WO2023051509A1 - 多用户发射功率的增益档位控制方法、装置及电子设备 - Google Patents

多用户发射功率的增益档位控制方法、装置及电子设备 Download PDF

Info

Publication number
WO2023051509A1
WO2023051509A1 PCT/CN2022/121627 CN2022121627W WO2023051509A1 WO 2023051509 A1 WO2023051509 A1 WO 2023051509A1 CN 2022121627 W CN2022121627 W CN 2022121627W WO 2023051509 A1 WO2023051509 A1 WO 2023051509A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
power
gain
value
symbol
Prior art date
Application number
PCT/CN2022/121627
Other languages
English (en)
French (fr)
Inventor
王敬美
马飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023051509A1 publication Critical patent/WO2023051509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and in particular to a method, device and electronic equipment for controlling gain levels of transmission power of multiple users.
  • the existing wireless communication terminal supports single user or multi-user, its radio frequency transmission power needs to comply with the specification of the protocol. For a single-user terminal, if it does not support multi-channel simultaneous scheduling, its transmitted power at the same scheduling time and the gain level value for the radio frequency are determined. However, for terminals that support multi-channel simultaneous transmission or terminals or analog instruments that support multi-user simultaneous transmission, since their radio frequency links are shared, different channels or different users may have different transmit power and gain levels for radio frequencies.
  • the RF link can only respond to one gear value at a time. Forcibly aligning the gear values will cause the actual power of some users to jump, which will affect the quality and processing of the signal at the receiving end of the base station, and affect the normal processing of the scheduling function.
  • the present application provides a multi-user transmission power gain gear control method, device and electronic equipment, which realizes that the power between symbols of each user arriving at the base station is consistent, thereby ensuring the quality of the received signal of the base station and the correctness of the received signal processing sex.
  • An embodiment of the present application provides a gain gear control method for multi-user transmission power, including: obtaining the power and gain gear value of each antenna and each symbol of each user; summing the power, and obtaining the value according to the power sum value The actual gain gear value of each symbol; and for each user, the actual gain gear value is compared with the gain gear value, and if there is a cross gear, the digital power of the user is performed based on the actual gain gear value fix.
  • the embodiment of the present application also provides a multi-user transmission power gain gear control device, including: an acquisition module, used to acquire the power and gain gear value of each antenna and each symbol of each user; a summation module, For summing the powers, obtaining an actual gain level value of each symbol according to the power sum value; and a correction module, for each user, combining the actual gain level value with the gain level value For comparison, if a shift occurs, the digital power of the user is corrected based on the actual gain gear value.
  • an acquisition module used to acquire the power and gain gear value of each antenna and each symbol of each user
  • a summation module For summing the powers, obtaining an actual gain level value of each symbol according to the power sum value
  • a correction module for each user, combining the actual gain level value with the gain level value For comparison, if a shift occurs, the digital power of the user is corrected based on the actual gain gear value.
  • An embodiment of the present application also provides an electronic device, including: at least one processor; and a memory connected to the at least one processor in communication, wherein the memory stores information that can be executed by the at least one processor. Instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the gain gear control method of multi-user transmit power according to the present application.
  • An embodiment of the present application also provides a computer-readable storage medium, storing a computer program, and when the computer program is executed by a processor, the processor realizes the multi-user transmit power gain gear control according to the present disclosure method.
  • Fig. 1 is a basic structural composition diagram of the multi-user transmit power gain gear control device provided by the present application
  • Fig. 2 is a flow chart of the gain gear control method of multi-user transmission power provided by the present application
  • FIG. 3 is a schematic diagram of multi-user multi-channel symbol transmission provided by the present application.
  • Fig. 4 is the composition diagram of the data symbols provided by the present application.
  • FIG. 5 is a schematic structural diagram of a multi-user transmit power gain gear control device provided by the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by the present application.
  • Embodiments of the present application provide a gain gear control method for multi-user transmission power.
  • the power and gain gear values are obtained, wherein the power and gain gear values are all of each symbol of each antenna.
  • the user's power and gain notch value sum the powers to obtain the actual gain notch value for each symbol based on the power sum; and for each user, compare the actual gain notch value to the gain notch value, if If there is a step-over, the digital power will be corrected based on the actual gain gear value.
  • This application realizes that the power between symbols of each user arriving at the base station is consistent.
  • This application is mainly used in the large-capacity test scenario of wireless communication.
  • the simulated large-capacity test terminal or large-capacity test instrument it is used for the control of the transmission power and the control of the radio frequency gain gear when there are multiple users or multiple services are transmitted simultaneously in the uplink.
  • the technology of this application can also be used when the transmission power and radio frequency gain range of multiple antennas are different.
  • a set of radio frequency devices is connected to a base station cell, and the terminal BBU (Building Base band Unite, indoor baseband processing unit) side maintains all users accessing this cell, and the time of sending and receiving signals of all users It is synchronous to avoid interference between sending and receiving signals between users.
  • BBU Building Base band Unite, indoor baseband processing unit
  • Figure 1 The basic structural composition of this application is shown in Figure 1, mainly including radio frequency hardware and BBU software, wherein the radio frequency hardware part includes a complete radio frequency processing link.
  • Figure 1 mainly highlights the important optimized design parts of this application, and supports two-antenna power transmission as an example, but this application does not limit the number of supported transmission antennas.
  • the BBU software control part is used in the multi-user terminal BBU to realize multi-user access management, and complete the control of each user's transmission power and the calculation and correction of the gain gear value.
  • it can be divided into scheduling control module and physical layer support module.
  • the scheduling control module calculates the transmit power of each user according to the agreement, and converts it to the power and gain gear value of each antenna according to the number of antennas it supports; the power and gain gear value of each antenna of each user are corrected Send it to the physical layer support module through the general interface; the physical layer support module applies the transmission power to the transmission channel of each user according to the protocol flow.
  • the radio frequency processing link receives the baseband data and gain level value sent by the user terminal BBU, and independently processes the data and gain level value of each antenna.
  • the data processed by the intermediate frequency processor is converted into an analog signal after being processed by each independent transmission channel of the DAC (Digital to analog converter, digital-to-analog converter), and finally the wireless signal is passed through an independent PA (Power Amplifier, power amplifier). send it out.
  • the intermediate frequency processor transparently transmits the processed data gain gear value to the DAC and PA according to the symbol.
  • the implementation details of the multi-user transmission power gain level control method of the present application are described in detail below. The following content is only for the convenience of understanding the implementation details of the solution, and is not necessary for implementing the solution.
  • the specific process is shown in FIG. 2 , and may include steps 201 to 203 as follows.
  • step 201 the power and gain gear values of each antenna and each symbol of each user are acquired.
  • the user terminal BBU schedules the control module, and the control module calculates the power and gain level values of each transmitting user according to the protocol.
  • Gain gears can be divided according to the user's output power, and each gear corresponds to an output power range.
  • the user terminal BBU calculates the power of each user according to the protocol standard, and then obtains the gain level value according to the preset corresponding relationship between the power and the gain level value.
  • the gain gear values of different user terminals may be different, and each gain gear value corresponds to a fixed gain and corresponds to a certain dynamic range of digital power.
  • the user terminal BBU converts the user's power and gain level values to each antenna according to the number of antennas supported by the user. For example, when the number of user antennas is 1, the power of the user is taken as the power of each symbol of each antenna; The number N is converted to each antenna to obtain the power of each symbol of each antenna.
  • the power of user i is P ue (i)
  • the power of user i is decomposed into digital power P bbu (i) and gain gear value P rf (i)
  • the gain corresponding to the gain gear value P rf (i) is G fix (i)
  • the gain level value corresponding to the current power can be quickly obtained after the user's power is calculated through the protocol.
  • step 202 the power is summed, and the actual gain level value of each symbol is obtained according to the power sum value.
  • the user terminal BBU sums the power of all users of each symbol of each antenna, and converts the actual radio frequency gain level value of each symbol according to the calculated power sum of each symbol.
  • the user terminal BBU sums the powers of all users of symbol j, and according to The actual gain gear value P rf (j) corresponding to symbol j is calculated.
  • this step by calculating the actual gain level value of each symbol, it is convenient for the subsequent user terminal BBU to correct the user's digital power in time according to the actual gain level value, so as to avoid affecting the normal operation of the scheduling function.
  • step 203 for each user, the actual gain level value is compared with the gain level value, and if a step-over occurs, the digital power of the user is corrected based on the actual gain level value.
  • cross gear refers to the situation that the actual gain gear and the gain gear are in different gears.
  • the user terminal BBU compares the gain level value converted by the user to each antenna with the actual gain level value calculated according to the power sum value of the symbol, if the gain level value In the event of cross-level, that is, the gain level value converted to each antenna by the transmitting user is not in the same level as the actual gain level value of the corresponding symbol, then the number of the transmitting user will be adjusted according to the actual gain level value of the symbol. Power is corrected.
  • the gain gear value of symbol j is straddled, the gain gear values of all end users in symbol j are set to P rf (j), and the gain gear value of symbol j corresponds to a fixed
  • the gain is G fix (j).
  • P ue (i) P' bbu (i)+G fix (j)
  • the corrected digital power can be obtained as P' bbu (i).
  • P ue (i) represents the power of user i; when the number of user antennas is N (N is an integer greater than 1), P ue (i) represents the power of user i converted to power of the root antenna.
  • the total power of each symbol and the actual gain gear value may be different, through the above calculation and correction processing steps, the consistency of the power of all symbols of each antenna per antenna in a scheduling time slot for each user can be achieved, without power jumps.
  • the change and loss further avoids affecting the quality and processing of the signal at the receiving end of the base station, affecting the normal processing of the scheduling function, and more realistically simulating the controllable transmission power function of each user.
  • the user terminal BBU scheduling control module sends the corrected digital power and gain level value to the physical layer support module; the physical layer support module After obtaining the corrected digital power and gain gear value, the power of multi-user and multi-channel is processed through the physical layer, and the baseband data and gain gear value of each symbol are obtained, and the baseband data of each symbol and the gain gear value are sent to the radio frequency processing link; the radio frequency processing link independently processes the baseband data and adjusts the gain gear for each channel.
  • the radio frequency processing link includes: an intermediate frequency processor, a DAC linked with the intermediate frequency processor, and a PA linked with the DAC.
  • the radio frequency processing link receives the baseband data and the gain gear value sent by the user terminal BBU, and the intermediate frequency processor independently processes the baseband data and the gain gear value, and sends the processed data to the DAC; the DAC Each independent transmission channel of the system processes the data and converts the data into an analog signal; finally, the wireless signal is sent out through an independent PA.
  • a scenario in which four users simultaneously transmit power is taken as an example, wherein in this example, the multi-user device divides radio frequency gain levels into four levels, as shown in Table 1 for details.
  • the output power ranges corresponding to two adjacent gears have overlapping intervals. For example, between 1st gear and 2nd gears is an overlapping range between 0-6dBm.
  • PUSCH1 which is sent by two antennas, occupies 14 symbols, and the gain level is 2
  • user 2 sends PUSCH2, which is sent by two antennas, occupies 13 symbols, and the gain level is 2
  • user 3 sends PUCCH, and antenna 0 sends , occupies 12 symbols, and the gain gear is 2 gears
  • user 4 transmits PRACH, antenna 0 transmits, occupies the middle 12 symbols, and the gain gear is 2 gears.
  • this application optimizes the design of the user terminal software and hardware.
  • the method provided by this embodiment realizes that the same set of devices can support simultaneous transmission of multiple users and multiple channels, and realize the sharing of radio frequency links. , and will not have a negative impact on the user's expected power and signal quality, ensuring that the power between symbols of each user arriving at the base station is consistent, there will be no power jump between symbols for a single antenna, and there will be no antenna power for users transmitting from multiple antennas
  • the power jump between the base stations ensures the quality of the signal received by the base station and the correctness of processing, and more realistically simulates the transmission function of multiple users.
  • the tail signal of each OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol is copied to the head, that is, the CP (Cyclic Prefix, cyclic prefix).
  • a symbol includes an inserted CP to serve as a guard interval between symbols, and a composition diagram of a data symbol is shown in FIG. 4 .
  • the radio frequency processor implements symbol-level transmit power control by completing the adjustment of the gain gear in time at the CP part of each symbol. Using the guard interval of the inserted CP will not cause damage to the data of the adjacent complete symbols, and can also provide sufficient switching response time for gain switching of subsequent analog circuits, thereby protecting the integrity of the data signal.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this application ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this application.
  • the embodiment of the present application also provides a multi-user transmit power gain gear control device, as shown in FIG. 5 , including: an acquisition module 501 , a summation module 502 and a correction module 503 .
  • the obtaining module 501 is used to obtain the power and gain gear value of each symbol of each antenna of each user; the summation module 502 is used to sum the power, and obtain the actual value of each symbol according to the power sum value Gain gear value; the correction module 503 is used to compare the actual gain gear value with the gain gear value for each user. The digital power is corrected.
  • the obtaining module 501 calculates the power and gain level value of each user according to the agreement, and then obtains the gain level value according to the preset correspondence between power and gain level value.
  • the gain gear values of different user terminals may be different, and each gain gear value corresponds to a fixed gain and corresponds to a certain dynamic range of digital power.
  • the acquisition module 501 converts the user's power and gain gear values to each antenna for each user according to the number of antennas supported by the user. For example, when the number of user antennas is 1, the power of the user is taken as the power of each symbol of each antenna; The number N is converted to each antenna to obtain the power of each symbol of each antenna.
  • the power of user i is P ue (i)
  • the power of user i is decomposed into digital power P bbu (i) and gain gear value P rf (i)
  • the gain corresponding to the gain gear value P rf (i) is G fix (i)
  • the acquisition module 501 can quickly obtain the gain gear value corresponding to the current power after calculating the user's power through the protocol through the preset corresponding relationship between the user's power and the gain gear value.
  • the summing module 502 sums the powers of all users of symbol j, and according to The actual gain gear value P rf (j) corresponding to symbol j is calculated.
  • the summation module 502 calculates the actual gain level value of each symbol, which is convenient for other subsequent modules to correct the user's digital power in time according to the actual gain level value, so as to avoid affecting the normal operation of the scheduling function.
  • the correction module 503 sets the gain gear values of all end users in symbol j to P rf (j), and the gain gear value of symbol j corresponds to The fixed gain of is G fix (j).
  • the corrected digital power can be obtained as P' bbu (i).
  • P ue (i) represents the power of user i; when the number of user antennas is N (N is an integer greater than 1), P ue (i) represents the power of user i converted to power of the root antenna.
  • the consistency of the power of all symbols of each antenna in each user within a scheduling time slot can be achieved, without power jumps and losses, and further avoiding affecting the quality and quality of signals at the receiving end of the base station.
  • the processing affects the normal processing of the scheduling function, and at the same time more realistically simulates the controllable transmit power function of each user.
  • the correction module 503 after the correction module 503 corrects the user's digital power based on the actual gain gear value, the correction module 503 sends the corrected digital power and gain gear value to the physical layer support module; After obtaining the corrected digital power and gain gear value, the power of multi-user and multi-channel is processed through the physical layer, and the baseband data and gain gear value of each symbol are obtained, and the baseband data and the gain gear value of each symbol are combined
  • the gain gear value is sent to the radio frequency processing link; the radio frequency processing link independently processes the baseband data and adjusts the gain gear for each channel.
  • the radio frequency processing link includes: an intermediate frequency processor, a DAC linked with the intermediate frequency processor, and a PA linked with the DAC.
  • the device provided by the embodiment of the present application realizes that the same device can support simultaneous transmission of multiple users and multiple channels, realize the sharing of radio frequency links, and will not have a negative impact on the user's expected power and signal quality, ensuring that each user can reach
  • the power between symbols of the base station is consistent, and there will be no power jump between symbols for a single antenna, and no power jump between antennas for users transmitting from multiple antennas, thus ensuring the quality of the received signal and the correctness of processing by the base station.
  • this embodiment is a device embodiment corresponding to the above-mentioned embodiment of the gain gear control method of multi-user transmit power, and this embodiment can be implemented in cooperation with the above-mentioned embodiment of the gain gear control method of multi-user transmit power.
  • the relevant technical details mentioned in the above embodiment of the gain gear control method for multi-user transmit power are still valid in this embodiment, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this implementation manner can also be applied to the above embodiment of the method for controlling the gain level of the transmit power of multiple users.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple Composition of physical units.
  • units that are not closely related to solving the technical problems raised by this application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • An embodiment of the present application also provides an electronic device, as shown in FIG. 6 , including at least one processor 601 ; and a memory 602 communicatively connected to the at least one processor 601 .
  • the memory 602 stores instructions that can be executed by the at least one processor 601, and the instructions are executed by the at least one processor 601, so that the at least one processor can perform the above-mentioned gain gear control of the multi-user transmit power method.
  • the memory 602 and the processor 601 are connected by a bus.
  • the bus may include any number of interconnected buses and bridges.
  • the bus connects one or more processors 601 and various circuits of the memory 602 together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • Processor 601 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management, and other control functions. And the memory 602 may be used to store data used by the processor 601 when performing operations.
  • Embodiments of the present application also provide a computer-readable storage medium storing a computer program.
  • the processor is made to implement the above method embodiments.
  • a device which can be A single chip microcomputer, a chip, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本申请公开了一种多用户发射功率的增益档位控制方法、装置及电子设备,所述方法包括:获取各用户的每个天线每个符号的功率与增益档位值;对所述功率求和,根据功率和值获取每个符号的实际增益档位值;以及针对每个用户,将所述实际增益档位值与所述增益档位值进行对比,若出现跨档,则基于所述实际增益档位值对所述用户的数字功率进行修正。

Description

多用户发射功率的增益档位控制方法、装置及电子设备 技术领域
本申请涉及通信领域,尤其涉及多用户发射功率的增益档位控制方法、装置及电子设备。
背景技术
在无线通信领域,用户终端和基站是伴生的。每一代符合通信标准的商用设备都需要经过大容量场景的测试验证。因此对可以支持或者模拟大量用户的测试仪表或者测试终端有很强的测试需求。同时对大容量终端的易用性和模拟功能的真实性也提出了很高的挑战。
已知目前LTE(Long Term Evolution,长期演进技术)大容量测试,和支持5G NR(New Radio,新空口)大容量测试的设备或者仪表,使用的策略主要包括:大量商用终端的堆叠和集中控制;或者服务器+大量板卡模拟大量终端用户功能。前者的成本高,扩展性较差,难以快速应对协议功能的变更;而后者属于模拟仪表,在模拟功能真实性方面有一定缺陷。
现有的无线通信终端不论是支持单用户的还是支持多用户的,其射频发射功率都需要符合协议的规范。支持单用户的终端,如果不支持多信道同时调度,其在同一调度时刻发送的功率和给射频的增益档位值是确定的。而支持多信道同发的终端或者支持多用户同发的终端或模拟仪表,由于其射频链路是共享的,而不同信道或者不同用户,其发射功率和给射频的增益档位值可能不同,射频链路同一时刻只能响应一个档位值,强行将档位值拉齐,会导致部分用户的实际功率出现跳变,从而影响基站接收端信号的质量和处理,影响调度功能的正常处理。
发明内容
本申请提供一种多用户发射功率的增益档位控制方法、装置及电子设备,实现了各用户到达基站的符号间功率是一致的,从而保证 了基站接收信号的质量,以及接收信号处理的正确性。
本申请的实施例提供了一种多用户发射功率的增益档位控制方法,包括:获取各用户的每个天线每个符号的功率与增益档位值;对功率求和,根据功率和值获取每个符号的实际增益档位值;以及针对每个用户,将实际增益档位值与增益档位值进行对比,若出现跨档,则基于实际增益档位值对所述用户的数字功率进行修正。
本申请的实施例还提供了一种多用户发射功率的增益档位控制装置,包括:获取模块,用于获取各用户的每个天线每个符号的功率与增益档位值;求和模块,用于对所述功率求和,根据功率和值获取每个符号的实际增益档位值;以及修正模块,用于针对每个用户,将所述实际增益档位值与所述增益档位值进行对比,若出现跨档,则基于所述实际增益档位值对所述用户的数字功率进行修正。
本申请的实施例还提供了一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行根据本申请的多用户发射功率的增益档位控制方法。
本申请的实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器实现根据本公开的多用户发射功率的增益档位控制方法。
附图说明
图1是本申请提供的多用户发射功率的增益档位控制装置的基本结构组成图;
图2是本申请提供的多用户发射功率的增益档位控制方法的流程图;
图3是本申请提供的多用户多信道的符号发送示意图;
图4是本申请提供的数据符号组成图;
图5是本申请提供的多用户发射功率的增益档位控制装置的结构示意图;以及
图6是本申请提供的电子设备结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的实施例提供一种多用户发射功率的增益档位控制方法,在本实施例中,获取功率与增益档位值,其中,功率与增益档位值是每个天线每个符号的所有用户的功率与增益档位值;对功率求和,根据功率和值获取每个符号的实际增益档位值;以及针对每个用户,将实际增益档位值与增益档位值进行对比,若出现跨档,则基于实际增益档位值对数字功率进行修正。本申请实现了各用户到达基站的符号间功率是一致的。
本申请主要应用于无线通信的大容量测试场景,在模拟大容量测试终端或者大容量测试仪表中,用于上行存在多用户或者多种业务同时发射时的发射功率控制和射频增益档位的控制。对于单用户支持多天线发射的终端,当多个天线发射功率和射频增益档位值不同时,也可以使用本申请的技术。一般地,使用本申请进行大容量测试时,一套射频装置对接一个基站小区,终端BBU(Building Base band Unite,室内基带处理单元)侧维护接入此小区的所有用户,所有用户的收发信号时刻是同步的,避免用户间收发信号之间的干扰。
本申请的基本结构组成如图1所示,主要包括射频硬件和BBU软件,其中,射频硬件部分包括完整的射频处理链路。图1中主要突出本申请重要的优化设计部分,并以支持两天线功率发送为例,但本申请对支持的发送天线数不做限定。
BBU软件控制部分用于多用户终端BBU,以实现多用户的接入管理,并完成每个用户发送功率的控制以及增益档位值的计算修正。实 现中,可以分为调度控制模块和物理层支持模块。调度控制模块根据协议计算每个用户的发射功率,并根据其支持的天线数目,折算到每个天线的功率和增益档位值;每个用户每个天线的功率和增益档位值被修正后通过通用接口发送给物理层支持模块;物理层支持模块根据协议流程,将发射功率作用到各用户的发射信道中。
在射频硬件中,射频处理链路接受用户终端BBU发送过来的基带数据和增益档位值,并对每条天线的数据和增益档位值独立处理。经中频处理器处理过的数据,经过DAC(Digital to analog converter,数模转换器)的各个独立发射通道的处理后转换成模拟信号,最后通过独立的PA(Power Amplifier,功率放大器)将无线信号发送出去。中频处理器按符号将处理过的数据增益档位值透传给DAC和PA,这两部分电路在设计中支持独立的通道配置,可以根据中频处理器传递的符号级的增益档位控制信号完成实时的增益设置。
下面对本申请的多用户发射功率的增益档位控制方法的实现细节进行具体的说明,以下内容仅为方便理解本方案的实现细节,并非实施本方案的必须。具体流程如图2所示,可包括如下步骤201至203。
在步骤201中,获取各用户的每个天线每个符号的功率与增益档位值。
具体地说,用户终端BBU调度控制模块,控制模块根据协议计算每个发射用户的功率和增益档位值。可以根据用户的输出功率划分增益档位,每一个档位对应一个输出功率范围。
在一个例子中,用户终端BBU根据协议标准计算每位用户的功率,然后根据预设的功率与增益档位值的对应关系获取增益档位值。不同用户终端的增益档位值可以不同,每一个增益档位值对应一个固定的增益,且对应一定动态范围的数字功率。
在一个例子中,在计算出用户的功率和增益档位值之后,针对每一个用户,用户终端BBU根据用户支持的天线数目,将用户的功率和增益档位值折算到每一个天线上。例如,在用户天线数为1的情况下,将用户的功率作为每个天线每个符号的功率;在用户天线数为N (N为大于1的整数)的情况下,将用户的功率根据天线数目N折算到每个天线上,得到每个天线每个符号的功率。
在一个例子中,在用户天线数为1的情况下,用户i的功率为P ue(i),将用户i的功率分解为数字功率P bbu(i)和增益档位值P rf(i),其中,与增益档位值P rf(i)对应的增益为G fix(i),上述用户的功率、数字功率以及增益的关系用公式表示为:P ue(i)=P bbu(i)+G fix(i)。
在本步骤中,通过提前预设的用户的功率与增益档位值的对应关系,可以在通过协议计算出用户的功率之后,快速的得出当前功率对应的增益档位值。
在步骤202中,对功率求和,根据功率和值获取每个符号的实际增益档位值。
具体地说,用户终端BBU对每个天线的每个符号的所有用户的功率求和,并根据求出的每个符号的功率和,折算出每个符号的实际射频增益档位值。
在一个例子中,用户终端BBU对符号j的所有用户的功率求和,
Figure PCTCN2022121627-appb-000001
并根据
Figure PCTCN2022121627-appb-000002
计算出符号j对应的实际增益档位值P rf(j)。
在本步骤中,通过计算得出每个符号的实际增益档位值,便于后续用户终端BBU及时根据实际增益档位值对用户的数字功率进行修正,避免影响调度功能的正常运行。
在步骤203中,针对每个用户,将实际增益档位值与增益档位值进行对比,若出现跨档,则基于所述实际增益档位值对用户的数字功率进行修正。在本申请中,“跨档”是指出现实际增益档位与增益档位处于不同档位的情况。
具体地说,针对每一个发射用户,用户终端BBU将用户折算到每个天线上的增益档位值,与根据符号的功率和值折算出的实际增益档位值进行比较,若增益档位值出现跨档,即,发射用户折算到每一个天线上的增益档位值与其对应的符号的实际增益档位值不在同一档位上,则根据该符号的实际增益档位值对发射用户的数字功率进行修正。
在一个例子中,若符号j的增益档位值发生了跨档,则将符号j中所有终端用户的增益档位值设置为P rf(j),符号j的增益档位值对应的固定的增益为G fix(j)。根据公式P ue(i)=P' bbu(i)+G fix(j),则可以得出修正后的数字功率为P' bbu(i)。在用户天线数为1的情况下,P ue(i)表示用户i的功率;在用户天线数为N(N为大于1的整数)的情况下,P ue(i)表示用户i折算到每根天线的功率。
在一个例子中,符号X原档位为1档,其对应的固定增益为30dBm,符号X跨档到2档,其对应的固定增益为20dBm,为了保证实际出口功率不变,即,P ue(i)不变,则根据公式P ue(i)=P' bbu(i)+G fix(x)可知,将1档对应的数字功率降低10dBm即可得出修正后的数字功率P' bbu(i)。
虽然每个符号的总功率和实际增益档位值可能不同,但通过上述计算和修正处理步骤,可以实现每个用户在一个调度时隙内每天线所有符号功率的一致性,不产生功率的跳变和损失,进一步避免了影响基站接收端信号的质量和处理,影响调度功能的正常处理,同时更真实的模拟出每个用户的可控发射功率功能。
在一个例子中,在基于实际增益档位值对用户的数字功率进行修正之后,用户终端BBU调度控制模块,将修正后的数字功率和增益档位值发送给物理层支持模块;物理层支持模块在获取到修正后的数字功率和增益档位值后,通过物理层对多用户多信道的功率进行处理,获取到每个符号的基带数据和增益档位值,并将每个符号的基带数据和增益档位值发送给射频处理链路;射频处理链路对各个通道独立进行基带数据的处理和增益档位的调整。射频处理链路包括:中频处理器、与中频处理器链接的DAC、以及与所述DAC链接的PA。
在一个例子中,射频处理链路接收用户终端BBU发送过来的基带数据和增益档位值,中频处理器对基带数据和增益档位值独立进行处理,并将处理后的数据发送给DAC;DAC的各个独立的发射通道对数据进行处理,将数据转换成模拟信号;最后通过独立的PA将无线信号发送出去。
为了使本实施例提供的方法步骤更加清晰,接下来通过一个具体的例子对本实施例方法进行具体的说明。
在一个例子中,以一个四位用户同时发射功率的场景作为示例,其中,在本例子中多用户装置将射频增益档位分为四档,具体如表1所示。相邻两个档位对应的输出功率范围有重叠区间,例如1档和2档之间在0-6dBm之间是重叠区间,对用户的功率进行调整时,进入功率重叠区间,优先使用历史档位值,只有跨过功率重叠区间进入真正的档位(即,该档位独有的输出功率)区间才会调整档位值。
表1
Figure PCTCN2022121627-appb-000003
在某一调度时隙,四位用户同时发调度,每个用户的不同信道占用的符号位置、功率和增益档位如图3所示。用户1发送PUSCH1,两天线发送,占用14个符号,增益档位为2档;用户2发送PUSCH2,两天线发送,占用13个符号,增益档位为2档;用户3发送PUCCH,天线0发送,占用12个符号,增益档位为2档;用户4发送PRACH,天线0发送,占用中间12个符号,增益档位为2档。
由上述内容可知,四位用户都处于2档功率区间,每位用户的发射信道占用的符号位置和符号数目都不相同,当对每个符号的所有用户的功率求和后,可以得出:因为在天线0中,符号1至符号11有四位用户重叠,所以天线0中的符号1至符号11跨到了1档位,其他几个符号继续保持在2档区间。
由表1可知,在2档区间G fix(i)为20dBm,在1档区间,G fix(i)为34dBm。由于射频增益提高了14dBm,且用户的输出功率P ue、增益G fix以及数字功率P bbu的关系可以由如下公式表示:P ue(i)=P bbu(i)+G fix(i),所以需要对天线0中的符号1至符号11的四位用户的数字功率进行修正,即,四位用户的数字功率相应降低14dBm,来保证实际出口功率保持不变。其他符号由于并未改变增益档位区间,符号的数字功率和增益档位值不需要修正。
本申请相较于现有技术,从用户终端的软件、硬件两方面进行 优化设计,本实施例提供的方法实现了同一套装置可以支持多用户、多信道的同时发射,实现射频链路的共享,并且不会对用户的期望功率和信号质量产生负面影响,保证了各用户到达基站的符号间功率是一致的,单天线不会出现符号间功率的跳变,多天线发射的用户不出现天线间功率的跳变,从而保证了基站接收信号的质量和处理的正确性,更真实模拟多用户的发射功能。
另外,在LTE和5G NR协议中,为了避免符号间干扰,会将每个OFDM(Orthogonal Frequency Division Mu ltiplexing,正交频分复用)符号的尾部信号复制到头部,即,***CP(Cyclic Prefix,循环前缀)。在本申请的实施例中,符号包括***的CP,来起到符号间保护间隔的作用,数据符号的组成图如图4所示。射频处理器通过在每个符号的CP部分及时完成增益档位的调整,来实现符号级的发射功率控制。利用***的CP的保护间隔,不会对紧邻的完整符号的数据造成破坏,还可以给予充分的切换响应时间,用于后续模拟电路的增益切换,保护了数据信号的完整性。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本申请的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在本申请的保护范围内。
本申请实施例还提供了一种多用户发射功率的增益档位控制装置,如图5所示,包括:获取模块501、求和模块502以及修正模块503。
具体地说,获取模块501用于获取各用户的每个天线每个符号的功率与增益档位值;求和模块502用于对所述功率求和,根据功率和值获取每个符号的实际增益档位值;修正模块503,用于针对每个用户,将所述实际增益档位值与所述增益档位值进行对比,若出现跨档,则基于所述实际增益档位值对用户的数字功率进行修正。
在一个例子中,获取模块501根据协议计算每位用户的功率和增益档位值,然后根据预设的功率与增益档位值的对应关系获取增益 档位值。不同用户终端的增益档位值可以不同,每一个增益档位值对应一个固定的增益,且对应一定动态范围的数字功率。
在一个例子中,获取模块501在计算出用户的功率和增益档位值之后,针对每一个用户,根据用户支持的天线数目,将用户的功率和增益档位值折算到每一个天线上。例如,在用户天线数为1的情况下,将用户的功率作为每个天线每个符号的功率;在用户天线数为N(N为大于1的整数)的情况下,将用户的功率根据天线数目N折算到每个天线上,得到每个天线每个符号的功率。
在一个例子中,在用户天线数为1的情况下,用户i的功率为P ue(i),将用户i的功率分解为数字功率P bbu(i)和增益档位值P rf(i),其中,与增益档位值P rf(i)对应的增益为G fix(i),上述用户的功率、数字功率以及增益的关系用公式表示为:P ue(i)=P bbu(i)+G fix(i)。
获取模块501通过提前预设的用户的功率与增益档位值的对应关系,可以在通过协议计算出用户的功率之后,快速的得出当前功率对应的增益档位值。
在一个例子中,求和模块502对符号j的所有用户的功率求和,
Figure PCTCN2022121627-appb-000004
并根据
Figure PCTCN2022121627-appb-000005
计算出符号j对应的实际增益档位值P rf(j)。
求和模块502通过计算得出每个符号的实际增益档位值,便于后续其它模块及时根据实际增益档位值对用户的数字功率进行修正,避免影响调度功能的正常运行。
在一个例子中,若符号j的增益档位值发生了跨档,则修正模块503将符号j中所有终端用户的增益档位值设置为P rf(j),符号j的增益档位值对应的固定的增益为G fix(j)。根据公式P ue(i)=P' bbu(i)+G fix(j),则可以得出修正后的数字功率为P' bbu(i)。在用户天线数为1的情况下,P ue(i)表示用户i的功率;在用户天线数为N(N为大于1的整数)的情况下,P ue(i)表示用户i折算到每根天线的功率。
在一个例子中,符号X原档位为1档,其对应的固定增益为30dBm,符号X跨档到2档,其对应的固定增益为20dBm,为了保证实际出口 功率不变,即,P ue(i)不变,则根据公式P ue(i)=P' bbu(i)+G fix(x)可知,将1档对应的数字功率降低10dBm即可得出修正后的数字功率P' bbu(i)。
通过上述各模块的计算和修正处理,可以实现每个用户在一个调度时隙内每天线所有符号功率的一致性,不产生功率的跳变和损失,进一步避免了影响基站接收端信号的质量和处理,影响调度功能的正常处理,同时更真实的模拟出每个用户的可控发射功率功能。
在一个例子中,在修正模块503基于实际增益档位值对用户的数字功率进行修正之后,修正模块503将修正后的数字功率和增益档位值发送给物理层支持模块;物理层支持模块在获取到修正后的数字功率和增益档位值后,通过物理层对多用户多信道的功率进行处理,获取到每个符号的基带数据和增益档位值,并将每个符号的基带数据和增益档位值发送给射频处理链路;射频处理链路对各个通道独立进行基带数据的处理和增益档位的调整。射频处理链路包括:中频处理器、与中频处理器链接的DAC、以及与所述DAC链接的PA。
本申请实施例提供的装置实现了同一套装置可以支持多用户、多信道的同时发射,实现射频链路的共享,并且不会对用户的期望功率和信号质量产生负面影响,保证了各用户到达基站的符号间功率是一致的,单天线不会出现符号间功率的跳变,多天线发射的用户不出现天线间功率的跳变,从而保证了基站接收信号的质量和处理的正确性,更真实模拟多用户的发射功能。
不难发现,本实施方式为上述多用户发射功率的增益档位控制方法实施例相对应的装置实施例,本实施方式可与上述多用户发射功率的增益档位控制方法实施例互相配合实施。上述多用户发射功率的增益档位控制方法实施例提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上述多用户发射功率的增益档位控制方法实施例中。
需要注意的是,本申请上述实施方式中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此 外,为了突出本申请的创新部分,本实施方式中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施方式中不存在其它的单元。
本申请的实施例还提供一种电子设备,如图6所示,包括至少一个处理器601;以及与所述至少一个处理器601通信连接的存储器602。存储器602存储有可被所述至少一个处理器601执行的指令,所述指令被所述至少一个处理器601执行,以使所述至少一个处理器能够执行上述多用户发射功率的增益档位控制方法。
存储器602和处理器601采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器601和存储器602的各种电路连接在一起。总线还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器601负责管理总线和通常的处理,还可以提供各种功能,包括定时,***接口,电压调节、电源管理以及其他控制功能。而存储器602可以被用于存储处理器601在执行操作时所使用的数据。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请的实施例还提供一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时,使得处理器实现上述方法实施例。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部 或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
上述实施例是提供给本领域普通技术人员来实现和使用本申请的,本领域普通技术人员可以在脱离本申请的发明思想的情况下,对上述实施例做出种种修改或变化,因而本申请的保护范围并不被上述实施例所限,而应该符合权利要求书所提到的创新性特征的最大范围。

Claims (10)

  1. 一种多用户发射功率的增益档位控制方法,包括:
    获取各用户的每个天线每个符号的功率与增益档位值;
    对所述功率求和,根据功率和值获取每个符号的实际增益档位值;以及
    针对每个用户,将所述实际增益档位值与所述增益档位值进行对比,若出现跨档,则基于所述实际增益档位值对所述用户的数字功率进行修正。
  2. 根据权利要求1所述的多用户发射功率的增益档位控制方法,其中,获取各用户的每个天线每个符号的功率与增益档位值包括:
    根据协议标准计算每个用户的功率;
    在用户天线数为1的情况下,将所述用户的功率作为所述每个天线每个符号的功率;
    在用户天线数为N的情况下,将所述用户的功率根据所述N折算到每个天线,得到所述每个天线每个符号的功率,其中,N为大于1的整数;以及
    根据所述每个天线每个符号的功率获取所述增益档位值。
  3. 根据权利要求2所述的多用户发射功率的增益档位控制方法,其中,根据所述每个天线每个符号的功率获取所述增益档位值包括:
    根据预设的功率与增益档位值的对应关系,获取所述增益档位值。
  4. 根据权利要求1所述的多用户发射功率的增益档位控制方法,其中,基于所述实际增益档位值对所述用户的数字功率进行修正包括:根据以下公式对所述用户的数字功率进行修正:
    P ue(i)=P' bbu(i)+G fix(j);
    其中,G fix(j)表示符号j的实际增益档位值对应的增益,P' bbu(i) 表示第i个用户修正后的数字功率,在用户天线数为1的情况下,P ue(i)表示第i个用户的功率,在用户天线数为N的情况下,P ue(i)表示所述第i个用户折算到每根天线的功率,N为大于1的整数。
  5. 根据权利要求1所述的多用户发射功率的增益档位控制方法,其中,在基于所述实际增益档位值对所述用户的数字功率进行修正之后,所述方法还包括:
    在物理层对多用户多信道的功率进行处理,获取到每个符号的基带数据和增益档位值;以及
    通过射频处理链路根据所述基带数据和所述增益档位值对各个通道独立进行基带数据的处理和增益档位的调整。
  6. 根据权利要求5所述的多用户发射功率的增益档位控制方法,其中,所述射频处理链路包括:中频处理器、与所述中频处理器连接的数模转换器DAC、以及与所述DAC连接的功率放大器PA。
  7. 根据权利要求1至6中任一项所述的多用户发射功率的增益档位控制方法,其中,所述符号包括***的循环前缀CP。
  8. 一种多用户发射功率的增益档位控制装置,包括:
    获取模块,用于获取各用户的每个天线每个符号的功率与增益档位值;
    求和模块,用于对所述功率求和,根据功率和值获取每个符号的实际增益档位值;以及
    修正模块,用于针对每个用户,将所述实际增益档位值与所述增益档位值进行对比,若出现跨档,则基于所述实际增益档位值对所述用户的数字功率进行修正。
  9. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器,
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行如权利要求1至7中任一项所述的多用户发射功率的增益档位控制方法。
  10. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时,使得所述处理器实现如权利要求1至7中任一项所述的多用户发射功率的增益档位控制方法。
PCT/CN2022/121627 2021-09-28 2022-09-27 多用户发射功率的增益档位控制方法、装置及电子设备 WO2023051509A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111146318.7A CN115884341A (zh) 2021-09-28 2021-09-28 多用户发射功率的增益档位控制方法、装置及电子设备
CN202111146318.7 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023051509A1 true WO2023051509A1 (zh) 2023-04-06

Family

ID=85755792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121627 WO2023051509A1 (zh) 2021-09-28 2022-09-27 多用户发射功率的增益档位控制方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN115884341A (zh)
WO (1) WO2023051509A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257331A (zh) * 2008-03-20 2008-09-03 华为技术有限公司 一种增益自动校正方法及发射机
CN101562820A (zh) * 2008-04-16 2009-10-21 中兴通讯股份有限公司 一种移动通信***接收信号码功率的测量装置
CN101588196A (zh) * 2008-05-22 2009-11-25 中兴通讯股份有限公司 增益控制装置和方法
US20100113105A1 (en) * 2008-10-31 2010-05-06 Freescale Semiconductor, Inc. Transmit power measurement and control methods and apparatus
CN102638883A (zh) * 2012-05-04 2012-08-15 华为技术有限公司 一种实现agc增益档位控制的方法及装置
CN107645283A (zh) * 2016-07-19 2018-01-30 炬芯(珠海)科技有限公司 一种自动增益控制方法及装置
CN110034774A (zh) * 2019-04-12 2019-07-19 成都坤恒顺维科技股份有限公司 一种快速自动增益控制agc方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257331A (zh) * 2008-03-20 2008-09-03 华为技术有限公司 一种增益自动校正方法及发射机
CN101562820A (zh) * 2008-04-16 2009-10-21 中兴通讯股份有限公司 一种移动通信***接收信号码功率的测量装置
CN101588196A (zh) * 2008-05-22 2009-11-25 中兴通讯股份有限公司 增益控制装置和方法
US20100113105A1 (en) * 2008-10-31 2010-05-06 Freescale Semiconductor, Inc. Transmit power measurement and control methods and apparatus
CN102638883A (zh) * 2012-05-04 2012-08-15 华为技术有限公司 一种实现agc增益档位控制的方法及装置
CN107645283A (zh) * 2016-07-19 2018-01-30 炬芯(珠海)科技有限公司 一种自动增益控制方法及装置
CN110034774A (zh) * 2019-04-12 2019-07-19 成都坤恒顺维科技股份有限公司 一种快速自动增益控制agc方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL: "Correction to computed gain factors with signalled reference gain factor values", 3GPP TSG_RAN\WG1, R1-031109, 13 October 2003 (2003-10-13), XP050098177 *

Also Published As

Publication number Publication date
CN115884341A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN102300226B (zh) Wcdma移动终端功率校准的方法及校准***
US9537519B2 (en) Systems and methods for performing power amplifier bias calibration
US11997754B2 (en) Power indication method and apparatus
US9877207B2 (en) Calibration method for channel simulator
CN105680807A (zh) 包络线追踪路径延迟微调和校准
CN101558578B (zh) 提供高速上行链路分组接入的上行链路增益因子的装置、方法
US10111180B2 (en) Power control method and device
US11722968B2 (en) Communication method and communications apparatus
TW201921870A (zh) 用於在接收器設備處進行失真校正的技術
WO2015100596A1 (zh) 在室内分布***中抑制上行底噪的方法、设备和***
CN104378775B (zh) Rru间通道校准的方法
JP7127070B2 (ja) アンテナポートマッピング方法およびネットワーク機器
WO2021129171A1 (zh) 数据传输方法及装置、存储介质
EP4122114A1 (en) Communication apparatus and method for communicating using a transmit power difference between antennas
WO2023051509A1 (zh) 多用户发射功率的增益档位控制方法、装置及电子设备
US20220210744A1 (en) Transmitting power determination method, apparatus and communication device
CN105207723A (zh) 通道校正方法、基站、用户设备和通信***
CN103595514B (zh) 一种对协作ap点发送的数据进行校准的方法和基站
CN112383329B (zh) 一种基于zf算法的波束赋型优化方法
US20230107064A1 (en) Extended power class for uplink (ul) multiple-input multiple-output (mimo) communications
CN108964795A (zh) 天线互易性校准方法、装置及***
CN114499710A (zh) 底噪变化测量方法、装置、测量***、电子设备及存储介质
JP7274583B2 (ja) パワー調整方法および装置、アレイアンテナ、記憶媒体
WO2024094035A1 (zh) 上行功控方法及通信装置
CN116156611B (zh) Pucch信道的sinr估计方法、装置、***和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE