WO2023053881A1 - Radial foil bearing, compressor, and refrigeration device - Google Patents

Radial foil bearing, compressor, and refrigeration device Download PDF

Info

Publication number
WO2023053881A1
WO2023053881A1 PCT/JP2022/033608 JP2022033608W WO2023053881A1 WO 2023053881 A1 WO2023053881 A1 WO 2023053881A1 JP 2022033608 W JP2022033608 W JP 2022033608W WO 2023053881 A1 WO2023053881 A1 WO 2023053881A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
engaging
engaging claw
housing
radial
Prior art date
Application number
PCT/JP2022/033608
Other languages
French (fr)
Japanese (ja)
Inventor
直陸 大森
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023053881A1 publication Critical patent/WO2023053881A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • the present disclosure relates to radial foil bearings, compressors, and refrigerators.
  • Patent Literature 1 discloses a radial foil bearing that supports a load acting radially on a rotating shaft.
  • the radial foil bearing of Patent Document 1 includes a cylindrical top foil, a back foil arranged radially outside the top foil, and a bearing housing that accommodates the back foil and the top foil.
  • Engagement notches extending from the inner peripheral edge toward the outer peripheral edge of the bearing housing are formed on both side surfaces of the bearing housing of Patent Document 1, respectively.
  • the back foil is provided with engaging protrusions on both side ends on one side in the circumferential direction of the bearing housing.
  • the back foil is fixed to the bearing housing without welding by engaging the engaging protrusions of the back foil with the engaging notches of the bearing housing.
  • the engaging protrusion of the back foil is provided on one circumferential side of the bearing housing. Therefore, in order to fix the back foil to the bearing housing, it is necessary to process the circumferential width of the engaging piece formed on the bearing housing to a size that allows the engaging protrusion of the back foil to fit just right. . In other words, it is necessary to process the width of the engaging piece to be as small as the thickness of the back foil. In order to process in this way, it is necessary to perform fine processing such as wire cutting, and there is a problem that the processing takes time and the manufacturing cost increases.
  • the purpose of this disclosure is to reduce the manufacturing cost of radial foil bearings.
  • a first aspect includes a cylindrical housing (60), a back foil (70) arranged along the inner peripheral surface of the housing (60), and elastically supported by the back foil (70),
  • a top foil (80) is arranged between the back foil (70) and the rotating shaft (35), the back foil (70) being formed on one circumferential side of the housing (60). and a second engaging pawl (N2) formed on the other side in the circumferential direction.
  • the radial foil bearing is provided with an engaging portion (63) extending radially outward from the surface and engaged by the first engaging claw (N1) and the second engaging claw (N2).
  • the back foil (70) includes a first engaging claw (N1) formed on one side in the circumferential direction and a second engaging claw (N2) formed on the other side in the circumferential direction. have Engagement portions (63) with which the first engagement claws (N1) and the second engagement claws (N2) are respectively engaged are formed on the side surfaces of the housing (60).
  • the housing (60) is sandwiched by engaging the first engaging claw (N1) and the second engaging claw (N2) with the corresponding engaging portions (63). This holds the back foil (70) to the housing (60).
  • the engaging portions (63) are formed on both side surfaces of the housing (60), and the first engaging claws (N1) and the second engaging claws (N1) (N2) are formed on both sides of the back foil (70) in the axial direction of the housing (60).
  • the back foil (70) is arranged with respect to the housing (60) in at least one of the circumferential direction, the axial direction, and the radial direction of the housing (60). is configured to be movable relative to the
  • the rotating shaft (35) can rotate at high speed.
  • the back foil (70) to which the vibration is transmitted moves in one of the circumferential, axial and radial directions and collides with surrounding parts. This collision dissipates the energy of the vibration, so that the vibration of the rotating shaft (35) can be damped.
  • the width of the engaging portion (63) is five times or more the thickness of the back foil (70).
  • the width of the engaging portion (63) can be formed sufficiently large relative to the plate thickness of the back foil (70). It is easy to form the junction (63).
  • the width of the engaging portion (63) is 0.3 mm or more, the engaging portion (63) can be formed without delicate processing such as wire cutting.
  • a plurality of the back foils (70) are provided along the circumferential direction, and one of the adjacent back foils (70)
  • the first engaging claw (N1) of the back foil (70) is arranged to face the second engaging claw (N2) of the other back foil (70).
  • the first engaging claw (N1) and the second engaging claw (N2) of the other back foil (70) engage one engaging portion (63).
  • the first engaging claw (N1) of one back foil (70) and the second engaging claw (N2) of the other back foil (70), which are arranged to face each other, are combined into one Since it is engaged with the engaging portion (63), the number of engaging portions (63) to be formed can be suppressed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
  • the tip of each of the first engaging claw (N1) and the second engaging claw (N2) contacts the inner surface of the engaging portion (63) corresponding to the claws (N1, N2), and the first engaging claw (N1) and the second engaging claw (N2) are It is configured to be movable relative to the housing (60) by elastically deforming.
  • the tip of each of the first engaging claw (N1) and the second engaging claw (N2) comes into contact with the inner surface of the engaging portion (63), thereby causing the back foil (70) to move toward the housing. held at (60).
  • the engagement claws (N1, N2) are elastically deformed to move the back foil (70) relative to the housing (60).
  • the back foil (70) collides with the surrounding parts to dissipate the energy of the vibration.
  • the vibration of the rotating shaft (35) can be damped.
  • the housing (60) includes a first engaging portion (63) with which the first engaging claw (N1) engages; and a second engaging portion (63) with which the second engaging claw (N2) engages, and the first engaging portion (63) is the tip of the first engaging claw (N1).
  • the second engaging portion (63) has a second surface (65) with which the tip of the second engaging claw (N2) contacts. , the base end portion of the first engaging claw (N1) and the base end portion of the second engaging claw (N2) in the back foil (70) when viewed from the axial direction of the housing (60).
  • the circumferential length A1 between longer than the length A2 in the circumferential direction.
  • the rotating shaft (35) rotates at high speed and vibrates, the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. Faces (65) are in contact. As a result, the energy of the vibration of the rotating shaft (35) is dissipated, so that the vibration of the rotating shaft (35) can be damped.
  • a tenth aspect comprises a tubular housing (60), a back foil (70) arranged along the inner peripheral surface of the housing (60), and an intermediate foil (70) arranged inside the back foil (70).
  • the intermediate foil (90) comprises a first engaging pawl (N1) formed on one side in the circumferential direction of the housing (60) and a second engaging pawl (N2) formed on the other side in the circumferential direction.
  • the back foil (70) has an insertion portion (70e) formed of a groove or a notch in a portion corresponding to the first engaging claw (N1) and the second engaging claw (N2).
  • the housing (60) has the first engaging claw (N1) and the second engaging claw (N2) extending radially outward from the inner peripheral surface of the housing (60).
  • An engaging portion (63) for engagement is formed, and each of the first engaging claw (N1) and the second engaging claw (N2) engages the engaging portion ( 63) is a radial foil bearing that engages.
  • the engaging portions (63) are formed on both side surfaces of the housing (60), and the first engaging claw (N1) and the second engaging claw (N1) (N2) are formed on both sides of the housing (60) in the axial direction of the intermediate foil (90), and the insertion portions (70e) are formed on both sides of the back foil (70) in the axial direction. It is formed at a position corresponding to the matching pawl (N1) and the second engaging pawl (N2).
  • the back foil (70) and the intermediate foil (90) are arranged with respect to the housing (60) in the circumferential direction, axial direction, and in at least one radial direction.
  • a thirteenth aspect is any one of the tenth to twelfth aspects, wherein the first engaging pawl (N1) and the second engaging pawl (N2) are connected to the housing ( 60) extending radially outwardly from the axially extending side edge of 60).
  • a fourteenth aspect is any one of the tenth to thirteenth aspects, wherein the width of the engaging portion (63) is five times or more the thickness of the intermediate foil (90).
  • the width of the engaging portion (63) is 0.3 mm or more.
  • the housing (60) includes a first engaging portion (63) with which the first engaging claw (N1) engages, and a second engaging portion (63) with which the second engaging pawl (N2) engages, the first engaging portion (63) being in contact with the first engaging pawl (N1).
  • the second engaging portion (63) has a second surface (65) with which the second engaging pawl (N2) contacts
  • the intermediate foil (90 ) includes a first contact portion (90a) where the first engaging claw (N1) and the insertion portion (70e) of the back foil (70) corresponding to the first engaging claw (N1) contact; a second contact portion (90b) with which the second engaging claw (N2) and the insertion portion (70e) of the back foil (70) corresponding to the second engaging claw (N2) contact; (60), the circumferential length B1 between the first contact portion (90a) and the second contact portion (90b) is equal to the first contact portion (60) in the housing (60). It is longer than the circumferential length B2 between the radially inner end of the first surface (64) and the radially inner end of the second surface (65).
  • the back foil (70) has bent portions ( 70d).
  • a twentieth aspect is any one of the first to nineteenth aspects, wherein the top foil (80) has a main body (81) wound along the outer peripheral surface of the rotating shaft (35).
  • the main body (81) has a first side edge (81a), which is a side edge on the front side in the rotation direction (P) of the rotating shaft (35), and a side edge on the rear side in the rotation direction (P).
  • the first side edge (81a) is located radially outside of the housing (60) relative to the second side edge (81b)
  • a through groove (61) extending along the axial direction of the housing (60) and accommodating the first side edge (81a) is formed in the inner peripheral surface of the housing (60). (61) is formed so that its depth direction coincides with the radial direction.
  • the first side edge (81a) of the top foil (80) is located radially outside the second side edge (81b), so the first side edge (81a) and the second side edge (81a)
  • the bearing can be assembled more easily than when the bearing is assembled by crossing the two side edges (81b).
  • the through groove (61) is formed so that the depth direction of the through groove (61) is aligned with the radial direction of the housing (60), the through groove (61) can be easily machined. As a result, the assembling workability of the radial foil bearing can be improved.
  • the engaging portions (63) are formed on both side surfaces of the housing (60), and the first engaging claw (N1) and the second engaging claw (N1) (N2) are formed on both axial sides of the housing (60) at the back foil (70), and the top foil (80) is located at the first side edge (81a) of the housing (60).
  • the housing (60) has protrusions (84) protruding outward from both ends in the axial direction of the housing (60).
  • the engagement recess (62) is formed to engage with the engagement recess (62), and the engagement recess (62) has a third surface (66) along the extending direction of the protrusion (84), and the engagement portion (63 ).
  • the radial foil bearing (26) can be applied to the compressor (20).
  • the compressor (20) provided with the radial foil bearing (26) can be applied to the refrigeration system (1).
  • FIG. 1 is a schematic configuration diagram of a refrigeration system according to Embodiment 1.
  • FIG. FIG. 2 is a schematic longitudinal sectional view showing the overall configuration of the turbocompressor.
  • FIG. 3 is a side view of a radial foil bearing.
  • FIG. 4 is a perspective view showing essential parts of the radial foil bearing.
  • FIG. 5 is a plan view of a flattened backfoil.
  • FIG. 6 is a side view of a flattened backfoil.
  • FIG. 7 is an enlarged side view of the periphery of the first back foil in the radial foil bearing.
  • 8 is a diagram corresponding to FIG. 3 according to Modification 1 of Embodiment 1.
  • FIG. 9 is a diagram corresponding to FIG.
  • a refrigerating device (1) shown in Fig. 1 includes a turbo compressor (hereinafter also referred to as a compressor (20)).
  • a refrigerating device (1) has a refrigerant circuit (1a) filled with a refrigerant.
  • the refrigerant circuit (1a) has a compressor (20), a radiator (2), a pressure reducing mechanism (3), and an evaporator (4).
  • the decompression mechanism (3) is an expansion valve.
  • the refrigerant circuit (1a) performs a vapor compression refrigeration cycle.
  • the refrigerator (1) is an air conditioner.
  • the air conditioner may be a cooling-only machine, a heating-only machine, or an air conditioner that switches between cooling and heating.
  • the air conditioner has a switching mechanism (for example, a four-way switching valve) that switches the circulation direction of the refrigerant.
  • the refrigerating device (1) may be a water heater, a chiller unit, a cooling device for cooling the air inside the refrigerator, or the like. Chillers cool the air inside refrigerators, freezers, containers, and the like.
  • the expansion mechanism consists of an electronic expansion valve, a temperature sensitive expansion valve, an expander, or a capillary tube.
  • the casing (21) has a body (22), a first closing portion (23), and a second closing portion (24).
  • the body (22) is formed in a tubular shape with both ends in the axial direction open.
  • the first closing portion (23) closes the open portion on one axial end side of the body portion (22).
  • the first closure (23) includes a housing (25) located in its center.
  • the second closing portion (24) closes the open portion on the other axial end side of the body portion (22).
  • the motor (30) has a stator (31) and a rotor (32).
  • the stator (31) is cylindrical.
  • the stator (31) is fixed to the inner peripheral surface of the body (22) of the casing (21).
  • the rotor (32) is provided inside the stator (31).
  • the motor (30) has its operating frequency (rotational speed) adjusted by an inverter device.
  • the compressor (20) is of a variable rotation speed inverter type. Therefore, the rotation speed of the motor (30) varies from a relatively low rotation speed to a relatively high rotation speed.
  • Rotating shaft The rotating shaft (35) is fixed to the axial center of the rotor (32).
  • the rotating shaft (35) is rotationally driven by the motor (30).
  • the rotating shaft (35) extends along the axial direction of the casing (21).
  • the radial foil bearing (26) supports the load (radial load) acting in the radial direction of the rotating shaft (35) among the loads acting on the rotating shaft (35).
  • the compressor (20) of this embodiment has two radial foil bearings (26). The number and location of radial foil bearings (26) is merely an example.
  • One radial foil bearing (26) is arranged near one end of the rotating shaft (35).
  • the other radial foil bearing (26) is arranged near the other end of the rotating shaft (35).
  • Each radial foil bearing (26) is fixed to the body (22) of the casing (21) via a bearing support (28).
  • Each radial foil bearing (26) rotatably supports the rotating shaft (35).
  • the thrust bearing (27) supports the load acting in the axial direction of the rotating shaft (35) (thrust load) among the loads acting on the rotating shaft (35).
  • the compressor (20) of this embodiment has one thrust bearing (27).
  • the number and location of thrust bearings (27) is merely an example.
  • the thrust bearing (27) is located near one end of the rotating shaft (35) (close to the compression mechanism (50)).
  • the thrust bearing (27) is fixed to the central portion of a bearing support (28) located near one end of the rotating shaft (35).
  • the thrust bearing (27) restricts axial movement of the rotating shaft (35).
  • the compression mechanism (50) is a centrifugal compression mechanism that imparts kinetic energy to the fluid by the centrifugal force of the impeller (51) and converts this kinetic energy into pressure.
  • the compression mechanism (50) includes a housing (25) and an impeller (51).
  • the impeller (51) has a plurality of blades.
  • a compression chamber (52) is formed between the housing (25) and the impeller (51).
  • the housing (25) is formed with a suction passageway (53) for sending fluid (refrigerant) to the compression chamber (52).
  • FIG. 3 The radial foil bearing (26) is generally cylindrical.
  • a radial foil bearing (26) comprises a bearing housing (60), a back foil (70) and a top foil (80).
  • axial direction refers to the direction of the axis of the rotating shaft (35)
  • radial direction refers to the axis of the rotating shaft (35)
  • circumferential direction is the circumferential direction with respect to the axis of the rotating shaft (35).
  • dial inner side is the side closer to the axis of the rotating shaft (35)
  • radial outer side is the side farther from the axis of the rotating shaft (35).
  • the bearing housing (60) corresponds to the housing of the present disclosure. As shown in Figure 3, the bearing housing (60) houses the top foil (80) and the back foil (70). In other words, the bearing housing (60) constitutes the outermost part of the radial foil bearing (26). The bearing housing (60) is arranged radially outwardly of the back foil (70). The bearing housing (60) is formed in a substantially cylindrical shape. The axis of the bearing housing (60) substantially coincides with the axis of the rotating shaft (35).
  • a plurality (three) of engaging portions (63) are formed on both side surfaces (both end surfaces in the axial direction) of the bearing housing (60).
  • the number of engaging portions (63) shown here is merely an example.
  • the engaging portion (63) is engaged with an engaging claw (N) of a back foil (70), which will be described later.
  • the engaging portions (63) are formed at predetermined intervals in the circumferential direction on one side surface of the bearing housing (60). In the present embodiment, the engaging portion (63) is formed at a position that divides the side surface of the bearing housing (60) into approximately three equal parts in the circumferential direction.
  • the width (length in the circumferential direction) of one of the three engaging portions (63) (the first engaging portion (63a)) is the same as that of the other two engaging portions (the second engaging portions (63a)). 63b) and longer than the width of the third engaging portion (63c)).
  • a first side edge (81a) of a top foil (80), which will be described later, is welded to the inner peripheral surface between the first engaging portions (63a) on both side surfaces of the bearing housing (60).
  • the radial foil bearing (26) has a weld (W) that welds the top foil (80) to the bearing housing (60).
  • the weld (W) is formed by spot welding the first side edge (81a) of the top foil (80) to the inner peripheral surface of the bearing housing (60). The weld (W) secures the top foil (80) to the bearing housing (60).
  • Each engaging portion (63) is configured by a concave portion recessed inward in the axial direction. Each engaging portion (63) extends radially outward from the inner peripheral surface to the outer peripheral surface of the bearing housing (60). In other words, each engaging portion (63) radially penetrates the bearing housing (60). Each engaging portion (63) is formed by cutting the bearing housing (60). The engaging portion (63) may be cut radially outward from the inner peripheral surface of the bearing housing (60) when viewed in the axial direction, and penetrates the outer peripheral surface of the bearing housing (60). It doesn't have to be.
  • the width (length in the circumferential direction) of the engaging portion (63) is at least five times the thickness of the back foil (70).
  • the width of the engaging portion (63) is sufficiently large relative to the thickness of the back foil (70).
  • the engaging portion (63) does not need to be formed by a special fine processing such as wire cutting, and can be formed by general cutting using an end mill or the like.
  • the width of the engaging portion (63) is 0.3 mm or more. In other words, the width of the engaging portion (63) is larger than the upper limit width of wire cutting. Thereby, the engaging portion (63) can be formed by general cutting work without being formed by fine processing such as wire cutting. As a result, the time required to process the engaging portion (63) can be shortened, and the manufacturing cost can be reduced.
  • the back foil (70) elastically supports the top foil (80).
  • the back foil (70) is arranged radially outside the top foil (80).
  • a back foil (70) is positioned between the bearing housing (60) and the top foil (80).
  • the back foil (70) is arranged along the inner peripheral surface of the bearing housing (60).
  • the back foil (70) is formed into a thin plate.
  • the back foil (70) of this embodiment is a bump foil.
  • the back foil (70) may be something other than a bump foil (eg, a spring foil, etc.).
  • the radial foil bearing (26) of this embodiment is provided with a plurality (three) of back foils (70) along the circumferential direction of the bearing housing (60). As shown in FIGS. 5 and 6, each back foil (70) is corrugated. Each back foil (70) is formed in a substantially arc shape when viewed from the axial direction. The three back foils (70) are arranged in a generally cylindrical shape as a whole.
  • Each back foil (70) is circumferentially alternately formed with flat valleys (70a) contacting the bearing housing (60) and curved peaks (70b) contacting the top foil (80). be.
  • the peak (70b) protrudes radially inward when inserted into the bearing housing (60).
  • Each back foil (70) elastically supports the top foil (80) by its ridges (70b).
  • fluid passages are formed in the axial direction by the peaks (70b) and valleys (70a) of the back foil (70).
  • Each back foil (70) has four engaging claws (N).
  • the engaging claws (N) consist of a first engaging claw (N1) formed on one circumferential side of the bearing housing (60) in each back foil (70) and a first engaging claw (N1) formed on the other circumferential side of the bearing housing (60). and a second engaging pawl (N2) formed on the side.
  • the first engaging pawl (N1) and the second engaging pawl (N2) are formed at both ends of the back foil (70) in the axial direction of the bearing housing (60).
  • the first engaging claw (N1) and the second engaging claw (N2) may be formed only at one axial end of the back foil (70).
  • Each of the engaging claws (N1, N2) extends radially outward from the axially extending side edge of the bearing housing (60) of the back foil (70).
  • each of the first engaging pawl (N1) and the second engaging pawl (N2) is bent substantially at a right angle in a direction opposite to the direction in which the peak (70b) protrudes. formed by being
  • each of the first engaging pawl (N1) and the second engaging pawl (N2) of each back foil (70) engages with the engaging portion (63) of the corresponding bearing housing (60).
  • the back foil (70) is held in the bearing housing (60). This can prevent the back foil (70) from falling off from the bearing housing (60) in the radial direction.
  • the back foil (70) is not secured to the bearing housing (60) by welding, the back foil (70) is not distorted by welding. Therefore, the radial foil bearing (26) can be manufactured without lowering the performance as a bearing.
  • the tips of the first engaging claws (N1) and the second engaging claws (N2) of each back foil (70) are the engaging portions (63) with which the respective engaging claws (N1, N2) engage. contact the inner surface.
  • the first engaging claw (N1) and the second engaging claw (N2) are configured to be elastically deformable.
  • each back foil (70) when the back foil (70) receives radial force from the top foil (80), the first engaging pawl (N1) and the second engaging pawl (N2) elastically deform with their tips serving as fulcrums. Thereby, it moves relative to the bearing housing (60). Since each back foil (70) can move relative to the bearing housing (60) in this way, when the rotating shaft (35) rotates at a high speed and vibrates, each back foil (70) can move to surrounding parts. and the energy of the vibration is dissipated. As a result, the vibration of the rotating shaft (35) can be damped.
  • the second engaging portion (63b) with which the first engaging claw (N1) of the first back foil (71) engages is the It has a first surface (64) with which the tip contacts.
  • the first engaging portion (63a) with which the second engaging claw (N2) of the first back foil (71) engages is the second surface (65) with which the tip of the second engaging claw (N2) contacts. ).
  • the second engaging portion (63b) corresponds to the first engaging portion (63) of the present disclosure.
  • the first engaging portion (63a) corresponds to the second engaging portion (63) of the present disclosure.
  • the first engaging claw (N1) and the first surface (64) are separated from each other.
  • a small gap (G) is formed between the second engaging claw (N2) and the second surface (65).
  • the first engaging claw (N1) of one back foil (70) of the mutually adjacent back foils (70) is connected to the second engaging claw (N2) of the other back foil (70). ) are placed opposite each other.
  • the first engaging claw (N1) of the first back foil (71) is arranged to face the second engaging claw (N2) of the second back foil (72).
  • the first engaging claw (N1) of the second back foil (72) and the second engaging claw (N2) of the third back foil (73) are arranged to face each other.
  • the first engaging claw (N1) of the third back foil (73) and the second engaging claw (N2) of the first back foil (71) are arranged to face each other.
  • the first engaging claw (N1) of one back foil (70) and the second engaging claw (N2) of the other back foil (70), which are arranged to face each other, are It engages with the engaging portion (63).
  • the first engaging portion (63a) includes a first engaging claw (N1) of the third back foil (73) and a second engaging claw (N2) of the first back foil (71). engages.
  • the first engaging claw (N1) of the first back foil (71) and the second engaging claw (N2) of the second back foil (72) are engaged with the second engaging portion (63b).
  • the first engaging claw (N1) of the second back foil (72) and the second engaging claw (N2) of the third back foil (73) are engaged with the third engaging portion (63c).
  • the back foil (70) is configured to be movable relative to the bearing housing (60) in at least one of the circumferential, axial and radial directions of the bearing housing (60).
  • the back foil (70) of this embodiment is configured to be relatively movable in the circumferential, axial and radial directions of the bearing housing (60).
  • the back foil (70) when assembling the radial foil bearing (26), the back foil (70) is wound with a margin to allow slight movement in the circumferential, axial and radial directions, and the bearing housing ( 60). Thereby, the back foil (70) is configured to be slightly movable relative to the bearing housing (60) in the circumferential, axial and radial directions.
  • “slightly moved” means the amount of movement to such an extent that the back foil (70) does not fall out of the bearing housing (60).
  • the top foil (80) is formed into a thin plate made of metal.
  • the top foil (80) is formed in a rectangular shape with long sides in the circumferential direction and short sides in the axial direction.
  • the top foil (80) has a main body (81) wound along the outer peripheral surface of the rotating shaft (35).
  • the top foil (80) of this embodiment is composed only of the main body (81).
  • the main body (81) has a first side edge (81a) and a second side edge (81b).
  • the first side edge (81a) is a side edge on the front side in the rotation direction (P) of the rotating shaft (35).
  • the second side edge (81b) is a side edge on the rear side in the rotation direction (P) of the rotating shaft (35).
  • a welded portion (W) is formed in the first side edge (81a). The weld (W) secures the top foil (80) to the bearing housing (60).
  • the rotating shaft (35) When the rotating shaft (35) is stopped, the top foil (80) is urged toward the rotating shaft (35) by the back foil (70) and is in close contact with the rotating shaft (35).
  • the rotating shaft (35) starts rotating in the rotating direction (P) shown in FIG.
  • the rotating shaft (35) starts rotating at a low speed and then gradually accelerates to a high speed.
  • ambient fluid is drawn in between the second side edge (81b) of the top foil (80) and one end of the back foil (70), causing the top foil (80) and the rotating shaft to move.
  • Ambient fluid flows between (35). Thereby, a fluid lubricating film is formed between the top foil (80) and the rotating shaft (35).
  • the back foil (70) includes a first engaging claw (N1) formed on one circumferential side of the bearing housing (60) and a second engaging claw (N1) formed on the other circumferential side of the bearing housing (60). with claws (N2).
  • a first engaging claw (N1) and a second engaging claw (N2) are engaged with the side surface of the bearing housing (60), extending radially outward from the inner peripheral surface of the bearing housing (60).
  • An engaging portion (63) is formed.
  • the bearing housing (60) is sandwiched by engaging the first engaging claw (N1) and the second engaging claw (N2) with the corresponding engaging portions (63).
  • a part (63) can be formed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
  • both ends of the back foil on one side in the circumferential direction are fixed to the bearing housing (60) by welding or the like.
  • the other circumferential side of the back foil can move freely. Therefore, if the radial foil bearing (26) is impacted by a disturbance or the like, the position of the back foil is greatly displaced, and the top foil cannot be properly supported. As a result, the performance as a radial foil bearing could not be exhibited in some cases.
  • the back foil (70) of the present embodiment is fixed to the bearing housing (60) by sandwiching the bearing housing (60) between the first engaging claw (N1) and the second engaging claw (N2). . Since the back foil (70) is not fixed to the bearing housing (60) by welding or the like, the back foil (70) is not distorted due to welding heat. As a result, the bearing surface is not distorted, so that deterioration of performance as the radial foil bearing (26) can be suppressed.
  • the engaging portions (63) are formed on both side surfaces of the bearing housing (60).
  • the first engaging claw (N1) and the second engaging claw (N2) of the back foil (70) are formed on both sides in the axial direction. According to this, the back foil (70) is restricted from moving to both sides in the axial direction.
  • the back foil (70) is configured to be circumferentially, axially and radially movable relative to the bearing housing (60). According to this, for example, when the rotating shaft (35) rotates at high speed and vibrates, the back foil (70) to which the vibration is transmitted moves in one of the circumferential direction, the axial direction, and the radial direction. and collide with surrounding parts. This collision dissipates the energy of the vibration, so that the vibration of the rotating shaft (35) can be damped.
  • the first engaging pawl (N1) and the second engaging pawl (N2) extend radially outward from the side edge of the back foil (70) extending along the axial direction of the bearing housing (60). Extend. According to this, the first engaging claw (N1) and the second engaging claw (N2) sandwich the bearing housing (60) in the circumferential direction. Thereby, a large movement of the back foil (70) in the circumferential direction can be restricted.
  • the width of the engaging portion (63) is at least five times the thickness of the back foil (70). According to this, the width of the engaging portion (63) can be formed to be sufficiently large with respect to the plate thickness of the back foil (70). It is easy to form the part (63).
  • the width of the engaging portion (63) is 0.3 mm or more. According to this, since the width of the engaging portion (63) is 0.3 mm or more, the engaging portion (63) can be formed without delicate processing such as wire cutting.
  • a plurality of back foils (70) are provided along the circumferential direction.
  • the first engaging claw (N1) of one back foil (70) of the mutually adjacent back foils (70) is arranged to face the second engaging claw (N2) of the other back foil (70). be.
  • the first engaging claw (N1) of one back foil (70) and the second engaging claw (N2) of the other back foil (70) engage one engaging portion (63).
  • each of the first engaging claw (N1) and the second engaging claw (N2) is the inner surface of the engaging portion (63) corresponding to each engaging claw (N1, N2). come into contact with
  • the back foil (70) is configured to be movable relative to the bearing housing (60) by elastically deforming the first engaging claw (N1) and the second engaging claw (N2).
  • the circumferential length A1 of the back foil (70) is longer than the circumferential length A2 of the bearing housing (60), the first engaging claw (N1) and the first surface (64) ) and between the second engaging claw (N2) and the second surface (65).
  • the rotating shaft (35) rotates at high speed and vibrates, the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. Faces (65) are in contact.
  • the energy of the vibration of the rotating shaft (35) is dissipated, so that the vibration of the rotating shaft (35) can be damped.
  • the second engaging claw (N2) of the first back foil (71) engages with the first engaging portion (63a).
  • the first engaging claw (N1) of the first back foil (71) engages with the second engaging portion (63b).
  • the second engaging claw (N2) of the second back foil (72) engages with the third engaging portion (63c).
  • the first engaging claw (N1) of the second back foil (72) engages with the fourth engaging portion (63d).
  • the second engaging claw (N2) of the third back foil (73) engages with the fifth engaging portion (63e).
  • the first engaging claw (N1) of the third back foil (73) engages with the sixth engaging portion (63f).
  • the engaging claws (N1, N2) of the back foil (70) and the first surface (64) or second surface (65) of the engaging portion (63) corresponding to the engaging claws (N1, N2) ) does not need to be formed.
  • the back foil (70) of this modification corresponds to the engaging portions. (63) does not match the position of the corner.
  • the back foil (70) of this modified example corresponds to the corners of the base ends of the engaging claws (N1, N2) and the engaging claws (N1, N2) compared to the back foil of the first embodiment. Since there is no need to align the corners of the engaging portion (63), there is no need to chamfer the corners of the engaging portion (63).
  • the engaging claws (N1, N2) may extend radially outward from both ends of the circumferentially extending side edges of the back foil (70).
  • each of the first engaging pawl (N1) and the second engaging pawl (N2) holds the back foil (70) in the bearing housing (60) by sandwiching the bearing housing (60) in the axial direction. .
  • first engaging claws (N1) and the second engaging claws (N2) of each back foil (70) are formed at positions corresponding to the engaging portions (63) formed of holes. Thereby, the first engaging claw (N1) and the second engaging claw (N2) of the back foil (70) engage with the engaging portion (63) of the bearing housing (60).
  • FIG. A radial foil bearing (26) of this embodiment will be described in detail with reference to FIGS. 12 to 15.
  • FIG. A radial foil bearing (26) comprises a bearing housing (60), a back foil (70), a top foil (80) and an intermediate foil (90).
  • the bearing housing (60) accommodates the top foil (80), the back foil (70) and the intermediate foil (90).
  • An intermediate foil (90) is arranged between the back foil (70) and the top foil (80).
  • the intermediate foil (90) is arranged radially inside the back foil (70).
  • the top foil (80) is arranged between the intermediate foil (90) and the rotating shaft (35).
  • the back foil (70) of this embodiment has four insertion portions (70e).
  • a first engaging claw (N1) and a second engaging claw (N2) of an intermediate foil (90), which will be described later, are inserted through the insertion portion (70e).
  • the insertion portion (70e) is formed at a position corresponding to the first engaging claw (N1) and the second engaging claw (N2).
  • the insertion portions (70e) are formed at both ends in the circumferential direction and both ends in the axial direction of each back foil (70).
  • the insertion portions (70e) are formed at the four corners of the back foil (70).
  • the insertion portion (70e) of this embodiment is configured by a notch.
  • the intermediate foil (90) serves to further dampen the vibration of the rotating shaft (35).
  • the intermediate foil (90) is formed in the shape of a sheet.
  • An intermediate foil (90) is wrapped along the inner surface of the back foil (70).
  • Each intermediate foil (90) has four engaging claws (N).
  • the engaging claws (N) are composed of a first engaging claw (N1) formed on one side of the bearing housing (60) in the circumferential direction of each intermediate foil (90) and a first engaging claw (N1) formed on the other side of the bearing housing (60) in the circumferential direction. and a second engaging pawl (N2) formed on the side.
  • the first engaging pawl (N1) and the second engaging pawl (N2) are formed on both ends of the intermediate foil (90) in the axial direction of the bearing housing (60).
  • the first engaging claw (N1) and the second engaging claw (N2) may be formed only at one axial end of the intermediate foil (90).
  • each engaging pawl (N1, N2) extends radially outward from the axially extending side edge of the bearing housing (60) of the intermediate foil (90).
  • each of the first engaging claw (N1) and the second engaging claw (N2) is bent substantially perpendicularly in the direction opposite to the direction in which the peaks (70b) of the back foil (70) protrude. formed by
  • each of the first engaging pawl (N1) and the second engaging pawl (N2) of each intermediate foil (90) is connected to the corresponding bearing housing ( 60) engages with the engaging portion (63).
  • the intermediate foil (90) and the back foil (70) are held together by the bearing housing (60). ).
  • This can prevent the intermediate foil (90) and the back foil (70) from falling off from the bearing housing (60) in the radial direction.
  • the back foil (70) is not secured to the bearing housing (60) by welding, the back foil (70) is not distorted by welding. Therefore, the radial foil bearing (26) can be manufactured without lowering the performance as a bearing.
  • the intermediate foil (90) when the intermediate foil (90) receives radial force from the top foil (80), the first engaging claw (N1) and the second engaging claw (N2) are elastically deformed with their tips serving as fulcrums. Thereby, it moves relative to the bearing housing (60). Since each intermediate foil (90) can move relative to the bearing housing (60) in this way, when the rotating shaft (35) rotates at high speed and vibrates, each intermediate foil (90) will move to the surrounding parts. and the energy of the vibration is dissipated. As a result, the vibration of the rotating shaft (35) can be damped.
  • a circumferential length B1 between the first contact portion (90a) and the second contact portion (90b) of the first intermediate foil (91) when the bearing housing (60) is viewed from the axial direction is the bearing longer than the circumferential length B2 between the radially inner end of the first surface (64) and the radially inner end of the second surface of the housing (60).
  • the "circumferential length” referred to here is the length of an imaginary curve having the same radius of curvature as the radius of curvature of the inner peripheral surface of the bearing housing (60).
  • a small gap (G) is formed between the second engaging claw (N2) and the second surface (65).
  • the first engaging claw (N1) of one of the adjacent intermediate foils (90) engages the second engaging claw (N1) of the other intermediate foil (90). It is arranged opposite to the nail (N2). Specifically, the first engaging claw (N1) of the first intermediate foil (91) is arranged to face the second engaging claw (N2) of the second intermediate foil (92). The first engaging pawl (N1) of the second intermediate foil (92) and the second engaging pawl (N2) of the third intermediate foil (93) are arranged to face each other. The first engaging claw (N1) of the third intermediate foil (93) and the second engaging claw (N2) of the first intermediate foil (91) are arranged to face each other.
  • the intermediate foil (90) is configured to be movable relative to the bearing housing (60) in at least one of the circumferential, axial and radial directions of the bearing housing (60).
  • the intermediate foil (90) of this embodiment is configured to be relatively movable in the circumferential, axial and radial directions of the bearing housing (60).
  • the intermediate foil (90) when assembling the radial foil bearing (26), the intermediate foil (90) is wound with a margin of slight circumferential, axial and radial movement, and the bearing housing ( 60). Thereby, the intermediate foil (90) is configured to be slightly movable relative to the bearing housing (60) in the circumferential, axial and radial directions.
  • “slightly moved” refers to the amount of movement that the intermediate foil (90) does not fall out of the bearing housing (60).
  • the width (length in the circumferential direction) of the engaging portion (63) of the bearing housing (60) is at least five times the plate thickness of the intermediate foil (90).
  • the width of the engaging portion (63) is sufficiently large relative to the thickness of the intermediate foil (90).
  • the engaging portion (63) does not need to be formed by a special fine processing such as wire cutting, and can be formed by general cutting using an end mill or the like.
  • the intermediate foil (90) includes a first engagement claw (N1) formed on one circumferential side of the bearing housing (60) and a second engagement claw (N1) formed on the other circumferential side of the bearing housing (60). with claws (N2).
  • the back foil (70) has insertion portions (70e) formed of grooves or cutouts in portions corresponding to the first engaging claws (N1) and the second engaging claws (N2).
  • a first engaging claw (N1) and a second engaging claw (N2) are engaged with the side surface of the bearing housing (60), extending radially outward from the inner peripheral surface of the bearing housing (60).
  • An engaging portion (63) is formed. Each of the first engaging claw (N1) and the second engaging claw (N2) engages the engaging portion (63) through the insertion portion (70e).
  • the first engaging claw (N1) and the second engaging claw (N2) of the intermediate foil (90) are attached to the corresponding engaging portions (63) of the bearing housing (60), and the back foil (
  • the bearing housing (60) is sandwiched by engaging through the insertion portion (70e) of 70). This holds the back foil (70) to the bearing housing (60).
  • a part (63) can be formed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
  • both ends of the back foil on one side in the circumferential direction are fixed to the bearing housing (60) by welding or the like.
  • the other circumferential side of the back foil can move freely. Therefore, if the radial foil bearing (26) is impacted by a disturbance or the like, the position of the back foil is greatly displaced, and the top foil cannot be properly supported. As a result, the performance as a radial foil bearing could not be exhibited in some cases.
  • the intermediate foil (90) of the present embodiment sandwiches the bearing housing (60) with the first engaging claw (N1) and the second engaging claw (N2), thereby connecting the back foil (70) to the bearing housing ( 60). Since the back foil (70) is not fixed to the bearing housing (60) by welding or the like, the back foil (70) is not distorted due to welding heat. As a result, the bearing surface is not distorted, so that deterioration of performance as the radial foil bearing (26) can be suppressed.
  • the back foil (70) and the intermediate foil (90) are configured to be circumferentially, axially and radially movable relative to the bearing housing (60).
  • the intermediate foil (90) or the back foil (70) to which the vibration is transmitted travels in the circumferential, axial and radial directions. Move in one direction and collide with surrounding parts. This collision dissipates the energy of the vibration, so that the vibration of the rotating shaft (35) can be damped.
  • the provision of the intermediate foil (90) increases the number of collision points with peripheral parts, making it easier to dissipate vibration energy compared to the radial foil bearing (26) without the intermediate foil (90).
  • the first engaging pawl (N1) and the second engaging pawl (N2) extend radially outward from the side edge of the intermediate foil (90) extending along the axial direction of the bearing housing (60). Extend. According to this, the first engaging claw (N1) and the second engaging claw (N2) sandwich the bearing housing (60) in the circumferential direction. This restricts the intermediate foil (90) and the back foil (70) from moving significantly in the circumferential direction.
  • the width of the engaging portion (63) is at least five times the thickness of the intermediate foil (90). According to this, the width of the engaging portion (63) can be formed to be sufficiently large with respect to the plate thickness of the intermediate foil (90). It is easy to form the part (63).
  • the width of the engaging portion (63) is 0.3 mm or more. According to this, since the width of the engaging portion (63) is 0.3 mm or more, the engaging portion (63) can be formed without delicate processing such as wire cutting.
  • a plurality of intermediate foils (90) are provided along the circumferential direction.
  • the first engaging claw (N1) of one of the adjacent intermediate foils (90) is arranged to face the second engaging claw (N2) of the other intermediate foil (90). be.
  • the first engaging claw (N1) of one intermediate foil (90) and the second engaging claw (N2) of the other intermediate foil (90) engage one engaging portion (63).
  • each of the first engaging claw (N1) and the second engaging claw (N2) is the inner surface of the engaging portion (63) corresponding to each engaging claw (N1, N2). come into contact with
  • the intermediate foil (90) is configured to be movable relative to the bearing housing (60) by elastically deforming the first engaging claw (N1) and the second engaging claw (N2).
  • the tip of each of the first engaging claw (N1) and the second engaging claw (N2) comes into contact with the inner surface of the engaging portion (63), so that the intermediate foil (90) and the back foil (70) is retained in the bearing housing (60).
  • the engagement claws (N1, N2) are elastically deformed to move the intermediate foil (90) relative to the bearing housing (60).
  • the intermediate foil (90) or the back foil (70) collides with surrounding parts to dissipate the energy of the vibration.
  • the vibration of the rotating shaft (35) can be damped.
  • the provision of the intermediate foil (90) increases the number of collision points with peripheral parts, making it easier to dissipate vibration energy compared to the radial foil bearing (26) without the intermediate foil (90).
  • the bearing housing (60) has a first engaging portion (63) with which the first engaging claw (N1) engages, and a second engaging portion (63) with which the second engaging claw (N2) engages. and an engaging portion (63).
  • the first engaging portion (63) has a first surface (64) with which the first engaging pawl (N1) contacts.
  • the second engaging portion (63) has a second surface (65) with which the second engaging pawl (N2) contacts.
  • the intermediate foil (90) has a first contact portion (90a) where the first engaging claw (N1) and the insertion portion (70e) of the back foil (70) corresponding to the first engaging claw (N1) come into contact.
  • the circumferential length B1 of the intermediate foil (90) is longer than the circumferential length B2 of the bearing housing (60), the first engaging pawl (N1) and the first surface (64) ) and between the second engaging claw (N2) and the second surface (65).
  • the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. Faces (65) are in contact.
  • the energy of the vibration of the rotating shaft (35) is dissipated, so that the vibration of the rotating shaft (35) can be damped.
  • the provision of the intermediate foil (90) increases the number of collision points with peripheral parts, making it easier to dissipate vibration energy compared to the radial foil bearing (26) without the intermediate foil (90).
  • the back foil (70) has bent portions (70d) extending radially inwardly of the bearing housing (60) from both side edges in the circumferential direction. According to this, the position of the back foil (70) with respect to the intermediate foil (90) is held by the bend (70d). As a result, it is possible to prevent the back foil (70) from coming off due to a large circumferential movement of the back foil (70) and displacement of the back foil (70).
  • one engaging claw (N1, N2) of the intermediate foil (90) may engage one engaging portion (63) of the bearing housing (60).
  • the engaging portions (63) of the bearing housing (60) may be provided in the same number as the engaging claws (N1, N2) of the intermediate foil (90).
  • the bearing housing (60) of this modified example has six engaging portions (63) formed on both side surfaces, respectively, as in the first modified example of the first embodiment.
  • the second engaging claw (N2) of the first intermediate foil (91) engages with the first engaging portion (63a).
  • the first engaging claw (N1) of the first intermediate foil (91) engages with the second engaging portion (63b).
  • the second engaging claw (N2) of the second intermediate foil (92) engages with the third engaging portion (63c).
  • the first engaging claw (N1) of the second intermediate foil (92) engages with the fourth engaging portion (63d).
  • the second engaging claw (N2) of the third intermediate foil (93) engages with the fifth engaging portion (63e).
  • the first engaging claw (N1) of the third intermediate foil (93) engages with the sixth engaging portion (63f).
  • the engaging claws (N1, N2) of the intermediate foil (90) and the first surface (64) or the second surface (65) of the engaging portion (63) corresponding to the engaging claws (N1, N2) ) does not need to be formed.
  • the insertion portions (70e) of the back foils (70) may be composed of grooves formed at the four corners of each back foil (70). good. Specifically, each back foil (70) has a protrusion (70c) at the circumferential end of the back foil (70). The projection (70c) extends axially outward from the end of the back foil (70).
  • the insertion portion (70e) is composed of a slit-like groove formed inside the projecting piece (70c).
  • the protrusion ( 70c) restricts a large movement outward in the circumferential direction, so that the back foil (70) can be prevented from coming off.
  • the insertion portions (70e) are formed by grooves formed on one side and the other side of each back foil (70) in the circumferential direction. may be In other words, the insertion portions (70e) do not have to be formed at the four corners of each back foil (70).
  • one insertion portion (70e) is formed by a ridge (70b) at one end in the circumferential direction of the back foil (70) and a ridge (70b) at the one end. It is composed of slit-shaped grooves extending in the axial direction in the valley (70a) between adjacent peaks (70b).
  • Another insertion portion (70e) is a valley between a peak (70b) at the other end in the circumferential direction of the back foil (70) and a peak (70b) adjacent to the peak (70b) at the other end. It consists of a slit-shaped groove extending axially in the portion (70a).
  • the first engaging claw (N1) and the second engaging claw (N2) of the intermediate foil (90) are formed at positions corresponding to the insertion portions (70e) of the intermediate foil (90).
  • the engaging claws (N1, N2) of the intermediate foil (90) engage with the engaging portion (63) of the bearing housing (60) through the insertion portion (70e) of this modification, thereby Since a large movement in both directions is restricted, the back foil (70) can be prevented from coming off.
  • the back foil (70) has bent portions (70d) extending radially inward of the bearing housing (60) at both side edges in the circumferential direction.
  • the bent portion (70d) bends the side edges on both circumferential sides of the back foil (70) into the first engaging claw (N1) and the second engaging claw (N2) of the intermediate foil (90). is formed by bending in the direction opposite to the direction in which it extends.
  • Each engaging portion (63) of the bearing housing (60) in this embodiment may be configured as a hole. In other words, each engaging portion (63) need not be formed on the side surface of the bearing housing (60). Specifically, each engaging portion (63) may be formed at a position closer to the center in the axial direction of the bearing housing (60). It extends from the inner peripheral surface of the bearing housing (60) toward the outer peripheral surface.
  • first engaging claw (N1) and the second engaging claw (N2) of each intermediate foil (90) are formed at positions corresponding to the engaging portions (63) formed by holes.
  • the insertion portion (70e) of each back foil (70) is also formed at a position corresponding to the engagement portion (63).
  • the radial foil bearing (26) of the present embodiment differs from the radial foil bearing (26) of the second embodiment in the configuration of the bearing housing (60) and the top foil (80).
  • the points of the radial foil bearing (26) of this embodiment that are different from those of the first embodiment will be described.
  • a through groove (61) extending along the axial direction of the bearing housing (60) is formed in the inner peripheral surface of the bearing housing (60) of the present embodiment.
  • the through groove (61) accommodates the first side edge (81a) of the top foil (80).
  • the through groove (61) axially penetrates the inner peripheral surface of the bearing housing (60).
  • the through groove (61) is recessed radially outward from the inner peripheral surface of the bearing housing (60).
  • the inner peripheral surface of the bearing housing (60) is the surface that holds the back foil (70).
  • the through groove (61) is formed in a substantially rectangular shape when viewed from the axial direction.
  • the through groove (61) has a length in the depth direction that is shorter than a length in the width direction.
  • the through groove (61) is formed such that its depth direction coincides with the radial direction of the bearing housing (60).
  • the through groove (61) is formed such that its width direction is substantially perpendicular to the depth direction of the through groove (61).
  • the through groove (61) is formed so that the depth direction of the through groove (61) is aligned with the radial direction of the bearing housing (60), the through groove (61) can be easily machined. Thereby, the workability of the radial foil bearing (26) can be improved. Further, since the length of the through groove (61) in the width direction can be formed to some extent, the first side edge (81a) of the top foil (80) can be easily arranged in the through groove (61).
  • An engagement recess (62) is formed in the bearing housing (60) of the present embodiment.
  • the engagement recess (62) is engaged with a protrusion (84) of the top foil (80), which will be described later.
  • the engaging recesses (62) are formed one each on both side surfaces (both axial end surfaces) of the bearing housing (60).
  • the engagement recess (62) is provided in the first engagement portion (63a) of the bearing housing (60). In other words, the first engaging portion (63a) also serves as the engaging recess (62).
  • the engagement recess (62) has a third surface (66) which is a side surface extending along the extending direction E of the protrusion (84) shown in FIG.
  • the third surface (66) is a part of the inner surface of the engagement recess (62) on the front side in the rotation direction (P) of the rotating shaft (35).
  • the third surface (66) is an inner surface closer to the outer peripheral edge of the bearing housing (60) than the front inner surface in the rotational direction (P) of the engagement recess (62).
  • the top foil (80) has a main body (81) and a protrusion (84).
  • the protrusion (84) protrudes circumferentially outward from the first side edge (81a) of the main body (81).
  • the protrusions (84) are provided at both ends in the axial direction of the first side edge (81a).
  • the top foil (80) is wound so that the first side edge (81a) is located radially outside the second side edge (81b).
  • the top foil (80) does not meet or cross the first side edge (81a) and the second side edge (81b).
  • the second side edge (81b) is in contact with the inner surface of the main body (81). Specifically, the main body (81) is pressed radially outward by the second side edge (81b).
  • the body portion (81) of the top foil (80) has a drop-shaped portion (82) and an extension portion (83).
  • the drop-shaped portion (82) is formed in a teardrop shape with the second side edge (81b) as the apex when the top foil (80) is viewed from the axial direction.
  • the extending portion (83) is a portion of the main body (81) other than the drop-shaped portion (82).
  • the extending portion (83) is a portion formed on the side of the first side edge (81a).
  • the body portion (81) has a drop-shaped portion (82) to form a non-circular bearing surface on the top foil (80).
  • the extending portion (83) extends tangentially at a predetermined position of the drop-shaped portion (82).
  • the point of contact F is the position where the top foil (80) and the base end of the second engaging claw (N2) of the first intermediate foil (91) come into contact.
  • the extending portion (83) extends in the tangential direction (extending direction E shown in FIG. 21) of the point of contact F in the drop-shaped portion (82).
  • Each projecting portion (84) is inserted and engaged through the inner surface of the through groove (61) so as to be in contact with the third surface (66) of the engaging recess (62).
  • the protrusion (84) is guided by the third surface (66) and inserted into the engagement recess (62).
  • the first side edge (81a) is fitted and housed in the through groove (61) of the bearing housing (60).
  • Each projecting portion (84) extends in the extending direction E of the extending portion (83) of the body portion (81) when the top foil (80) is accommodated in the bearing housing (60).
  • the first side edge (81a) and the second side edge (81b) of the top foil (80) are not fixed to either.
  • the first side edge (81a) and the second side edge (81b) are configured to be freely movable. Since the first side edge (81a) and the second side edge (81b) are not fixed by welding or the like, distortion of the top foil (80) due to heat during welding can be suppressed.
  • first side edge portion (81a) and the second side edge portion (81b) are butted or crossed for assembly, they are inserted into the bearing housing while they are butted or crossed. and adjust the position of the top foil.
  • the first side edge (81a) is positioned radially outward of the second side edge (81b), so that the top foil (80) can be wound without worrying about the winding state. It can be easily assembled by inserting it into the bearing housing (60). As a result, the ease of assembly of the radial foil bearing (26) can be improved.
  • first side edge (81a) and the second side edge (81b) do not intersect, even if an impact is transmitted to the radial foil bearing (26) due to disturbance or the like, the first side edge (81a) is and the second side edge (81b) can be prevented from colliding and being damaged.
  • the through-groove (61) is formed so that the depth direction of the through-groove (61) is aligned with the radial direction of the bearing housing (60), a general machining method such as that used for keyway machining can be used.
  • the through groove (61) can be formed by In other words, since the through groove (61) can be formed without using a special processing method such as wire cutting, the through groove (61) can be easily processed. Thereby, the workability of the radial foil bearing (26) can be improved.
  • recesses or protrusions may be provided on the inner surface of the through groove (61) to lock the tip of the top foil (80). Conceivable. In such a case as well, it is necessary to form concave portions and convex portions on the inner surface of the through groove (61) using a fine and special processing method such as wire cutting.
  • the top foil (80) is engaged with the through groove (61) formed so that the depth direction is the radial direction of the bearing housing (60). ) is held in the bearing housing (60), the through groove (61) can be easily machined without fine machining of the inner surface of the through groove (61).
  • the top foil (80) of this embodiment has a protrusion (84) that protrudes outward from the first side edge (81a) of the main body (81).
  • the protrusions (84) are formed on both ends in the axial direction of the first side edge (81a).
  • Engagement recesses (62) that engage with the protrusions (84) are formed on both side surfaces of the bearing housing (60). The engaging recess (62) communicates with the through groove (61).
  • the protruding portion (84) of the top foil (80) is inserted and engaged with the corresponding engaging portion (63) via the through groove (61) of the bearing housing (60).
  • the axial inner edge (84a) of the protrusion (84) contacts the bottom surface (67) of the engagement recess (62), thereby Large axial movement of the foil (80) to both sides can be restricted.
  • the engagement recess (62) has a third surface (66) along the extending direction E of the corresponding protrusion (84).
  • the third surface (66) of the engaging recess (62) and the projecting portion (84) are in surface contact.
  • vibrational energy of the rotating shaft (35) is converted into heat energy of friction generated at the contact surface between the engaging recess (62) and the protrusion (84), thereby damping the vibration of the rotating shaft (35).
  • the protrusion (84) is less likely to wear out than when they are in point contact.
  • the bearing housing (60) is more flexible than when the engagement recess (62) is separately provided. The number of times to process is reduced. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
  • the radial foil bearing (26) of the above embodiment may be applied to a two-stage turbo compressor (20) having two compression mechanisms (50).
  • the radial foil bearing (26) of the above embodiment may be applied to compressors other than the turbo compressor (20).
  • the present disclosure is useful for radial foil bearings, compressors, and refrigerators.
  • Refrigeration equipment 20 Compressor 26 Radial foil bearing 35 Rotating shaft 60 Bearing housing (housing) 62 Engagement concave portion 63 Engagement portion 64 First surface 65 Second surface 66 Third surface 70 Back foil 70d bend 70e Passing part 80 Top foil 81 Body part 81a first side edge 81b second side edge 84 protrusion 90 intermediate foil 90a First contact part 90b Second contact portion N Engaging pawl N1 First engaging pawl N2 Second engaging pawl P Rotational direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Support Of The Bearing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Each of back foils (70) of a radial foil bearing (26) has a first engaging claw (N1) formed on one side in the circumferential direction of a housing (60) and a second engaging claw (N2) formed on the other side in the circumferential direction. On a side surface of the housing (60), engaging portions (63) each of which extends from the inner peripheral surface of the housing (60) to the radially outer side and with each of which first engaging claw (N1) and each second engaging claw (N2) engage are formed.

Description

ラジアルフォイル軸受、圧縮機、および冷凍装置Radial foil bearings, compressors, and refrigeration equipment
 本開示は、ラジアルフォイル軸受、圧縮機、および冷凍装置に関する。 The present disclosure relates to radial foil bearings, compressors, and refrigerators.
 従来、冷凍装置の圧縮機に設けられる回転軸を支持する流体潤滑軸受としてフォイル軸受が知られている。特許文献1には、回転軸の径方向に作用する荷重を支持するラジアルフォイル軸受が開示されている。特許文献1のラジアルフォイル軸受は、円筒状のトップフォイルと、該トップフォイルの径方向外側に配置されるバックフォイルと、該バックフォイルおよびトップフォイルを収容する軸受ハウジングとを備える。 Conventionally, a foil bearing is known as a hydrodynamic lubricating bearing that supports a rotating shaft provided in a compressor of a refrigeration system. Patent Literature 1 discloses a radial foil bearing that supports a load acting radially on a rotating shaft. The radial foil bearing of Patent Document 1 includes a cylindrical top foil, a back foil arranged radially outside the top foil, and a bearing housing that accommodates the back foil and the top foil.
 特許文献1の軸受ハウジングの両側面には、それぞれ、軸受ハウジングの内周縁から外周縁に向かって延びる係合切欠が形成される。バックフォイルには、軸受ハウジングの周方向における一方の側の両側端部に、それぞれ係合突片が設けられている。バックフォイルの係合突片が、軸受ハウジングの係合切欠に係合することにより、溶接を行うことなくバックフォイルを軸受ハウジングに固定している。 Engagement notches extending from the inner peripheral edge toward the outer peripheral edge of the bearing housing are formed on both side surfaces of the bearing housing of Patent Document 1, respectively. The back foil is provided with engaging protrusions on both side ends on one side in the circumferential direction of the bearing housing. The back foil is fixed to the bearing housing without welding by engaging the engaging protrusions of the back foil with the engaging notches of the bearing housing.
特開2013-87789号公報JP 2013-87789 A
 特許文献1のラジアルフォイル軸受では、バックフォイルの係合突片が軸受ハウジングの周方向一方の側に設けられている。このため、バックフォイルを軸受ハウジングに固定するためには、軸受ハウジングに形成される係合切片の周方向の幅を、バックフォイルの係合突片が丁度よく嵌る大きさに加工する必要がある。言い換えると、係合切片の幅をバックフォイルの板厚程度の微小な大きさに加工する必要がある。このように加工するためには、ワイヤカットのような微細な加工を行う必要があり、加工に時間がかかり、製造コストが増加してしまうという問題があった。 In the radial foil bearing of Patent Document 1, the engaging protrusion of the back foil is provided on one circumferential side of the bearing housing. Therefore, in order to fix the back foil to the bearing housing, it is necessary to process the circumferential width of the engaging piece formed on the bearing housing to a size that allows the engaging protrusion of the back foil to fit just right. . In other words, it is necessary to process the width of the engaging piece to be as small as the thickness of the back foil. In order to process in this way, it is necessary to perform fine processing such as wire cutting, and there is a problem that the processing takes time and the manufacturing cost increases.
 本開示の目的は、ラジアルフォイル軸受の製造コストを低減することである。 The purpose of this disclosure is to reduce the manufacturing cost of radial foil bearings.
 第1の態様は、筒状のハウジング(60)と、前記ハウジング(60)の内周面に沿って配置されるバックフォイル(70)と、前記バックフォイル(70)に弾性的に支持され、該バックフォイル(70)と回転軸(35)との間に配置されるトップフォイル(80)とを備え、前記バックフォイル(70)は、前記ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、前記周方向の他方側に形成される第2係合爪(N2)とを有し、前記ハウジング(60)には、該ハウジング(60)の内周面から径方向外側に延びるとともに、前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれが係合する係合部(63)が形成されるラジアルフォイル軸受である。 A first aspect includes a cylindrical housing (60), a back foil (70) arranged along the inner peripheral surface of the housing (60), and elastically supported by the back foil (70), A top foil (80) is arranged between the back foil (70) and the rotating shaft (35), the back foil (70) being formed on one circumferential side of the housing (60). and a second engaging pawl (N2) formed on the other side in the circumferential direction. The radial foil bearing is provided with an engaging portion (63) extending radially outward from the surface and engaged by the first engaging claw (N1) and the second engaging claw (N2).
 第1の態様では、バックフォイル(70)は、周方向の一方側に形成された第1係合爪(N1)と、周方向の他方側に形成された第2係合爪(N2)とを有する。ハウジング(60)の側面には、第1係合爪(N1)および第2係合爪(N2)がそれぞれ係合する係合部(63)が形成される。第1係合爪(N1)および第2係合爪(N2)をそれぞれに対応する係合部(63)に係合させることでハウジング(60)を挟み込む。これにより、バックフォイル(70)がハウジング(60)に保持される。その結果、係合部(63)を各係合爪(N1,N2)が丁度嵌る幅に合わせて微細な加工をする必要がなくなり、ラジアルフォイル軸受(26)の製造コストを低減できる。 In the first aspect, the back foil (70) includes a first engaging claw (N1) formed on one side in the circumferential direction and a second engaging claw (N2) formed on the other side in the circumferential direction. have Engagement portions (63) with which the first engagement claws (N1) and the second engagement claws (N2) are respectively engaged are formed on the side surfaces of the housing (60). The housing (60) is sandwiched by engaging the first engaging claw (N1) and the second engaging claw (N2) with the corresponding engaging portions (63). This holds the back foil (70) to the housing (60). As a result, it is not necessary to finely process the engaging portion (63) to match the width of the engaging claws (N1, N2), thereby reducing the manufacturing cost of the radial foil bearing (26).
 第2の態様は、第1の態様において、前記係合部(63)は、前記ハウジング(60)の両側の側面に形成され、前記第1係合爪(N1)および前記第2係合爪(N2)は、前記バックフォイル(70)における前記ハウジング(60)の軸方向の両側にそれぞれ形成される。 In a second aspect, in the first aspect, the engaging portions (63) are formed on both side surfaces of the housing (60), and the first engaging claws (N1) and the second engaging claws (N1) (N2) are formed on both sides of the back foil (70) in the axial direction of the housing (60).
 第2の態様では、第1係合爪(N1)および第2係合爪(N2)がバックフォイル(70)における軸方向の両側に形成されるので、バックフォイル(70)の軸方向両側への大きな移動が規制される。 In the second aspect, since the first engaging pawl (N1) and the second engaging pawl (N2) are formed on both sides of the back foil (70) in the axial direction, the large movements of
 第3の態様は、第1または第2の態様において、前記バックフォイル(70)は、前記ハウジング(60)に対して前記ハウジング(60)の周方向、軸方向、および径方向の少なくとも一方向に相対的に移動可能に構成される。 According to a third aspect, in the first or second aspect, the back foil (70) is arranged with respect to the housing (60) in at least one of the circumferential direction, the axial direction, and the radial direction of the housing (60). is configured to be movable relative to the
 第3の態様では、バックフォイル(70)がハウジング(60)に対して周方向、軸方向、および径方向の少なくとも一方向に相対的に移動できるので、例えば回転軸(35)が高速に回転して振動した場合に、その振動が伝達されたバックフォイル(70)が周方向、軸方向、および径方向のいずれか一方向に移動して周辺の部品と衝突する。この衝突により、振動のエネルギーが散逸されるので、回転軸(35)の振動を減衰できる。 In the third aspect, since the back foil (70) can move relative to the housing (60) in at least one of the circumferential direction, the axial direction, and the radial direction, the rotating shaft (35) can rotate at high speed. When it vibrates, the back foil (70) to which the vibration is transmitted moves in one of the circumferential, axial and radial directions and collides with surrounding parts. This collision dissipates the energy of the vibration, so that the vibration of the rotating shaft (35) can be damped.
 第4の態様は、第1~第3のいずれか1つの態様において、前記第1係合爪(N1)および前記第2係合爪(N2)は、前記バックフォイル(70)における前記ハウジング(60)の軸方向に沿って延びる側縁部から前記径方向外側に延びる。 In a fourth aspect, in any one of the first to third aspects, the first engaging claw (N1) and the second engaging claw (N2) are connected to the housing ( 60) extending radially outwardly from the axially extending side edge of 60).
 第4の態様では、第1係合爪(N1)および第2係合爪(N2)がハウジング(60)の軸方向に沿って延びる側縁部から径方向外側に延びるので、第1係合爪(N1)および第2係合爪(N2)がハウジング(60)を周方向に挟み込む。これにより、バックフォイル(70)の周方向への大きな移動を規制できる。 In the fourth aspect, the first engaging pawl (N1) and the second engaging pawl (N2) extend radially outward from the axially extending side edge of the housing (60). The claw (N1) and the second engaging claw (N2) sandwich the housing (60) in the circumferential direction. Thereby, a large movement of the back foil (70) in the circumferential direction can be restricted.
 第5の態様は、第1~4のいずれか1つの態様において、前記係合部(63)の幅は、前記バックフォイル(70)の板厚の5倍以上である。 According to a fifth aspect, in any one of the first to fourth aspects, the width of the engaging portion (63) is five times or more the thickness of the back foil (70).
 第5の態様では、係合部(63)の幅をバックフォイル(70)の板厚に対して十分大きく形成できるので、微細な加工によって係合部(63)を形成する必要がなく、係合部(63)を形成しやすい。 In the fifth aspect, the width of the engaging portion (63) can be formed sufficiently large relative to the plate thickness of the back foil (70). It is easy to form the junction (63).
 第6の態様は、第1~5のいずれか1つの態様において、前記係合部(63)の幅は、0.3mm以上である。 A sixth aspect is that in any one of the first to fifth aspects, the width of the engaging portion (63) is 0.3 mm or more.
 第6の態様では、係合部(63)の幅が0.3mm以上なので、例えばワイヤカット加工のような繊細な加工をすることなく係合部(63)を形成できる。 In the sixth aspect, since the width of the engaging portion (63) is 0.3 mm or more, the engaging portion (63) can be formed without delicate processing such as wire cutting.
 第7の態様は、第1~第6のいずれか1つの態様において、前記バックフォイル(70)は、前記周方向に沿って複数設けられ、互いに隣り合う前記バックフォイル(70)のうち一方のバックフォイル(70)の前記第1係合爪(N1)は、他方のバックフォイル(70)の前記第2係合爪(N2)と対向して配置され、前記一方のバックフォイル(70)の前記第1係合爪(N1)および前記他方のバックフォイル(70)の前記第2係合爪(N2)は、1つの前記係合部(63)に係合する。 According to a seventh aspect, in any one of the first to sixth aspects, a plurality of the back foils (70) are provided along the circumferential direction, and one of the adjacent back foils (70) The first engaging claw (N1) of the back foil (70) is arranged to face the second engaging claw (N2) of the other back foil (70). The first engaging claw (N1) and the second engaging claw (N2) of the other back foil (70) engage one engaging portion (63).
 第7の態様では、互いに対向して配置される一方のバックフォイル(70)の第1係合爪(N1)と他方のバックフォイル(70)の第2係合爪(N2)とを1つの係合部(63)に係合させるので、形成する係合部(63)の数を抑制できる。これにより、ラジアルフォイル軸受(26)の製造コストを低減できる。 In the seventh aspect, the first engaging claw (N1) of one back foil (70) and the second engaging claw (N2) of the other back foil (70), which are arranged to face each other, are combined into one Since it is engaged with the engaging portion (63), the number of engaging portions (63) to be formed can be suppressed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
 第8の態様は、第1~第7のいずれか1つの態様において、前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれの先端部は、それぞれの前記係合爪(N1,N2)に対応する前記係合部(63)の内面に接触し、前記バックフォイル(70)は、前記第1係合爪(N1)および前記第2係合爪(N2)が弾性変形することにより、前記ハウジング(60)に対して相対的に移動可能に構成される。 In an eighth aspect, in any one of the first to seventh aspects, the tip of each of the first engaging claw (N1) and the second engaging claw (N2) The back foil (70) contacts the inner surface of the engaging portion (63) corresponding to the claws (N1, N2), and the first engaging claw (N1) and the second engaging claw (N2) are It is configured to be movable relative to the housing (60) by elastically deforming.
 第8の態様では、第1係合爪(N1)および第2係合爪(N2)のそれぞれの先端部が係合部(63)の内面に接触することにより、バックフォイル(70)がハウジング(60)に保持される。この状態で、各係合爪(N1,N2)が弾性変形することにより、バックフォイル(70)がハウジング(60)に対して相対的に移動する。これにより、回転軸が高速回転して振動した場合に、バックフォイル(70)が周辺の部品に衝突して、振動のエネルギーが散逸される。その結果、回転軸(35)の振動を減衰できる。 In the eighth aspect, the tip of each of the first engaging claw (N1) and the second engaging claw (N2) comes into contact with the inner surface of the engaging portion (63), thereby causing the back foil (70) to move toward the housing. held at (60). In this state, the engagement claws (N1, N2) are elastically deformed to move the back foil (70) relative to the housing (60). As a result, when the rotary shaft rotates at high speed and vibrates, the back foil (70) collides with the surrounding parts to dissipate the energy of the vibration. As a result, the vibration of the rotating shaft (35) can be damped.
 第9の態様は、第1~第8のいずれか1つの態様において、前記ハウジング(60)は、前記第1係合爪(N1)が係合する第1の係合部(63)と、前記第2係合爪(N2)が係合する第2の係合部(63)とを有し、前記第1の係合部(63)は、前記第1係合爪(N1)の先端部が接触する第1面(64)を有し、前記第2の係合部(63)は、前記第2係合爪(N2)の先端部が接触する第2面(65)を有し、前記ハウジング(60)の軸方向から見たときに、前記バックフォイル(70)における前記第1係合爪(N1)の基端部と前記第2係合爪(N2)の基端部との間の前記周方向の長さA1は、前記ハウジング(60)における前記第1面(64)の径方向内側の端部と前記第2面(65)の径方向内側の端部との間の前記周方向の長さA2よりも長い。 In a ninth aspect, in any one of the first to eighth aspects, the housing (60) includes a first engaging portion (63) with which the first engaging claw (N1) engages; and a second engaging portion (63) with which the second engaging claw (N2) engages, and the first engaging portion (63) is the tip of the first engaging claw (N1). The second engaging portion (63) has a second surface (65) with which the tip of the second engaging claw (N2) contacts. , the base end portion of the first engaging claw (N1) and the base end portion of the second engaging claw (N2) in the back foil (70) when viewed from the axial direction of the housing (60). The circumferential length A1 between longer than the length A2 in the circumferential direction.
 第9の態様では、バックフォイル(70)における周方向の長さA1が、ハウジング(60)における周方向の長さA2よりも長いので、第1係合爪(N1)および第1面(64)の間、ならびに第2係合爪(N2)および第2面(65)の間のそれぞれに周方向に微小隙間(G)が生じる。これにより、回転軸(35)が高速に回転して振動した場合に、第1係合爪(N1)と第1面(64)が接触する、または第2係合爪(N2)と第2面(65)が接触する。その結果、回転軸(35)の振動のエネルギーが散逸されるので、回転軸(35)の振動を減衰できる。 In the ninth aspect, since the circumferential length A1 of the back foil (70) is longer than the circumferential length A2 of the housing (60), the first engaging pawl (N1) and the first surface (64) ) and between the second engaging claw (N2) and the second surface (65). As a result, when the rotating shaft (35) rotates at high speed and vibrates, the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. Faces (65) are in contact. As a result, the energy of the vibration of the rotating shaft (35) is dissipated, so that the vibration of the rotating shaft (35) can be damped.
 第10の態様は、筒状のハウジング(60)と、前記ハウジング(60)の内周面に沿って配置されるバックフォイル(70)と、前記バックフォイル(70)の内側に配置される中間フォイル(90)と、前記バックフォイル(70)に弾性的に支持され、前記中間フォイル(90)と回転軸(35)との間に配置されるトップフォイル(80)とを備え、前記中間フォイル(90)は、前記ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、前記周方向の他方側に形成される第2係合爪(N2)とを有し、前記バックフォイル(70)は、前記第1係合爪(N1)および前記第2係合爪(N2)に対応する部分に、溝または切欠きで構成される挿通部(70e)を有し、前記ハウジング(60)には、該ハウジング(60)の内周面から径方向外側に延びるとともに、前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれが係合する係合部(63)が形成され、前記第1係合爪(N1)および第2係合爪(N2)のそれぞれは、前記挿通部(70e)を介して、前記係合部(63)に係合するラジアルフォイル軸受である。 A tenth aspect comprises a tubular housing (60), a back foil (70) arranged along the inner peripheral surface of the housing (60), and an intermediate foil (70) arranged inside the back foil (70). a foil (90) and a top foil (80) elastically supported on the back foil (70) and arranged between the intermediate foil (90) and the axis of rotation (35), the intermediate foil (90) comprises a first engaging pawl (N1) formed on one side in the circumferential direction of the housing (60) and a second engaging pawl (N2) formed on the other side in the circumferential direction. The back foil (70) has an insertion portion (70e) formed of a groove or a notch in a portion corresponding to the first engaging claw (N1) and the second engaging claw (N2). The housing (60) has the first engaging claw (N1) and the second engaging claw (N2) extending radially outward from the inner peripheral surface of the housing (60). An engaging portion (63) for engagement is formed, and each of the first engaging claw (N1) and the second engaging claw (N2) engages the engaging portion ( 63) is a radial foil bearing that engages.
 第10の態様では、第1の態様と同様の作用効果を得ることができる。 In the tenth aspect, the same effects as in the first aspect can be obtained.
 第11の態様は、第10の態様において、前記係合部(63)は、前記ハウジング(60)の両側の側面に形成され、前記第1係合爪(N1)および前記第2係合爪(N2)は、前記中間フォイル(90)における前記ハウジング(60)の軸方向両側にそれぞれ形成され、前記挿通部(70e)は、前記バックフォイル(70)の前記軸方向両側における前記第1係合爪(N1)および前記第2係合爪(N2)に対応する位置に形成される。 In an eleventh aspect based on the tenth aspect, the engaging portions (63) are formed on both side surfaces of the housing (60), and the first engaging claw (N1) and the second engaging claw (N1) (N2) are formed on both sides of the housing (60) in the axial direction of the intermediate foil (90), and the insertion portions (70e) are formed on both sides of the back foil (70) in the axial direction. It is formed at a position corresponding to the matching pawl (N1) and the second engaging pawl (N2).
 第11の態様では、第2の態様と同様の作用効果を得ることができる。 In the eleventh aspect, the same effects as in the second aspect can be obtained.
 第12の態様は、第10または第11の態様において、前記バックフォイル(70)および前記中間フォイル(90)は、前記ハウジング(60)に対して該ハウジング(60)の周方向、軸方向、および径方向の少なくとも一方向に相対的に移動可能に構成される。 According to a twelfth aspect, in the tenth or eleventh aspect, the back foil (70) and the intermediate foil (90) are arranged with respect to the housing (60) in the circumferential direction, axial direction, and in at least one radial direction.
 第12の態様では、第3の態様と同様の作用効果を得ることができる。 In the twelfth aspect, the same effects as in the third aspect can be obtained.
 第13の態様は、第10~第12のいずれか1つの態様において、前記第1係合爪(N1)および前記第2係合爪(N2)は、前記中間フォイル(90)における前記ハウジング(60)の軸方向に沿って延びる側縁部から前記径方向外側に延びる。 A thirteenth aspect is any one of the tenth to twelfth aspects, wherein the first engaging pawl (N1) and the second engaging pawl (N2) are connected to the housing ( 60) extending radially outwardly from the axially extending side edge of 60).
 第13の態様では、第4の態様と同様の作用効果を得ることができる。 In the thirteenth aspect, the same effects as in the fourth aspect can be obtained.
 第14の態様は、第10~第13のいずれか1つの態様において、前記係合部(63)の幅は、前記中間フォイル(90)の板厚の5倍以上である。 A fourteenth aspect is any one of the tenth to thirteenth aspects, wherein the width of the engaging portion (63) is five times or more the thickness of the intermediate foil (90).
 第14の態様では、第5の態様と同様の作用効果を得ることができる。 In the 14th aspect, the same effects as in the 5th aspect can be obtained.
 第15の態様は、第10~第14のいずれか1つの態様において、前記係合部(63)の幅は、0.3mm以上である。 According to a fifteenth aspect, in any one of the tenth to fourteenth aspects, the width of the engaging portion (63) is 0.3 mm or more.
 第15の態様では、第6の態様と同様の作用効果を得ることができる。 In the fifteenth aspect, the same effects as in the sixth aspect can be obtained.
 第16の態様は、第10~第15のいずれか1つの態様において、前記中間フォイル(90)は、前記周方向に沿って複数設けられ、互いに隣り合う前記中間フォイル(90)のうち一方の中間フォイル(90)の前記第1係合爪(N1)は、他方の中間フォイル(90)の前記第2係合爪(N2)と対向して配置され、前記一方の中間フォイル(90)の前記第1係合爪(N1)および前記他方の中間フォイル(90)の前記第2係合爪(N2)は、1つの前記係合部(63)に係合する。 According to a sixteenth aspect, in any one of the tenth to fifteenth aspects, a plurality of the intermediate foils (90) are provided along the circumferential direction, and one of the adjacent intermediate foils (90) The first engaging claw (N1) of the intermediate foil (90) is arranged opposite the second engaging claw (N2) of the other intermediate foil (90), The first engaging claw (N1) and the second engaging claw (N2) of the other intermediate foil (90) engage one engaging portion (63).
 第16の態様では、第7の態様と同様の作用効果を得ることができる。 In the 16th aspect, the same effects as in the 7th aspect can be obtained.
 第17の態様は、第10~第16のいずれか1つの態様において、前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれの先端部は、それぞれの前記係合爪(N1,N2)に対応する前記係合部(63)の内面に接触し、前記中間フォイル(90)は、前記第1係合爪(N1)および前記第2係合爪(N2)が弾性変形することにより、前記ハウジング(60)に対して相対的に移動可能に構成される。 In a seventeenth aspect, in any one of the tenth to sixteenth aspects, the tip of each of the first engaging claw (N1) and the second engaging claw (N2) The intermediate foil (90) contacts the inner surface of the engaging portion (63) corresponding to the claws (N1, N2), and the first engaging claw (N1) and the second engaging claw (N2) are It is configured to be movable relative to the housing (60) by elastically deforming.
 第17の態様では、第8の態様と同様の作用効果を得ることができる。 In the 17th aspect, it is possible to obtain the same effects as in the 8th aspect.
 第18の態様は、第10~第17のいずれか1つの態様において、前記ハウジング(60)は、前記第1係合爪(N1)が係合する第1の係合部(63)と、前記第2係合爪(N2)が係合する第2の係合部(63)とを有し、前記第1の係合部(63)は、前記第1係合爪(N1)が接触する第1面(64)を有し、前記第2の係合部(63)は、前記第2係合爪(N2)が接触する第2面(65)を有し、前記中間フォイル(90)は、前記第1係合爪(N1)と該第1係合爪(N1)に対応するバックフォイル(70)の挿通部(70e)とが接触する第1接触部(90a)と、前記第2係合爪(N2)と該第2係合爪(N2)に対応するバックフォイル(70)の挿通部(70e)とが接触する第2接触部(90b)とを有し、前記ハウジング(60)の軸方向から見たときに、前記第1接触部(90a)と前記第2接触部(90b)との間の前記周方向の長さB1は、前記ハウジング(60)における前記第1面(64)の径方向内側の端部と前記第2面(65)の径方向内側の端部との間の前記周方向の長さB2よりも長い。 In an eighteenth aspect, in any one of the tenth to seventeenth aspects, the housing (60) includes a first engaging portion (63) with which the first engaging claw (N1) engages, and a second engaging portion (63) with which the second engaging pawl (N2) engages, the first engaging portion (63) being in contact with the first engaging pawl (N1). The second engaging portion (63) has a second surface (65) with which the second engaging pawl (N2) contacts, and the intermediate foil (90 ) includes a first contact portion (90a) where the first engaging claw (N1) and the insertion portion (70e) of the back foil (70) corresponding to the first engaging claw (N1) contact; a second contact portion (90b) with which the second engaging claw (N2) and the insertion portion (70e) of the back foil (70) corresponding to the second engaging claw (N2) contact; (60), the circumferential length B1 between the first contact portion (90a) and the second contact portion (90b) is equal to the first contact portion (60) in the housing (60). It is longer than the circumferential length B2 between the radially inner end of the first surface (64) and the radially inner end of the second surface (65).
 第18の態様では、第9の態様と同様の作用効果を得ることができる。 In the eighteenth aspect, the same effects as in the ninth aspect can be obtained.
 第19の態様は、第10~第18のいずれか1つの態様において、前記バックフォイル(70)は、前記周方向両側の側縁部から前記ハウジング(60)の径方向内側に延びる曲げ部(70d)を有する。 In a nineteenth aspect, in any one of the tenth to eighteenth aspects, the back foil (70) has bent portions ( 70d).
 第19の態様では、バックフォイル(70)が曲げ部(70d)を有するので、曲げ部(70d)によって中間フォイル(90)に対するバックフォイル(70)の位置が保持される。その結果、バックフォイル(70)が周方向に大きく移動してその位置がずれることにより、バックフォイル(70)が脱落することを抑制できる。 In the nineteenth aspect, since the back foil (70) has a bent portion (70d), the position of the back foil (70) with respect to the intermediate foil (90) is maintained by the bent portion (70d). As a result, it is possible to prevent the back foil (70) from coming off due to a large circumferential movement of the back foil (70) and displacement of the back foil (70).
 第20の態様は、第1~第19のいずれか1つの態様において、前記トップフォイル(80)は、前記回転軸(35)の外周面に沿って巻かれた本体部(81)を有し、前記本体部(81)は、前記回転軸(35)の回転方向(P)前側の側縁部である第1側縁部(81a)と、前記回転方向(P)後側の側縁部である第2側縁部(81b)とを有し、前記第1側縁部(81a)は、前記第2側縁部(81b)よりも前記ハウジング(60)の径方向外側に位置し、前記ハウジング(60)の内周面には、該ハウジング(60)の軸方向に沿って延びるとともに前記第1側縁部(81a)が収容される通し溝(61)が形成され、前記通し溝(61)は、その深さ方向が前記径方向と一致するように形成される。 A twentieth aspect is any one of the first to nineteenth aspects, wherein the top foil (80) has a main body (81) wound along the outer peripheral surface of the rotating shaft (35). , The main body (81) has a first side edge (81a), which is a side edge on the front side in the rotation direction (P) of the rotating shaft (35), and a side edge on the rear side in the rotation direction (P). , wherein the first side edge (81a) is located radially outside of the housing (60) relative to the second side edge (81b), A through groove (61) extending along the axial direction of the housing (60) and accommodating the first side edge (81a) is formed in the inner peripheral surface of the housing (60). (61) is formed so that its depth direction coincides with the radial direction.
 第20の態様では、トップフォイル(80)の第1側縁部(81a)は、第2側縁部(81b)よりも径方向外側に位置するので、第1側縁部(81a)と第2側縁部(81b)を交差させて軸受を組み立てる場合に比べて、簡単に軸受を組み立てられる。さらに、通し溝(61)の深さ方向がハウジング(60)の径方向になるように通し溝(61)が形成されているので、通し溝(61)を加工しやすい。これにより、ラジアルフォイル軸受の組立加工性を向上できる。 In the twentieth aspect, the first side edge (81a) of the top foil (80) is located radially outside the second side edge (81b), so the first side edge (81a) and the second side edge (81a) The bearing can be assembled more easily than when the bearing is assembled by crossing the two side edges (81b). Furthermore, since the through groove (61) is formed so that the depth direction of the through groove (61) is aligned with the radial direction of the housing (60), the through groove (61) can be easily machined. As a result, the assembling workability of the radial foil bearing can be improved.
 第21の態様は、第20の態様において、前記係合部(63)は、前記ハウジング(60)の両側の側面に形成され、前記第1係合爪(N1)および前記第2係合爪(N2)は、前記バックフォイル(70)における前記ハウジング(60)の軸方向の両側にそれぞれ形成され、前記トップフォイル(80)は、前記第1側縁部(81a)における前記ハウジング(60)の軸方向両側の端部からそれぞれ外側に突出する突出部(84)を有し、前記ハウジング(60)の両側の側面には、前記通し溝(61)に連通し、前記突出部(84)が係合する係合凹部(62)が形成され、前記係合凹部(62)は、前記突出部(84)の延伸方向に沿う第3面(66)を有するとともに、前記係合部(63)に設けられる。 In a twenty-first aspect based on the twentieth aspect, the engaging portions (63) are formed on both side surfaces of the housing (60), and the first engaging claw (N1) and the second engaging claw (N1) (N2) are formed on both axial sides of the housing (60) at the back foil (70), and the top foil (80) is located at the first side edge (81a) of the housing (60). The housing (60) has protrusions (84) protruding outward from both ends in the axial direction of the housing (60). The engagement recess (62) is formed to engage with the engagement recess (62), and the engagement recess (62) has a third surface (66) along the extending direction of the protrusion (84), and the engagement portion (63 ).
 第21の態様では、ハウジング(60)の係合凹部(62)にトップフォイル(80)の突出部(84)が係合するので、トップフォイル(80)の軸方向への大きな移動を規制できる。さらに、係合凹部(62)の第3面(66)は突出部(84)の延伸方向に沿うので、回転軸(35)の振動によりトップフォイル(80)が周方向に移動する際に、該第3面(66)と突出部(84)の内面とが面で接触する。これにより、回転軸(35)の振動エネルギーが上記接触面で生じる摩擦の熱エネルギーに変換され、回転軸の振動を減衰できる。加えて、係合凹部(62)が係合部(63)に設けられるので、ハウジング(60)を加工する回数が減少する。これにより、ラジアルフォイル軸受(26)の製造コストを低減できる。 In the 21st aspect, since the protrusion (84) of the top foil (80) engages with the engagement recess (62) of the housing (60), the top foil (80) can be restricted from moving significantly in the axial direction. . Furthermore, since the third surface (66) of the engaging recess (62) extends along the extending direction of the protrusion (84), when the top foil (80) moves in the circumferential direction due to the vibration of the rotating shaft (35), The third surface (66) and the inner surface of the protrusion (84) are in surface contact. As a result, the vibrational energy of the rotating shaft (35) is converted into the heat energy of the friction generated on the contact surface, and the vibration of the rotating shaft can be damped. In addition, since the engaging recess (62) is provided in the engaging portion (63), the number of times the housing (60) is machined is reduced. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
 第22の態様は、第1~第21のいずれか1つの態様のラジアルフォイル軸受(26)を備える圧縮機である。 A 22nd aspect is a compressor comprising the radial foil bearing (26) of any one of the 1st to 21st aspects.
 第22の態様では、ラジアルフォイル軸受(26)を圧縮機(20)に適用できる。 In the twenty-second aspect, the radial foil bearing (26) can be applied to the compressor (20).
 第23の態様は、第22の態様の圧縮機を備える冷凍装置である。 A twenty-third aspect is a refrigeration system comprising the compressor of the twenty-second aspect.
 第23の態様では、ラジアルフォイル軸受(26)を備える圧縮機(20)を冷凍装置(1)に適用できる。 In the twenty-third aspect, the compressor (20) provided with the radial foil bearing (26) can be applied to the refrigeration system (1).
図1は、実施形態1に係る冷凍装置の概略の構成図である。FIG. 1 is a schematic configuration diagram of a refrigeration system according to Embodiment 1. FIG. 図2は、ターボ圧縮機の全体構成を示す概略の縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing the overall configuration of the turbocompressor. 図3は、ラジアルフォイル軸受の側面図である。FIG. 3 is a side view of a radial foil bearing. 図4は、ラジアルフォイル軸受の要部を示す斜視図である。FIG. 4 is a perspective view showing essential parts of the radial foil bearing. 図5は、平坦化したバックフォイルの平面図である。FIG. 5 is a plan view of a flattened backfoil. 図6は、平坦化したバックフォイルの側面図である。FIG. 6 is a side view of a flattened backfoil. 図7は、ラジアルフォイル軸受における第1バックフォイルの周辺を拡大した側面図である。FIG. 7 is an enlarged side view of the periphery of the first back foil in the radial foil bearing. 図8は、実施形態1の変形例1に係る図3に相当する図である。8 is a diagram corresponding to FIG. 3 according to Modification 1 of Embodiment 1. FIG. 図9は、実施形態1の変形例1に係る図4に相当する図である。9 is a diagram corresponding to FIG. 4 according to Modification 1 of Embodiment 1. FIG. 図10は、実施形態1の変形例2に係る図4に相当する図である。10 is a diagram corresponding to FIG. 4 according to Modification 2 of Embodiment 1. FIG. 図11は、実施形態1の変形例2に係る図6に相当する図である。FIG. 11 is a diagram corresponding to FIG. 6 according to modification 2 of the first embodiment. 図12は、実施形態2に係る図3に相当する図である。FIG. 12 is a diagram corresponding to FIG. 3 according to the second embodiment. 図13は、実施形態2に係る図4に相当する図である。FIG. 13 is a diagram corresponding to FIG. 4 according to the second embodiment. 図14は、実施形態2に係る平坦化したバックフォイルと中間フォイルの側面図である。14 is a side view of a flattened back foil and intermediate foil according to Embodiment 2. FIG. 図15は、実施形態2に係る平坦化したバックフォイルと中間フォイルの側面図である。15 is a side view of a flattened back foil and intermediate foil according to Embodiment 2. FIG. 図16は、実施形態2に係る図7に相当する図である。FIG. 16 is a diagram corresponding to FIG. 7 according to the second embodiment. 図17は、実施形態2の変形例2に係る図4に相当する図である。17 is a diagram corresponding to FIG. 4 according to Modification 2 of Embodiment 2. FIG. 図18は、実施形態2の変形例3に係る図5に相当する図である。18 is a diagram corresponding to FIG. 5 according to Modification 3 of Embodiment 2. FIG. 図19は、実施形態2の変形例3に係る図6に相当する図である。19 is a diagram corresponding to FIG. 6 according to Modification 3 of Embodiment 2. FIG. 図20は、実施形態2の変形例4に係る図6に相当する図である。FIG. 20 is a diagram corresponding to FIG. 6 according to modification 4 of the second embodiment. 図21は、実施形態3に係る図3に相当する図である。FIG. 21 is a diagram corresponding to FIG. 3 according to the third embodiment. 図22は、実施形態3に係るトップフォイルの展開図である。22 is a development view of a top foil according to Embodiment 3. FIG.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below, and various modifications are possible without departing from the technical idea of the present disclosure. Each drawing is for the purpose of conceptually explaining the present disclosure, and therefore dimensions, ratios or numbers may be exaggerated or simplified as necessary for ease of understanding.
 《実施形態1》
 実施形態1のラジアルフォイル軸受について説明する。本開示のラジアルフォイル軸受(26)は、例えば冷凍装置(1)のターボ圧縮機(20)に適用される。
<<Embodiment 1>>
A radial foil bearing of Embodiment 1 will be described. A radial foil bearing (26) of the present disclosure is applied, for example, to a turbocompressor (20) of a refrigeration system (1).
 (1)冷凍装置の概要
 図1に示す冷凍装置(1)は、ターボ式圧縮機(以下、圧縮機(20)ともいう)を備える。冷凍装置(1)は、冷媒が充填された冷媒回路(1a)を有する。冷媒回路(1a)は、圧縮機(20)、放熱器(2)、減圧機構(3)、および蒸発器(4)を有する。減圧機構(3)は、膨張弁である。冷媒回路(1a)は、蒸気圧縮式の冷凍サイクルを行う。
(1) Overview of Refrigerating Device A refrigerating device (1) shown in Fig. 1 includes a turbo compressor (hereinafter also referred to as a compressor (20)). A refrigerating device (1) has a refrigerant circuit (1a) filled with a refrigerant. The refrigerant circuit (1a) has a compressor (20), a radiator (2), a pressure reducing mechanism (3), and an evaporator (4). The decompression mechanism (3) is an expansion valve. The refrigerant circuit (1a) performs a vapor compression refrigeration cycle.
 冷凍サイクルでは、圧縮機(20)によって圧縮された冷媒が、放熱器(2)において空気に放熱する。放熱した冷媒は、減圧機構(3)によって減圧され、蒸発器(4)において蒸発する。蒸発した冷媒は、圧縮機(20)に吸入される。 In the refrigeration cycle, the refrigerant compressed by the compressor (20) releases heat to the air in the radiator (2). The refrigerant that has released heat is decompressed by the decompression mechanism (3) and evaporated in the evaporator (4). The evaporated refrigerant is sucked into the compressor (20).
 冷凍装置(1)は、空気調和装置である。空気調和装置は、冷房専用機、暖房専用機、あるいは冷房と暖房とを切り換える空気調和装置であってもよい。この場合、空気調和装置は、冷媒の循環方向を切り換える切換機構(例えば四方切換弁)を有する。冷凍装置(1)は、給湯器、チラーユニット、庫内の空気を冷却する冷却装置などであってもよい。冷却装置は、冷蔵庫、冷凍庫、コンテナなどの内部の空気を冷却する。膨張機構は、電子膨張弁、感温式膨張弁、膨張機、またはキャピラリーチューブで構成される。 The refrigerator (1) is an air conditioner. The air conditioner may be a cooling-only machine, a heating-only machine, or an air conditioner that switches between cooling and heating. In this case, the air conditioner has a switching mechanism (for example, a four-way switching valve) that switches the circulation direction of the refrigerant. The refrigerating device (1) may be a water heater, a chiller unit, a cooling device for cooling the air inside the refrigerator, or the like. Chillers cool the air inside refrigerators, freezers, containers, and the like. The expansion mechanism consists of an electronic expansion valve, a temperature sensitive expansion valve, an expander, or a capillary tube.
 (2)圧縮機の概要
 圧縮機(20)の概要について図2を参照しながら説明する。図2は、圧縮機(20)の概略の縦断面図である。本実施形態の圧縮機(20)は、1つの圧縮機構(50)を有する単段式である。圧縮機(20)は、ケーシング(21)、モータ(30)、回転軸(35)、および圧縮機構(50)を有する。ケーシング(21)は、モータ(30)、回転軸(35)、および圧縮機構(50)を収容する。圧縮機(20)は、回転軸(35)を支える軸受を有する。軸受は、ラジアルフォイル軸受(26)およびスラスト軸受(27)を有する。
(2) Outline of Compressor An outline of the compressor (20) will be described with reference to FIG. FIG. 2 is a schematic longitudinal sectional view of the compressor (20). The compressor (20) of this embodiment is a single-stage type having one compression mechanism (50). The compressor (20) has a casing (21), a motor (30), a rotating shaft (35), and a compression mechanism (50). The casing (21) houses the motor (30), the rotating shaft (35), and the compression mechanism (50). The compressor (20) has a bearing that supports the rotating shaft (35). The bearing has a radial foil bearing (26) and a thrust bearing (27).
 (2-1)ケーシング
 ケーシング(21)は、胴部(22)と、第1閉塞部(23)と、第2閉塞部(24)とを有する。胴部(22)は、軸方向の両端が開放する筒状に形成される。第1閉塞部(23)は、胴部(22)の軸方向の一端側の開放部を閉塞する。第1閉塞部(23)は、その中央に位置するハウジング(25)を含む。第2閉塞部(24)は、胴部(22)の軸方向の他端側の開放部を閉塞する。
(2-1) Casing The casing (21) has a body (22), a first closing portion (23), and a second closing portion (24). The body (22) is formed in a tubular shape with both ends in the axial direction open. The first closing portion (23) closes the open portion on one axial end side of the body portion (22). The first closure (23) includes a housing (25) located in its center. The second closing portion (24) closes the open portion on the other axial end side of the body portion (22).
 (2-2)モータ
 モータ(30)は、固定子(31)と回転子(32)とを有する。固定子(31)は、筒状に形成される。固定子(31)は、ケーシング(21)の胴部(22)の内周面に固定される。回転子(32)は、固定子(31)の内部に設けられる。モータ(30)は、インバータ装置によって運転周波数(回転数)が調節される。言い換えると、圧縮機(20)は、回転数が可変なインバータ式である。このため、モータ(30)の回転数は、比較的低速の回転数から比較的高速の回転数までの間で変化する。
(2-2) Motor The motor (30) has a stator (31) and a rotor (32). The stator (31) is cylindrical. The stator (31) is fixed to the inner peripheral surface of the body (22) of the casing (21). The rotor (32) is provided inside the stator (31). The motor (30) has its operating frequency (rotational speed) adjusted by an inverter device. In other words, the compressor (20) is of a variable rotation speed inverter type. Therefore, the rotation speed of the motor (30) varies from a relatively low rotation speed to a relatively high rotation speed.
 (2-3)回転軸
 回転軸(35)は、回転子(32)の軸心に固定される。回転軸(35)は、モータ(30)によって回転駆動される。回転軸(35)は、ケーシング(21)の軸方向に沿って延びる。
(2-3) Rotating shaft The rotating shaft (35) is fixed to the axial center of the rotor (32). The rotating shaft (35) is rotationally driven by the motor (30). The rotating shaft (35) extends along the axial direction of the casing (21).
 (2-4)ラジアルフォイル軸受
 ラジアルフォイル軸受(26)は、回転軸(35)に作用する荷重のうち、回転軸(35)の径方向に作用する荷重(ラジアル荷重)を支持する。本実施形態の圧縮機(20)は、2つのラジアルフォイル軸受(26)を有する。ラジアルフォイル軸受(26)の数、および位置は単なる一例である。
(2-4) Radial Foil Bearing The radial foil bearing (26) supports the load (radial load) acting in the radial direction of the rotating shaft (35) among the loads acting on the rotating shaft (35). The compressor (20) of this embodiment has two radial foil bearings (26). The number and location of radial foil bearings (26) is merely an example.
 一方のラジアルフォイル軸受(26)は、回転軸(35)の一端部寄りに配置される。他方のラジアルフォイル軸受(26)は、回転軸(35)の他端部寄りに配置される。各ラジアルフォイル軸受(26)は、軸受サポート(28)を介して、ケーシング(21)の胴部(22)に固定される。各ラジアルフォイル軸受(26)は、回転軸(35)を回転可能に支持する。 One radial foil bearing (26) is arranged near one end of the rotating shaft (35). The other radial foil bearing (26) is arranged near the other end of the rotating shaft (35). Each radial foil bearing (26) is fixed to the body (22) of the casing (21) via a bearing support (28). Each radial foil bearing (26) rotatably supports the rotating shaft (35).
 (2-5)スラスト軸受
 スラスト軸受(27)は、回転軸(35)に作用する荷重のうち、回転軸(35)の軸方向に作用する荷重(スラスト荷重)を支持する。本実施形態の圧縮機(20)は、1つのスラスト軸受(27)を有する。スラスト軸受(27)の数、および位置は単なる一例である。
(2-5) Thrust Bearing The thrust bearing (27) supports the load acting in the axial direction of the rotating shaft (35) (thrust load) among the loads acting on the rotating shaft (35). The compressor (20) of this embodiment has one thrust bearing (27). The number and location of thrust bearings (27) is merely an example.
 スラスト軸受(27)は、回転軸(35)の一端部寄り(圧縮機構(50)寄り)に位置する。スラスト軸受(27)は、回転軸(35)の一端部寄りに配置された軸受サポート(28)の中央部に固定される。スラスト軸受(27)は、回転軸(35)の軸方向の移動を規制する。 The thrust bearing (27) is located near one end of the rotating shaft (35) (close to the compression mechanism (50)). The thrust bearing (27) is fixed to the central portion of a bearing support (28) located near one end of the rotating shaft (35). The thrust bearing (27) restricts axial movement of the rotating shaft (35).
 (2-6)圧縮機構
 圧縮機構(50)は、羽根車(51)の遠心力により流体に運動エネルギーを与え、この運動エネルギーを圧力に変換する遠心式の圧縮機構である。圧縮機構(50)は、ハウジング(25)および羽根車(51)を含む。羽根車(51)は、複数の羽根を有する。圧縮機構(50)では、ハウジング(25)と羽根車(51)との間に圧縮室(52)が形成される。ハウジング(25)には、流体(冷媒)を圧縮室(52)に送る吸入通路(53)が形成される。
(2-6) Compression Mechanism The compression mechanism (50) is a centrifugal compression mechanism that imparts kinetic energy to the fluid by the centrifugal force of the impeller (51) and converts this kinetic energy into pressure. The compression mechanism (50) includes a housing (25) and an impeller (51). The impeller (51) has a plurality of blades. In the compression mechanism (50), a compression chamber (52) is formed between the housing (25) and the impeller (51). The housing (25) is formed with a suction passageway (53) for sending fluid (refrigerant) to the compression chamber (52).
 (3)ラジアルフォイル軸受の詳細
 ラジアルフォイル軸受(26)について、図3~図7を参照しながら詳細に説明する。ラジアルフォイル軸受(26)は、概ね円筒状に形成される。ラジアルフォイル軸受(26)は、軸受ハウジング(60)と、バックフォイル(70)と、トップフォイル(80)とを備える。
(3) Details of Radial Foil Bearing The radial foil bearing (26) will be described in detail with reference to FIGS. 3 to 7. FIG. The radial foil bearing (26) is generally cylindrical. A radial foil bearing (26) comprises a bearing housing (60), a back foil (70) and a top foil (80).
 なお、以下の説明において、特にことわらない限り、「軸方向」とは、回転軸(35)の軸心の方向のことであり、「径方向」とは、回転軸(35)の軸心に直交する方向のことであり、「周方向」とは、回転軸(35)の軸心を基準とした周方向である。「径方向内側」とは、回転軸(35)の軸心に近い側であり、「径方向外側」とは、回転軸(35)の軸心に遠い側である。 In the following description, unless otherwise specified, "axial direction" refers to the direction of the axis of the rotating shaft (35), and "radial direction" refers to the axis of the rotating shaft (35). , and the "circumferential direction" is the circumferential direction with respect to the axis of the rotating shaft (35). "Radial inner side" is the side closer to the axis of the rotating shaft (35), and "radial outer side" is the side farther from the axis of the rotating shaft (35).
 (3-1)軸受ハウジング
 軸受ハウジング(60)は、本開示のハウジングに対応する。図3に示すように、軸受ハウジング(60)は、トップフォイル(80)およびバックフォイル(70)を収容する。換言すると、軸受ハウジング(60)は、ラジアルフォイル軸受(26)の最外部を構成する。軸受ハウジング(60)は、バックフォイル(70)の径方向外側に配置される。軸受ハウジング(60)は、略円筒状に形成される。軸受ハウジング(60)の軸心は、回転軸(35)の軸心と概ね一致する。
(3-1) Bearing housing The bearing housing (60) corresponds to the housing of the present disclosure. As shown in Figure 3, the bearing housing (60) houses the top foil (80) and the back foil (70). In other words, the bearing housing (60) constitutes the outermost part of the radial foil bearing (26). The bearing housing (60) is arranged radially outwardly of the back foil (70). The bearing housing (60) is formed in a substantially cylindrical shape. The axis of the bearing housing (60) substantially coincides with the axis of the rotating shaft (35).
 軸受ハウジング(60)の両側の側面(軸方向両側の端面)には、それぞれ複数(3つ)の係合部(63)が形成される。なお、ここで示す係合部(63)の数は単なる一例である。係合部(63)は、後述するバックフォイル(70)の係合爪(N)が係合する。各係合部(63)は、軸受ハウジング(60)の一方側の側面において、周方向に所定の間隔を空けて形成される。本実施形態では、係合部(63)は、軸受ハウジング(60)の側面を周方向に概ね3等分割する位置に形成される。 A plurality (three) of engaging portions (63) are formed on both side surfaces (both end surfaces in the axial direction) of the bearing housing (60). The number of engaging portions (63) shown here is merely an example. The engaging portion (63) is engaged with an engaging claw (N) of a back foil (70), which will be described later. The engaging portions (63) are formed at predetermined intervals in the circumferential direction on one side surface of the bearing housing (60). In the present embodiment, the engaging portion (63) is formed at a position that divides the side surface of the bearing housing (60) into approximately three equal parts in the circumferential direction.
 3つの係合部(63)のうち1つの係合部(第1係合部(63a))の幅(周方向の長さ)は、他の2つの係合部(第2係合部(63b)および第3係合部(63c))の幅よりも長い。軸受ハウジング(60)における両側面の第1係合部(63a)の間の内周面には、後述するトップフォイル(80)の第1側縁部(81a)が溶接される。言い換えると、ラジアルフォイル軸受(26)は、トップフォイル(80)を軸受ハウジング(60)に溶接する溶接部(W)を有する。溶接部(W)は、トップフォイル(80)の第1側縁部(81a)を軸受ハウジング(60)の内周面にスポット溶接することによって形成される。この溶接部(W)によってトップフォイル(80)は、軸受ハウジング(60)に固定される。 The width (length in the circumferential direction) of one of the three engaging portions (63) (the first engaging portion (63a)) is the same as that of the other two engaging portions (the second engaging portions (63a)). 63b) and longer than the width of the third engaging portion (63c)). A first side edge (81a) of a top foil (80), which will be described later, is welded to the inner peripheral surface between the first engaging portions (63a) on both side surfaces of the bearing housing (60). In other words, the radial foil bearing (26) has a weld (W) that welds the top foil (80) to the bearing housing (60). The weld (W) is formed by spot welding the first side edge (81a) of the top foil (80) to the inner peripheral surface of the bearing housing (60). The weld (W) secures the top foil (80) to the bearing housing (60).
 各係合部(63)は、軸方向内側に窪む凹部で構成される。各係合部(63)は、軸受ハウジング(60)の内周面から外周面に亘って径方向外側に延びる。言い換えると、各係合部(63)は、軸受ハウジング(60)を径方向に貫通する。各係合部(63)は、軸受ハウジング(60)を切り欠くことによって形成される。なお、係合部(63)は、軸方向から見て、軸受ハウジング(60)の内周面から径方向外側に切り欠かれていればよく、軸受ハウジング(60)の外周面を貫通していなくてもよい。 Each engaging portion (63) is configured by a concave portion recessed inward in the axial direction. Each engaging portion (63) extends radially outward from the inner peripheral surface to the outer peripheral surface of the bearing housing (60). In other words, each engaging portion (63) radially penetrates the bearing housing (60). Each engaging portion (63) is formed by cutting the bearing housing (60). The engaging portion (63) may be cut radially outward from the inner peripheral surface of the bearing housing (60) when viewed in the axial direction, and penetrates the outer peripheral surface of the bearing housing (60). It doesn't have to be.
 係合部(63)の幅(周方向の長さ)は、バックフォイル(70)の板厚の5倍以上である。このように係合部(63)の幅がバックフォイル(70)の板厚に対して十分大きい。これにより、係合部(63)をワイヤカットのような特殊で微細な加工によって形成する必要が無く、エンドミル等による一般的な切削加工で形成できる。 The width (length in the circumferential direction) of the engaging portion (63) is at least five times the thickness of the back foil (70). Thus, the width of the engaging portion (63) is sufficiently large relative to the thickness of the back foil (70). As a result, the engaging portion (63) does not need to be formed by a special fine processing such as wire cutting, and can be formed by general cutting using an end mill or the like.
 係合部(63)の幅は、0.3mm以上である。言い換えると、係合部(63)の幅は、ワイヤカットによる加工の上限幅よりも大きい。これにより、係合部(63)をワイヤカットのような微細な加工によって形成することなく、一般的な切削加工によって形成できる。これにより、係合部(63)を加工する時間が短くなり、製造コストを低減できる。 The width of the engaging portion (63) is 0.3 mm or more. In other words, the width of the engaging portion (63) is larger than the upper limit width of wire cutting. Thereby, the engaging portion (63) can be formed by general cutting work without being formed by fine processing such as wire cutting. As a result, the time required to process the engaging portion (63) can be shortened, and the manufacturing cost can be reduced.
 (3-2)バックフォイル
 バックフォイル(70)は、トップフォイル(80)を弾性的に支持する。バックフォイル(70)は、トップフォイル(80)の径方向外側に配置される。バックフォイル(70)は、軸受ハウジング(60)とトップフォイル(80)との間に配置される。バックフォイル(70)は、軸受ハウジング(60)の内周面に沿って配置される。
(3-2) Back foil The back foil (70) elastically supports the top foil (80). The back foil (70) is arranged radially outside the top foil (80). A back foil (70) is positioned between the bearing housing (60) and the top foil (80). The back foil (70) is arranged along the inner peripheral surface of the bearing housing (60).
 バックフォイル(70)は、薄板状に形成される。本実施形態のバックフォイル(70)は、バンプフォイルである。バックフォイル(70)は、バンプフォイル以外のもの(例えば、スプリングフォイルなど)でもよい。 The back foil (70) is formed into a thin plate. The back foil (70) of this embodiment is a bump foil. The back foil (70) may be something other than a bump foil (eg, a spring foil, etc.).
 本実施形態のラジアルフォイル軸受(26)には、軸受ハウジング(60)の周方向に沿って複数(3つ)のバックフォイル(70)が設けられる。図5および図6に示すように、各バックフォイル(70)は、波板状に形成される。各バックフォイル(70)は、軸方向から見て、略円弧状に形成される。3つのバックフォイル(70)は、全体として略円筒状になるように配置される。 The radial foil bearing (26) of this embodiment is provided with a plurality (three) of back foils (70) along the circumferential direction of the bearing housing (60). As shown in FIGS. 5 and 6, each back foil (70) is corrugated. Each back foil (70) is formed in a substantially arc shape when viewed from the axial direction. The three back foils (70) are arranged in a generally cylindrical shape as a whole.
 各バックフォイル(70)と軸受ハウジング(60)との間には、周方向に不均一な隙間(C)が形成される。言い換えると、3つのバックフォイル(70)は、全体として、非真円形状に配置される。これにより、バックフォイル(70)によって支持された軸受面(トップフォイル(80))が非真円形状に形成され、回転軸(35)が高速回転したときに生じる不安定化力(回転軸(35)を振れ回らせる力)の発生を抑制できる。 A circumferentially uneven gap (C) is formed between each back foil (70) and the bearing housing (60). In other words, the three back foils (70) are generally arranged in a non-circular shape. As a result, the bearing surface (top foil (80)) supported by the back foil (70) is formed in a non-circular shape, and the destabilizing force (rotating shaft ( 35) can be suppressed.
 互いに隣り合うバックフォイル(70)は、所定の間隔を空けて配置される。詳細には、各バックフォイル(70)を、第1係合部(63a)の位置を基準として時計回り方向に順に、第1バックフォイル(71)、第2バックフォイル(72)、第3バックフォイル(73)とする。このとき、第1バックフォイル(71)と第2バックフォイル(72)とは、第2係合部(63b)を挟んで、所定の間隔を空けて配置される。第2バックフォイル(72)と第3バックフォイル(73)とは、第3係合部(63c)を挟んで、所定の間隔を空けて配置される。第3バックフォイル(73)と第1バックフォイル(71)とは、第1係合部(63a)を挟んで、所定の間隔を空けて配置される。換言すると、各係合部(63)は、バックフォイル(70)に覆われていない。 The back foils (70) adjacent to each other are arranged at predetermined intervals. Specifically, the back foils (70) are sequentially rotated clockwise with respect to the position of the first engaging portion (63a) as the first back foil (71), the second back foil (72), and the third back foil. Foil (73). At this time, the first back foil (71) and the second back foil (72) are arranged with a predetermined space therebetween with the second engaging portion (63b) interposed therebetween. The second back foil (72) and the third back foil (73) are arranged with a predetermined space therebetween with the third engaging portion (63c) interposed therebetween. The third back foil (73) and the first back foil (71) are arranged with a predetermined space therebetween with the first engaging portion (63a) interposed therebetween. In other words, each engaging portion (63) is not covered by the back foil (70).
 各バックフォイル(70)は、周方向に沿って、軸受ハウジング(60)に接する平坦な谷部(70a)と、トップフォイル(80)に接する湾曲した山部(70b)とが交互に形成される。山部(70b)は、軸受ハウジング(60)に挿入された状態で径方向内方に突出する。各バックフォイル(70)は、その山部(70b)によってトップフォイル(80)を弾性的に支持する。ラジアルフォイル軸受(26)は、バックフォイル(70)の山部(70b)および谷部(70a)によって軸方向に流体の通路が形成される。 Each back foil (70) is circumferentially alternately formed with flat valleys (70a) contacting the bearing housing (60) and curved peaks (70b) contacting the top foil (80). be. The peak (70b) protrudes radially inward when inserted into the bearing housing (60). Each back foil (70) elastically supports the top foil (80) by its ridges (70b). In the radial foil bearing (26), fluid passages are formed in the axial direction by the peaks (70b) and valleys (70a) of the back foil (70).
 各バックフォイル(70)は、4つの係合爪(N)を有する。係合爪(N)は、各バックフォイル(70)における軸受ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、軸受ハウジング(60)の周方向の他方側に形成される第2係合爪(N2)とを含む。第1係合爪(N1)および第2係合爪(N2)は、バックフォイル(70)における軸受ハウジング(60)の軸方向の両側の端部にそれぞれ形成される。なお、第1係合爪(N1)および第2係合爪(N2)は、バックフォイル(70)における軸方向の一方側の端部にのみ形成されてもよい。 Each back foil (70) has four engaging claws (N). The engaging claws (N) consist of a first engaging claw (N1) formed on one circumferential side of the bearing housing (60) in each back foil (70) and a first engaging claw (N1) formed on the other circumferential side of the bearing housing (60). and a second engaging pawl (N2) formed on the side. The first engaging pawl (N1) and the second engaging pawl (N2) are formed at both ends of the back foil (70) in the axial direction of the bearing housing (60). The first engaging claw (N1) and the second engaging claw (N2) may be formed only at one axial end of the back foil (70).
 各係合爪(N1,N2)は、バックフォイル(70)における軸受ハウジング(60)の軸方向に延びる側縁部から径方向外側に延びる。言い換えると、図6に示すように、第1係合爪(N1)および第2係合爪(N2)のそれぞれは、山部(70b)が突出する方向と反対方向に向かって概ね直角に折り曲げられることで形成される。 Each of the engaging claws (N1, N2) extends radially outward from the axially extending side edge of the bearing housing (60) of the back foil (70). In other words, as shown in FIG. 6, each of the first engaging pawl (N1) and the second engaging pawl (N2) is bent substantially at a right angle in a direction opposite to the direction in which the peak (70b) protrudes. formed by being
 各バックフォイル(70)の第1係合爪(N1)および第2係合爪(N2)のそれぞれは、対応する軸受ハウジング(60)の係合部(63)に係合する。このように第1係合爪(N1)および第2係合爪(N2)によって周方向に軸受ハウジング(60)を挟み込むことにより、バックフォイル(70)が軸受ハウジング(60)に保持される。これにより、バックフォイル(70)が軸受ハウジング(60)から径方向に脱落することを抑制できる。本構成では、溶接によってバックフォイル(70)を軸受ハウジング(60)に固定しないので、バックフォイル(70)に溶接による歪みが生じない。このため、軸受としての性能を低下させることなくラジアルフォイル軸受(26)を製造できる。 Each of the first engaging pawl (N1) and the second engaging pawl (N2) of each back foil (70) engages with the engaging portion (63) of the corresponding bearing housing (60). By sandwiching the bearing housing (60) in the circumferential direction between the first engaging claw (N1) and the second engaging claw (N2), the back foil (70) is held in the bearing housing (60). This can prevent the back foil (70) from falling off from the bearing housing (60) in the radial direction. In this configuration, since the back foil (70) is not secured to the bearing housing (60) by welding, the back foil (70) is not distorted by welding. Therefore, the radial foil bearing (26) can be manufactured without lowering the performance as a bearing.
 各バックフォイル(70)の第1係合爪(N1)および第2係合爪(N2)の先端部は、それぞれの係合爪(N1,N2)が係合する係合部(63)の内側面に接触する。第1係合爪(N1)および第2係合爪(N2)は、弾性変形可能に構成される。これにより、バックフォイル(70)を軸受ハウジング(60)に係合させたときに、第1係合爪(N1)および第2係合爪(N2)の先端部に周方向に軸受ハウジング(60)を挟み込む力が生じるので、バックフォイル(70)の脱落をより抑制できる。 The tips of the first engaging claws (N1) and the second engaging claws (N2) of each back foil (70) are the engaging portions (63) with which the respective engaging claws (N1, N2) engage. contact the inner surface. The first engaging claw (N1) and the second engaging claw (N2) are configured to be elastically deformable. As a result, when the back foil (70) is engaged with the bearing housing (60), the ends of the first engaging claws (N1) and the second engaging claws (N2) extend in the circumferential direction toward the bearing housing (60). ) is generated, it is possible to further prevent the back foil (70) from coming off.
 加えて、バックフォイル(70)がトップフォイル(80)から径方向の力を受けると、第1係合爪(N1)および第2係合爪(N2)がその先端部を支点に弾性変形することにより、軸受ハウジング(60)に対して相対的に移動する。このように各バックフォイル(70)が軸受ハウジング(60)に対して相対的に移動できることにより、回転軸(35)が高速回転して振動した場合に、各バックフォイル(70)が周辺の部品に衝突し振動のエネルギーが散逸される。その結果、回転軸(35)の振動を減衰できる。 In addition, when the back foil (70) receives radial force from the top foil (80), the first engaging pawl (N1) and the second engaging pawl (N2) elastically deform with their tips serving as fulcrums. Thereby, it moves relative to the bearing housing (60). Since each back foil (70) can move relative to the bearing housing (60) in this way, when the rotating shaft (35) rotates at a high speed and vibrates, each back foil (70) can move to surrounding parts. and the energy of the vibration is dissipated. As a result, the vibration of the rotating shaft (35) can be damped.
 ここで、図7に示すように、第1バックフォイル(71)の第1係合爪(N1)が係合する第2係合部(63b)は、該第1係合爪(N1)の先端部が接触する第1面(64)を有する。第1バックフォイル(71)の第2係合爪(N2)が係合する第1係合部(63a)は、該第2係合爪(N2)の先端部が接触する第2面(65)を有する。第2係合部(63b)は、本開示の第1の係合部(63)に対応する。第1係合部(63a)は、本開示の第2の係合部(63)に対応する。 Here, as shown in FIG. 7, the second engaging portion (63b) with which the first engaging claw (N1) of the first back foil (71) engages is the It has a first surface (64) with which the tip contacts. The first engaging portion (63a) with which the second engaging claw (N2) of the first back foil (71) engages is the second surface (65) with which the tip of the second engaging claw (N2) contacts. ). The second engaging portion (63b) corresponds to the first engaging portion (63) of the present disclosure. The first engaging portion (63a) corresponds to the second engaging portion (63) of the present disclosure.
 軸受ハウジング(60)を軸方向から見たときに、第1バックフォイル(71)における第1係合爪(N1)の基端部と第2係合爪(N2)の基端部との間の周方向の長さA1は、軸受ハウジング(60)における第1面(64)の径方向内側の端部と第2面の径方向内側の端部との間の周方向の長さA2よりも長い。なお、ここでいう「周方向の長さ」とは、軸受ハウジング(60)の内周面の曲率半径と同じ曲率半径の仮想曲線における長さである。 Between the base ends of the first engaging claws (N1) and the second engaging claws (N2) in the first back foil (71) when the bearing housing (60) is viewed from the axial direction is greater than the circumferential length A2 between the radially inner end of the first surface (64) and the radially inner end of the second surface (64) of the bearing housing (60) too long. The "circumferential length" referred to here is the length of an imaginary curve having the same radius of curvature as the radius of curvature of the inner peripheral surface of the bearing housing (60).
 第1バックフォイル(71)における周方向の長さA1は、軸受ハウジング(60)における周方向の長さA2よりも長いので、第1係合爪(N1)と第1面(64)との間、および第2係合爪(N2)と第2面(65)との間にそれぞれ微小隙間(G)が形成される。これにより、回転軸(35)が高速回転して振動した場合に、第1係合爪(N1)と第1面(64)とが接触し、または第2係合爪(N2)と第2面(65)とが接触する。その結果、振動のエネルギーが散逸されて、回転軸(35)の振動が減衰できる。なお、微小隙間(G)は、第2バックフォイル(72)と軸受ハウジング(60)との間、および第3バックフォイル(73)と軸受ハウジング(60)との間にも形成される。 Since the circumferential length A1 of the first back foil (71) is longer than the circumferential length A2 of the bearing housing (60), the first engaging claw (N1) and the first surface (64) are separated from each other. A small gap (G) is formed between the second engaging claw (N2) and the second surface (65). As a result, when the rotating shaft (35) rotates at high speed and vibrates, the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. contact with the surface (65). As a result, vibrational energy is dissipated, and the vibration of the rotating shaft (35) can be damped. The minute gap (G) is also formed between the second back foil (72) and the bearing housing (60) and between the third back foil (73) and the bearing housing (60).
 図4に示すように、互いに隣り合うバックフォイル(70)のうち一方のバックフォイル(70)の第1係合爪(N1)は、他方のバックフォイル(70)の第2係合爪(N2)と対向して配置される。具体的には、第1バックフォイル(71)の第1係合爪(N1)は、第2バックフォイル(72)の第2係合爪(N2)と対向して配置される。第2バックフォイル(72)の第1係合爪(N1)と第3バックフォイル(73)の第2係合爪(N2)とは対向して配置される。第3バックフォイル(73)の第1係合爪(N1)と第1バックフォイル(71)の第2係合爪(N2)とは対向して配置される。 As shown in FIG. 4, the first engaging claw (N1) of one back foil (70) of the mutually adjacent back foils (70) is connected to the second engaging claw (N2) of the other back foil (70). ) are placed opposite each other. Specifically, the first engaging claw (N1) of the first back foil (71) is arranged to face the second engaging claw (N2) of the second back foil (72). The first engaging claw (N1) of the second back foil (72) and the second engaging claw (N2) of the third back foil (73) are arranged to face each other. The first engaging claw (N1) of the third back foil (73) and the second engaging claw (N2) of the first back foil (71) are arranged to face each other.
 本実施形態では、互いに対向して配置される一方のバックフォイル(70)の第1係合爪(N1)と他方のバックフォイル(70)の第2係合爪(N2)とは、1つの係合部(63)に係合する。具体的には、第1係合部(63a)には、第3バックフォイル(73)の第1係合爪(N1)、および第1バックフォイル(71)の第2係合爪(N2)が係合する。第2係合部(63b)には、第1バックフォイル(71)の第1係合爪(N1)、および第2バックフォイル(72)の第2係合爪(N2)が係合する。第3係合部(63c)には、第2バックフォイル(72)の第1係合爪(N1)、および第3バックフォイル(73)の第2係合爪(N2)が係合する。 In this embodiment, the first engaging claw (N1) of one back foil (70) and the second engaging claw (N2) of the other back foil (70), which are arranged to face each other, are It engages with the engaging portion (63). Specifically, the first engaging portion (63a) includes a first engaging claw (N1) of the third back foil (73) and a second engaging claw (N2) of the first back foil (71). engages. The first engaging claw (N1) of the first back foil (71) and the second engaging claw (N2) of the second back foil (72) are engaged with the second engaging portion (63b). The first engaging claw (N1) of the second back foil (72) and the second engaging claw (N2) of the third back foil (73) are engaged with the third engaging portion (63c).
 このように、互いに対向して配置される一方のバックフォイル(70)の第1係合爪(N1)と他方のバックフォイル(70)の第2係合爪(N2)とが1つの係合部(63)に係合するので、軸受ハウジング(60)に形成する係合部(63)の数が、1つの係合爪(N)に対応して1つの係合部(63)を形成する場合に比べて減少する。これにより、係合部(63)を加工する工程が減少するので、ラジアルフォイル軸受(26)の製造コストを低減できる。 In this way, the first engaging claw (N1) of one back foil (70) and the second engaging claw (N2) of the other back foil (70), which are arranged to face each other, form one engagement. Since it engages with the portion (63), the number of engaging portions (63) formed in the bearing housing (60) corresponds to one engaging pawl (N) to form one engaging portion (63). less than when This reduces the number of processes for machining the engaging portion (63), thereby reducing the manufacturing cost of the radial foil bearing (26).
 バックフォイル(70)は、軸受ハウジング(60)に対して、該軸受ハウジング(60)の周方向、軸方向、径方向の少なくとも一方向に相対的に移動可能に構成される。本実施形態のバックフォイル(70)は、軸受ハウジング(60)の周方向、軸方向、および径方向に相対的に移動可能に構成される。 The back foil (70) is configured to be movable relative to the bearing housing (60) in at least one of the circumferential, axial and radial directions of the bearing housing (60). The back foil (70) of this embodiment is configured to be relatively movable in the circumferential, axial and radial directions of the bearing housing (60).
 具体的には、ラジアルフォイル軸受(26)を組み立てる際に、バックフォイル(70)は、周方向、軸方向、および径方向に僅かに移動できる程度の余裕を持たせて巻かれ、軸受ハウジング(60)に挿入される。これにより、バックフォイル(70)は、軸受ハウジング(60)に対して周方向、軸方向、および径方向に僅かに移動可能に構成される。ここで、「僅かに移動」とは、バックフォイル(70)が軸受ハウジング(60)から外れて脱落しない程度の移動量のことである。 Specifically, when assembling the radial foil bearing (26), the back foil (70) is wound with a margin to allow slight movement in the circumferential, axial and radial directions, and the bearing housing ( 60). Thereby, the back foil (70) is configured to be slightly movable relative to the bearing housing (60) in the circumferential, axial and radial directions. Here, "slightly moved" means the amount of movement to such an extent that the back foil (70) does not fall out of the bearing housing (60).
 (3-3)トップフォイル
 トップフォイル(80)は、バックフォイル(70)と回転軸(35)との間に配置される。換言すると、トップフォイル(80)は、回転軸(35)に対向して配置される。トップフォイル(80)は、バックフォイル(70)の内面に沿って略円筒状に巻かれる。
(3-3) Top foil The top foil (80) is arranged between the back foil (70) and the rotating shaft (35). In other words, the top foil (80) is arranged opposite the axis of rotation (35). The top foil (80) is wound in a substantially cylindrical shape along the inner surface of the back foil (70).
 トップフォイル(80)は、金属で構成される薄板状に形成される。トップフォイル(80)は、周方向を長辺とし、軸方向を短辺とする矩形状に形成される。トップフォイル(80)は、回転軸(35)の外周面に沿って巻かれた本体部(81)を有する。本実施形態のトップフォイル(80)は、本体部(81)のみで構成される。 The top foil (80) is formed into a thin plate made of metal. The top foil (80) is formed in a rectangular shape with long sides in the circumferential direction and short sides in the axial direction. The top foil (80) has a main body (81) wound along the outer peripheral surface of the rotating shaft (35). The top foil (80) of this embodiment is composed only of the main body (81).
 本体部(81)は、第1側縁部(81a)と第2側縁部(81b)とを有する。第1側縁部(81a)は、回転軸(35)の回転方向(P)前側の側縁部である。第2側縁部(81b)は、回転軸(35)の回転方向(P)後側の側縁部である。第1側縁部(81a)には、溶接部(W)が形成されている。この溶接部(W)によって、トップフォイル(80)は、軸受ハウジング(60)に固定されている。 The main body (81) has a first side edge (81a) and a second side edge (81b). The first side edge (81a) is a side edge on the front side in the rotation direction (P) of the rotating shaft (35). The second side edge (81b) is a side edge on the rear side in the rotation direction (P) of the rotating shaft (35). A welded portion (W) is formed in the first side edge (81a). The weld (W) secures the top foil (80) to the bearing housing (60).
 (4)圧縮機の運転動作
 次に、圧縮機(20)の運転動作について説明する。
(4) Operating Behavior of Compressor Next, the operating behavior of the compressor (20) will be described.
 モータ(30)に電力が供給されると、モータ(30)の回転子(32)が回転する。これにより、回転軸(35)及びインペラが回転する。羽根車(51)が回転することにより、吸入通路(53)から圧縮室(52)へ冷媒が吸入され、圧縮される。圧縮されて高圧となった冷媒は、吐出通路(図示省略)を経由して、圧縮室(52)から外部へ吐出される。 When power is supplied to the motor (30), the rotor (32) of the motor (30) rotates. This causes the rotating shaft (35) and the impeller to rotate. As the impeller (51) rotates, refrigerant is sucked into the compression chamber (52) through the suction passageway (53) and compressed. The compressed and high-pressure refrigerant is discharged from the compression chamber (52) to the outside through a discharge passage (not shown).
 (5)ラジアルフォイル軸受の作用
 次に、ラジアルフォイル軸受(26)の作用について説明する。
(5) Action of Radial Foil Bearing Next, the action of the radial foil bearing (26) will be described.
 回転軸(35)が停止した状態では、トップフォイル(80)は、バックフォイル(70)によって回転軸(35)側に付勢され、回転軸(35)に密着している。モータ(30)に電力が供給されると、回転軸(35)が図1に示す回転方向(P)に回転を始める。回転軸(35)は、低速で回転し始め、その後徐々に加速して高速で回転する。回転軸(35)が高速回転すると、トップフォイル(80)の第2側縁部(81b)とバックフォイル(70)の一端との間から周囲流体が引き入れられ、トップフォイル(80)と回転軸(35)との間に周囲流体が流入する。これにより、トップフォイル(80)と回転軸(35)との間に流体潤滑膜が形成される。 When the rotating shaft (35) is stopped, the top foil (80) is urged toward the rotating shaft (35) by the back foil (70) and is in close contact with the rotating shaft (35). When power is supplied to the motor (30), the rotating shaft (35) starts rotating in the rotating direction (P) shown in FIG. The rotating shaft (35) starts rotating at a low speed and then gradually accelerates to a high speed. As the rotating shaft (35) rotates at high speed, ambient fluid is drawn in between the second side edge (81b) of the top foil (80) and one end of the back foil (70), causing the top foil (80) and the rotating shaft to move. Ambient fluid flows between (35). Thereby, a fluid lubricating film is formed between the top foil (80) and the rotating shaft (35).
 (6)特徴
 (6-1)
 本実施形態では、バックフォイル(70)は、軸受ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、周方向の他方側に形成される第2係合爪(N2)とを有する。軸受ハウジング(60)の側面には、該軸受ハウジング(60)の内周面から径方向外側に延びるとともに、第1係合爪(N1)および第2係合爪(N2)のそれぞれが係合する係合部(63)が形成される。
(6) Features (6-1)
In this embodiment, the back foil (70) includes a first engaging claw (N1) formed on one circumferential side of the bearing housing (60) and a second engaging claw (N1) formed on the other circumferential side of the bearing housing (60). with claws (N2). A first engaging claw (N1) and a second engaging claw (N2) are engaged with the side surface of the bearing housing (60), extending radially outward from the inner peripheral surface of the bearing housing (60). An engaging portion (63) is formed.
 これによれば、第1係合爪(N1)および第2係合爪(N2)をそれぞれに対応する係合部(63)に係合させることで軸受ハウジング(60)を挟み込む。これにより、バックフォイル(70)が軸受ハウジング(60)に保持される。その結果、係合部(63)を各係合爪(N1,N2)が丁度嵌る幅に合わせて微細な加工をする必要がなくなり、エンドミルによる切削加工のような一般的な加工方法によって係合部(63)を形成できる。これにより、ラジアルフォイル軸受(26)の製造コストを低減できる。 According to this, the bearing housing (60) is sandwiched by engaging the first engaging claw (N1) and the second engaging claw (N2) with the corresponding engaging portions (63). This holds the back foil (70) to the bearing housing (60). As a result, it is no longer necessary to finely process the engaging portion (63) to match the widths of the engaging claws (N1, N2). A part (63) can be formed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
 ところで、従来のラジアルフォイル軸受では、溶接等によりバックフォイルにおける周方向一方側の両端部を軸受ハウジング(60)に固定している。言い換えると、バックフォイルにおける周方向他方側が自由に移動できる。このため、外乱などによりラジアルフォイル軸受(26)に衝撃が加わると、バックフォイルの位置が大きくずれてしまい、トップフォイルを適切に支持できない。その結果、ラジアルフォイル軸受としての性能が発揮できない場合があった。 By the way, in the conventional radial foil bearing, both ends of the back foil on one side in the circumferential direction are fixed to the bearing housing (60) by welding or the like. In other words, the other circumferential side of the back foil can move freely. Therefore, if the radial foil bearing (26) is impacted by a disturbance or the like, the position of the back foil is greatly displaced, and the top foil cannot be properly supported. As a result, the performance as a radial foil bearing could not be exhibited in some cases.
 これに対し、本実施形態のバックフォイル(70)の周方向の両側に係合爪(N1,N2)を設け、該係合爪(N1,N2)を軸受ハウジング(60)の係合部(63)に係合させることにより、バックフォイル(70)を固定している。これにより、ラジアルフォイル軸受(26)に衝撃が加わっても、バックフォイル(70)の大きな位置ずれを抑制でき、トップフォイル(80)を適切に支持できる。その結果、ラジアルフォイル軸受(26)としての性能を維持できる。 On the other hand, the engaging claws (N1, N2) are provided on both sides in the circumferential direction of the back foil (70) of the present embodiment, and the engaging claws (N1, N2) are connected to the engaging portion ( 63) to secure the back foil (70). As a result, even if the radial foil bearing (26) receives an impact, the back foil (70) can be prevented from being greatly displaced, and the top foil (80) can be properly supported. As a result, the performance of the radial foil bearing (26) can be maintained.
 更に、本実施形態のバックフォイル(70)は、第1係合爪(N1)および第2係合爪(N2)によって軸受ハウジング(60)を挟み込むことで、軸受ハウジング(60)に固定される。このようにバックフォイル(70)を溶接等によって軸受ハウジング(60)に固定しないので、バックフォイル(70)に溶接熱による歪みが生じない。これにより、軸受面に歪みが生じないので、ラジアルフォイル軸受(26)としての性能が低下することを抑制できる。 Furthermore, the back foil (70) of the present embodiment is fixed to the bearing housing (60) by sandwiching the bearing housing (60) between the first engaging claw (N1) and the second engaging claw (N2). . Since the back foil (70) is not fixed to the bearing housing (60) by welding or the like, the back foil (70) is not distorted due to welding heat. As a result, the bearing surface is not distorted, so that deterioration of performance as the radial foil bearing (26) can be suppressed.
 (6-2)
 本実施形態では、係合部(63)は、軸受ハウジング(60)の両側の側面に形成される。バックフォイル(70)の第1係合爪(N1)および第2係合爪(N2)は、軸方向の両側にそれぞれ形成される。これによれば、バックフォイル(70)の軸方向両側への大きな移動が規制される。
(6-2)
In this embodiment, the engaging portions (63) are formed on both side surfaces of the bearing housing (60). The first engaging claw (N1) and the second engaging claw (N2) of the back foil (70) are formed on both sides in the axial direction. According to this, the back foil (70) is restricted from moving to both sides in the axial direction.
 (6-3)
 本実施形態では、バックフォイル(70)は、軸受ハウジング(60)に対して周方向、軸方向、および径方向に相対的に移動可能に構成される。これによれば、例えば回転軸(35)が高速に回転して振動した場合に、その振動が伝達されたバックフォイル(70)が周方向、軸方向、および径方向のいずれか一方向に移動して周辺の部品と衝突する。この衝突により、振動のエネルギーが散逸されるので、回転軸(35)の振動を減衰できる。
(6-3)
In this embodiment, the back foil (70) is configured to be circumferentially, axially and radially movable relative to the bearing housing (60). According to this, for example, when the rotating shaft (35) rotates at high speed and vibrates, the back foil (70) to which the vibration is transmitted moves in one of the circumferential direction, the axial direction, and the radial direction. and collide with surrounding parts. This collision dissipates the energy of the vibration, so that the vibration of the rotating shaft (35) can be damped.
 (6-4)
 本実施形態では、第1係合爪(N1)および第2係合爪(N2)は、バックフォイル(70)における軸受ハウジング(60)の軸方向に沿って延びる側縁部から径方向外側に延びる。これによれば、第1係合爪(N1)および第2係合爪(N2)が軸受ハウジング(60)を周方向に挟み込む。これにより、バックフォイル(70)の周方向への大きな移動を規制できる。
(6-4)
In this embodiment, the first engaging pawl (N1) and the second engaging pawl (N2) extend radially outward from the side edge of the back foil (70) extending along the axial direction of the bearing housing (60). Extend. According to this, the first engaging claw (N1) and the second engaging claw (N2) sandwich the bearing housing (60) in the circumferential direction. Thereby, a large movement of the back foil (70) in the circumferential direction can be restricted.
 (6-5)
 本実施形態では、係合部(63)の幅は、バックフォイル(70)の板厚の5倍以上である。これによれば、係合部(63)の幅をバックフォイル(70)の板厚に対して十分大きく形成できるので、微細な加工によって係合部(63)を形成する必要がなく、係合部(63)を形成しやすい。
(6-5)
In this embodiment, the width of the engaging portion (63) is at least five times the thickness of the back foil (70). According to this, the width of the engaging portion (63) can be formed to be sufficiently large with respect to the plate thickness of the back foil (70). It is easy to form the part (63).
 (6-6)
 本実施形態では、係合部(63)の幅は、0.3mm以上である。これによれば、係合部(63)の幅が0.3mm以上なので、例えばワイヤカット加工のような繊細な加工をすることなく係合部(63)を形成できる。
(6-6)
In this embodiment, the width of the engaging portion (63) is 0.3 mm or more. According to this, since the width of the engaging portion (63) is 0.3 mm or more, the engaging portion (63) can be formed without delicate processing such as wire cutting.
 (6-7)
 本実施形態では、バックフォイル(70)は、周方向に沿って複数設けられる。互いに隣り合うバックフォイル(70)のうち一方のバックフォイル(70)の第1係合爪(N1)は、他方のバックフォイル(70)の第2係合爪(N2)と対向して配置される。一方のバックフォイル(70)の第1係合爪(N1)および他方のバックフォイル(70)の第2係合爪(N2)は、1つの係合部(63)に係合する。
(6-7)
In this embodiment, a plurality of back foils (70) are provided along the circumferential direction. The first engaging claw (N1) of one back foil (70) of the mutually adjacent back foils (70) is arranged to face the second engaging claw (N2) of the other back foil (70). be. The first engaging claw (N1) of one back foil (70) and the second engaging claw (N2) of the other back foil (70) engage one engaging portion (63).
 これによれば、1つの係合部(63)に2つの係合爪(N1,N2)が係合するので、形成する係合部(63)の数を抑制できる。これにより、ラジアルフォイル軸受(26)の製造コストを低減できる。 According to this, since two engaging claws (N1, N2) are engaged with one engaging portion (63), the number of engaging portions (63) to be formed can be suppressed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
 (6-8)
 本実施形態では、第1係合爪(N1)および第2係合爪(N2)のそれぞれの先端部は、それぞれの係合爪(N1,N2)に対応する係合部(63)の内面に接触する。バックフォイル(70)は、第1係合爪(N1)および第2係合爪(N2)が弾性変形することにより、軸受ハウジング(60)に対して相対的に移動可能に構成される。
(6-8)
In the present embodiment, the tip of each of the first engaging claw (N1) and the second engaging claw (N2) is the inner surface of the engaging portion (63) corresponding to each engaging claw (N1, N2). come into contact with The back foil (70) is configured to be movable relative to the bearing housing (60) by elastically deforming the first engaging claw (N1) and the second engaging claw (N2).
 これによれば、第1係合爪(N1)および第2係合爪(N2)のそれぞれの先端部が係合部(63)の内面に接触することにより、バックフォイル(70)が軸受ハウジング(60)に保持される。この状態で、各係合爪(N1,N2)が弾性変形することにより、バックフォイル(70)が軸受ハウジング(60)に対して相対的に移動する。これにより、回転軸が高速回転して振動した場合に、バックフォイル(70)が周辺の部品に衝突して、振動のエネルギーが散逸される。その結果、回転軸(35)の振動を減衰できる。 According to this, the tip of each of the first engaging claw (N1) and the second engaging claw (N2) comes into contact with the inner surface of the engaging portion (63), thereby causing the back foil (70) to move toward the bearing housing. (60) is held. In this state, the engagement claws (N1, N2) are elastically deformed to move the back foil (70) relative to the bearing housing (60). As a result, when the rotary shaft rotates at high speed and vibrates, the back foil (70) collides with surrounding parts to dissipate the energy of the vibration. As a result, the vibration of the rotating shaft (35) can be damped.
 (6-9)
 本実施形態では、軸受ハウジング(60)は、第1係合爪(N1)が係合する第1の係合部(63)と、第2係合爪(N2)が係合する第2の係合部(63)とを有する。第1の係合部(63)は、第1係合爪(N1)の先端部が接触する第1面(64)を有する。第2の係合部(63)は、第2係合爪(N2)の先端部が接触する第2面(65)を有する。軸受ハウジング(60)の軸方向から見たときに、第1係合爪(N1)の基端部と第2係合爪(N2)の基端部との間の周方向の長さA1は、第1面(64)の径方向内側の端部と第2面(65)の径方向内側の端部との間の周方向の長さA2よりも長い。
(6-9)
In this embodiment, the bearing housing (60) has a first engaging portion (63) with which the first engaging claw (N1) engages, and a second engaging portion (63) with which the second engaging claw (N2) engages. and an engaging portion (63). The first engaging portion (63) has a first surface (64) with which the tip of the first engaging claw (N1) contacts. The second engaging portion (63) has a second surface (65) with which the tip of the second engaging claw (N2) contacts. When viewed from the axial direction of the bearing housing (60), the circumferential length A1 between the base end of the first engagement claw (N1) and the base end of the second engagement claw (N2) is , the circumferential length A2 between the radially inner end of the first surface (64) and the radially inner end of the second surface (65).
 これによれば、バックフォイル(70)における周方向の長さA1が、軸受ハウジング(60)における周方向の長さA2よりも長いので、第1係合爪(N1)および第1面(64)の間、ならびに第2係合爪(N2)および第2面(65)の間のそれぞれに周方向に隙間(C)が生じる。これにより、回転軸(35)が高速に回転して振動した場合に、第1係合爪(N1)と第1面(64)が接触する、または第2係合爪(N2)と第2面(65)が接触する。その結果、回転軸(35)の振動のエネルギーが散逸されるので、回転軸(35)の振動を減衰できる。 According to this, since the circumferential length A1 of the back foil (70) is longer than the circumferential length A2 of the bearing housing (60), the first engaging claw (N1) and the first surface (64) ) and between the second engaging claw (N2) and the second surface (65). As a result, when the rotating shaft (35) rotates at high speed and vibrates, the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. Faces (65) are in contact. As a result, the energy of the vibration of the rotating shaft (35) is dissipated, so that the vibration of the rotating shaft (35) can be damped.
 (7)変形例
 上記実施形態については、以下のような変形例としてもよい。なお、以下の説明では、原則として上記実施形態と異なる点について説明する。
(7) Modifications The above embodiment may be modified as follows. In addition, in the following description, in principle, points different from the above embodiment will be described.
 (7-1)変形例1
 図8および図9に示すように、本実施形態のラジアルフォイル軸受(26)では、バックフォイル(70)の1つの係合爪(N1,N2)が、軸受ハウジング(60)の1つの係合部(63)に係合してもよい。言い換えると、軸受ハウジング(60)の係合部(63)は、バックフォイル(70)の係合爪(N1,N2)と同じ数設けられてもよい。
(7-1) Modification 1
As shown in FIGS. 8 and 9, in the radial foil bearing (26) of the present embodiment, one engaging claw (N1, N2) of the back foil (70) engages one engaging claw of the bearing housing (60). It may engage with the portion (63). In other words, the engaging portions (63) of the bearing housing (60) may be provided in the same number as the engaging claws (N1, N2) of the back foil (70).
 具体的には、本変形例の軸受ハウジング(60)の両側の側面には、それぞれ6つの係合部(63)が形成される。各係合部(63)を、トップフォイル(80)の溶接部(W)の位置を基準に時計回り方向に第1~第6係合部(63a,63b,63c,63d,63e,63f)としたとき、第2係合部(63b)と第3係合部(63c)は近接して形成される。第4係合部(63d)と第5係合部(63e)は近接して形成される。第6係合部(63f)と第1係合部(63a)は、溶接部(W)を挟んで、近接して形成される。 Specifically, six engaging portions (63) are formed on both side surfaces of the bearing housing (60) of this modified example. Each engaging portion (63) is rotated clockwise from the position of the welded portion (W) of the top foil (80) to the first to sixth engaging portions (63a, 63b, 63c, 63d, 63e, 63f). , the second engaging portion (63b) and the third engaging portion (63c) are formed close to each other. The fourth engaging portion (63d) and the fifth engaging portion (63e) are formed close to each other. The sixth engaging portion (63f) and the first engaging portion (63a) are formed adjacent to each other with the welded portion (W) interposed therebetween.
 第1係合部(63a)には、第1バックフォイル(71)の第2係合爪(N2)が係合する。第2係合部(63b)には、第1バックフォイル(71)の第1係合爪(N1)が係合する。第3係合部(63c)には、第2バックフォイル(72)の第2係合爪(N2)が係合する。第4係合部(63d)には、第2バックフォイル(72)の第1係合爪(N1)が係合する。第5係合部(63e)には、第3バックフォイル(73)の第2係合爪(N2)が係合する。第6係合部(63f)には、第3バックフォイル(73)の第1係合爪(N1)が係合する。 The second engaging claw (N2) of the first back foil (71) engages with the first engaging portion (63a). The first engaging claw (N1) of the first back foil (71) engages with the second engaging portion (63b). The second engaging claw (N2) of the second back foil (72) engages with the third engaging portion (63c). The first engaging claw (N1) of the second back foil (72) engages with the fourth engaging portion (63d). The second engaging claw (N2) of the third back foil (73) engages with the fifth engaging portion (63e). The first engaging claw (N1) of the third back foil (73) engages with the sixth engaging portion (63f).
 加えて、バックフォイル(70)の係合爪(N1,N2)と、該係合爪(N1,N2)に対応する係合部(63)の第1面(64)または第2面(65)との間に微小隙間が形成されなくてもよい。 In addition, the engaging claws (N1, N2) of the back foil (70) and the first surface (64) or second surface (65) of the engaging portion (63) corresponding to the engaging claws (N1, N2) ) does not need to be formed.
 (7-2)変形例2
 図10および図11に示すように、本実施形態のラジアルフォイル軸受(26)では、バックフォイル(70)の山部(70b)は、第1係合爪(N1)および第2係合爪(N2)が延びる方向に突出してもよい。言い換えると、第1係合爪(N1)および第2係合爪(N2)のそれぞれは、山部(70b)が突出する方向に概ね直角に折り曲げられている。山部(70b)は、軸受ハウジング(60)に挿入された状態で径方向外側に突出する。本変形例では、各バックフォイル(70)は、その谷部(70a)によってトップフォイル(80)を弾性的に支持する。
(7-2) Modification 2
As shown in FIGS. 10 and 11, in the radial foil bearing (26) of the present embodiment, the ridges (70b) of the back foil (70) form the first engaging claw (N1) and the second engaging claw (N1). N2) may protrude in the extending direction. In other words, each of the first engaging claw (N1) and the second engaging claw (N2) is bent substantially perpendicular to the direction in which the peak (70b) protrudes. The peak (70b) protrudes radially outward when inserted into the bearing housing (60). In this variation, each back foil (70) elastically supports the top foil (80) by means of its troughs (70a).
 図10に示すように、本変形例のバックフォイル(70)は、第1係合爪(N1)および第2係合爪(N2)の基端部の角の位置が、対応する係合部(63)の角の位置と一致していない。これにより、本変形例のバックフォイル(70)は、実施形態1のバックフォイルに比べて、係合爪(N1,N2)の基端部の角と該係合爪(N1,N2)に対応する係合部(63)の角との位置を合わせる必要がないので、係合部(63)の角を面取りする必要がない。 As shown in FIG. 10, in the back foil (70) of this modification, the positions of the corners of the base ends of the first engaging claw (N1) and the second engaging claw (N2) correspond to the engaging portions. (63) does not match the position of the corner. As a result, the back foil (70) of this modified example corresponds to the corners of the base ends of the engaging claws (N1, N2) and the engaging claws (N1, N2) compared to the back foil of the first embodiment. Since there is no need to align the corners of the engaging portion (63), there is no need to chamfer the corners of the engaging portion (63).
 (7-3)変形例3
 本実施形態のラジアルフォイル軸受(26)では、係合爪(N1,N2)が、バックフォイル(70)における周方向に延びる側縁部の両端部から径方向外側に延びてもよい。言い換えると、第1係合爪(N1)および第2係合爪(N2)のそれぞれは、軸方向に軸受ハウジング(60)を挟み込むことでバックフォイル(70)を軸受ハウジング(60)に保持する。
(7-3) Modification 3
In the radial foil bearing (26) of the present embodiment, the engaging claws (N1, N2) may extend radially outward from both ends of the circumferentially extending side edges of the back foil (70). In other words, each of the first engaging pawl (N1) and the second engaging pawl (N2) holds the back foil (70) in the bearing housing (60) by sandwiching the bearing housing (60) in the axial direction. .
 この場合には、係合爪(N1,N2)に対応する係合部(63)は、係合爪(N1,N2)の大きさに合わせて形成される。具体的には、本変形例の係合部(63)は、実施形態1の係合部(63)に比べて、幅(周方向の長さ)が長くなるとともに高さ(軸方向の長さ)が短くなる。 In this case, the engaging portion (63) corresponding to the engaging claws (N1, N2) is formed to match the size of the engaging claws (N1, N2). Specifically, the engaging portion (63) of this modified example has a longer width (length in the circumferential direction) and a higher height (length in the axial direction) than the engaging portion (63) of the first embodiment. ) is shortened.
 (7-4)変形例4
 本実施形態における軸受ハウジング(60)の各係合部(63)は、穴で構成されてもよい。言い換えると、各係合部(63)は、軸受ハウジング(60)の側面に形成されなくてもよい。具体的には、各係合部(63)は、軸受ハウジング(60)の軸方向中央寄りの位置に形成されてもよい。軸受ハウジング(60)の内周面から外周面へ向かって延びる。
(7-4) Modification 4
Each engaging portion (63) of the bearing housing (60) in this embodiment may be configured as a hole. In other words, each engaging portion (63) need not be formed on the side surface of the bearing housing (60). Specifically, each engaging portion (63) may be formed at a position closer to the center in the axial direction of the bearing housing (60). It extends from the inner peripheral surface of the bearing housing (60) toward the outer peripheral surface.
 この場合、各バックフォイル(70)の第1係合爪(N1)および第2係合爪(N2)は、穴で構成された係合部(63)に対応する位置に形成される。これにより、バックフォイル(70)の第1係合爪(N1)および第2係合爪(N2)は、軸受ハウジング(60)の係合部(63)に係合する。 In this case, the first engaging claws (N1) and the second engaging claws (N2) of each back foil (70) are formed at positions corresponding to the engaging portions (63) formed of holes. Thereby, the first engaging claw (N1) and the second engaging claw (N2) of the back foil (70) engage with the engaging portion (63) of the bearing housing (60).
 《実施形態2》
 実施形態2について説明する。本実施形態のラジアルフォイル軸受(26)は、実施形態1のラジアルフォイル軸受(26)において、その構成に中間フォイル(90)を追加したものである。ここでは、本実施形態のラジアルフォイル軸受(26)について、実施形態1と異なる点を説明する。
<<Embodiment 2>>
A second embodiment will be described. The radial foil bearing (26) of the present embodiment is the same as the radial foil bearing (26) of the first embodiment, except that an intermediate foil (90) is added. Here, the points of the radial foil bearing (26) of this embodiment that are different from those of the first embodiment will be described.
 (1)ラジアルフォイル軸受
 本実施形態のラジアルフォイル軸受(26)について、図12~図15を参照しながら詳細に説明する。ラジアルフォイル軸受(26)は、軸受ハウジング(60)と、バックフォイル(70)と、トップフォイル(80)と、中間フォイル(90)とを備える。
(1) Radial Foil Bearing The radial foil bearing (26) of this embodiment will be described in detail with reference to FIGS. 12 to 15. FIG. A radial foil bearing (26) comprises a bearing housing (60), a back foil (70), a top foil (80) and an intermediate foil (90).
 図12に示すように、軸受ハウジング(60)は、トップフォイル(80)、バックフォイル(70)、および中間フォイル(90)を収容する。中間フォイル(90)は、バックフォイル(70)とトップフォイル(80)との間に配置される。中間フォイル(90)は、バックフォイル(70)の径方向内側に配置される。トップフォイル(80)は、中間フォイル(90)と回転軸(35)との間に配置される。 As shown in Figure 12, the bearing housing (60) accommodates the top foil (80), the back foil (70) and the intermediate foil (90). An intermediate foil (90) is arranged between the back foil (70) and the top foil (80). The intermediate foil (90) is arranged radially inside the back foil (70). The top foil (80) is arranged between the intermediate foil (90) and the rotating shaft (35).
 (1-1)バックフォイル
 バックフォイル(70)は、中間フォイル(90)およびトップフォイル(80)を弾性的に支持する。本実施形態のバックフォイル(70)は、実施形態1のバックフォイルと異なり、係合爪(N)が設けられていない。本実施形態では、係合爪(N)は、中間フォイル(90)に設けられる。
(1-1) Back foil The back foil (70) elastically supports the intermediate foil (90) and the top foil (80). Unlike the back foil of Embodiment 1, the back foil (70) of this embodiment is not provided with engaging claws (N). In this embodiment, the engaging pawl (N) is provided on the intermediate foil (90).
 本実施形態のバックフォイル(70)は、4つの挿通部(70e)を有する。挿通部(70e)は、後述する中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)が挿通される。挿通部(70e)は、第1係合爪(N1)および第2係合爪(N2)に対応する位置に形成される。具体的には、挿通部(70e)は、各バックフォイル(70)の周方向両側の端部かつ軸方向両側の端部に形成される。言い換えると、挿通部(70e)は、バックフォイル(70)の四隅に形成される。図13に示すように、本実施形態の挿通部(70e)は、切欠きで構成される。 The back foil (70) of this embodiment has four insertion portions (70e). A first engaging claw (N1) and a second engaging claw (N2) of an intermediate foil (90), which will be described later, are inserted through the insertion portion (70e). The insertion portion (70e) is formed at a position corresponding to the first engaging claw (N1) and the second engaging claw (N2). Specifically, the insertion portions (70e) are formed at both ends in the circumferential direction and both ends in the axial direction of each back foil (70). In other words, the insertion portions (70e) are formed at the four corners of the back foil (70). As shown in FIG. 13, the insertion portion (70e) of this embodiment is configured by a notch.
 波板状に形成された各バックフォイル(70)の山部(70b)は、中間フォイル(90)に接する。このようにバックフォイル(70)の山部(70b)によって、中間フォイル(90)を介して、トップフォイル(80)を弾性的に支持している。 The crests (70b) of each back foil (70) formed in a corrugated plate contact with the intermediate foil (90). Thus, the peaks (70b) of the back foil (70) elastically support the top foil (80) via the intermediate foil (90).
 (1-2)中間フォイル
 中間フォイル(90)は、回転軸(35)の振動をより減衰させるためのものである。中間フォイル(90)は、薄板状に形成される。中間フォイル(90)は、バックフォイル(70)の内面に沿って巻かれる。
(1-2) Intermediate Foil The intermediate foil (90) serves to further dampen the vibration of the rotating shaft (35). The intermediate foil (90) is formed in the shape of a sheet. An intermediate foil (90) is wrapped along the inner surface of the back foil (70).
 本実施形態のラジアルフォイル軸受(26)には、軸受ハウジング(60)の周方向に沿って複数(3つ)の中間フォイル(90)が設けられる。各中間フォイル(90)は、軸方向から見て、略円弧状に形成される。3つの中間フォイル(90)は、全体として略円筒状になるように配置される。 The radial foil bearing (26) of this embodiment is provided with a plurality (three) of intermediate foils (90) along the circumferential direction of the bearing housing (60). Each intermediate foil (90) is formed in a substantially arcuate shape when viewed from the axial direction. The three intermediate foils (90) are generally arranged in a generally cylindrical shape.
 互いに隣り合う中間フォイル(90)は、所定の間隔を空けて配置される。詳細には、各中間フォイル(90)を、第1係合部(63a)の位置を基準として時計回り方向に順に、第1中間フォイル(91)、第2中間フォイル(92)、第3中間フォイル(93)とする。このとき、第1中間フォイル(91)と第2中間フォイル(92)とは、第2係合部(63b)を挟んで、所定の間隔を空けて配置される。第2中間フォイル(92)と第3中間フォイル(93)とは、第3係合部(63c)を挟んで、所定の間隔を空けて配置される。第3中間フォイル(93)と第1中間フォイル(91)とは、第1係合部(63a)を挟んで、所定の間隔を空けて配置される。換言すると、各係合部(63)は、中間フォイル(90)に覆われていない。 The intermediate foils (90) adjacent to each other are arranged at predetermined intervals. Specifically, the intermediate foils (90) are arranged in clockwise order with respect to the position of the first engaging portion (63a) as the first intermediate foil (91), the second intermediate foil (92), and the third intermediate foil (92). Foil (93). At this time, the first intermediate foil (91) and the second intermediate foil (92) are arranged with a predetermined space therebetween with the second engaging portion (63b) interposed therebetween. The second intermediate foil (92) and the third intermediate foil (93) are arranged at a predetermined interval with the third engaging portion (63c) interposed therebetween. The third intermediate foil (93) and the first intermediate foil (91) are arranged at a predetermined interval with the first engaging portion (63a) interposed therebetween. In other words, each engaging portion (63) is not covered by an intermediate foil (90).
 各中間フォイル(90)は、4つの係合爪(N)を有する。係合爪(N)は、各中間フォイル(90)における軸受ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、軸受ハウジング(60)の周方向の他方側に形成される第2係合爪(N2)とを含む。第1係合爪(N1)および第2係合爪(N2)は、中間フォイル(90)における軸受ハウジング(60)の軸方向の両側の端部にそれぞれ形成される。なお、第1係合爪(N1)および第2係合爪(N2)は、中間フォイル(90)における軸方向の一方側の端部にのみ形成されてもよい。 Each intermediate foil (90) has four engaging claws (N). The engaging claws (N) are composed of a first engaging claw (N1) formed on one side of the bearing housing (60) in the circumferential direction of each intermediate foil (90) and a first engaging claw (N1) formed on the other side of the bearing housing (60) in the circumferential direction. and a second engaging pawl (N2) formed on the side. The first engaging pawl (N1) and the second engaging pawl (N2) are formed on both ends of the intermediate foil (90) in the axial direction of the bearing housing (60). The first engaging claw (N1) and the second engaging claw (N2) may be formed only at one axial end of the intermediate foil (90).
 図14および図15に示すように、各係合爪(N1,N2)は、中間フォイル(90)における軸受ハウジング(60)の軸方向に延びる側縁部から径方向外側に延びる。言い換えると、第1係合爪(N1)および第2係合爪(N2)のそれぞれは、バックフォイル(70)の山部(70b)が突出する方向と反対方向に向かって概ね直角に折り曲げられることで形成される。 As shown in FIGS. 14 and 15, each engaging pawl (N1, N2) extends radially outward from the axially extending side edge of the bearing housing (60) of the intermediate foil (90). In other words, each of the first engaging claw (N1) and the second engaging claw (N2) is bent substantially perpendicularly in the direction opposite to the direction in which the peaks (70b) of the back foil (70) protrude. formed by
 各中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)のそれぞれは、対応するバックフォイル(70)の挿通部(70e)を介して、対応する軸受ハウジング(60)の係合部(63)に係合する。このように第1係合爪(N1)および第2係合爪(N2)によって周方向に軸受ハウジング(60)を挟み込むことにより、中間フォイル(90)およびバックフォイル(70)が軸受ハウジング(60)に保持される。これにより、中間フォイル(90)およびバックフォイル(70)が軸受ハウジング(60)から径方向に脱落することを抑制できる。本構成では、溶接によってバックフォイル(70)を軸受ハウジング(60)に固定しないので、バックフォイル(70)に溶接による歪みが生じない。このため、軸受としての性能を低下させることなくラジアルフォイル軸受(26)を製造できる。 Each of the first engaging pawl (N1) and the second engaging pawl (N2) of each intermediate foil (90) is connected to the corresponding bearing housing ( 60) engages with the engaging portion (63). By sandwiching the bearing housing (60) in the circumferential direction between the first engaging claws (N1) and the second engaging claws (N2) in this manner, the intermediate foil (90) and the back foil (70) are held together by the bearing housing (60). ). This can prevent the intermediate foil (90) and the back foil (70) from falling off from the bearing housing (60) in the radial direction. In this configuration, since the back foil (70) is not secured to the bearing housing (60) by welding, the back foil (70) is not distorted by welding. Therefore, the radial foil bearing (26) can be manufactured without lowering the performance as a bearing.
 各中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)の先端部は、それぞれの係合爪(N1,N2)が係合する係合部(63)の内側面に接触する。第1係合爪(N1)および第2係合爪(N2)は、弾性変形可能に構成される。これにより、中間フォイル(90)をバックフォイル(70)介して軸受ハウジング(60)に係合させたときに、第1係合爪(N1)および第2係合爪(N2)の先端部に周方向に軸受ハウジング(60)を挟み込む力が生じるので、バックフォイル(70)の脱落をより抑制できる。 The tips of the first engaging claws (N1) and the second engaging claws (N2) of each intermediate foil (90) are the engaging portions (63) with which the respective engaging claws (N1, N2) engage. contact the inner surface. The first engaging claw (N1) and the second engaging claw (N2) are configured to be elastically deformable. As a result, when the intermediate foil (90) is engaged with the bearing housing (60) through the back foil (70), the tips of the first engaging claw (N1) and the second engaging claw (N2) Since a force is generated that pinches the bearing housing (60) in the circumferential direction, it is possible to further prevent the back foil (70) from coming off.
 加えて、中間フォイル(90)がトップフォイル(80)から径方向の力を受けると、第1係合爪(N1)および第2係合爪(N2)がその先端部を支点に弾性変形することにより、軸受ハウジング(60)に対して相対的に移動する。このように各中間フォイル(90)が軸受ハウジング(60)に対して相対的に移動できることにより、回転軸(35)が高速回転して振動した場合に、各中間フォイル(90)が周辺の部品に衝突し振動のエネルギーが散逸される。その結果、回転軸(35)の振動を減衰できる。 In addition, when the intermediate foil (90) receives radial force from the top foil (80), the first engaging claw (N1) and the second engaging claw (N2) are elastically deformed with their tips serving as fulcrums. Thereby, it moves relative to the bearing housing (60). Since each intermediate foil (90) can move relative to the bearing housing (60) in this way, when the rotating shaft (35) rotates at high speed and vibrates, each intermediate foil (90) will move to the surrounding parts. and the energy of the vibration is dissipated. As a result, the vibration of the rotating shaft (35) can be damped.
 ここで、図16に示すように、第2係合部(63b)は、第1中間フォイル(91)の第1係合爪(N1)の先端部が接触する第1面(64)を有する。第1係合部(63a)は、第1中間フォイル(91)の第2係合爪(N2)の先端部が接触する第2面(65)を有する。第2係合部(63b)は、本開示の第1の係合部(63)に対応する。第1係合部(63a)は、本開示の第2の係合部(63)に対応する。 Here, as shown in FIG. 16, the second engaging portion (63b) has a first surface (64) with which the tip of the first engaging claw (N1) of the first intermediate foil (91) contacts. . The first engaging portion (63a) has a second surface (65) with which the tip of the second engaging claw (N2) of the first intermediate foil (91) contacts. The second engaging portion (63b) corresponds to the first engaging portion (63) of the present disclosure. The first engaging portion (63a) corresponds to the second engaging portion (63) of the present disclosure.
 第1中間フォイル(91)は、第1接触部(90a)と第2接触部(90b)とを有する。第1接触部(90a)は、第1係合爪(N1)と該第1係合爪(N1)が挿通する第1バックフォイル(71)の挿通部(70e)とが接触する部分である。第2接触部(90b)は、第2係合爪(N2)と該第2係合爪(N2)が挿通する第1バックフォイル(71)の挿通部(70e)とが接触する部分である。 The first intermediate foil (91) has a first contact portion (90a) and a second contact portion (90b). The first contact portion (90a) is a portion where the first engaging claw (N1) and the insertion portion (70e) of the first back foil (71) through which the first engaging claw (N1) is inserted come into contact. . The second contact portion (90b) is a portion where the second engaging claw (N2) and the insertion portion (70e) of the first back foil (71) through which the second engaging claw (N2) is inserted come into contact. .
 軸受ハウジング(60)を軸方向から見たときに、第1中間フォイル(91)の第1接触部(90a)と第2接触部(90b)との間の周方向の長さB1は、軸受ハウジング(60)における第1面(64)の径方向内側の端部と第2面の径方向内側の端部との間の周方向の長さB2よりも長い。なお、ここでいう「周方向の長さ」とは、軸受ハウジング(60)の内周面の曲率半径と同じ曲率半径の仮想曲線における長さである。 A circumferential length B1 between the first contact portion (90a) and the second contact portion (90b) of the first intermediate foil (91) when the bearing housing (60) is viewed from the axial direction is the bearing longer than the circumferential length B2 between the radially inner end of the first surface (64) and the radially inner end of the second surface of the housing (60). The "circumferential length" referred to here is the length of an imaginary curve having the same radius of curvature as the radius of curvature of the inner peripheral surface of the bearing housing (60).
 第1中間フォイル(91)における周方向の長さB1は、軸受ハウジング(60)における周方向の長さB2よりも長いので、第1係合爪(N1)と第1面(64)との間、および第2係合爪(N2)と第2面(65)との間にそれぞれ微小隙間(G)が形成される。これにより、回転軸(35)が高速回転して振動した場合に、第1係合爪(N1)と第1面(64)とが接触し、または第2係合爪(N2)と第2面(65)とが接触する。その結果、振動のエネルギーが散逸されて、回転軸(35)の振動が減衰できる。なお、微小隙間(G)は、第2中間フォイル(92)と軸受ハウジング(60)との間、および第3中間フォイル(93)と軸受ハウジング(60)との間にも形成される。 Since the circumferential length B1 of the first intermediate foil (91) is longer than the circumferential length B2 of the bearing housing (60), the first engaging pawl (N1) and the first surface (64) are separated from each other. A small gap (G) is formed between the second engaging claw (N2) and the second surface (65). As a result, when the rotating shaft (35) rotates at high speed and vibrates, the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. contact with the surface (65). As a result, vibrational energy is dissipated, and the vibration of the rotating shaft (35) can be damped. A small gap (G) is also formed between the second intermediate foil (92) and the bearing housing (60) and between the third intermediate foil (93) and the bearing housing (60).
 図12および図13に示すように、互いに隣り合う中間フォイル(90)のうち一方の中間フォイル(90)の第1係合爪(N1)は、他方の中間フォイル(90)の第2係合爪(N2)と対向して配置される。具体的には、第1中間フォイル(91)の第1係合爪(N1)は、第2中間フォイル(92)の第2係合爪(N2)と対向して配置される。第2中間フォイル(92)の第1係合爪(N1)と第3中間フォイル(93)の第2係合爪(N2)とは対向して配置される。第3中間フォイル(93)の第1係合爪(N1)と第1中間フォイル(91)の第2係合爪(N2)とは対向して配置される。 As shown in FIGS. 12 and 13, the first engaging claw (N1) of one of the adjacent intermediate foils (90) engages the second engaging claw (N1) of the other intermediate foil (90). It is arranged opposite to the nail (N2). Specifically, the first engaging claw (N1) of the first intermediate foil (91) is arranged to face the second engaging claw (N2) of the second intermediate foil (92). The first engaging pawl (N1) of the second intermediate foil (92) and the second engaging pawl (N2) of the third intermediate foil (93) are arranged to face each other. The first engaging claw (N1) of the third intermediate foil (93) and the second engaging claw (N2) of the first intermediate foil (91) are arranged to face each other.
 本実施形態では、互いに対向して配置される一方の中間フォイル(90)の第1係合爪(N1)と他方の中間フォイル(90)の第2係合爪(N2)とは、1つの係合部(63)に係合する。具体的には、第1係合部(63a)には、第3中間フォイル(93)の第1係合爪(N1)、および第1中間フォイル(91)の第2係合爪(N2)が係合する。第2係合部(63b)には、第1中間フォイル(91)の第1係合爪(N1)、および第2中間フォイル(92)の第2係合爪(N2)が係合する。第3係合部(63c)には、第2中間フォイル(92)の第1係合爪(N1)、および第3中間フォイル(93)の第2係合爪(N2)が係合する。 In this embodiment, the first engaging claw (N1) of one intermediate foil (90) and the second engaging claw (N2) of the other intermediate foil (90) arranged to face each other are It engages with the engaging portion (63). Specifically, the first engaging portion (63a) includes a first engaging pawl (N1) of the third intermediate foil (93) and a second engaging pawl (N2) of the first intermediate foil (91). engages. The first engaging claw (N1) of the first intermediate foil (91) and the second engaging claw (N2) of the second intermediate foil (92) are engaged with the second engaging portion (63b). The first engaging claw (N1) of the second intermediate foil (92) and the second engaging claw (N2) of the third intermediate foil (93) are engaged with the third engaging portion (63c).
 このように、互いに対向して配置される一方の中間フォイル(90)の第1係合爪(N1)と他方の中間フォイル(90)の第2係合爪(N2)とが1つの係合部(63)に係合するので、軸受ハウジング(60)に形成する係合部(63)の数が、1つの係合爪(N)に対応して1つの係合部(63)を形成する場合に比べて減少する。これにより、係合部(63)を加工する工程が減少するので、ラジアルフォイル軸受(26)の製造コストを低減できる。 In this way, the first engaging pawl (N1) of one of the intermediate foils (90) and the second engaging pawl (N2) of the other intermediate foil (90), which are arranged to face each other, form one engagement. Since it engages with the portion (63), the number of engaging portions (63) formed in the bearing housing (60) corresponds to one engaging pawl (N) to form one engaging portion (63). less than when This reduces the number of processes for machining the engaging portion (63), thereby reducing the manufacturing cost of the radial foil bearing (26).
 中間フォイル(90)は、軸受ハウジング(60)に対して、該軸受ハウジング(60)の周方向、軸方向、径方向の少なくとも一方向に相対的に移動可能に構成される。本実施形態の中間フォイル(90)は、軸受ハウジング(60)の周方向、軸方向、および径方向に相対的に移動可能に構成される。 The intermediate foil (90) is configured to be movable relative to the bearing housing (60) in at least one of the circumferential, axial and radial directions of the bearing housing (60). The intermediate foil (90) of this embodiment is configured to be relatively movable in the circumferential, axial and radial directions of the bearing housing (60).
 具体的には、ラジアルフォイル軸受(26)を組み立てる際に、中間フォイル(90)は、周方向、軸方向、および径方向に僅かに移動できる程度の余裕を持たせて巻かれ、軸受ハウジング(60)に挿入される。これにより、中間フォイル(90)は、軸受ハウジング(60)に対して周方向、軸方向、および径方向に僅かに移動可能に構成される。ここで、「僅かに移動」とは、中間フォイル(90)が軸受ハウジング(60)から外れて脱落しない程度の移動量のことである。 Specifically, when assembling the radial foil bearing (26), the intermediate foil (90) is wound with a margin of slight circumferential, axial and radial movement, and the bearing housing ( 60). Thereby, the intermediate foil (90) is configured to be slightly movable relative to the bearing housing (60) in the circumferential, axial and radial directions. Here, "slightly moved" refers to the amount of movement that the intermediate foil (90) does not fall out of the bearing housing (60).
 ここで、軸受ハウジング(60)の係合部(63)の幅(周方向の長さ)は、中間フォイル(90)の板厚の5倍以上である。このように係合部(63)の幅が中間フォイル(90)の板厚に対して十分大きい。これにより、係合部(63)をワイヤカットのような特殊で微細な加工によって形成する必要が無く、エンドミル等による一般的な切削加工で形成できる。 Here, the width (length in the circumferential direction) of the engaging portion (63) of the bearing housing (60) is at least five times the plate thickness of the intermediate foil (90). Thus, the width of the engaging portion (63) is sufficiently large relative to the thickness of the intermediate foil (90). As a result, the engaging portion (63) does not need to be formed by a special fine processing such as wire cutting, and can be formed by general cutting using an end mill or the like.
 (2)特徴
 (2-1)
 本実施形態では、中間フォイル(90)は、軸受ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、周方向の他方側に形成される第2係合爪(N2)とを有する。バックフォイル(70)は、第1係合爪(N1)および第2係合爪(N2)に対応する部分に、溝または切欠きで構成される挿通部(70e)を有する。軸受ハウジング(60)の側面には、該軸受ハウジング(60)の内周面から径方向外側に延びるとともに、第1係合爪(N1)および第2係合爪(N2)のそれぞれが係合する係合部(63)が形成される。第1係合爪(N1)および第2係合爪(N2)のそれぞれは、挿通部(70e)を介して係合部(63)に係合する。
(2) Features (2-1)
In the present embodiment, the intermediate foil (90) includes a first engagement claw (N1) formed on one circumferential side of the bearing housing (60) and a second engagement claw (N1) formed on the other circumferential side of the bearing housing (60). with claws (N2). The back foil (70) has insertion portions (70e) formed of grooves or cutouts in portions corresponding to the first engaging claws (N1) and the second engaging claws (N2). A first engaging claw (N1) and a second engaging claw (N2) are engaged with the side surface of the bearing housing (60), extending radially outward from the inner peripheral surface of the bearing housing (60). An engaging portion (63) is formed. Each of the first engaging claw (N1) and the second engaging claw (N2) engages the engaging portion (63) through the insertion portion (70e).
 これによれば、中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)をそれぞれに対応する軸受ハウジング(60)の係合部(63)に、バックフォイル(70)の挿通部(70e)を介して係合させることで軸受ハウジング(60)を挟み込む。これにより、バックフォイル(70)が軸受ハウジング(60)に保持される。その結果、係合部(63)を各係合爪(N1,N2)が丁度嵌る幅に合わせて微細な加工をする必要がなくなり、エンドミルによる切削加工のような一般的な加工方法によって係合部(63)を形成できる。これにより、ラジアルフォイル軸受(26)の製造コストを低減できる。 According to this, the first engaging claw (N1) and the second engaging claw (N2) of the intermediate foil (90) are attached to the corresponding engaging portions (63) of the bearing housing (60), and the back foil ( The bearing housing (60) is sandwiched by engaging through the insertion portion (70e) of 70). This holds the back foil (70) to the bearing housing (60). As a result, it is no longer necessary to finely process the engaging portion (63) to match the widths of the engaging claws (N1, N2). A part (63) can be formed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
 ところで、従来のラジアルフォイル軸受では、溶接等によりバックフォイルにおける周方向一方側の両端部を軸受ハウジング(60)に固定している。言い換えると、バックフォイルにおける周方向他方側が自由に移動できる。このため、外乱などによりラジアルフォイル軸受(26)に衝撃が加わると、バックフォイルの位置が大きくずれてしまい、トップフォイルを適切に支持できない。その結果、ラジアルフォイル軸受としての性能が発揮できない場合があった。 By the way, in the conventional radial foil bearing, both ends of the back foil on one side in the circumferential direction are fixed to the bearing housing (60) by welding or the like. In other words, the other circumferential side of the back foil can move freely. Therefore, if the radial foil bearing (26) is impacted by a disturbance or the like, the position of the back foil is greatly displaced, and the top foil cannot be properly supported. As a result, the performance as a radial foil bearing could not be exhibited in some cases.
 これに対し、本実施形態の中間フォイル(90)の周方向の両側に係合爪(N1,N2)を設け、該係合爪(N1,N2)を軸受ハウジング(60)の係合部(63)に係合させることにより、中間フォイル(90)と軸受ハウジング(60)との間に配置されたバックフォイル(70)を固定している。これにより、ラジアルフォイル軸受(26)に衝撃が加わっても、バックフォイル(70)の大きな位置ずれを抑制でき、トップフォイル(80)を適切に支持できる。その結果、ラジアルフォイル軸受(26)としての性能を維持できる。 On the other hand, the engaging claws (N1, N2) are provided on both sides in the circumferential direction of the intermediate foil (90) of the present embodiment, and the engaging claws (N1, N2) are connected to the engaging portion ( 63) secures the back foil (70) which is located between the intermediate foil (90) and the bearing housing (60). As a result, even if the radial foil bearing (26) receives an impact, the back foil (70) can be prevented from being greatly displaced, and the top foil (80) can be properly supported. As a result, the performance of the radial foil bearing (26) can be maintained.
 更に、本実施形態の中間フォイル(90)は、第1係合爪(N1)および第2係合爪(N2)によって軸受ハウジング(60)を挟み込むことで、バックフォイル(70)を軸受ハウジング(60)に固定する。このようにバックフォイル(70)を溶接等によって軸受ハウジング(60)に固定しないので、バックフォイル(70)に溶接熱による歪みが生じない。これにより、軸受面に歪みが生じないので、ラジアルフォイル軸受(26)としての性能が低下することを抑制できる。 Furthermore, the intermediate foil (90) of the present embodiment sandwiches the bearing housing (60) with the first engaging claw (N1) and the second engaging claw (N2), thereby connecting the back foil (70) to the bearing housing ( 60). Since the back foil (70) is not fixed to the bearing housing (60) by welding or the like, the back foil (70) is not distorted due to welding heat. As a result, the bearing surface is not distorted, so that deterioration of performance as the radial foil bearing (26) can be suppressed.
 加えて、本実施形態では、実施形態1と異なり、バックフォイル(70)に係合爪(N1,N2)を設ける必要がないので、バックフォイル(70)の加工が容易になる。 In addition, in this embodiment, unlike the first embodiment, it is not necessary to provide the engaging claws (N1, N2) on the back foil (70), so the back foil (70) can be easily processed.
 (2-2)
 本実施形態では、係合部(63)は、軸受ハウジング(60)の両側の側面に形成される。第1係合爪(N1)および第2係合爪(N2)は、中間フォイル(90)における軸方向両側にそれぞれ形成される。挿通部(70e)は、バックフォイル(70)の軸方向両側における第1係合爪(N1)および第2係合爪(N2)に対応する位置に形成される。これによれば、中間フォイル(90)およびバックフォイル(70)の軸方向両側への大きな移動が規制される。
(2-2)
In this embodiment, the engaging portions (63) are formed on both side surfaces of the bearing housing (60). The first engaging pawl (N1) and the second engaging pawl (N2) are formed on both axial sides of the intermediate foil (90). The insertion portions (70e) are formed at positions corresponding to the first engaging claws (N1) and the second engaging claws (N2) on both axial sides of the back foil (70). According to this, the intermediate foil (90) and the back foil (70) are restricted from moving to both sides in the axial direction.
 (2-3)
 本実施形態では、バックフォイル(70)および中間フォイル(90)は、軸受ハウジング(60)に対して周方向、軸方向、および径方向に相対的に移動可能に構成される。これによれば、例えば回転軸(35)が高速に回転して振動した場合に、その振動が伝達された中間フォイル(90)またはバックフォイル(70)が周方向、軸方向、および径方向のいずれか一方向に移動して周辺の部品と衝突する。この衝突により、振動のエネルギーが散逸されるので、回転軸(35)の振動を減衰できる。
(2-3)
In this embodiment, the back foil (70) and the intermediate foil (90) are configured to be circumferentially, axially and radially movable relative to the bearing housing (60). According to this, for example, when the rotating shaft (35) rotates at a high speed and vibrates, the intermediate foil (90) or the back foil (70) to which the vibration is transmitted travels in the circumferential, axial and radial directions. Move in one direction and collide with surrounding parts. This collision dissipates the energy of the vibration, so that the vibration of the rotating shaft (35) can be damped.
 さらに、中間フォイル(90)が設けられることによって周辺部品との衝突箇所が増え、中間フォイル(90)が設けられていないラジアルフォイル軸受(26)に比べて、振動エネルギーが散逸され易くなる。 Furthermore, the provision of the intermediate foil (90) increases the number of collision points with peripheral parts, making it easier to dissipate vibration energy compared to the radial foil bearing (26) without the intermediate foil (90).
 (2-4)
 本実施形態では、第1係合爪(N1)および第2係合爪(N2)は、中間フォイル(90)における軸受ハウジング(60)の軸方向に沿って延びる側縁部から径方向外側に延びる。これによれば、第1係合爪(N1)および第2係合爪(N2)が軸受ハウジング(60)を周方向に挟み込む。これにより、中間フォイル(90)およびバックフォイル(70)の周方向への大きな移動を規制できる。
(2-4)
In this embodiment, the first engaging pawl (N1) and the second engaging pawl (N2) extend radially outward from the side edge of the intermediate foil (90) extending along the axial direction of the bearing housing (60). Extend. According to this, the first engaging claw (N1) and the second engaging claw (N2) sandwich the bearing housing (60) in the circumferential direction. This restricts the intermediate foil (90) and the back foil (70) from moving significantly in the circumferential direction.
 (2-5)
 本実施形態では、係合部(63)の幅は、中間フォイル(90)の板厚の5倍以上である。これによれば、係合部(63)の幅を中間フォイル(90)の板厚に対して十分大きく形成できるので、微細な加工によって係合部(63)を形成する必要がなく、係合部(63)を形成しやすい。
(2-5)
In this embodiment, the width of the engaging portion (63) is at least five times the thickness of the intermediate foil (90). According to this, the width of the engaging portion (63) can be formed to be sufficiently large with respect to the plate thickness of the intermediate foil (90). It is easy to form the part (63).
 (2-6)
 本実施形態では、係合部(63)の幅は、0.3mm以上である。これによれば、係合部(63)の幅が0.3mm以上なので、例えばワイヤカット加工のような繊細な加工をすることなく係合部(63)を形成できる。
(2-6)
In this embodiment, the width of the engaging portion (63) is 0.3 mm or more. According to this, since the width of the engaging portion (63) is 0.3 mm or more, the engaging portion (63) can be formed without delicate processing such as wire cutting.
 (2-7)
 本実施形態では、中間フォイル(90)は、周方向に沿って複数設けられる。互いに隣り合う中間フォイル(90)のうち一方の中間フォイル(90)の第1係合爪(N1)は、他方の中間フォイル(90)の第2係合爪(N2)と対向して配置される。一方の中間フォイル(90)の第1係合爪(N1)および他方の中間フォイル(90)の第2係合爪(N2)は、1つの係合部(63)に係合する。
(2-7)
In this embodiment, a plurality of intermediate foils (90) are provided along the circumferential direction. The first engaging claw (N1) of one of the adjacent intermediate foils (90) is arranged to face the second engaging claw (N2) of the other intermediate foil (90). be. The first engaging claw (N1) of one intermediate foil (90) and the second engaging claw (N2) of the other intermediate foil (90) engage one engaging portion (63).
 これによれば、1つの係合部(63)に2つの係合爪(N1,N2)が係合するので、形成する係合部(63)の数を抑制できる。これにより、ラジアルフォイル軸受(26)の製造コストを低減できる。 According to this, since two engaging claws (N1, N2) are engaged with one engaging portion (63), the number of engaging portions (63) to be formed can be suppressed. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
 (2-8)
 本実施形態では、第1係合爪(N1)および第2係合爪(N2)のそれぞれの先端部は、それぞれの係合爪(N1,N2)に対応する係合部(63)の内面に接触する。中間フォイル(90)は、第1係合爪(N1)および第2係合爪(N2)が弾性変形することにより、軸受ハウジング(60)に対して相対的に移動可能に構成される。
(2-8)
In the present embodiment, the tip of each of the first engaging claw (N1) and the second engaging claw (N2) is the inner surface of the engaging portion (63) corresponding to each engaging claw (N1, N2). come into contact with The intermediate foil (90) is configured to be movable relative to the bearing housing (60) by elastically deforming the first engaging claw (N1) and the second engaging claw (N2).
 これによれば、第1係合爪(N1)および第2係合爪(N2)のそれぞれの先端部が係合部(63)の内面に接触することにより、中間フォイル(90)およびバックフォイル(70)が軸受ハウジング(60)に保持される。この状態で、各係合爪(N1,N2)が弾性変形することにより、中間フォイル(90)が軸受ハウジング(60)に対して相対的に移動する。これにより、回転軸が高速回転して振動した場合に、中間フォイル(90)またはバックフォイル(70)が周辺の部品に衝突して、振動のエネルギーが散逸される。その結果、回転軸(35)の振動を減衰できる。 According to this, the tip of each of the first engaging claw (N1) and the second engaging claw (N2) comes into contact with the inner surface of the engaging portion (63), so that the intermediate foil (90) and the back foil (70) is retained in the bearing housing (60). In this state, the engagement claws (N1, N2) are elastically deformed to move the intermediate foil (90) relative to the bearing housing (60). As a result, when the rotary shaft rotates at high speed and vibrates, the intermediate foil (90) or the back foil (70) collides with surrounding parts to dissipate the energy of the vibration. As a result, the vibration of the rotating shaft (35) can be damped.
 さらに、中間フォイル(90)が設けられることにより周辺部品との衝突箇所が増え、中間フォイル(90)が設けられていないラジアルフォイル軸受(26)に比べて、振動エネルギーが散逸され易くなる。 In addition, the provision of the intermediate foil (90) increases the number of collision points with peripheral parts, making it easier to dissipate vibration energy compared to the radial foil bearing (26) without the intermediate foil (90).
 (2-9)
 本実施形態では、軸受ハウジング(60)は、第1係合爪(N1)が係合する第1の係合部(63)と、第2係合爪(N2)が係合する第2の係合部(63)とを有する。第1の係合部(63)は、第1係合爪(N1)が接触する第1面(64)を有する。第2の係合部(63)は、第2係合爪(N2)が接触する第2面(65)を有する。中間フォイル(90)は、第1係合爪(N1)と該第1係合爪(N1)に対応するバックフォイル(70)の挿通部(70e)とが接触する第1接触部(90a)と、前記第2係合爪(N2)と該第2係合爪(N2)に対応するバックフォイル(70)の挿通部(70e)とが接触する第2接触部(90b)とを有する。軸受ハウジング(60)の軸方向から見たときに、中間フォイル(90)の第1接触部(90a)と第2接触部(90b)との間の周方向の長さB1は、軸受ハウジング(60)における第1面(64)の径方向内側の端部と第2面(65)の径方向内側の端部との間の周方向の長さB2よりも長い。
(2-9)
In this embodiment, the bearing housing (60) has a first engaging portion (63) with which the first engaging claw (N1) engages, and a second engaging portion (63) with which the second engaging claw (N2) engages. and an engaging portion (63). The first engaging portion (63) has a first surface (64) with which the first engaging pawl (N1) contacts. The second engaging portion (63) has a second surface (65) with which the second engaging pawl (N2) contacts. The intermediate foil (90) has a first contact portion (90a) where the first engaging claw (N1) and the insertion portion (70e) of the back foil (70) corresponding to the first engaging claw (N1) come into contact. and a second contact portion (90b) with which the second engaging claw (N2) and the insertion portion (70e) of the back foil (70) corresponding to the second engaging claw (N2) come into contact. The circumferential length B1 between the first contact portion (90a) and the second contact portion (90b) of the intermediate foil (90) when viewed from the axial direction of the bearing housing (60) is the bearing housing ( 60) is longer than the circumferential length B2 between the radially inner end of the first surface (64) and the radially inner end of the second surface (65).
 これによれば、中間フォイル(90)における周方向の長さB1が、軸受ハウジング(60)における周方向の長さB2よりも長いので、第1係合爪(N1)および第1面(64)の間、ならびに第2係合爪(N2)および第2面(65)の間のそれぞれに周方向に微小隙間(G)が生じる。これにより、回転軸(35)が高速に回転して振動した場合に、第1係合爪(N1)と第1面(64)が接触する、または第2係合爪(N2)と第2面(65)が接触する。その結果、回転軸(35)の振動のエネルギーが散逸されるので、回転軸(35)の振動を減衰できる。 According to this, since the circumferential length B1 of the intermediate foil (90) is longer than the circumferential length B2 of the bearing housing (60), the first engaging pawl (N1) and the first surface (64) ) and between the second engaging claw (N2) and the second surface (65). As a result, when the rotating shaft (35) rotates at high speed and vibrates, the first engaging claw (N1) and the first surface (64) come into contact with each other, or the second engaging claw (N2) and the second engaging claw (N2) come into contact with each other. Faces (65) are in contact. As a result, the energy of the vibration of the rotating shaft (35) is dissipated, so that the vibration of the rotating shaft (35) can be damped.
 さらに、中間フォイル(90)が設けられることにより周辺部品との衝突箇所が増え、中間フォイル(90)が設けられていないラジアルフォイル軸受(26)に比べて、振動エネルギーが散逸され易くなる。 In addition, the provision of the intermediate foil (90) increases the number of collision points with peripheral parts, making it easier to dissipate vibration energy compared to the radial foil bearing (26) without the intermediate foil (90).
 (2-10)
 本実施形態では、バックフォイル(70)は、周方向両側の側縁部から軸受ハウジング(60)の径方向内側に延びる曲げ部(70d)を有する。これによれば、曲げ部(70d)によって中間フォイル(90)に対するバックフォイル(70)の位置が保持される。その結果、バックフォイル(70)が周方向に大きく移動してその位置がずれることにより、バックフォイル(70)が脱落することを抑制できる。
(2-10)
In this embodiment, the back foil (70) has bent portions (70d) extending radially inwardly of the bearing housing (60) from both side edges in the circumferential direction. According to this, the position of the back foil (70) with respect to the intermediate foil (90) is held by the bend (70d). As a result, it is possible to prevent the back foil (70) from coming off due to a large circumferential movement of the back foil (70) and displacement of the back foil (70).
 (3)変形例
 上記実施形態については、以下のような変形例としてもよい。なお、以下の説明では、原則として上記実施形態と異なる点について説明する。
(3) Modifications The above embodiment may be modified as follows. In addition, in the following description, in principle, points different from the above embodiment will be described.
 (3-1)変形例1
 本実施形態のラジアルフォイル軸受(26)では、中間フォイル(90)の1つの係合爪(N1,N2)が軸受ハウジング(60)の1つの係合部(63)に係合してもよい。言い換えると、軸受ハウジング(60)の係合部(63)は、中間フォイル(90)の係合爪(N1,N2)と同じ数設けられてもよい。具体的には、本変形例の軸受ハウジング(60)は、実施形態1の変形例1と同様に、その両側の側面に、それぞれ6つの係合部(63)が形成される。
(3-1) Modification 1
In the radial foil bearing (26) of the present embodiment, one engaging claw (N1, N2) of the intermediate foil (90) may engage one engaging portion (63) of the bearing housing (60). . In other words, the engaging portions (63) of the bearing housing (60) may be provided in the same number as the engaging claws (N1, N2) of the intermediate foil (90). Specifically, the bearing housing (60) of this modified example has six engaging portions (63) formed on both side surfaces, respectively, as in the first modified example of the first embodiment.
 第1係合部(63a)には、第1中間フォイル(91)の第2係合爪(N2)が係合する。第2係合部(63b)には、第1中間フォイル(91)の第1係合爪(N1)が係合する。第3係合部(63c)には、第2中間フォイル(92)の第2係合爪(N2)が係合する。第4係合部(63d)には、第2中間フォイル(92)の第1係合爪(N1)が係合する。第5係合部(63e)には、第3中間フォイル(93)の第2係合爪(N2)が係合する。第6係合部(63f)には、第3中間フォイル(93)の第1係合爪(N1)が係合する。 The second engaging claw (N2) of the first intermediate foil (91) engages with the first engaging portion (63a). The first engaging claw (N1) of the first intermediate foil (91) engages with the second engaging portion (63b). The second engaging claw (N2) of the second intermediate foil (92) engages with the third engaging portion (63c). The first engaging claw (N1) of the second intermediate foil (92) engages with the fourth engaging portion (63d). The second engaging claw (N2) of the third intermediate foil (93) engages with the fifth engaging portion (63e). The first engaging claw (N1) of the third intermediate foil (93) engages with the sixth engaging portion (63f).
 加えて、中間フォイル(90)の係合爪(N1,N2)と、該係合爪(N1,N2)に対応する係合部(63)の第1面(64)または第2面(65)との間に微小隙間が形成されなくてもよい。 In addition, the engaging claws (N1, N2) of the intermediate foil (90) and the first surface (64) or the second surface (65) of the engaging portion (63) corresponding to the engaging claws (N1, N2) ) does not need to be formed.
 (3-2)変形例2
 図17に示すように、本実施形態のラジアルフォイル軸受(26)では、バックフォイル(70)の挿通部(70e)は、各バックフォイル(70)の四隅に形成された溝で構成されてもよい。具体的には、各バックフォイル(70)は、該バックフォイル(70)の周方向端部に突片部(70c)を有する。突片部(70c)は、バックフォイル(70)の端部から軸方向外側に延びる。挿通部(70e)は、突片部(70c)の内側に形成されたスリット状の溝で構成される。本変形例の挿通部(70e)を介して中間フォイル(90)の係合爪(N1,N2)が軸受ハウジング(60)の係合部(63)に係合することにより、突片部(70c)が周方向外側への大きな移動を規制するので、バックフォイル(70)の脱落を抑制できる。
(3-2) Modification 2
As shown in FIG. 17, in the radial foil bearing (26) of the present embodiment, the insertion portions (70e) of the back foils (70) may be composed of grooves formed at the four corners of each back foil (70). good. Specifically, each back foil (70) has a protrusion (70c) at the circumferential end of the back foil (70). The projection (70c) extends axially outward from the end of the back foil (70). The insertion portion (70e) is composed of a slit-like groove formed inside the projecting piece (70c). By engaging the engaging claws (N1, N2) of the intermediate foil (90) with the engaging portion (63) of the bearing housing (60) through the insertion portion (70e) of this modified example, the protrusion ( 70c) restricts a large movement outward in the circumferential direction, so that the back foil (70) can be prevented from coming off.
 (3-3)変形例3
 図18および図19に示すように、本実施形態のラジアルフォイル軸受(26)では、挿通部(70e)は、各バックフォイル(70)の周方向一方側および他方側に形成された溝で構成されてもよい。言い換えると、挿通部(70e)は、各バックフォイル(70)の四隅に形成されなくてもよい。
(3-3) Modification 3
As shown in FIGS. 18 and 19, in the radial foil bearing (26) of the present embodiment, the insertion portions (70e) are formed by grooves formed on one side and the other side of each back foil (70) in the circumferential direction. may be In other words, the insertion portions (70e) do not have to be formed at the four corners of each back foil (70).
 具体的には、例えば、図19に示すように、1つの挿通部(70e)は、バックフォイル(70)の周方向一端部の山部(70b)と該一端部の山部(70b)の隣の山部(70b)との間の谷部(70a)に軸方向に延びるスリット状の溝で構成される。別の挿通部(70e)は、バックフォイル(70)の周方向他端部の山部(70b)と該他端部の山部(70b)の隣の山部(70b)との間の谷部(70a)に軸方向に延びるスリット状の溝で構成される。 Specifically, for example, as shown in FIG. 19, one insertion portion (70e) is formed by a ridge (70b) at one end in the circumferential direction of the back foil (70) and a ridge (70b) at the one end. It is composed of slit-shaped grooves extending in the axial direction in the valley (70a) between adjacent peaks (70b). Another insertion portion (70e) is a valley between a peak (70b) at the other end in the circumferential direction of the back foil (70) and a peak (70b) adjacent to the peak (70b) at the other end. It consists of a slit-shaped groove extending axially in the portion (70a).
 この場合には、中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)は、中間フォイル(90)における挿通部(70e)に対応する位置に形成される。このように本変形例の挿通部(70e)を介して中間フォイル(90)の係合爪(N1,N2)が軸受ハウジング(60)の係合部(63)に係合することにより、周方向両側への大きな移動を規制するので、バックフォイル(70)の脱落を抑制できる。 In this case, the first engaging claw (N1) and the second engaging claw (N2) of the intermediate foil (90) are formed at positions corresponding to the insertion portions (70e) of the intermediate foil (90). In this manner, the engaging claws (N1, N2) of the intermediate foil (90) engage with the engaging portion (63) of the bearing housing (60) through the insertion portion (70e) of this modification, thereby Since a large movement in both directions is restricted, the back foil (70) can be prevented from coming off.
 (3-4)変形例4
 図20に示すように、本実施形態のラジアルフォイル軸受(26)では、バックフォイル(70)は、周方向両側の側縁部に軸受ハウジング(60)の径方向内側へ延びる曲げ部(70d)を有してもよい。具体的には、曲げ部(70d)は、バックフォイル(70)の周方向両側の側縁部を、中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)が延びる方向と反対の方向に折り曲げることにより形成される。これにより、バックフォイル(70)の挿通部(70e)を介して中間フォイル(90)の係合爪(N1,N2)が軸受ハウジング(60)の係合部(63)に係合したときに、曲げ部(70d)によって中間フォイル(90)に対するバックフォイル(70)の位置が保持される。その結果、バックフォイル(70)が周方向に大きく移動してその位置がずれることにより、バックフォイル(70)が脱落することを抑制できる。
(3-4) Modification 4
As shown in FIG. 20, in the radial foil bearing (26) of the present embodiment, the back foil (70) has bent portions (70d) extending radially inward of the bearing housing (60) at both side edges in the circumferential direction. may have Specifically, the bent portion (70d) bends the side edges on both circumferential sides of the back foil (70) into the first engaging claw (N1) and the second engaging claw (N2) of the intermediate foil (90). is formed by bending in the direction opposite to the direction in which it extends. As a result, when the engaging claws (N1, N2) of the intermediate foil (90) engage with the engaging portion (63) of the bearing housing (60) through the insertion portion (70e) of the back foil (70), , the position of the back foil (70) relative to the intermediate foil (90) is maintained by the bend (70d). As a result, it is possible to prevent the back foil (70) from coming off due to a large circumferential movement of the back foil (70) and displacement of the back foil (70).
 (3-5)変形例5
 本実施形態における軸受ハウジング(60)の各係合部(63)は、穴で構成されてもよい。言い換えると、各係合部(63)は、軸受ハウジング(60)の側面に形成されなくてもよい。具体的には、各係合部(63)は、軸受ハウジング(60)の軸方向中央寄りの位置に形成されてもよい。軸受ハウジング(60)の内周面から外周面へ向かって延びる。
(3-5) Modification 5
Each engaging portion (63) of the bearing housing (60) in this embodiment may be configured as a hole. In other words, each engaging portion (63) need not be formed on the side surface of the bearing housing (60). Specifically, each engaging portion (63) may be formed at a position closer to the center in the axial direction of the bearing housing (60). It extends from the inner peripheral surface of the bearing housing (60) toward the outer peripheral surface.
 この場合、各中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)は、穴で構成された係合部(63)に対応する位置に形成される。各バックフォイル(70)の挿通部(70e)も、係合部(63)に対応する位置に形成される。これにより、中間フォイル(90)の第1係合爪(N1)および第2係合爪(N2)は、バックフォイル(70)の挿通部(70e)を介して軸受ハウジング(60)の係合部(63)に係合する。 In this case, the first engaging claw (N1) and the second engaging claw (N2) of each intermediate foil (90) are formed at positions corresponding to the engaging portions (63) formed by holes. The insertion portion (70e) of each back foil (70) is also formed at a position corresponding to the engagement portion (63). As a result, the first engaging claw (N1) and the second engaging claw (N2) of the intermediate foil (90) engage the bearing housing (60) through the insertion portion (70e) of the back foil (70). It engages the part (63).
 《実施形態3》
 実施形態3について説明する。本実施形態のラジアルフォイル軸受(26)は、実施形態2のラジアルフォイル軸受(26)において、軸受ハウジング(60)およびトップフォイル(80)の構成を変更したものである。ここでは、本実施形態のラジアルフォイル軸受(26)について、実施形態1と異なる点を説明する。
<<Embodiment 3>>
A third embodiment will be described. The radial foil bearing (26) of the present embodiment differs from the radial foil bearing (26) of the second embodiment in the configuration of the bearing housing (60) and the top foil (80). Here, the points of the radial foil bearing (26) of this embodiment that are different from those of the first embodiment will be described.
 (1)ラジアルフォイル軸受
  本実施形態のラジアルフォイル軸受(26)について、図21および図22を参照しながら詳細に説明する。ラジアルフォイル軸受(26)は、軸受ハウジング(60)と、バックフォイル(70)と、トップフォイル(80)と、中間フォイル(90)とを備える。
(1) Radial Foil Bearing The radial foil bearing (26) of this embodiment will be described in detail with reference to FIGS. 21 and 22. FIG. A radial foil bearing (26) comprises a bearing housing (60), a back foil (70), a top foil (80) and an intermediate foil (90).
 (1-1)軸受ハウジング
 本実施形態の軸受ハウジング(60)の内周面には、該軸受ハウジング(60)の軸方向に沿って延びる通し溝(61)が形成される。通し溝(61)は、トップフォイル(80)の第1側縁部(81a)が収容される。通し溝(61)は、軸受ハウジング(60)の内周面を軸方向に貫通している。通し溝(61)は、軸受ハウジング(60)の内周面から径方向外側に向かって凹む。ここで、軸受ハウジング(60)の内周面とは、バックフォイル(70)を保持する面のことである。
(1-1) Bearing Housing A through groove (61) extending along the axial direction of the bearing housing (60) is formed in the inner peripheral surface of the bearing housing (60) of the present embodiment. The through groove (61) accommodates the first side edge (81a) of the top foil (80). The through groove (61) axially penetrates the inner peripheral surface of the bearing housing (60). The through groove (61) is recessed radially outward from the inner peripheral surface of the bearing housing (60). Here, the inner peripheral surface of the bearing housing (60) is the surface that holds the back foil (70).
 通し溝(61)は、軸方向から見て、略矩形状に形成される。通し溝(61)は、深さ方向の長さが幅方向の長さよりも短い。通し溝(61)は、その深さ方向が軸受ハウジング(60)の径方向と一致するように形成される。通し溝(61)は、その幅方向が該通し溝(61)における深さ方向と概ね垂直な方向に形成される。 The through groove (61) is formed in a substantially rectangular shape when viewed from the axial direction. The through groove (61) has a length in the depth direction that is shorter than a length in the width direction. The through groove (61) is formed such that its depth direction coincides with the radial direction of the bearing housing (60). The through groove (61) is formed such that its width direction is substantially perpendicular to the depth direction of the through groove (61).
 通し溝(61)の深さ方向が軸受ハウジング(60)の径方向になるように通し溝(61)が形成されているので、通し溝(61)を簡単に加工できる。これにより、ラジアルフォイル軸受(26)の加工性を向上できる。また、通し溝(61)の幅方向の長さがある程度大きく形成できるので、トップフォイル(80)の第1側縁部(81a)を通し溝(61)に配置しやすい。 Since the through groove (61) is formed so that the depth direction of the through groove (61) is aligned with the radial direction of the bearing housing (60), the through groove (61) can be easily machined. Thereby, the workability of the radial foil bearing (26) can be improved. Further, since the length of the through groove (61) in the width direction can be formed to some extent, the first side edge (81a) of the top foil (80) can be easily arranged in the through groove (61).
 本実施形態の軸受ハウジング(60)には、係合凹部(62)が形成される。係合凹部(62)は、後述するトップフォイル(80)の突出部(84)が係合する。係合凹部(62)は、軸受ハウジング(60)の両側の側面(軸方向両側の端面)にそれぞれ1つずつ形成される。係合凹部(62)は、軸受ハウジング(60)の第1係合部(63a)に設けられる。言い換えると、第1係合部(63a)は、係合凹部(62)を兼ねている。 An engagement recess (62) is formed in the bearing housing (60) of the present embodiment. The engagement recess (62) is engaged with a protrusion (84) of the top foil (80), which will be described later. The engaging recesses (62) are formed one each on both side surfaces (both axial end surfaces) of the bearing housing (60). The engagement recess (62) is provided in the first engagement portion (63a) of the bearing housing (60). In other words, the first engaging portion (63a) also serves as the engaging recess (62).
 係合凹部(62)は、軸方向内側に窪む凹部で構成される。係合凹部(62)は、軸方向から見て、軸受ハウジング(60)の内周面から外周面に亘って径方向外側に向かって略矩形状に切り欠くように形成される。言い換えると、係合凹部(62)は、径方向に軸受ハウジング(60)を貫通している。なお、係合凹部(62)は軸受ハウジング(60)の内周面から径方向外側に向かって切り欠かれていればよく、軸受ハウジング(60)の外周面を貫いていなくてもよい。係合凹部(62)は、通し溝(61)の径方向外側に形成される。係合凹部(62)は、通し溝(61)に連通している。 The engaging recess (62) is configured as a recess recessed inward in the axial direction. The engaging recess (62) is formed in a generally rectangular notch extending radially outward from the inner peripheral surface to the outer peripheral surface of the bearing housing (60) when viewed in the axial direction. In other words, the engagement recess (62) extends radially through the bearing housing (60). Note that the engaging recess (62) may be cut out radially outward from the inner peripheral surface of the bearing housing (60), and does not have to penetrate the outer peripheral surface of the bearing housing (60). The engaging recess (62) is formed radially outside the through groove (61). The engaging recess (62) communicates with the through groove (61).
 係合凹部(62)は、図3に示す突出部(84)の延伸方向Eに沿って延びる側面である第3面(66)を有する。第3面(66)は、係合凹部(62)における回転軸(35)の回転方向(P)前側の内側面の一部である。第3面(66)は、係合凹部(62)の回転方向(P)前側の内側面のうち軸受ハウジング(60)の外周縁寄りの内側面である。 The engagement recess (62) has a third surface (66) which is a side surface extending along the extending direction E of the protrusion (84) shown in FIG. The third surface (66) is a part of the inner surface of the engagement recess (62) on the front side in the rotation direction (P) of the rotating shaft (35). The third surface (66) is an inner surface closer to the outer peripheral edge of the bearing housing (60) than the front inner surface in the rotational direction (P) of the engagement recess (62).
 (1-2)トップフォイル
 図22に示すように、トップフォイル(80)は、本体部(81)と、突出部(84)とを有する。突出部(84)は、本体部(81)の第1側縁部(81a)から周方向外側に突出する。突出部(84)は、第1側縁部(81a)における軸方向両端部に設けられる。
(1-2) Top Foil As shown in FIG. 22, the top foil (80) has a main body (81) and a protrusion (84). The protrusion (84) protrudes circumferentially outward from the first side edge (81a) of the main body (81). The protrusions (84) are provided at both ends in the axial direction of the first side edge (81a).
 ここで、図21に示すように、トップフォイル(80)は、第1側縁部(81a)が第2側縁部(81b)よりも径方向外側に位置するように巻かれている。トップフォイル(80)は、第1側縁部(81a)と第2側縁部(81b)とが突き合わされておらず、交差もしていない。 Here, as shown in FIG. 21, the top foil (80) is wound so that the first side edge (81a) is located radially outside the second side edge (81b). The top foil (80) does not meet or cross the first side edge (81a) and the second side edge (81b).
 第2側縁部(81b)は、本体部(81)の内側の面に接触している。具体的には、第2側縁部(81b)によって本体部(81)を径方向外側に押し付けている。 The second side edge (81b) is in contact with the inner surface of the main body (81). Specifically, the main body (81) is pressed radially outward by the second side edge (81b).
 トップフォイル(80)の本体部(81)は、滴状部(82)と、延伸部(83)とを有する。滴状部(82)は、トップフォイル(80)を軸方向から見たときに、第2側縁部(81b)を頂点とする涙滴形状に形成される部分である。延伸部(83)は、本体部(81)における滴状部(82)以外の部分である。延伸部(83)は、第1側縁部(81a)側に形成される部分である。本体部(81)が滴状部(82)を有することによって、トップフォイル(80)には、非真円形状の軸受面が形成される。 The body portion (81) of the top foil (80) has a drop-shaped portion (82) and an extension portion (83). The drop-shaped portion (82) is formed in a teardrop shape with the second side edge (81b) as the apex when the top foil (80) is viewed from the axial direction. The extending portion (83) is a portion of the main body (81) other than the drop-shaped portion (82). The extending portion (83) is a portion formed on the side of the first side edge (81a). The body portion (81) has a drop-shaped portion (82) to form a non-circular bearing surface on the top foil (80).
 延伸部(83)は、滴状部(82)の所定の位置における接線方向に延びる。具体的には、トップフォイル(80)と、第1中間フォイル(91)の第2係合爪(N2)の基端部とが接触する位置を接点Fとする。このとき、延伸部(83)は、滴状部(82)における接点Fの接線方向(図21に示す延伸方向E)に延びている。 The extending portion (83) extends tangentially at a predetermined position of the drop-shaped portion (82). Specifically, the point of contact F is the position where the top foil (80) and the base end of the second engaging claw (N2) of the first intermediate foil (91) come into contact. At this time, the extending portion (83) extends in the tangential direction (extending direction E shown in FIG. 21) of the point of contact F in the drop-shaped portion (82).
 各突出部(84)は、通し溝(61)の内側面を経由して、係合凹部(62)の第3面(66)に接するように差し込まれて係合される。言い換えると、突出部(84)は、第3面(66)に案内されて係合凹部(62)に差し込まれる。このとき、第1側縁部(81a)は、軸受ハウジング(60)の通し溝(61)に嵌って収容される。各突出部(84)は、トップフォイル(80)が軸受ハウジング(60)に収容された状態において、本体部(81)の延伸部(83)の延伸方向Eに延びている。 Each projecting portion (84) is inserted and engaged through the inner surface of the through groove (61) so as to be in contact with the third surface (66) of the engaging recess (62). In other words, the protrusion (84) is guided by the third surface (66) and inserted into the engagement recess (62). At this time, the first side edge (81a) is fitted and housed in the through groove (61) of the bearing housing (60). Each projecting portion (84) extends in the extending direction E of the extending portion (83) of the body portion (81) when the top foil (80) is accommodated in the bearing housing (60).
 トップフォイル(80)の第1側縁部(81a)および第2側縁部(81b)は、いずれにも固定されていない。言い換えると、第1側縁部(81a)および第2側縁部(81b)は、自由に移動できるように構成されている。第1側縁部(81a)および第2側縁部(81b)は、溶接等によって固定されていないので、溶接時の熱によるトップフォイル(80)の歪みを抑制できる。 The first side edge (81a) and the second side edge (81b) of the top foil (80) are not fixed to either. In other words, the first side edge (81a) and the second side edge (81b) are configured to be freely movable. Since the first side edge (81a) and the second side edge (81b) are not fixed by welding or the like, distortion of the top foil (80) due to heat during welding can be suppressed.
 (2)特徴
 (2-1)
 本実施形態では、トップフォイル(80)の本体部(81)における第1側縁部(81a)は、第2側縁部(81b)よりも径方向外側に位置する。軸受ハウジング(60)の内周面には、その軸方向に沿って延びるとともに第1側縁部(81a)が収容される通し溝が形成される。通し溝(61)は、その深さ方向が径方向と一致するように形成される。
(2) Features (2-1)
In the present embodiment, the first side edge (81a) of the main body (81) of the top foil (80) is located radially outside the second side edge (81b). The inner peripheral surface of the bearing housing (60) is formed with a through-groove that extends along the axial direction and accommodates the first side edge (81a). The through groove (61) is formed such that its depth direction coincides with its radial direction.
 仮に、第1側縁部(81a)と第2側縁部(81b)とを突き合わせてまたは交差させて組み立てる場合には、両者を突き合せた状態または両者を交差させた状態で軸受ハウジングに挿入してトップフォイルの位置を調整する必要があった。これに対し、本構成では、第1側縁部(81a)が第2側縁部(81b)よりも径方向外側に位置するので、トップフォイル(80)の巻き状態を気にすることなく、簡単に軸受ハウジング(60)に挿入して組み立てることができる。これにより、ラジアルフォイル軸受(26)の組立性を向上できる。 If the first side edge portion (81a) and the second side edge portion (81b) are butted or crossed for assembly, they are inserted into the bearing housing while they are butted or crossed. and adjust the position of the top foil. In contrast, in this configuration, the first side edge (81a) is positioned radially outward of the second side edge (81b), so that the top foil (80) can be wound without worrying about the winding state. It can be easily assembled by inserting it into the bearing housing (60). As a result, the ease of assembly of the radial foil bearing (26) can be improved.
 加えて、第1側縁部(81a)と第2側縁部(81b)とが交差しないので、外乱などによってラジアルフォイル軸受(26)に衝撃が伝わっても、第1側縁部(81a)と第2側縁部(81b)とが衝突して破損することを抑制できる。 In addition, since the first side edge (81a) and the second side edge (81b) do not intersect, even if an impact is transmitted to the radial foil bearing (26) due to disturbance or the like, the first side edge (81a) is and the second side edge (81b) can be prevented from colliding and being damaged.
 更に、通し溝(61)の深さ方向が軸受ハウジング(60)の径方向になるように通し溝(61)が形成されているので、キー溝加工などに用いられるような一般的な加工方法によって通し溝(61)を形成することができる。言い換えると、ワイヤカット加工のような特殊な加工方法を用いることなく通し溝(61)を形成することができるので、通し溝(61)を簡単に加工できる。これにより、ラジアルフォイル軸受(26)の加工性を向上できる。 Furthermore, since the through-groove (61) is formed so that the depth direction of the through-groove (61) is aligned with the radial direction of the bearing housing (60), a general machining method such as that used for keyway machining can be used. The through groove (61) can be formed by In other words, since the through groove (61) can be formed without using a special processing method such as wire cutting, the through groove (61) can be easily processed. Thereby, the workability of the radial foil bearing (26) can be improved.
 ここで、トップフォイル(80)を軸受ハウジング(60)に保持するために、通し溝(61)の内側面に凹部や凸部を設けて、トップフォイル(80)の先端を係止することが考えられる。このような場合にも、通し溝(61)の内側面にワイヤカットのような微細で特殊な加工方法を用いて凹部や凸部を形成する必要がある。これに対し、本実施形態では、深さ方向が軸受ハウジング(60)の径方向になるように形成された通し溝(61)にトップフォイル(80)が係合することで、トップフォイル(80)が軸受ハウジング(60)に保持されるので、通し溝(61)の内側面への微細な加工が必要なく、通し溝(61)を簡単に加工できる。 Here, in order to hold the top foil (80) in the bearing housing (60), recesses or protrusions may be provided on the inner surface of the through groove (61) to lock the tip of the top foil (80). Conceivable. In such a case as well, it is necessary to form concave portions and convex portions on the inner surface of the through groove (61) using a fine and special processing method such as wire cutting. In contrast, in the present embodiment, the top foil (80) is engaged with the through groove (61) formed so that the depth direction is the radial direction of the bearing housing (60). ) is held in the bearing housing (60), the through groove (61) can be easily machined without fine machining of the inner surface of the through groove (61).
 (2-2)
 本実施形態のトップフォイル(80)は、本体部(81)の第1側縁部(81a)から外側に突出する突出部(84)を有する。突出部(84)は、第1側縁部(81a)の軸方向両端部にそれぞれ形成される。軸受ハウジング(60)の両側の側面には、突出部(84)に係合する係合凹部(62)が形成される。係合凹部(62)は、通し溝(61)に連通する。
(2-2)
The top foil (80) of this embodiment has a protrusion (84) that protrudes outward from the first side edge (81a) of the main body (81). The protrusions (84) are formed on both ends in the axial direction of the first side edge (81a). Engagement recesses (62) that engage with the protrusions (84) are formed on both side surfaces of the bearing housing (60). The engaging recess (62) communicates with the through groove (61).
 トップフォイル(80)の突出部(84)は、軸受ハウジング(60)の通し溝(61)を経由して、対応する係合部(63)に差し込まれて係合する。これにより、トップフォイル(80)が軸方向へ大きく移動しようとしても、突出部(84)の軸方向内縁部(84a)が係合凹部(62)の底面(67)に接触することにより、トップフォイル(80)の軸方向両側への大きな移動を規制できる。その結果、外乱等によりラジアルフォイル軸受(26)に大きな衝撃が加わったときのトップフォイル(80)の軸方向への脱落を抑制できる。 The protruding portion (84) of the top foil (80) is inserted and engaged with the corresponding engaging portion (63) via the through groove (61) of the bearing housing (60). As a result, even if the top foil (80) tries to move significantly in the axial direction, the axial inner edge (84a) of the protrusion (84) contacts the bottom surface (67) of the engagement recess (62), thereby Large axial movement of the foil (80) to both sides can be restricted. As a result, it is possible to prevent the top foil (80) from falling off in the axial direction when a large impact is applied to the radial foil bearing (26) due to disturbance or the like.
 加えて、本実施形態では、係合凹部(62)は、対応する突出部(84)の延伸方向Eに沿う第3面(66)を有する。回転軸(35)の振動によりトップフォイル(80)が周方向に移動する場合、本構成では、係合凹部(62)の第3面(66)と突出部(84)とが面で接触する。これにより、回転軸(35)の振動エネルギーが係合凹部(62)と突出部(84)との上記接触面で生じる摩擦の熱エネルギーに変換されて、回転軸(35)の振動を減衰できる。加えて、係合凹部(62)と突出部(84)とが面で接触するので、点で接触する場合に比べて、突出部(84)の摩耗を抑制できる。 In addition, in this embodiment, the engagement recess (62) has a third surface (66) along the extending direction E of the corresponding protrusion (84). When the top foil (80) moves in the circumferential direction due to vibration of the rotating shaft (35), in this configuration, the third surface (66) of the engaging recess (62) and the projecting portion (84) are in surface contact. . As a result, vibrational energy of the rotating shaft (35) is converted into heat energy of friction generated at the contact surface between the engaging recess (62) and the protrusion (84), thereby damping the vibration of the rotating shaft (35). . In addition, since the engagement recess (62) and the protrusion (84) are in surface contact, the protrusion (84) is less likely to wear out than when they are in point contact.
 更に、本実施形態では、係合凹部(62)が軸受ハウジング(60)の係合部(63)に設けられるので、係合凹部(62)を別に設ける場合に比べて、軸受ハウジング(60)を加工する回数が減少する。これにより、ラジアルフォイル軸受(26)の製造コストを低減できる。 Furthermore, in the present embodiment, since the engagement recess (62) is provided in the engagement portion (63) of the bearing housing (60), the bearing housing (60) is more flexible than when the engagement recess (62) is separately provided. The number of times to process is reduced. Thereby, the manufacturing cost of the radial foil bearing (26) can be reduced.
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
<<Other embodiments>>
The above embodiment may be configured as follows.
 上記実施形態のラジアルフォイル軸受(26)は、2つの圧縮機構(50)を有する二段式のターボ圧縮機(20)に適用されてもよい。 The radial foil bearing (26) of the above embodiment may be applied to a two-stage turbo compressor (20) having two compression mechanisms (50).
 上記実施形態のラジアルフォイル軸受(26)は、ターボ圧縮機(20)以外の圧縮機に適用されてもよい。 The radial foil bearing (26) of the above embodiment may be applied to compressors other than the turbo compressor (20).
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、及びその他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details are possible without departing from the spirit and scope of the claims. In addition, the above embodiments, modifications, and other embodiments may be appropriately combined or replaced as long as the functions of the object of the present disclosure are not impaired.
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 The descriptions of "first", "second", "third", etc. described above are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. not something to do.
 以上説明したように、本開示は、ラジアルフォイル軸受、圧縮機、および冷凍装置について有用である。 As described above, the present disclosure is useful for radial foil bearings, compressors, and refrigerators.
  1 冷凍装置
 20 圧縮機
 26 ラジアルフォイル軸受
 35 回転軸
 60 軸受ハウジング(ハウジング)
 62 係合凹部
 63 係合部
 64 第1面
 65 第2面
 66 第3面
 70 バックフォイル
70d 曲げ部
70e 挿通部
 80 トップフォイル
 81 本体部
81a 第1側縁部
81b 第2側縁部
 84 突出部
 90 中間フォイル
90a 第1接触部
90b 第2接触部
  N 係合爪
 N1 第1係合爪
 N2 第2係合爪
  P 回転方向
1 Refrigeration equipment 20 Compressor 26 Radial foil bearing 35 Rotating shaft 60 Bearing housing (housing)
62 Engagement concave portion 63 Engagement portion 64 First surface 65 Second surface 66 Third surface 70 Back foil
70d bend
70e Passing part 80 Top foil 81 Body part
81a first side edge
81b second side edge 84 protrusion 90 intermediate foil
90a First contact part
90b Second contact portion N Engaging pawl N1 First engaging pawl N2 Second engaging pawl P Rotational direction

Claims (23)

  1.  筒状のハウジング(60)と、
     前記ハウジング(60)の内周面に沿って配置されるバックフォイル(70)と、
     前記バックフォイル(70)に弾性的に支持され、該バックフォイル(70)と回転軸(35)との間に配置されるトップフォイル(80)とを備え、
     前記バックフォイル(70)は、前記ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、前記周方向の他方側に形成される第2係合爪(N2)とを有し、
     前記ハウジング(60)には、該ハウジング(60)の内周面から径方向外側に延びるとともに、前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれが係合する係合部(63)が形成される
     ラジアルフォイル軸受。
    a tubular housing (60);
    a back foil (70) arranged along the inner peripheral surface of the housing (60);
    a top foil (80) elastically supported on the back foil (70) and arranged between the back foil (70) and the rotating shaft (35);
    The back foil (70) includes a first engaging claw (N1) formed on one side in the circumferential direction of the housing (60) and a second engaging claw (N2) formed on the other side in the circumferential direction. ) and
    The housing (60) extends radially outward from the inner peripheral surface of the housing (60) and is engaged with the first engaging claw (N1) and the second engaging claw (N2). A radial foil bearing in which an engaging portion (63) is formed.
  2.  前記係合部(63)は、前記ハウジング(60)の両側の側面に形成され、
     前記第1係合爪(N1)および前記第2係合爪(N2)は、前記バックフォイル(70)における前記ハウジング(60)の軸方向の両側にそれぞれ形成される
     請求項1に記載のラジアルフォイル軸受。
    The engaging portions (63) are formed on both side surfaces of the housing (60),
    The radial according to claim 1, wherein the first engaging claw (N1) and the second engaging claw (N2) are formed on both sides of the back foil (70) in the axial direction of the housing (60). foil bearing.
  3.  前記バックフォイル(70)は、前記ハウジング(60)に対して前記ハウジング(60)の周方向、軸方向、および径方向の少なくとも一方向に相対的に移動可能に構成される
     請求項1または2に記載のラジアルフォイル軸受。
    3. The back foil (70) is configured to be movable relative to the housing (60) in at least one of circumferential, axial and radial directions of the housing (60). A radial foil bearing according to .
  4.  前記第1係合爪(N1)および前記第2係合爪(N2)は、前記バックフォイル(70)における前記ハウジング(60)の軸方向に沿って延びる側縁部から前記径方向外側に延びる
     請求項1~3のいずれか1つに記載のラジアルフォイル軸受。
    The first engaging claw (N1) and the second engaging claw (N2) extend radially outward from side edges of the back foil (70) extending along the axial direction of the housing (60). A radial foil bearing according to any one of claims 1 to 3.
  5.  前記係合部(63)の幅は、前記バックフォイル(70)の板厚の5倍以上である
     請求項1~4のいずれか1つに記載のラジアルフォイル軸受。
    The radial foil bearing according to any one of claims 1 to 4, wherein the width of the engaging portion (63) is at least five times the plate thickness of the back foil (70).
  6.  前記係合部(63)の幅は、0.3mm以上である
     請求項1~5のいずれか1つに記載のラジアルフォイル軸受。
    The radial foil bearing according to any one of claims 1 to 5, wherein the engaging portion (63) has a width of 0.3 mm or more.
  7.  前記バックフォイル(70)は、前記周方向に沿って複数設けられ、
     互いに隣り合う前記バックフォイル(70)のうち一方のバックフォイル(70)の前記第1係合爪(N1)は、他方のバックフォイル(70)の前記第2係合爪(N2)と対向して配置され、
     前記一方のバックフォイル(70)の前記第1係合爪(N1)および前記他方のバックフォイル(70)の前記第2係合爪(N2)は、1つの前記係合部(63)に係合する
     請求項1~6のいずれか1つに記載のラジアルフォイル軸受。
    A plurality of the back foils (70) are provided along the circumferential direction,
    The first engaging claw (N1) of one back foil (70) of the mutually adjacent back foils (70) faces the second engaging claw (N2) of the other back foil (70). are placed in the
    The first engaging claw (N1) of the one back foil (70) and the second engaging claw (N2) of the other back foil (70) are engaged with one of the engaging portions (63). The radial foil bearing according to any one of claims 1-6.
  8.  前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれの先端部は、それぞれの前記係合爪(N1,N2)に対応する前記係合部(63)の内面に接触し、
     前記バックフォイル(70)は、前記第1係合爪(N1)および前記第2係合爪(N2)が弾性変形することにより、前記ハウジング(60)に対して相対的に移動可能に構成される
     請求項1~7のいずれか1つに記載のラジアルフォイル軸受。
    The tip of each of the first engaging claw (N1) and the second engaging claw (N2) is attached to the inner surface of the engaging portion (63) corresponding to each of the engaging claws (N1, N2). contact,
    The back foil (70) is configured to be movable relative to the housing (60) by elastically deforming the first engaging claw (N1) and the second engaging claw (N2). The radial foil bearing according to any one of claims 1-7.
  9.  前記ハウジング(60)は、前記第1係合爪(N1)が係合する第1の係合部(63)と、前記第2係合爪(N2)が係合する第2の係合部(63)とを有し、
     前記第1の係合部(63)は、前記第1係合爪(N1)の先端部が接触する第1面(64)を有し、
     前記第2の係合部(63)は、前記第2係合爪(N2)の先端部が接触する第2面(65)を有し、
     前記ハウジング(60)の軸方向から見たときに、前記バックフォイル(70)における前記第1係合爪(N1)の基端部と前記第2係合爪(N2)の基端部との間の前記周方向の長さA1は、前記ハウジング(60)における前記第1面(64)の径方向内側の端部と前記第2面(65)の径方向内側の端部との間の前記周方向の長さA2よりも長い
     請求項1~8のいずれか1つに記載のラジアルフォイル軸受。
    The housing (60) has a first engaging portion (63) with which the first engaging pawl (N1) engages and a second engaging portion with which the second engaging pawl (N2) engages. (63) and
    The first engaging portion (63) has a first surface (64) with which the tip of the first engaging claw (N1) contacts,
    The second engaging portion (63) has a second surface (65) with which the tip of the second engaging claw (N2) contacts,
    When viewed from the axial direction of the housing (60), there is a The circumferential length A1 between The radial foil bearing according to any one of claims 1 to 8, which is longer than the circumferential length A2.
  10.  筒状のハウジング(60)と、
     前記ハウジング(60)の内周面に沿って配置されるバックフォイル(70)と、
     前記バックフォイル(70)の内側に配置される中間フォイル(90)と、
     前記バックフォイル(70)に弾性的に支持され、前記中間フォイル(90)と回転軸(35)との間に配置されるトップフォイル(80)とを備え、
     前記中間フォイル(90)は、前記ハウジング(60)の周方向の一方側に形成される第1係合爪(N1)と、前記周方向の他方側に形成される第2係合爪(N2)とを有し、
     前記バックフォイル(70)は、前記第1係合爪(N1)および前記第2係合爪(N2)に対応する部分に、溝または切欠きで構成される挿通部(70e)を有し、
     前記ハウジング(60)には、該ハウジング(60)の内周面から径方向外側に延びるとともに、前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれが係合する係合部(63)が形成され、
     前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれは、前記挿通部(70e)を介して、前記係合部(63)に係合する
     ラジアルフォイル軸受。
    a tubular housing (60);
    a back foil (70) arranged along the inner peripheral surface of the housing (60);
    an intermediate foil (90) arranged inside said back foil (70);
    a top foil (80) elastically supported on the back foil (70) and arranged between the intermediate foil (90) and the axis of rotation (35);
    The intermediate foil (90) includes a first engaging claw (N1) formed on one circumferential side of the housing (60) and a second engaging claw (N2) formed on the other circumferential side of the housing (60). ) and
    The back foil (70) has an insertion portion (70e) composed of a groove or a notch in a portion corresponding to the first engaging claw (N1) and the second engaging claw (N2),
    The housing (60) extends radially outward from the inner peripheral surface of the housing (60) and is engaged with the first engaging claw (N1) and the second engaging claw (N2). An engaging portion (63) is formed,
    A radial foil bearing in which each of the first engaging claw (N1) and the second engaging claw (N2) is engaged with the engaging portion (63) through the insertion portion (70e).
  11.  前記係合部(63)は、前記ハウジング(60)の両側の側面に形成され、
     前記第1係合爪(N1)および前記第2係合爪(N2)は、前記中間フォイル(90)における前記ハウジング(60)の軸方向両側にそれぞれ形成され、
     前記挿通部(70e)は、前記バックフォイル(70)の前記軸方向両側における前記第1係合爪(N1)および前記第2係合爪(N2)に対応する位置に形成される
     請求項10に記載のラジアルフォイル軸受。
    The engaging portions (63) are formed on both side surfaces of the housing (60),
    The first engaging claw (N1) and the second engaging claw (N2) are formed on both sides of the intermediate foil (90) in the axial direction of the housing (60),
    10. The insertion portions (70e) are formed at positions corresponding to the first engaging claws (N1) and the second engaging claws (N2) on both sides of the back foil (70) in the axial direction. A radial foil bearing according to .
  12.  前記バックフォイル(70)および前記中間フォイル(90)は、前記ハウジング(60)に対して該ハウジング(60)の周方向、軸方向、および径方向の少なくとも一方向に相対的に移動可能に構成される
     請求項10または11に記載のラジアルフォイル軸受。
    The back foil (70) and the intermediate foil (90) are configured to be movable relative to the housing (60) in at least one of circumferential, axial and radial directions of the housing (60). A radial foil bearing according to claim 10 or 11.
  13.  前記第1係合爪(N1)および前記第2係合爪(N2)は、前記中間フォイル(90)における前記ハウジング(60)の軸方向に沿って延びる側縁部から前記径方向外側に延びる
     請求項10~12のいずれか1つに記載のラジアルフォイル軸受。
    The first engaging pawl (N1) and the second engaging pawl (N2) extend radially outward from side edges of the intermediate foil (90) extending along the axial direction of the housing (60). A radial foil bearing according to any one of claims 10-12.
  14.  前記係合部(63)の幅は、前記中間フォイル(90)の板厚の5倍以上である
     請求項10~13のいずれか1つに記載のラジアルフォイル軸受。
    The radial foil bearing according to any one of claims 10 to 13, wherein the width of said engaging portion (63) is at least five times the plate thickness of said intermediate foil (90).
  15.  前記係合部(63)の幅は、0.3mm以上である
     請求項10~14のいずれか1つに記載のラジアルフォイル軸受。
    The radial foil bearing according to any one of claims 10 to 14, wherein the engaging portion (63) has a width of 0.3 mm or more.
  16.  前記中間フォイル(90)は、前記周方向に沿って複数設けられ、
     互いに隣り合う前記中間フォイル(90)のうち一方の中間フォイル(90)の前記第1係合爪(N1)は、他方の中間フォイル(90)の前記第2係合爪(N2)と対向して配置され、
     前記一方の中間フォイル(90)の前記第1係合爪(N1)および前記他方の中間フォイル(90)の前記第2係合爪(N2)は、1つの前記係合部(63)に係合する
     請求項10~15のいずれか1つに記載のラジアルフォイル軸受。
    A plurality of the intermediate foils (90) are provided along the circumferential direction,
    The first engaging claw (N1) of one intermediate foil (90) of the adjacent intermediate foils (90) faces the second engaging claw (N2) of the other intermediate foil (90). are placed in the
    The first engaging pawl (N1) of the one intermediate foil (90) and the second engaging pawl (N2) of the other intermediate foil (90) are engaged with one of the engaging portions (63). The radial foil bearing according to any one of claims 10-15.
  17.  前記第1係合爪(N1)および前記第2係合爪(N2)のそれぞれの先端部は、それぞれの前記係合爪(N1,N2)に対応する前記係合部(63)の内面に接触し、
     前記中間フォイル(90)は、前記第1係合爪(N1)および前記第2係合爪(N2)が弾性変形することにより、前記ハウジング(60)に対して相対的に移動可能に構成される
     請求項10~16のいずれか1つに記載のラジアルフォイル軸受。
    The tip of each of the first engaging claw (N1) and the second engaging claw (N2) is attached to the inner surface of the engaging portion (63) corresponding to each of the engaging claws (N1, N2). contact,
    The intermediate foil (90) is configured to be movable relative to the housing (60) by elastically deforming the first engaging claw (N1) and the second engaging claw (N2). The radial foil bearing according to any one of claims 10-16.
  18.  前記ハウジング(60)は、前記第1係合爪(N1)が係合する第1の係合部(63)と、前記第2係合爪(N2)が係合する第2の係合部(63)とを有し、
     前記第1の係合部(63)は、前記第1係合爪(N1)が接触する第1面(64)を有し、
     前記第2の係合部(63)は、前記第2係合爪(N2)が接触する第2面(65)を有し、
     前記中間フォイル(90)は、
      前記第1係合爪(N1)と該第1係合爪(N1)に対応するバックフォイル(70)の挿通部(70e)とが接触する第1接触部(90a)と、
      前記第2係合爪(N2)と該第2係合爪(N2)に対応するバックフォイル(70)の挿通部(70e)とが接触する第2接触部(90b)とを有し、
     前記ハウジング(60)の軸方向から見たときに、前記中間フォイル(90)の前記第1接触部(90a)と前記第2接触部(90b)との間の前記周方向の長さB1は、前記ハウジング(60)における前記第1面(64)の径方向内側の端部と前記第2面(65)の径方向内側の端部との間の前記周方向の長さB2よりも長い
     請求項10~17のいずれか1つに記載のラジアルフォイル軸受。
    The housing (60) has a first engaging portion (63) with which the first engaging pawl (N1) engages and a second engaging portion with which the second engaging pawl (N2) engages. (63) and
    The first engaging portion (63) has a first surface (64) with which the first engaging pawl (N1) contacts,
    The second engaging portion (63) has a second surface (65) with which the second engaging claw (N2) contacts,
    Said intermediate foil (90) comprises:
    a first contact portion (90a) where the first engaging claw (N1) and the insertion portion (70e) of the back foil (70) corresponding to the first engaging claw (N1) contact;
    Having a second contact portion (90b) where the second engaging claw (N2) and the insertion portion (70e) of the back foil (70) corresponding to the second engaging claw (N2) contact,
    When viewed from the axial direction of the housing (60), the circumferential length B1 between the first contact portion (90a) and the second contact portion (90b) of the intermediate foil (90) is , the circumferential length B2 between the radially inner end of the first surface (64) and the radially inner end of the second surface (65) of the housing (60). A radial foil bearing according to any one of claims 10-17.
  19.  前記バックフォイル(70)は、前記周方向両側の側縁部から前記ハウジング(60)の径方向内側に延びる曲げ部(70d)を有する
     請求項10~18のいずれか1つに記載のラジアルフォイル軸受。
    The radial foil according to any one of claims 10 to 18, wherein the back foil (70) has bent portions (70d) extending radially inwardly of the housing (60) from both side edges in the circumferential direction. bearing.
  20.  前記トップフォイル(80)は、前記回転軸(35)の外周面に沿って巻かれた本体部(81)を有し、
     前記本体部(81)は、
      前記回転軸(35)の回転方向(P)前側の側縁部である第1側縁部(81a)と、
      前記回転方向(P)後側の側縁部である第2側縁部(81b)とを有し、
     前記第1側縁部(81a)は、前記第2側縁部(81b)よりも前記ハウジング(60)の径方向外側に位置し、
     前記ハウジング(60)の内周面には、該ハウジング(60)の軸方向に沿って延びるとともに前記第1側縁部(81a)が収容される通し溝(61)が形成され、
     前記通し溝(61)は、その深さ方向が前記径方向と一致するように形成される
     請求項1~19のいずれか1つに記載のラジアルフォイル軸受。
    The top foil (80) has a main body (81) wound along the outer peripheral surface of the rotating shaft (35),
    The main body (81) is
    a first side edge (81a) that is a side edge on the front side in the rotation direction (P) of the rotating shaft (35);
    a second side edge (81b) that is a side edge on the rear side in the rotation direction (P),
    The first side edge (81a) is located radially outside the housing (60) relative to the second side edge (81b),
    A through groove (61) extending along the axial direction of the housing (60) and accommodating the first side edge (81a) is formed in the inner peripheral surface of the housing (60),
    The radial foil bearing according to any one of claims 1 to 19, wherein the through groove (61) is formed such that its depth direction coincides with the radial direction.
  21.  前記係合部(63)は、前記ハウジング(60)の両側の側面に形成され、
     前記第1係合爪(N1)および前記第2係合爪(N2)は、前記バックフォイル(70)における前記ハウジング(60)の軸方向の両側にそれぞれ形成され、
     前記トップフォイル(80)は、前記第1側縁部(81a)における前記ハウジング(60)の軸方向両側の端部からそれぞれ外側に突出する突出部(84)を有し、
     前記ハウジング(60)の両側の側面には、前記通し溝(61)に連通し、前記突出部(84)が係合する係合凹部(62)が形成され、
     前記係合凹部(62)は、前記突出部(84)の延伸方向に沿う第3面(66)を有するとともに、前記係合部(63)に設けられる
     請求項20に記載のラジアルフォイル軸受。
    The engaging portions (63) are formed on both side surfaces of the housing (60),
    The first engaging claw (N1) and the second engaging claw (N2) are formed on both sides of the back foil (70) in the axial direction of the housing (60),
    The top foil (80) has protrusions (84) that protrude outward from both ends of the housing (60) in the axial direction of the first side edge (81a),
    Engagement recesses (62) that communicate with the through grooves (61) and engage with the protrusions (84) are formed on both side surfaces of the housing (60),
    21. The radial foil bearing according to claim 20, wherein the engaging recess (62) has a third surface (66) along the extending direction of the projecting portion (84) and is provided in the engaging portion (63).
  22.  請求項1~21のいずれか1つに記載のラジアルフォイル軸受(26)を備える圧縮機。 A compressor comprising the radial foil bearing (26) according to any one of claims 1-21.
  23.  請求項22に記載の圧縮機(20)を備える冷凍装置。 A refrigeration system comprising the compressor (20) according to claim 22.
PCT/JP2022/033608 2021-09-30 2022-09-07 Radial foil bearing, compressor, and refrigeration device WO2023053881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021161485A JP7368754B2 (en) 2021-09-30 2021-09-30 Radial foil bearings, compressors, and refrigeration equipment
JP2021-161485 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053881A1 true WO2023053881A1 (en) 2023-04-06

Family

ID=85782402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033608 WO2023053881A1 (en) 2021-09-30 2022-09-07 Radial foil bearing, compressor, and refrigeration device

Country Status (2)

Country Link
JP (1) JP7368754B2 (en)
WO (1) WO2023053881A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214380A (en) * 2002-01-18 2003-07-30 Mitsubishi Heavy Ind Ltd Centrifugal compressor and refrigerator
US20060018574A1 (en) * 2004-07-20 2006-01-26 Honeywell International Inc., Hydrodynamic journal bearing
JP2013087789A (en) * 2011-10-13 2013-05-13 Ihi Corp Radial foil bearing
JP2014020463A (en) * 2012-07-18 2014-02-03 Ihi Corp Radial foil bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214380A (en) * 2002-01-18 2003-07-30 Mitsubishi Heavy Ind Ltd Centrifugal compressor and refrigerator
US20060018574A1 (en) * 2004-07-20 2006-01-26 Honeywell International Inc., Hydrodynamic journal bearing
JP2013087789A (en) * 2011-10-13 2013-05-13 Ihi Corp Radial foil bearing
JP2014020463A (en) * 2012-07-18 2014-02-03 Ihi Corp Radial foil bearing

Also Published As

Publication number Publication date
JP7368754B2 (en) 2023-10-25
JP2023051047A (en) 2023-04-11

Similar Documents

Publication Publication Date Title
US20130084202A1 (en) Vane rotary compressor
JPWO2017038489A1 (en) Rotor, rotating electrical machine, electric compressor and refrigeration air conditioner
JP5357971B2 (en) Hermetic compressor and refrigeration cycle apparatus using the same
CN115143183B (en) Air foil thrust bearing
WO2023053881A1 (en) Radial foil bearing, compressor, and refrigeration device
JP2010279126A (en) Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device
JP2002372100A (en) Torque transmission device
JP7244780B1 (en) Radial foil bearings, compressors, and refrigeration equipment
JP5741197B2 (en) End member of rotor, motor provided with rotor end member, and compressor provided with motor
WO2022158206A1 (en) Electromagnetic clutch
JP2013068187A (en) Electric compressor
JP7386489B2 (en) Electric motor for air conditioner
WO2023189092A1 (en) Foil bearing and fluid machinery
JP7406142B1 (en) Method for manufacturing thrust foil bearings, compressors, refrigeration equipment, and base plates for thrust foil bearings
JP7288238B1 (en) Electric motor
KR102367893B1 (en) Turbo compressor
KR200142894Y1 (en) Clutch for compressor
JP7239867B1 (en) Rotating electrical machines, compressors, and refrigeration equipment
JP7436908B2 (en) Rotating electrical machines, compressors, and refrigeration equipment
KR20060112175A (en) Coupling member
WO2022224420A1 (en) Compressor and refrigeration cycle device
KR100479607B1 (en) Foil journal bearing
WO2024071067A1 (en) Magnetic circuit component, air blower, compressor, and refrigerating device
JP6880248B2 (en) Compressor and refrigeration cycle equipment
JP2024037603A (en) Thrust foil bearing, compressor, freezing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE