WO2023053418A1 - 端末、基地局及び通信方法 - Google Patents

端末、基地局及び通信方法 Download PDF

Info

Publication number
WO2023053418A1
WO2023053418A1 PCT/JP2021/036319 JP2021036319W WO2023053418A1 WO 2023053418 A1 WO2023053418 A1 WO 2023053418A1 JP 2021036319 W JP2021036319 W JP 2021036319W WO 2023053418 A1 WO2023053418 A1 WO 2023053418A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
frequency band
offset value
communication
Prior art date
Application number
PCT/JP2021/036319
Other languages
English (en)
French (fr)
Inventor
尚哉 芝池
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/036319 priority Critical patent/WO2023053418A1/ja
Priority to CN202180102539.6A priority patent/CN117981437A/zh
Priority to JP2023550974A priority patent/JPWO2023053418A5/ja
Publication of WO2023053418A1 publication Critical patent/WO2023053418A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to terminals, base stations and communication methods in wireless communication systems.
  • NR New Radio
  • LTE Long Term Evolution
  • Non-Patent Document 2 is considering using a higher frequency band than previous releases (eg, Non-Patent Document 2).
  • a higher frequency band eg., Non-Patent Document 2.
  • applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, possible obstacles in actual wireless communication, etc. are being studied.
  • offset values for scheduling downlink or uplink data under consideration in NR is to accommodate the large subcarrier spacing supported in high frequency bands such as 52.6 GHz to 71 GHz.
  • the scope is small and needs to be extended.
  • the present invention has been made in view of the above points, and aims to apply an offset value for scheduling downlink data or uplink data to a high frequency band.
  • a receiving unit that receives from a base station a signal indicating setting of a scheduling offset value extended to communication that uses a frequency band equal to or higher than a reference value, and downlink data transmitted from the base station or and a control unit that assumes that uplink data to be transmitted to the base station is scheduled by applying the scheduling offset value extended to the frequency band.
  • a technique that enables an offset value for scheduling downlink data or uplink data to be applied to a high frequency band.
  • FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present invention
  • FIG. It is a figure which shows the example of the frequency range in embodiment of this invention.
  • FIG. 4 is a diagram for explaining a scheduling offset value
  • FIG. 10 is a diagram showing an example of a prescribed value of PDSCH decoding time
  • FIG. 4 is a diagram showing an example of a specified value of PUSCH preparation time
  • FIG. 4 is a diagram showing an example of prescribed values for HARQ-ACK multiplexing timeline
  • FIG. 5 is a diagram showing an example of specified values for power saving
  • It is a figure which shows an example of a TDRA table.
  • FIG. 4 is a diagram for explaining a scheduling offset value
  • FIG. 10 is a diagram showing an example of a prescribed value of PDSCH decoding time
  • FIG. 4 is a diagram showing an example of a specified value of PUSCH preparation time
  • FIG. 4 is a diagram illustrating an example of signaling of terminal capabilities notified for power saving;
  • FIG. 10 is a diagram for explaining a scheduling offset value according to the first embodiment;
  • FIG. FIG. 10 is a diagram showing an example of a range of offset values in conventional scheduling;
  • 1 is a diagram illustrating an example of conventional signaling of terminal capabilities;
  • FIG. FIG. 12 is a diagram illustrating an example of a range of offset values for scheduling according to the third embodiment;
  • FIG. 21 is a diagram illustrating an example of terminal capabilities according to Plan 1 of Example 4;
  • FIG. 21 is a diagram illustrating an example of terminal capabilities according to Proposal 2 of Example 4;
  • 21 is a diagram illustrating an example of terminal capabilities according to Proposal 3 of Example 4; It is a figure showing an example of functional composition of a base station in an embodiment of the invention. It is a figure which shows an example of the functional structure of the terminal in embodiment of this invention. It is a figure showing an example of hardware constitutions of a base station or a terminal in an embodiment of the invention. It is a figure showing an example of composition of vehicles in an embodiment of the invention.
  • existing technology may be used as appropriate.
  • the existing technology is, for example, existing NR or LTE, but is not limited to existing NR or LTE.
  • LTE Long Term Evolution
  • LTE-Advanced and LTE-Advanced and subsequent systems eg, NR
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex etc.) method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • configure of wireless parameters and the like may mean that predetermined values are pre-configured (pre-configured).
  • the wireless parameters notified from may be set.
  • FIG. 1 is a diagram for explaining a radio communication system according to an embodiment of the present invention.
  • a radio communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is an example and there may be more than one.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • Physical resources of radio signals are defined in the time domain and the frequency domain.
  • the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain is defined by the number of subcarriers or resource blocks. good too.
  • a TTI Transmission Time Interval
  • a slot or a TTI may be a subframe.
  • the base station 10 transmits the synchronization signal and system information to the terminal 20.
  • Synchronization signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH, and is also called broadcast information.
  • the synchronization signal and system information may be called SSB (SS/PBCH block).
  • the base station 10 transmits control signals or data to the terminal 20 on DL (Downlink) and receives control signals or data from the terminal 20 on UL (Uplink).
  • Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals.
  • both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL.
  • MIMO Multiple Input Multiple Output
  • both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) by CA (Carrier Aggregation).
  • SCell Secondary Cell
  • PCell Primary Cell
  • CA Carrier Aggregation
  • the terminal 20 may communicate via a primary cell of the base station 10 and a primary secondary cell group cell (PSCell: Primary SCG Cell) of another base station 10 by DC (Dual Connectivity).
  • DC Dual Connectivity
  • the terminal 20 is a communication device with a wireless communication function, such as a smartphone, mobile phone, tablet, wearable terminal, or M2M (Machine-to-Machine) communication module. As shown in FIG. 1 , the terminal 20 receives control signals or data from the base station 10 on the DL and transmits control signals or data to the base station 10 on the UL, thereby performing various functions provided by the wireless communication system. Use communication services. Also, the terminal 20 receives various reference signals transmitted from the base station 10, and measures channel quality based on the reception result of the reference signals. Note that the terminal 20 may be called UE, and the base station 10 may be called gNB.
  • FIG. 2 is a diagram showing an example of frequency ranges in the embodiment of the present invention.
  • FR Frequency range 1 1
  • SCS Sub carrier spacing
  • the bandwidth is from 5 MHz to 100 MHz.
  • FR2-1 is a frequency band from 24.25 GHz to 52.6 GHz
  • SCS uses 60, 120 or 240 kHz with a bandwidth of 50 MHz to 400 MHz.
  • FR2-2 which is a newly operated frequency band, is a frequency band from 52.6 GHz to 71 GHz.
  • up to 64 SSB beams may be supported in licensed and unlicensed bands.
  • 120 kHz SCS applied to SSB and 120 kHz SCS applied to signals and channels related to initial access may be supported.
  • SSB at 480 kHz SCS may be supported in addition to 120 kHz SCS.
  • the SSB may perform initial access to support CORESET (Control Resource Set) #0/Type0-PDCCH contained in the MIB.
  • CORESET Control Resource Set
  • the following restrictions may apply.
  • the entry number of a synchronization raster may be restricted.
  • CORESET#0/Type 0-PDCCH of 480 kHz SCS may be supported.
  • SSB-CORESET multiplexing pattern 1 (SS/PBCH block and CORESET multiplexing pattern 1) may be preferred.
  • CORESET#0/Type 0-PDCCH included in the SSB MIB of 120 kHz SCS, 480 kHz SCS and 960 kHz SCS may be supported.
  • one SCS of CORESET#0/Type0-PDCCH may be supported per SCS of SSB.
  • ⁇ SCS of SSB, CORESET#0/SCS of Type0-PDCCH ⁇ may support ⁇ 120, 120 ⁇ , ⁇ 480, 480 ⁇ , ⁇ 960, 960 ⁇ .
  • SSB-CORESET multiplexing pattern 1 may be preferred.
  • FIG. 3 is a diagram for explaining the scheduling offset value.
  • K0 is the offset value between the scheduled PDCCH and the scheduled PDSCH.
  • K1 is the offset value between PDSCH and PUCCH containing the corresponding HARQ-ACK.
  • K2 is the offset value between the scheduled PDCCH and the scheduled PUSCH.
  • Each offset value of K0, K1 and K2 is defined as a value in units of slots.
  • K0 is set as the value of the "PDSCH-TimeDomainResourceAllocation" item.
  • the value of K0 ranges from 0 to 32 in slots.
  • K1 is set as the value of the "DL-DataToUL-ACK" item, and is selected from values set via instructions by the DCI.
  • the value of K1 ranges from 0 to 15 in slots.
  • K2 is set as the value of the "PUSCH-TimeDomainResourceAllocation" item.
  • the value of K2 ranges from 0 to 32 in slots.
  • FIG. 4 is a diagram showing an example of the prescribed value of the PDSCH decoding time.
  • N1 is a specified value of the PDSCH decoding time and is specified in symbol units. Specified values for N1 for subcarrier spacings of 120 kHz, 480 kHz and 960 kHz have been agreed.
  • FIG. 5 is a diagram showing an example of the prescribed values of PUSCH preparation time.
  • N2 is a specified value of the PUSCH preparation time and is specified in symbol units. Specified values for N2 with subcarrier spacings of 120 kHz, 480 kHz and 960 kHz have been agreed.
  • FIG. 6 is a diagram showing an example of prescribed values for the HARQ-ACK multiplexing timeline.
  • N3 is a specified value of the HARQ-ACK multiplexing timeline and is specified in symbol units. Specified values for N3 with subcarrier spacings of 120 kHz, 480 kHz and 960 kHz have been agreed.
  • k_offset is supported and the following specifications have already been agreed.
  • the offset values of K1 and K2 are K1+k_offset and K2+k_offset, respectively.
  • k_offset is set in RRC.
  • k_offset is a value that can be updated by RRC and/or MAC.
  • the terminal 20 is configured with a minimum applicable value of K0/CSI-RS trigger offset in the downlink BWP (Bandwidth Part) and a minimum applicable value of K2 in the uplink BWP.
  • FIG. 7 is a diagram showing an example of specified values for power saving.
  • the upper layer parameter minimumSchedulingOffset can indicate up to two values of BWP.
  • DCI format 0_1 or 1_1 may indicate a value that applies to the minimum applicable value from the two values.
  • terminal 20 assumes that K0/K2/CSI-RS trigger offsets smaller than the minimum applicable scheduling offset are not scheduled or triggered in DCI. with some exceptions, eg PDSCH transmissions scheduled in SI-RNTI or RA-RNTI.
  • FIG. 9 is a diagram showing an example of RRC parameters for power saving.
  • the minimum scheduling offset is bounded as an RRC parameter.
  • FIG. 10 is a diagram illustrating an example of terminal capability signaling for power saving.
  • the terminal 20 can signal the recommended minimum value K0/K2 via terminal capability signaling (optional, non-basic).
  • K0/K1/K2 especially K0
  • K0 K0
  • the k_offset discussed in NTN may not consider K0.
  • K0 or K2 is set for each PDSCH or PUSCH, but may not be consecutive to each other.
  • subcarrier spacing greater than 120 kHz eg, 480 and/or 960 kHz may be too narrow.
  • a method for realizing a wide range of scheduling offset values is shown so as to correspond to a large subcarrier spacing (for example, greater than 120 kHz) supported in the high frequency band from 52.6 GHz to 71 GHz. .
  • Embodiment 1 shows an example in which an offset value k_offset is introduced into the scheduling offset values K0/K1/K2.
  • the second embodiment shows an example in which the range of the scheduling offset values K0/K1/K2 is expanded to a value larger than 32, for example.
  • 52.6 GHz is an example of a reference value indicating a high frequency band of FR2-2.
  • the present embodiment may be applied to a high frequency band of 71 GHz or higher.
  • Example 1 This embodiment shows an example of introducing an offset value k_offset to the scheduling offset values K0/K1/K2.
  • FIG. 11 is a diagram for explaining a scheduling offset value according to the first embodiment.
  • the offset value k_offset is applied by adding to the scheduling offset values K0/K1/K2 respectively.
  • the offset value k_offset may be set by the base station 10 in RRC.
  • the offset value k_offset may be predefined in the specification.
  • a fixed value defined in the specification may be defined based on the processing capability of the terminal (eg, N1/N2).
  • the fixed value defined in the specification may be a fixed value according to each terminal processing capability of N1/N2 (for example capability 1 or 2).
  • the offset value k_offset may be set by the base station 10 in MAC-CE.
  • the offset value k_offset may be specified by the base station 10 in DCI.
  • the offset value k_offset may be specified by terminal 20 via terminal capability signaling.
  • the offset value k_offset may be updated by the base station 10 via RRC configuration.
  • the offset value k_offset may be updated by the base station 10 via MAC-CE.
  • the offset value k_offset may be updated by the base station 10 via DCI.
  • the introduced offset value may be the k_offset value.
  • the k_offset value of K1/K2 may be common to the k_offset value of at least one of K0 and K1.
  • Example 2 This embodiment shows an example of expanding the range of scheduling offset values K0/K1/K2.
  • the range of scheduling offset values K0/K1/K2 may be extended to values greater than 32 (eg, 64).
  • This embodiment may be applied on condition that the subcarrier spacing is at least one of 480 and 960 kHz.
  • This embodiment may be applied on the condition that multi-PDSCH/PUSCH scheduling is set.
  • the terminal 20 may determine that the condition is satisfied when one or more rows including multiple SLIVs are included in the set TDRA table.
  • FIG. 12 is a diagram showing an example of a conventional scheduling offset value range.
  • the minimum scheduling offset has a range defined as an RRC parameter, with values from 0 to 16 being selectable settings as the minimum value.
  • FIG. 13 is a diagram showing an example of conventional terminal capability signaling. It may be necessary to increase the terminal's recommended value via terminal capability signaling.
  • the subcarrier spacing is assumed to be 120 kHz or less.
  • Example 3 shows an example in which the minimum value of K0/K2 can be selected from larger values for power saving.
  • a method may be defined to support larger values.
  • FIG. 14 is a diagram illustrating an example of a range of scheduling offset values according to the third embodiment. As shown in FIG. 14, values greater than 16 (eg, 32) may be supported for the maximum number of slots set as the minimum scheduling offset (K0/K2).
  • maxK0-SchedulingOffset (-r16) and/or maxK2-SchedulingOffset (-r16) should be Y times the originally defined value (i.e., 16). be reinterpreted.
  • maxK0-SchedulingOffset(-r16) and/or maxK2-SchedulingOffset(-r16) when operating with subcarrier spacing greater than 120 kHz and/or operating in the frequency range of 52.6-71 GHz is reinterpreted as Y times the originally defined value (ie, 16).
  • the terminal 20 can lengthen the microsleep time, leading to more efficient power consumption.
  • At least one of the value set by MinSchedulingOffsetK0 and the value set by MinSchedulingOffsetK2 is reinterpreted as follows.
  • ⁇ Option 1> It may be defined on what value the k_offset is obtained.
  • k_offset may be obtained from that proposed in Example 1.
  • k_offset may be obtained from a value dedicated to power saving.
  • k_offset may be configured by RRC.
  • k_offset may be set by MAC-CE.
  • k_offset may be indicated in DCI.
  • candidate values may be configured in RRC and actual values indicated via MAC-CE or DCI.
  • Example 4 In the present embodiment, an example of extending the range of values of terminal-recommended minimum values K0/K2 is shown.
  • a large subcarrier spacing value may be defined by conventional terminal capability signaling (FG19-4a).
  • FIG. 15 is a diagram showing an example of terminal capabilities according to plan 1 of the fourth embodiment.
  • a new range of terminal recommended minimum values K0/K2 at subcarrier spacing of 480 kHz or 960 kHz is added to the conventional terminal capability signaling (FG19-4a).
  • FIG. 16 is a diagram showing an example of terminal capabilities according to plan 2 of the fourth embodiment. 480 kHz or 960 kHz is added to the subcarrier spacing corresponding to the range of values of the conventional terminal recommended minimum K0/K2 of the conventional terminal capability signaling (FG19-4a).
  • a new FG may be defined to support Assistance Information Reporting for terminals operating in 52.6-71 GHz.
  • FIG. 17 is a diagram showing an example of terminal capabilities according to plan 3 of the fourth embodiment.
  • the signaling of new terminal capabilities is configured with a terminal recommended minimum K0/K2 value range at subcarrier spacing of 480 kHz or 960 kHz.
  • Each embodiment described above may be applied to terminals operating at 52.6-71 GHz (ie FR2-2).
  • each of the embodiments described above may be applied to terminals operating at subcarrier spacings of 480 and 960 kHz.
  • the base stations 10 and terminals 20 contain the functionality to implement the embodiments described above. However, each of the base station 10 and the terminal 20 may have only the functions proposed in any of the embodiments.
  • FIG. 18 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. As shown in FIG. 18 , base station 10 has transmitter 110 , receiver 120 , setter 130 , and controller 140 . The functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary. The transmitting unit 110 and the receiving unit 120 may be called a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and wirelessly transmitting the signal.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, higher layer information from the received signals.
  • the transmitting unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20 . Also, the transmission unit 110 transmits the setting information and the like described in the embodiment.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them from the storage device as necessary.
  • the control unit 140 performs overall control of the base station 10 including control related to signal transmission/reception, for example. It should be noted that the functional unit related to signal transmission in control unit 140 may be included in transmitting unit 110 , and the functional unit related to signal reception in control unit 140 may be included in receiving unit 120 . Also, the transmitting unit 110 and the receiving unit 120 may be called a transmitter and a receiver, respectively.
  • FIG. 19 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the functional division and the names of the functional units may be arbitrary.
  • the transmitting unit 210 and the receiving unit 220 may be called a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a higher layer signal from the received physical layer signal. Also, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the embodiment.
  • the setting unit 230 stores various types of setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads them from the storage device as necessary.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 performs overall control of the terminal 20 including control related to signal transmission/reception. It should be noted that the functional unit related to signal transmission in control unit 240 may be included in transmitting unit 210 , and the functional unit related to signal reception in control unit 240 may be included in receiving unit 220 . Also, the transmitting section 210 and the receiving section 220 may be called a transmitter and a receiver, respectively.
  • the terminal or base station of this embodiment may be configured as a terminal or base station shown in each section below. Also, the following communication methods may be implemented.
  • the control unit assumes a scheduling offset value in a range extended from a scheduling offset value corresponding to communication using a frequency band below the reference value as the scheduling offset value extended to the frequency band, A terminal according to Clause 1.
  • the control unit can select a minimum scheduling offset value used for communication using a frequency band equal to or higher than the reference value from values larger than a minimum value corresponding to communication using a frequency band lower than the reference value. do, The terminal according to any one of items 1 to 3.
  • a transmission unit that transmits a signal indicating setting of a scheduling offset value extended to communication using a frequency band equal to or higher than a reference value to a terminal; A control unit that schedules downlink data to be transmitted to the terminal or uplink data to be received from the terminal by applying the scheduling offset value extended to the frequency band, base station.
  • (Section 6) receiving from a base station a signal indicating setting of a scheduling offset value extended to communication using a frequency band equal to or higher than a reference value; Assuming that downlink data transmitted from the base station or uplink data transmitted to the base station is scheduled by applying the scheduling offset value extended to the frequency band; The method of communication performed by the terminal.
  • the scheduling offset value extended to the high frequency band can be realized by adding the offset value extended to the high frequency band to the conventional scheduling offset value.
  • the third term it is possible to realize a scheduling offset value with a range extended to the high frequency band.
  • the minimum value of the scheduling offset value used for communication using the high frequency band can be selected from values larger than the minimum value corresponding to communication using the low frequency band.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • the base station 10, the terminal 20, etc. may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 20 is a diagram illustrating an example of a hardware configuration of base station 10 and terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. good too.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the base station 10 and terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • Each function of the base station 10 and the terminal 20 is performed by the processor 1001 performing calculations and controlling communication by the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. or by controlling at least one of data reading and writing in the storage device 1002 and the auxiliary storage device 1003 .
  • the processor 1001 for example, operates an operating system and controls the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • the control unit 140 , the control unit 240 and the like described above may be implemented by the processor 1001 .
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • control unit 140 of base station 10 shown in FIG. 18 may be implemented by a control program stored in storage device 1002 and operated by processor 1001 .
  • FIG. Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from a network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the storage device 1002 can store executable programs (program code), software modules, etc. for implementing a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • the storage medium described above may be, for example, a database, server, or other suitable medium including at least one of storage device 1002 and secondary storage device 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize at least one of, for example, frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the transceiver may be physically or logically separate implementations for the transmitter and receiver.
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the terminal 20 include hardware such as microprocessors, digital signal processors (DSPs), ASICs (Application Specific Integrated Circuits), PLDs (Programmable Logic Devices), and FPGAs (Field Programmable Gate Arrays). , and part or all of each functional block may be implemented by the hardware.
  • processor 1001 may be implemented using at least one of these pieces of hardware.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, front wheels 2007, rear wheels 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021-2029. , an information service unit 2012 and a communication module 2013 .
  • Each aspect/embodiment described in the present disclosure may be applied to a communication device mounted on vehicle 2001, and may be applied to communication module 2013, for example.
  • the driving unit 2002 is configured by, for example, an engine, a motor, or a hybrid of the engine and the motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031 , a memory (ROM, RAM) 2032 and a communication port (IO port) 2033 . Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010 .
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • the signals from the various sensors 2021 to 2029 include the current signal from the current sensor 2021 that senses the current of the motor, the rotation speed signal of the front and rear wheels acquired by the rotation speed sensor 2022, and the front wheel acquired by the air pressure sensor 2023. and rear wheel air pressure signal, vehicle speed signal obtained by vehicle speed sensor 2024, acceleration signal obtained by acceleration sensor 2025, accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, brake pedal sensor 2026 obtained by There are a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service unit 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and one or more devices for controlling these devices. ECU.
  • the information service unit 2012 uses information acquired from an external device via the communication module 2013 or the like to provide passengers of the vehicle 2001 with various multimedia information and multimedia services.
  • Driving support system unit 2030 includes millimeter wave radar, LiDAR (Light Detection and Ranging), camera, positioning locator (e.g., GNSS, etc.), map information (e.g., high-definition (HD) map, automatic driving vehicle (AV) map, etc. ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, AI processors, etc., to prevent accidents and reduce the driver's driving load. and one or more ECUs for controlling these devices.
  • the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 2001 via communication ports.
  • the communication module 2013 communicates with the vehicle 2001 through the communication port 2033, the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, the axle 2009, the electronic Data is transmitted and received between the microprocessor 2031 and memory (ROM, RAM) 2032 in the control unit 2010 and the sensors 2021-29.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 2013 may be internal or external to electronic control unit 2010 .
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 receives the rotation speed signal of the front and rear wheels obtained by the rotation speed sensor 2022, the air pressure signal of the front and rear wheels obtained by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal obtained by the sensor 2027 and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 2028 are also transmitted to an external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from external devices, and displays it on the information service unit 2012 provided in the vehicle 2001 .
  • Communication module 2013 also stores various information received from external devices in memory 2032 available to microprocessor 2031 .
  • the microprocessor 2031 controls the drive unit 2002, the steering unit 2003, the accelerator pedal 2004, the brake pedal 2005, the shift lever 2006, the front wheels 2007, the rear wheels 2008, and the axle 2009 provided in the vehicle 2001.
  • sensors 2021 to 2029 and the like may be controlled.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of explanation of processing, such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are stored in random access memory (RAM), flash memory, read-only memory, respectively. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other appropriate storage medium.
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • notification of information includes physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may also be called an RRC message, for example, RRC It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • Each aspect/embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system) system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer, a decimal number)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other suitable systems, and any extensions, modifications, creations, and provisions based on these systems. It may be applied to
  • a specific operation performed by the base station 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with terminal 20 may be performed by base station 10 and other network nodes other than base station 10 (eg, but not limited to MME or S-GW).
  • base station 10 e.g, but not limited to MME or S-GW
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals, etc. described in the present disclosure may be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input/output information and the like can be overwritten, updated, or appended. The output information and the like may be deleted. The entered information and the like may be transmitted to another device.
  • the determination in the present disclosure may be performed by a value represented by 1 bit (0 or 1), may be performed by a boolean value (Boolean: true or false), or may be performed by comparing numerical values (e.g. , comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) to website, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being associated with a base station subsystem (e.g., an indoor small base station (RRH:
  • RRH indoor small base station
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems serving communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station may have the functions that the above-described user terminal has.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgement” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, reference to a first and second element does not imply that only two elements can be employed or that the first element must precede the second element in any way.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transceiver It may indicate at least one of certain filtering operations performed in the frequency domain, certain windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • TTI Transmission Time Interval
  • one slot or one minislot may be called a TTI.
  • TTI Transmission Time Interval
  • at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. may be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. may be called.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a bandwidth part) may represent a subset of contiguous common resource blocks (RBs) for a certain numerology on a certain carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 may not expect to transmit or receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be read as "BWP”.
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を基地局から受信する受信部と、前記基地局から送信されるダウンリンクデータまたは前記基地局に送信するアップリンクデータが、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングされることを想定する制御部と、を備える端末である。

Description

端末、基地局及び通信方法
 本発明は、無線通信システムにおける端末、基地局及び通信方法に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
 NRリリース17では、従来のリリース(例えば非特許文献2)よりも高い周波数帯を使用することが検討されている。例えば、52.6GHzから71GHzまでの周波数帯における、サブキャリア間隔、チャネル帯域幅等を含む適用可能なニューメロロジ、物理レイヤのデザイン、実際の無線通信において想定される障害等が検討されている。
 また、NRでは、ダウンリンクデータまたはアップリンクデータのスケジューリングのためのオフセット値の規定が、LTEから引き続き検討されている。
3GPP TS 38.300 V16.6.0(2021-06) 3GPP TS 38.306 V16.5.0(2021-06)
 NRで検討されているダウンリンクデータまたはアップリンクデータのスケジューリングのためのオフセット値の規定は、例えば52.6GHzから71GHzまでのような高周波数帯でサポートされる大きいサブキャリア間隔に対応するには範囲が狭いため、拡張する必要がある。
 本発明は上記の点に鑑みてなされたものであり、ダウンリンクデータまたはアップリンクデータのスケジューリングのためのオフセット値を高周波数帯に適用させることを目的とする。
 開示の技術によれば、基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を基地局から受信する受信部と、前記基地局から送信されるダウンリンクデータまたは前記基地局に送信するアップリンクデータが、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングされることを想定する制御部と、を備える端末が提供される。
 開示の技術によれば、ダウンリンクデータまたはアップリンクデータのスケジューリングのためのオフセット値を高周波数帯に適用させることを可能とする技術が提供される。
本発明の実施の形態に係る無線通信システムについて説明するための図である。 本発明の実施の形態における周波数レンジの例を示す図である。 スケジューリングのオフセット値について説明するための図である。 PDSCHの復号時間の規定値の一例を示す図である。 PUSCHの準備時間の規定値の一例を示す図である。 HARQ-ACK多重化タイムラインの規定値の一例を示す図である。 省電力化のための規定値の一例を示す図である。 TDRAテーブルの一例を示す図である。 省電力化のためのRRCパラメータの一例を示す図である。 省電力化のために通知される端末能力のシグナリングの一例を示す図である。 実施例1に係るスケジューリングのオフセット値について説明するための図である。 従来のスケジューリングのオフセット値の範囲の一例を示す図である。 従来の端末能力のシグナリングの一例を示す図である。 実施例3に係るスケジューリングのオフセット値の範囲の一例を示す図である。 実施例4の案1に係る端末能力の一例を示す図である。 実施例4の案2に係る端末能力の一例を示す図である。 実施例4の案3に係る端末能力の一例を示す図である。 本発明の実施の形態における基地局の機能構成の一例を示す図である。 本発明の実施の形態における端末の機能構成の一例を示す図である。 本発明の実施の形態における基地局又は端末のハードウェア構成の一例を示す図である。 本発明の実施の形態における車両の構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局又は端末から通知される無線パラメータが設定されることであってもよい。
 (システム構成)
 図1は、本発明の実施の形態に係る無線通信システムについて説明するための図である。
本発明の実施の形態に係る無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 図2は、本発明の実施の形態における周波数レンジの例を示す図である。3GPPリリース15及びリリース16のNR仕様では、例えば52.6GHz以上の周波数帯を運用することが検討されている。なお、図2に示されるように、現状運用が規定されているFR(Frequency range)1は410MHzから7.125GHzまでの周波数帯であり、SCS(Sub carrier spacing)は15、30又は60kHzであり、帯域幅は5MHzから100MHzまでである。FR2-1は24.25GHzから52.6GHzまでの周波数帯であり、SCSは60、120又は240kHzを使用し、帯域幅は50MHzから400MHzである。また、新たに運用される周波数帯であるFR2-2は、52.6GHzから71GHzまでの周波数帯である。
 当該新たに運用される周波数帯FR2-2において、ライセンスバンド及びアンライセンスバンドにおいて、64までのSSBビームがサポートされてもよい。また、イニシャルBWP(Bandwidth Part)において、SSBに適用する120kHzSCS及び初期アクセスに関する信号及びチャネルに適用する120kHzSCSがサポートされてもよい。
 120kHzSCSに加えて、480kHzSCSにおけるSSBがサポートされてもよい。当該SSBにより、MIBに含まれるCORESET(Control Resource Set)#0/Type0-PDCCHをサポートする初期アクセスが実行されてもよい。ただし、以下の制限があってもよい。例えば、同期ラスタのエントリナンバが制限されてもよい。また、480kHzSCSのSSBの場合、480kHzSCSのCORESET#0/Type0-PDCCHのみサポートされてもよい。さらに、SSB-CORESET多重パターン1(SS/PBCH block and CORESET multiplexing pattern 1)が優先されてもよい。
 120kHzSCS、480kHzSCS及び960kHzSCSのSSBを検出するANR(Automatic Neighbour Relation)及びPCI(Physical Cell Identity)を一意に特定することがサポートされてもよい。また、120kHzSCS、480kHzSCS及び960kHzSCSのSSBのMIBに含まれるCORESET#0/Type0-PDCCHがサポートされてもよい。また、SSBのSCSあたり、1つのCORESET#0/Type0-PDCCHのSCSがサポートされてもよい。例えば、{SSBのSCS,CORESET#0/Type0-PDCCHのSCS}は、{120,120}、{480,480}、{960,960}がサポートされてもよい。さらに、SSB-CORESET多重パターン1が優先されてもよい。
 図3は、スケジューリングのオフセット値について説明するための図である。K0は、スケジュールするPDCCHとスケジュールされるPDSCHとの間のオフセット値である。K1は、PDSCHと、対応するHARQ-ACKを含むPUCCHとの間のオフセット値である。K2は、スケジュールするPDCCHとスケジュールされるPUSCHとの間のオフセット値である。K0、K1およびK2の各オフセット値は、スロット単位の値として規定されている。
 従来、K0は、「PDSCH-TimeDomainResourceAllocation」項目の値として設定される。K0の値は、スロット単位で0から32までの範囲である。
 K1は、「DL-DataToUL-ACK」項目の値として設定され、DCIによる指示を介して設定された値の中から選択される。K1の値は、スロット単位で0から15までの範囲である。
 K2は、「PUSCH-TimeDomainResourceAllocation」項目の値として設定される。K2の値は、スロット単位で0から32までの範囲である。
 NRにおいて、FR2-2の周波数帯において、K0、K1およびK2の値が、それぞれスロット単位の数値として設定されることが合意されている。
 図4は、PDSCHの復号時間の規定値の一例を示す図である。N1は、PDSCHの復号時間の規定値であって、シンボル単位で規定される。サブキャリア間隔120kHz、480kHzおよび960kHzのN1の規定値が合意されている。
 図5は、PUSCHの準備時間の規定値の一例を示す図である。N2は、PUSCHの準備時間の規定値であって、シンボル単位で規定される。サブキャリア間隔120kHz、480kHzおよび960kHzのN2の規定値が合意されている。
 図6は、HARQ-ACK多重化タイムラインの規定値の一例を示す図である。N3は、HARQ-ACK多重化タイムラインの規定値であって、シンボル単位で規定される。サブキャリア間隔120kHz、480kHzおよび960kHzのN3の規定値が合意されている。
 また、NRリリース17の非地上型ネットワーク(NTN)では、k_offsetがサポートされ、以下の仕様についてすでに合意されている。
・k_offsetをK1およびK2に適用する。なお、k_offsetが適用されると、K1、K2は、それぞれK1+k_offset、K2+k_offsetがオフセット値となる。
・k_offsetはRRCにて設定される。
・k_offsetはRRCおよびMACの少なくともいずれかによって更新され得る値である。
 また、NRリリース16の拡張として、省電力化のためのクロススロットスケジューリングが規定されている。端末20には、ダウンリンクBWP(Bandwidth Part)におけるK0/CSI-RSトリガーオフセットの最小適用値と、アップリンクBWPにおけるK2の最小適用値とが設定される。
 図7は、省電力化のための規定値の一例を示す図である。上位層パラメータminimumSchedulingOffsetは、BWPの最大2つの値を示すことができる。DCIフォーマット0_1または1_1は、2つの値から適用可能な最小値に適用される値を示すことができる。
 図8は、TDRAテーブルの一例を示す図である。例えば、K0=2が適用可能な最小値であるとすると、図8に示す4から7のインデックスの値が適用可能となる。
 また、端末20は、適用可能な最小のスケジューリングオフセットよりも小さいK0/K2/CSI-RSトリガーオフセットがDCIでスケジュールまたはトリガーされないことを想定する。ただし、例えば、SI-RNTIまたはRA-RNTIでスケジュールされるPDSCH送信のような、いくつかの例外を除く。
 図9は、省電力化のためのRRCパラメータの一例を示す図である。最小のスケジューリングオフセットは、RRCパラメータとして範囲が規定されている。
 図10は、省電力化のために通知される端末能力のシグナリングの一例を示す図である。
端末20は、端末能力のシグナリングを介して、推奨する最小値K0/K2をシグナリングできる(オプション、非基本)。
 K0/K1/K2(特にK0)の従来の値の範囲は、k_offsetが適用されている場合でも、処理のタイムラインを考慮すると狭すぎる可能性がある。
 例えば、NTNで議論されているk_offsetはK0が考慮されない可能性がある。また、マルチPDSCHまたはPUSCHスケジューリングの場合、K0またはK2は、PDSCHまたはPUSCHごとに設定されるが、互いに連続しない場合もある。特に、120kHzよりも大きいサブキャリア間隔(例えば、480および960kHzの少なくともいずれか)の場合には、狭すぎる可能性がある。
 (本実施の形態の概要)
 そこで、本実施の形態では、52.6GHzから71GHzまでの高周波数帯でサポートされる大きいサブキャリア間隔(例えば120kHzより大きい)に対応するように、広い範囲のスケジューリングオフセット値を実現させる方法を示す。
 具体的には、実施例1では、スケジューリングオフセット値K0/K1/K2にオフセット値k_offsetを導入する例を示す。また、実施例2では、スケジューリングオフセット値K0/K1/K2の範囲を、例えば32より大きい値に拡張する例を示す。なお、52.6GHzは、FR2-2の高周波数帯を示す基準値の一例である。また、本実施の形態が71GHz以上の高周波数帯に適用されてもよい。
 (実施例1)
 本実施例では、スケジューリングオフセット値K0/K1/K2にオフセット値k_offsetを導入する例を示す。
 図11は、実施例1に係るスケジューリングのオフセット値について説明するための図である。オフセット値k_offsetは、スケジューリングオフセット値K0/K1/K2にそれぞれ加算して適用される。
 <オプション1>
 オフセット値k_offsetの設定方法が規定されてもよい。
 <オプション1-1>
 オフセット値k_offsetは、RRCで基地局10によって設定されていてもよい。
 <オプション1-2>
 オフセット値k_offsetは、あらかじめ仕様で定義されていてもよい。
 <オプション1-2-1>
 仕様で定義される固定値は、端末の処理能力に基づいて定義されていてもよい(例:N1/N2)。
 <オプション1-2-2>
 仕様で定義される固定値は、N1/N2のそれぞれの端末処理能力(例えば能力1または2)に応じた固定値であってもよい。
 <オプション1-3>
 オフセット値k_offsetは、MAC-CEで基地局10によって設定されてもよい。
 <オプション1-4>
 オフセット値k_offsetは、DCIで基地局10によって指定されてもよい。
 <オプション1-5>
 オフセット値k_offsetは、端末能力のシグナリングを介して端末20によって指定されてもよい。
 <オプション2>
 また、オフセット値k_offsetの更新方法が規定されてもよい。
 <オプション2-1>
 オフセット値k_offsetは、RRC設定を介して基地局10によって更新されてもよい。
 <オプション2-2>
 オフセット値k_offsetは、MAC-CEを介して基地局10によって更新されてもよい。
 <オプション2-3>
 オフセット値k_offsetは、DCIを介して基地局10によって更新されてもよい。
 上述した各オプションを組み合わせてもよい。例えば、RRCまたはMAC-CEを介して設定された候補値からMAC-CEまたはDCIを介して1つを選択してもよい。
 <オプション3>
 提案されたオフセット値とK1/K2のk_offset値との関係が規定されてもよい。この場合、導入されるオフセット値は、k_offset値と異なっていることが前提である。
 <オプション3-1>
 統一された単一の値が適用されてもよい。この場合、導入されるオフセット値は、k_offset値であってもよい。
 <オプション3-2>
 K0/K1/K2間で異なる値が適用されてもよい。
 <オプション3-2-1>
 K1/K2のk_offset値は、K0およびK1の少なくともいずれかのk_offset値と共通であってもよい。
 本実施例によれば、K0の従来の値の範囲が十分に活用されているため、柔軟なPDSCH割り当てが可能である。
 (実施例2)
 本実施例では、スケジューリングオフセット値K0/K1/K2の範囲を拡張する例を示す。
 (実施例2-1)
 スケジューリングオフセット値K0/K1/K2の範囲を32より大きい値(例えば64)に拡張してもよい。
 <オプション1>
 本実施例が適用される条件が規定されてもよい。
 <オプション1-1>
 FR2-2、すなわち52.6-71GHzの範囲の高周波数帯での動作を条件として、本実施例が適用されることとしてもよい。
 <オプション1-2>
 480および960kHzの少なくともいずれかのサブキャリア間隔であることを条件として、本実施例が適用されることとしてもよい。
 <オプション1-3>
 マルチPDSCH/PUSCHスケジューリングが設定されることを条件として、本実施例が適用されることとしてもよい。例えば、端末20は、設定されたTDRAテーブルに、複数のSLIVを含む1つ以上の行が含まれることで、当該条件を満たすと判断してもよい。
 本実施例によれば、DCIによるマルチPDSCH/PUSCHのより柔軟なスケジューリングが実現される。
 また、従来の値よりも大きいK0/K2の最小値(省電力の目的で)が必要になる場合がある。
 図12は、従来のスケジューリングのオフセット値の範囲の一例を示す図である。従来、最小のスケジューリングオフセットは、RRCパラメータとして範囲が規定され、0から16まで値を最小値として選択可能な設定となっている。
 図13は、従来の端末能力のシグナリングの一例を示す図である。端末能力のシグナリングを介して端末の推奨値を大きくする必要があるかもしれない。例えば、従来はサブキャリア間隔が120kHz以下しか想定されていない。
 そこで、以下では、実施例3として、省電力化のためにK0/K2の最小値をより大きい値から選択可能とする例を示す。また、実施例4として、端末の推奨値としてのK0/K2の最小値をより大きい値から選択可能とする例を示す。
 (実施例3)
 本実施例では、省電力化のために、K0/K2の最小値をより大きい値から選択可能とする例を示す。
 <案1>
 K0/K2の最小値としてより大きい値をサポートするようにしてもよい。
 <オプション1>
 より大きい値をサポートするための方法が規定されてもよい。
 <オプション1-1>
 図14は、実施例3に係るスケジューリングのオフセット値の範囲の一例を示す図である。図14に示されるように、スケジューリングオフセット(K0/K2)の最小値として設定されたスロット数の最大値に対して16を超える値(例えば32)をサポートしてもよい。
 <オプション2>
 特定の条件で動作している場合、maxK0-SchedulingOffset(-r16)/maxK2-SchedulingOffset(-r16)の値を再解釈してもよい。
 特定の条件はサブキャリア間隔に依存してもよい。例えば、設定されたサブキャリア間隔がXより大きい場合、maxK0-SchedulingOffset(-r16)およびmaxK2-SchedulingOffset(-r16)の少なくともいずれかは、最初に定義された値(すなわち、16)のY倍として再解釈される。
 特定の条件は、動作帯域または周波数範囲にも依存してもよい。例えば、120kHzを超えるサブキャリア間隔で動作する場合および52.6-71GHzの周波数範囲で動作する場合の少なくともいずれかの場合、maxK0-SchedulingOffset(-r16)およびmaxK2-SchedulingOffset(-r16)の少なくともいずれかは、最初に定義された値(すなわち、16)のY倍として再解釈される。
 案1によれば、端末20はマイクロスリープの時間を長くすることができ、より効率的な電力消費につながる。
 <案2>
 従来の値の範囲とk_offsetを組み合わせてもよい。
 すなわち、MinSchedulingOffsetK0で設定された値およびMinSchedulingOffsetK2で設定された値の少なくともいずれかは、次のように再解釈される。
 それぞれ、MinSchedulingOffsetK0で設定された値+k_offset/MinSchedulingOffsetK2で設定された値+k_offset
 <オプション1>
 k_offsetが何の値に基づいて取得されるかを規定してもよい。
 <オプション1-1>
 k_offsetは、実施例1で提案されているものから取得されることとしてもよい。
 <オプション1-2>
 k_offsetは、省電力専用の値から取得されることとしてもよい。
 <オプション2>
 k_offsetがどこで設定されるかを規定してもよい。
 <オプション2-1>
 k_offsetは、RRCで設定されてもよい。
 <オプション2-2>
 k_offsetは、MAC-CEで設定されてもよい。
 <オプション2-3>
 k_offsetは、DCIで指示されてもよい。
 <オプション2-4>
 オプション2-1、2-2および2-3の組み合わせでもよい。例えば、候補値がRRCで設定され、実際の値はMAC-CEまたはDCIを介して示されてもよい。
 (実施例4)
 本実施例では、端末推奨の最小値K0/K2の値の範囲を拡張する例を示す。
 <案1>
 従来の端末能力のシグナリング(FG19-4a)により大きなサブキャリア間隔の値を定義してもよい。
 図15は、実施例4の案1に係る端末能力の一例を示す図である。従来の端末能力のシグナリング(FG19-4a)にサブキャリア間隔480kHzまたは960kHzにおける端末推奨の最小値K0/K2の値の範囲が新しく追加される。
 <案2>
 従来のサブキャリア間隔と同じ値で、より大きなサブキャリア間隔のサポートを拡張してもよい。
 図16は、実施例4の案2に係る端末能力の一例を示す図である。従来の端末能力のシグナリング(FG19-4a)の従来の端末推奨の最小値K0/K2の値の範囲に相当するサブキャリア間隔に480kHzまたは960kHzが追加される。
 <案3>
 52.6-71GHzで動作する端末の支援情報レポートをサポートする新しいFGを定義してもよい。
 図17は、実施例4の案3に係る端末能力の一例を示す図である。新規の端末能力のシグナリングに、サブキャリア間隔480kHzまたは960kHzにおける端末推奨の最小値K0/K2の値の範囲が設定される。
 なお、上述した設定値は一例であり、他の値であってもよい。
 上述した各実施例は、52.6-71GHz(すなわちFR2-2)で動作する端末に適用してもよい。
 また、上述した各実施例は、480および960kHzのサブキャリア間隔で動作する端末に適用してもよい。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実行する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例のうちのいずれかの提案の機能のみを備えることとしてもよい。
 <基地局10>
 図18は、基地局10の機能構成の一例を示す図である。図18に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図18に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明した設定情報等を送信する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、信号送受信に係る制御を含む基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。
 <端末20>
 図19は、端末20の機能構成の一例を示す図である。図19に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図19に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明した設定情報等を受信する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、信号送受信に係る制御を含む端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。
 本実施の形態の端末または基地局は、下記の各項に示す端末または基地局として構成されてもよい。また、下記の通信方法が実施されてもよい。
 <本実施の形態に関する構成>
(第1項)
 基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を基地局から受信する受信部と、
 前記基地局から送信されるダウンリンクデータまたは前記基地局に送信するアップリンクデータが、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングされることを想定する制御部と、を備える、
 端末。
(第2項)
 前記制御部は、前記基準値未満の周波数帯を使用する通信に対応するスケジューリングオフセット値に、前記基準値以上の周波数帯を使用する通信に拡張されたオフセット値を加算した値を、前記周波数帯に拡張された前記スケジューリングオフセット値として想定する、
 第1項に記載の端末。
(第3項)
 前記制御部は、前記基準値未満の周波数帯を使用する通信に対応するスケジューリングオフセット値から拡張された範囲のスケジューリングオフセット値を、前記周波数帯に拡張された前記スケジューリングオフセット値として想定する、
 第1項に記載の端末。
(第4項)
 前記制御部は、前記基準値以上の周波数帯を使用する通信に使用するスケジューリングオフセット値の最小値を、前記基準値未満の周波数帯を使用する通信に対応する最小値より大きい値から選択可能とする、
 第1項から第3項のいずれか1項に記載の端末。
(第5項)
 基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を端末に送信する送信部と、
 前記端末に送信するダウンリンクデータまたは前記端末から受信するアップリンクデータを、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングする制御部と、を備える、
 基地局。
(第6項)
 基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を基地局から受信するステップと、
 前記基地局から送信されるダウンリンクデータまたは前記基地局に送信するアップリンクデータが、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングされることを想定するステップと、を備える、
 端末が実行する通信方法。
 上記構成のいずれによっても、ダウンリンクデータまたはアップリンクデータのスケジューリングのためのオフセット値を高周波数帯に適用させることを可能とする技術が提供される。第2項によれば、従来のスケジューリングオフセット値に高周波数帯に拡張されたオフセット値を加算した値で、高周波数帯に拡張されたスケジューリングオフセット値を実現させることができる。第3項によれば、高周波数帯に拡張された範囲のスケジューリングオフセット値を実現させることができる。第4項によれば、高周波数帯を使用する通信に使用するスケジューリングオフセット値の最小値を、低周波数帯を使用する通信に対応する最小値より大きい値から選択可能とすることができる。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図18及び図19)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図18に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図19に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 図21に車両2001の構成例を示す。図21に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
10A   衛星
10B   ゲートウェイ
10C   地上基地局
10D   CN
10E   飛行体
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    コアネットワーク
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)

Claims (6)

  1.  基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を基地局から受信する受信部と、
     前記基地局から送信されるダウンリンクデータまたは前記基地局に送信するアップリンクデータが、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングされることを想定する制御部と、を備える、
     端末。
  2.  前記制御部は、前記基準値未満の周波数帯を使用する通信に対応するスケジューリングオフセット値に、前記基準値以上の周波数帯を使用する通信に拡張されたオフセット値を加算した値を、前記周波数帯に拡張された前記スケジューリングオフセット値として想定する、
     請求項1に記載の端末。
  3.  前記制御部は、前記基準値未満の周波数帯を使用する通信に対応するスケジューリングオフセット値から拡張された範囲のスケジューリングオフセット値を、前記周波数帯に拡張された前記スケジューリングオフセット値として想定する、
     請求項1に記載の端末。
  4.  前記制御部は、前記基準値以上の周波数帯を使用する通信に使用するスケジューリングオフセット値の最小値を、前記基準値未満の周波数帯を使用する通信に対応する最小値より大きい値から選択可能とする、
     請求項1から3のいずれか1項に記載の端末。
  5.  基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を端末に送信する送信部と、
     前記端末に送信するダウンリンクデータまたは前記端末から受信するアップリンクデータを、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングする制御部と、を備える、
     基地局。
  6.  基準値以上の周波数帯を使用する通信に拡張されたスケジューリングオフセット値の設定を示す信号を基地局から受信するステップと、
     前記基地局から送信されるダウンリンクデータまたは前記基地局に送信するアップリンクデータが、前記周波数帯に拡張された前記スケジューリングオフセット値を適用してスケジューリングされることを想定するステップと、を備える、
     端末が実行する通信方法。
PCT/JP2021/036319 2021-09-30 2021-09-30 端末、基地局及び通信方法 WO2023053418A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/036319 WO2023053418A1 (ja) 2021-09-30 2021-09-30 端末、基地局及び通信方法
CN202180102539.6A CN117981437A (zh) 2021-09-30 2021-09-30 终端、基站及通信方法
JP2023550974A JPWO2023053418A5 (ja) 2021-09-30 端末、基地局、通信システム及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036319 WO2023053418A1 (ja) 2021-09-30 2021-09-30 端末、基地局及び通信方法

Publications (1)

Publication Number Publication Date
WO2023053418A1 true WO2023053418A1 (ja) 2023-04-06

Family

ID=85782111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036319 WO2023053418A1 (ja) 2021-09-30 2021-09-30 端末、基地局及び通信方法

Country Status (2)

Country Link
CN (1) CN117981437A (ja)
WO (1) WO2023053418A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (INTEL CORPORATION): "[95e][222] NR_RRM_Enh_RRM_Part_1", 3GPP DRAFT; R4-2009034, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20200525 - 20200605, 10 June 2020 (2020-06-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051896686 *

Also Published As

Publication number Publication date
JPWO2023053418A1 (ja) 2023-04-06
CN117981437A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2023053418A1 (ja) 端末、基地局及び通信方法
WO2023135656A1 (ja) 端末、基地局及び通信方法
WO2023135655A1 (ja) 端末、基地局及び通信方法
WO2023135654A1 (ja) 端末、基地局及び通信方法
WO2023053417A1 (ja) 端末、基地局及び通信方法
WO2023058229A1 (ja) 通信装置及び通信方法
WO2023067783A1 (ja) 端末、基地局及び通信方法
WO2023132062A1 (ja) 端末、基地局及び通信方法
WO2023026915A1 (ja) 端末及び通信方法
WO2023084717A1 (ja) 端末、基地局及び通信方法
WO2023017592A1 (ja) 端末及び通信方法
WO2023021886A1 (ja) 基地局、端末及び通信方法
WO2023053429A1 (ja) 端末及び通信方法
WO2023162748A1 (ja) 端末、基地局及び通信方法
WO2023132085A1 (ja) 端末、基地局及び通信方法
WO2023199393A1 (ja) 端末、基地局及び通信方法
WO2023199391A1 (ja) 端末、基地局及び通信方法
WO2023139942A1 (ja) 端末、基地局及び通信方法
WO2023084718A1 (ja) 端末、基地局及び通信方法
WO2023152987A1 (ja) 端末、基地局及び通信方法
WO2023148930A1 (ja) 端末、基地局及び通信方法
WO2023079654A1 (ja) 端末、基地局及び通信方法
WO2023148931A1 (ja) 端末、基地局及び通信方法
WO2023090079A1 (ja) 端末及び通信方法
WO2023053463A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550974

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180102539.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE