテナを備える。送信部25は、制御部COから検知部27を介して送られる制御信号により、強度が概ね一定で周波数が所定の周期で増加と減少とを繰り返すように変化する電波を出射する。送信部25は、電波EW1を出射すると、電波EW1に係る信号を検知部27に出力する。この信号には、電波EW1の強度の情報や電波EW1の位相の情報が含まれてもよい。
 受信部26は、図示しない複数のアンテナを備える。これら複数のアンテナは、例えば車両VEの左右方向に並んでいる。車両VEの外側からアウターカバー12を透過して収容空間13に入射する電波EW2の一部は、電磁波透過部22を介して、受信部26のアンテナによって受信される。それぞれのアンテナが電磁波透過部22に入射する電波EW2を受信すると、受信部26は電波EW2に係る信号を検知部27に出力する。この信号には、電波EW2の強度の情報や電波EW2の位相の情報が含まれてもよい。
 車両VEの前方に物体が位置している場合、送信部25から送信された電波EW1の一部は当該物体で反射する。物体で反射した電波の一部は、アウターカバー12を透過して収容空間13に入射し電波EW2として受信部26で受信される。検知部27には、送信部25から入力する電波EW1に係る信号と受信部26から入力する電波EW2に係る信号とが入力される。検知部27は、送信部25及び受信部26からの信号に基づいて、例えばFMCW(Frequency Modulated Continuous Wave)方式により、車両VEの前方に位置する物体の検知、車両VEに対する当該物体の位置の算出、車両VEに対する当該物体の方位の算出、及び当該物体と車両VEとの距離の算出を行う。そして、検知部27は、物体の検知に係る検知信号を制御部COに出力する。検知信号には、例えば、物体の存在の有無、車両VEに対する当該物体の位置、車両VEに対する当該物体の方位、及び当該物体と車両VEとの距離に係る情報が含まれる。また、検知信号には、受信した電波EW2の強度の情報も含まれる。なお、付着物がアウターカバー12にある場合、付着物の影響によるノイズが受信部26からの信号に加わる。このため、検知部27は、ノイズが加わった当該信号によって付着物の存在の検知を行う。このような検知部の構成として、例えば、制御部COと同様の構成が挙げられる。
 なお、センサ部20は、アウターカバー12を介して電磁波を送受信し、検知信号を出力すればよく、センサ部20の構成は特に制限されない。例えば、送信部25は、パルス状の電波を繰り返し出射する構成とされてもよい。この場合、検知部27は、例えばToF(Time of Flight)方式により、物体の検知、物体と車両VEとの距離の算出を行う。また、センサ部20は、電磁波としてのレーザ光を出射すると共にレーザ光を受信するLiDAR(Light Detection and Ranging)であってもよい。また、センサ部20が送受信する電磁波は、赤外線や紫外線であってもよい。つまり送信部25及び受信部26からの信号は、上記のように電波EW1,EW2に係る信号のみならず、アウターカバー12を介してセンサ部20が送受信する電磁波に係る信号を含む。
 アウターカバー12には、ヒータ30が設けられている。ヒータ30は、アウターカバー12におけるセンサ部20から出射する電磁波が透過する透過領域ARを加熱する。透過領域ARは、アウターカバー12の外面12oのうち電波EW1,EW2が透過する領域である。ヒータ30は、電熱線31及び電源回路32を主な構成として備える。本実施形態の電熱線31は、アウターカバー12の内面12iに設けられ、コネクタ33を介して電源回路32に接続される。電熱線31は、電流が流れることで発熱する構成であれば特に限定されなく、導電体のペーストから構成されてもよく、金属線等から構成されてもよい。電源回路32は、制御部COからの制御信号により、電熱線31に電圧を印加する。電圧が印加されることで電熱線31に電流が流れると、当該電熱線31は、発熱して透過領域ARを加熱する。本実施形態では、電波EW1の伝搬方向において、透過領域ARは電熱線31の一部と重なっている。また、電熱線31の発熱量は、熱によるアウターカバー12の変形や焼け等が生じないような発熱量とされる。なお、本説明では、透過領域ARは、電波EW1,EW2が透過する領域として説明されているが、上記のように、センサ部20は、電磁波としてのレーザ光を送受信する形態も含む。このため、透過領域ARは、センサ部20から出射する電磁波が透過する領域である。
 なお、電熱線31は、透過領域ARを加熱することができればよく、アウターカバー12のうちの透過領域AR以外の領域を加熱してもよい。この場合、電熱線31の熱は透過領域AR以外の領域を通じて透過領域ARに伝わる。また、電熱線31は、例えば、電波EW1の伝搬方向において、透過領域ARと電熱線31とが重なっていなくてもよく、外面12oやアウターカバー12の内部に取り付けられてもよい。このように、ヒータ30は、アウターカバー12を加熱できればよい。
 クリーナ40は、車両VEの外側からアウターカバー12の外面12oにおける透過領域ARに向けて液体と気体との少なくとも一方を噴射するように構成される。車両用センサ装置1は、クリーナ40から噴射される液体や気体によって透過領域ARに付着する付着物を除去できる。本実施形態では、クリーナ40は、液体及び気体を個別に透過領域ARに向けて噴射可能に構成されており、透過領域ARに向けて液体を噴射する液体ユニット41及び透過領域ARに向けて気体を噴射する気体ユニット45を有する。本実施形態では、液体ユニット41が透過領域ARに向けて液体を噴射し、気体ユニット45が透過領域ARに向けて気体を噴射する例を用いて説明するが、液体及び気体がアウターカバー12の外面12oを通じて透過領域ARに流れればよい。従って、クリーナ40は、車両VEの外側からアウターカバー12に向けて液体と気体との少なくとも一方を噴射すればよい。
 ハウジング11の下方における前端部には、前後に延在する支持台15が取り付けられている。支持台15の前端は、アウターカバー12より前方に位置している。本実施形態の液体ユニット41は、液体を貯留するタンク41a、ポンプ41b、及び噴射ノズル41cを主な構成として備える。ポンプ41bには、タンク41aに接続する配管42aと、噴射ノズル41cに接続する配管42bとが接続される。ポンプ41bは、タンク41a内の液体を噴射ノズル41cに圧送する。ポンプ41bは、制御部COからの制御信号により、噴射ノズル41cに圧送する液体の量を調節したり、液体の圧送を停止したりする。噴射ノズル41cは、タンク41aから圧送される液体が透過領域ARに向かって噴射されるように、支持台15のアウターカバー12より前方に位置する部位に取り付けられている。また、噴射ノズル41cは、透過領域ARより下方に位置している。このため、ポンプ41bが液体を噴射ノズル41cに圧送することで、液体は下方側から透過領域ARに向けて噴射される。タンク41aに貯留される液体として、例えば、水、ウインドウォッシャー液等が挙げられる。この液体がウインドウォッシャー液である場合、タンク41aは車両VEに備わるウインドウォッシャータンクであってもよい。なお、液体ユニット41は、アウターカバー12より車両VEの外側からアウターカバー12に向けて液体を噴射することができればよく、液体ユニット41の構成は特に制限されない。
 本実施形態の気体ユニット45は、気体を大気圧より高い圧力で貯留するタンク45a、バルブ45b、及び噴射ノズル45cを主な構成として備える。バルブ45bには、タンク45aに接続する配管46aと、噴射ノズル45cに接続する配管46bとが接続されている。バルブ45bが開くことで、タンク41a内の気体が噴射ノズル45cに圧送される。バルブ45bは、制御部COからの制御信号により、バルブ45bの開閉度を調節する。噴射ノズル45cは、タンク45aから圧送される気体が透過領域ARに向かって噴射されるように、支持台15におけるアウターカバー12より前方に位置する部位に取り付けられている。また、噴射ノズル45cは、透過領域ARより下方に位置している。このため、バルブ45bが開くことで、気体が下方側から透過領域ARに向けて噴射される。タンク41aに貯留される気体として、例えば、空気等が挙げられる。この気体が空気である場合、タンク41aにコンプレッサが接続され、当該コンプレッサによってタンク41a内の空気の圧力を所定の範囲に維持してもよい。なお、気体ユニット45は、アウターカバー12より車両VEの外側からアウターカバー12に向けて気体を噴射することができればよく、気体ユニット45の構成は特に制限されない。
 制御部COは、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置から成る。また、制御部COは、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。制御部COは、車両用灯具VLの幾つかの構成を制御する。制御部COには、車両VEのECU(Electronic Control Unit)100が接続されている。制御部COは、センサ部20からの検知信号をECU100に入力してもよい。ECU100は、検知信号を基に車両VEの走行を補助する。
 また、制御部COには車両VEの外の温度を測定する温度センサ50が接続され、温度センサ50は測定した温度を示す温度信号を制御部COに出力する。温度センサ50として、例えばサーミスタを用いるものが挙げられる。本実施形態の温度センサ50は、例えば、車両VEのフロントバンパーに取り付けられている。なお、温度センサ50の構成及び取り付け位置は特に制限されるものではない。従って、温度を示す信号は、ECU100から制御部COに入力されてもよい。
 また、制御部COには、カメラ51が接続されている。カメラ51は、例えば、筐体10の外側で車両の上部に取り付けられている。カメラ51としては、例えば、ステレオカメラが挙げられる。なお、カメラ51の取り付け位置及び構成は特に制限されるものではない。カメラ51の撮影範囲は、センサ部20の検知範囲に含まれるが、センサ部20の検知範囲を含んでもよい。センサ部20の検知範囲とは、送信部25からの電波EW1が広がる範囲である。上記のようにセンサ部20が車両VEの前方を検知するため、カメラ51は車両VEの前方を撮影する。カメラ51の画像は、画像信号に変換されて制御部COに入力される。車両VEの前方に先行車や人等の物体が位置している場合、画像には物体が写り、画像信号には物体が含まれる。また、画像に物体が写る場合には、画像信号には、車両VEに対する当該物体の位置、車両VEに対する当該物体の方位に係る情報が含まれる。制御部COは、画像信号から、物体の検知、車両VEに対する当該物体の位置の算出、車両VEに対する当該物体の方位の算出、物体と車両との距離の測定を行う。
 カメラ51には、モニタ53が接続されている。モニタ53は、カメラ51によって撮影された画像を表示する。モニタ53は、運転者が視認可能な位置に設置される。
 次に、制御部COの動作について説明する。
 図2は、本実施形態における制御部COの制御フローチャートの一例を示す図である。図2に示すように、本実施形態の制御フローは、ステップSP11~ステップSP17を含む。
 図2に示す開始の状態では、物体が車両VEの前方に位置し、カメラ51が車両VEの前方を撮影し、センサ部20が電磁波を送受信して物体の検知を行い、カメラ51からの画像信号及びセンサ部20からの検知信号が制御部COに入力されているものとする。各ステップにおいて、画像信号及び検知信号は、制御部COに入力されているものとする。
 (ステップSP11)
 本ステップは、制御部COが、センサ部20によって検知される物体がカメラ51の画像信号に含まれるか否かに応じて場合分けをして次に進むステップを変更するステップである。従って、本ステップでは、制御部COは、センサ部20によって検知される物体が画像信号に含まれるか否かの判断を行う。具体的には、制御部COは、後述するように、物体が画像信号に含まれる場合には、センサ部20及びカメラ51が故障している可能性が低いため制御フローを終了する。また、制御部COは、物体が画像信号に含まれない場合には、後述するように、アウターカバー12への付着物の付着といった車両VEの異常を検知し制御フローをステップSP12に進める。このように、制御部COは、センサ部20によって検知される物体がカメラ51の画像信号に含まれるか否かに応じて車両VEの異常があるか否かを検知する。
 本ステップでは、アウターカバー12に付着物がない場合、センサ部20及びカメラ51は物体を撮影する。従って、センサ部20によって検知される物体は、カメラ51によって撮影され、カメラ51の画像信号に含まれる。このようにセンサ部20によって検知される物体が画像信号に含まれる場合、センサ部20及びカメラ51が故障している可能性が低いため、制御部COは、制御フローを終了する。
 また、本ステップでは、上記とは逆に、アウターカバー12に付着物がある場合、センサ部20は付着物を検知してしまう傾向にある。従って、センサ部20によって検知された付着物は、カメラ51によって撮影されず、カメラ51の画像信号に含まれない可能性が高い。或いは、アウターカバー12に付着物がなく、カメラ51が故障している可能性が高い場合、センサ部20によって検知された物体は、カメラ51によって撮影されず、カメラ51の画像信号に含まれない可能性がある。このため、本ステップでは、センサ部20によって検知される物体が画像信号に含まれない場合、制御部COは、アウターカバー12への付着物の付着といった車両VEの異常を検知する。そして、制御部COは、制御フローをステップSP12に進める。
 (ステップSP12)
 本ステップでは、制御部COは、受信部26から入力する信号が示す電波EW2の強度が第1閾値未満であるか否かに応じて場合分けをして後述するように次に進むステップを変更する。上記のように、センサ部20から出射された電波EW1は、透過領域ARに向かって伝搬する。電波EW1の一部は、透過領域ARを透過して車両VEの前方を照射する。また、電波EW1の他の一部は、透過領域ARで反射して電波EW2としてセンサ部20で受信される。また、透過領域ARに付着物がある場合、電波EW1の別の他の一部は、当該付着物で反射して電波EW2としてセンサ部20で受信される。このため、透過領域ARに付着物がある場合、センサ部20で受信される電波EW2の強度は、透過領域ARに付着物がない場合と比べて、高くなる傾向にある。また、透過領域ARに付着物がある場合にセンサ部20で受信される電波EW2の強度は、付着物によって変化する傾向にある。付着物としては、例えば、粉塵や水滴、氷雪、泥が挙げられる。一般的には、透過領域ARに粉塵や水滴が付着している場合、透過領域ARに氷雪が付着している場合、透過領域ARに泥が付着している場合の順で、センサ部20で受信される電波EW2の強度が高くなる傾向にある。本実施形態では、上記第1閾値は、透過領域ARに所定量の粉塵や水滴が付着している場合にセンサ部20で受信される電波EW2の強度より低い値とされる。
 検知信号が示す電波EW2の強度が第1閾値未満でない場合には、付着物が透過領域ARにあることになり、付着物の除去が必要になる。そこで、制御部COは、付着物を除去するステップSP13に制御フローを進める。また、強度が第1閾値未満である場合には、付着物が透過領域ARになく、カメラ51が故障している可能性が高い。そこで、制御部COは、カメラ51の故障を通知するステップSP15に制御フローを進める。
 (ステップSP13)
 本ステップでは、上記したように、電波EW2の強度が第1閾値以上であるため付着物が透過領域ARにあることになる。このため、制御部COは、ヒータ30及びクリーナ40を制御して透過領域ARにある付着物を除去する除去動作を行う。除去動作におけるヒータ30及びクリーナ40の制御については、後述する。除去動作が終了すると、制御部COは、制御フローをステップSP14に進める。
 (ステップSP14)
 本ステップでは、付着物がすでに除去されているため、センサ部20が正常であれば、センサ部20は物体を検知する。このため、制御部COは、センサ部20が物体を検知している場合に、カメラ51が故障している可能性が高いか否かの判断を行う。具体的には、制御部COは、センサ部20によって検知される物体が画像信号に含まれるか否かの判断を行う。より具体的には、制御部COは、後述するように、センサ部20によって検知される物体が画像信号に含まれない場合には、カメラ51が故障している可能性が高いため制御フローをステップSP15に進める。また、制御部COは、後述するように、センサ部20によって検知される物体が画像信号に含まれる場合やセンサ部20によって物体が検知されない場合には、ステップSP16に制御フローを進める。このように本ステップは、制御部COが、画像信号に含まれる物体がセンサ部20によって検知されるか否かに応じて場合分けをして次に進むステップを変更するステップである。
 本ステップではセンサ部20によって検知される物体が画像信号に含まれない場合、カメラ51が故障している可能性が高い。そこで、制御部COは、カメラ51が故障している可能性が高いことを通知するステップSP15に制御フローを進める。また、本ステップでは、センサ部20によって検知される物体が画像信号に含まれる場合、制御部COは、制御フローをステップSP16に制御フローを進める。ところで、本ステップではセンサ部20が故障して、カメラ51が正常である場合、センサ部20によって物体が検知されないため、制御部COは、センサ部20によって検知される物体が画像信号に含まれるか否かの判断を行えない。この場合、制御部COは、ステップSP16に制御フローを進める。
 (ステップSP15)
 本ステップでは、制御部COは、カメラ51の故障に係るカメラ故障信号をモニタ53に出力する。カメラ故障信号がモニタ53に入力されると、カメラ51が故障している可能性が高い旨を示す情報を運転者に通知する。制御部COは、カメラ故障信号をモニタ53に出力すると、制御フローを終了する。
 (ステップSP16)
 本ステップでは、制御部COは、カメラ51が正常で物体を検知している場合に、センサ部20が故障している可能性が高いか否かの判断を行う。具体的には、制御部COは、画像信号に含まれる物体がセンサ部20によって検知されるか否かの判断を行う。より具体的には、制御部COは、後述するように、画像信号に含まれる物体がセンサ部20によって検知される場合には、センサ部20及びカメラ51が故障している可能性が低いため制御フローを終了する。また、制御部COは、画像信号に含まれる物体がセンサ部20によって検知されない場合には、センサ部20が故障している可能性が高いためセンサ部20が故障していることが高いことを通知するステップSP17に制御フローを進める。このように本ステップは、制御部COが、画像信号に含まれる物体がセンサ部20によって検知されるか否かに応じて場合分けをして次に進むステップを変更するステップである。
 本ステップでは、付着物がすでに除去されているため、センサ部20及びカメラ51は物体を撮影する。従って、カメラ51によって撮影される物体は、カメラ51の画像信号に含まれ、センサ部20によって検知される。画像信号に含まれる物体がセンサ部20によって検知される場合、センサ部20及びカメラ51が故障している可能性が低いため、制御部COは、制御フローを終了する。
 上記とは逆に、画像信号に含まれる物体がセンサ部20によって検知されない場合、付着物がすでに除去されているため、センサ部20が故障している可能性が高い。そこで、制御部COは、センサ部20が故障していることが高いことを通知するステップSP17に制御フローを進める。
 (ステップSP17)
 本ステップでは、制御部COは、センサ部20の故障に係るセンサ故障信号を出力する。センサ故障信号がモニタ53に入力されると、モニタ53はセンサ部20が故障している可能性が高い旨を示す情報を運転者に通知する。制御部COは、センサ故障信号をモニタ53に出力すると、制御フローを終了する。
 次に、ステップSP13にて説明したヒータ30及びクリーナ40を制御して透過領域ARにある付着物を除去する除去動作について説明する。図3は、除去動作における制御部COの制御フローチャートである。図3に示すように、制御フローは、及びステップSP21~ステップSP29を含む。
 (ステップSP21)
 本ステップでは、制御部COは、センサ部20からの検知信号が示す電波EW2の強度が第1閾値以上かつ当該第1閾値より大きい第2閾値未満である第1範囲である場合には、制御フローをステップSP22に進める。また、制御部COは、電波EW2の強度が第1範囲以内ではない場合には、制御フローをステップSP23に進める。粉塵や水滴が透過領域ARに付着している場合には、検知信号が示す電波EW2の強度は、第1範囲に含まれるようにし得る。
(ステップSP22)
 本ステップでは、制御部COは、温度センサ50からの温度信号が示す温度が所定温度を超える場合には制御フローをステップSP24に進め、当該温度が所定温度以下である場合には制御フローをステップSP25に進める。所定温度は、例えば、水等が凍り始める温度、またはその温度に近い温度とされ、本実施形態では、ゼロ℃とされる。
(ステップSP24)
 本ステップでは、制御部COは、所定期間におけるヒータ30の動作とクリーナ40の動作との組合せからなる動作が第1動作となるように、ヒータ30及びクリーナ40を制御する。所定期間は、一定であってもよく、センサ部20からの検知信号が示す電波EW2の強度に応じて変化してもよい。この第1動作では、少なくともクリーナ40が所定期間の少なくとも一部の期間において駆動する。第1動作は、ヒータ30が駆動せず、クリーナ40が気体ユニット45から透過領域ARに向けて気体が例えば3秒間だけ噴射する動作である。このため、噴射ノズル45cから気体が透過領域ARに向けて噴射され、粉塵が除去される。なお、第1動作での所定期間は上記した3秒間であり、当該所定期間の全部でクリーナ40が駆動する。
 なお、本ステップでは、制御部COは、気体の噴射を終了後に、液体の噴射を開始して、開始してから例えば1秒経過後に気体の噴射を終了してもよい。このため、気体の噴射によって除去されずにアウターカバー12に付着する粉塵が液体の噴射によって除去され、粉塵はより確実に除去される。液体の噴射期間は、気体の噴射期間より短くても、気体の噴射期間以上であってもよい。また、本ステップでは、ヒータ30が駆動せずに、クリーナ40が液体のみを噴射してもよい。なお、本ステップでは、ヒータ30が駆動してもよい。
 制御部COは、第1動作が終了すると、制御フローをステップSP14に進める。
(ステップSP25)
 本ステップは、制御部COが、所定期間におけるヒータ30の動作とクリーナ40の動作との組合せからなる動作が第2動作となるように、ヒータ30及びクリーナ40を制御するステップである。この第2動作では、少なくともクリーナ40が所定期間の少なくとも一部の期間において駆動する。第2動作は図4に示す動作であり、制御部COは、ヒータ30及びクリーナ40の動作が図4に示す動作となるように、これらを制御する。図4は、第2動作を模式的に示すタイミングチャートである。
 図4に示すように、ヒータ30は、時刻t201に駆動を開始してアウターカバー12を加熱し始め、時刻t204に駆動を停止する。クリーナ40は、時刻t201より遅く時刻t204より早い時刻t202に気体の噴射を開始して、時刻t204より早い時刻t203に気体の噴射を終了する。また、クリーナ40は、液体の噴射をしない。図4では、ヒータ30の駆動期間を駆動期間TH、クリーナ40の気体噴射期間を噴射期間TAで示している。
 この第2動作では、所定期間は時刻t201から時刻t204までの期間であり、気体をアウターカバー12に向けて噴射する前にアウターカバー12が加熱される。車両VEの外の温度が水等が凍るような温度である場合、粉塵に氷が付着していたりする傾向にある。本ステップでは、アウターカバー12の加熱によってアウターカバー12に付着する粉塵に付着する氷が溶けた状態にした後に、気体が噴射される。このため、アウターカバー12に付着する粉塵に氷が付着しているような場合に、有用である。
 なお、ヒータ30は、クリーナ40の気体の噴射開始のタイミングより前に駆動を終了してもよく、クリーナ40は気体に替わって液体を噴射してもよい。
 制御部COは、第2動作が終了すると、制御フローをステップSP14に進める。
(ステップSP23)
 本ステップでは、制御部COは、センサ部20からの検知信号が示す電波EW2の強度が第2閾値以上かつ当該第2閾値より大きい第3閾値未満である第2範囲である場合には、制御フローをステップSP26に進める。また、制御部COは、電波EW2の強度が第3閾値以上である第3範囲である場合には、制御フローをステップSP27に進める。本実施形態では、第3閾値は、透過領域ARに所定量の氷雪が付着している場合にセンサ部20で受信される電波EW2の強度より高く、透過領域ARに所定量の泥が付着している場合にセンサ部20で受信される電波EW2の強度より低い値とされる。このため、氷雪が透過領域ARに付着している場合には、センサ部20からの検知信号が示す強度が第2範囲に含まれるようにし得る。また、泥が透過領域ARに付着している場合には、センサ部20からの検知信号が示す強度が第3範囲に含まれるようにし得る。
(ステップSP26)
 本ステップでは、制御部COは、所定期間におけるヒータ30の動作とクリーナ40の動作との組合せからなる動作が第3動作となるように、ヒータ30及びクリーナ40を制御する。第3動作での所定期間は、一定であってもよく、センサ部20からの検知信号が示す電波EW2の強度に応じて変化してもよく、第1動作での所定期間と同じであってもよく、異なっていてもよい。この第3動作は、少なくともヒータ30が所定期間の少なくとも一部の期間において駆動する点で、ステップSP24での第1動作と異なる。本実施形態の第3動作は、クリーナ40が駆動せず、ヒータ30が例えば15分間だけ駆動する動作である。このため、制御部COは、15分間だけ電熱線31に電流が流れるように電源回路32を制御する。これにより当該電熱線31が発熱してアウターカバー12が加熱され、氷雪が除去される。なお、第3動作での所定期間は上記した15分間であり、当該所定期間の全部でヒータ30が駆動する。
 なお、第3動作は、図5に示す動作であってもよく、制御部COは、ヒータ30及びクリーナ40の動作が図5に示す動作となるように、これらを制御してもよい。図5は、第3動作の変形例を模式的に示すタイミングチャートである。
 図5に示すように、ヒータ30は、時刻t211に駆動を開始してアウターカバー12を加熱し始める。クリーナ40は、時刻t211より遅い時刻t212に液体の噴射を開始して、時刻t212から例えば3秒経過後の時刻t213に液体の噴射を終了する。このため、クリーナ40は、時刻t212から3秒間、透過領域ARに向けて液体を噴射する。図5では、クリーナ40の液体噴射期間を噴射期間TWで示している。また、クリーナ40は、時刻t213より遅い時刻t214に気体の噴射を開始し、時刻t214から例えば3秒経過後の時刻t215に気体の噴射を終了する。このため、クリーナ40は、時刻t214から3秒間、透過領域ARに向けて気体を噴射する。ヒータ30は、時刻t215より遅い時刻t216に駆動を停止する。このため、ヒータ30は、時刻t211から時刻t216までの期間、アウターカバー12を加熱する。
 この第3動作では、所定期間は時刻t211から時刻t216までの期間であり、クリーナ40の液体の噴射開始のタイミングである時刻t212がヒータ30の駆動開始のタイミングである時刻t211より後である。このような構成にすることで、アウターカバー12の加熱によってアウターカバー12に付着する氷雪とアウターカバー12との間の少なくとも一部に水が介在する状態にした後に、氷雪に向けて液体が噴射される。氷雪とアウターカバー12との間の少なくとも一部に水が介在する場合の氷雪のアウターカバー12への付着力は、氷雪とアウターカバー12との間に水が介在しない場合と比べて、小さくなる傾向にある。従って、このような構成にすることで、アウターカバー12に向けて液体を噴射する前にアウターカバー12が加熱されない場合と比べて、氷雪は容易に除去される。
 制御部COは、第3動作が終了すると、制御フローをステップSP14に進める。
(ステップSP27)
 本ステップでは、制御部COは、ステップSP22と同様に、温度センサ50からの温度信号が示す温度が上記の所定温度を超える場合には制御フローをステップSP28に進め、当該温度が所定温度以下である場合には制御フローをステップSP29に進める。
(ステップSP28)
 本ステップでは、制御部COは、所定期間におけるヒータ30の動作とクリーナ40の動作との組合せからなる動作が第4動作となるように、ヒータ30及びクリーナ40を制御する。第4動作での所定期間は、一定であってもよく、センサ部20からの検知信号が示す電波EW2の強度に応じて変化してもよく、上記の他の動作での所定期間と同じであってもよく、異なっていてもよい。この第4動作は、少なくともクリーナ40が所定期間の少なくとも一部の期間において駆動する点で、ステップSP26での第3動作と異なる。つまり、第1動作及び第4動作は、第3動作と異なる。本実施形態の第4動作は、ヒータ30が駆動せず、クリーナ40の液体ユニット41から透過領域ARに向けて液体が例えば3秒間だけ噴射する動作である。このため、制御部COは、3秒間だけポンプ41bが動くように当該ポンプ41bを制御する。これにより噴射ノズル41cから液体が透過領域ARに向けて3秒間噴射され、泥が除去される。なお、第4動作での所定期間は上記した3秒間であり、当該所定期間の全部でクリーナ40が駆動する。
 制御部COは、第4動作が終了すると、制御フローをステップSP14に進める。
(ステップSP29)
 本ステップでは、制御部COは、所定期間におけるヒータ30の動作とクリーナ40の動作との組合せからなる動作が第5動作となるように、ヒータ30及びクリーナ40を制御する。この第5動作では、少なくともクリーナ40が所定期間の少なくとも一部の期間において駆動し、この第5動作はステップSP26での第3動作と異なる。本実施形態の第5動作は図6に示す動作であり、制御部COは、ヒータ30及びクリーナ40の動作が図6に示す動作となるように、これらを制御する。図6は、第5動作を模式的に示すタイミングチャートである。
 図6に示すように、クリーナ40は、時刻t221に液体の噴射を開始して、時刻t221から例えば5秒経過後の時刻t222に液体の噴射を終了する。また、クリーナ40は、気体の噴射をしない。ヒータ30は、時刻t222より遅い時刻t223に駆動を開始してアウターカバー12を加熱し始め、時刻t213から例えば15分経過後の時刻t224に駆動を停止する。
 この第5動作では、所定期間は時刻t221から時刻t224までの期間であり、クリーナ40の液体の噴射終了のタイミングである時刻t222より後にヒータ30が駆動している期間がある。このため、アウターカバー12への液体の噴射が終了した後においてアウターカバー12が加熱される。従って、このような構成にすることで、アウターカバー12への液体の噴射が終了した後においてアウターカバー12に付着する液体、例えば、クリーナ40からの液体の凍結が抑制され、この液体は気化によって除去される。
 また、この第5動作では、クリーナ40の液体の噴射開始のタイミングである時刻t221がヒータ30の駆動開始のタイミングである時刻t223より前である。このため、液体をアウターカバー12に向けて噴射する前にアウターカバー12が加熱されない。アウターカバー12が加熱されてアウターカバー12に付着する泥等の汚れの水分が減少すると、泥等の汚れのアウターカバーへの付着力は大きくなる傾向にある。従って、このような構成にすることで、アウターカバー12を加熱した後に液体をアウターカバー12に向けて噴射する場合と比べて、泥等の汚れは容易に除去される。
 なお、ヒータ30は、クリーナ40が液体を噴射している期間TWに駆動を開始してもよい。
 また、ヒータ30の駆動期間中に、液体を噴射するクリーナ40が駆動してもよい。このため、アウターカバー12への液体の噴射前にアウターカバー12が加熱される。車両VEの外の温度が水等が凍るような温度である場合、アウターカバー12に付着する泥中の水分が凍る傾向にある。このような構成にすることで、アウターカバー12の加熱によってアウターカバー12に付着する泥中の水分が溶けた状態にした後に、液体を噴射し得る。このため、アウターカバー12に付着する泥中の水分が凍っているような場合に、有用である。
 また、クリーナ40は、時刻t222と時刻t223との間において気体の噴射を開始し、時刻t223と時刻t224との間に気体の噴射を停止してもよい。従って、クリーナ40の液体の噴射が終了した後にアウターカバー12に向けて気体が噴射される。このような構成にすることで、アウターカバー12への液体の噴射が終了した後においてアウターカバー12に付着する液体はクリーナ40からの気体によって除去される。
 制御部COは、第5動作が終了すると、制御フローをステップSP14に進める。
 以上のように、本実施形態の車両用センサ装置1の制御部COは、センサ部20によって検知される物体が車両VEに搭載されてセンサ部20の検知範囲を撮影するカメラ51からの画像信号に含まれるか否かの判断を行う。
 アウターカバー12に付着物がある場合、センサ部20は付着物を検知してしまう傾向にある。上記の構成では、制御部COは、センサ部20によって検知された物体が画像信号に含まれるか否かの判断を行う。カメラ51は付着物を写さないため、センサ部20によって検知される物体が画像信号に含まれない場合、付着物がアウターカバーにある可能性が高く、制御部COはアウターカバー12への付着物の付着といった車両VEの異常を上記判断によって検知し得る。このように、この車両用センサ装置1では、付着物からの電磁波の反射波の強度のみを用いて車両VEの異常を検知する場合に比べて、車両VEの異常を検知し易くし得る。
 また、制御部COは、センサ部20によって検知される物体が画像信号に含まれない場合、ヒータ30を駆動させる。
 ヒータ30が駆動すると、アウターカバー12が暖められ、水滴及び氷雪といった付着物は熱によって溶けてアウターカバー12から除去され得る。付着物が除去されると、センサ部20とカメラ51とのそれぞれから物体の位置が検知され得、それぞれから検知された位置の情報の利用により車両VEの走行時の安全性が向上し得る。なお、制御部COは、センサ部20によって検知される物体が画像信号に含まれない場合、ヒータ30を駆動させなくてもよい。
 また、制御部COは、センサ部20によって検知される物体が画像信号に含まれない場合、クリーナ40を駆動させる。
 クリーナ40が駆動すると、粉塵、水滴、氷雪、及び泥といった付着物は噴射される液体や気体によってアウターカバー12から除去され得る。付着物が除去されると、センサ部20とカメラ51とのそれぞれから物体の位置が検知され得、それぞれから検知された位置の情報の利用により車両VEの走行時の安全性が向上し得る。なお、制御部COは、センサ部20によって検知される物体が画像信号に含まれない場合、クリーナ40を駆動させなくてもよい。
 また、制御部COは、ヒータ30及びクリーナ40の駆動終了より後に上記判断を再度行い、当該判断においてセンサ部20によって検知される物体が画像信号に含まれないと判断される場合、カメラ51の故障に係るカメラ故障信号を出力する。
 付着物の除去後に、物体がセンサ部20によって検知され、センサ部20によって検知される物体が画像信号に含まれない場合、カメラ51が故障している可能性が高い。カメラ51が故障している可能性が高い場合、例えば、運転者が視認可能なモニタ53にカメラ故障信号が入力されると、カメラ51が故障している可能性が高い旨を示す情報がモニタ53を通じて運転者に通知され得る。なお、制御部COは、カメラ故障信号をECU100に出力してもよい。また、制御部COは、ヒータ30及びクリーナ40の駆動終了より後に上記判断を再度行い、当該判断においてセンサ部20によって検知される物体が画像信号に含まれないと判断される場合、カメラ51の故障に係るカメラ故障信号を出力しなくてもよい。
 また、制御部COは、ヒータ30及びクリーナ40の駆動終了より後に画像信号に含まれる物体がセンサ部20によって検知されるか否かの判断を行い、当該判断において画像信号に含まれる物体がセンサ部20によって検知されないと判断される場合、センサ部20の故障に係るセンサ故障信号を出力する。
 付着物の除去後に、物体がカメラ51によって写され、画像信号に含まれる物体がセンサ部20によって検知されない場合、センサ部20が故障している可能性が高い。センサ部20が故障している可能性が高い場合、例えば、運転者が視認可能なモニタ53にセンサ故障信号が入力されると、センサ部20が故障している可能性が高い旨を示す情報がモニタ53を通じて運転者に通知され得る。なお、制御部COは、センサ故障信号をECU100に出力してもよい。また、制御部COは、ヒータ30及びクリーナ40の駆動終了より後に画像信号に含まれる物体がセンサ部20によって検知されるか否かの判断を行い、当該判断において画像信号に含まれる物体がセンサ部20によって検知されないと判断される場合、センサ部20の故障に係るセンサ故障信号を出力しなくてもよい。
 なお、上記のように、制御部COは、センサ部20の検知信号及びカメラ51の画像信号から車両VEに対する当該物体の位置を算出する。このため、図2に示す制御フローのステップSP11において、制御部COは、センサ部20によって検知される物体の位置と、画像信号に含まれる物体の位置との比較を行うことで上記判断を行ってもよい。なお、制御部COは、センサ部20によって検知される物体の位置と、画像信号に含まれる物体の位置との比較を行うことで上記判断を行わなくてもよい。
 また、制御部COは、ステップSP11において、センサ部20によって検知されると共に電磁波を所定強度以上の反射波で反射する物体が画像信号に含まれているか否かにより上記判断を行ってもよい。所定強度がアウターカバー12に所定量の泥が付着している場合にセンサ部20で受信される電波EW2の強度である場合、センサ部20によって検知される物体は付着物ではなく車両の前方に位置する物体として検知され易い。従って、車両用センサ装置1では、当該物体をセンサ部20によって検知し易くし得、アウターカバー12への付着物の付着といった車両VEの異常を検知され易くし得る。なお、制御部COは、ステップSP11において、センサ部20によって検知されると共に電磁波を所定強度以上の反射波で反射する物体が画像信号に含まれているか否かにより上記判断を行わなくてもよい。
 また、本実施形態の車両用センサ装置1の制御部COは、センサ部20によって検知される物体が車両VEに搭載されてセンサ部20の検知範囲を撮影するカメラ51からの画像信号に含まれない場合、ヒータ30及びクリーナ40の少なくとも一方を駆動する。
 上記したように、センサ部20によって検知される物体が画像信号に含まれない場合、付着物がアウターカバーにある可能性が高い。この場合に、ヒータ30が駆動すると、透過領域ARが暖められ、水滴及び氷雪といった付着物は熱によって溶けてアウターカバー12から除去され得る。また、クリーナ40が駆動すると、粉塵、水滴、氷雪、及び泥といった付着物は噴射される液体や気体によってアウターカバー12から除去され得る。付着物が除去されると、センサ部20とカメラ51とのそれぞれから物体の位置が検知され得、それぞれから検知された位置の情報の利用により車両VEの走行時の安全性が向上し得る。
 以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 図2に示す制御フローにおいて、制御部COは、ステップSP14のカメラ51の故障判断を、ステップSP16のセンサ部20の故障判断の後に行ってもよい。この場合、ステップSP16センサ部20が故障していなければ、制御フローはステップSP14に進む。また、ステップSP14においてカメラが故障していなければ、制御フローは終了する。また、制御フローにおいて、ステップSP14とステップSP16との少なくとも一方が省かれてもよい。ステップSP14が省かれればステップSP15も省かれ、ステップSP16が省かれればステップSP17も省かれる。
 例えば、アウターカバー12の透過領域ARがカバー等で覆われることで、センサ部20によって検知される物体がカメラ51からの画像信号に含まれるか否かを制御部COが判断する実験を実現できる。なお、センサ部20によって検知される物体がカメラ51からの画像信号に含まれるか否かを制御部COが判断する実験は、これに限定されるものではない。また、アウターカバー12の透過領域ARがカバー等で覆われることで、センサ部20によって検知される物体がカメラ51からの画像信号に含まれない場合に制御部COがヒータ30及びクリーナ40の少なくとも一方を駆動する実験を実現できる。なお、センサ部20によって検知される物体がカメラ51からの画像信号に含まれない場合に制御部COがヒータ30及びクリーナ40の少なくとも一方を駆動する実験は、これに限定されるものではない。
 本発明によれば、車両の異常を検知し易くし得る車両用センサ装置を提供され、自動車等の分野において利用可能である。

Claims (8)

  1.  アウターカバーと、
     前記アウターカバーより車両の内側に配置され、前記アウターカバーを介して送受信する電磁波によって物体を検知し、前記物体の検知に係る検知信号を出力するセンサ部と、
     制御部と、
     を備え、
     前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれるか否かの判断を行う
    ことを特徴とする車両用センサ装置。
  2.  前記アウターカバーに設けられるヒータをさらに備え、
     前記制御部は、前記センサ部によって検知される前記物体が前記画像信号に含まれない場合、前記ヒータを駆動させる
    ことを特徴とする請求項1に記載の車両用センサ装置。
  3.  前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナをさらに備え、
     前記制御部は、前記センサ部によって検知される前記物体が前記画像信号に含まれない場合、前記クリーナを駆動させる
    ことを特徴とする請求項1または2に記載の車両用センサ装置。
  4.  前記アウターカバーに設けられるヒータと、
     前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナと、
     をさらに備え、
     前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれない場合、前記ヒータ及び前記クリーナの少なくとも一方を駆動し、前記ヒータ及び前記クリーナの駆動終了より後に前記判断を再度行い、当該判断において前記センサ部によって検知される前記物体が前記画像信号に含まれないと判断される場合、前記カメラの故障に係るカメラ故障信号を出力する
    ことを特徴とする請求項1に記載の車両用センサ装置。
  5.  前記アウターカバーに設けられるヒータと、
     前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナと、
     をさらに備え、
     を備え、
     前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれない場合、前記ヒータ及び前記クリーナの少なくとも一方を駆動し、前記ヒータ及び前記クリーナの駆動終了より後に前記画像信号に含まれる前記物体が前記センサ部によって検知されるか否かの判断を行い、当該判断において前記画像信号に含まれる前記物体が前記センサ部によって検知されないと判断される場合、前記センサ部の故障に係るセンサ故障信号を出力する
    ことを特徴とする請求項1に記載の車両用センサ装置。
  6.  前記制御部は、前記センサ部によって検知される前記物体の位置と、前記画像信号に含まれる前記物体の位置との比較を行うことにより前記判断を行う
    ことを特徴とする請求項1に記載の車両用センサ装置。
  7.  前記制御部は、前記センサ部によって検知されると共に前記電磁波を所定強度以上の反射波で反射する前記物体が前記画像信号に含まれているか否かにより前記判断を行う
    ことを特徴とする請求項1に記載の車両用センサ装置。
  8.  アウターカバーと、
     前記アウターカバーより車両の内側に配置され、前記アウターカバーを介して送受信する電磁波によって物体を検知し、前記物体の検知に係る検知信号を出力するセンサ部と、
     前記アウターカバーに設けられるヒータと、
     前記車両の外側から前記アウターカバーに向けて液体と気体との少なくとも一方を噴射するクリーナと、
     制御部と、
     を備え、
     前記制御部は、前記センサ部によって検知される前記物体が前記車両に搭載されて前記センサ部の検知範囲を撮影するカメラからの画像信号に含まれない場合、前記ヒータ及び前記クリーナの少なくとも一方を駆動する
    ことを特徴とする車両用センサ装置。
     

     
PCT/JP2022/035064 2021-09-29 2022-09-21 車両用センサ装置 WO2023054078A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280066033.9A CN118043697A (zh) 2021-09-29 2022-09-21 车辆用传感器装置
JP2023551357A JPWO2023054078A1 (ja) 2021-09-29 2022-09-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160031 2021-09-29
JP2021160031 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023054078A1 true WO2023054078A1 (ja) 2023-04-06

Family

ID=85782574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035064 WO2023054078A1 (ja) 2021-09-29 2022-09-21 車両用センサ装置

Country Status (3)

Country Link
JP (1) JPWO2023054078A1 (ja)
CN (1) CN118043697A (ja)
WO (1) WO2023054078A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079661U (ja) * 1993-07-23 1995-02-10 日産ディーゼル工業株式会社 自動車の追突警報装置
JP2005127781A (ja) * 2003-10-22 2005-05-19 Nissan Motor Co Ltd 車両用測距性能低下検出装置
JP2009243963A (ja) * 2008-03-28 2009-10-22 Toyota Motor Corp 物体検出装置
JP2016162204A (ja) * 2015-03-02 2016-09-05 株式会社デンソー 汚れ判定装置
JP2020050271A (ja) 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 車載ライト装置の制御装置
WO2020100892A1 (ja) * 2018-11-13 2020-05-22 株式会社小糸製作所 センサシステム
WO2020170679A1 (ja) * 2019-02-18 2020-08-27 株式会社小糸製作所 車両用センシングシステム及び車両
WO2021075404A1 (ja) * 2019-10-16 2021-04-22 株式会社デンソー 車載の異常検出装置
JP2021139813A (ja) * 2020-03-06 2021-09-16 本田技研工業株式会社 車両用情報処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079661U (ja) * 1993-07-23 1995-02-10 日産ディーゼル工業株式会社 自動車の追突警報装置
JP2005127781A (ja) * 2003-10-22 2005-05-19 Nissan Motor Co Ltd 車両用測距性能低下検出装置
JP2009243963A (ja) * 2008-03-28 2009-10-22 Toyota Motor Corp 物体検出装置
JP2016162204A (ja) * 2015-03-02 2016-09-05 株式会社デンソー 汚れ判定装置
JP2020050271A (ja) 2018-09-28 2020-04-02 パナソニックIpマネジメント株式会社 車載ライト装置の制御装置
WO2020100892A1 (ja) * 2018-11-13 2020-05-22 株式会社小糸製作所 センサシステム
WO2020170679A1 (ja) * 2019-02-18 2020-08-27 株式会社小糸製作所 車両用センシングシステム及び車両
WO2021075404A1 (ja) * 2019-10-16 2021-04-22 株式会社デンソー 車載の異常検出装置
JP2021139813A (ja) * 2020-03-06 2021-09-16 本田技研工業株式会社 車両用情報処理装置

Also Published As

Publication number Publication date
JPWO2023054078A1 (ja) 2023-04-06
CN118043697A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN111479728B (zh) 车用清扫***
CN111201166B (zh) 车辆用清洗***
JP6998328B2 (ja) 車両用クリーナシステムおよび車両用クリーナシステムを備える車両
JP5494743B2 (ja) カメラ洗浄装置
US20230228847A1 (en) Vehicle sensor device
US20180222450A1 (en) Vehicle sensor housing with theft protection
US9272676B2 (en) Method for detecting a wet road
JP2021139285A (ja) センサシステムを備えた自動車用標章及びその操作方法
JP6981218B2 (ja) 車両用洗浄システム
US7166819B2 (en) Device to be mounted on the front part of a motor vehicle
JP2014037239A (ja) カメラ洗浄装置
CN106394395A (zh) 汽车用开门防撞预警方法及***
CN111279246B (zh) 摄像机装置、后视设备和机动车
JP2019064471A (ja) センサーを内蔵した車両用灯具
US20220348168A1 (en) Vehicle cleaner system and sensor system with vehicle cleaner
CN114502916A (zh) 传感器***以及传感器单元
JP2020029231A (ja) 走行支援装置
WO2023054078A1 (ja) 車両用センサ装置
US20220063371A1 (en) Modular led headlamp assembly with heating elements for automatically clearing water contamination
JP7236800B2 (ja) 車両洗浄システム
US20210078542A1 (en) Snow removing device
JP2022069805A (ja) 車両のセンサ面洗浄装置
US9333951B2 (en) Anti-freezing apparatus and anti-freezing method using the same
WO2022138111A1 (ja) センサシステム
US20240181999A1 (en) Cleaner system, program, cleaner control method, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551357

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875948

Country of ref document: EP

Effective date: 20240429