WO2023054067A1 - Vehicle control device and program - Google Patents

Vehicle control device and program Download PDF

Info

Publication number
WO2023054067A1
WO2023054067A1 PCT/JP2022/035002 JP2022035002W WO2023054067A1 WO 2023054067 A1 WO2023054067 A1 WO 2023054067A1 JP 2022035002 W JP2022035002 W JP 2022035002W WO 2023054067 A1 WO2023054067 A1 WO 2023054067A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
information
bad weather
period
detection accuracy
Prior art date
Application number
PCT/JP2022/035002
Other languages
French (fr)
Japanese (ja)
Inventor
康博 今井
裕 長谷川
敏宣 沖田
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Priority to JP2023551348A priority Critical patent/JPWO2023054067A1/ja
Publication of WO2023054067A1 publication Critical patent/WO2023054067A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a vehicle control device and program that implement driving support control.
  • adaptive cruise control is known as driving support control that supports driving of a vehicle.
  • an object detection device such as a distance measuring sensor is used to detect a preceding vehicle positioned in front of the own vehicle, and follow-up travel control is performed in which the own vehicle follows the preceding vehicle. If the detection accuracy of the object detection device drops due to bad weather, for example, during follow-up control and the preceding vehicle cannot be detected, follow-up control is canceled and control of vehicle travel is returned to the driver.
  • Patent Literature 1 describes a device that determines the weather conditions around the vehicle based on the detection results of a plurality of sensors that detect the conditions around the vehicle. According to the device of Patent Document 1, it is possible to determine that the detection accuracy of the object detection device has deteriorated due to bad weather during follow-up travel control.
  • the present disclosure is made in view of the above problems, and an object thereof is to provide a vehicle control device and a program capable of appropriately canceling driving support control when the detection accuracy of an object detection device decreases during driving support control.
  • the means to solve the above problems is applied to a vehicle equipped with an object detection device for detecting an object, and while performing driving support control for supporting driving of the own vehicle based on detection information by the object detection device, the above-described driving support control is performed while the driving support control is performed.
  • the cancellation standby period is set based on bad weather information indicating that the weather around the vehicle is bad. According to the bad weather information, it is possible to grasp the extent to which the deterioration of the weather affects driving support control, and it is possible to appropriately set the cancellation waiting period from the deterioration of detection accuracy to the cancellation of driving support control. can be done. As a result, it is possible to appropriately cancel the driving support control when the detection accuracy of the object detection device is degraded.
  • FIG. 1 is an overall configuration diagram of the travel control system
  • FIG. 2 is a flowchart showing the processing procedure of driving support processing
  • FIG. 3 is a flowchart showing the processing procedure of bad weather information acquisition processing
  • FIG. 4 is a graph showing the first to fifth patterns
  • FIG. 5 is a time chart showing an example of release timing of follow-up running control in driving support processing
  • FIG. 6 is a flowchart showing a processing procedure of driving support processing according to the second embodiment.
  • a first embodiment in which a vehicle control device according to the present disclosure is applied to an in-vehicle cruise control system 100 will be described below with reference to the drawings.
  • the cruise control system 100 recognizes objects (other vehicles, pedestrians, obstacles on the road, etc.) existing around the own vehicle, and based on the recognition result, performs driving support control such as follow-up cruise control (ACC control). to implement.
  • ACC control follow-up cruise control
  • the cruise control system 100 includes an ECU 10 as a vehicle control device, sensors 20, and a controlled device 30.
  • the sensors 20 include, for example, a camera sensor 21, a radar sensor 22, a yaw rate sensor 23, a vehicle speed sensor 24, and the like.
  • the camera sensor 21 is, for example, a monocular camera, and is installed near the top of the windshield of the vehicle in the vehicle interior.
  • the camera sensor 21 is an image sensor that captures an image of a predetermined area in front of the vehicle at regular intervals and acquires the captured image. An image captured by the camera sensor 21 is output to the ECU 10 .
  • the radar sensor 22 is a ranging sensor that transmits search waves around the vehicle and receives reflected waves of the search waves to obtain distance information about objects around the vehicle.
  • the radar sensor 22 is mounted, for example, in the vicinity of the front grill so that its optical axis faces the front of the vehicle.
  • the radar sensor 22 scans the front of the vehicle with a directional transmission wave in the millimeter wave band, which is a search wave, at regular intervals. By receiving the information, the distance to the object, the direction of the object, the relative speed of the object with respect to the own vehicle, and the like are acquired as distance information.
  • the radar sensor 22 calculates and acquires the distance to the object from the transmission time of the search wave and the reception time of the reflected wave. Further, the radar sensor 22 calculates and obtains the azimuth of the object from the phase difference of the reflected waves received by the plurality of antennas. Furthermore, the radar sensor 22 calculates and acquires the relative velocity of the object from the frequency of the reflected wave reflected by the surface of the object, which is changed by the Doppler effect. Distance information imaged by the radar sensor 22 is output to the ECU 10 . In addition, in this embodiment, the camera sensor 21 and the radar sensor 22 correspond to the "object detection device".
  • the yaw rate sensor 23 is configured as a known yaw rate sensor that detects the turning angular velocity of the own vehicle.
  • the vehicle speed sensor 24 detects the rotation speed of the wheels, that is, the travel speed of the host vehicle. Detection results by these sensors 23 and 24 are output to the ECU 10 .
  • the ECU 10 is a control device equipped with a well-known microcomputer consisting of CPU, ROM, RAM, flash memory, and the like.
  • the ECU 10 acquires position coordinates of objects around the vehicle.
  • the ECU 10 acquires the position coordinates of the detected object based on the image acquired from the camera sensor 21 and the position coordinates of the detected object based on the distance information acquired from the radar sensor 22 .
  • the ECU 10 performs well-known image processing such as template matching (pattern recognition) on the image acquired from the camera sensor 21 to determine the types of objects (other vehicles, pedestrians, etc.) present in the image. pedestrians, road obstacles, etc.).
  • image processing such as template matching (pattern recognition) on the image acquired from the camera sensor 21 to determine the types of objects (other vehicles, pedestrians, etc.) present in the image. pedestrians, road obstacles, etc.).
  • a plurality of dictionaries which are image patterns indicating features of each object, are stored as templates for specifying the type of each object.
  • a dictionary a whole-body dictionary is stored in which the features of the entire object are patterned.
  • the ECU 10 calculates the distance to the object based on the ratio between the actual size of the object stored in the dictionary and the image size, which is the size of the object on the image.
  • the ECU 10 also calculates the orientation of the object on the image with respect to the origin, with the center of the lower end of the image as the origin.
  • the ECU 10 calculates the relative position and presence area of the object from the distance to the object and the azimuth of the object calculated from the image, and acquires this information as image information.
  • the ECU 10 calculates the relative position and presence area of the object based on the distance to the object and the azimuth of the object included in the distance information acquired from the radar sensor 22, and acquires this information as radar information.
  • the ECU 10 recognizes an object based on the image information and the radar information, that is, by fusing the image information and the radar information. More specifically, the ECU 10 recognizes an object when there is an overlap between the object existence area included in the image information and the object existence area included in the radar information.
  • the ECU 10 performs driving support control to support driving of the own vehicle based on the information detected by the camera sensor 21 and the radar sensor 22 .
  • the ECU 10 implements follow-up driving control as driving support control.
  • the follow-up running control selects a preceding vehicle, which is another vehicle located in front of the own vehicle in the own lane in which the own vehicle is traveling, from the recognized object, and uses the controlled device 30 to apply the driving force and the braking force of the own vehicle. It is a control that adjusts.
  • the ECU 10 causes the own vehicle to run at a predetermined set speed at a constant speed, or causes the own vehicle to run while following the preceding vehicle.
  • the ECU 10 recognizes the left and right demarcation lines (hereinafter referred to as white lines) of the own lane in which the own vehicle is traveling from images obtained from the camera sensor 21, and positions the own vehicle within the left and right white lines. to hold. In other words, the ECU 10 implements a lane keep assist function in follow-up running control.
  • the controlled device 30 has an accelerator device 31 as an acceleration device and a brake device 32 as a deceleration device.
  • the accelerator device 31 applies driving force to the own vehicle according to the driver's accelerator operation or a control command from the ECU 10 .
  • the braking device 32 applies a braking force to the own vehicle according to a driver's braking operation or a control command from the ECU 10 .
  • the controlled device 30 also has a wiper device 33 provided on the window glass.
  • the detection accuracy of the camera sensor 21 and the radar sensor 22 may deteriorate due to, for example, bad weather.
  • a decrease in detection accuracy of the radar sensor 22 is determined based on a decrease in the number of objects detected around the vehicle by the radar sensor 22 .
  • follow-up running control may be continued.
  • the follow-up travel control is canceled and control of vehicle travel is returned to the driver.
  • bad weather information indicating that the weather around the host vehicle is bad is acquired, and based on this bad weather condition, a cancellation standby period TA from deterioration of detection accuracy to cancellation of follow-up running control is set.
  • the bad weather information it is possible to grasp how much the degree of deterioration of the weather affects the follow-up running control, and it is possible to appropriately set the cancellation standby period TA. As a result, the follow-up travel control can be appropriately canceled when the detection accuracy of the object detection device is lowered.
  • FIG. 2 shows a flowchart of the driving support processing of this embodiment.
  • the ECU 10 repeatedly executes the driving support process at predetermined intervals.
  • step S11 it is determined whether or not follow-up driving control is being performed. In this case, if it is either a follow-up running state in which the own vehicle follows the preceding vehicle or a constant-speed running state (independent running state) in which the own vehicle runs at a set speed, step S11 is affirmative, and the process proceeds to step S12. . On the other hand, if the follow-up running control is not being performed, the decision in step S11 is negative, and this process is once terminated.
  • step S12 it is determined whether or not the accuracy reduction flag Fg is set to "1".
  • the accuracy drop flag Fg is set to "0" at the start timing of the follow-up cruise control, and is set to "0" when the detection accuracy of the radar sensor 22 is not lowered.
  • the accuracy decrease flag Fg is set to "1”. If the precision drop flag Fg is set to "0”, the process proceeds to step S13. On the other hand, if the accuracy reduction flag Fg is set to "1", the process proceeds to step S21.
  • step S13 it is determined whether or not the detection accuracy of the radar sensor 22 has decreased. If the detection accuracy has not deteriorated, this process is once terminated. On the other hand, if the detection accuracy has decreased, the process proceeds to step S14.
  • step S14 the precision drop flag Fg is set to "1".
  • step S15 the first timer M1 with the cancellation waiting period TA set to the first period T1 starts to count, and this process is once terminated.
  • step S21 it is determined whether or not the state in which the detection accuracy of the radar sensor 22 has decreased is maintained. If the detection accuracy of the radar sensor 22 has recovered and the detection accuracy has not deteriorated, the process proceeds to step S22. In step S22, the precision drop flag Fg is set to "0". In the subsequent step S23, the timers M1 to M5 are reset, and this process is once terminated. The timers M1 to M5 are timing means corresponding to the patterns P1 to P5 shown in FIG. When the time has elapsed, the follow-up running control is canceled. On the other hand, if the state in which the detection accuracy is lowered is maintained, the process proceeds to step S24. In this embodiment, the processing of steps S13 and S21 corresponds to the "determination unit, determination step".
  • step S24 bad weather information acquisition processing is performed.
  • bad weather information acquisition process bad weather information indicating that the weather around the vehicle is bad is acquired from the camera sensor 21 and the radar sensor 22 included in the sensors 20 and the wiper device 33 included in the controlled device 30.
  • the process of step S24 corresponds to "acquisition unit, acquisition step".
  • Fig. 3 shows a flowchart of the bad weather information acquisition process.
  • the detection accuracy of the radar sensor 22 is lowered based on the determination that the state in which the detection accuracy of the radar sensor 22 is lowered is maintained in step S21.
  • bad weather information (hereinafter referred to as bad weather information from the radar sensor 22) indicating that In addition, in this embodiment, the bad weather information of the radar sensor 22 corresponds to the "first information".
  • step S41 it is determined whether or not the detection accuracy of the camera sensor 21 has decreased.
  • the number of objects detected around the vehicle by the camera sensor 21 is smaller than the number of objects detected around the vehicle by the radar sensor 22, so the detection accuracy of the camera sensor 21 is reduced.
  • the detection ratio which is the ratio of the number of objects detected around the vehicle by the camera sensor 21 to the number of objects detected around the vehicle by the radar sensor 22, becomes smaller than a predetermined threshold, the camera sensor 21 It is determined that the detection accuracy has decreased.
  • the number of objects existing around the vehicle decreases, and accordingly the number of objects detected around the vehicle by the radar sensor 22 and the number of objects detected around the vehicle by the camera sensor 21 both decrease. In this case, erroneous determination that the detection accuracy of the camera sensor 21 is degraded is suppressed.
  • step S42 bad weather information (hereinafter referred to as camera sensor 21 bad weather information), and proceeds to step S43.
  • the detection ratio is greater than the threshold, it is determined that the detection accuracy of the camera sensor 21 has not decreased, and the process proceeds to step S45.
  • the bad weather information of the camera sensor 21 corresponds to "second information".
  • step S43 it is determined whether or not the camera sensor 21 recognizes the white line of the own lane. For example, when the camera sensor 21 cannot detect objects far away from the vehicle and the camera sensor 21 acquires bad weather information, if the left and right white lines are recognized in the vicinity of the vehicle, In this situation, it is possible to exhibit the lane keep assist function, and if the preceding vehicle is being followed, there is a possibility that the preceding vehicle can be detected, so the process proceeds to step S44.
  • the second period T2 which is the cancellation standby period TA corresponding to the second pattern P2, is extended by a predetermined period, and the process proceeds to step S47.
  • step S47 the process proceeds to step S47 without extending the second period T2. That is, if the white line is recognized, the cancellation standby period TA (second period T2) is set longer than when the white line is not recognized.
  • step S45 it is determined whether or not the detection accuracy of the camera sensor 21 has recovered. For example, when it snows, the detection accuracy of the radar sensor 22 and the camera sensor 21 may decrease. It is conceivable that the detection accuracy remains degraded due to snow accumulating on the front surface of the sensor. In this case, the detection accuracy of the camera sensor 21 recovers, but the detection accuracy of the radar sensor 22 remains lowered until the snow adhering to the front surface of the radar sensor 22 melts, so the process proceeds to step S46.
  • bad weather information hereinafter referred to as bad weather information due to snow accumulation
  • the detection accuracy of the radar sensor 22 and the camera sensor 21 does not decrease when the weather is fine. can be considered. In this case, the detection accuracy of the camera sensor 21 has not recovered. In addition, the detection accuracy of the radar sensor 22 may not remain lowered, and the detection accuracy may not be restored by melting the snow adhering to the front surface of the radar sensor 22 . In this case, the process proceeds to step S47 without acquiring bad weather information due to snow cover.
  • step S47 it is determined whether the wiper device 33 is operating. If the wiper device 33 is operating, bad weather information indicating that the wiper device 33 is operating (hereinafter referred to as bad weather information of the wiper device 33) is acquired in step S48, and this process is temporarily terminated. On the other hand, if the wiper device 33 is not operating, this process is temporarily terminated without acquiring the bad weather information of the wiper device 33 .
  • bad weather information is acquired from in-vehicle devices such as the camera sensor 21, the radar sensor 22, and the wiper device 33.
  • the output change is acquired as the bad weather information for each in-vehicle device.
  • the output change means the change in the detection state
  • the wiper device 33 the output change means the change in the operating state.
  • steps S25-S36 timers M2-M5 are controlled based on the bad weather information acquired in the bad weather information acquisition process.
  • the memory 11 of the ECU 10 stores five patterns P1 to P5 determined by the bad weather information acquired in the bad weather information acquisition process. to control the timers M2 to M5 corresponding to .
  • the first pattern P1 is a pattern indicating a state in which bad weather information is acquired by the radar sensor 22, and the second pattern P2 is a pattern in which bad weather information is acquired by the radar sensor 22 and the camera sensor 21.
  • This pattern indicates that the Therefore, when the second pattern P2 is established, the first pattern P1 is established at the same time.
  • the third pattern P3 is a pattern indicating a state in which bad weather information is obtained from the radar sensor 22 and the wiper device 33
  • the fourth pattern P4 is a state in which bad weather information due to the radar sensor 22 and accumulated snow is obtained.
  • the fifth pattern P5 is a pattern indicating a state in which bad weather information from the radar sensor 22, the camera sensor 21, and the wiper device 33 is acquired. Since the bad weather information from the camera sensor 21 and the bad weather information due to accumulated snow are not acquired at the same time, the second pattern P2 and the fourth pattern P4 are not established at the same time.
  • the patterns P1 to P5 are provided with a cancellation standby period TA for the corresponding timers M1 to M5.
  • the cancellation waiting period TA of the first timer M1 corresponding to the first pattern P1 is the first period T1
  • TA is the second period T2.
  • the cancellation waiting period TA of the fourth timer M4 corresponding to the fourth pattern P4 is the third period T3, and the cancellation waiting period TA of the fifth timer M5 corresponding to the fifth pattern P5 is the fourth period T4.
  • the periods T1 to T4 are set to be shorter in this order.
  • the patterns P1 to P5 have different combinations of bad weather information to be acquired, and the cancellation standby period TA is set based on these combinations.
  • the degree of bad weather means the type of weather such as rain, snow, fog, etc. For example, snow causes freezing of the road surface, so the degree of bad weather is greater than that of rain.
  • the degree of bad weather includes the degree of bad weather for each type of weather such as light rain, heavy rain, and heavy rain.
  • the cancellation standby period TA is set according to the degree of bad weather.
  • the number of pieces of bad weather information to be acquired increases in this order, and accordingly, the cancellation standby period TA is set to shorten in this order.
  • the greater the number of bad weather information the greater the degree of bad weather. is set.
  • the cancellation standby period TA (second period T2) when the bad weather information of the radar sensor 22 and the camera sensor 21 is acquired is the bad weather information of the radar sensor 22. It is set to a period shorter than the cancellation standby period TA (first period T1) when only information is acquired.
  • the cancellation standby period TA (third period T3) when the bad weather information due to the radar sensor 22 and accumulated snow is acquired is only the bad weather information of the radar sensor 22. is acquired, the period is set to be shorter than the cancellation standby period TA (first period T1).
  • the bad weather information due to the radar sensor 22 and snow cover when the bad weather information due to the radar sensor 22 and snow cover is acquired, only the bad weather information of the radar sensor 22 is acquired from the state where the bad weather information of the radar sensor 22 and the bad weather information of the camera sensor 21 are acquired. This includes situations that have changed to a new state. If only the bad weather information from the radar sensor 22 is acquired, if the bad weather information from the radar sensor 22 and snow cover is acquired, the bad weather information from the radar sensor 22 and the bad weather information from the camera sensor 21 are acquired. It includes a situation in which only bad weather information from the radar sensor 22 is acquired from a state in which no information is acquired. By setting the third period T3 to be shorter than the first period T1, follow-up running control can be canceled at an appropriate timing according to the situation.
  • step S25 it is determined whether or not the second pattern P2 is established.
  • the second timer M2 whose release standby period TA is set to the second period T2 starts counting, and the process proceeds to step S28.
  • the second timer M2 is reset in step S27, and the process proceeds to step S28.
  • step S28 it is determined whether or not the third pattern P3 is established.
  • the third timer M3 with the release waiting period TA set to the second period T2 starts counting, and the process proceeds to step S31.
  • the third timer M3 is reset in step S30, and the process proceeds to step S31.
  • step S31 it is determined whether or not the fourth pattern P4 is established.
  • the fourth pattern P4 is established, in step S32, the fourth timer M4 whose release waiting period TA is set to the third period T3 starts counting, and the process proceeds to step S34.
  • the fourth timer M4 is reset in step S33, and the process proceeds to step S34.
  • step S34 it is determined whether or not the fifth pattern P5 is established.
  • step S35 the fifth timer M5 whose release waiting period TA is set to the fourth period T4 starts counting, and the process proceeds to step S37.
  • the fifth timer M5 is reset in step S36, and the process proceeds to step S37.
  • the processes of steps S15, S26, S29, S32, and S35 correspond to "setting unit, setting step".
  • step S37 the timers M1 to M5 determine whether or not the cancellation standby period TA has elapsed. If none of the timers M1 to M5 exceeds the cancellation standby period TA, this process is temporarily terminated. On the other hand, if at least one of the timers M1 to M5 exceeds the cancellation waiting period TA, the follow-up running control is canceled in step S38, and this process is terminated.
  • step S36 for example, a display or speaker installed in the vehicle interior is used to notify the driver that the follow-up running control is to be cancelled, prompting the driver to prepare for vehicle running control. It should be noted that in the present embodiment, the process of step S38 corresponds to the "release section".
  • FIG. 5 shows an example of the transition of the release timing of the follow-up running control in the driving support process.
  • FIG. 5 shows transition of release timing of follow-up running control in the fifth pattern P5.
  • (A) shows the transition of the implementation state of the follow-up cruise control
  • (B) shows the transition of the recognition state of the preceding vehicle
  • (C) shows the transition of the detection accuracy of the radar sensor 22.
  • the preceding vehicle is no longer recognized after the detection accuracy of the radar sensor 22 decreases.
  • (D) shows the transition of the detection accuracy of the camera sensor 21
  • (E) shows the transition of the operating state of the wiper device 33
  • (F) shows the transition of the operating state of the first timer M1.
  • (G) indicates transition of the operating state of the second timer M2
  • (H) indicates transition of the operating state of the fifth timer M5.
  • the follow-up run control is implemented when the preceding vehicle is recognized at time t1.
  • the follow-up running switch is provided, for example, in the vehicle interior, and can be operated by the driver.
  • the detection accuracy of the radar sensor 22 and the camera sensor 21 is good, and the wiper device 33 is not operating.
  • the detection accuracy of the radar sensor 22 decreases at time t2 due to deterioration of the weather, and when the bad weather information of the radar sensor 22 is acquired, the first pattern P1 is established and the first timer M1 starts counting. .
  • the cancellation standby period TA is set to the relatively long first period T1, so as shown by the dashed line in FIG.
  • the release timing becomes time t7.
  • the time t7 which is the release timing determined using the first timer M1
  • the own vehicle will excessively approach the preceding vehicle before the control is released.
  • the release timing of the following travel control is determined based on not only the bad weather information from the radar sensor 22 but also the bad weather information from the camera sensor 21 and the wiper device 33 .
  • bad weather information it is possible to appropriately determine the release timing of the follow-up cruise control according to the degree of deterioration of the weather, that is, the degree of bad weather.
  • the second pattern P2 is established and the second timer M2 starts counting.
  • the cancellation waiting period TA (second period T2) of the second timer M2 is shorter than the cancellation waiting period TA (first period T1) of the first timer M1. Therefore, in the example shown in FIG. 5, time t6, which is the release timing determined using the second timer M2, is earlier than time t7, which is the release timing determined using the first timer M1.
  • the wiper device 33 starts operating at time t4 and the bad weather information of the wiper device 33 is acquired, the fifth pattern P5 is established and the fifth timer M5 starts timing.
  • the cancellation waiting period TA (fifth period T5) of the fifth timer M5 is shorter than the cancellation waiting period TA (second period T2) of the second timer M2. Therefore, in the example shown in FIG. 5, time t5, which is the release timing determined using the fifth timer M5, is earlier than time t6, which is the release timing determined using the second timer M2.
  • time t5 is the earliest of times t5 to t7, which are release timings determined using the first, second, and fifth timers M1, M2, and M5. Therefore, the follow-up running control is canceled at time t5.
  • time t6 is the timing at which the preceding vehicle becomes unrecognizable due to worsening weather.
  • the cancellation waiting period TA is set based on the bad weather information. According to the bad weather information, it is possible to grasp the extent to which the degree of deterioration of the weather affects the follow-up running control, and appropriately set the cancellation waiting period TA from the deterioration of the detection accuracy until the follow-up running control is released. be able to. As a result, when the detection accuracy of the radar sensor 22 is lowered, the follow-up running control can be appropriately canceled.
  • the cancellation waiting period TA is set to be shorter than when the degree of bad weather is determined to be low, so that the above inconvenience is eliminated. It is possible to suppress it and cancel the follow-up running control at an appropriate timing.
  • the cancellation waiting period TA is set based on a combination of bad weather information, so follow-up running control can be canceled at an appropriate timing according to bad weather conditions.
  • the number of bad weather information acquired by the in-vehicle device increases as the weather worsens, it is possible to grasp the degree of bad weather from the number of bad weather information acquired.
  • the greater the number of bad weather information the shorter the cancellation waiting period TA is set, so that follow-up running control can be canceled at an appropriate timing.
  • Decrease in detection accuracy is determined under different conditions for the radar sensor 22 and the camera sensor 21 . Therefore, the combination of which sensor the bad weather information is acquired differs depending on the bad weather conditions.
  • the cancellation waiting period TA is set, so that the follow-up running control can be canceled at an appropriate timing according to the bad weather conditions.
  • the cancellation waiting period TA (second period T2) when bad weather information is acquired by the radar sensor 22 and the camera sensor 21 is changed to the cancellation waiting period TA (second period T2) when only the bad weather information is acquired by the radar sensor 22.
  • a period shorter than the period TA (first period T1) is set. Accordingly, when the detection accuracy of at least one of the radar sensor 22 and the camera sensor 21 is degraded due to bad weather conditions, the following travel control can be canceled at an appropriate timing.
  • the cancellation waiting period TA (second period T2) is set longer than when the white line is not recognized. I made it extend.
  • the white line is recognized by the camera sensor 21, it is more likely that the preceding vehicle can be detected than when the white line is not recognized. As a result, it is possible to appropriately set the release timing of the follow-running control according to the possibility that the preceding vehicle can be detected.
  • the detection accuracy of the radar sensor 22 and the camera sensor 21 may decrease. It is conceivable that the detection accuracy remains degraded due to snow accumulating on the front surface of the sensor. Such a situation is likely to occur particularly when the radar sensor 22 is provided on the front grill of the vehicle and the camera sensor 21 is provided inside the front glass of the vehicle.
  • the detection accuracy of the radar sensor 22 and the camera sensor 21 is lowered (second pattern P2), while only the detection accuracy of the radar sensor 22 is lowered (first pattern P1). ), the cancellation standby period TA (third period T3) is changed from a state in which the detection accuracy of the radar sensor 22 and the camera sensor 21 has not decreased to a state in which only the detection accuracy of the radar sensor 22 has decreased ( The period is set to be shorter than the release waiting period TA (first period T1) when changing to the first pattern P1). As a result, it is possible to appropriately set the release timing of the following travel control while assuming that the detection accuracy will be restored by melting the snow adhering to the front surface of the radar sensor 22 .
  • the camera sensor 21 may determine that the detection accuracy has decreased based on the number of objects detected around the vehicle, but the lane markings near the vehicle can still be recognized. In this situation, it is considered that the continuation of follow-up cruise control is less likely to cause inconvenience than the case where the white line near the own vehicle is not recognized because the white line near the own vehicle is recognized.
  • the cancellation waiting period TA is longer than when the white line is not recognized. is set to a long period, it is possible to appropriately set the release standby period TA while maintaining the running position of the own vehicle inside the left and right white lines using the recognized white lines.
  • a first standby period (first period T1) is set as the cancellation standby period TA according to the first combination (first pattern P1) of the bad weather information, and the first After the time measurement of the standby period is started, the second standby period (second period T2) is set as the cancellation standby period TA according to the second combination (second pattern P2) of the bad weather information, and the second The time measurement of the waiting period is started. Then, when each time measurement is started, the follow-up running control is canceled at the timing when one of the first waiting period and the second waiting period has passed first.
  • a plurality of cancellation waiting periods TA are set according to bad weather conditions that change with the passage of time, and the follow-up running control can be canceled at an appropriate timing using the plurality of cancellation waiting periods TA.
  • FIG. 6 shows a flowchart of the driving support processing of this embodiment.
  • the same reference numerals are assigned to the same components as those shown in FIG. It should be noted that FIG. 6 omits illustration of the processing from steps S25 to S36 of FIG. 2 for convenience.
  • step S50 the weather information of the planned route on which the vehicle is to travel is obtained.
  • the cruise control system 100 includes a wireless communication device (not shown).
  • the wireless communication device performs communication using V2X (vehicle to X) radio waves, vehicle-to-vehicle communication with other vehicles, communication using mobile lines using radio waves from mobile phone base stations, and wireless communication with a road traffic information communication system. and at least one of The weather information includes bad weather information such as temperature information, rainfall information, and snowfall information for the area to which the planned route belongs.
  • a travel route from the current location to the destination set in the navigation device may be used, or a route ahead in the traveling direction of the own vehicle may be used.
  • the process of step S50 corresponds to the "acquisition unit".
  • step S51 based on the weather information, it is determined whether the weather around the vehicle is expected to become bad in the future.
  • weather information indicating that the weather in the area to which the scheduled route belongs is bad weather such as rain or snow
  • a positive determination is made in step S51. do.
  • the process proceeds to step S52.
  • a negative determination is made in step S51, the process proceeds to step S12.
  • step S51 even if the weather in the area to which the scheduled route currently belongs is not bad, if weather information indicating that the weather will be bad at the time when the vehicle travels in the area is acquired, the vehicle will It may be predicted that the surrounding weather will become bad weather in the future.
  • the cruise control system 100 includes an information transmission device (not shown).
  • the information transmission device is, for example, a human machine interface (HMI) such as a speaker, a microphone, a display, a camera, etc., installed inside the vehicle.
  • HMI human machine interface
  • the driver may be notified audibly by voice guidance from a speaker or visually by warning display on a display.
  • step S53 it is determined whether or not there is a response from the driver.
  • a response from the driver it is assumed that a response to the effect that the cancellation of the following cruise control is permitted or a response to the effect that the following cruise control is continued is made.
  • the content of the response from the driver may be recognized by a microphone, by recognizing the driver's voice, by recognizing the driver's touch operation on the display, or by recognizing the driver's gesture by the camera. If an affirmative determination is made in step S53, the process proceeds to step S54. On the other hand, if a negative determination is made in step S53, the process proceeds to step S55.
  • step S54 it is determined whether or not the response from the driver permits cancellation of the follow-up running control. If an affirmative determination is made in step S54, the process proceeds to step S38 to cancel the follow-up running control. On the other hand, if a negative determination is made in step S54, the process proceeds to step S12.
  • step S55 it is determined whether or not a predetermined period of time has passed since the driver was notified.
  • the predetermined time is a time set for confirming the driver's intention to cancel or continue the follow-up cruise control.
  • the process returns to step S53.
  • an affirmative determination is made in step S55, the process proceeds to step S12. That is, if there is no response from the driver even after a predetermined period of time has elapsed since the notification was made to the driver, follow-up running control is continued. Note that in the present embodiment, step S38 and steps S51 to S55 correspond to the "release unit".
  • step S55 instead of proceeding to step S12, the process may proceed to step S38.
  • the follow-up running control may be canceled.
  • steps S52 and S53 may not be performed.
  • the follow-running control may be canceled without confirming the driver's intention to cancel or continue the follow-running control.
  • the driver is notified that the weather around the vehicle will be bad in the future, and the driver is asked to cancel or continue the follow-up control. As a result, before the weather around the vehicle turns bad, the vehicle can travel in a way that reflects the driver's intentions.
  • ⁇ Recognition of the preceding vehicle in follow-up cruise control is not limited to fusion of image information and radar information.
  • a preceding vehicle may be recognized using only radar information.
  • other vehicles targeted for follow-up travel are not limited to the preceding vehicle positioned in front of the own vehicle in the own lane in which the own vehicle travels.
  • it may be an adjacent preceding vehicle located in front of the own vehicle in the next lane adjacent to the own lane.
  • the adjacent preceding vehicle and the preceding vehicle correspond to "the preceding vehicle positioned in front of the own vehicle”.
  • ⁇ Different times are set as the release standby period TA depending on whether the vehicle is in a follow-up driving state in which the vehicle follows the preceding vehicle or in an independent driving state in which the vehicle is not following the preceding vehicle in the follow-up driving control. You may make it In this case, the ECU 10 determines whether the follow-up running state or the single-running state is set during the following-running control. Time.
  • the configuration includes a lane keep assist function as follow-up running control, it is not limited to this.
  • the follow-up running control may be configured without the lane keep assist function.
  • Automatic driving control is performed, for example, in a state where the manual driving mode is switched to the automatic driving mode by a switching operation by the driver, and is performed to automatically drive the vehicle along the route set to the destination.
  • the ECU 10 sets a cancellation standby period based on the deterioration of the accuracy of the object detection device and bad weather determination, and determines that the cancellation standby period has passed, as in the first embodiment, under the state of automatic operation control.
  • the automatic operation control is canceled (that is, shift to manual operation mode).
  • the first timer M1 starts timing based on a decrease in the detection accuracy of the radar sensor 22, but the present invention is not limited to this. Timing of the first timer M1 may be started based on the deterioration of the detection accuracy of the camera sensor 21 .
  • the patterns P1 to P5 determined by the bad weather information only the patterns established when the bad weather information of the radar sensor 22 is acquired are shown, but the patterns are not limited to this. A pattern that is established when bad weather information from the radar sensor 22 is not acquired may be included.
  • timers M1 to M5 corresponding to patterns P1 to P5 are provided, respectively, and the follow-up running control is canceled at the timing when the cancellation waiting period TA elapses earliest among the timers M1 to M5.
  • One timer may be provided for the patterns P1 to P5, and the cancellation waiting period TA of the one timer may be changed according to the established patterns P1 to P5.
  • the operating speed of the wiper device 33 may be acquired along with the fact that the wiper device 33 is operating.
  • the release standby period TA may be set to a shorter period than when the wiper device 33 operates at a low speed.
  • the detection state of the raindrop sensor is acquired as bad weather information in addition to the operation of the wiper device 33 or in addition to the operation of the wiper device 33.
  • weather information such as current temperature information, rainfall information, and snowfall information around the vehicle may be acquired as the bad weather information.
  • weather information may be acquired through communication of the wireless communication device. For example, if the air temperature around the vehicle is below zero, the front surface of the radar sensor 22 may freeze and the detection accuracy of the radar sensor 22 may decrease. By acquiring weather information around the own vehicle, follow-up cruise control can be canceled at an appropriate timing.
  • the cancellation waiting period TA may be set according to the traveling speed of the own vehicle.
  • the detection accuracy of the radar sensor 22 and the camera sensor 21 decreases as the vehicle travels faster. Therefore, by setting the cancellation standby period TA to a shorter period as the traveling speed of the own vehicle increases, the follow-up traveling control can be canceled at an appropriate timing.
  • the image sensor is not limited to a monocular camera, and may be a stereo camera.
  • the ranging sensor is not limited to the radar sensor 22 and may be a laser sensor.
  • the vehicle control system and techniques described in this disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer executable program. It may be implemented by a computer. Alternatively, the vehicle controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the vehicle control apparatus and techniques described in this disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. may be implemented by one or more dedicated computers configured by The computer-executable program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
  • the driving support control A vehicle control device (10) that cancels the driving support control when the detection accuracy of the object detection device decreases during the implementation of a determination unit that determines that the detection accuracy of the object detection device is degraded; an acquisition unit that acquires bad weather information indicating that the weather around the vehicle is bad; a setting unit that sets a cancellation standby period from when the deterioration of the detection accuracy is determined to when the driving support control is canceled based on the bad weather information;
  • a vehicle control device comprising: [Configuration 2] The setting unit according to configuration 1, wherein when the degree of bad weather is determined to be high based on the bad weather information, the setting unit sets the cancellation standby period to a shorter period than when the degree of bad weather is determined to be low.
  • the acquisition unit acquires, as the bad weather information, information on output changes in a plurality of in-vehicle devices (21, 22, 33) whose outputs change as the weather deteriorates,
  • the vehicle control device according to configuration 1 or 2, wherein the setting unit sets the cancellation standby period based on a combination of the bad weather information acquired for each of the in-vehicle devices.
  • the vehicle has, as the object detection device, a ranging sensor (22) that measures the distance to an object using transmitted waves and received waves, and an image sensor (21) that captures images of objects around the vehicle.
  • a ranging sensor and an image sensor are used as the in-vehicle device,
  • the acquisition unit acquires, as the bad weather information, first information indicating that the detection accuracy of the range sensor is declining and second information indicating that the detection accuracy of the image sensor is declining.
  • the vehicle control device according to configuration 3, wherein the setting unit sets the cancellation waiting period based on a combination of the first information and the second information.
  • the setting unit sets the cancellation standby period when the first information and the second information are acquired to a period shorter than the cancellation standby period when only the first information is acquired.
  • the vehicle control device according to the configuration 4.
  • the setting unit determines the cancellation waiting period when the state in which the first information and the second information are acquired changes to the state in which only the first information is acquired.
  • the vehicle control device according to configuration 5, wherein the period is set to be shorter than the cancellation waiting period when the state in which the second information is not acquired is changed to the state in which only the first information is acquired.
  • the acquisition unit acquires the second information as the bad weather information when the determination unit determines that the detection accuracy of the image sensor is degraded;
  • the setting unit determines whether the lane marking is recognized by the image of the image sensor in the vicinity area of the vehicle under the condition that the second information is acquired. 7.
  • the vehicle control device according to any one of configurations 4 to 6, wherein the release standby period is set longer than when the vehicle is not in use.
  • the driving support control has a function of recognizing the left and right lane markings of the lane in which the vehicle is traveling from the image of the image sensor, and holding the running position of the own vehicle inside the left and right lane markings. and
  • the determination unit determines that the detection accuracy of the image sensor is degraded based on the result of object detection in the vicinity of the vehicle by the range sensor, the acquisition unit acquires the second information as the bad weather information when the determination unit determines that the detection accuracy of the image sensor is degraded; If the lane marking is recognized by the image of the image sensor in the vicinity area of the vehicle under the condition that the second information is acquired, the setting unit determines that the lane marking is not recognized. 7.
  • a first standby period is set as the cancellation standby period according to a first combination of the bad weather information acquired by the acquisition unit, and after the time measurement of the first standby period is started, the bad weather information
  • a second waiting period is set as the cancellation waiting period according to the second combination, and time measurement of the cancellation waiting period is started, one of the first waiting period and the second waiting period 9.
  • the vehicle control device according to any one of configurations 3 to 8, wherein the driving support control is canceled at the timing when the has passed first.
  • the bad weather information includes information indicating that the weather on the route to be traveled by the own vehicle is bad weather
  • the vehicle control device according to any one of configurations 1 to 9, further comprising a cancellation unit that cancels the driving support control when the weather around the vehicle is predicted to be bad based on the bad weather information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

A vehicle control device (10) is applied to a vehicle provided with an object detection device (21, 22) for detecting an object. The vehicle control device (10) carries out drive assistance control for assisting the drive of the vehicle on the basis of detection information from the object detection device, and turns off the drive assistance control when detection accuracy of the object detection device is lowered during execution of the drive assistance control. The vehicle control device comprises: a determination unit that determines that the detection accuracy of the object detection device is lowered; an acquisition unit that acquires bad weather information indicating that the weather around the vehicle is bad; and a setting unit that sets a turn-off standby period from the detection of the lowered detection accuracy to the turn-off of the drive assistance control, on the basis of the bad weather information.

Description

車両制御装置及びプログラムVehicle control device and program 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年9月30日に出願された日本出願番号2021-162058号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-162058 filed on September 30, 2021, and the contents thereof are incorporated herein.
 本開示は、走行支援制御を実施する車両制御装置及びプログラムに関する。 The present disclosure relates to a vehicle control device and program that implement driving support control.
 車両の走行を支援する走行支援制御として、例えばアダプティブクルーズコントロール(ACC)が知られている。ACCでは、例えば測距センサなどの物体検知装置を用いて自車両の前方に位置する先行車両を検知し、自車両が該先行車両に追従走行する追従走行制御を実施する。また、追従走行制御中に、例えば悪天候などにより物体検知装置の検知精度が低下し、先行車両を検知できなくなった場合には、追従走行制御を解除し、車両走行の制御をドライバに返還する。例えば特許文献1には、自車両周辺の状況を検知する複数のセンサの検知結果に基づいて、自車両周辺の天候状況を判定する装置が記載されている。特許文献1の装置によれば、追従走行制御中に、悪天候により物体検知装置の検知精度が低下したことを判定することができる。 For example, adaptive cruise control (ACC) is known as driving support control that supports driving of a vehicle. In the ACC, for example, an object detection device such as a distance measuring sensor is used to detect a preceding vehicle positioned in front of the own vehicle, and follow-up travel control is performed in which the own vehicle follows the preceding vehicle. If the detection accuracy of the object detection device drops due to bad weather, for example, during follow-up control and the preceding vehicle cannot be detected, follow-up control is canceled and control of vehicle travel is returned to the driver. For example, Patent Literature 1 describes a device that determines the weather conditions around the vehicle based on the detection results of a plurality of sensors that detect the conditions around the vehicle. According to the device of Patent Document 1, it is possible to determine that the detection accuracy of the object detection device has deteriorated due to bad weather during follow-up travel control.
特開2020-52909号公報Japanese Patent Application Laid-Open No. 2020-52909
 追従走行制御での自車両の走行中において、天候の悪化に伴い追従走行制御を解除する場合、その解除が早過ぎると、自車両の運転を追従走行制御に委ねているドライバが違和感を覚えることが懸念される。また、車両走行の制御をドライバに返還するまでの期間が短いと、ノイズ等による一時的な検知精度低下に起因して誤って追従走行制御が解除されることが懸念される。一方、検知精度の低下から追従走行制御の解除までの期間が過度に長いと、車両走行の制御をドライバに返還する以前において自車両が先行車両に過剰に接近するおそれがある。 If the follow-up cruise control is canceled due to deterioration of the weather while the own vehicle is running under the follow-up cruise control, if the release is too early, the driver who entrusts the driving of the own vehicle to the follow-up cruise control will feel uncomfortable. is concerned. Further, if the period until control of vehicle travel is returned to the driver is short, there is a concern that follow-up travel control may be erroneously canceled due to temporary deterioration in detection accuracy due to noise or the like. On the other hand, if the period from the deterioration of the detection accuracy to the cancellation of the follow-up running control is excessively long, there is a possibility that the own vehicle will excessively approach the preceding vehicle before returning the vehicle running control to the driver.
 本開示は上記課題に鑑みたものであり、走行支援制御の実施中において物体検知装置の検知精度の低下時に適切に走行支援制御を解除することができる車両制御装置及びプログラムを提供することを目的とする。 The present disclosure is made in view of the above problems, and an object thereof is to provide a vehicle control device and a program capable of appropriately canceling driving support control when the detection accuracy of an object detection device decreases during driving support control. and
 上記課題を解決する手段は、
 物体を検知する物体検知装置を備える車両に適用され、前記物体検知装置による検知情報に基づいて、自車両の走行を支援する走行支援制御を実施する一方で、前記走行支援制御の実施中に前記物体検知装置の検知精度が低下した場合に、前記走行支援制御を解除する車両制御装置であって、
 前記物体検知装置の検知精度が低下していることを判定する判定部と、
 自車両周辺の天候が悪天候であることを示す悪天候情報を取得する取得部と、
 前記悪天候情報に基づいて、前記検知精度の低下が判定されてから前記走行支援制御が解除されるまでの解除待機期間を設定する設定部と、
を備える。
The means to solve the above problems is
The present invention is applied to a vehicle equipped with an object detection device for detecting an object, and while performing driving support control for supporting driving of the own vehicle based on detection information by the object detection device, the above-described driving support control is performed while the driving support control is performed. A vehicle control device that cancels the driving support control when the detection accuracy of the object detection device is lowered,
a determination unit that determines that the detection accuracy of the object detection device is degraded;
an acquisition unit that acquires bad weather information indicating that the weather around the vehicle is bad;
a setting unit that sets a cancellation standby period from when the deterioration of the detection accuracy is determined to when the driving support control is canceled based on the bad weather information;
Prepare.
 走行支援制御の実施中に物体検知装置の検知精度が低下した場合には、走行支援制御が解除され、車両の走行制御がドライバに返還される。その際、検知精度の低下から走行支援制御の解除までの解除待機期間を設定することが考えられる。この場合、解除待機期間が短すぎると、ドライバが違和感を覚えたり、ノイズ等による一時的な検知精度低下に起因して無用に走行支援制御が解除されたりすることが懸念される。また、解除待機期間が長過ぎると、自車両が前方車両に過剰に接近してしまうことが懸念される。 If the detection accuracy of the object detection device declines during driving support control, driving support control is canceled and vehicle driving control is returned to the driver. In this case, it is conceivable to set a release standby period from when the detection accuracy is lowered to when the driving support control is released. In this case, if the cancellation standby period is too short, there is concern that the driver may feel uncomfortable, or the driving support control may be canceled unnecessarily due to temporary deterioration in detection accuracy due to noise or the like. In addition, if the cancellation waiting period is too long, there is a concern that the own vehicle will excessively approach the preceding vehicle.
 本開示では、自車両周辺の天候が悪天候であることを示す悪天候情報に基づいて、解除待機期間を設定するようにした。悪天候情報によれば、天候の悪化度合が走行支援制御にどの程度影響を及ぼすかを把握することが可能となり、検知精度の低下から走行支援制御の解除までの解除待機期間を適切に設定することができる。これにより、物体検知装置の検知精度の低下時に適切に走行支援制御を解除することができる。 In this disclosure, the cancellation standby period is set based on bad weather information indicating that the weather around the vehicle is bad. According to the bad weather information, it is possible to grasp the extent to which the deterioration of the weather affects driving support control, and it is possible to appropriately set the cancellation waiting period from the deterioration of detection accuracy to the cancellation of driving support control. can be done. As a result, it is possible to appropriately cancel the driving support control when the detection accuracy of the object detection device is degraded.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、走行制御システムの全体構成図であり、 図2は、運転支援処理の処理手順を示すフローチャートであり、 図3は、悪天候情報取得処理の処理手順を示すフローチャートであり、 図4は、第1~第5パターンを示すグラフであり、 図5は、運転支援処理における追従走行制御の解除タイミングの一例を示すタイムチャートであり、 図6は、第2実施形態に係る運転支援処理の処理手順を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an overall configuration diagram of the travel control system, FIG. 2 is a flowchart showing the processing procedure of driving support processing, FIG. 3 is a flowchart showing the processing procedure of bad weather information acquisition processing, FIG. 4 is a graph showing the first to fifth patterns, FIG. 5 is a time chart showing an example of release timing of follow-up running control in driving support processing; FIG. 6 is a flowchart showing a processing procedure of driving support processing according to the second embodiment.
 (第1実施形態)
 以下、本開示に係る車両制御装置を、車載の走行制御システム100に適用した第1実施形態について、図面を参照しつつ説明する。走行制御システム100は、自車両の周囲に存在する物体(他車両、歩行者、路上障害物等)を認識するとともに、その認識結果に基づいて、追従走行制御(ACC制御)等の運転支援制御を実施する。
(First embodiment)
A first embodiment in which a vehicle control device according to the present disclosure is applied to an in-vehicle cruise control system 100 will be described below with reference to the drawings. The cruise control system 100 recognizes objects (other vehicles, pedestrians, obstacles on the road, etc.) existing around the own vehicle, and based on the recognition result, performs driving support control such as follow-up cruise control (ACC control). to implement.
 図1に示すように、本実施形態に係る走行制御システム100は、車両制御装置としてのECU10と、センサ類20と、被制御装置30とを備えている。センサ類20としては、例えば、カメラセンサ21、レーダセンサ22、ヨーレートセンサ23、車速センサ24等が備えられている。 As shown in FIG. 1, the cruise control system 100 according to the present embodiment includes an ECU 10 as a vehicle control device, sensors 20, and a controlled device 30. The sensors 20 include, for example, a camera sensor 21, a radar sensor 22, a yaw rate sensor 23, a vehicle speed sensor 24, and the like.
 カメラセンサ21は、例えば単眼カメラであり、車室内において、自車両のフロントガラスの上端付近等に設置されている。カメラセンサ21は、規定時間毎に自車両前方の所定領域を撮像し、撮像した画像を取得する画像センサである。カメラセンサ21により撮像された画像はECU10へ出力される。 The camera sensor 21 is, for example, a monocular camera, and is installed near the top of the windshield of the vehicle in the vehicle interior. The camera sensor 21 is an image sensor that captures an image of a predetermined area in front of the vehicle at regular intervals and acquires the captured image. An image captured by the camera sensor 21 is output to the ECU 10 .
 レーダセンサ22は、自車両の周囲に探査波を送信し、その探査波の反射波を受信することで自車両の周囲に存在する物体の距離情報を取得する測距センサである。レーダセンサ22は、例えばフロントグリル付近等において、その光軸が自車両前方を向くように取り付けられている。 The radar sensor 22 is a ranging sensor that transmits search waves around the vehicle and receives reflected waves of the search waves to obtain distance information about objects around the vehicle. The radar sensor 22 is mounted, for example, in the vicinity of the front grill so that its optical axis faces the front of the vehicle.
 レーダセンサ22は、規定時間毎に自車両の前方に向かって、探査波であるミリ波帯の指向性のある送信波を走査するとともに、物体の表面で反射された反射波を複数のアンテナにより受信することで物体までの距離、物体の方位、及び物体の自車両に対する相対速度等を距離情報として取得する。レーダセンサ22は、探査波の送信時刻と反射波の受信時刻とにより、物体までの距離を算出して取得する。また、レーダセンサ22は、複数のアンテナが受信した反射波の位相差により、物体の方位を算出して取得する。さらに、レーダセンサ22は、物体の表面で反射された反射波の、ドップラー効果により変化した周波数により、物体の相対速度を算出して取得する。レーダセンサ22により撮像された距離情報はECU10へ出力される。なお、本実施形態において、カメラセンサ21及びレーダセンサ22が「物体検知装置」に相当する。 The radar sensor 22 scans the front of the vehicle with a directional transmission wave in the millimeter wave band, which is a search wave, at regular intervals. By receiving the information, the distance to the object, the direction of the object, the relative speed of the object with respect to the own vehicle, and the like are acquired as distance information. The radar sensor 22 calculates and acquires the distance to the object from the transmission time of the search wave and the reception time of the reflected wave. Further, the radar sensor 22 calculates and obtains the azimuth of the object from the phase difference of the reflected waves received by the plurality of antennas. Furthermore, the radar sensor 22 calculates and acquires the relative velocity of the object from the frequency of the reflected wave reflected by the surface of the object, which is changed by the Doppler effect. Distance information imaged by the radar sensor 22 is output to the ECU 10 . In addition, in this embodiment, the camera sensor 21 and the radar sensor 22 correspond to the "object detection device".
 ヨーレートセンサ23は、自車両の旋回角速度を検知する周知のヨーレートセンサとして構成される。車速センサ24は、車輪の回転速度、つまりは自車両の走行速度を検知する。これらのセンサ23、24による検知結果は、ECU10に出力される。 The yaw rate sensor 23 is configured as a known yaw rate sensor that detects the turning angular velocity of the own vehicle. The vehicle speed sensor 24 detects the rotation speed of the wheels, that is, the travel speed of the host vehicle. Detection results by these sensors 23 and 24 are output to the ECU 10 .
 ECU10は、CPU,ROM,RAM,フラッシュメモリ等からなる周知のマイクロコンピュータを備えた制御装置である。ECU10は、自車両周辺の物体の位置座標を取得する。ECU10は、カメラセンサ21から取得される画像に基づいて検知される物体の位置座標と、レーダセンサ22から取得される距離情報に基づいて検知される物体の位置座標とをそれぞれ取得する。 The ECU 10 is a control device equipped with a well-known microcomputer consisting of CPU, ROM, RAM, flash memory, and the like. The ECU 10 acquires position coordinates of objects around the vehicle. The ECU 10 acquires the position coordinates of the detected object based on the image acquired from the camera sensor 21 and the position coordinates of the detected object based on the distance information acquired from the radar sensor 22 .
 詳細には、ECU10は、カメラセンサ21から取得される画像に対して、テンプレートマッチング(パターン認識)等の周知の画像処理を行うことにより、画像内に存在する物体とその種類(他車両、歩行者、路上障害物等)を検知する。本実施形態では、各物体の種類を特定するためのテンプレートとして、物体ごとの特徴を示す画像パターンである複数の辞書が記憶されている。辞書としては、物体全体の特徴をパターン化した全身辞書を記憶している。 More specifically, the ECU 10 performs well-known image processing such as template matching (pattern recognition) on the image acquired from the camera sensor 21 to determine the types of objects (other vehicles, pedestrians, etc.) present in the image. pedestrians, road obstacles, etc.). In this embodiment, a plurality of dictionaries, which are image patterns indicating features of each object, are stored as templates for specifying the type of each object. As a dictionary, a whole-body dictionary is stored in which the features of the entire object are patterned.
 ECU10は、辞書に記憶された物体の実寸法と、画像上の物体の大きさである画像寸法との比に基づいて物体までの距離を算出する。また、ECU10は、画像の下端部中央を原点として、原点に対する画像上の物体の方位を算出する。ECU10は、画像から算出した物体までの距離及び物体の方位により物体の相対位置及び存在領域等を算出し、これらの情報を画像情報として取得する。 The ECU 10 calculates the distance to the object based on the ratio between the actual size of the object stored in the dictionary and the image size, which is the size of the object on the image. The ECU 10 also calculates the orientation of the object on the image with respect to the origin, with the center of the lower end of the image as the origin. The ECU 10 calculates the relative position and presence area of the object from the distance to the object and the azimuth of the object calculated from the image, and acquires this information as image information.
 また、ECU10は、レーダセンサ22から取得される距離情報に含まれる物体までの距離及び物体の方位により物体の相対位置及び存在領域等を算出し、これらの情報をレーダ情報として取得する。 In addition, the ECU 10 calculates the relative position and presence area of the object based on the distance to the object and the azimuth of the object included in the distance information acquired from the radar sensor 22, and acquires this information as radar information.
 ECU10は、画像情報とレーダ情報とに基づいて、つまり画像情報とレーダ情報とを融合(フュージョン)して、物体を認識する。より具体的には、ECU10は、画像情報に含まれる物体の存在領域と、レーダ情報に含まれる物体の存在領域とに重複部が存在する場合に、物体を認識する。 The ECU 10 recognizes an object based on the image information and the radar information, that is, by fusing the image information and the radar information. More specifically, the ECU 10 recognizes an object when there is an overlap between the object existence area included in the image information and the object existence area included in the radar information.
 ECU10は、カメラセンサ21及びレーダセンサ22による検知情報に基づいて、自車両の走行を支援する走行支援制御を実施する。本実施形態では、ECU10は、走行支援制御として追従走行制御を実施する。追従走行制御は、認識した物体から自車両が走行する自車線において自車両の前方に位置する他車両である先行車両を選出し、被制御装置30を用いて自車両の駆動力及び制動力を調整する制御である。ECU10は、追従走行制御において、自車両を所定の設定速度で定速走行させたり、先行車両に追従した状態で自車両を走行させたりする。ECU10は、追従走行制御において、自車両が走行する自車線の左右の区画線(以下、白線)をカメラセンサ21から取得される画像により認識し、かつ自車両の走行位置を左右の白線の内側で保持する。つまり、ECU10は、追従走行制御において、レーンキープアシスト(Lane Keep Assist)機能を実現する。 The ECU 10 performs driving support control to support driving of the own vehicle based on the information detected by the camera sensor 21 and the radar sensor 22 . In this embodiment, the ECU 10 implements follow-up driving control as driving support control. The follow-up running control selects a preceding vehicle, which is another vehicle located in front of the own vehicle in the own lane in which the own vehicle is traveling, from the recognized object, and uses the controlled device 30 to apply the driving force and the braking force of the own vehicle. It is a control that adjusts. In the follow-up running control, the ECU 10 causes the own vehicle to run at a predetermined set speed at a constant speed, or causes the own vehicle to run while following the preceding vehicle. In the follow-up running control, the ECU 10 recognizes the left and right demarcation lines (hereinafter referred to as white lines) of the own lane in which the own vehicle is traveling from images obtained from the camera sensor 21, and positions the own vehicle within the left and right white lines. to hold. In other words, the ECU 10 implements a lane keep assist function in follow-up running control.
 被制御装置30は、加速装置であるアクセル装置31と減速装置であるブレーキ装置32とを有する。アクセル装置31は、ドライバのアクセル操作又はECU10からの制御指令により、自車両に駆動力を付与する。ブレーキ装置32は、ドライバのブレーキ操作又はECU10からの制御指令により、自車両に制動力を付与する。また、被制御装置30は、窓ガラスに設けられたワイパ装置33を有する。 The controlled device 30 has an accelerator device 31 as an acceleration device and a brake device 32 as a deceleration device. The accelerator device 31 applies driving force to the own vehicle according to the driver's accelerator operation or a control command from the ECU 10 . The braking device 32 applies a braking force to the own vehicle according to a driver's braking operation or a control command from the ECU 10 . The controlled device 30 also has a wiper device 33 provided on the window glass.
 ところで、追従走行制御中では、例えば悪天候などによるカメラセンサ21及びレーダセンサ22の検知精度が低下することがある。例えばレーダセンサ22の検知精度の低下は、レーダセンサ22による自車両周辺の物体検知数の減少に基づいて判定される。この場合、レーダセンサ22の検知精度が低下していなければ、追従走行制御が継続されてもよい。しかし、レーダセンサ22の検知精度が低下した場合には、追従走行制御が解除され、車両走行の制御がドライバに返還される。 By the way, during follow-up travel control, the detection accuracy of the camera sensor 21 and the radar sensor 22 may deteriorate due to, for example, bad weather. For example, a decrease in detection accuracy of the radar sensor 22 is determined based on a decrease in the number of objects detected around the vehicle by the radar sensor 22 . In this case, if the detection accuracy of the radar sensor 22 has not deteriorated, follow-up running control may be continued. However, when the detection accuracy of the radar sensor 22 is lowered, the follow-up travel control is canceled and control of vehicle travel is returned to the driver.
 追従走行制御での自車両の走行中において、天候の悪化に伴い追従走行制御を解除する場合、その解除が早過ぎると、自車両の運転を追従走行制御に委ねているドライバが違和感を覚えることが懸念される。また、車両走行の制御をドライバに返還するまでの期間が短いと、ノイズ等による一時的な検知精度低下に起因して誤って追従走行制御が解除されることが懸念される。一方、検知精度の低下から追従走行制御の解除までの期間が過度に長いと、車両走行の制御をドライバに返還する以前において自車両が先行車両に過剰に接近するおそれがある。 If the follow-up cruise control is canceled due to deterioration of the weather while the own vehicle is running under the follow-up cruise control, if the release is too early, the driver who entrusts the driving of the own vehicle to the follow-up cruise control will feel uncomfortable. is concerned. Further, if the period until control of vehicle travel is returned to the driver is short, there is a concern that follow-up travel control may be erroneously canceled due to temporary deterioration in detection accuracy due to noise or the like. On the other hand, if the period from the deterioration of the detection accuracy to the cancellation of the follow-up running control is excessively long, there is a possibility that the own vehicle will excessively approach the preceding vehicle before returning the vehicle running control to the driver.
 そこで、本実施形態では、自車両周辺の天候が悪天候であることを示す悪天候情報を取得し、この悪天候条件に基づいて、検知精度の低下から追従走行制御の解除までの解除待機期間TAを設定するようにした。悪天候情報によれば、天候の悪化度合が追従走行制御にどの程度影響を及ぼすかを把握することが可能となり、解除待機期間TAを適切に設定することができる。これにより、物体検知装置の検知精度の低下時に適切に追従走行制御を解除することができる。 Therefore, in the present embodiment, bad weather information indicating that the weather around the host vehicle is bad is acquired, and based on this bad weather condition, a cancellation standby period TA from deterioration of detection accuracy to cancellation of follow-up running control is set. I made it According to the bad weather information, it is possible to grasp how much the degree of deterioration of the weather affects the follow-up running control, and it is possible to appropriately set the cancellation standby period TA. As a result, the follow-up travel control can be appropriately canceled when the detection accuracy of the object detection device is lowered.
 図2に、本実施形態の運転支援処理のフローチャートを示す。ECU10は、所定周期毎に運転支援処理を繰り返し実施する。 FIG. 2 shows a flowchart of the driving support processing of this embodiment. The ECU 10 repeatedly executes the driving support process at predetermined intervals.
 運転支援処理を開始すると、ステップS11では、追従走行制御中であるか否かを判定する。この場合、自車両が先行車両に追従する追従走行状態か、自車両が設定速度で走行する定速走行状態(単独走行状態)のいずれかであれば、ステップS11を肯定し、ステップS12に進む。一方、追従走行制御中でない場合、ステップS11を否定し、本処理を一旦終了する。 When the driving support process is started, in step S11, it is determined whether or not follow-up driving control is being performed. In this case, if it is either a follow-up running state in which the own vehicle follows the preceding vehicle or a constant-speed running state (independent running state) in which the own vehicle runs at a set speed, step S11 is affirmative, and the process proceeds to step S12. . On the other hand, if the follow-up running control is not being performed, the decision in step S11 is negative, and this process is once terminated.
 ステップS12では、精度低下フラグFgが「1」に設定されているか否かを判定する。精度低下フラグFgは、追従走行制御の開始タイミングにおいて「0」に設定されており、レーダセンサ22の検知精度が低下していない場合には、「0」に設定される。一方、レーダセンサ22の検知精度が低下している場合には、精度低下フラグFgは「1」に設定される。精度低下フラグFgが「0」に設定されている場合、ステップS13に進む。一方、精度低下フラグFgが「1」に設定されている場合、ステップS21に進む。 In step S12, it is determined whether or not the accuracy reduction flag Fg is set to "1". The accuracy drop flag Fg is set to "0" at the start timing of the follow-up cruise control, and is set to "0" when the detection accuracy of the radar sensor 22 is not lowered. On the other hand, when the detection accuracy of the radar sensor 22 has decreased, the accuracy decrease flag Fg is set to "1". If the precision drop flag Fg is set to "0", the process proceeds to step S13. On the other hand, if the accuracy reduction flag Fg is set to "1", the process proceeds to step S21.
 ステップS13では、レーダセンサ22の検知精度が低下しているか否かを判定する。検知精度が低下していない場合、本処理を一旦終了する。一方、検知精度が低下している場合、ステップS14に進む。 In step S13, it is determined whether or not the detection accuracy of the radar sensor 22 has decreased. If the detection accuracy has not deteriorated, this process is once terminated. On the other hand, if the detection accuracy has decreased, the process proceeds to step S14.
 ステップS14では、精度低下フラグFgを「1」に設定する。続くステップS15では、解除待機期間TAが第1期間T1に設定された第1タイマM1の計時を開始し、本処理を一旦終了する。 In step S14, the precision drop flag Fg is set to "1". In the subsequent step S15, the first timer M1 with the cancellation waiting period TA set to the first period T1 starts to count, and this process is once terminated.
 ステップS21では、レーダセンサ22の検知精度が低下した状態が維持されているか否かを判定する。レーダセンサ22の検知精度が回復しており、検知精度が低下していない場合、ステップS22に進む。ステップS22では、精度低下フラグFgを「0」に設定する。続くステップS23では、タイマM1~M5をリセットし、本処理を一旦終了する。タイマM1~M5は、図4に示すパターンP1~P5に対応する計時手段であり、パターンP1~P5が成立した場合に、計時が開始され、少なくとも1つのタイマM1~M5において解除待機期間TAが経過した場合に、追従走行制御が解除される。一方、検知精度が低下した状態が維持されている場合、ステップS24に進む。なお、本実施形態において、ステップS13,S21の処理が「判定部,判定ステップ」に相当する。 In step S21, it is determined whether or not the state in which the detection accuracy of the radar sensor 22 has decreased is maintained. If the detection accuracy of the radar sensor 22 has recovered and the detection accuracy has not deteriorated, the process proceeds to step S22. In step S22, the precision drop flag Fg is set to "0". In the subsequent step S23, the timers M1 to M5 are reset, and this process is once terminated. The timers M1 to M5 are timing means corresponding to the patterns P1 to P5 shown in FIG. When the time has elapsed, the follow-up running control is canceled. On the other hand, if the state in which the detection accuracy is lowered is maintained, the process proceeds to step S24. In this embodiment, the processing of steps S13 and S21 corresponds to the "determination unit, determination step".
 ステップS24では、悪天候情報取得処理を実施する。悪天候情報取得処理では、センサ類20に含まれるカメラセンサ21及びレーダセンサ22と、被制御装置30に含まれるワイパ装置33から、自車両周辺の天候が悪天候であることを示す悪天候情報を取得する。なお、本実施形態において、ステップS24の処理が「取得部,取得ステップ」に相当する。 In step S24, bad weather information acquisition processing is performed. In the bad weather information acquisition process, bad weather information indicating that the weather around the vehicle is bad is acquired from the camera sensor 21 and the radar sensor 22 included in the sensors 20 and the wiper device 33 included in the controlled device 30. . In this embodiment, the process of step S24 corresponds to "acquisition unit, acquisition step".
 図3に、悪天候情報取得処理のフローチャートを示す。悪天候情報取得処理を開始すると、ステップS40では、ステップS21においてレーダセンサ22の検知精度が低下した状態が維持されていると判定されたことに基づいて、レーダセンサ22の検知精度が低下していることを示す悪天候情報(以下、レーダセンサ22の悪天候情報)を取得する。なお、本実施形態において、レーダセンサ22の悪天候情報が「第1情報」に相当する。  Fig. 3 shows a flowchart of the bad weather information acquisition process. When the bad weather information acquisition process is started, in step S40, the detection accuracy of the radar sensor 22 is lowered based on the determination that the state in which the detection accuracy of the radar sensor 22 is lowered is maintained in step S21. bad weather information (hereinafter referred to as bad weather information from the radar sensor 22) indicating that In addition, in this embodiment, the bad weather information of the radar sensor 22 corresponds to the "first information".
 ステップS41では、カメラセンサ21の検知精度が低下しているか否かを判定する。本実施形態では、レーダセンサ22による自車両周辺の物体検知数に対して、カメラセンサ21による自車両周辺の物体検知数が少ない状況であることに基づいて、カメラセンサ21の検知精度が低下しているか否かを判定する。具体的には、レーダセンサ22による自車両周辺の物体検知数に対するカメラセンサ21による自車両周辺の物体検知数の比である検知比が所定の閾値よりも小さくなった場合に、カメラセンサ21の検知精度が低下していると判定する。これにより、自車両周辺に存在する物体の数が減少し、これに伴って、レーダセンサ22による自車両周辺の物体検知数と、カメラセンサ21による自車両周辺の物体検知数とが共に減少した場合において、カメラセンサ21の検知精度が低下していると誤判定されることが抑制される。 In step S41, it is determined whether or not the detection accuracy of the camera sensor 21 has decreased. In this embodiment, the number of objects detected around the vehicle by the camera sensor 21 is smaller than the number of objects detected around the vehicle by the radar sensor 22, so the detection accuracy of the camera sensor 21 is reduced. Determine whether or not Specifically, when the detection ratio, which is the ratio of the number of objects detected around the vehicle by the camera sensor 21 to the number of objects detected around the vehicle by the radar sensor 22, becomes smaller than a predetermined threshold, the camera sensor 21 It is determined that the detection accuracy has decreased. As a result, the number of objects existing around the vehicle decreases, and accordingly the number of objects detected around the vehicle by the radar sensor 22 and the number of objects detected around the vehicle by the camera sensor 21 both decrease. In this case, erroneous determination that the detection accuracy of the camera sensor 21 is degraded is suppressed.
 検知比が閾値よりも小さい場合、カメラセンサ21の検知精度が低下していると判定し、ステップS42において、カメラセンサ21の検知精度が低下していることを示す悪天候情報(以下、カメラセンサ21の悪天候情報)を取得し、ステップS43に進む。一方、該検知比が閾値よりも大きい場合、カメラセンサ21の検知精度が低下していないと判定し、ステップS45に進む。なお、本実施形態において、カメラセンサ21の悪天候情報が「第2情報」に相当する。 If the detection ratio is smaller than the threshold, it is determined that the detection accuracy of the camera sensor 21 is degraded, and in step S42, bad weather information (hereinafter referred to as camera sensor 21 bad weather information), and proceeds to step S43. On the other hand, if the detection ratio is greater than the threshold, it is determined that the detection accuracy of the camera sensor 21 has not decreased, and the process proceeds to step S45. In addition, in this embodiment, the bad weather information of the camera sensor 21 corresponds to "second information".
 ステップS43では、カメラセンサ21が自車線の白線を認識しているか否かを判定する。例えばカメラセンサ21により自車両遠方の物体を検知できなくなったことでカメラセンサ21の悪天候情報を取得している状況下において、自車両の近傍領域で左右の白線を認識できている場合には、レーンキープアシスト機能を発揮することが可能な状況であり、先行車両の追従状態であれば先行車両を検知できる可能性があることから、ステップS44に進む。ステップS44では、第2パターンP2に対応する解除待機期間TAである第2期間T2を所定期間だけ延長し、ステップS47に進む。一方、白線を認識できない場合には、第2期間T2を延長することなくステップS47に進む。つまり、白線が認識されていれば、白線が認識されていない場合よりも解除待機期間TA(第2期間T2)が長い期間に設定される。 In step S43, it is determined whether or not the camera sensor 21 recognizes the white line of the own lane. For example, when the camera sensor 21 cannot detect objects far away from the vehicle and the camera sensor 21 acquires bad weather information, if the left and right white lines are recognized in the vicinity of the vehicle, In this situation, it is possible to exhibit the lane keep assist function, and if the preceding vehicle is being followed, there is a possibility that the preceding vehicle can be detected, so the process proceeds to step S44. In step S44, the second period T2, which is the cancellation standby period TA corresponding to the second pattern P2, is extended by a predetermined period, and the process proceeds to step S47. On the other hand, if the white line cannot be recognized, the process proceeds to step S47 without extending the second period T2. That is, if the white line is recognized, the cancellation standby period TA (second period T2) is set longer than when the white line is not recognized.
 ステップS45では、カメラセンサ21の検知精度が回復したか否かを判定する。例えば降雪時には、レーダセンサ22及びカメラセンサ21において検知精度の低下が生じることが考えられ、その降雪が止んだ直後には、カメラセンサ21の検知精度は元に戻るのに対し、レーダセンサ22についてはセンサ前面の着雪により検知精度が低下したままになることが考えられる。この場合、カメラセンサ21の検知精度は回復するが、レーダセンサ22の前面に付着した雪が溶けるまでは、レーダセンサ22の検知精度は低下したままとなることから、ステップS46に進む。ステップS46では、レーダセンサ22への積雪により検知精度が低下していることを示す悪天候情報(以下、積雪による悪天候情報)を取得し、ステップS46に進む。 In step S45, it is determined whether or not the detection accuracy of the camera sensor 21 has recovered. For example, when it snows, the detection accuracy of the radar sensor 22 and the camera sensor 21 may decrease. It is conceivable that the detection accuracy remains degraded due to snow accumulating on the front surface of the sensor. In this case, the detection accuracy of the camera sensor 21 recovers, but the detection accuracy of the radar sensor 22 remains lowered until the snow adhering to the front surface of the radar sensor 22 melts, so the process proceeds to step S46. In step S46, bad weather information (hereinafter referred to as bad weather information due to snow accumulation) indicating that the detection accuracy of the radar sensor 22 is degraded due to snow accumulation is acquired, and the process proceeds to step S46.
 一方、晴天時には、レーダセンサ22及びカメラセンサ21において検知精度の低下が生じていないことが考えられ、その後に雪が降り始めた場合に、カメラセンサ21よりも先にレーダセンサ22の検知精度が低下することが考えられる。この場合、カメラセンサ21の検知精度は回復していない。また、レーダセンサ22の検知精度は低下したままとなるとも限らず、且つレーダセンサ22の前面に付着した雪が溶けることで検知精度が戻ることもない。この場合、積雪による悪天候情報を取得することなく、ステップS47に進む。 On the other hand, it is conceivable that the detection accuracy of the radar sensor 22 and the camera sensor 21 does not decrease when the weather is fine. can be considered. In this case, the detection accuracy of the camera sensor 21 has not recovered. In addition, the detection accuracy of the radar sensor 22 may not remain lowered, and the detection accuracy may not be restored by melting the snow adhering to the front surface of the radar sensor 22 . In this case, the process proceeds to step S47 without acquiring bad weather information due to snow cover.
 ステップS47では、ワイパ装置33が動作しているか否かを判定する。ワイパ装置33が動作している場合、ステップS48において、ワイパ装置33が動作していることを示す悪天候情報(以下、ワイパ装置33の悪天候情報)を取得し、本処理を一旦終了する。一方、ワイパ装置33が動作していない場合、ワイパ装置33の悪天候情報を取得することなく、本処理を一旦終了する。 In step S47, it is determined whether the wiper device 33 is operating. If the wiper device 33 is operating, bad weather information indicating that the wiper device 33 is operating (hereinafter referred to as bad weather information of the wiper device 33) is acquired in step S48, and this process is temporarily terminated. On the other hand, if the wiper device 33 is not operating, this process is temporarily terminated without acquiring the bad weather information of the wiper device 33 .
 悪天候情報取得処理では、カメラセンサ21、レーダセンサ22、及びワイパ装置33などの車載装置から悪天候情報として取得する。具体的には、これらの車載装置では、天候悪化に伴い出力に変化が生じることから、その出力変化を車載装置ごとの悪天候情報として取得する。ここで、カメラセンサ21及びレーダセンサ22において、出力変化は検知状態の変化であり、ワイパ装置33において、出力変化は動作状態の変化を意味する。 In the bad weather information acquisition process, bad weather information is acquired from in-vehicle devices such as the camera sensor 21, the radar sensor 22, and the wiper device 33. Specifically, in these in-vehicle devices, since the output changes as the weather deteriorates, the output change is acquired as the bad weather information for each in-vehicle device. Here, in the camera sensor 21 and the radar sensor 22, the output change means the change in the detection state, and in the wiper device 33, the output change means the change in the operating state.
 図2に戻り、悪天候情報取得処理が終了すると、ステップS25~S36に進む。ステップS25~S36では、悪天候情報取得処理で取得された悪天候情報に基づいて、タイマM2~M5を制御する。ECU10のメモリ11には、悪天候情報取得処理で取得された悪天候情報により定まる5つのパターンP1~P5が記憶されており、ステップS25~S36では、これらのパターンP1~P5のうち、パターンP2~P5に対応するタイマM2~M5を制御する。 Returning to FIG. 2, when the bad weather information acquisition process is completed, proceed to steps S25 to S36. In steps S25-S36, timers M2-M5 are controlled based on the bad weather information acquired in the bad weather information acquisition process. The memory 11 of the ECU 10 stores five patterns P1 to P5 determined by the bad weather information acquired in the bad weather information acquisition process. to control the timers M2 to M5 corresponding to .
 図4に示すように、第1パターンP1は、レーダセンサ22の悪天候情報が取得されている状態を示すパターンであり、第2パターンP2は、レーダセンサ22及びカメラセンサ21の悪天候情報が取得されている状態を示すパターンである。そのため、第2パターンP2が成立している場合には、第1パターンP1が同時に成立している。また、第3パターンP3は、レーダセンサ22及びワイパ装置33の悪天候情報が取得されている状態を示すパターンであり、第4パターンP4は、レーダセンサ22及び積雪による悪天候情報が取得されている状態を示すパターンであり、第5パターンP5は、レーダセンサ22、カメラセンサ21、及びワイパ装置33の悪天候情報が取得されている状態を示すパターンある。カメラセンサ21の悪天候情報と積雪による悪天候情報とは同時に取得されることはないため、第2パターンP2と第4パターンP4とが同時に成立することはない。 As shown in FIG. 4, the first pattern P1 is a pattern indicating a state in which bad weather information is acquired by the radar sensor 22, and the second pattern P2 is a pattern in which bad weather information is acquired by the radar sensor 22 and the camera sensor 21. This pattern indicates that the Therefore, when the second pattern P2 is established, the first pattern P1 is established at the same time. The third pattern P3 is a pattern indicating a state in which bad weather information is obtained from the radar sensor 22 and the wiper device 33, and the fourth pattern P4 is a state in which bad weather information due to the radar sensor 22 and accumulated snow is obtained. , and the fifth pattern P5 is a pattern indicating a state in which bad weather information from the radar sensor 22, the camera sensor 21, and the wiper device 33 is acquired. Since the bad weather information from the camera sensor 21 and the bad weather information due to accumulated snow are not acquired at the same time, the second pattern P2 and the fourth pattern P4 are not established at the same time.
 また、パターンP1~P5には、対応するタイマM1~M5の解除待機期間TAが定められている。第1パターンP1に対応する第1タイマM1の解除待機期間TAは、第1期間T1であり、第2,第3パターンP2,P3に対応する第2,第3タイマM2,M3の解除待機期間TAは、第2期間T2である。第4パターンP4に対応する第4タイマM4の解除待機期間TAは、第3期間T3であり、第5パターンP5に対応する第5タイマM5の解除待機期間TAは、第4期間T4である。期間T1~T4は、この順に短い期間となるように設定されている。 In addition, the patterns P1 to P5 are provided with a cancellation standby period TA for the corresponding timers M1 to M5. The cancellation waiting period TA of the first timer M1 corresponding to the first pattern P1 is the first period T1, and the cancellation waiting periods of the second and third timers M2 and M3 corresponding to the second and third patterns P2 and P3. TA is the second period T2. The cancellation waiting period TA of the fourth timer M4 corresponding to the fourth pattern P4 is the third period T3, and the cancellation waiting period TA of the fifth timer M5 corresponding to the fifth pattern P5 is the fourth period T4. The periods T1 to T4 are set to be shorter in this order.
 パターンP1~P5では、取得すべき悪天候情報の組み合わせが互いに異なっており、この組み合わせに基づいて解除待機期間TAが設定されている。悪天候情報の組み合わせが異なると、自車両周辺の悪天候の度合(以下、単に悪天候の度合)が変わる。ここで、悪天候の度合とは、雨、雪、霧等の天候の種類を意味し、例えば雪は路面の凍結等の原因となることから、雨よりも悪天候の度合いが大きい。また、悪天候の度合には、小雨、大雨、豪雨等の各天候の種類における悪天候の程度が含まれる。本実施形態では、悪天候の度合に対応させて、解除待機期間TAが設定されている。 The patterns P1 to P5 have different combinations of bad weather information to be acquired, and the cancellation standby period TA is set based on these combinations. If the combination of bad weather information is different, the degree of bad weather around the vehicle (hereinafter, simply the degree of bad weather) changes. Here, the degree of bad weather means the type of weather such as rain, snow, fog, etc. For example, snow causes freezing of the road surface, so the degree of bad weather is greater than that of rain. The degree of bad weather includes the degree of bad weather for each type of weather such as light rain, heavy rain, and heavy rain. In this embodiment, the cancellation standby period TA is set according to the degree of bad weather.
 具体的には、パターンP1~P5では、この順で取得すべき悪天候情報の数が多くなっており、これに対応させて、この順で解除待機期間TAが短くなるように設定されている。つまり、悪天候情報の数が多いほど、悪天候の度合が大きいとされ、悪天候の度合が大きいとされる場合に、悪天候の度合が小さいとされる場合に比べて、解除待機期間TAが短い期間に設定されている。 Specifically, in patterns P1 to P5, the number of pieces of bad weather information to be acquired increases in this order, and accordingly, the cancellation standby period TA is set to shorten in this order. In other words, the greater the number of bad weather information, the greater the degree of bad weather. is set.
 例えば、第1パターンP1と第2パターンP2とを比較すると、レーダセンサ22及びカメラセンサ21の悪天候情報が取得されている場合の解除待機期間TA(第2期間T2)は、レーダセンサ22の悪天候情報のみが取得されている場合の解除待機期間TA(第1期間T1)よりも短い期間に設定されている。 For example, when comparing the first pattern P1 and the second pattern P2, the cancellation standby period TA (second period T2) when the bad weather information of the radar sensor 22 and the camera sensor 21 is acquired is the bad weather information of the radar sensor 22. It is set to a period shorter than the cancellation standby period TA (first period T1) when only information is acquired.
 また、第1パターンP1と第4パターンP4とを比較すると、レーダセンサ22及び積雪による悪天候情報が取得されている場合の解除待機期間TA(第3期間T3)は、レーダセンサ22の悪天候情報のみが取得されている場合の解除待機期間TA(第1期間T1)よりも短い期間にされている。 Further, when comparing the first pattern P1 and the fourth pattern P4, the cancellation standby period TA (third period T3) when the bad weather information due to the radar sensor 22 and accumulated snow is acquired is only the bad weather information of the radar sensor 22. is acquired, the period is set to be shorter than the cancellation standby period TA (first period T1).
 ここで、レーダセンサ22及び積雪による悪天候情報が取得されている場合には、レーダセンサ22の悪天候情報及びカメラセンサ21の悪天候情報が取得された状態から、レーダセンサ22の悪天候情報のみが取得された状態に変化した状況が含まれる。また、レーダセンサ22の悪天候情報のみが取得されている場合には、レーダセンサ22及び積雪による悪天候情報が取得されている場合には、レーダセンサ22の悪天候情報及びカメラセンサ21の悪天候情報が取得されていない状態から、レーダセンサ22の悪天候情報のみが取得された状態に変化した状況が含まれる。第3期間T3が第1期間T1よりも短く設定されることで、状況に応じた適切なタイミングで追従走行制御を解除することができる。 Here, when the bad weather information due to the radar sensor 22 and snow cover is acquired, only the bad weather information of the radar sensor 22 is acquired from the state where the bad weather information of the radar sensor 22 and the bad weather information of the camera sensor 21 are acquired. This includes situations that have changed to a new state. If only the bad weather information from the radar sensor 22 is acquired, if the bad weather information from the radar sensor 22 and snow cover is acquired, the bad weather information from the radar sensor 22 and the bad weather information from the camera sensor 21 are acquired. It includes a situation in which only bad weather information from the radar sensor 22 is acquired from a state in which no information is acquired. By setting the third period T3 to be shorter than the first period T1, follow-up running control can be canceled at an appropriate timing according to the situation.
 ステップS25~S36の説明に戻ると、ステップS25では、第2パターンP2が成立しているか否かを判定する。第2パターンP2が成立している場合、ステップS26において、解除待機期間TAが第2期間T2に設定された第2タイマM2の計時を開始し、ステップS28に進む。一方、第2パターンP2が成立していない場合、ステップS27において第2タイマM2をリセットし、ステップS28に進む。 Returning to the description of steps S25 to S36, in step S25, it is determined whether or not the second pattern P2 is established. When the second pattern P2 is established, in step S26, the second timer M2 whose release standby period TA is set to the second period T2 starts counting, and the process proceeds to step S28. On the other hand, if the second pattern P2 is not established, the second timer M2 is reset in step S27, and the process proceeds to step S28.
 ステップS28では、第3パターンP3が成立しているか否かを判定する。第3パターンP3が成立している場合、ステップS29において、解除待機期間TAが第2期間T2に設定された第3タイマM3の計時を開始し、ステップS31に進む。一方、第3パターンP3が成立していない場合、ステップS30において第3タイマM3をリセットし、ステップS31に進む。 In step S28, it is determined whether or not the third pattern P3 is established. When the third pattern P3 is established, in step S29, the third timer M3 with the release waiting period TA set to the second period T2 starts counting, and the process proceeds to step S31. On the other hand, if the third pattern P3 is not established, the third timer M3 is reset in step S30, and the process proceeds to step S31.
 ステップS31では、第4パターンP4が成立しているか否かを判定する。第4パターンP4が成立している場合、ステップS32において、解除待機期間TAが第3期間T3に設定された第4タイマM4の計時を開始し、ステップS34に進む。一方、第4パターンP4が成立していない場合、ステップS33において第4タイマM4をリセットし、ステップS34に進む。 In step S31, it is determined whether or not the fourth pattern P4 is established. When the fourth pattern P4 is established, in step S32, the fourth timer M4 whose release waiting period TA is set to the third period T3 starts counting, and the process proceeds to step S34. On the other hand, if the fourth pattern P4 is not established, the fourth timer M4 is reset in step S33, and the process proceeds to step S34.
 ステップS34では、第5パターンP5が成立しているか否かを判定する。第5パターンP5が成立している場合、ステップS35において、解除待機期間TAが第4期間T4に設定された第5タイマM5の計時を開始し、ステップS37に進む。一方、第5パターンP5が成立していない場合、ステップS36において第5タイマM5をリセットし、ステップS37に進む。なお、本実施形態において、ステップS15,S26,S29,S32,S35の処理が「設定部,設定ステップ」に相当する。 In step S34, it is determined whether or not the fifth pattern P5 is established. When the fifth pattern P5 is established, in step S35, the fifth timer M5 whose release waiting period TA is set to the fourth period T4 starts counting, and the process proceeds to step S37. On the other hand, if the fifth pattern P5 is not established, the fifth timer M5 is reset in step S36, and the process proceeds to step S37. In this embodiment, the processes of steps S15, S26, S29, S32, and S35 correspond to "setting unit, setting step".
 ステップS37では、タイマM1~M5において、解除待機期間TAが経過したか否かを判定する。いずれのタイマM1~M5においても解除待機期間TAを超えていない場合、本処理を一旦終了する。一方、少なくとも1つのタイマM1~M5においても解除待機期間TAを超えた場合、ステップS38において、追従走行制御を解除し、本処理を一旦終了する。ステップS36では、例えば車室内に設置されたディスプレイやスピーカを用いて、ドライバに追従走行制御を解除する旨を通知し、ドライバに車両走行の制御の準備を促す。なお、本実施形態において、ステップS38の処理が「解除部」に相当する。 In step S37, the timers M1 to M5 determine whether or not the cancellation standby period TA has elapsed. If none of the timers M1 to M5 exceeds the cancellation standby period TA, this process is temporarily terminated. On the other hand, if at least one of the timers M1 to M5 exceeds the cancellation waiting period TA, the follow-up running control is canceled in step S38, and this process is terminated. In step S36, for example, a display or speaker installed in the vehicle interior is used to notify the driver that the follow-up running control is to be cancelled, prompting the driver to prepare for vehicle running control. It should be noted that in the present embodiment, the process of step S38 corresponds to the "release section".
 続いて、図5に、運転支援処理における追従走行制御の解除タイミングの推移の一例を示す。図5は、第5パターンP5における追従走行制御の解除タイミングの推移を示す。 Next, FIG. 5 shows an example of the transition of the release timing of the follow-up running control in the driving support process. FIG. 5 shows transition of release timing of follow-up running control in the fifth pattern P5.
 図5において、(A)は、追従走行制御の実施状態の推移を示し、(B)は、先行車両の認識状態の推移を示し、(C)は、レーダセンサ22の検知精度の推移を示す。一般に、先行車両の認識状態の推移とレーダセンサ22の検知精度の推移とは異なり、レーダセンサ22の検知精度が低下した後に、先行車両が認識されなくなる。また、(D)は、カメラセンサ21の検知精度の推移を示し、(E)は、ワイパ装置33の動作状態の推移を示し、(F)は、第1タイマM1の作動状態の推移を示し、(G)は、第2タイマM2の作動状態の推移を示し、(H)は、第5タイマM5の作動状態の推移を示す。 In FIG. 5, (A) shows the transition of the implementation state of the follow-up cruise control, (B) shows the transition of the recognition state of the preceding vehicle, and (C) shows the transition of the detection accuracy of the radar sensor 22. . Generally, unlike the transition of the recognition state of the preceding vehicle and the transition of the detection accuracy of the radar sensor 22, the preceding vehicle is no longer recognized after the detection accuracy of the radar sensor 22 decreases. Also, (D) shows the transition of the detection accuracy of the camera sensor 21, (E) shows the transition of the operating state of the wiper device 33, and (F) shows the transition of the operating state of the first timer M1. , (G) indicates transition of the operating state of the second timer M2, and (H) indicates transition of the operating state of the fifth timer M5.
 図5に示すように、ドライバにより追従走行スイッチがオンされた後、時刻t1に先行車両が認識されると、追従走行制御が実施される。なお、追従走行スイッチは、例えば車室内に設けられており、ドライバによる操作が可能となっている。また、時刻t1において、レーダセンサ22及びカメラセンサ21の検知精度は良好であり、ワイパ装置33は動作していない。 As shown in FIG. 5, after the follow-up run switch is turned on by the driver, the follow-up run control is implemented when the preceding vehicle is recognized at time t1. Note that the follow-up running switch is provided, for example, in the vehicle interior, and can be operated by the driver. Moreover, at time t1, the detection accuracy of the radar sensor 22 and the camera sensor 21 is good, and the wiper device 33 is not operating.
 その後、天候の悪化に伴い時刻t2にレーダセンサ22の検知精度が低下し、レーダセンサ22の悪天候情報が取得されると、第1パターンP1が成立し、第1タイマM1の計時が開始される。第1タイマM1では、解除待機期間TAが比較的長い第1期間T1に設定されているため、図5(A)に破線で示すように、第1タイマM1のみを用いて追従走行制御の解除タイミングを決定すると、解除タイミングが時刻t7となる。図5に示す例では、第1タイマM1を用いて決定された解除タイミングである時刻t7が、天候の悪化に伴い先行車両が認識できなくなるタイミングである時刻t6よりも遅くなってしまい、追従走行制御を解除する以前において自車両が先行車両に過剰に接近するおそれがある。 After that, the detection accuracy of the radar sensor 22 decreases at time t2 due to deterioration of the weather, and when the bad weather information of the radar sensor 22 is acquired, the first pattern P1 is established and the first timer M1 starts counting. . In the first timer M1, the cancellation standby period TA is set to the relatively long first period T1, so as shown by the dashed line in FIG. When the timing is determined, the release timing becomes time t7. In the example shown in FIG. 5, the time t7, which is the release timing determined using the first timer M1, becomes later than the time t6, which is the timing at which the preceding vehicle cannot be recognized due to deterioration of the weather. There is a possibility that the own vehicle will excessively approach the preceding vehicle before the control is released.
 本実施形態では、レーダセンサ22の悪天候情報だけでなく、カメラセンサ21及びワイパ装置33の悪天候情報に基づいて、追従走行制御の解除タイミングを決定するようにした。これらの悪天候情報を用いることで、天候の悪化度合、つまり悪天候の度合に応じて追従走行制御の解除タイミングを適切に決定することができる。 In this embodiment, the release timing of the following travel control is determined based on not only the bad weather information from the radar sensor 22 but also the bad weather information from the camera sensor 21 and the wiper device 33 . By using such bad weather information, it is possible to appropriately determine the release timing of the follow-up cruise control according to the degree of deterioration of the weather, that is, the degree of bad weather.
 具体的には、時刻t3にカメラセンサ21の検知精度が低下し、カメラセンサ21の悪天候情報が取得されると、第2パターンP2が成立し、第2タイマM2の計時が開始される。第2タイマM2の解除待機期間TA(第2期間T2)は、第1タイマM1の解除待機期間TA(第1期間T1)よりも短い。そのため、図5に示す例では、第2タイマM2を用いて決定される解除タイミングである時刻t6が、第1タイマM1を用いて決定される解除タイミングである時刻t7よりも早くなる。 Specifically, when the detection accuracy of the camera sensor 21 decreases at time t3 and the bad weather information of the camera sensor 21 is acquired, the second pattern P2 is established and the second timer M2 starts counting. The cancellation waiting period TA (second period T2) of the second timer M2 is shorter than the cancellation waiting period TA (first period T1) of the first timer M1. Therefore, in the example shown in FIG. 5, time t6, which is the release timing determined using the second timer M2, is earlier than time t7, which is the release timing determined using the first timer M1.
 また、時刻t4にワイパ装置33が動作を開始し、ワイパ装置33の悪天候情報が取得されると、第5パターンP5が成立し、第5タイマM5の計時が開始される。第5タイマM5の解除待機期間TA(第5期間T5)は、第2タイマM2の解除待機期間TA(第2期間T2)よりも短い。そのため、図5に示す例では、第5タイマM5を用いて決定される解除タイミングである時刻t5が、第2タイマM2を用いて決定される解除タイミングである時刻t6よりも早くなる。 Also, when the wiper device 33 starts operating at time t4 and the bad weather information of the wiper device 33 is acquired, the fifth pattern P5 is established and the fifth timer M5 starts timing. The cancellation waiting period TA (fifth period T5) of the fifth timer M5 is shorter than the cancellation waiting period TA (second period T2) of the second timer M2. Therefore, in the example shown in FIG. 5, time t5, which is the release timing determined using the fifth timer M5, is earlier than time t6, which is the release timing determined using the second timer M2.
 図5に示す例では、第1,第2,第5タイマM1,M2、M5を用いて決定される解除タイミングである時刻t5~t7のうち、時刻t5が最も早い。そのため、時刻t5において追従走行制御が解除される。その結果、追従走行制御の解除タイミングが、天候の悪化に伴い先行車両が認識できなくなるタイミングである時刻t6よりも早くすることができ、追従走行制御を解除する以前において自車両が先行車両に過剰に接近することを抑制することができる。 In the example shown in FIG. 5, time t5 is the earliest of times t5 to t7, which are release timings determined using the first, second, and fifth timers M1, M2, and M5. Therefore, the follow-up running control is canceled at time t5. As a result, the timing of canceling the follow-up cruise control can be made earlier than time t6, which is the timing at which the preceding vehicle becomes unrecognizable due to worsening weather. can be suppressed from approaching
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to this embodiment detailed above, the following effects can be obtained.
 本実施形態では、悪天候情報に基づいて、解除待機期間TAを設定するようにした。悪天候情報によれば、天候の悪化度合が追従走行制御にどの程度影響を及ぼすかを把握することが可能となり、検知精度の低下から追従走行制御の解除までの解除待機期間TAを適切に設定することができる。これにより、レーダセンサ22の検知精度の低下時に適切に追従走行制御を解除することができる。 In this embodiment, the cancellation waiting period TA is set based on the bad weather information. According to the bad weather information, it is possible to grasp the extent to which the degree of deterioration of the weather affects the follow-up running control, and appropriately set the cancellation waiting period TA from the deterioration of the detection accuracy until the follow-up running control is released. be able to. As a result, when the detection accuracy of the radar sensor 22 is lowered, the follow-up running control can be appropriately canceled.
 例えば、自車両が先行車両に追従する追従走行状態において、悪天候により先行車両を検知できない場合、自車両が加速を実施することで先行車両に過剰に接近することが考える。また、自車両が設定速度で走行する定速走行状態において、前方の車両に追いつこうとする場面において、悪天候により先行車両を検知できない場合、先行車両に対して減速を実施することができず先行車両に過剰に接近することが考える。追従走行状態及び定速走行状態において追従走行制御の解除を実施することで、自車両が先行車両に過剰に接近すること抑制することができる。 For example, in a follow-up driving state in which the own vehicle follows the preceding vehicle, if the preceding vehicle cannot be detected due to bad weather, the own vehicle may accelerate and approach the preceding vehicle excessively. In addition, when the vehicle is running at a set speed and is trying to catch up with the vehicle ahead, if the preceding vehicle cannot be detected due to bad weather, the vehicle ahead cannot decelerate and the vehicle ahead cannot decelerate. I think that it is too close to . By canceling the follow-up running control in the follow-up running state and the constant-speed running state, it is possible to prevent the host vehicle from excessively approaching the preceding vehicle.
 悪天候情報における悪天候の度合が大きいほど、追従走行制御での自車両の走行中において先行車両に対して自車両が接近しすぎる等の不都合が生じやすくなる。本実施形態では、悪天候情報に基づいて悪天候の度合が大きいとされる場合に、悪天候の度合が小さいとされる場合に比べて解除待機期間TAを短い期間に設定するようにしたため、上記不都合を抑制し、追従走行制御を適切なタイミングで解除することができる。 The greater the degree of bad weather in the bad weather information, the more likely it is that your vehicle will get too close to the preceding vehicle while it is running under follow-up cruise control. In the present embodiment, when the degree of bad weather is determined to be high based on the bad weather information, the cancellation waiting period TA is set to be shorter than when the degree of bad weather is determined to be low, so that the above inconvenience is eliminated. It is possible to suppress it and cancel the follow-up running control at an appropriate timing.
 車両では、例えばレーダセンサ22やカメラセンサ21など、各センサの検知状態の変化の情報を悪天候情報として取得でき、例えばワイパ装置33の動作状態の変化の情報を悪天候情報として取得できる。これらセンサや装置である車載装置では、天候悪化に伴い出力変化が生じるため、取得される悪天候情報の組み合わせによって、悪天候の度合を把握することができる。本実施形態では、悪天候情報の組み合わせに基づいて、解除待機期間TAを設定するため、悪天候の状況に応じて、適切なタイミングで追従走行制御を解除することができる。 In the vehicle, information on changes in the detection state of each sensor, such as the radar sensor 22 and the camera sensor 21, can be obtained as bad weather information, and information on changes in the operating state of the wiper device 33, for example, can be obtained as bad weather information. Since the outputs of these sensors and on-vehicle devices change as the weather worsens, it is possible to grasp the degree of bad weather by combining the acquired bad weather information. In the present embodiment, the cancellation waiting period TA is set based on a combination of bad weather information, so follow-up running control can be canceled at an appropriate timing according to bad weather conditions.
 また、車載装置では、天候悪化に伴い取得される悪天候情報の数が多くなるため、取得される悪天候情報の数によって、悪天候の度合を把握することができる。本実施形態では、悪天候情報の数が多いほど、解除待機期間TAを短い期間に設定するため、追従走行制御を適切なタイミングで解除することができる。 In addition, since the number of bad weather information acquired by the in-vehicle device increases as the weather worsens, it is possible to grasp the degree of bad weather from the number of bad weather information acquired. In the present embodiment, the greater the number of bad weather information, the shorter the cancellation waiting period TA is set, so that follow-up running control can be canceled at an appropriate timing.
 レーダセンサ22及びカメラセンサ21では異なる条件で検知精度の低下が判定される。そのため、悪天候の状況に応じて、いずれのセンサから悪天候情報が取得されるのかの組み合わせが相違する。この点、レーダセンサ22及びカメラセンサ21の少なくともいずれかで検知精度の低下が生じた場合に、その検知精度低下の情報を悪天候情報として取得し、それら各センサから取得された悪天候情報の組み合わせに基づいて、解除待機期間TAを設定するようにしたため、悪天候の状況に応じて、適切なタイミングで追従走行制御を解除することができる。 Decrease in detection accuracy is determined under different conditions for the radar sensor 22 and the camera sensor 21 . Therefore, the combination of which sensor the bad weather information is acquired differs depending on the bad weather conditions. In this regard, when at least one of the radar sensor 22 and the camera sensor 21 has a decrease in detection accuracy, information on the decrease in detection accuracy is acquired as bad weather information, and the combination of bad weather information acquired from each sensor Based on this, the cancellation waiting period TA is set, so that the follow-up running control can be canceled at an appropriate timing according to the bad weather conditions.
 具体的には、レーダセンサ22及びカメラセンサ21の悪天候情報が取得されている場合の解除待機期間TA(第2期間T2)を、レーダセンサ22の悪天候情報のみが取得されている場合の解除待機期間TA(第1期間T1)よりも短い期間に設定するようにした。これにより、悪天候の状況に応じて、レーダセンサ22及びカメラセンサ21の少なくともいずれかで検知精度の低下が生じた場合に、追従走行制御を適切なタイミングで解除することができる。 Specifically, the cancellation waiting period TA (second period T2) when bad weather information is acquired by the radar sensor 22 and the camera sensor 21 is changed to the cancellation waiting period TA (second period T2) when only the bad weather information is acquired by the radar sensor 22. A period shorter than the period TA (first period T1) is set. Accordingly, when the detection accuracy of at least one of the radar sensor 22 and the camera sensor 21 is degraded due to bad weather conditions, the following travel control can be canceled at an appropriate timing.
 また、カメラセンサ21の悪天候情報が取得されている場合において、カメラセンサ21により白線が認識されている場合には、白線が認識されていない場合よりも解除待機期間TA(第2期間T2)を延長するようにした。カメラセンサ21により白線が認識されている場合には、白線が認識されていない場合よりも先行車両を検知できる可能性が高い。これにより、先行車両を検知できる可能性に応じて、追従走行制御の解除タイミングを適切に設定することができる。 Further, when the bad weather information of the camera sensor 21 is acquired and the white line is recognized by the camera sensor 21, the cancellation waiting period TA (second period T2) is set longer than when the white line is not recognized. I made it extend. When the white line is recognized by the camera sensor 21, it is more likely that the preceding vehicle can be detected than when the white line is not recognized. As a result, it is possible to appropriately set the release timing of the follow-running control according to the possibility that the preceding vehicle can be detected.
 例えば降雪時には、レーダセンサ22及びカメラセンサ21において検知精度の低下が生じることが考えられ、その降雪が止んだ直後には、カメラセンサ21の検知精度は元に戻るのに対し、レーダセンサ22についてはセンサ前面の着雪により検知精度が低下したままになることが考えられる。特にレーダセンサ22が車両のフロントグリルに設けられ、カメラセンサ21が車両前面ガラスの内側に設けられている場合にはこうした事態が生じ易いと考えられる。 For example, when it snows, the detection accuracy of the radar sensor 22 and the camera sensor 21 may decrease. It is conceivable that the detection accuracy remains degraded due to snow accumulating on the front surface of the sensor. Such a situation is likely to occur particularly when the radar sensor 22 is provided on the front grill of the vehicle and the camera sensor 21 is provided inside the front glass of the vehicle.
 この点、本実施形態では、レーダセンサ22及びカメラセンサ21の検知精度が低下している状態(第2パターンP2)から、レーダセンサ22の検知精度だけが低下している状態(第1パターンP1)に変化した場合の解除待機期間TA(第3期間T3)を、レーダセンサ22及びカメラセンサ21の検知精度が低下していない状態から、レーダセンサ22の検知精度だけが低下している状態(第1パターンP1)に変化した場合の解除待機期間TA(第1期間T1)よりも短い期間に設定するようにした。これにより、レーダセンサ22の前面に付着した雪が溶けることで検知精度が戻ることを想定しつつ、追従走行制御の解除タイミングを適切に設定することができる。 In this regard, in the present embodiment, the detection accuracy of the radar sensor 22 and the camera sensor 21 is lowered (second pattern P2), while only the detection accuracy of the radar sensor 22 is lowered (first pattern P1). ), the cancellation standby period TA (third period T3) is changed from a state in which the detection accuracy of the radar sensor 22 and the camera sensor 21 has not decreased to a state in which only the detection accuracy of the radar sensor 22 has decreased ( The period is set to be shorter than the release waiting period TA (first period T1) when changing to the first pattern P1). As a result, it is possible to appropriately set the release timing of the following travel control while assuming that the detection accuracy will be restored by melting the snow adhering to the front surface of the radar sensor 22 .
 例えば霧の発生時には、カメラセンサ21において自車両周辺の物体検知数に基づいて検知精度の低下が判定されているが、自車両近傍の区画線は認識できているといった状況があり得る。この状況下では、自車両近傍の白線が認識できていることにより、自車両近傍の白線が認識できていない場合に比べて、追従走行制御を継続することの不都合は生じにくいと考えられる。この点、本実施形態では、カメラセンサ21の悪天候情報が取得されている状況下において、自車両の近傍領域で白線が認識されていれば、白線が認識されていない場合よりも解除待機期間TAを長い期間に設定することとしたため、認識された白線を用いて自車両の走行位置を左右の白線の内側で保持しつつ、解除待機期間TAを適正に設定することが可能となる。 For example, when fog occurs, the camera sensor 21 may determine that the detection accuracy has decreased based on the number of objects detected around the vehicle, but the lane markings near the vehicle can still be recognized. In this situation, it is considered that the continuation of follow-up cruise control is less likely to cause inconvenience than the case where the white line near the own vehicle is not recognized because the white line near the own vehicle is recognized. In this regard, in the present embodiment, under the condition that the bad weather information of the camera sensor 21 is acquired, if the white line is recognized in the vicinity area of the own vehicle, the cancellation waiting period TA is longer than when the white line is not recognized. is set to a long period, it is possible to appropriately set the release standby period TA while maintaining the running position of the own vehicle inside the left and right white lines using the recognized white lines.
 悪天候である場合には時間経過に伴い悪天候の状況が変化することが考えられる。この点を考慮し、本実施形態では、悪天候情報の第1の組み合わせ(第1パターンP1)に応じて解除待機期間TAとして第1待機期間(第1期間T1)が設定され、かつその第1待機期間の時間計測が開始された後に、悪天候情報の第2の組み合わせ(第2パターンP2)に応じて解除待機期間TAとして第2待機期間(第2期間T2)が設定され、かつその第2待機期間の時間計測が開始されるようにした。そして、それぞれの時間計時が開始された場合に、第1待機期間と第2待機期間とのうち一方が先に経過したタイミングで追従走行制御を解除するようにした。これにより、時間経過に伴い変化する悪天候の状況に合わせて複数の解除待機期間TAが設定され、その複数の解除待機期間TAを用いて適切なタイミングで追従走行制御を解除することができる。 If the weather is bad, it is possible that the bad weather situation will change over time. Considering this point, in the present embodiment, a first standby period (first period T1) is set as the cancellation standby period TA according to the first combination (first pattern P1) of the bad weather information, and the first After the time measurement of the standby period is started, the second standby period (second period T2) is set as the cancellation standby period TA according to the second combination (second pattern P2) of the bad weather information, and the second The time measurement of the waiting period is started. Then, when each time measurement is started, the follow-up running control is canceled at the timing when one of the first waiting period and the second waiting period has passed first. As a result, a plurality of cancellation waiting periods TA are set according to bad weather conditions that change with the passage of time, and the follow-up running control can be canceled at an appropriate timing using the plurality of cancellation waiting periods TA.
 (第2実施形態)
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、自車両周辺の天候が悪天候となることが予測される場合に、運転支援制御の解除処理が行われる。
(Second embodiment)
The second embodiment will be described below with reference to the drawings, focusing on differences from the first embodiment. In this embodiment, when it is predicted that the weather around the own vehicle will turn into bad weather, the process of canceling the driving support control is performed.
 図6に、本実施形態の運転支援処理のフローチャートを示す。図6において、先の図2に示した構成と同一の構成については、同一の符号を付している。なお、図6では、便宜上、図2のステップS25~S36までの処理について図示を省略している。 FIG. 6 shows a flowchart of the driving support processing of this embodiment. In FIG. 6, the same reference numerals are assigned to the same components as those shown in FIG. It should be noted that FIG. 6 omits illustration of the processing from steps S25 to S36 of FIG. 2 for convenience.
 ステップS11の処理の後、ステップS50に進む。ステップS50では、自車両が今後走行する予定の予定経路の気象情報を取得する。本実施形態では、走行制御システム100は、図示しない無線通信装置を備えている。無線通信装置は、V2X(vehicle to X)電波による通信と、他の車両との車車間通信と、携帯電話基地局の電波を利用したモバイル回線による通信と、道路交通情報通信システムとの無線通信とのうち少なくとも1つを実行する。気象情報には、予定経路が属する地域について、現時点及び現時点から所定時間内の気温情報、降雨情報及び降雪情報等の悪天候情報が含まれる。ここで、予定経路としては、ナビゲーション装置に設定された現在地から目的地までの走行経路を用いてもよいし、自車両の進行方向前方の経路を用いてもよい。ステップS50の処理が「取得部」に相当する。 After the process of step S11, proceed to step S50. In step S50, the weather information of the planned route on which the vehicle is to travel is obtained. In this embodiment, the cruise control system 100 includes a wireless communication device (not shown). The wireless communication device performs communication using V2X (vehicle to X) radio waves, vehicle-to-vehicle communication with other vehicles, communication using mobile lines using radio waves from mobile phone base stations, and wireless communication with a road traffic information communication system. and at least one of The weather information includes bad weather information such as temperature information, rainfall information, and snowfall information for the area to which the planned route belongs. Here, as the planned route, a travel route from the current location to the destination set in the navigation device may be used, or a route ahead in the traveling direction of the own vehicle may be used. The process of step S50 corresponds to the "acquisition unit".
 ステップS51では、気象情報に基づいて、自車両周辺の天候が今後悪天候となることが予測されるか否かを判定する。本実施形態では、予定経路が属する地域の天候が降雨又は降雪等の悪天候であることを示す気象情報を取得した場合に、自車両周辺の天候が今後悪天候となると予測し、ステップS51において肯定判定する。この場合、ステップS52に進む。一方、ステップS51において否定判定した場合、ステップS12に進む。なお、ステップS51では、現時点での予定経路が属する地域の天候が悪天候でなくても、自車両が当該地域を走行する予定時刻において悪天候となることを示す気象情報を取得した場合に、自車両周辺の天候が今後悪天候となると予測してもよい。 In step S51, based on the weather information, it is determined whether the weather around the vehicle is expected to become bad in the future. In this embodiment, when weather information indicating that the weather in the area to which the scheduled route belongs is bad weather such as rain or snow, it is predicted that the weather around the vehicle will become bad in the future, and a positive determination is made in step S51. do. In this case, the process proceeds to step S52. On the other hand, if a negative determination is made in step S51, the process proceeds to step S12. It should be noted that in step S51, even if the weather in the area to which the scheduled route currently belongs is not bad, if weather information indicating that the weather will be bad at the time when the vehicle travels in the area is acquired, the vehicle will It may be predicted that the surrounding weather will become bad weather in the future.
 ステップS52では、ドライバに対して、自車両周辺の天候が今後悪天候となることが予測される旨、及び追従走行制御の解除又は継続に関して所定時間内での応答を促す旨を通知する。本実施形態では、走行制御システム100は、図示しない情報伝達装置を備えている。情報伝達装置は、例えば車室内に設置されたスピーカやマイク、ディスプレイ、カメラ等のヒューマンマシンインターフェース(HMI)である。例えば、ドライバに対しては、スピーカの音声案内による聴覚的な通知、又はディスプレイの警告表示による視覚的な通知を行うとよい。 In step S52, the driver is notified that the weather around the vehicle is expected to become bad in the future, and that the driver is urged to respond within a predetermined time regarding the cancellation or continuation of follow-up running control. In this embodiment, the cruise control system 100 includes an information transmission device (not shown). The information transmission device is, for example, a human machine interface (HMI) such as a speaker, a microphone, a display, a camera, etc., installed inside the vehicle. For example, the driver may be notified audibly by voice guidance from a speaker or visually by warning display on a display.
 ステップS53では、ドライバからの応答があるか否かを判定する。本実施形態では、ドライバからの応答として、追従走行制御の解除を許可する旨の応答、又は追従走行制御を継続する旨の応答がなされることを想定している。例えば、ドライバからの応答内容は、ドライバが発する音声をマイクにより認識してもよいし、ドライバによるディスプレイのタッチ操作を認識してもよいし、ドライバのジェスチャーをカメラにより認識してもよい。ステップS53において肯定判定した場合、ステップS54に進む。一方、ステップS53において否定判定した場合、ステップS55に進む。 In step S53, it is determined whether or not there is a response from the driver. In this embodiment, as a response from the driver, it is assumed that a response to the effect that the cancellation of the following cruise control is permitted or a response to the effect that the following cruise control is continued is made. For example, the content of the response from the driver may be recognized by a microphone, by recognizing the driver's voice, by recognizing the driver's touch operation on the display, or by recognizing the driver's gesture by the camera. If an affirmative determination is made in step S53, the process proceeds to step S54. On the other hand, if a negative determination is made in step S53, the process proceeds to step S55.
 ステップS54では、ドライバからの応答が追従走行制御の解除を許可する旨であるか否かを判定する。ステップS54において肯定判定した場合、ステップS38に進み、追従走行制御を解除する。一方、ステップS54において否定判定した場合、ステップS12に進む。 In step S54, it is determined whether or not the response from the driver permits cancellation of the follow-up running control. If an affirmative determination is made in step S54, the process proceeds to step S38 to cancel the follow-up running control. On the other hand, if a negative determination is made in step S54, the process proceeds to step S12.
 ステップS55では、ドライバへの通知を行ってから、所定時間が経過したか否かを判定する。所定時間は、ドライバに対して追従走行制御の解除又は継続の意思確認するために設定される時間である。本実施形態では、ステップS55において否定判定した場合、ステップS53に戻る。一方、ステップS55において肯定判定した場合、ステップS12に進む。つまり、ドライバへの通知を行ってから所定時間が経過しても、ドライバから応答がない場合、追従走行制御を継続する。なお、本実施形態において、ステップS38、ステップS51~ステップS55が「解除部」に相当する。 In step S55, it is determined whether or not a predetermined period of time has passed since the driver was notified. The predetermined time is a time set for confirming the driver's intention to cancel or continue the follow-up cruise control. In this embodiment, when a negative determination is made in step S55, the process returns to step S53. On the other hand, when an affirmative determination is made in step S55, the process proceeds to step S12. That is, if there is no response from the driver even after a predetermined period of time has elapsed since the notification was made to the driver, follow-up running control is continued. Note that in the present embodiment, step S38 and steps S51 to S55 correspond to the "release unit".
 なお、ステップS55において肯定判定した場合、ステップS12に進むことに代えて、ステップS38に進むこととしてもよい。つまり、ドライバへの通知を行ってから所定時間が経過しても、ドライバから応答がない場合、追従走行制御を解除してもよい。また、ステップS52~S53の処理を行わなくてもよい。つまり、ステップS51において肯定判定された場合、ドライバに対して追従走行制御の解除又は継続の意思確認を行わずに、追従走行制御を解除してもよい。 Note that if an affirmative determination is made in step S55, instead of proceeding to step S12, the process may proceed to step S38. In other words, if there is no response from the driver even after a predetermined period of time has elapsed since the notification was made to the driver, the follow-up running control may be canceled. Also, the processing of steps S52 and S53 may not be performed. In other words, if the determination in step S51 is affirmative, the follow-running control may be canceled without confirming the driver's intention to cancel or continue the follow-running control.
 本実施形態によれば、気象情報に基づいて自車両周辺の天候が今後悪天候となることが予測された場合に、追従走行制御が解除される。これにより、自車両周辺の天候が悪天候となる状況において、追従走行制御が実施されている状態が生じることを抑制できる。その結果、追従走行制御の解除タイミングに起因した不都合が生じることを抑制することができる。 According to this embodiment, when the weather around the vehicle is predicted to become bad in the future based on weather information, follow-up travel control is canceled. As a result, when the weather around the host vehicle is bad, it is possible to prevent the follow-up cruise control from occurring. As a result, it is possible to suppress the inconvenience caused by the release timing of the follow-up running control.
 自車両周辺の天候が今後悪天候となることがドライバに通知され、ドライバに対して追従走行制御の解除又は継続の意思確認が行われる。これにより、自車両周辺の天候が悪天候になる前において、ドライバの意思を反映させた車両の走行を行うことができる。 The driver is notified that the weather around the vehicle will be bad in the future, and the driver is asked to cancel or continue the follow-up control. As a result, before the weather around the vehicle turns bad, the vehicle can travel in a way that reflects the driver's intentions.
 (その他の実施形態)
 上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
Each of the above embodiments may be modified and implemented as follows.
 ・追従走行制御における先行車両の認識は、画像情報とレーダ情報とを融合(フュージョン)して行われるものに限らない。レーダ情報のみを用いて先行車両を認識してもよい。 · Recognition of the preceding vehicle in follow-up cruise control is not limited to fusion of image information and radar information. A preceding vehicle may be recognized using only radar information.
 ・追従走行制御における追従走行状態において、追従走行の対象となる他車両は、自車両が走行する自車線において自車両の前方に位置する先行車両に限られない。例えば自車線の隣である隣車線において自車両の前方に位置する隣先行車両であってもよい。なお、隣先行車両と先行車両とが「自車両の前方に位置する前方車両」に相当する。 · In the follow-up running state in the follow-up run control, other vehicles targeted for follow-up travel are not limited to the preceding vehicle positioned in front of the own vehicle in the own lane in which the own vehicle travels. For example, it may be an adjacent preceding vehicle located in front of the own vehicle in the next lane adjacent to the own lane. It should be noted that the adjacent preceding vehicle and the preceding vehicle correspond to "the preceding vehicle positioned in front of the own vehicle".
 ・追従走行制御において、自車両が先行車両に追従する追従走行状態であるか、自車両が先行車両に追従していない単独走行状態であるかに応じて、解除待機期間TAとして異なる時間を設定するようにしてもよい。この場合、ECU10は、追従走行制御中において、追従走行状態であるか単独走行状態であるかを判定し、追従走行状態であれば、単独走行状態である場合に比べて解除待機期間TAを長い時間とする。 ・Different times are set as the release standby period TA depending on whether the vehicle is in a follow-up driving state in which the vehicle follows the preceding vehicle or in an independent driving state in which the vehicle is not following the preceding vehicle in the follow-up driving control. You may make it In this case, the ECU 10 determines whether the follow-up running state or the single-running state is set during the following-running control. Time.
 ・追従走行制御として、レーンキープアシスト機能を有している構成としたが、これに限られない。追従走行制御として、レーンキープアシスト機能を有していない構成としてもよい。 ・Although the configuration includes a lane keep assist function as follow-up running control, it is not limited to this. The follow-up running control may be configured without the lane keep assist function.
 ・上記各実施形態では、走行支援制御として追従走行制御が実施されている状況下において、物体検知装置の精度低下と悪天候判定とに基づいて追従走行制御を解除する構成としたが、これを変更してもよい。例えば、ドライバの操作によらずECU10により車両が自動運転制御されている状況下、換言すれば自動運転モードでの走行支援制御が実施されている状況下において、物体検知装置の精度低下と悪天候判定とに基づいて自動運転を解除する構成としてもよい。自動運転制御は、例えば、ドライバによる切り替え操作により手動運転モードから自動運転モードに切り替えられた状態で実施され、目的地に対して設定された経路に沿って車両を自動走行させるべく行われる。ECU10は、自動運転制御の実施状態下において、第1実施形態と同様に、物体検知装置の精度低下と悪天候判定とに基づいて解除待機期間を設定するとともに、その解除待機期間が経過したと判定された場合に自動運転制御を解除する(すなわち手動運転モードに移行させる)。また、第2実施形態と同様に、気象情報に基づいて自車両周辺の天候が今後悪天候となることが予測された場合に、自動運転制御を解除することも可能である。 ・In each of the above-described embodiments, under the condition that follow-up travel control is performed as travel support control, follow-up travel control is canceled based on deterioration in accuracy of the object detection device and bad weather determination, but this has been changed. You may For example, under a situation where the vehicle is automatically controlled by the ECU 10 regardless of the driver's operation, in other words, under a situation where driving support control is being performed in the automatic driving mode, the accuracy of the object detection device decreases and bad weather determination It is good also as a structure which cancel|releases automatic operation based on. Automatic driving control is performed, for example, in a state where the manual driving mode is switched to the automatic driving mode by a switching operation by the driver, and is performed to automatically drive the vehicle along the route set to the destination. The ECU 10 sets a cancellation standby period based on the deterioration of the accuracy of the object detection device and bad weather determination, and determines that the cancellation standby period has passed, as in the first embodiment, under the state of automatic operation control. When the automatic operation control is canceled (that is, shift to manual operation mode). Moreover, similarly to the second embodiment, when it is predicted that the weather around the vehicle will become bad in the future based on the weather information, it is possible to cancel the automatic driving control.
 ・運転支援処理において、レーダセンサ22の検知精度の低下に基づいて、第1タイマM1の計時を開始する例を示したが、これに限られない。カメラセンサ21の検知精度の低下に基づいて、第1タイマM1の計時を開始するようにしてもよい。 · In the driving support process, an example has been shown in which the first timer M1 starts timing based on a decrease in the detection accuracy of the radar sensor 22, but the present invention is not limited to this. Timing of the first timer M1 may be started based on the deterioration of the detection accuracy of the camera sensor 21 .
 ・悪天候情報により定まるパターンP1~P5として、レーダセンサ22の悪天候情報が取得されている場合に成立するパターンのみを示したが、これに限られない。レーダセンサ22の悪天候情報が取得されていない場合に成立するパターンが含まれていてもよい。 · As the patterns P1 to P5 determined by the bad weather information, only the patterns established when the bad weather information of the radar sensor 22 is acquired are shown, but the patterns are not limited to this. A pattern that is established when bad weather information from the radar sensor 22 is not acquired may be included.
 ・パターンP1~P5に対して、それぞれ対応するタイマM1~M5を設け、タイマM1~M5のうち、最も早く解除待機期間TAが経過したタイミングで追従走行制御を解除する例を示したが、これに限られない。パターンP1~P5に対して1つのタイマを設け、成立するパターンP1~P5により、その1つのタイマの解除待機期間TAを変更するようにしてもよい。 The following example is shown in which timers M1 to M5 corresponding to patterns P1 to P5 are provided, respectively, and the follow-up running control is canceled at the timing when the cancellation waiting period TA elapses earliest among the timers M1 to M5. is not limited to One timer may be provided for the patterns P1 to P5, and the cancellation waiting period TA of the one timer may be changed according to the established patterns P1 to P5.
 ・ワイパ装置33の悪天候情報として、ワイパ装置33が動作していることとともに、ワイパ装置33の動作速度を取得してもよい。そして、ワイパ装置33の動作速度が速い場合には、遅い場合に比べて解除待機期間TAを短い期間に設定するようにしてもよい。 - As the bad weather information for the wiper device 33, the operating speed of the wiper device 33 may be acquired along with the fact that the wiper device 33 is operating. When the wiper device 33 operates at a high speed, the release standby period TA may be set to a shorter period than when the wiper device 33 operates at a low speed.
 ・ワイパ装置33が雨滴センサにより動作する場合には、ワイパ装置33が動作していることとともに、又はワイパ装置33が動作していることに加えて、雨滴センサの検知状態を悪天候情報として取得してもよい。 ・When the wiper device 33 is operated by the raindrop sensor, the detection state of the raindrop sensor is acquired as bad weather information in addition to the operation of the wiper device 33 or in addition to the operation of the wiper device 33. may
 ・図2のステップS24の悪天候情報取得処理において、悪天候情報として、現時点の自車両周辺の気温情報、降雨情報及び降雪情報等の気象情報を取得してもよい。この場合、第2実施形態と同様に、無線通信装置の通信により気象情報を取得すればよい。例えば、自車両周辺の気温が零下であると、レーダセンサ22の前面が凍ってしまい、レーダセンサ22の検知精度が低下することがある。自車両周辺の気象情報を取得することで、追従走行制御を適切なタイミングで解除することができる。 · In the bad weather information acquisition process in step S24 of FIG. 2, weather information such as current temperature information, rainfall information, and snowfall information around the vehicle may be acquired as the bad weather information. In this case, as in the second embodiment, weather information may be acquired through communication of the wireless communication device. For example, if the air temperature around the vehicle is below zero, the front surface of the radar sensor 22 may freeze and the detection accuracy of the radar sensor 22 may decrease. By acquiring weather information around the own vehicle, follow-up cruise control can be canceled at an appropriate timing.
 ・悪天候情報に加えて、自車両の走行速度により解除待機期間TAを設定するようにしてもよい。自車両周辺の天候が悪天候である場合には、自車両の走行速度が速いほど、レーダセンサ22及びカメラセンサ21の検知精度が低下する。そのため、自車両の走行速度が速いほど、解除待機期間TAを短い期間に設定することで、追従走行制御を適切なタイミングで解除することができる。 · In addition to the bad weather information, the cancellation waiting period TA may be set according to the traveling speed of the own vehicle. When the weather around the vehicle is bad, the detection accuracy of the radar sensor 22 and the camera sensor 21 decreases as the vehicle travels faster. Therefore, by setting the cancellation standby period TA to a shorter period as the traveling speed of the own vehicle increases, the follow-up traveling control can be canceled at an appropriate timing.
 ・画像センサは、単眼カメラに限られず、ステレオカメラであってもよい。測距センサは、レーダセンサ22に限られず、レーザセンサであってもよい。 · The image sensor is not limited to a monocular camera, and may be a stereo camera. The ranging sensor is not limited to the radar sensor 22 and may be a laser sensor.
 ・本開示に記載の車両制御装置及びその手法は、コンピュータ実行用プログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の車両制御装置及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の車両制御装置及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータ実行用プログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 - The vehicle control system and techniques described in this disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer executable program. It may be implemented by a computer. Alternatively, the vehicle controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the vehicle control apparatus and techniques described in this disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. may be implemented by one or more dedicated computers configured by The computer-executable program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
 以下、上述した各実施形態から抽出される特徴的な構成を記載する。
[構成1]
 物体を検知する物体検知装置(21,22)を備える車両に適用され、前記物体検知装置による検知情報に基づいて、自車両の走行を支援する走行支援制御を実施する一方で、前記走行支援制御の実施中に前記物体検知装置の検知精度が低下した場合に、前記走行支援制御を解除する車両制御装置(10)であって、
 前記物体検知装置の検知精度が低下していることを判定する判定部と、
 自車両周辺の天候が悪天候であることを示す悪天候情報を取得する取得部と、
 前記悪天候情報に基づいて、前記検知精度の低下が判定されてから走行支援制御が解除されるまでの解除待機期間を設定する設定部と、
を備える車両制御装置。
[構成2]
 前記設定部は、前記悪天候情報に基づいて悪天候の度合が大きいとされる場合に、悪天候の度合が小さいとされる場合に比べて前記解除待機期間を短い期間に設定する、構成1に記載の車両制御装置。
[構成3]
 前記取得部は、天候悪化に伴い出力変化が生じる複数の車載装置(21,22,33)での出力変化の情報を前記悪天候情報として取得するものであり、
 前記設定部は、前記車載装置ごとに取得される前記悪天候情報の組み合わせに基づいて、前記解除待機期間を設定する、構成1又は2に記載の車両制御装置。
[構成4]
 前記車両は、前記物体検知装置として、送信波及び受信波により物体までの距離を測定する測距センサ(22)と、自車両周辺の物体を撮像する画像センサ(21)とを有し、それら測距センサ及び画像センサを前記車載装置としており、
 前記取得部は、前記悪天候情報として、前記測距センサの検知精度が低下していることを示す第1情報と、前記画像センサの検知精度が低下していることを示す第2情報とを取得するものであり、
 前記設定部は、前記第1情報及び前記第2情報の組み合わせに基づいて、前記解除待機期間を設定する、構成3に記載の車両制御装置。
[構成5]
 前記設定部は、前記第1情報及び前記第2情報が取得されている場合の前記解除待機期間を、前記第1情報のみが取得されている場合の前記解除待機期間よりも短い期間に設定する、構成4に記載の車両制御装置。
[構成6]
 前記設定部は、前記第1情報及び前記第2情報が取得されている状態から、前記第1情報のみが取得されている状態に変化した場合の前記解除待機期間を、前記第1情報及び前記第2情報が取得されていない状態から、前記第1情報のみが取得されている状態に変化した場合の前記解除待機期間よりも短い期間に設定する、構成5に記載の車両制御装置。
[構成7]
 前記取得部は、前記判定部により前記画像センサの検知精度の低下が生じていると判定された場合に、前記第2情報を前記悪天候情報として取得し、
 前記設定部は、前記第2情報が取得されている状況下において、前記自車両の近傍領域で、前記画像センサの画像により車線の区画線が認識されている場合に、前記区画線が認識されていない場合よりも前記解除待機期間を長い期間に設定する、構成4~6のいずれか1つに記載の車両制御装置。
[構成8]
 前記走行支援制御として、前記自車両が走行する自車線の左右の区画線を前記画像センサの画像により認識し、かつ前記自車両の走行位置を前記左右の区画線の内側で保持する機能を有しており、
 前記判定部は、前記測距センサによる自車両周辺の物体検知結果に基づいて、前記画像センサの検知精度の低下が生じていることを判定し、
 前記取得部は、前記判定部により前記画像センサの検知精度の低下が生じていると判定された場合に、前記第2情報を前記悪天候情報として取得し、
 前記設定部は、前記第2情報が取得されている状況下において、前記自車両の近傍領域で前記区画線が前記画像センサの画像により認識されていれば、前記区画線が認識されていない場合よりも前記解除待機期間を長い期間に設定する、構成4~6のいずれか1つに記載の車両制御装置。
[構成9]
 前記取得部により取得された前記悪天候情報の第1の組み合わせに応じて前記解除待機期間として第1待機期間が設定され、かつその第1待機期間の時間計測が開始された後に、前記悪天候情報の第2の組み合わせに応じて前記解除待機期間として第2待機期間が設定され、かつその解除待機期間の時間計測が開始された場合において、前記第1待機期間と前記第2待機期間とのうち一方が先に経過したタイミングで前記走行支援制御を解除する、構成3~8のいずれか1つに記載の車両制御装置。
[構成10]
 前記悪天候情報には、前記自車両が今後通行する通行経路の天候が悪天候であることを示す情報が含まれており、
 前記悪天候情報に基づいて自車両周辺の天候が悪天候となることが予測される場合に、前記走行支援制御を解除する解除部を備える、構成1~9のいずれか1つに記載の車両制御装置。
Characteristic configurations extracted from each of the above-described embodiments will be described below.
[Configuration 1]
Applied to a vehicle equipped with an object detection device (21, 22) for detecting an object, based on detection information by the object detection device, while performing driving support control for supporting driving of the own vehicle, the driving support control A vehicle control device (10) that cancels the driving support control when the detection accuracy of the object detection device decreases during the implementation of
a determination unit that determines that the detection accuracy of the object detection device is degraded;
an acquisition unit that acquires bad weather information indicating that the weather around the vehicle is bad;
a setting unit that sets a cancellation standby period from when the deterioration of the detection accuracy is determined to when the driving support control is canceled based on the bad weather information;
A vehicle control device comprising:
[Configuration 2]
The setting unit according to configuration 1, wherein when the degree of bad weather is determined to be high based on the bad weather information, the setting unit sets the cancellation standby period to a shorter period than when the degree of bad weather is determined to be low. Vehicle controller.
[Configuration 3]
The acquisition unit acquires, as the bad weather information, information on output changes in a plurality of in-vehicle devices (21, 22, 33) whose outputs change as the weather deteriorates,
The vehicle control device according to configuration 1 or 2, wherein the setting unit sets the cancellation standby period based on a combination of the bad weather information acquired for each of the in-vehicle devices.
[Configuration 4]
The vehicle has, as the object detection device, a ranging sensor (22) that measures the distance to an object using transmitted waves and received waves, and an image sensor (21) that captures images of objects around the vehicle. A ranging sensor and an image sensor are used as the in-vehicle device,
The acquisition unit acquires, as the bad weather information, first information indicating that the detection accuracy of the range sensor is declining and second information indicating that the detection accuracy of the image sensor is declining. and
The vehicle control device according to configuration 3, wherein the setting unit sets the cancellation waiting period based on a combination of the first information and the second information.
[Configuration 5]
The setting unit sets the cancellation standby period when the first information and the second information are acquired to a period shorter than the cancellation standby period when only the first information is acquired. , the vehicle control device according to the configuration 4.
[Configuration 6]
The setting unit determines the cancellation waiting period when the state in which the first information and the second information are acquired changes to the state in which only the first information is acquired. The vehicle control device according to configuration 5, wherein the period is set to be shorter than the cancellation waiting period when the state in which the second information is not acquired is changed to the state in which only the first information is acquired.
[Configuration 7]
the acquisition unit acquires the second information as the bad weather information when the determination unit determines that the detection accuracy of the image sensor is degraded;
The setting unit determines whether the lane marking is recognized by the image of the image sensor in the vicinity area of the vehicle under the condition that the second information is acquired. 7. The vehicle control device according to any one of configurations 4 to 6, wherein the release standby period is set longer than when the vehicle is not in use.
[Configuration 8]
The driving support control has a function of recognizing the left and right lane markings of the lane in which the vehicle is traveling from the image of the image sensor, and holding the running position of the own vehicle inside the left and right lane markings. and
The determination unit determines that the detection accuracy of the image sensor is degraded based on the result of object detection in the vicinity of the vehicle by the range sensor,
the acquisition unit acquires the second information as the bad weather information when the determination unit determines that the detection accuracy of the image sensor is degraded;
If the lane marking is recognized by the image of the image sensor in the vicinity area of the vehicle under the condition that the second information is acquired, the setting unit determines that the lane marking is not recognized. 7. The vehicle control device according to any one of configurations 4 to 6, wherein the cancellation waiting period is set to a period longer than the above.
[Configuration 9]
A first standby period is set as the cancellation standby period according to a first combination of the bad weather information acquired by the acquisition unit, and after the time measurement of the first standby period is started, the bad weather information When a second waiting period is set as the cancellation waiting period according to the second combination, and time measurement of the cancellation waiting period is started, one of the first waiting period and the second waiting period 9. The vehicle control device according to any one of configurations 3 to 8, wherein the driving support control is canceled at the timing when the has passed first.
[Configuration 10]
The bad weather information includes information indicating that the weather on the route to be traveled by the own vehicle is bad weather,
The vehicle control device according to any one of configurations 1 to 9, further comprising a cancellation unit that cancels the driving support control when the weather around the vehicle is predicted to be bad based on the bad weather information. .

Claims (11)

  1.  物体を検知する物体検知装置(21,22)を備える車両に適用され、前記物体検知装置による検知情報に基づいて、自車両の走行を支援する走行支援制御を実施する一方で、前記走行支援制御の実施中に前記物体検知装置の検知精度が低下した場合に、前記走行支援制御を解除する車両制御装置(10)であって、
     前記物体検知装置の検知精度が低下していることを判定する判定部と、
     自車両周辺の天候が悪天候であることを示す悪天候情報を取得する取得部と、
     前記悪天候情報に基づいて、前記検知精度の低下が判定されてから前記走行支援制御が解除されるまでの解除待機期間を設定する設定部と、
    を備える車両制御装置。
    Applied to a vehicle equipped with an object detection device (21, 22) for detecting an object, based on detection information by the object detection device, while performing driving support control for supporting driving of the own vehicle, the driving support control A vehicle control device (10) that cancels the driving support control when the detection accuracy of the object detection device decreases during the implementation of
    a determination unit that determines that the detection accuracy of the object detection device is degraded;
    an acquisition unit that acquires bad weather information indicating that the weather around the vehicle is bad;
    a setting unit that sets a cancellation standby period from when the deterioration of the detection accuracy is determined to when the driving support control is canceled based on the bad weather information;
    A vehicle control device comprising:
  2.  前記設定部は、前記悪天候情報に基づいて悪天候の度合が大きいとされる場合に、悪天候の度合が小さいとされる場合に比べて前記解除待機期間を短い期間に設定する、請求項1に記載の車両制御装置。 2. The setting unit according to claim 1, wherein when the degree of bad weather is determined to be high based on the bad weather information, the setting unit sets the cancellation standby period to a shorter period than when the degree of bad weather is determined to be low. vehicle controller.
  3.  前記取得部は、天候悪化に伴い出力変化が生じる複数の車載装置(21,22,33)での出力変化の情報を前記悪天候情報として取得するものであり、
     前記設定部は、前記車載装置ごとに取得される前記悪天候情報の組み合わせに基づいて、前記解除待機期間を設定する、請求項1に記載の車両制御装置。
    The acquisition unit acquires, as the bad weather information, information on output changes in a plurality of in-vehicle devices (21, 22, 33) whose outputs change as the weather deteriorates,
    The vehicle control device according to claim 1, wherein said setting unit sets said cancellation standby period based on a combination of said bad weather information acquired for each said in-vehicle device.
  4.  前記車両は、前記物体検知装置として、送信波及び受信波により物体までの距離を測定する測距センサ(22)と、自車両周辺の物体を撮像する画像センサ(21)とを有し、それら測距センサ及び画像センサを前記車載装置としており、
     前記取得部は、前記悪天候情報として、前記測距センサの検知精度が低下していることを示す第1情報と、前記画像センサの検知精度が低下していることを示す第2情報とを取得するものであり、
     前記設定部は、前記第1情報及び前記第2情報の組み合わせに基づいて、前記解除待機期間を設定する、請求項3に記載の車両制御装置。
    The vehicle has, as the object detection device, a ranging sensor (22) that measures the distance to an object using transmitted waves and received waves, and an image sensor (21) that captures images of objects around the vehicle. A ranging sensor and an image sensor are used as the in-vehicle device,
    The acquisition unit acquires, as the bad weather information, first information indicating that the detection accuracy of the range sensor is declining and second information indicating that the detection accuracy of the image sensor is declining. and
    4. The vehicle control device according to claim 3, wherein said setting unit sets said cancellation standby period based on a combination of said first information and said second information.
  5.  前記設定部は、前記第1情報及び前記第2情報が取得されている場合の前記解除待機期間を、前記第1情報のみが取得されている場合の前記解除待機期間よりも短い期間に設定する、請求項4に記載の車両制御装置。 The setting unit sets the cancellation standby period when the first information and the second information are acquired to a period shorter than the cancellation standby period when only the first information is acquired. 5. The vehicle control device according to claim 4.
  6.  前記設定部は、前記第1情報及び前記第2情報が取得されている状態から、前記第1情報のみが取得されている状態に変化した場合の前記解除待機期間を、前記第1情報及び前記第2情報が取得されていない状態から、前記第1情報のみが取得されている状態に変化した場合の前記解除待機期間よりも短い期間に設定する、請求項5に記載の車両制御装置。 The setting unit determines the cancellation waiting period when the state in which the first information and the second information are acquired changes to the state in which only the first information is acquired. 6. The vehicle control device according to claim 5, wherein the waiting period is set to a period shorter than the cancellation standby period when the second information is not acquired and only the first information is acquired.
  7.  前記取得部は、前記判定部により前記画像センサの検知精度の低下が生じていると判定された場合に、前記第2情報を前記悪天候情報として取得し、
     前記設定部は、前記第2情報が取得されている状況下において、前記自車両の近傍領域で、前記画像センサの画像により車線の区画線が認識されている場合に、前記区画線が認識されていない場合よりも前記解除待機期間を長い期間に設定する、請求項4に記載の車両制御装置。
    the acquisition unit acquires the second information as the bad weather information when the determination unit determines that the detection accuracy of the image sensor is degraded;
    The setting unit determines whether the lane marking is recognized by the image of the image sensor in the vicinity area of the vehicle under the condition that the second information is acquired. 5. The vehicle control device according to claim 4, wherein the release standby period is set longer than when the vehicle is not in use.
  8.  前記走行支援制御として、前記自車両が走行する自車線の左右の区画線を前記画像センサの画像により認識し、かつ前記自車両の走行位置を前記左右の区画線の内側で保持する機能を有しており、
     前記判定部は、前記測距センサによる自車両周辺の物体検知結果に基づいて、前記画像センサの検知精度の低下が生じていることを判定し、
     前記取得部は、前記判定部により前記画像センサの検知精度の低下が生じていると判定された場合に、前記第2情報を前記悪天候情報として取得し、
     前記設定部は、前記第2情報が取得されている状況下において、前記自車両の近傍領域で前記区画線が前記画像センサの画像により認識されていれば、前記区画線が認識されていない場合よりも前記解除待機期間を長い期間に設定する、請求項4に記載の車両制御装置。
    The driving support control has a function of recognizing the left and right lane markings of the lane in which the vehicle is traveling from the image of the image sensor, and holding the running position of the own vehicle inside the left and right lane markings. and
    The determination unit determines that the detection accuracy of the image sensor is degraded based on the result of object detection in the vicinity of the vehicle by the range sensor,
    the acquisition unit acquires the second information as the bad weather information when the determination unit determines that the detection accuracy of the image sensor is degraded;
    If the lane marking is recognized by the image of the image sensor in the vicinity area of the vehicle under the condition that the second information is acquired, the setting unit determines that the lane marking is not recognized. 5. The vehicle control device according to claim 4, wherein the release standby period is set to a period longer than the period.
  9.  前記取得部により取得された前記悪天候情報の第1の組み合わせに応じて前記解除待機期間として第1待機期間が設定され、かつその第1待機期間の時間計測が開始された後に、前記悪天候情報の第2の組み合わせに応じて前記解除待機期間として第2待機期間が設定され、かつその解除待機期間の時間計測が開始された場合において、前記第1待機期間と前記第2待機期間とのうち一方が先に経過したタイミングで前記走行支援制御を解除する、請求項3に記載の車両制御装置。 A first standby period is set as the cancellation standby period according to a first combination of the bad weather information acquired by the acquisition unit, and after the time measurement of the first standby period is started, the bad weather information When a second waiting period is set as the cancellation waiting period according to the second combination, and time measurement of the cancellation waiting period is started, one of the first waiting period and the second waiting period 4. The vehicle control device according to claim 3, wherein the driving support control is canceled at a timing after the elapse of .
  10.  前記悪天候情報には、前記自車両が今後走行する予定の予定経路の天候が悪天候であることを示す情報が含まれており、
     前記悪天候情報に基づいて自車両周辺の天候が今後悪天候となることを予測した場合に、前記走行支援制御を解除する解除部を備える、請求項1~9のいずれか1項に記載の車両制御装置。
    The bad weather information includes information indicating that the weather on the scheduled route on which the vehicle is to travel is bad weather,
    10. The vehicle control according to any one of claims 1 to 9, further comprising a canceling unit that cancels the driving support control when it is predicted that the weather around the vehicle will become bad in the future based on the bad weather information. Device.
  11.  物体を検知する物体検知装置(21,22)を備える車両に適用され、前記物体検知装置による検知情報に基づいて、自車両の走行を支援する走行支援制御を実施する一方で、前記走行支援制御の実施中に前記物体検知装置の検知精度が低下した場合に、前記走行支援制御を解除するコンピュータ実行用のプログラムであって、
     前記物体検知装置の検知精度が低下していることを判定する判定ステップと、
     自車両周辺の天候が悪天候であることを示す悪天候情報を取得する取得ステップと、
     前記悪天候情報に基づいて、前記検知精度の低下が判定されてから前記走行支援制御が解除されるまでの解除待機期間を設定する設定ステップと、
    を含むプログラム。
    Applied to a vehicle equipped with an object detection device (21, 22) for detecting an object, based on detection information by the object detection device, while performing driving support control for supporting driving of the own vehicle, the driving support control A computer-executable program for canceling the driving support control when the detection accuracy of the object detection device decreases during the implementation of
    a determination step of determining that the detection accuracy of the object detection device is degraded;
    an acquisition step of acquiring bad weather information indicating that the weather around the vehicle is bad;
    a setting step of setting a cancellation waiting period from when the deterioration of the detection accuracy is determined to when the driving support control is canceled based on the bad weather information;
    A program that contains .
PCT/JP2022/035002 2021-09-30 2022-09-20 Vehicle control device and program WO2023054067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551348A JPWO2023054067A1 (en) 2021-09-30 2022-09-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162058 2021-09-30
JP2021-162058 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054067A1 true WO2023054067A1 (en) 2023-04-06

Family

ID=85782555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035002 WO2023054067A1 (en) 2021-09-30 2022-09-20 Vehicle control device and program

Country Status (2)

Country Link
JP (1) JPWO2023054067A1 (en)
WO (1) WO2023054067A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069443A (en) * 2004-09-03 2006-03-16 Fuji Heavy Ind Ltd Operation assisting device for vehicle
JP2015088047A (en) * 2013-10-31 2015-05-07 富士重工業株式会社 Driving support device
JP2019093998A (en) * 2017-11-27 2019-06-20 本田技研工業株式会社 Vehicle control device, vehicle control method and program
JP2019119266A (en) * 2017-12-28 2019-07-22 本田技研工業株式会社 Vehicle control system, vehicle control method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069443A (en) * 2004-09-03 2006-03-16 Fuji Heavy Ind Ltd Operation assisting device for vehicle
JP2015088047A (en) * 2013-10-31 2015-05-07 富士重工業株式会社 Driving support device
JP2019093998A (en) * 2017-11-27 2019-06-20 本田技研工業株式会社 Vehicle control device, vehicle control method and program
JP2019119266A (en) * 2017-12-28 2019-07-22 本田技研工業株式会社 Vehicle control system, vehicle control method and program

Also Published As

Publication number Publication date
JPWO2023054067A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US11926320B2 (en) Vehicle travel control method and vehicle travel control device
US10782683B2 (en) Vehicle control device
CN109987099B (en) Vehicle control system, vehicle control method, and storage medium
JP6252304B2 (en) Vehicle recognition notification device, vehicle recognition notification system
US11447136B2 (en) Traveling control method and traveling control device for vehicle
US20170349212A1 (en) Driving assistance device
CN109476308B (en) Travel control method and travel control device
US11518414B2 (en) Traveling control method and traveling control device for vehicle
US11505194B2 (en) Vehicle travel control method and travel control device
JP2004206275A (en) Automatic drive control system
US11370433B1 (en) Vehicle travel control method and vehicle travel control apparatus
JP2017128277A (en) Travel control device
JP2018136700A (en) Vehicle control device
US20210107482A1 (en) Vehicle control apparatus
JP2008296783A (en) Vehicle driving support system, driving support device, vehicle and vehicle driving support method
JP4985110B2 (en) Vehicle driving support system, driving support device, vehicle, and vehicle driving support method
JP2009126433A (en) Vehicle controller
US11535249B2 (en) Vehicle action determining method and vehicle action determining device
US20220212717A1 (en) Vehicle Travel Control Method and Vehicle Travel Control Apparatus
US20210370948A1 (en) Vehicle control method, vehicle control program, and vehicle control system
WO2023054067A1 (en) Vehicle control device and program
JP2007240446A (en) Range finder for vehicle
JP4702171B2 (en) Vehicle control device
JP2019144758A (en) Automatic driving support device, automatic driving support system, automatic driving support method and program
JP7303521B2 (en) vehicle controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551348

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE