WO2023053948A1 - Metal-clad laminated plate - Google Patents

Metal-clad laminated plate Download PDF

Info

Publication number
WO2023053948A1
WO2023053948A1 PCT/JP2022/034249 JP2022034249W WO2023053948A1 WO 2023053948 A1 WO2023053948 A1 WO 2023053948A1 JP 2022034249 W JP2022034249 W JP 2022034249W WO 2023053948 A1 WO2023053948 A1 WO 2023053948A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal
clad laminate
coating film
coating
Prior art date
Application number
PCT/JP2022/034249
Other languages
French (fr)
Japanese (ja)
Inventor
一義 吉田
航 片桐
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Publication of WO2023053948A1 publication Critical patent/WO2023053948A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a metal-clad laminate.
  • Metal-clad laminates e.g., copper-clad laminates (CCL)
  • CCL copper-clad laminates
  • insulating resin which is the main material of a circuit board
  • the surface of the metal film which is the transmission path of the electrical signals, is smooth.
  • adhesion between the metal film and other layers becomes a problem. Therefore, it is desired to provide a metal-clad laminate that can reduce the transmission loss of electrical signals and has excellent adhesion between the metal film and the substrate film.
  • metal-clad laminates having a metal film with a smooth surface that can reduce the transmission loss of electrical signals have good adhesion of the metal film, and furthermore, fine-pitch circuit patterns can be achieved, and high A metal-clad laminate that satisfies all of these requirements, such as the ability to form fine circuits with precision, has not yet been provided.
  • the present invention provides a metal-clad laminate having a metal film with a smooth surface capable of reducing transmission loss of electrical signals, which has good adhesion to the metal film, enables fine-pitch circuit patterns, and achieves high precision.
  • the metal film is a metal film formed by at least one of plating, sputtering, and vapor deposition, and the metal film and the substrate
  • the inventors have found that the above problems can be solved by disposing a coating having a specific surface roughness (Rz) between the film and a layer composed of an adhesion imparting agent on the coating, and completed the present invention. reached.
  • the present invention includes the following aspects.
  • a metal-clad laminate in which a coating film, a layer comprising an adhesion imparting agent, and a metal film are laminated in this order on a base film,
  • the metal film is a metal film formed by at least one of plating, sputtering, and vapor deposition,
  • a metal-clad laminate, wherein the coating film has a surface roughness (Rz) of 1 ⁇ m or less.
  • the coating film, the layer comprising the adhesion imparting agent, and the metal film are laminated on both sides of the base film, and the metal film, the layer comprising the adhesion imparting agent, the coating film, the substrate film, the coating
  • the metal-clad laminate according to [1] wherein a film, a layer comprising an adhesion imparting agent, and a metal film are laminated in this order.
  • the tackifier is at least one compound selected from the group consisting of silane coupling agents, titanium coupling agents, zirconia coupling agents, triazine compounds, triazole compounds, and imidazole compounds. 1] or the metal-clad laminate according to [2].
  • the substrate film is a liquid crystal polymer (LCP) film, a polyetheretherketone (PEEK) film, a tetrafluoroethylene perfluoroalkyl (PFA) film, or a polyphenylene sulfide (PPS) film, [1]- The metal-clad laminate according to any one of [12].
  • the filler contains at least one of mica, talc, boron nitride (BN), magnesium oxide, and silica.
  • the filler has a plate-like shape.
  • the filler has an aspect ratio of 5 or more and 500 or less.
  • a metal-clad laminate having a metal film with a smooth surface that can reduce the transmission loss of electrical signals, the adhesion of the metal film is good, the circuit pattern can be fine-pitched, and the precision is high. It is possible to provide a metal-clad laminate on which a fine circuit can be formed.
  • FIG. 3 is a cross-sectional view showing another example of the configuration of the metal-clad laminate of the present invention.
  • the film thickness of the substrate film, coating film, metal film, etc. is the average value obtained by observing the cross section of the measurement target using a microscope, measuring the thickness at five locations, and averaging the thickness.
  • the metal-clad laminate of the present invention is formed by laminating a coating film, a layer comprising an adhesion imparting agent, and a metal film on a substrate film in this order.
  • the metal film is a metal film formed by at least one of plating, sputtering, and vapor deposition.
  • the surface roughness (Rz) of the coating film is 1 ⁇ m or less.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the metal-clad laminate of the present invention.
  • the metal-clad laminate 1 has a base film 2, a coating film 3, a layer 4 made of an adhesion imparting agent, and a metal film 5, which are laminated in this order. Also, in the metal-clad laminate of the present invention, the coating film and the metal film may be laminated on both sides of the substrate film.
  • FIG. 2 shows another example of the structure of the metal-clad laminate of the present invention.
  • the metal-clad laminate 1 of the present invention shown in FIG. are laminated in this order.
  • the substrate film is not particularly limited and can be appropriately selected depending on the purpose.
  • Polyether ketone ketone (PEKK) film tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA) film, tetrafluoroethylene/hexafluoropropylene copolymer (FEP) film, tetrafluoroethylene/ethylene copolymer (ETFE) Insulating resin films such as films, polyphenylene sulfide (PPS) films, aramid films, polyethylene naphthalate films, liquid crystal polymer films (LCP), and mixture films thereof.
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer films
  • the base film can contain a filler.
  • the filler will be described in detail below.
  • the base film can contain a filler in order to provide various functions such as strength, insulation, heat resistance, and adjustment of the coefficient of thermal expansion (CTE) of the base.
  • fillers include inorganic fillers and organic fillers, which can be used alone or in combination.
  • inorganic fillers examples include mica, talc, boron nitride, magnesium oxide, silica, diatomaceous earth, titanium oxide, and zinc oxide.
  • inorganic fillers such as mica, talc, boron nitride, magnesium oxide and silica are preferred.
  • organic fillers include, but are not limited to, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, liquid crystal polymer, and polytetrafluoroethylene. and other organic particles.
  • One of the inorganic fillers and organic fillers may be selected from the above and used alone, or two or more may be used in combination. When two or more types are combined, a combination of an inorganic filler and an organic filler may be used.
  • the shape of the filler is not particularly limited and can be appropriately selected depending on the purpose.
  • the inorganic filler may be a spherical inorganic filler or a non-spherical inorganic filler, but a non-spherical inorganic filler is preferable from the viewpoint of coefficient of thermal expansion (CTE) and film strength.
  • the shape of the non-spherical inorganic filler may be any three-dimensional shape other than a spherical shape (substantially spherical shape), and examples thereof include plate-like, scale-like, columnar, chain-like, and fibrous shapes.
  • the average particle size in the plane direction is 0.05 ⁇ m or more and 20 ⁇ m or less, preferably 0.1 ⁇ m or more and 15 ⁇ m or less, preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.1 ⁇ m or more.
  • the aspect ratio (average major axis length/average minor axis length), which means the plane direction and thickness, is 5 or more and 500 or less from the viewpoint of coefficient of thermal expansion (CTE) and film strength. , preferably 20 or more and 500 or less, desirably 40 or more and 500 or less. If the average particle size of the filler is 20 ⁇ m or less, the surface roughness of the substrate film can be reduced, and a smooth coating film can be easily formed. If the aspect ratio is 5 or more, it is easy to make the CTE sufficiently small. The larger the aspect ratio, the easier it is to adjust the CTE.
  • CTE coefficient of thermal expansion
  • the average particle size and aspect ratio of the inorganic filler can be obtained by observing, for example, using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) and averaging measured values at three or more locations.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the average particle size and aspect ratio of the inorganic filler present in the film (layer) for example, after embedding the film in epoxy resin, ion milling of the cross section of the film is performed using an ion milling device for cross-sectional observation. A sample is prepared, a cross section of the obtained sample is observed using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and the average of measured values at three or more points can be obtained.
  • the average particle size of the organic filler is obtained by observing the cut surface of the base film with an electron microscope and measuring the maximum diameter of at least 10 particles. It can be obtained as the average dispersed particle diameter when dispersed in the inside.
  • the content of the filler in the base film is preferably 1% by volume or more and 30% by volume or less, more preferably 3% by volume or more and 25% by volume or less.
  • the base film may optionally contain known additives as necessary.
  • additives include antioxidants, light stabilizers, ultraviolet absorbers, crystal nucleating agents, plasticizers, filler dispersants, and the like.
  • the film thickness of the substrate film is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 10 ⁇ m to 250 ⁇ m.
  • the surface roughness (Rz) of the base film is not particularly limited and can be appropriately selected according to the purpose. Considering various conditions, the surface roughness (Rz) of the base film is 1 ⁇ m or more. On the other hand, in order to keep the surface roughness (Rz) of the coating film formed on the base film within a desired range, the surface roughness (Rz) of the base film is preferably 10 ⁇ m or less. That is, the surface roughness (Rz) of the substrate film is preferably 1 ⁇ m or more and 10 ⁇ m or less. As used herein, the surface roughness (Rz) refers to the ten-point average roughness of the film surface. The ten-point average roughness Rz can be obtained based on JIS B 0601:2013 (ISO 4287:1997 Amd.1:2009).
  • the ten-point average roughness Rz ( ⁇ m) of the surface of the sheet is obtained by measuring the roughness curve of the test piece using a laser microscope, and from this roughness curve, JIS B 0601: 2013 (ISO 4287: 1997 Amd.1: 2009), 10 samples are measured and the average value is obtained.
  • the relative dielectric constant and dielectric loss tangent of the base film are not particularly limited and can be appropriately selected according to the purpose. , the dielectric loss tangent is preferably 0.004 or less.
  • the coefficient of thermal expansion (CTE) of the base film is not particularly limited, and can be appropriately selected according to the purpose. For this reason, it is preferably 50 ppm or less, for example.
  • the coefficient of thermal expansion was measured in a tensile mode using a thermomechanical analyzer (product name: SII//SS7100 manufactured by Hitachi High-Tech Science) under a load of 50 mN and a temperature increase rate of 5°C/min. The temperature is increased from 25°C to 250°C at a rate of 5°C/min, the temperature change in dimensions is measured, and the coefficient of linear expansion is obtained from the slope in the range from 25°C to 125°C. ,It can be carried out.
  • the surface of the base film may be surface-treated by corona treatment, plasma treatment, or ultraviolet treatment for the reason of improving adhesion with the coating film.
  • the surface roughness (Rz) of the coating film is 1 ⁇ m or less.
  • the method for measuring the surface roughness (Rz) is as described in the section ⁇ characteristics of base film>> above.
  • the surface roughness (Rz) of the coating film is 1 ⁇ m or less, it is possible to form a metal film having a smooth surface, as is clear from the examples described later, and the metal coating can reduce such transmission loss.
  • a metal-clad laminate having excellent adhesion of the metal film can be obtained.
  • a coating film is formed by film-forming and hardening a resin composition.
  • the resin composition forming the coating film is preferably made of a thermosetting resin.
  • thermosetting resins include phenol resins, epoxy resins, urea resins, melamine resins, unsaturated polyester resins, polyurethane resins, polyimide resins, silicone resins, and bismaleimide resins.
  • the coating film preferably contains at least one of epoxy resin, polyimide resin, and bismaleimide resin.
  • epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, or hydrogenated versions thereof; diglycidyl phthalate, diglycidyl isophthalate, diglycidyl terephthalate, p-hydroxybenzoic acid Glycidyl ester epoxy resins such as glycidyl ester, diglycidyl tetrahydrophthalate, diglycidyl succinate, diglycidyl adipate, diglycidyl sebacate, and triglycidyl trimellitate; ethylene glycol diglycidyl ether, propylene glycol Diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, tetraphenylg
  • Novolac epoxy resins such as xylene structure-containing novolac epoxy resins, naphthol novolac epoxy resins, phenol novolak epoxy resins, o-cresol novolak epoxy resins, and bisphenol A novolak epoxy resins can also be used.
  • epoxy resins include brominated bisphenol A type epoxy resins, phosphorus-containing epoxy resins, fluorine-containing epoxy resins, dicyclopentadiene skeleton-containing epoxy resins, naphthalene skeleton-containing epoxy resins, anthracene-type epoxy resins, and tertiary-butylcatechol-type epoxy resins.
  • Resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, biphenyl type epoxy resin, bisphenol S type epoxy resin, etc. can be used. These epoxy resins may be used alone or in combination of two or more.
  • bismaleimide resins include 1-methyl-2,4-bismaleimidebenzene, N,N'-m-phenylenebismaleimide, N,N'-p-phenylenebismaleimide, N,N'-m-toluene.
  • modified bismaleimide obtained by modifying the above bismaleimide resin with a compound having a primary amine, and a polymer obtained by chain extension with an amine-modified product such as dimer acid or trimer acid and maleic anhydride or pyromellitic acid.
  • a commercially available compound can also be used. Specifically, for example, DESIGNER MOLECURES Inc. can be preferably used.
  • the coating film can also contain other components such as fillers and various additives.
  • the coating film may contain a filler for improving heat resistance, controlling fluidity, and the like.
  • the type of filler is not particularly limited and can be appropriately selected depending on the purpose. can be used.
  • the average particle diameter of the filler contained in the coating film is 0.01 ⁇ m to 20 ⁇ m, preferably 0.01 ⁇ m to 10 ⁇ m, preferably 0.01 so that the surface roughness (Rz) of the coating film is 1 ⁇ m or less. It is preferably ⁇ 5 ⁇ m.
  • the content of the filler in the coating film is preferably 0.1% by volume or more and 25% by volume or less, more preferably 1% by volume or more and 20% by volume or less. Since the coating film is required to have a higher surface smoothness than the base film, it is preferable that the average particle diameter of the filler used is smaller than that of the base film and the content thereof is small.
  • the resin composition contains tackifiers, flame retardants, curing agents, curing accelerators, coupling agents, heat antioxidants, leveling agents, antifoaming agents, pigments, and a solvent, etc., can be contained to such an extent that the functions of the resin composition are not affected.
  • the film thickness of the coating film is not particularly limited and can be appropriately selected according to the purpose. is more preferable, and 5 to 20 ⁇ m is more preferable. If the thickness of the coating film is 1 ⁇ m or more, sufficient uniformity can be maintained to smooth the surface of the base film, and if it is 100 ⁇ m or less, the peel strength between the base film, the coating film and the metal film can be strengthened.
  • the film thickness of the coating film should be adjusted according to the surface roughness of the substrate film ( Rz) is preferably 0.8 times or more the value of ⁇ m, more preferably 1 time or more the value of the surface roughness of the base film (Rz) ⁇ m, the surface roughness of the base film (Rz ) is more preferably 1.2 times or more the value of ⁇ m.
  • the dielectric constant and dielectric loss tangent of the coating film are not particularly limited, and can be appropriately selected according to the purpose. , the dielectric loss tangent is preferably 0.004 or less.
  • the method for measuring the dielectric constant and the dielectric loss tangent is as described in the section ⁇ characteristics of the base film>> of the base film.
  • the surface of the coating film may be surface-treated by corona treatment, plasma treatment, or ultraviolet treatment for the reason of improving adhesion with the metal film.
  • a coating film can be produced by forming a film from the resin composition.
  • the resin composition can be produced by mixing epoxy resin, polyimide resin, bismaleimide resin, or the like with other components.
  • the mixing method is not particularly limited as long as the resin composition is uniform.
  • a solvent is also usually used. Examples of solvents include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, benzyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, and diacetone alcohol.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, and isophorone; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, and mesitylene; methyl acetate, ethyl acetate, ethylene glycol monomethyl ether acetate, esters such as 3-methoxybutyl acetate; aliphatic hydrocarbons such as hexane, heptane, cyclohexane and methylcyclohexane; These solvents may be used alone or in combination of two or more.
  • the coating on the base film and the formation of the coating film can be performed smoothly, and the desired thickness and surface roughness of the coating film can be obtained. can be easily obtained.
  • the resin composition contains a solvent
  • the solid content concentration is preferably in the range of 3 to 80% by mass, more preferably 10 to 50% by mass, from the viewpoint of workability including formation of a coating film.
  • the viscosity of the solution is moderate, and it is easy to apply uniformly.
  • a resin varnish containing the above resin composition and a solvent is applied to the surface of a base film to form a resin varnish layer, and then, from the resin varnish layer By removing the solvent, a B-stage coating film can be formed.
  • the coating film is in a B-stage state means that the resin composition is in an uncured state or a semi-cured state in which a part of the resin composition has begun to be cured, and a state in which the resin composition is further cured by heating or the like. say.
  • the method for applying the resin varnish on the substrate film is not particularly limited and can be appropriately selected according to the purpose.
  • a blade coating method, a doctor roll method, a doctor blade method, a curtain coating method, a slit coating method, a screen printing method, an inkjet method, a dispensing method, and the like can be mentioned.
  • the B-stage coating film can be further subjected to heating or the like to form a cured coating film.
  • the adhesion imparting agent that forms the layer comprising the adhesion imparting agent is not particularly limited as long as it can further increase the adhesion (adhesiveness) between the coating film and the metal film, and can be appropriately selected according to the purpose.
  • coupling agents such as silane coupling agents, titanium coupling agents, and zirconia coupling agents, and compounds such as triazine-based compounds, triazole-based compounds, and imidazole-based compounds (coupling agents and The compound is preferably at least one compound selected from hereinafter referred to as a specific compound).
  • the coupling agent used in the present invention has a structure in which various organic functional groups and hydrolyzable groups are bonded to a central element (silicon, titanium, and zirconium).
  • a central element silicon, titanium, and zirconium.
  • An alkoxide compound to which a group is bonded, an acylate compound to which an acyl group is bonded, and a chelate compound to which a functional group is coordinately bonded may be used.
  • Silane coupling agents used in the present invention include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycidoxypropyltrimethoxysilane.
  • Titanium coupling agents used in the present invention include titanium tetraisopropoxide, titanium tetra-normal butoxide, butyl titanate dimer, titanium tetra-2-ethylhexoxide, titanium dioctyloxybis(octylene glycolate), tetra Methyl titanate, titanium acetylacetonate, titanium diisopropoxybis(acetylacetonate), titanium tetraacetylacetonate, titanium diisopropoxybis(ethylacetoacetate), titanium ethylacetoacetate, titanium octanediolate, titanium diisopropoxy Bis(triethanolamine), titanium triethanolamine, titanium lactate ammonium salt, titanium lactate, polyhydroxytitanium stearate, KR38S (manufactured by Ajinomoto Fine-Techno Co., Ltd.), KR44 (manufactured by Ajinomoto Fine-Techno Co., Ltd
  • titanium dioctyloxybis octylene glycolate
  • titanium diisopropoxybis ethylacetoacetate
  • polyhydroxy titanium stearate KR44 (manufactured by Ajinomoto Fine-Techno), KR46B (manufactured by Ajinomoto Fine-Techno), KR55 (manufactured by Ajinomoto Fine-Techno) Fine Techno), KR9SA (Ajinomoto Fine Techno), KR41B (Ajinomoto Fine Techno), etc.
  • KR44 manufactured by Ajinomoto Fine-Techno
  • KR46B manufactured by Ajinomoto Fine-Techno
  • KR55 manufactured by Ajinomoto Fine-Techno
  • KR9SA Alignomoto Fine Techno
  • KR41B Ajinomoto Fine Techno
  • Zirconia coupling agents used in the present invention include zirconium tetra-normal propoxide, zirconium tetra-normal butoxide, zirconium tetraacetylacetonate, zirconium tributoxy monoacetylacetonate, zirconium monobutoxy acetylacetonate bis(ethylacetoacetate).
  • zirconium dibutoxy bis(ethylacetoacetate), zirconium tributoxy monostearate and the like are preferable.
  • a triazine-based compound is triazine (C 3 H 3 N 3 ) or a derivative thereof.
  • a derivative of a triazine is a compound in which at least one hydrogen atom of the triazine has been replaced with another substituent.
  • the triazine-based compound is preferably a compound represented by the following formula (1) because it can further increase the adhesion between the coating film and the metal film.
  • Optional substituents include, for example, an alkyl group, a hydroxyalkyl group, an aryl group, a benzyl group, an alkoxy group, a hydroxy group, an amino group, a thiol group, a carboxy group, a trialkylsilyl group, a trialkoxysilyl group, or these and a substituent having a group.
  • R 1 and R 2 in formula (1) are each independently an amino group (--NH 2 ) or a thiol group (--SH) in terms of increasing the adhesion between the coating film and the metal film. preferable.
  • R 3 in formula (1) is a substituent having a trialkoxysilyl group (—Si(OC n H 2n+1 ), n is an integer of 1 or more) in that the adhesiveness between the coating film and the metal film can be made higher. or a substituent having a hydroxy group (--OH).
  • the substituent having a trialkoxysilyl group includes an alkylene group having 3 or more carbon atoms having a trialkoxysilyl group
  • the substituent having a hydroxy group includes an alkylene group having 3 or more carbon atoms having a hydroxy group. be done.
  • the alkylene group preferably has 10 or less carbon atoms.
  • alkylene groups include propylene, butylene, pentylene, hexylene, heptylene, nonylene and decylene groups.
  • the trialkoxysilyl group includes a trimethoxysilyl group, a triethoxysilyl group, a tripropoxysilyl group, a tributoxysilyl group, etc. Among them, a triethoxysilyl group is preferable.
  • R 1 and R 2 in formula (1) are each independently an amino group or a thiol group, and R 3 is a triethoxysilyl group (—Si(OC 2 A substituent having H 5 ) 3 ) or a substituent having a hydroxy group is more preferable.
  • R 3 is a substituent having a triethoxysilyl group
  • Specific examples of the compound in which both R 1 and R 2 in formula (1) are thiol groups and R 3 is a substituent having a triethoxysilyl group include triethoxysilylpropylaminotriazinedithiol is mentioned.
  • a triazole-based compound is triazole (C 2 H 3 N 3 ) or a derivative thereof.
  • Derivatives of triazoles are compounds in which at least one hydrogen atom of triazole has been replaced by another substituent. Other substituents may combine with each other to form a cyclic structure.
  • the triazole-based compound is preferably a compound represented by the following formula (2) because it can further increase the adhesion between the coating film and the metal film.
  • R 4 in formula (2) is preferably a methyl group (--CH 3 ) or a carboxy group (--COOH) in terms of increasing the adhesion between the coating film and the metal film.
  • R 5 in formula (2) is an aminoalkyl group (—C m H 2m NR 9 2 and R 9 are each independently a hydrogen atom, an alkyl group or a hydroxyalkyl group, and m is an integer of 1 or more.).
  • alkyl groups for R 9 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, 2-ethylhexyl group and the like.
  • the hydroxyalkyl group of R 9 is -C n H n OH (n is an integer of 1 or more), and examples thereof include hydroxymethyl group, 1-hydroxyethyl group, 1-hydroxypropyl group and the like.
  • m and n are each independently 4 or less. From the viewpoint of further improving adhesiveness, it is more preferable that R4 in Formula (2) is a methyl group or a carboxy group, and R5 is an aminoalkyl group.
  • the imidazole compound is imidazole ( C3H4N2 ) or its derivative.
  • a derivative of imidazole is a compound in which at least one hydrogen atom of imidazole is replaced with another substituent.
  • the imidazole-based compound is preferably a compound represented by the following formula (3) because it can further increase the adhesion between the coating film and the metal film.
  • R 6 in formula (3) is preferably an alkyl group in terms of increasing the adhesion between the coating film and the metal film.
  • alkyl groups for R 6 include methyl, ethyl, propyl, butyl, pentyl, hexyl, and 2 -ethylhexyl groups. ) is more preferred.
  • R 7 in formula (3) is preferably a substituent having a trialkoxysilyl group in terms of increasing the adhesiveness between the coating film and the metal film.
  • the trialkoxysilyl group includes trimethoxysilyl group, triethoxysilyl group, tripropoxysilyl group, tributoxysilyl group and the like.
  • the substituent having a trialkoxysilyl group is preferably a group in which a trialkoxysilyl group is bonded to one end of an alkylene group, and a trimethoxysilyl group is attached to one end of the alkylene group.
  • a group to which (—Si(OCH 3 ) 3 ) is bonded is more preferable.
  • alkylene groups include methylene, ethylene, propylene, and butylene.
  • R 6 in formula (3) is a methyl group and R 7 is a group in which a trimethoxysilyl group is bonded to one end of an alkylene group.
  • the tackifier is at least one compound selected from specific compounds, but two or more of the specific compounds may be used in combination.
  • the coupling agent may have a triazine skeleton, triazole skeleton, or imidazole skeleton. More specifically, a silane coupling agent having a triazine skeleton, a silane coupling agent having a triazole skeleton, a silane coupling agent having an imidazole skeleton, and the like can also be preferably used.
  • the film forming method for forming a layer composed of an adhesion imparting agent on a substrate is not particularly limited, but for example, a solution obtained by diluting a specific compound in a solvent may be spray-coated or spun onto the substrate surface.
  • a method of imparting by coating, dip coating, roll coating, ink jetting, or the like can be mentioned.
  • a suitable solvent can be selected according to the type of the specific compound to be used, and isopropanol and 1-butanol, for example, can be used.
  • the concentration of the specific compound in the diluent can be set to any value, if the concentration is too high, it will be difficult to handle and it will be difficult to evenly apply the compound onto the substrate. Since the formed film may not exhibit desired physical properties, it may be set to an arbitrary value within the range of, for example, 0.001 to 5% by mass.
  • the base material to which the coating film having the adhesion imparting agent is applied is dried by heating using a hot air circulating oven (oven) or a hot plate.
  • a hot air circulating oven oven
  • the layer composed of the adhesion-imparting agent placed on the base material exhibits desired physical properties and functions on the surface of the base material.
  • the thickness of the adhesion imparting agent layer is 0.1 to 500 nm from the viewpoint that if it is too thin, it tends to be uneven, and if it is too thick, the strength of the adhesion imparting layer will be insufficient and the adhesive force will not be exhibited. is preferred.
  • the metal film is formed by at least one of plating, sputtering, and vapor deposition.
  • a metal film having a smooth surface can be formed by forming a metal film on a coating film having a surface roughness (Rz) of 1 ⁇ m or less by at least one of plating, sputtering, and vapor deposition.
  • the metal films formed by these forming methods enable formation of fine pitch circuit patterns and high-precision fine circuit formation.
  • the plating method and the sputtering method may be used separately or in combination.
  • a copper film can be formed by electrolytic copper plating after spreading a thin copper film by sputtering.
  • the metal constituting the metal film is not particularly limited and can be appropriately selected depending on the intended purpose.
  • An alloy or the like containing one or more selected types may be mentioned. Among them, copper and alloys containing copper are preferable from the viewpoint of conductivity and economy.
  • the method of forming the metal film includes at least one of plating, sputtering, and vapor deposition. More specifically, for example, vapor deposition films formed by physical vapor deposition (vacuum vapor deposition, sputtering, ion beam vapor deposition, electron beam vapor deposition, etc.) or chemical vapor deposition, plated films formed by plating, and the like can be mentioned. Among them, a vacuum deposition film or a sputtering film formed by a vacuum deposition method (vacuum deposition method, sputtering method, etc.) or a plated film formed by an electrolytic plating method is preferable from the viewpoint of excellent electrical conductivity in the plane direction.
  • the film thickness of the metal film is preferably 0.05 ⁇ m to 20 ⁇ m, more preferably 0.1 to 15 ⁇ m, from the viewpoint of ensuring sufficient electrical signal transmission characteristics and enabling a fine pitch of the circuit pattern. and preferably 0.5 to 10 ⁇ m.
  • the surface roughness (Rz) of the metal film on the surface not in contact with the adhesion imparting agent layer is not particularly limited and can be appropriately selected depending on the purpose. to 0.5 ⁇ m or less.
  • the coating film has a surface roughness (Rz) of 1 ⁇ m or less. is formed on the base film, the surface of the metal film can be smoothed, and the transmission loss can be reduced. Furthermore, the adhesion between the coating film and the metal film can be improved. In the present invention, since a layer comprising an adhesion imparting agent is further formed between the coating film and the metal film, the adhesion (adhesiveness) between the coating film and the metal film is further enhanced. Since the metal film formed on the coating film is a thin metal film formed by at least one of plating, sputtering, and vapor deposition, it can be used for fine-pitch circuit patterns and high-precision fine circuit formation. can be done.
  • the film thickness of the metal-clad laminate is not particularly limited and can be appropriately selected depending on the intended purpose.
  • the film thickness of the metal-clad laminate is at least the lower limit value of the above range, the handleability is excellent and the strength can be ensured.
  • the thickness is equal to or less than the upper limit of the above range, lightness, thinness, shortness and flexibility can be imparted.
  • a coating film is formed on the base film.
  • a layer comprising an adhesion imparting agent is formed on the surface of the coating film opposite to the base film.
  • a metal film is formed on the surface of the layer comprising the adhesion promoter opposite to the coating film.
  • a more specific method for forming a coating film is as described in the section ⁇ Method for producing coating film>>, in which a resin varnish containing a resin composition and a solvent is applied to the surface of the base film. After coating to form a resin varnish layer, a coating film can be formed by removing the solvent from the resin varnish layer. The coating film can be further subjected to heating or the like to form a cured coating film.
  • the method for applying the resin varnish is not particularly limited and can be appropriately selected depending on the intended purpose.
  • a doctor blade method, a curtain coating method, a slit coating method, a screen printing method, an inkjet method, a dispensing method, and the like can be mentioned.
  • the method for forming the layer comprising the adhesion imparting agent is as described in the section ⁇ Method for forming the layer comprising the adhesion imparting agent>>.
  • Examples of the method for forming the metal film include a method using a vacuum film forming method (vacuum deposition, sputtering), a method using an electroplating method, and the like.
  • a method of forming a deposited film by vacuum deposition a method of forming a plated film by electrolytic plating, a method of forming a sputtered film by sputtering, or sputtering Electroplating can be performed later to form a metal film using both sputtering and plating.
  • the metal-clad laminate of the present invention is a metal-clad laminate in which a layer comprising a coating film and an adhesion imparting agent and a metal film are provided on both sides of a base film as shown in FIG.
  • a coating film, a layer consisting of an adhesion imparting agent, and a metal film are formed by the method described above, and then the other side of the base film is coated by the same method.
  • a layer composed of an adhesion imparting agent, and a metal film can be formed.
  • the coatings on both sides of the base film are formed together, then a layer of tackifier placed on top of the coating is also formed on both sides, and then a layer of tackifier is formed.
  • a method in which both sides of the overlying metal film are also formed together may be used.
  • the substrate film and/or coating film uses a substrate film or coating surface-treated by corona treatment, plasma treatment, or ultraviolet treatment, for example, after preparing the substrate film, the prepared substrate
  • the surface of the material film may be surface-treated, and a coating film may be formed on the surface-treated base film by the method described above.
  • the surface of the coating film may be surface-treated, and then a metal film may be formed by the method described above.
  • Example 1 ⁇ Base film> Polyether ether ketone (PEEK) resin (Victrex Granules 450G: manufactured by Victrex) and synthetic mica (Micromica MK100: manufactured by Katakura Agricorp) are mixed so that the synthetic mica is 25% by volume, and the mixture is biaxially It was extruded with an extruder to produce pellets.
  • the synthetic mica used had an average particle size of 4.9 ⁇ m and an aspect ratio of 30-50.
  • the obtained pellets are put into a single-screw extruder with a T-die having a width of 900 mm, melt-kneaded, and continuously extruded from the T-die to form a PEEK film having a thickness of 100 ⁇ m (film Rz: 6.4 ⁇ m, CTE 30 ppm). got
  • a copper film (thickness: 0.1 ⁇ m) was formed on the adhesion promoter layer by sputtering.
  • Rz of the metal layer made of copper film was 0.15 ⁇ m.
  • copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 ⁇ m.
  • the peel strength of the metal layer was measured by the following measurement method and found to be 9.8 N/cm. [Peel strength] According to the method specified in JIS K6854-3:1999, the peel strength of the copper-clad laminate was measured by a T-peel test at a peel rate of 300 mm/min.
  • the transmission loss of the metal-clad laminate (copper-clad laminate) of Example 1 was measured by the following measuring method, and the transmission characteristics were evaluated according to the following criteria.
  • [Transmission loss measurement method] A microstrip line substrate (line length: 50 mm) with impedance adjusted to 50 ⁇ was produced from a copper-clad laminate, and the S parameter (S21) at 20 GHz was measured using a network analyzer.
  • Example 2 A triazine compound (manufactured by Shikoku Kasei Co., Ltd., VD-5, the following formula A compound represented by (1-1) (R10 in the following formula (1-1) is an alkylene group) was applied with a bar coater to a wet thickness of 3 ⁇ m and dried to form an adhesion promoter layer. Furthermore, a copper film (thickness: 0.1 ⁇ m) was formed on the adhesion promoter layer by sputtering. Rz of the metal layer made of copper film was 0.17 ⁇ m. Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 ⁇ m.
  • (1-1) R10 in the following formula (1-1) is an alkylene group
  • thermoplastic polyimide (PI) resin manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: Surprim TO-65
  • synthetic mica manufactured by Katakura Agricorp
  • the synthetic mica used had an average particle size of 4.9 ⁇ m and an aspect ratio of 30-50.
  • the obtained pellets are put into a single-screw extruder with a T-die having a width of 900 mm, melt-kneaded, and continuously extruded from the T-die to form a 100- ⁇ m-thick TPI film (film Rz: 7.8 ⁇ m, CTE 43 ppm). got
  • the surface of the produced TPI film was corona treated.
  • the coating solution 1 obtained in Example 1 was applied onto the surface-treated TPI film.
  • the coating was then dried.
  • the film thickness after drying was 9 ⁇ m.
  • Example 4 ⁇ Preparation of coating solution 2 for forming coating film> bisphenol A type epoxy resin (manufactured by DIC Corporation, Epiclon 840-S) 100 parts by weight, a curing agent (manufactured by Mitsubishi Chemical Corporation, JER Cure 113) 20 parts by weight, 2-ethyl-4-methylimidazole 2 parts by weight, A coating solution 2 was obtained by dissolving in 200 parts by mass of methyl ethyl ketone.
  • bisphenol A type epoxy resin manufactured by DIC Corporation, Epiclon 840-S
  • a curing agent manufactured by Mitsubishi Chemical Corporation, JER Cure 113
  • Example 5 A triazole compound (manufactured by Johoku Kagaku Kogyo Co., Ltd., 5M-BTA, below A compound represented by the formula (2-1) was applied with a bar coater to a wet thickness of 3 ⁇ m and dried to form an adhesion promoter layer. Furthermore, a copper film (thickness: 0.1 ⁇ m) was formed on the adhesion promoter layer by sputtering. Rz of the metal layer made of copper film was 0.19 ⁇ m. Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 ⁇ m.
  • Example 6 An imidazole compound (manufactured by Shikoku Kasei Co., Ltd., 2MUSIZ, the following formula (3 -1) (R 12 in the following formula (3-1) is an alkylene group) was applied with a bar coater to a wet thickness of 3 ⁇ m and dried to form an adhesion promoter layer. Furthermore, a copper film (thickness: 0.1 ⁇ m) was formed on the adhesion promoter layer by sputtering. Rz of the metal layer made of copper film was 0.16 ⁇ m. Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 ⁇ m.
  • Example 1 A PEEK film produced in the same manner as in Example 1 was corona-treated on the surface of the PEEK film.
  • a copper film (thickness: 0.1 ⁇ m) was formed on the surface-treated PEEK film by sputtering.
  • Rz of the metal layer made of copper film was 6.2 ⁇ m.
  • copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 ⁇ m.
  • Table 1 shows various measurement results for the base film and the metal film in the copper-clad laminate of Comparative Example 1, as well as the measurement and evaluation results of the properties (peel strength and transmission properties) of the copper-clad laminate.
  • Example 2 A copper film (thickness: 0.1 ⁇ m) was formed by direct sputtering on the cured coating film of the base film with the coating film prepared in the same manner as in Example 1 without forming an adhesion promoter layer. . Rz of the metal layer made of copper film was 0.19 ⁇ m. Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 ⁇ m.
  • the peel strength of the metal layer was measured by the following measurement method and found to be 6.8 N/cm.
  • Table 1 shows various measurement results for the base film, coating film, and metal film in the copper-clad laminate of Comparative Example 2, as well as measurement and evaluation results of the properties of the copper-clad laminate.
  • Example 3 A copper-clad laminate was produced in the same manner as in Example 1, except that the dry thickness of the coating film was changed to 4.5 ⁇ m. At this time, Rz of the surface of the coating film was 1.5 ⁇ m.
  • Table 1 shows various measurement results for the base film, coating film, and metal film in the copper-clad laminate of Comparative Example 3, as well as measurement and evaluation results of the properties of the copper-clad laminate.
  • the metal-clad laminate of the present invention is a metal-clad laminate capable of reducing transmission loss. ing. Furthermore, as shown in the results of the above Examples, the metal-clad laminate of the present invention has excellent adhesion between the base film and the metal film via the layer composed of the coating film and the adhesion imparting agent. It has become.
  • the metal-clad laminate of the present invention can be suitably used for manufacturing FPC-related products for electronic devices such as smart phones, mobile phones, optical modules, digital cameras, game machines, notebook computers, and medical instruments.

Abstract

Provided is a metal-clad laminated plate that has smooth-surfaced metal film that reduces electrical signal transmission loss. The metal-clad laminated plate has good metal film adhesion and can be used to create fine-pitched circuit patterns and form high-precision fine circuits. The metal-clad laminated plate is obtained by laminating a coating film, a layer comprising an adhesion-imparting agent, and a metal film on a substrate film, in said order. The metal film is formed by at least one formation process out of plating, sputtering, and deposition and the surface roughness (Rz) of the coating film is 1 μm or less.

Description

金属張積層板metal clad laminate
 本発明は、金属張積層板に関する。 The present invention relates to a metal-clad laminate.
 近年、スマートフォンに代表される通信機器における通信速度の高速化・大容量化に伴い、これら通信機器に使用される回路基板には、電気信号の低損失化や回路パターンのファインピッチ化、高精度で微細な回路形成が求められている。
 回路基板の主材料である金属張積層板、いわゆる絶縁性樹脂からなる基材フィルムの表面に金属膜を載せ積層させた金属張積層板(例えば、銅張積層板(CCL))にも、上記回路基板と同様の性能が求められる。
 各種の改良がなされた金属張積層板(例えば、銅張積層板(CCL))が提案されている(例えば、特許文献1参照)。
In recent years, with the increase in communication speed and capacity in communication devices such as smartphones, the circuit boards used in these communication devices are required to have lower electrical signal loss, finer pitch circuit patterns, and higher precision. Therefore, fine circuit formation is demanded.
Metal-clad laminates (e.g., copper-clad laminates (CCL)) in which a metal film is placed and laminated on the surface of a base film made of a so-called insulating resin, which is the main material of a circuit board, also have the above-mentioned properties. Performance similar to that of circuit boards is required.
Various improved metal-clad laminates (for example, copper-clad laminates (CCL)) have been proposed (see, for example, Patent Document 1).
特開2011-14801号公報Japanese Patent Application Laid-Open No. 2011-14801
 電気信号の伝送損失を低減するためには、電気信号の伝送路となる金属膜の表面が平滑であることが有効である。ところが、金属膜の表面が平滑であると、金属膜と他層との密着性(接着性)が問題となる。
 そこで、電気信号の伝送損失を低減でき、かつ金属膜と基材フィルムとの密着性に優れた金属張積層板の提供が望まれている。
In order to reduce the transmission loss of electrical signals, it is effective that the surface of the metal film, which is the transmission path of the electrical signals, is smooth. However, if the surface of the metal film is smooth, adhesion between the metal film and other layers becomes a problem.
Therefore, it is desired to provide a metal-clad laminate that can reduce the transmission loss of electrical signals and has excellent adhesion between the metal film and the substrate film.
 しかし、これまでに電気信号の伝送損失が低減できる平滑な表面の金属膜を有する金属張積層板であって、金属膜の密着性が良好で、さらに、回路パターンのファインピッチ化ができ、高精度で微細な回路が形成できる、これら全ての要求を十分満足できる金属張積層板は、提供されていない。 However, until now, metal-clad laminates having a metal film with a smooth surface that can reduce the transmission loss of electrical signals have good adhesion of the metal film, and furthermore, fine-pitch circuit patterns can be achieved, and high A metal-clad laminate that satisfies all of these requirements, such as the ability to form fine circuits with precision, has not yet been provided.
 そこで、本発明は、電気信号の伝送損失が低減できる平滑な表面の金属膜を有する金属張積層板であって、金属膜の密着性が良好で、回路パターンのファインピッチ化ができ、高精度で微細な回路が形成できる金属張積層板を提供することを目的とする。 Therefore, the present invention provides a metal-clad laminate having a metal film with a smooth surface capable of reducing transmission loss of electrical signals, which has good adhesion to the metal film, enables fine-pitch circuit patterns, and achieves high precision. To provide a metal-clad laminate in which a fine circuit can be formed by
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、金属膜をメッキ、スパッタ、及び蒸着の少なくともいずれかの形成法で形成された金属膜とし、該金属膜と基材フィルムとの間に、特定の表面粗さ(Rz)を有する塗膜と該塗膜上に接着付与剤からなる層とを配することで、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the metal film is a metal film formed by at least one of plating, sputtering, and vapor deposition, and the metal film and the substrate The inventors have found that the above problems can be solved by disposing a coating having a specific surface roughness (Rz) between the film and a layer composed of an adhesion imparting agent on the coating, and completed the present invention. reached.
 本発明は、以下の態様を包含するものである。
[1]基材フィルム上に塗膜、接着付与剤からなる層、金属膜がこの順で積層されてなる金属張積層板であって、
 前記金属膜がメッキ、スパッタ、及び蒸着の少なくともいずれかの形成法で形成された金属膜であり、
 前記塗膜の表面粗さ(Rz)が1μm以下である金属張積層板。
[2]前記塗膜、前記接着付与剤からなる層、及び前記金属膜が前記基材フィルムの両側に積層されてなり、金属膜、接着付与剤からなる層、塗膜、基材フィルム、塗膜、接着付与剤からなる層、金属膜の順で積層されてなる、[1]に記載の金属張積層板。
[3]前記接着付与剤が、シランカップリング剤、チタンカップリング剤、ジルコニアカップリング剤、トリアジン系化合物、トリアゾール系化合物、及びイミダゾール系化合物の群から選ばれる少なくとも1種の化合物である、[1]又は[2]に記載の金属張積層板。
[4]前記基材フィルムの表面粗さ(Rz)が1μm以上10μm以下である、[1]~[3]のいずれかに記載の金属張積層板。
[5]前記金属膜の表面粗さ(Rz)が0.5μm以下である、[1]~[4]のいずれかに記載の金属張積層板。
[6]前記塗膜が、熱硬化樹脂からなる、[1]~[5]のいずれかに記載の金属張積層板。
[7]前記塗膜が、エポキシ樹脂、ポリイミド樹脂、又はビスマレイミド樹脂の少なくともいずれかを含む、[1]~[6]のいずれかに記載の金属張積層板。
[8]前記塗膜の膜厚が、前記基材フィルムの表面粗さ(Rz)×0.8以上である、[1]~[7]のいずれかに記載の金属張積層板。
[9]前記金属膜の膜厚が0.05μm以上10μm以下である、[1]~[8]のいずれかに記載の金属張積層板。
[10]前記基材フィルムの比誘電率が3.5以下で、誘電正接が0.004以下である、[1]~[9]のいずれかに記載の金属張積層板。
[11]前記塗膜の比誘電率が3.5以下で、誘電正接が0.004以下である、[1]~[10]のいずれかに記載の金属張積層板。
[12]前記基材フィルムの熱膨張率(CTE)が50ppm以下である、[1]~[11]のいずれかに記載の金属張積層板。
[13]前記基材フィルムが、液晶ポリマー(LCP)フィルム、ポリエーテルエーテルケトン(PEEK)フィルム、テトラフルオロエチレンパーフルオロアルキル(PFA)フィルム、又はポリフェニレンサルファイド(PPS)フィルムである、[1]~[12]のいずれかに記載の金属張積層板。
[14]前記基材フィルムがフィラーを含有する、[1]~[13]のいずれかに記載の金属張積層板。
[15]前記フィラーが、マイカ、タルク、窒化ホウ素(BN)、酸化マグネシウム、及びシリカの少なくともいずれかを含む、[1]~[14]のいずれかに記載の金属張積層板。
[16]前記フィラーが、板状の形状を有する、[1]~[15]のいずれかに記載の金属張積層板。
[17]前記フィラーのアスペクト比が5以上500以下である、[1]~[16]のいずれかに記載の金属張積層板。
[18]前記フィラーの平均粒径が20μm以下である、[1]~[17]のいずれかに記載の金属張積層板。
[19]前記塗膜がフィラーを含有する、[1]~[18]のいずれかに記載の金属張積層板。
[20]前記金属膜が銅の金属膜である、[1]~[19]のいずれかに記載の金属張積層板。
[21]前記基材フィルム及び/又は前記塗膜の表面が、コロナ処理、プラズマ処理、又は紫外線処理されている、[1]~[20]のいずれかに記載の金属張積層板。
The present invention includes the following aspects.
[1] A metal-clad laminate in which a coating film, a layer comprising an adhesion imparting agent, and a metal film are laminated in this order on a base film,
The metal film is a metal film formed by at least one of plating, sputtering, and vapor deposition,
A metal-clad laminate, wherein the coating film has a surface roughness (Rz) of 1 μm or less.
[2] The coating film, the layer comprising the adhesion imparting agent, and the metal film are laminated on both sides of the base film, and the metal film, the layer comprising the adhesion imparting agent, the coating film, the substrate film, the coating The metal-clad laminate according to [1], wherein a film, a layer comprising an adhesion imparting agent, and a metal film are laminated in this order.
[3] The tackifier is at least one compound selected from the group consisting of silane coupling agents, titanium coupling agents, zirconia coupling agents, triazine compounds, triazole compounds, and imidazole compounds. 1] or the metal-clad laminate according to [2].
[4] The metal-clad laminate according to any one of [1] to [3], wherein the base film has a surface roughness (Rz) of 1 μm or more and 10 μm or less.
[5] The metal-clad laminate according to any one of [1] to [4], wherein the metal film has a surface roughness (Rz) of 0.5 μm or less.
[6] The metal-clad laminate according to any one of [1] to [5], wherein the coating film is made of a thermosetting resin.
[7] The metal-clad laminate according to any one of [1] to [6], wherein the coating contains at least one of epoxy resin, polyimide resin, and bismaleimide resin.
[8] The metal-clad laminate according to any one of [1] to [7], wherein the film thickness of the coating film is equal to or greater than the surface roughness (Rz) of the base film x 0.8.
[9] The metal-clad laminate according to any one of [1] to [8], wherein the thickness of the metal film is 0.05 μm or more and 10 μm or less.
[10] The metal-clad laminate according to any one of [1] to [9], wherein the base film has a dielectric constant of 3.5 or less and a dielectric loss tangent of 0.004 or less.
[11] The metal-clad laminate according to any one of [1] to [10], wherein the coating film has a dielectric constant of 3.5 or less and a dielectric loss tangent of 0.004 or less.
[12] The metal-clad laminate according to any one of [1] to [11], wherein the base film has a coefficient of thermal expansion (CTE) of 50 ppm or less.
[13] The substrate film is a liquid crystal polymer (LCP) film, a polyetheretherketone (PEEK) film, a tetrafluoroethylene perfluoroalkyl (PFA) film, or a polyphenylene sulfide (PPS) film, [1]- The metal-clad laminate according to any one of [12].
[14] The metal-clad laminate according to any one of [1] to [13], wherein the base film contains a filler.
[15] The metal-clad laminate according to any one of [1] to [14], wherein the filler contains at least one of mica, talc, boron nitride (BN), magnesium oxide, and silica.
[16] The metal-clad laminate according to any one of [1] to [15], wherein the filler has a plate-like shape.
[17] The metal-clad laminate according to any one of [1] to [16], wherein the filler has an aspect ratio of 5 or more and 500 or less.
[18] The metal-clad laminate according to any one of [1] to [17], wherein the filler has an average particle size of 20 μm or less.
[19] The metal-clad laminate according to any one of [1] to [18], wherein the coating film contains a filler.
[20] The metal-clad laminate according to any one of [1] to [19], wherein the metal film is a copper metal film.
[21] The metal-clad laminate according to any one of [1] to [20], wherein the surface of the base film and/or the coating film is corona-treated, plasma-treated, or ultraviolet-treated.
 本発明によれば、電気信号の伝送損失が低減できる平滑な表面の金属膜を有する金属張積層板であって、金属膜の密着性が良好で、回路パターンのファインピッチ化ができ、高精度で微細な回路が形成できる金属張積層板を提供することができる。 According to the present invention, there is provided a metal-clad laminate having a metal film with a smooth surface that can reduce the transmission loss of electrical signals, the adhesion of the metal film is good, the circuit pattern can be fine-pitched, and the precision is high. It is possible to provide a metal-clad laminate on which a fine circuit can be formed.
本発明の金属張積層板の構成の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of a structure of the metal-clad laminated board of this invention. 本発明の金属張積層板の構成の他の例を示す断面図である。FIG. 3 is a cross-sectional view showing another example of the configuration of the metal-clad laminate of the present invention;
 以下、本発明の金属張積層板について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。
 以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
 基材フィルム、塗膜、金属膜等の膜厚は、顕微鏡を用いて測定対象の断面を観察し、5箇所の厚さを測定し、平均した値である。
Hereinafter, the metal-clad laminate of the present invention will be described in detail, but the description of the constituent elements described below is an example as one embodiment of the present invention, and is not limited to these contents.
The following term definitions apply throughout the specification and claims.
The film thickness of the substrate film, coating film, metal film, etc. is the average value obtained by observing the cross section of the measurement target using a microscope, measuring the thickness at five locations, and averaging the thickness.
(金属張積層板)
 本発明の金属張積層板は、基材フィルム上に塗膜、接着付与剤からなる層、金属膜がこの順で積層されてなる。
 金属膜は、メッキ、スパッタ、及び蒸着の少なくともいずれかの形成法で形成された金属膜である。
 塗膜の表面粗さ(Rz)は、1μm以下である。
(Metal clad laminate)
The metal-clad laminate of the present invention is formed by laminating a coating film, a layer comprising an adhesion imparting agent, and a metal film on a substrate film in this order.
The metal film is a metal film formed by at least one of plating, sputtering, and vapor deposition.
The surface roughness (Rz) of the coating film is 1 µm or less.
 図1は、本発明の金属張積層板の構成の一例を示す断面図である。
 金属張積層板1は、基材フィルム2と、塗膜3と、接着付与剤からなる層4と、金属膜5とを有し、これらの順で積層されてなる。
 また、本発明の金属張積層板は、塗膜及び金属膜が基材フィルムの両側に積層されていてもよい。
 図2に本発明の金属張積層板の構成の他の例を示す。
 図2で示す本発明の金属張積層板1は、金属膜5a、接着付与剤からなる層4a、塗膜3a、基材フィルム2、塗膜3b、接着付与剤からなる層4b、金属膜5bの順で積層されてなる。
FIG. 1 is a cross-sectional view showing an example of the configuration of the metal-clad laminate of the present invention.
The metal-clad laminate 1 has a base film 2, a coating film 3, a layer 4 made of an adhesion imparting agent, and a metal film 5, which are laminated in this order.
Also, in the metal-clad laminate of the present invention, the coating film and the metal film may be laminated on both sides of the substrate film.
FIG. 2 shows another example of the structure of the metal-clad laminate of the present invention.
The metal-clad laminate 1 of the present invention shown in FIG. are laminated in this order.
<基材フィルム>
 本発明において、基材フィルムとしては、特に限定はされず、目的に応じて適宜選択することができるが、例えば、ポリイミドフィルム、ポリエーテルエーテルケトン(PEEK)フィルム、ポリエーテルケトン(PEK)フィルム、ポリエーテルケトンケトン(PEKK)フィルム、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)フィルム、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)フィルム、テトラフルオロエチレン・エチレン共重合体(ETFE)フィルム、ポリフェニレンサルファイド(PPS)フィルム、アラミドフィルム、ポリエチレンナフタレートフィルム、及び液晶ポリマーフィルム(LCP)、及びこれらの混合物フィルム等の絶縁性樹脂フィルムが挙げられる。これらの中でも、接着性及び電気特性の観点から、ポリエーテルエーテルケトン(PEEK)フィルム、テトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)フィルム、ポリフェニレンサルファイド(PPS)フィルム、及び液晶ポリマー(LCP)フィルムが好ましい。
 基材フィルムには、フィラーを含有させることができる。以下、フィラーについて、詳しく説明する。
<Base film>
In the present invention, the substrate film is not particularly limited and can be appropriately selected depending on the purpose. Polyether ketone ketone (PEKK) film, tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA) film, tetrafluoroethylene/hexafluoropropylene copolymer (FEP) film, tetrafluoroethylene/ethylene copolymer (ETFE) Insulating resin films such as films, polyphenylene sulfide (PPS) films, aramid films, polyethylene naphthalate films, liquid crystal polymer films (LCP), and mixture films thereof. Among these, polyetheretherketone (PEEK) films, tetrafluoroethylene perfluoroalkylvinylether copolymer (PFA) films, polyphenylene sulfide (PPS) films, and liquid crystal polymer (LCP) films, in terms of adhesion and electrical properties Films are preferred.
The base film can contain a filler. The filler will be described in detail below.
<<フィラー>>
 基材フィルムは、基材の強度、絶縁性、耐熱性、熱膨張率(CTE)の調整等各種の機能を付与するため、フィラーを含むことができる。フィラーとしては、例えば、無機フィラー及び有機フィラーが挙げられ、これらを単独で又は組み合わせて使用することができる。
<<Filler>>
The base film can contain a filler in order to provide various functions such as strength, insulation, heat resistance, and adjustment of the coefficient of thermal expansion (CTE) of the base. Examples of fillers include inorganic fillers and organic fillers, which can be used alone or in combination.
 無機フィラーとしては、例えば、マイカ、タルク、窒化ホウ素、酸化マグネシウム、シリカ、珪藻土、酸化チタン、酸化亜鉛等が挙げられる。中でも、マイカ、タルク、窒化ホウ素、酸化マグネシウム、シリカの無機フィラーが好ましい。 Examples of inorganic fillers include mica, talc, boron nitride, magnesium oxide, silica, diatomaceous earth, titanium oxide, and zinc oxide. Among them, inorganic fillers such as mica, talc, boron nitride, magnesium oxide and silica are preferred.
 有機フィラーとしては特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアミド、ポリカーボネート、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリメチルメタクリレート、液晶ポリマー、ポリテトラフルオロエチレン等の有機粒子が挙げられる。 Examples of organic fillers include, but are not limited to, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, liquid crystal polymer, and polytetrafluoroethylene. and other organic particles.
 無機フィラー及び有機フィラーは、上記のなかから1種を選択して単独で使用してもよいし、2種以上を組み合わせて使用してもよい。2種以上を組合せる場合は無機フィラーと有機フィラーの組合せであってもよい。 One of the inorganic fillers and organic fillers may be selected from the above and used alone, or two or more may be used in combination. When two or more types are combined, a combination of an inorganic filler and an organic filler may be used.
 フィラーの形状としては、特に限定されず、目的に応じて適宜選択することができる。例えば、無機フィラーは、球状無機フィラーでも非球状無機フィラーでもよいが、熱膨張率(CTE)、フィルム強度の観点からは、非球状無機フィラーが好ましい。非球状無機フィラーの形状は、球状(略真円球状)以外の三次元形状であればよく、例えば、板状、鱗片状、柱状、鎖状、繊維状等が挙げられる。中でも、熱膨張率(CTE)、フィルム強度の観点から、板状、鱗片状の無機フィラーが好ましく、板状の無機フィラーがより好ましい。
 板状、鱗片状の無機フィラーの場合、平面方向の平均粒径は0.05μm以上20μm以下、好ましくは0.1μm以上15μm以下、望ましくは0.1μm以上10μm以下、より望ましくは0.1μm以上7μm以下であることが好ましく、また、平面方向と厚みを意味するアスペクト比(平均長軸長さ/平均短軸長さ)は、熱膨張率(CTE)、フィルム強度の観点から5以上500以下、好ましくは20以上500以下、望ましくは40以上500以下であることが好ましい。
 フィラーの平均粒径が20μm以下であれば、基材フィルムの表面粗さを小さくすることができ、平滑な塗膜を形成しやすくなる。
 アスペクト比が5以上であればCTEを十分に小さくしやすい。
 アスペクト比が大きいほどCTEを調整しやすいが、粒子径を小さくしながらアスペクト比を大きくすることは困難で、フィラーのコストが高くなる傾向があるので500以下とすることが望ましい。
The shape of the filler is not particularly limited and can be appropriately selected depending on the purpose. For example, the inorganic filler may be a spherical inorganic filler or a non-spherical inorganic filler, but a non-spherical inorganic filler is preferable from the viewpoint of coefficient of thermal expansion (CTE) and film strength. The shape of the non-spherical inorganic filler may be any three-dimensional shape other than a spherical shape (substantially spherical shape), and examples thereof include plate-like, scale-like, columnar, chain-like, and fibrous shapes. Among them, from the viewpoint of coefficient of thermal expansion (CTE) and film strength, plate-like and scale-like inorganic fillers are preferable, and plate-like inorganic fillers are more preferable.
In the case of a plate-like or scale-like inorganic filler, the average particle size in the plane direction is 0.05 μm or more and 20 μm or less, preferably 0.1 μm or more and 15 μm or less, preferably 0.1 μm or more and 10 μm or less, more preferably 0.1 μm or more. It is preferably 7 μm or less, and the aspect ratio (average major axis length/average minor axis length), which means the plane direction and thickness, is 5 or more and 500 or less from the viewpoint of coefficient of thermal expansion (CTE) and film strength. , preferably 20 or more and 500 or less, desirably 40 or more and 500 or less.
If the average particle size of the filler is 20 µm or less, the surface roughness of the substrate film can be reduced, and a smooth coating film can be easily formed.
If the aspect ratio is 5 or more, it is easy to make the CTE sufficiently small.
The larger the aspect ratio, the easier it is to adjust the CTE.
[平均粒径、アスペクト比の測定]
 無機フィラーの平均粒径及びアスペクト比は、例えば、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて観察し、3箇所以上の測定値の平均から求めることができる。なお、フィルム(層)中に存在する無機フィラーの平均粒径及びアスペクト比については、例えばフィルムをエポキシ樹脂で包埋した後、イオンミリング装置を用いてフィルム断面のイオンミリングを行って断面観察用試料を作製し、得られた試料の断面を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて観察し、3箇所以上の測定値の平均から求めることができる。
 また、有機フィラーの平均粒径は、基材フィルムの切断面を電子顕微鏡で観察し、粒子の少なくとも10個の最大径を測定したときの平均値を、溶融混練と分散により基材フィルムの樹脂中に分散したときの平均分散粒径として求めることができる。
[Measurement of average particle size and aspect ratio]
The average particle size and aspect ratio of the inorganic filler can be obtained by observing, for example, using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) and averaging measured values at three or more locations. Regarding the average particle size and aspect ratio of the inorganic filler present in the film (layer), for example, after embedding the film in epoxy resin, ion milling of the cross section of the film is performed using an ion milling device for cross-sectional observation. A sample is prepared, a cross section of the obtained sample is observed using a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and the average of measured values at three or more points can be obtained.
In addition, the average particle size of the organic filler is obtained by observing the cut surface of the base film with an electron microscope and measuring the maximum diameter of at least 10 particles. It can be obtained as the average dispersed particle diameter when dispersed in the inside.
 基材フィルム中のフィラーの含有量は、1体積%以上30体積%以下が好ましく、3体積%以上25体積%以下がより好ましい。 The content of the filler in the base film is preferably 1% by volume or more and 30% by volume or less, more preferably 3% by volume or more and 25% by volume or less.
<<その他の成分>>
 本発明において、基材フィルムには、必要に応じて公知の添加剤を任意に含有することができる。添加剤としては、酸化防止剤、光安定剤、紫外線吸収剤、結晶核剤、可塑剤、フィラーの分散剤等が挙げられる。
<<Other Ingredients>>
In the present invention, the base film may optionally contain known additives as necessary. Examples of additives include antioxidants, light stabilizers, ultraviolet absorbers, crystal nucleating agents, plasticizers, filler dispersants, and the like.
<<基材フィルムの特性>>
 基材フィルムの膜厚は、特に限定されず、目的に応じて適宜選択することができるが、10μm~250μmであることが好ましい。
<<Characteristics of base film>>
The film thickness of the substrate film is not particularly limited and can be appropriately selected depending on the purpose, but is preferably 10 μm to 250 μm.
 基材フィルムの表面粗さ(Rz)は、特に限定されず、目的に応じて適宜選択することができるが、基材フィルムに各種機能を付与するために含有させるフィラーの種類や含有量等の諸条件を考慮すると、基材フィルムの表面粗さ(Rz)は、1μm以上である。一方、基材フィルム上に形成される塗膜の表面粗さ(Rz)を所望の範囲とするには、基材フィルムの表面粗さ(Rz)は、10μm以下であることが好ましい。つまり、基材フィルムの表面粗さ(Rz)としては、1μm以上10μm以下であることが好ましい。
 本明細書において、表面粗さ(Rz)とは、膜表面の十点平均粗さをいう。十点平均粗さRzは、JIS B 0601:2013(ISO 4287:1997 Amd.1:2009)に基づいて求めることができる。
The surface roughness (Rz) of the base film is not particularly limited and can be appropriately selected according to the purpose. Considering various conditions, the surface roughness (Rz) of the base film is 1 μm or more. On the other hand, in order to keep the surface roughness (Rz) of the coating film formed on the base film within a desired range, the surface roughness (Rz) of the base film is preferably 10 μm or less. That is, the surface roughness (Rz) of the substrate film is preferably 1 μm or more and 10 μm or less.
As used herein, the surface roughness (Rz) refers to the ten-point average roughness of the film surface. The ten-point average roughness Rz can be obtained based on JIS B 0601:2013 (ISO 4287:1997 Amd.1:2009).
[十点平均粗さRzの測定]
 シートの表面の十点平均粗さRz(μm)は、試験片についてレーザー顕微鏡を用いて粗さ曲線を測定し、この粗さ曲線から、JIS B 0601:2013(ISO 4287:1997 Amd.1:2009)に基づいて、それぞれ10サンプルずつ測定し、それらの平均値を求めることにより得る。
[Measurement of ten-point average roughness Rz]
The ten-point average roughness Rz (μm) of the surface of the sheet is obtained by measuring the roughness curve of the test piece using a laser microscope, and from this roughness curve, JIS B 0601: 2013 (ISO 4287: 1997 Amd.1: 2009), 10 samples are measured and the average value is obtained.
 基材フィルムの比誘電率、及び誘電正接は、特に限定されず、目的に応じて適宜選択することができるが、電気信号の伝送損失の低減の理由から比誘電率は、3.5以下で、誘電正接は0.004以下であることが好ましい。 The relative dielectric constant and dielectric loss tangent of the base film are not particularly limited and can be appropriately selected according to the purpose. , the dielectric loss tangent is preferably 0.004 or less.
[比誘電率及び誘電正接]
 基材フィルムの比誘電率及び誘電正接は、ネットワークアナライザーMS46122B(Anritsu社製)と開放型共振器ファブリペローDPS-03(KEYCOM社製)とを使用し、開放型共振器法で、温度23℃、周波数28GHzの条件で測定することができる。
[Relative permittivity and dielectric loss tangent]
The relative dielectric constant and dielectric loss tangent of the base film were determined by the open resonator method using a network analyzer MS46122B (manufactured by Anritsu) and an open resonator Fabry-Perot DPS-03 (manufactured by KEYCOM) at a temperature of 23°C. , and a frequency of 28 GHz.
 基材フィルムの熱膨張率(CTE)は、特に限定されず、目的に応じて適宜選択することができるが、張り合わせ後のカール防止の観点から、貼り合せる金属との熱膨張率差を小さくするとの理由から、例えば、50ppm以下であることが好ましい。
 熱膨張率の測定は、熱機械分析装置〔日立ハイテクサイエンス社製 製品名:SII//SS7100〕を用いた引張モードにより、荷重:50mN、昇温速度:5℃/min.の割合で25℃から250℃まで昇温速度:5℃/minの割合で昇温し、寸法の温度変化を測定し、25℃から125℃までの範囲の傾きから線膨張係数を求めることにより、行うことができる。
The coefficient of thermal expansion (CTE) of the base film is not particularly limited, and can be appropriately selected according to the purpose. For this reason, it is preferably 50 ppm or less, for example.
The coefficient of thermal expansion was measured in a tensile mode using a thermomechanical analyzer (product name: SII//SS7100 manufactured by Hitachi High-Tech Science) under a load of 50 mN and a temperature increase rate of 5°C/min. The temperature is increased from 25°C to 250°C at a rate of 5°C/min, the temperature change in dimensions is measured, and the coefficient of linear expansion is obtained from the slope in the range from 25°C to 125°C. ,It can be carried out.
 基材フィルムの表面は、塗膜との密着性向上の理由により、コロナ処理、プラズマ処理、又は紫外線処理により表面処理されていてもよい。 The surface of the base film may be surface-treated by corona treatment, plasma treatment, or ultraviolet treatment for the reason of improving adhesion with the coating film.
<塗膜>
 塗膜の表面粗さ(Rz)は、1μm以下である。表面粗さ(Rz)の測定法は、上記<<基材フィルムの特性>>の欄で記載したとおりである。
 塗膜の表面粗さ(Rz)が1μm以下であることにより、後述する実施例でも明らかなように、表面が平滑な金属膜を形成することができ、このような伝送損失が低減できる金属張積層板において、さらに金属膜の密着性にも優れた金属張積層板とすることができる。
<Coating film>
The surface roughness (Rz) of the coating film is 1 µm or less. The method for measuring the surface roughness (Rz) is as described in the section <<characteristics of base film>> above.
When the surface roughness (Rz) of the coating film is 1 μm or less, it is possible to form a metal film having a smooth surface, as is clear from the examples described later, and the metal coating can reduce such transmission loss. In the laminate, a metal-clad laminate having excellent adhesion of the metal film can be obtained.
 塗膜は、樹脂組成物を成膜し硬化することにより形成される。
 塗膜を形成する樹脂組成物としては、熱硬化樹脂からなることが好ましい。
 熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ポリイミド樹脂、シリコーン樹脂、ビスマレイミド樹脂等が挙げられるが、中でも、耐熱性、密着性、誘電特性の観点から、エポキシ樹脂、ポリイミド樹脂、又はビスマレイミド樹脂の少なくともいずれかを含む塗膜であることが好ましい。
A coating film is formed by film-forming and hardening a resin composition.
The resin composition forming the coating film is preferably made of a thermosetting resin.
Examples of thermosetting resins include phenol resins, epoxy resins, urea resins, melamine resins, unsaturated polyester resins, polyurethane resins, polyimide resins, silicone resins, and bismaleimide resins. From the viewpoint of properties and dielectric properties, the coating film preferably contains at least one of epoxy resin, polyimide resin, and bismaleimide resin.
<<エポキシ樹脂>>
 エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、又はそれらに水素添加したもの;フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、p-ヒドロキシ安息香酸グリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル等のグリシジルエステル系エポキシ樹脂;エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ソルビトールのポリグリシジルエーテル、ポリグリセロールのポリグリシジルエーテル等のグリシジルエーテル系エポキシ樹脂;トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン等のグリシジルアミン系エポキシ樹脂;エポキシ化ポリブタジエン、エポキシ化大豆油等の線状脂肪族エポキシ樹脂等が挙げられるが、これらに限定するものではない。また、キシレン構造含有ノボラックエポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラックエポキシ樹脂、o-クレゾールノボラックエポキシ樹脂、ビスフェノールAノボラックエポキシ樹脂等のノボラック型エポキシ樹脂も用いることができる。
<<epoxy resin>>
Examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, or hydrogenated versions thereof; diglycidyl phthalate, diglycidyl isophthalate, diglycidyl terephthalate, p-hydroxybenzoic acid Glycidyl ester epoxy resins such as glycidyl ester, diglycidyl tetrahydrophthalate, diglycidyl succinate, diglycidyl adipate, diglycidyl sebacate, and triglycidyl trimellitate; ethylene glycol diglycidyl ether, propylene glycol Diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, tetraphenylglycidyl ether ethane, triphenylglycidyl ether ethane, sorbitol glycidyl ether-based epoxy resins such as polyglycidyl ether of polyglycerol and polyglycidyl ether of polyglycerol; glycidylamine-based epoxy resins such as triglycidyl isocyanurate and tetraglycidyldiaminodiphenylmethane; linear aliphatics such as epoxidized polybutadiene and epoxidized soybean oil Examples include, but are not limited to, epoxy resins and the like. Novolac epoxy resins such as xylene structure-containing novolac epoxy resins, naphthol novolac epoxy resins, phenol novolak epoxy resins, o-cresol novolak epoxy resins, and bisphenol A novolak epoxy resins can also be used.
 更に、エポキシ樹脂の例として臭素化ビスフェノールA型エポキシ樹脂、リン含有エポキシ樹脂、フッ素含有エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アントラセン型エポキシ樹脂、ターシャリーブチルカテコール型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等を用いることができる。これらのエポキシ樹脂は1種のみを用いてもよく、2種以上を併用してもよい。 Furthermore, examples of epoxy resins include brominated bisphenol A type epoxy resins, phosphorus-containing epoxy resins, fluorine-containing epoxy resins, dicyclopentadiene skeleton-containing epoxy resins, naphthalene skeleton-containing epoxy resins, anthracene-type epoxy resins, and tertiary-butylcatechol-type epoxy resins. Resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, biphenyl type epoxy resin, bisphenol S type epoxy resin, etc. can be used. These epoxy resins may be used alone or in combination of two or more.
<<ビスマレイミド樹脂>>
 ビスマレイミド樹脂としては、例えば、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3’-ジメチル-ビフェニレン)ビスマレイミド、N,N’-4,4-(3,3’-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3’-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、N,N’-3,3-ジフェニルスルホンビスマレイミド等が挙げられる。
 さらに、上記ビスマレイミド樹脂を1級アミンを有する化合物で変性した変性ビスマレイミドや、ダイマー酸やトリマー酸等のアミン変性物とマレイン酸無水物やピロメリット酸等で鎖延長した重合物等が挙げられる。
ビスマレイミド樹脂は、市販の化合物を用いることもでき、具体的には例えば、DESIGNER MOLECURES Inc.製のBMI-3000、BMI-1500、BMI-2550、BMI-1400、BMI-2310、BMI-3005、BMI-689、BMI-2500、BMI-6000、BMI-6100等を好適に用いることができる。
<<Bismaleimide resin>>
Examples of bismaleimide resins include 1-methyl-2,4-bismaleimidebenzene, N,N'-m-phenylenebismaleimide, N,N'-p-phenylenebismaleimide, N,N'-m-toluene. Irenebismaleimide, N,N'-4,4-biphenylenebismaleimide, N,N'-4,4-(3,3'-dimethyl-biphenylene)bismaleimide, N,N'-4,4-(3 ,3′-dimethyldiphenylmethane)bismaleimide, N,N′-4,4-(3,3′-diethyldiphenylmethane)bismaleimide, N,N′-4,4-diphenylmethanebismaleimide, N,N′-4 ,4-diphenylpropanebismaleimide, N,N'-4,4-diphenyletherbismaleimide, N,N'-3,3-diphenylsulfonebismaleimide and the like.
Furthermore, modified bismaleimide obtained by modifying the above bismaleimide resin with a compound having a primary amine, and a polymer obtained by chain extension with an amine-modified product such as dimer acid or trimer acid and maleic anhydride or pyromellitic acid. be done.
As the bismaleimide resin, a commercially available compound can also be used. Specifically, for example, DESIGNER MOLECURES Inc. can be preferably used.
 また、塗膜には、フィラーや各種添加剤等のその他の成分を含有させることもできる。 In addition, the coating film can also contain other components such as fillers and various additives.
<<フィラー>>
 塗膜は、耐熱性向上、流動性制御等のため、フィラーを含むことができる。フィラーの種類としては、特に制限されず、目的に応じて適宜選択することができるが、例えば、上記基材フィルムに含有されるフィラーとして記載した、上記<<フィラー>>の欄に記載のフィラーを用いることができる。
 塗膜に含有されるフィラーの平均粒径としては、塗膜の表面粗さ(Rz)が1μm以下を満足するよう、0.01μm~20μm、好ましくは0.01μm~10μm、望ましくは0.01~5μmであることが好ましい。
<<Filler>>
The coating film may contain a filler for improving heat resistance, controlling fluidity, and the like. The type of filler is not particularly limited and can be appropriately selected depending on the purpose. can be used.
The average particle diameter of the filler contained in the coating film is 0.01 μm to 20 μm, preferably 0.01 μm to 10 μm, preferably 0.01 so that the surface roughness (Rz) of the coating film is 1 μm or less. It is preferably ˜5 μm.
 塗膜中のフィラーの含有量は、0.1体積%以上25体積%以下が好ましく、1体積%以上20体積%以下がより好ましい。
 塗膜には基材フィルムよりも一層の表面平滑性が求められるため、用いられるフィラーの平均粒径は基材フィルムより小さいこと、含有量が少ないことが好ましい。
The content of the filler in the coating film is preferably 0.1% by volume or more and 25% by volume or less, more preferably 1% by volume or more and 20% by volume or less.
Since the coating film is required to have a higher surface smoothness than the base film, it is preferable that the average particle diameter of the filler used is smaller than that of the base film and the content thereof is small.
<<その他の成分>>
 樹脂組成物には、上述した熱硬化性樹脂やフィラーの他に、粘着付与剤、難燃剤、硬化剤、硬化促進剤、カップリング剤、熱老化防止剤、レベリング剤、消泡剤、顔料、及び溶媒等を、樹脂組成物の機能に影響を与えない程度に含有することができる。
<<Other Ingredients>>
In addition to the above-described thermosetting resins and fillers, the resin composition contains tackifiers, flame retardants, curing agents, curing accelerators, coupling agents, heat antioxidants, leveling agents, antifoaming agents, pigments, and a solvent, etc., can be contained to such an extent that the functions of the resin composition are not affected.
 塗膜の膜厚は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、1~100μmであることが好ましく、3~70μmであることがより好ましく、5~50μmであることが更に好ましく、5~20μmであることがより望ましい。塗膜の膜厚が1μm以上であれば基材フィルムの表面を平滑にするに十分な均一性を保つことができ、100μm以下であれば、基材フィルムと塗膜と金属膜との剥離強度を強固なものとすることができる。
 また、塗膜の膜厚は、塗膜により基材フィルム表面を平滑にし、ひいては金属膜表面も平滑にし、所望の電気信号の低損失化を得るという観点から、基材フィルムの表面粗さ(Rz)μmの値の0.8倍以上であることが好ましく、基材フィルムの表面粗さ(Rz)μmの値の1倍以上であることがより好ましく、基材フィルムの表面粗さ(Rz)μmの値の1.2倍以上であることがさらに好ましい。
The film thickness of the coating film is not particularly limited and can be appropriately selected according to the purpose. is more preferable, and 5 to 20 μm is more preferable. If the thickness of the coating film is 1 μm or more, sufficient uniformity can be maintained to smooth the surface of the base film, and if it is 100 μm or less, the peel strength between the base film, the coating film and the metal film can be strengthened.
In addition, the film thickness of the coating film should be adjusted according to the surface roughness of the substrate film ( Rz) is preferably 0.8 times or more the value of μm, more preferably 1 time or more the value of the surface roughness of the base film (Rz) μm, the surface roughness of the base film (Rz ) is more preferably 1.2 times or more the value of μm.
 塗膜の比誘電率、及び誘電正接は、特に限定されず、目的に応じて適宜選択することができるが、電気信号の伝送損失の低減の理由から、比誘電率は、3.5以下で、誘電正接は0.004以下であることが好ましい。
 比誘電率及び誘電正接の測定方法としては、上記基材フィルムの<<基材フィルムの特性>>の欄で記載したとおりである。
The dielectric constant and dielectric loss tangent of the coating film are not particularly limited, and can be appropriately selected according to the purpose. , the dielectric loss tangent is preferably 0.004 or less.
The method for measuring the dielectric constant and the dielectric loss tangent is as described in the section <<characteristics of the base film>> of the base film.
 塗膜の表面は、金属膜との密着性向上の理由により、コロナ処理、プラズマ処理、又は紫外線処理により表面処理されていてもよい。 The surface of the coating film may be surface-treated by corona treatment, plasma treatment, or ultraviolet treatment for the reason of improving adhesion with the metal film.
<<塗膜の製造方法>>
 樹脂組成物を成膜することで塗膜を製造することができる。
 樹脂組成物は、エポキシ樹脂、ポリイミド樹脂、又はビスマレイミド樹脂等と、その他の成分とを混合することにより製造することができる。混合方法は特に限定されず、樹脂組成物が均一になればよい。樹脂組成物は、溶液又は分散液の状態で好ましく用いられることから、通常は、溶媒も使用される。
 溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-プロピルアルコール、イソブチルアルコール、n-ブチルアルコール、ベンジルアルコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジアセトンアルコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、イソホロン等のケトン類;トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、エチレングリコールモノメチルエーテルアセテ-ト、3-メトキシブチルアセテート等のエステル類;ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素類等が挙げられる。これらの溶媒は、単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 樹脂組成物が溶媒を含む溶液又は分散液(樹脂ワニス)であると、基材フィルムへの塗工及び塗膜の形成を円滑に行うことができ、所望の厚さ及び表面粗さの塗膜を容易に得ることができる。
 樹脂組成物が溶媒を含む場合、塗膜の形成を含む作業性等の観点から、固形分濃度は、好ましくは3~80質量%、より好ましくは10~50質量%の範囲である。固形分濃度が80質量%以下であると、溶液の粘度が適度であり、均一に塗工し易い。
 塗膜の製造方法のより具体的な実施態様としては、上記樹脂組成物及び溶媒を含有する樹脂ワニスを、基材フィルムの表面に塗布して樹脂ワニス層を形成した後、該樹脂ワニス層から溶媒を除去することにより、Bステージ状の塗膜を形成することができる。ここで、塗膜がBステージ状であるとは、樹脂組成物が未硬化状態あるいは一部が硬化し始めた半硬化状態をいい、加熱等により、樹脂組成物の硬化が更に進行する状態をいう。
 ここで、基材フィルム上に樹脂ワニスを塗布する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法、ディスペンス法等が挙げられる。
 上記Bステージ状の塗膜は、さらに加熱等を施し、硬化した塗膜を形成することができる。
<<Method for producing coating film>>
A coating film can be produced by forming a film from the resin composition.
The resin composition can be produced by mixing epoxy resin, polyimide resin, bismaleimide resin, or the like with other components. The mixing method is not particularly limited as long as the resin composition is uniform. Since the resin composition is preferably used in the form of a solution or dispersion, a solvent is also usually used.
Examples of solvents include alcohols such as methanol, ethanol, isopropyl alcohol, n-propyl alcohol, isobutyl alcohol, n-butyl alcohol, benzyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, and diacetone alcohol. ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, and isophorone; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, and mesitylene; methyl acetate, ethyl acetate, ethylene glycol monomethyl ether acetate, esters such as 3-methoxybutyl acetate; aliphatic hydrocarbons such as hexane, heptane, cyclohexane and methylcyclohexane; These solvents may be used alone or in combination of two or more.
When the resin composition is a solvent-containing solution or dispersion (resin varnish), the coating on the base film and the formation of the coating film can be performed smoothly, and the desired thickness and surface roughness of the coating film can be obtained. can be easily obtained.
When the resin composition contains a solvent, the solid content concentration is preferably in the range of 3 to 80% by mass, more preferably 10 to 50% by mass, from the viewpoint of workability including formation of a coating film. When the solid content concentration is 80% by mass or less, the viscosity of the solution is moderate, and it is easy to apply uniformly.
As a more specific embodiment of the method for producing a coating film, a resin varnish containing the above resin composition and a solvent is applied to the surface of a base film to form a resin varnish layer, and then, from the resin varnish layer By removing the solvent, a B-stage coating film can be formed. Here, the coating film is in a B-stage state means that the resin composition is in an uncured state or a semi-cured state in which a part of the resin composition has begun to be cured, and a state in which the resin composition is further cured by heating or the like. say.
Here, the method for applying the resin varnish on the substrate film is not particularly limited and can be appropriately selected according to the purpose. A blade coating method, a doctor roll method, a doctor blade method, a curtain coating method, a slit coating method, a screen printing method, an inkjet method, a dispensing method, and the like can be mentioned.
The B-stage coating film can be further subjected to heating or the like to form a cured coating film.
<接着付与剤からなる層>
 接着付与剤からなる層を形成する接着付与剤としては、塗膜と金属膜との密着性(接着性)をより高めることができれば、特に制限はなく、目的に応じて適宜選択することができるが、例えば、シランカップリング剤、チタンカップリング剤、及びジルコニアカップリング剤等のカップリング剤、並びにトリアジン系化合物、トリアゾール系化合物、及びイミダゾール系化合物等の化合物(カップリング剤及びここで記載の化合物を合わせて、以下、特定の化合物という)の中から選ばれる少なくとも1種の化合物であることが好ましい。
<Layer Consisting of Tackifier>
The adhesion imparting agent that forms the layer comprising the adhesion imparting agent is not particularly limited as long as it can further increase the adhesion (adhesiveness) between the coating film and the metal film, and can be appropriately selected according to the purpose. However, for example, coupling agents such as silane coupling agents, titanium coupling agents, and zirconia coupling agents, and compounds such as triazine-based compounds, triazole-based compounds, and imidazole-based compounds (coupling agents and The compound is preferably at least one compound selected from hereinafter referred to as a specific compound).
<<カップリング剤>>
 本発明で用いられるカップリング剤とは、中心元素(ケイ素、チタン、及びジルコニウム)に各種の有機官能基と加水分解基が結合した構造を有するものであるが、この他に、中心元素にアルコキシル基が結合したアルコキシド化合物や、アシル基が結合したアシレート化合物、さらに官能基が配位結合したキレート化合物を用いてもよい。また、これらの化合物が縮合したオリゴマー化合物を用いてもよい。
<<Coupling agent>>
The coupling agent used in the present invention has a structure in which various organic functional groups and hydrolyzable groups are bonded to a central element (silicon, titanium, and zirconium). An alkoxide compound to which a group is bonded, an acylate compound to which an acyl group is bonded, and a chelate compound to which a functional group is coordinately bonded may be used. Moreover, you may use the oligomer compound which these compounds condensed.
 本発明で用いられるシランカップリング剤としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、ヘキサメチルジシラザン、3-(2-アミノエチルアミノプロピル)ジメトキシメチルシラン、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、2-(2-アミノエチルチオエチル)ジエトキシメチルシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、3-[2-(2-アミノエチルアミノエチルアミノ)プロピル]トリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、イミダゾリルアルキル-トリアルコキシシラン、ジフェニルジメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルトリエトキシシラン、フェニルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物等が挙げられる。 Silane coupling agents used in the present invention include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycidoxypropyltrimethoxysilane. , 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxysilane roxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl)3 -aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, hexamethyldisilazane, 3-(2-aminoethyl aminopropyl)dimethoxymethylsilane, 3-(2-aminoethylaminopropyl)trimethoxysilane, 2-(2-aminoethylthioethyl)diethoxymethylsilane, 2-(2-aminoethylthioethyl)triethoxysilane, 3-[2-(2-aminoethylaminoethylamino)propyl]trimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxy Silane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3- Mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis(triethoxysilylpropyl)tetrasulfide, imidazolylalkyl-trialkoxysilane, diphenyldimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane silane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyltriethoxysilane, phenyltriethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride and the like.
 中でも、3-グリシドキシプロピルトリメトキシシラン、N-2(アミノエチル)3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジフェニルジメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン等が好ましい。 Among them, 3-glycidoxypropyltrimethoxysilane, N-2(aminoethyl)3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercapto Propyltrimethoxysilane, diphenyldimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane and the like are preferred.
 本発明で用いられるチタンカップリング剤としては、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、ブチルチタネートダイマー、チタンテトラ-2-エチルヘキソキシド、チタンジオクチロキシビス(オクチレングリコレート)、テトラメチルチタネート、チタンアセチルアセトネート、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンエチルアセトアセテート、チタンオクタンジオレート、チタンジイソプロポキシビス(トリエタノールアミネート)、チタントリエタノールアミネート、チタンラクテートアンモニウム塩、チタンラクテート、ポリヒドロキシチタンステアレート、KR38S(味の素ファインテクノ社製)、KR44(味の素ファインテクノ社製)、KR46B(味の素ファインテクノ社製)、KR55(味の素ファインテクノ社製)、KR9SA(味の素ファインテクノ社製)、KRTTS(味の素ファインテクノ社製)、KR41B(味の素ファインテクノ社製)、KR138S(味の素ファインテクノ社製)、KR238S(味の素ファインテクノ社製)、KR338X(味の素ファインテクノ社製)、などが挙げられる。 Titanium coupling agents used in the present invention include titanium tetraisopropoxide, titanium tetra-normal butoxide, butyl titanate dimer, titanium tetra-2-ethylhexoxide, titanium dioctyloxybis(octylene glycolate), tetra Methyl titanate, titanium acetylacetonate, titanium diisopropoxybis(acetylacetonate), titanium tetraacetylacetonate, titanium diisopropoxybis(ethylacetoacetate), titanium ethylacetoacetate, titanium octanediolate, titanium diisopropoxy Bis(triethanolamine), titanium triethanolamine, titanium lactate ammonium salt, titanium lactate, polyhydroxytitanium stearate, KR38S (manufactured by Ajinomoto Fine-Techno Co., Ltd.), KR44 (manufactured by Ajinomoto Fine-Techno Co., Ltd.), KR46B (Ajinomoto Fine Techno Co., Ltd.), KR55 (Ajinomoto Fine-Techno Co., Ltd.), KR9SA (Ajinomoto Fine-Techno Co., Ltd.), KRTTS (Ajinomoto Fine-Techno Co., Ltd.), KR41B (Ajinomoto Fine-Techno Co., Ltd.), KR138S (Ajinomoto Fine-Techno Co., Ltd.), KR238S (manufactured by Ajinomoto Fine-Techno Co., Ltd.), KR338X (manufactured by Ajinomoto Fine-Techno Co., Ltd.), and the like.
 中でも、チタンジオクチロキシビス(オクチレングリコレート)、チタンジイソプロポキシビス(エチルアセトアセテート)、ポリヒドロキシチタンステアレート、KR44(味の素ファインテクノ製)、KR46B(味の素ファインテクノ製)、KR55(味の素ファインテクノ製)、KR9SA(味の素ファインテクノ製)、KR41B(味の素ファインテクノ製)、等が好ましい。 Among them, titanium dioctyloxybis (octylene glycolate), titanium diisopropoxybis (ethylacetoacetate), polyhydroxy titanium stearate, KR44 (manufactured by Ajinomoto Fine-Techno), KR46B (manufactured by Ajinomoto Fine-Techno), KR55 (manufactured by Ajinomoto Fine-Techno) Fine Techno), KR9SA (Ajinomoto Fine Techno), KR41B (Ajinomoto Fine Techno), etc. are preferable.
 本発明で用いられるジルコニアカップリング剤としては、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド、ジルコウニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシモノステアレート、塩化ジルコニウム化合物アミノカルボン酸、ジルコニウムモノアセチルアセトネート、ジルコニウムビスアセチルアセトネート、ジルコニウムモノエチルアセトアセテート、ジルコニウムアセチルアセトネートビスエチルアセトアセテート、ジルコニウムアセテート、ジルコニウムモノステアレート、等が挙げられる。 Zirconia coupling agents used in the present invention include zirconium tetra-normal propoxide, zirconium tetra-normal butoxide, zirconium tetraacetylacetonate, zirconium tributoxy monoacetylacetonate, zirconium monobutoxy acetylacetonate bis(ethylacetoacetate). ), zirconium dibutoxy bis(ethylacetoacetate), zirconium tetraacetylacetonate, zirconium tributoxy monostearate, zirconium chloride compound aminocarboxylic acid, zirconium monoacetylacetonate, zirconium bisacetylacetonate, zirconium monoethylacetoacetate, zirconium acetylacetonate bisethylacetoacetate, zirconium acetate, zirconium monostearate, and the like.
 中でも、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート等が好ましい。 Among them, zirconium dibutoxy bis(ethylacetoacetate), zirconium tributoxy monostearate and the like are preferable.
<<トリアジン系化合物>>
 トリアジン系化合物は、トリアジン(C)又はその誘導体である。トリアジンの誘導体は、トリアジンの少なくとも1個の水素原子が他の置換基に置換された化合物である。
 トリアジン系化合物は、塗膜と金属膜との接着性をより高くできることから、下記式(1)で表される化合物であることが好ましい。
<<Triazine compound>>
A triazine-based compound is triazine (C 3 H 3 N 3 ) or a derivative thereof. A derivative of a triazine is a compound in which at least one hydrogen atom of the triazine has been replaced with another substituent.
The triazine-based compound is preferably a compound represented by the following formula (1) because it can further increase the adhesion between the coating film and the metal film.
Figure JPOXMLDOC01-appb-C000001
[式(1)におけるR,R及びRは、各々独立して任意の置換基である。]
Figure JPOXMLDOC01-appb-C000001
[R 1 , R 2 and R 3 in Formula (1) are each independently an arbitrary substituent. ]
 任意の置換基としては、例えば、アルキル基、ヒドロキシアルキル基、アリール基、ベンジル基、アルコキシ基、ヒドロキシ基、アミノ基、チオール基、カルボキシ基、トリアルキルシリル基、トリアルコキシシリル基、又はこれらの基を有する置換基等が挙げられる。
 塗膜と金属膜との接着性をより高くできる点では、式(1)におけるR,Rは、各々独立してアミノ基(-NH)又はチオール基(-SH)であることが好ましい。
 塗膜と金属膜との接着性をより高くできる点では、式(1)におけるRは、トリアルコキシシリル基(-Si(OC2n+1)、nは1以上の整数)を有する置換基又はヒドロキシ基(-OH)を有する置換基であることが好ましい。
 ここで、トリアルコキシシリル基を有する置換基としては、トリアルコキシシリル基を有する炭素数3以上のアルキレン基、ヒドロキシ基を有する置換基としては、ヒドロキシ基を有する炭素数3以上のアルキレン基が挙げられる。アルキレン基の炭素数は10以下であることが好ましい。好ましいアルキレン基の具体例としては、例えば、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、ノニレン基、デシレン基等が挙げられる。トリアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリプロポキシシリル基、トリブトキシシリル基等が挙げられ、なかでも、トリエトキシシリル基が好ましい。
 接着性をさらに向上させる点では、式(1)におけるR,Rが、各々独立してアミノ基又はチオール基であって、且つ、Rが、トリエトキシシリル基(-Si(OC)を有する置換基又はヒドロキシ基を有する置換基であることがより好ましい。
 式(1)におけるR,Rが共にチオール基であって、且つ、Rが、トリエトキシシリル基を有する置換基である化合物としては、具体的には、トリエトキシシリルプロピルアミノトリアジンジチオールが挙げられる。
Optional substituents include, for example, an alkyl group, a hydroxyalkyl group, an aryl group, a benzyl group, an alkoxy group, a hydroxy group, an amino group, a thiol group, a carboxy group, a trialkylsilyl group, a trialkoxysilyl group, or these and a substituent having a group.
R 1 and R 2 in formula (1) are each independently an amino group (--NH 2 ) or a thiol group (--SH) in terms of increasing the adhesion between the coating film and the metal film. preferable.
R 3 in formula (1) is a substituent having a trialkoxysilyl group (—Si(OC n H 2n+1 ), n is an integer of 1 or more) in that the adhesiveness between the coating film and the metal film can be made higher. or a substituent having a hydroxy group (--OH).
Here, the substituent having a trialkoxysilyl group includes an alkylene group having 3 or more carbon atoms having a trialkoxysilyl group, and the substituent having a hydroxy group includes an alkylene group having 3 or more carbon atoms having a hydroxy group. be done. The alkylene group preferably has 10 or less carbon atoms. Specific examples of preferred alkylene groups include propylene, butylene, pentylene, hexylene, heptylene, nonylene and decylene groups. The trialkoxysilyl group includes a trimethoxysilyl group, a triethoxysilyl group, a tripropoxysilyl group, a tributoxysilyl group, etc. Among them, a triethoxysilyl group is preferable.
In terms of further improving adhesiveness, R 1 and R 2 in formula (1) are each independently an amino group or a thiol group, and R 3 is a triethoxysilyl group (—Si(OC 2 A substituent having H 5 ) 3 ) or a substituent having a hydroxy group is more preferable.
Specific examples of the compound in which both R 1 and R 2 in formula (1) are thiol groups and R 3 is a substituent having a triethoxysilyl group include triethoxysilylpropylaminotriazinedithiol is mentioned.
<<トリアゾール系化合物>>
 トリアゾール系化合物は、トリアゾール(C)又はその誘導体である。トリアゾールの誘導体は、トリアゾールの少なくとも1個の水素原子が他の置換基に置換された化合物である。他の置換基同士は、互いに結合して環状構造を形成してもよい。
 トリアゾール系化合物は、塗膜と金属膜との接着性をより高くできることから、下記式(2)で表される化合物であることが好ましい。
<<triazole compound>>
A triazole-based compound is triazole (C 2 H 3 N 3 ) or a derivative thereof. Derivatives of triazoles are compounds in which at least one hydrogen atom of triazole has been replaced by another substituent. Other substituents may combine with each other to form a cyclic structure.
The triazole-based compound is preferably a compound represented by the following formula (2) because it can further increase the adhesion between the coating film and the metal film.
Figure JPOXMLDOC01-appb-C000002
[式(2)におけるR及びRは、各々独立して任意の置換基である。]
Figure JPOXMLDOC01-appb-C000002
[R 4 and R 5 in formula (2) are each independently an arbitrary substituent. ]
 式(2)における任意の置換基は、式(1)における任意の置換基と同様である。
 塗膜と金属膜との接着性をより高くできる点では、式(2)におけるRは、メチル基(-CH)又はカルボキシ基(-COOH)であることが好ましい。
 塗膜と金属膜との接着性をより高くできる点では、式(2)におけるRは、窒素原子に結合する水素原子が置換されていてもよいアミノアルキル基(-C2mNR 、Rは、各々独立して水素原子、アルキル基又はヒドロキシアルキル基であり、mは1以上の整数である。)であることが好ましい。
 Rのアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基等が挙げられる。Rのヒドロキシアルキル基は、-COH(nは1以上の整数である。)であり、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、1-ヒドロキシプロピル基等が挙げられる。
 前記m及び前記nは、各々独立して、4以下であることが好ましい。
 接着性をさらに向上させる点では、式(2)におけるRがメチル基又はカルボキシ基であって、且つ、Rがアミノアルキル基であることがより好ましい。
Optional substituents in formula (2) are the same as optional substituents in formula (1).
R 4 in formula (2) is preferably a methyl group (--CH 3 ) or a carboxy group (--COOH) in terms of increasing the adhesion between the coating film and the metal film.
In terms of increasing the adhesion between the coating film and the metal film, R 5 in formula (2) is an aminoalkyl group (—C m H 2m NR 9 2 and R 9 are each independently a hydrogen atom, an alkyl group or a hydroxyalkyl group, and m is an integer of 1 or more.).
Examples of alkyl groups for R 9 include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, 2-ethylhexyl group and the like. The hydroxyalkyl group of R 9 is -C n H n OH (n is an integer of 1 or more), and examples thereof include hydroxymethyl group, 1-hydroxyethyl group, 1-hydroxypropyl group and the like.
Preferably, m and n are each independently 4 or less.
From the viewpoint of further improving adhesiveness, it is more preferable that R4 in Formula (2) is a methyl group or a carboxy group, and R5 is an aminoalkyl group.
<<イミダゾール系化合物>>
 イミダゾール系化合物は、イミダゾール(C)又はその誘導体である。イミダゾールの誘導体は、イミダゾールの少なくとも1個の水素原子が他の置換基に置換された化合物である。
 イミダゾール系化合物は、塗膜と金属膜との接着性をより高くできることから、下記式(3)で表される化合物であることが好ましい。
<<Imidazole compound>>
The imidazole compound is imidazole ( C3H4N2 ) or its derivative. A derivative of imidazole is a compound in which at least one hydrogen atom of imidazole is replaced with another substituent.
The imidazole-based compound is preferably a compound represented by the following formula (3) because it can further increase the adhesion between the coating film and the metal film.
Figure JPOXMLDOC01-appb-C000003
[式(3)におけるR及びRは、各々独立して任意の置換基である。]
Figure JPOXMLDOC01-appb-C000003
[R 6 and R 7 in formula (3) are each independently an arbitrary substituent. ]
 式(3)における任意の置換基は、式(1)における任意の置換基と同様である。
 塗膜と金属膜との接着性をより高くできる点では、式(3)におけるRは、アルキル基であることが好ましい。Rのアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基等が挙げられ、接着性向上の点では、メチル基(-CH)であることがより好ましい。
 塗膜と金属膜との接着性をより高くできる点では、式(3)におけるRは、トリアルコキシシリル基を有する置換基であることが好ましい。トリアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基、トリプロポキシシリル基、トリブトキシシリル基等が挙げられる。
 接着性向上の点から、トリアルコキシシリル基を有する置換基としては、アルキレン基の一方の末端にトリアルコキシシリル基が結合した基であることが好ましく、アルキレン基の一方の末端にトリメトキシシリル基(-Si(OCH)が結合した基であることがより好ましい。アルキレン基としては、例えば、メチレン、エチレン、プロピレン、ブチレン等が挙げられる。
 接着性をさらに向上させる点では、式(3)におけるRがメチル基であって、且つ、Rがアルキレン基の一方の末端にトリメトキシシリル基が結合した基であることがより好ましい。
Optional substituents in formula (3) are the same as optional substituents in formula (1).
R 6 in formula (3) is preferably an alkyl group in terms of increasing the adhesion between the coating film and the metal film. Examples of alkyl groups for R 6 include methyl, ethyl, propyl, butyl, pentyl, hexyl, and 2 -ethylhexyl groups. ) is more preferred.
R 7 in formula (3) is preferably a substituent having a trialkoxysilyl group in terms of increasing the adhesiveness between the coating film and the metal film. The trialkoxysilyl group includes trimethoxysilyl group, triethoxysilyl group, tripropoxysilyl group, tributoxysilyl group and the like.
From the viewpoint of improving adhesiveness, the substituent having a trialkoxysilyl group is preferably a group in which a trialkoxysilyl group is bonded to one end of an alkylene group, and a trimethoxysilyl group is attached to one end of the alkylene group. A group to which (—Si(OCH 3 ) 3 ) is bonded is more preferable. Examples of alkylene groups include methylene, ethylene, propylene, and butylene.
From the viewpoint of further improving adhesiveness, it is more preferable that R 6 in formula (3) is a methyl group and R 7 is a group in which a trimethoxysilyl group is bonded to one end of an alkylene group.
 接着付与剤は、特定の化合物から選ばれる少なくとも1種の化合物であるが、特定の化合物から2種類以上を組み合わせて用いても構わない。例えば、カップリング剤が、トリアジン骨格、トリアゾール骨格、又はイミダゾール骨格を有していてもよい。より具体的には、トリアジン骨格を有するシランカップリング剤、トリアゾール骨格を有するシランカップリング剤、イミダゾール骨格を有するシランカップリング剤等も好ましく使用することができる。 The tackifier is at least one compound selected from specific compounds, but two or more of the specific compounds may be used in combination. For example, the coupling agent may have a triazine skeleton, triazole skeleton, or imidazole skeleton. More specifically, a silane coupling agent having a triazine skeleton, a silane coupling agent having a triazole skeleton, a silane coupling agent having an imidazole skeleton, and the like can also be preferably used.
<<接着付与剤からなる層の形成方法>>
 基材上に接着付与剤からなる層を形成する膜形成方法としては、特に限定されるものではないが、例えば、特定の化合物を溶媒に希釈した溶液を基材表面に対してスプレーコート、スピンコート、ディップコート、ロールコート、インクジェットなどの方法で付与する方法を挙げることが出来る。この場合、溶媒は、用いる特定の化合物の種類に応じて適当なものを選択して用いることが出来るが、例えば、イソプロパノールや1-ブタノールを使用することが出来る。
<<Method for Forming Layer Containing Tackifier>>
The film forming method for forming a layer composed of an adhesion imparting agent on a substrate is not particularly limited, but for example, a solution obtained by diluting a specific compound in a solvent may be spray-coated or spun onto the substrate surface. A method of imparting by coating, dip coating, roll coating, ink jetting, or the like can be mentioned. In this case, a suitable solvent can be selected according to the type of the specific compound to be used, and isopropanol and 1-butanol, for example, can be used.
 また、希釈液中の特定の化合物の濃度は任意の値にすることが出来るが、濃度が高すぎると取り扱いが困難になり基材上へ均一に付与することが難しく、逆に濃度が低すぎると形成された膜が所望の物性を発現しない場合があるため、例えば0.001~5質量%の範囲の中で任意の値に設定すればよい。 In addition, although the concentration of the specific compound in the diluent can be set to any value, if the concentration is too high, it will be difficult to handle and it will be difficult to evenly apply the compound onto the substrate. Since the formed film may not exhibit desired physical properties, it may be set to an arbitrary value within the range of, for example, 0.001 to 5% by mass.
 また、接着付与剤を有する塗膜が付与された基材は、熱風循環炉(オーブン)やホットプレートなどを用いて加熱乾燥される。加熱乾燥されることにより、基材に配された接着付与剤からなる層が基材表面において所望の物性、機能を発現することになる。 In addition, the base material to which the coating film having the adhesion imparting agent is applied is dried by heating using a hot air circulating oven (oven) or a hot plate. By drying by heating, the layer composed of the adhesion-imparting agent placed on the base material exhibits desired physical properties and functions on the surface of the base material.
 接着付与剤からなる層の膜厚は、薄すぎると斑になりやすく、厚すぎると接着付与層の強度が不足して接着力を発揮できなくなりやすいという観点から、0.1~500nmであることが好ましい。 The thickness of the adhesion imparting agent layer is 0.1 to 500 nm from the viewpoint that if it is too thin, it tends to be uneven, and if it is too thick, the strength of the adhesion imparting layer will be insufficient and the adhesive force will not be exhibited. is preferred.
<金属膜>
 金属膜は、メッキ、スパッタ、及び蒸着の少なくともいずれかの形成法で形成される。
 表面粗さ(Rz)が1μm以下の塗膜上に、メッキ、スパッタ、及び蒸着の少なくともいずれかの形成法で金属膜を形成することにより、表面が平滑な金属膜を形成することができる。
 また、これらの形成法で形成された金属膜は、回路パターンのファインピッチ化、及び高精度で微細な回路形成が可能となる。
 メッキ形成法とスパッタ形成法は、それぞれ別個に用いられてもよいし、併用してもよい。例えば、併用する場合、薄い銅膜をスパッタ法で敷いた後に電解銅メッキ法により、銅膜を形成することができる。
<Metal film>
The metal film is formed by at least one of plating, sputtering, and vapor deposition.
A metal film having a smooth surface can be formed by forming a metal film on a coating film having a surface roughness (Rz) of 1 μm or less by at least one of plating, sputtering, and vapor deposition.
In addition, the metal films formed by these forming methods enable formation of fine pitch circuit patterns and high-precision fine circuit formation.
The plating method and the sputtering method may be used separately or in combination. For example, when used together, a copper film can be formed by electrolytic copper plating after spreading a thin copper film by sputtering.
 金属膜を構成する金属としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばニッケル、銅、銀、錫、金、パラジウム、アルミニウム、クロム、チタンおよび亜鉛からなる群から選択される1種またはこれらのいずれか1種以上を含む合金等が挙げられる。中でも、導電性と経済性の観点から、銅、および銅を含む合金が好ましい。 The metal constituting the metal film is not particularly limited and can be appropriately selected depending on the intended purpose. An alloy or the like containing one or more selected types may be mentioned. Among them, copper and alloys containing copper are preferable from the viewpoint of conductivity and economy.
 金属膜を形成する方法としては、上述したように、メッキ、スパッタ、及び蒸着の少なくともいずれかの方法が挙げられる。より具体的には、例えば物理蒸着(真空蒸着、スパッタリング、イオンビーム蒸着、電子ビーム蒸着等)又は化学蒸着によって形成された蒸着膜、メッキによって形成されたメッキ膜等が挙げられる。中でも、真空成膜法(真空蒸着法やスパッタリング法等)で形成される真空蒸着膜又はスパッタリング膜、あるいは電解メッキ法で形成されるメッキ膜が、面方向の導電性に優れる点から好ましい。 As mentioned above, the method of forming the metal film includes at least one of plating, sputtering, and vapor deposition. More specifically, for example, vapor deposition films formed by physical vapor deposition (vacuum vapor deposition, sputtering, ion beam vapor deposition, electron beam vapor deposition, etc.) or chemical vapor deposition, plated films formed by plating, and the like can be mentioned. Among them, a vacuum deposition film or a sputtering film formed by a vacuum deposition method (vacuum deposition method, sputtering method, etc.) or a plated film formed by an electrolytic plating method is preferable from the viewpoint of excellent electrical conductivity in the plane direction.
 金属膜の膜厚は、十分な電気信号の伝送特性を確保し、かつ回路パターンの良好なファインピッチを可能とするという観点から、0.05μm~20μmであることが好ましく、0.1~15μmであることが望ましく、0.5~10μmであることが望ましい。
 接着付与剤からなる層に接しない面の金属膜の表面粗さ(Rz)は、特に限定されず、目的に応じて適宜選択することができるが、例えば、電気信号の伝送損失の低減の理由から0.5μm以下であることが好ましい。
The film thickness of the metal film is preferably 0.05 μm to 20 μm, more preferably 0.1 to 15 μm, from the viewpoint of ensuring sufficient electrical signal transmission characteristics and enabling a fine pitch of the circuit pattern. and preferably 0.5 to 10 μm.
The surface roughness (Rz) of the metal film on the surface not in contact with the adhesion imparting agent layer is not particularly limited and can be appropriately selected depending on the purpose. to 0.5 μm or less.
<金属張積層板の効果>
 基材フィルムにはフィラーが含有されていたり、基材フィルムの製造上の理由から、基材フィルムの表面を平滑にすることは困難であるが、表面粗さ(Rz)が1μm以下の塗膜を基材フィルム上に形成させることで、金属膜の表面を平滑にすることができ、伝送損失を低減することができる。さらに塗膜と金属膜との密着性も良好なものとすることができる。
 本発明では、塗膜と金属膜の間にさらに接着付与剤からなる層が形成されているため、塗膜と金属膜との密着性(接着性)がより高められている。
 塗膜上に形成される金属膜は、メッキ、スパッタ、及び蒸着の少なくともいずれかの形成法で形成された薄膜の金属膜であるため、回路パターンのファインピッチ化や高精度で微細な回路形成ができる。
<Effect of metal-clad laminate>
Although it is difficult to smooth the surface of the base film because the base film contains a filler or for manufacturing reasons of the base film, the coating film has a surface roughness (Rz) of 1 μm or less. is formed on the base film, the surface of the metal film can be smoothed, and the transmission loss can be reduced. Furthermore, the adhesion between the coating film and the metal film can be improved.
In the present invention, since a layer comprising an adhesion imparting agent is further formed between the coating film and the metal film, the adhesion (adhesiveness) between the coating film and the metal film is further enhanced.
Since the metal film formed on the coating film is a thin metal film formed by at least one of plating, sputtering, and vapor deposition, it can be used for fine-pitch circuit patterns and high-precision fine circuit formation. can be done.
<金属張積層板の膜厚>
 金属張積層板の膜厚は、特に制限はなく、目的に応じて適宜選択できるが、例えば、10μm以上300μm以下が好ましい。金属張積層板の膜厚が上記範囲の下限値以上であれば、ハンドリング性に優れ、強度を確保できる。また、上記範囲の上限値以下であれば、軽薄短小化、フレキシブル性を付与できる。
<Film thickness of metal-clad laminate>
The film thickness of the metal-clad laminate is not particularly limited and can be appropriately selected depending on the intended purpose. When the film thickness of the metal-clad laminate is at least the lower limit value of the above range, the handleability is excellent and the strength can be ensured. Moreover, when the thickness is equal to or less than the upper limit of the above range, lightness, thinness, shortness and flexibility can be imparted.
<金属張積層板の製造方法>
 基材フィルム上に、塗膜を形成する。
 塗膜の基材フィルムとは反対側の面に、接着付与剤からなる層を形成する。
 接着付与剤からなる層の塗膜とは反対の面に、金属膜を形成する。
 塗膜を形成するより具体的な方法としては、上記<<塗膜の製造方法>>の欄で記載したとおりであり、樹脂組成物及び溶媒を含有する樹脂ワニスを、基材フィルムの表面に塗布して樹脂ワニス層を形成した後、該樹脂ワニス層から溶媒を除去することにより、塗膜を形成することができる。塗膜は、さらに加熱等を施し、硬化した塗膜を形成することができる。
 樹脂ワニスを塗布する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法、ディスペンス法等が挙げられる。
 接着付与剤からなる層の形成方法としては、上記<<接着付与剤からなる層の形成方法>>の欄で記載したとおりである。
 金属膜の形成方法としては、真空成膜法(真空蒸着、スパッタリング)による方法、電界メッキ法による方法等が挙げられる。
 所望の膜厚、表面形状を有する金属膜を形成できる点から、真空蒸着によって蒸着膜を形成する方法、又は電解メッキによってメッキ膜を形成する方法、又はスパッタリングによってスパッタ膜を形成する方法、又はスパッタリング後に電解メッキを行いスパッタとメッキを併用した金属膜を形成することができる。
<Method for producing metal-clad laminate>
A coating film is formed on the base film.
A layer comprising an adhesion imparting agent is formed on the surface of the coating film opposite to the base film.
A metal film is formed on the surface of the layer comprising the adhesion promoter opposite to the coating film.
A more specific method for forming a coating film is as described in the section <<Method for producing coating film>>, in which a resin varnish containing a resin composition and a solvent is applied to the surface of the base film. After coating to form a resin varnish layer, a coating film can be formed by removing the solvent from the resin varnish layer. The coating film can be further subjected to heating or the like to form a cured coating film.
The method for applying the resin varnish is not particularly limited and can be appropriately selected depending on the intended purpose. A doctor blade method, a curtain coating method, a slit coating method, a screen printing method, an inkjet method, a dispensing method, and the like can be mentioned.
The method for forming the layer comprising the adhesion imparting agent is as described in the section <<Method for forming the layer comprising the adhesion imparting agent>>.
Examples of the method for forming the metal film include a method using a vacuum film forming method (vacuum deposition, sputtering), a method using an electroplating method, and the like.
From the point that a metal film having a desired film thickness and surface shape can be formed, a method of forming a deposited film by vacuum deposition, a method of forming a plated film by electrolytic plating, a method of forming a sputtered film by sputtering, or sputtering Electroplating can be performed later to form a metal film using both sputtering and plating.
 本発明の金属張積層板が、図2で示すような基材フィルムの両面に塗膜と接着付与剤からなる層と金属膜がそれぞれ設けられている金属張積層板である場合には、基材フィルムの一方の面に対して、上述した方法により、塗膜、接着付与剤からなる層、金属膜を形成し、その後、基材フィルムの他方の面に対して、同様方法で、塗膜、接着付与剤からなる層、金属膜を形成することができる。あるいは、基材フィルムに対して両側の塗膜を一緒に形成し、次に塗膜の上に配される接着付与剤からなる層も両側一緒に形成し、次に接着付与剤からなる層の上に配される金属膜も両側一緒に形成する方法を用いてもよい。 When the metal-clad laminate of the present invention is a metal-clad laminate in which a layer comprising a coating film and an adhesion imparting agent and a metal film are provided on both sides of a base film as shown in FIG. On one side of the material film, a coating film, a layer consisting of an adhesion imparting agent, and a metal film are formed by the method described above, and then the other side of the base film is coated by the same method. , a layer composed of an adhesion imparting agent, and a metal film can be formed. Alternatively, the coatings on both sides of the base film are formed together, then a layer of tackifier placed on top of the coating is also formed on both sides, and then a layer of tackifier is formed. A method in which both sides of the overlying metal film are also formed together may be used.
 基材フィルム及び/又は塗膜が、コロナ処理、プラズマ処理、又は紫外線処理等で表面処理された基材フィルム又は塗膜を用いる場合には、例えば、基材フィルムを用意した後、用意した基材フィルムの表面を表面処理し、その表面処理した基材フィルムに対して、上述した方法により、塗膜を形成すればよい。また、塗膜を形成した後、その塗膜表面を表面処理し、その後、上述した方法により、金属膜を形成すればよい。 When the substrate film and/or coating film uses a substrate film or coating surface-treated by corona treatment, plasma treatment, or ultraviolet treatment, for example, after preparing the substrate film, the prepared substrate The surface of the material film may be surface-treated, and a coating film may be formed on the surface-treated base film by the method described above. Moreover, after forming a coating film, the surface of the coating film may be surface-treated, and then a metal film may be formed by the method described above.
 以下に実施例を挙げて本発明を更に詳述するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、下記において、部及び%は、特に断らない限り、質量基準である。 Although the present invention will be described in more detail with examples below, the scope of the present invention is not limited to these examples. In the following, parts and % are based on mass unless otherwise specified.
(実施例1)
<基材フィルム>
 ポリエーテルエーテルケトン(PEEK)樹脂(VictrexGranules 450G:ビクトレックス社製)と合成マイカ(ミクロマイカMK100:片倉アグリコープ社製)を合成マイカが25体積%となるように混合し、該混合物を二軸押出機で押出し、ペレットを作製した。使用した合成マイカの平均粒径は4.9μmで、アスペクト比は30~50であった。
 得られたペレットを幅900mmのTダイス付きの単軸押出機に投入して溶融混練し、Tダイスから連続的に押し出して、厚さ100μmのPEEKフィルム(フィルムのRz:6.4μm、CTE30ppm)を得た。
(Example 1)
<Base film>
Polyether ether ketone (PEEK) resin (Victrex Granules 450G: manufactured by Victrex) and synthetic mica (Micromica MK100: manufactured by Katakura Agricorp) are mixed so that the synthetic mica is 25% by volume, and the mixture is biaxially It was extruded with an extruder to produce pellets. The synthetic mica used had an average particle size of 4.9 μm and an aspect ratio of 30-50.
The obtained pellets are put into a single-screw extruder with a T-die having a width of 900 mm, melt-kneaded, and continuously extruded from the T-die to form a PEEK film having a thickness of 100 μm (film Rz: 6.4 μm, CTE 30 ppm). got
<塗膜を形成する塗布溶液1の作製>
 固形分25質量%のビスマレイミド樹脂(SLK-3000-T50:信越化学工業)100質量部、トルエン100質量部、シリカフィラー(SO-C2:アドマテックス)60質量部、過酸化物(パークミルD:日油社製)2質量部を混合し、塗布溶液1を得た。
<Preparation of coating solution 1 for forming coating film>
Bismaleimide resin with a solid content of 25% by mass (SLK-3000-T50: Shin-Etsu Chemical Co., Ltd.) 100 parts by mass, toluene 100 parts by mass, silica filler (SO-C2: Admatex) 60 parts by mass, peroxide (Percumyl D: manufactured by NOF Corporation) was mixed to obtain a coating solution 1.
<銅張積層板の作製>
 作製したPEEKフィルムの表面をコロナ処理した。該表面処理されたPEEKフィルム上に、上記で得られた塗布溶液1を塗布した。その後塗膜を乾燥させた。乾燥後の膜厚は7μmであった。
 次に、200℃のオーブンに1時間、塗膜付き基材フィルムを入れて塗膜を硬化させた。
 この時の塗膜表面のRzは、0.35μmであった。
 硬化した塗膜上にエタノールで1重量%に調整したシランカップリング剤(KBM403:信越化学工業)をバーコーターでWet厚3μmで塗布して乾燥させ、接着付与剤の層を形成した。
 さらに、接着付与剤の層の上に、スパッタリングにより銅の膜(膜厚0.1μm)を形成した。
 銅膜からなる金属層のRzは0.15μmであった。
 さらに、金属層の上に蒸着により銅を蒸着し、厚み12μmの金属層を得た。
<Preparation of copper-clad laminate>
The surface of the prepared PEEK film was corona-treated. The coating solution 1 obtained above was applied onto the surface-treated PEEK film. The coating was then dried. The film thickness after drying was 7 μm.
Next, the base film with the coating film was placed in an oven at 200° C. for 1 hour to cure the coating film.
Rz of the coating film surface at this time was 0.35 μm.
A silane coupling agent (KBM403: Shin-Etsu Chemical Co., Ltd.) adjusted to 1% by weight with ethanol was applied on the cured coating film with a bar coater at a wet thickness of 3 μm and dried to form an adhesion promoter layer.
Furthermore, a copper film (thickness: 0.1 μm) was formed on the adhesion promoter layer by sputtering.
Rz of the metal layer made of copper film was 0.15 μm.
Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 μm.
 このようにして得られた実施例1の金属張積層板(銅張積層板)に対して、金属層の剥離強度を下記の測定法により測定したところ、9.8N/cmであった。
[剥離強度]
 JIS K6854-3:1999に指定されている方法に従い、T型剥離試験により300mm/minの剥離速度で銅張積層板の剥離強度を測定した。
With respect to the metal-clad laminate (copper-clad laminate) of Example 1 thus obtained, the peel strength of the metal layer was measured by the following measurement method and found to be 9.8 N/cm.
[Peel strength]
According to the method specified in JIS K6854-3:1999, the peel strength of the copper-clad laminate was measured by a T-peel test at a peel rate of 300 mm/min.
 また、実施例1の金属張積層板(銅張積層板)に対して、伝送損失を下記の測定法により測定し、下記基準により伝送特性を評価した。
[伝送損失測定法]
 銅張積層板からインピーダンスを50Ωに調整したマイクロストリップライン基板(線路長50mm)を作製し、ネットワークアナライザにより20GHzでのSパラメータ(S21)を測定した。
[評価基準]
  〇  (伝送損失3.5dB/cm以下:20GHz)
  △  (伝送損失3.5dB/cmより大きく4dB/cm以下:20GHz)
  ×  (伝送損失4dB/cmより大きい:20GHz)
Further, the transmission loss of the metal-clad laminate (copper-clad laminate) of Example 1 was measured by the following measuring method, and the transmission characteristics were evaluated according to the following criteria.
[Transmission loss measurement method]
A microstrip line substrate (line length: 50 mm) with impedance adjusted to 50Ω was produced from a copper-clad laminate, and the S parameter (S21) at 20 GHz was measured using a network analyzer.
[Evaluation criteria]
〇 (Transmission loss of 3.5 dB/cm or less: 20 GHz)
△ (transmission loss greater than 3.5 dB/cm and 4 dB/cm or less: 20 GHz)
× (transmission loss greater than 4 dB/cm: 20 GHz)
 実施例1の銅張積層板における、基材フィルム、塗膜、接着付与剤からなる層、及び金属膜に対する各種測定結果、並びに銅張積層板の特性(剥離強度と伝送特性)の測定及び評価結果を表1に示す。 Various measurement results for the base film, the coating film, the layer composed of the adhesion imparting agent, and the metal film in the copper-clad laminate of Example 1, and the measurement and evaluation of the properties of the copper-clad laminate (peel strength and transmission properties) Table 1 shows the results.
(実施例2)
 実施例1と同様の方法で作製した塗膜付き基材フィルムの硬化した塗膜上に、メチルエチルケトンで0.1重量%に調整したトリアジン系化合物(四国化成株式会社製、VD-5、下記式(1-1)で表される化合物(下記式(1-1)におけるR10はアルキレン基)をバーコーターでWet厚3μmで塗布して乾燥させ、接着付与剤の層を形成した。
 さらに、接着付与剤の層の上に、スパッタリングにより銅の膜(膜厚0.1μm)を形成した。
 銅膜からなる金属層のRzは0.17μmであった。
 さらに、金属層の上に蒸着により銅を蒸着し、厚み12μmの金属層を得た。
(Example 2)
A triazine compound (manufactured by Shikoku Kasei Co., Ltd., VD-5, the following formula A compound represented by (1-1) (R10 in the following formula (1-1) is an alkylene group) was applied with a bar coater to a wet thickness of 3 μm and dried to form an adhesion promoter layer.
Furthermore, a copper film (thickness: 0.1 μm) was formed on the adhesion promoter layer by sputtering.
Rz of the metal layer made of copper film was 0.17 μm.
Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 μm.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 このようにして得られた実施例2の金属張積層板(銅張積層板)に対して、金属層の剥離強度を測定したところ、10.2N/cmであった。 When the peel strength of the metal layer of the metal-clad laminate (copper-clad laminate) of Example 2 thus obtained was measured, it was 10.2 N/cm.
 実施例2の銅張積層板における、基材フィルム、塗膜、接着付与剤からなる層、及び金属膜に対する各種測定結果、並びに銅張積層板の特性(剥離強度と伝送特性)の測定及び評価結果を表1に示す。 Various measurement results for the base film, the coating film, the layer composed of the adhesion imparting agent, and the metal film in the copper clad laminate of Example 2, and the measurement and evaluation of the properties (peel strength and transmission properties) of the copper clad laminate Table 1 shows the results.
(実施例3)
<基材フィルム>
 熱可塑性ポリイミド(PI)樹脂(三菱瓦斯化学社製 製品名:サープリムTO-65)と合成マイカ(ミクロマイカMK100:片倉アグリコープ社製)を合成マイカが25体積%となるように混合し、該混合物を二軸押出機で押出し、ペレットを作製した。使用した合成マイカの平均粒径は4.9μmで、アスペクト比は30~50であった。
 得られたペレットを幅900mmのTダイス付きの単軸押出機に投入して溶融混練し、Tダイスから連続的に押し出して、厚さ100μmのTPIフィルム(フィルムのRz:7.8μm、CTE43ppm)を得た。
(Example 3)
<Base film>
A thermoplastic polyimide (PI) resin (manufactured by Mitsubishi Gas Chemical Co., Ltd., product name: Surprim TO-65) and synthetic mica (Micromica MK100: manufactured by Katakura Agricorp) are mixed so that the synthetic mica becomes 25% by volume, and the The mixture was extruded with a twin-screw extruder to produce pellets. The synthetic mica used had an average particle size of 4.9 μm and an aspect ratio of 30-50.
The obtained pellets are put into a single-screw extruder with a T-die having a width of 900 mm, melt-kneaded, and continuously extruded from the T-die to form a 100-μm-thick TPI film (film Rz: 7.8 μm, CTE 43 ppm). got
 作製したTPIフィルムの表面をコロナ処理した。該表面処理されたTPIフィルム上に、実施例1で得られた塗布溶液1を塗布した。その後塗膜を乾燥させた。乾燥後の膜厚は9μmであった。 The surface of the produced TPI film was corona treated. The coating solution 1 obtained in Example 1 was applied onto the surface-treated TPI film. The coating was then dried. The film thickness after drying was 9 μm.
 上記したように基材フィルムの種類を変更した以外は、実施例1と同様にした。 The procedure was the same as in Example 1, except that the type of base film was changed as described above.
 実施例3の銅張積層板における、基材フィルム、塗膜、接着付与剤からなる層、及び金属膜に対する各種測定結果、並びに銅張積層板の特性(剥離強度と伝送特性)の測定及び評価結果を表1に示す。 Various measurement results for the base film, the coating film, the layer composed of the adhesion promoter, and the metal film in the copper clad laminate of Example 3, and the measurement and evaluation of the properties (peel strength and transmission properties) of the copper clad laminate. Table 1 shows the results.
(実施例4)
<塗膜を形成する塗布溶液2の作製>
 ビスフェノールA型エポキシ樹脂(DIC社製、エピクロン840-S)100質量部と、硬化剤(三菱ケミカル社製、JERキュア113)20質量部と、2-エチル-4-メチルイミダゾール2質量部と、メチルエチルケトン200質量部に溶解させた塗布溶液2を得た。
(Example 4)
<Preparation of coating solution 2 for forming coating film>
bisphenol A type epoxy resin (manufactured by DIC Corporation, Epiclon 840-S) 100 parts by weight, a curing agent (manufactured by Mitsubishi Chemical Corporation, JER Cure 113) 20 parts by weight, 2-ethyl-4-methylimidazole 2 parts by weight, A coating solution 2 was obtained by dissolving in 200 parts by mass of methyl ethyl ketone.
 上記したように塗布溶液2を用いた以外は、実施例1と同様にした。 The procedure was the same as in Example 1, except that the coating solution 2 was used as described above.
 実施例4の銅張積層板における、基材フィルム、塗膜、接着付与剤からなる層、及び金属膜に対する各種測定結果、並びに銅張積層板の特性(剥離強度と伝送特性)の測定及び評価結果を表1に示す。 Various measurement results for the base film, the coating film, the layer composed of the adhesion promoter, and the metal film in the copper-clad laminate of Example 4, and the measurement and evaluation of the properties of the copper-clad laminate (peel strength and transmission properties) Table 1 shows the results.
(実施例5)
 実施例1と同様の方法で作製した塗膜付き基材フィルムの硬化した塗膜上に、メチルエチルケトンで0.1重量%に調整したトリアゾール系化合物(城北化学工業株式会社製、5M-BTA、下記式(2-1)で表される化合物をバーコーターでWet厚3μmで塗布して乾燥させ、接着付与剤の層を形成した。
 さらに、接着付与剤の層の上に、スパッタリングにより銅の膜(膜厚0.1μm)を形成した。
 銅膜からなる金属層のRzは0.19μmであった。 
 さらに、金属層の上に蒸着により銅を蒸着し、厚み12μmの金属層を得た。
(Example 5)
A triazole compound (manufactured by Johoku Kagaku Kogyo Co., Ltd., 5M-BTA, below A compound represented by the formula (2-1) was applied with a bar coater to a wet thickness of 3 μm and dried to form an adhesion promoter layer.
Furthermore, a copper film (thickness: 0.1 μm) was formed on the adhesion promoter layer by sputtering.
Rz of the metal layer made of copper film was 0.19 μm.
Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 μm.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記したように接着付与剤の種類を変更した以外は実施例1と同様にした。 The procedure was the same as in Example 1, except that the type of adhesion promoter was changed as described above.
 実施例5の銅張積層板における、基材フィルム、塗膜、接着付与剤からなる層、及び金属膜に対する各種測定結果、並びに銅張積層板の特性(剥離強度と伝送特性)の測定及び評価結果を表1に示す。 Various measurement results for the base film, the coating film, the layer composed of the adhesion imparting agent, and the metal film in the copper clad laminate of Example 5, and the measurement and evaluation of the properties (peel strength and transmission properties) of the copper clad laminate Table 1 shows the results.
(実施例6)
 実施例1と同様の方法で作製した塗膜付き基材フィルムの硬化した塗膜上に、メチルエチルケトンで0.1重量%に調整したイミダゾール系化合物(四国化成株式会社製、2MUSIZ、下記式(3-1)で表される化合物(下記式(3-1)におけるR12はアルキレン基)をバーコーターでWet厚3μmで塗布して乾燥させ、接着付与剤の層を形成した。
 さらに、接着付与剤の層の上に、スパッタリングにより銅の膜(膜厚0.1μm)を形成した。
 銅膜からなる金属層のRzは0.16μmであった。 
 さらに、金属層の上に蒸着により銅を蒸着し、厚み12μmの金属層を得た。
(Example 6)
An imidazole compound (manufactured by Shikoku Kasei Co., Ltd., 2MUSIZ, the following formula (3 -1) (R 12 in the following formula (3-1) is an alkylene group) was applied with a bar coater to a wet thickness of 3 μm and dried to form an adhesion promoter layer.
Furthermore, a copper film (thickness: 0.1 μm) was formed on the adhesion promoter layer by sputtering.
Rz of the metal layer made of copper film was 0.16 μm.
Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 μm.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記したように接着付与剤の種類を変更した以外は実施例1と同様にした。 The procedure was the same as in Example 1, except that the type of adhesion promoter was changed as described above.
 実施例6の銅張積層板における、基材フィルム、塗膜、接着付与剤からなる層、及び金属膜に対する各種測定結果、並びに銅張積層板の特性(剥離強度と伝送特性)の測定及び評価結果を表1に示す。 Various measurement results for the base film, the coating film, the layer composed of the adhesion promoter, and the metal film in the copper-clad laminate of Example 6, and the measurement and evaluation of the properties (peel strength and transmission properties) of the copper-clad laminate. Table 1 shows the results.
(比較例1)
 実施例1と同様の方法で作製したPEEKフィルムに対して、該PEEKフィルムの表面をコロナ処理した。
 該表面処理されたPEEKフィルム上に、スパッタリングにより銅の膜(膜厚0.1μm)を形成した。
 銅膜からなる金属層のRzは6.2μmであった。
 さらに、金属層の上に蒸着により銅を蒸着し、厚み12μmの金属層を得た。
(Comparative example 1)
A PEEK film produced in the same manner as in Example 1 was corona-treated on the surface of the PEEK film.
A copper film (thickness: 0.1 μm) was formed on the surface-treated PEEK film by sputtering.
Rz of the metal layer made of copper film was 6.2 μm.
Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 μm.
 このようにして得られた比較例1の金属張積層板(銅張積層板)に対して、金属層の剥離強度を、実施例1と同様の方法により測定したところ、2N/cm以下であった。 When the peel strength of the metal layer of the metal-clad laminate (copper-clad laminate) of Comparative Example 1 thus obtained was measured by the same method as in Example 1, it was 2 N/cm or less. rice field.
 比較例1の銅張積層板における、基材フィルム、及び金属膜に対する各種測定結果、並びに銅張積層板の特性(剥離強度と伝送特性)の測定及び評価結果を表1に示す。 Table 1 shows various measurement results for the base film and the metal film in the copper-clad laminate of Comparative Example 1, as well as the measurement and evaluation results of the properties (peel strength and transmission properties) of the copper-clad laminate.
(比較例2)
 実施例1と同様の方法で作製した塗膜付き基材フィルムの硬化した塗膜上に、接着付与剤の層を形成せずに直接スパッタリングにより銅の膜(膜厚0.1μm)を形成した。
 銅膜からなる金属層のRzは0.19μmであった。
 さらに、金属層の上に蒸着により銅を蒸着し、厚み12μmの金属層を得た。
(Comparative example 2)
A copper film (thickness: 0.1 μm) was formed by direct sputtering on the cured coating film of the base film with the coating film prepared in the same manner as in Example 1 without forming an adhesion promoter layer. .
Rz of the metal layer made of copper film was 0.19 μm.
Furthermore, copper was vapor-deposited on the metal layer by vapor deposition to obtain a metal layer with a thickness of 12 μm.
 このようにして得られた比較例2の金属張積層板(銅張積層板)に対して、金属層の剥離強度を下記の測定法により測定したところ、6.8N/cmであった。 With respect to the metal-clad laminate (copper-clad laminate) of Comparative Example 2 thus obtained, the peel strength of the metal layer was measured by the following measurement method and found to be 6.8 N/cm.
 比較例2の銅張積層板における、基材フィルム、塗膜、及び金属膜に対する各種測定結果、並びに銅張積層板の特性の測定及び評価結果を表1に示す。 Table 1 shows various measurement results for the base film, coating film, and metal film in the copper-clad laminate of Comparative Example 2, as well as measurement and evaluation results of the properties of the copper-clad laminate.
(比較例3)
 実施例1において塗膜の乾燥厚みを4.5μmとした以外は実施例1と同様にして銅張積層板を作製した。この時、塗膜の表面のRzは1.5μmであった。
(Comparative Example 3)
A copper-clad laminate was produced in the same manner as in Example 1, except that the dry thickness of the coating film was changed to 4.5 μm. At this time, Rz of the surface of the coating film was 1.5 μm.
 比較例3の銅張積層板における、基材フィルム、塗膜、及び金属膜に対する各種測定結果、並びに銅張積層板の特性の測定及び評価結果を表1に示す。 Table 1 shows various measurement results for the base film, coating film, and metal film in the copper-clad laminate of Comparative Example 3, as well as measurement and evaluation results of the properties of the copper-clad laminate.
Figure JPOXMLDOC01-appb-T000007
 実施例で作製された本発明の金属張積層板における金属膜は、表面が平滑になっているため、本発明の金属張積層板は、伝送損失を低減することができる金属張積層板となっている。さらに、上記実施例の結果でも示されているとおり、本発明の金属張積層板は、塗膜及び接着付与剤からなる層を介して、基材フィルムと金属膜との密着性に優れたものとなっている。
Figure JPOXMLDOC01-appb-T000007
Since the metal film in the metal-clad laminate of the present invention produced in the examples has a smooth surface, the metal-clad laminate of the present invention is a metal-clad laminate capable of reducing transmission loss. ing. Furthermore, as shown in the results of the above Examples, the metal-clad laminate of the present invention has excellent adhesion between the base film and the metal film via the layer composed of the coating film and the adhesion imparting agent. It has become.
 本発明の金属張積層板は、スマートフォン、携帯電話、光モジュール、デジタルカメラ、ゲーム機、ノートパソコン、医療器具等の電子機器用のFPC関連製品の製造に好適に用いられ得る。 The metal-clad laminate of the present invention can be suitably used for manufacturing FPC-related products for electronic devices such as smart phones, mobile phones, optical modules, digital cameras, game machines, notebook computers, and medical instruments.
1  金属張積層板
2  基材フィルム
3、3a、3b  塗膜
4、4a、4b  接着付与剤からなる層
5、5a、5b  金属膜

 
1 Metal-clad laminate 2 Base film 3, 3a, 3b Coating film 4, 4a, 4b Layer made of adhesion imparting agent 5, 5a, 5b Metal film

Claims (10)

  1.  基材フィルム上に塗膜、接着付与剤からなる層、金属膜がこの順で積層されてなる金属張積層板であって、
     前記金属膜がメッキ、スパッタ、及び蒸着の少なくともいずれかの形成法で形成された金属膜であり、
     前記塗膜の表面粗さ(Rz)が1μm以下である金属張積層板。
    A metal-clad laminate in which a coating film, a layer comprising an adhesion imparting agent, and a metal film are laminated in this order on a base film,
    The metal film is a metal film formed by at least one of plating, sputtering, and vapor deposition,
    A metal-clad laminate, wherein the coating film has a surface roughness (Rz) of 1 μm or less.
  2.  前記塗膜、前記接着付与剤からなる層、及び前記金属膜が前記基材フィルムの両側に積層されてなり、金属膜、接着付与剤からなる層、塗膜、基材フィルム、塗膜、接着付与剤からなる層、金属膜の順で積層されてなる、請求項1に記載の金属張積層板。 The coating film, the layer comprising the adhesion imparting agent, and the metal film are laminated on both sides of the base film, and the metal film, the layer comprising the adhesion imparting agent, the coating film, the substrate film, the coating film, the adhesion 2. The metal-clad laminate according to claim 1, wherein the layer comprising the imparting agent and the metal film are laminated in this order.
  3.  前記接着付与剤が、シランカップリング剤、チタンカップリング剤、ジルコニアカップリング剤、トリアジン系化合物、トリアゾール系化合物、及びイミダゾール系化合物の群から選ばれる少なくとも1種の化合物である、請求項1に記載の金属張積層板。 2. The method according to claim 1, wherein the tackifier is at least one compound selected from the group consisting of silane coupling agents, titanium coupling agents, zirconia coupling agents, triazine compounds, triazole compounds, and imidazole compounds. A metal-clad laminate as described.
  4.  前記基材フィルムの表面粗さ(Rz)が1μm以上10μm以下である、請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, wherein the base film has a surface roughness (Rz) of 1 µm or more and 10 µm or less.
  5.  前記塗膜が、熱硬化樹脂からなる、請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, wherein the coating film is made of a thermosetting resin.
  6.  前記塗膜が、エポキシ樹脂、ポリイミド樹脂、又はビスマレイミド樹脂の少なくともいずれかを含む、請求項5に記載の金属張積層板。 The metal-clad laminate according to claim 5, wherein the coating contains at least one of epoxy resin, polyimide resin, and bismaleimide resin.
  7.  前記塗膜の比誘電率が3.5以下で、誘電正接が0.004以下である、請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, wherein the coating film has a dielectric constant of 3.5 or less and a dielectric loss tangent of 0.004 or less.
  8.  前記基材フィルムが、液晶ポリマー(LCP)フィルム、ポリエーテルエーテルケトン(PEEK)フィルム、テトラフルオロエチレンパーフルオロアルキル(PFA)フィルム、又はポリフェニレンサルファイド(PPS)フィルムである、請求項1に記載の金属張積層板。 The metal of claim 1, wherein the substrate film is a liquid crystal polymer (LCP) film, a polyetheretherketone (PEEK) film, a tetrafluoroethylene perfluoroalkyl (PFA) film, or a polyphenylene sulfide (PPS) film. tension laminate.
  9.  前記基材フィルムがフィラーを含有する、請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, wherein the base film contains a filler.
  10.  前記金属膜が銅の金属膜である、請求項1に記載の金属張積層板。

     
    2. The metal-clad laminate according to claim 1, wherein said metal film is a copper metal film.

PCT/JP2022/034249 2021-09-29 2022-09-13 Metal-clad laminated plate WO2023053948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159181 2021-09-29
JP2021159181 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053948A1 true WO2023053948A1 (en) 2023-04-06

Family

ID=85782455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034249 WO2023053948A1 (en) 2021-09-29 2022-09-13 Metal-clad laminated plate

Country Status (2)

Country Link
TW (1) TW202321031A (en)
WO (1) WO2023053948A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154073A (en) * 2014-02-17 2015-08-24 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method thereof
WO2020027189A1 (en) * 2018-07-31 2020-02-06 株式会社カネカ Metal-clad laminate, printed circuit board, and method of manufacturing same
JP2020110972A (en) * 2019-01-11 2020-07-27 エルジー・ケム・リミテッド Film, metal-clad laminate, flexible substrate, film production method, metal-clad laminate production method, and flexible substrate production method
JP2021008044A (en) * 2019-06-28 2021-01-28 日本パーカライジング株式会社 Copper-clad laminate
WO2021199811A1 (en) * 2020-04-03 2021-10-07 信越ポリマー株式会社 Metal-clad laminated plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154073A (en) * 2014-02-17 2015-08-24 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method thereof
WO2020027189A1 (en) * 2018-07-31 2020-02-06 株式会社カネカ Metal-clad laminate, printed circuit board, and method of manufacturing same
JP2020110972A (en) * 2019-01-11 2020-07-27 エルジー・ケム・リミテッド Film, metal-clad laminate, flexible substrate, film production method, metal-clad laminate production method, and flexible substrate production method
JP2021008044A (en) * 2019-06-28 2021-01-28 日本パーカライジング株式会社 Copper-clad laminate
WO2021199811A1 (en) * 2020-04-03 2021-10-07 信越ポリマー株式会社 Metal-clad laminated plate

Also Published As

Publication number Publication date
TW202321031A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP6163803B2 (en) Resin composition
JP6028587B2 (en) Resin composition
TWI713542B (en) Resin composition
JP6308713B2 (en) Resin composition
JP2014019868A (en) Epoxy resin composition for build-up insulating film, insulating film formed therefrom, and multilayer printed circuit board having the same
JP6418273B2 (en) Resin composition
JP6007663B2 (en) Resin composition
CN104419120A (en) Insulating resin composition for printed circuit board and products manufactured by using the same
TWI824654B (en) Resin composition and application thereof
JP2017071798A (en) Resin composition
WO2023053948A1 (en) Metal-clad laminated plate
JP6237155B2 (en) Resin composition
JP6217832B2 (en) Resin composition
US20110172357A1 (en) Composition for forming substrate, and prepreg and substrate using the same
JP6281233B2 (en) Resin composition
WO2021199811A1 (en) Metal-clad laminated plate
JP6984579B2 (en) Epoxy resin compositions, and adhesive films, prepregs, multilayer printed wiring boards, and semiconductor devices manufactured using the resin compositions.
JP6337917B2 (en) Resin composition
WO2023053619A1 (en) Metal-clad laminated board, and laminated body used in said metal-clad laminated board
WO2023053620A1 (en) Metal-clad laminate, and laminate used for said metal-clad laminate
JP7321952B2 (en) Transparent low-dielectric glass prepreg, transparent low-dielectric glass film, transparent low-dielectric glass substrate, and manufacturing method thereof
JP5978936B2 (en) Resin composition
JP7087963B2 (en) Epoxy resin compositions, multilayer printed wiring boards, and semiconductor devices
JP6989086B6 (en) Thermosetting resin composition for semiconductor packaging and prepreg using this
JP2023049254A (en) Paek resin substrate for printed wiring board, and metal-clad laminate having the paek resin substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551285

Country of ref document: JP