WO2023051171A1 - 卫星通信方法及装置 - Google Patents

卫星通信方法及装置 Download PDF

Info

Publication number
WO2023051171A1
WO2023051171A1 PCT/CN2022/116921 CN2022116921W WO2023051171A1 WO 2023051171 A1 WO2023051171 A1 WO 2023051171A1 CN 2022116921 W CN2022116921 W CN 2022116921W WO 2023051171 A1 WO2023051171 A1 WO 2023051171A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
information
terminal device
pur
public
Prior art date
Application number
PCT/CN2022/116921
Other languages
English (en)
French (fr)
Inventor
陈莹
宋兴华
乔云飞
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22874562.6A priority Critical patent/EP4395429A1/en
Publication of WO2023051171A1 publication Critical patent/WO2023051171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a satellite communication method and device.
  • satellite communication Compared with ground communication, satellite communication has its unique advantages, for example, it can provide wider coverage; and satellite base stations are not easily damaged by natural disasters or external forces. Therefore, supporting communication with the ground and satellites at the same time is the future of communication. trend.
  • IoT Internet of Things
  • 5G fifth generation
  • eMBB enhanced Enhanced mobile broadband
  • URLLc ultra reliable low latency communications
  • the present application provides a satellite communication method and device, which can better integrate the Internet of Things (IoT) network and satellite communication.
  • IoT Internet of Things
  • the embodiment of the present application provides a satellite communication method, the method comprising:
  • the configuration information carries preconfigured uplink resource (preconfigured uplink resource, PUR) information, and the PUR information carries the duration of the second timer,
  • PUR preconfigured uplink resource
  • the valid time of the second timer is within the valid duration of the first timer; before the first timer expires and before the second timer expires, the uplink data is sent through the PUR.
  • the terminal device may not need to monitor the information of the first timer from time to time within the effective duration of the first timer, thereby effectively saving power consumption; and it also ensures that the terminal device can monitor the information of the first timer in the connected state ( For example, monitoring when the first timer or the second timer is about to expire, etc.), so that the terminal device can also update the duration of the first timer in a timely and effective manner.
  • the information of the first timer such as ephemeris information or public (timing advance, TA) information, etc.
  • the terminal device may not need to monitor the information of the first timer from time to time within the effective duration of the first timer, thereby effectively saving power consumption; and it also ensures that the terminal device can monitor the information of the first timer in the connected state ( For example, monitoring when the first timer or the second timer is about to expire, etc.), so that the terminal device can also update the duration of the first timer in a timely and effective manner.
  • the terminal device can send uplink data within the effective duration of the second timer, effectively ensuring the validity of the PUR. Therefore, in the embodiment of the present application, before the first timer expires and before the second timer expires, the terminal device sends uplink data through PUR, which can not only ensure the validity of the PUR, but also ensure the validity of the TA. In this way, the validity and reliability of data transmission of terminal equipment is effectively guaranteed, and the characteristics of satellite communication are effectively combined with the PUR mode in the IoT network, and the IoT network and satellite communication are effectively integrated.
  • the first timer is any one in a timer set.
  • the timer set includes any one or more of the following: a timer corresponding to the ephemeris information configured by the network device, a timer corresponding to the public timing advance TA information configured by the network device The timer, the timer corresponding to the historical global navigation satellite system (global navigation satellite system, GNSS) reported by the terminal device.
  • a timer corresponding to the ephemeris information configured by the network device
  • a timer corresponding to the public timing advance TA information configured by the network device
  • the timer the timer corresponding to the historical global navigation satellite system (global navigation satellite system, GNSS) reported by the terminal device.
  • GNSS global navigation satellite system
  • the method before starting the first timer, the method further includes: receiving information of the first timer, where the information of the first timer includes duration information of the first timer .
  • the duration of the first timer is the timer corresponding to the ephemeris information configured by the network device, the timer corresponding to the public timing advance TA information configured by the network device, the terminal device The minimum hour length of the timer corresponding to the reported historical global navigation satellite system GNSS.
  • the timer corresponding to the ephemeris information configured by the network device and the timer corresponding to the public timing advance TA information configured by the network device are different timers; or are the same timing device.
  • the timer corresponding to the ephemeris information configured by the network device, the timer corresponding to the public timing advance TA information configured by the network device, and the historical GNSS information reported by the terminal device correspond to The timer of is the same timer.
  • the sending uplink data through the PUR includes: sending uplink data through the PUR in an idle state.
  • the configuration information is included in any one of high-level signaling, message Msg2, message Msg4, or message MsgB.
  • the method further includes: when the second timer expires, or the first timer expires, the configuration information is not received, or the global navigation satellite System GNSS positioning, or if the updated ephemeris information and/or public timing advance TA information is not obtained, the random access process is reinitiated.
  • the ephemeris information and the public TA information are included in the same system message, or the ephemeris information and the public TA information are included in different system messages, or all The ephemeris information and the public TA information are included in the control signaling dedicated to the terminal equipment.
  • the information of the first timer shown in the embodiment of the present application may be included in a system message, and may also be included in a terminal device-specific control signaling.
  • the information of the first timer may include ephemeris information and/or public TA information.
  • an embodiment of the present application provides a satellite communication method, the method comprising:
  • the information of the first timer includes duration information of the first timer.
  • the receiving uplink data through the PUR includes: receiving uplink data through the PUR before the first timer expires and before the second timer expires.
  • the first timer is any one in a timer set.
  • the timer set includes any one or more of the following:
  • the timer corresponding to the ephemeris information configured by the network device the timer corresponding to the public timing advance TA information configured by the network device, and the timer corresponding to the historical global navigation satellite system GNSS reported by the terminal device.
  • the duration of the first timer is the timer corresponding to the ephemeris information configured by the network device, the timer corresponding to the public timing advance TA information configured by the network device, the terminal device The minimum hour length of the timer corresponding to the reported historical global navigation satellite system GNSS.
  • the timer corresponding to the ephemeris information configured by the network device and the timer corresponding to the public timing advance TA information configured by the network device are different timers; or they are the same timing device.
  • the timer corresponding to the ephemeris information configured by the network device, the timer corresponding to the public timing advance TA information configured by the network device, and the historical GNSS information reported by the terminal device correspond to The timer of is the same timer.
  • the configuration information is included in any one of high-level signaling, message Msg2, message Msg4, or message MsgB.
  • the information of the first timer includes ephemeris information and/or public TA information.
  • the information of the first timer may be included in a system message, and may also be included in a terminal device-specific control signaling.
  • the ephemeris information and the public TA information are included in the same system message, or the ephemeris information and the public TA information are included in different system messages, or all The ephemeris information and the public TA information are included in the control signaling dedicated to the terminal equipment.
  • the embodiment of the present application provides a communication device, configured to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device includes a corresponding unit for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device may be a terminal device or a chip in the terminal device.
  • the embodiment of the present application provides a communication device, configured to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device includes a corresponding method for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device may be a network device or a chip in the network device.
  • the above communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit For the specific description of the transceiver unit and the processing unit, reference may also be made to the device embodiments shown below.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, configured to execute the method described in the first aspect or any possible implementation manner of the first aspect.
  • the processor is used to execute a program stored in the memory, and when the program is executed, the method shown in the first aspect or any possible implementation manner of the first aspect is executed.
  • the memory is located outside the communication device.
  • the memory is located in the above communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is configured to receive a signal or send a signal.
  • the transceiver may also be used to receive information about the first timer, configuration information, and send uplink data.
  • the communication device may be a terminal device or a chip in the terminal device.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor configured to execute the method described in the second aspect or any possible implementation manner of the second aspect.
  • the processor is used to execute the program stored in the memory, and when the program is executed, the method shown in the above second aspect or any possible implementation manner of the second aspect is executed.
  • the memory is located outside the communication device.
  • the memory is located in the above communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is configured to receive a signal or send a signal.
  • the transceiver may be used to send information about the first timer, configuration information, receive uplink data, and the like.
  • the communication device may be a network device or a chip in the network device.
  • the embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit is coupled to the interface; the logic circuit is used to start the first timer; the interface, Used to input configuration information and output uplink data.
  • the interface is used to input the information of the first timer; the logic circuit is used to process the information of the first timer, such as starting the first timer.
  • first timer configuration information, second timer and PUR, etc.
  • the embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit is coupled to the interface; the interface is used to output information and configuration information of the first timer; The interface is also used to input uplink data.
  • the logic circuit is configured to determine information and configuration information of the first timer, and then output the information and configuration information of the first timer through an interface.
  • the logic circuit is also used to control the interface to input uplink data through PUR.
  • first timer configuration information, second timer and PUR, etc.
  • the embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program, and when it is run on a computer, any of the above-mentioned first aspect or the first aspect is possible The method shown in the implementation is executed.
  • the embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program, and when it is run on a computer, it makes possible any of the above-mentioned second aspect or the second aspect.
  • the method shown in the implementation is executed.
  • the embodiment of the present application provides a computer program product, the computer program product includes a computer program or computer code, and when it is run on a computer, the above-mentioned first aspect or any possible implementation of the first aspect The method shown is executed.
  • the embodiment of the present application provides a computer program product, the computer program product includes a computer program or computer code, when it is run on a computer, it makes the second aspect or any possible implementation of the second aspect The method shown is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation manner of the first aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the second aspect or any possible implementation manner of the second aspect is executed.
  • an embodiment of the present application provides a wireless communication system, the wireless communication system includes a terminal device and a network device, and the terminal device is used to implement the above-mentioned first aspect or any possible implementation of the first aspect A method, the network device is configured to execute the method shown in the second aspect or any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of a non-terrestrial network (non-terrestrial networks, NTN) communication system provided by an embodiment of the present application;
  • NTN non-terrestrial networks
  • FIG. 2 is a schematic structural diagram of another NTN communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flow diagram of a four-step random access provided by an embodiment of the present application.
  • FIG. 4 is a schematic flow diagram of a satellite communication method provided in an embodiment of the present application.
  • Fig. 5a is a schematic diagram of a scene of a satellite communication method provided by an embodiment of the present application.
  • Fig. 5b is a schematic diagram of another satellite communication method provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another satellite communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another satellite communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another satellite communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items. For example, at least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ".
  • non-terrestrial networks non-terrestrial networks, NTN
  • the communication system includes terminal equipment, satellites (also can be called satellite base stations) and ground stations (also can be called Called the gateway station, letter customs station) (gateway).
  • satellites also can be called satellite base stations
  • ground stations also can be called Called the gateway station, letter customs station
  • the terminal equipment in this application is a device with wireless transceiver function.
  • the terminal device may communicate with an access network device (or also called an access device) in a radio access network (radio access network, RAN).
  • the terminal equipment may also be called user equipment (user equipment, UE), access terminal, terminal (terminal), subscriber unit (subscriber unit), subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent or user device, etc.
  • the terminal device may be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it may also be deployed on water (such as a ship, etc.).
  • the terminal device may be a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device, a sensor, a terminal in the Internet of Things, a terminal in the Internet of Vehicles, a drone, a fifth-generation ( 5th generation, 5G) network and any form of terminal equipment in the future network, etc., this application does not limit this.
  • the communication between the terminal devices shown in this application can also be through device-to-device (device-to-device, D2D), machine-to-machine (machine-to-machine, M2M) and so on.
  • device-to-device device-to-device, D2D
  • machine-to-machine machine-to-machine, M2M
  • the terminal device shown in this application may also be a device in the Internet of Things (Internet of Things, IoT).
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle to X vehicle to X
  • V2X vehicle and Infrastructure
  • V2I vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • the satellites in this application can provide wireless access services for terminal equipment, schedule wireless resources to access terminal equipment, and provide reliable wireless transmission protocols and data encryption protocols.
  • Satellites can be artificial earth satellites and high-altitude aircraft as base stations for wireless communication, such as evolved base stations (evolutional NodeB, eNB) and next generation node B (next generation node B, gNB).
  • the satellite can also act as a relay for these base stations, and transparently transmit the wireless signals of these base stations to the terminal equipment.
  • the ground station can be regarded as a base station for wireless communication. Therefore, in the embodiments of the present application, in some embodiments, such as in the satellite regeneration scenario, the network device may be the satellite base station shown in FIG.
  • the network device may be a ground station as shown in FIG. 1 . It can be understood that in systems of different wireless access technologies, the names of the devices with network device functions may be different, and this application will not show them one by one.
  • the satellite can be a geostationary earth orbit (GEO) satellite, a non-geostationary earth orbit (NGEO) medium earth orbit (MEO) satellite or a low earth orbit (low earth orbit) satellite , LEO) satellites, or high altitude communication platforms (High Altitude Platform Station, HAPS).
  • GEO geostationary earth orbit
  • NGEO non-geostationary earth orbit
  • MEO medium earth orbit
  • LEO low earth orbit
  • HAPS High Altitude Platform Station
  • the ground station in this application can be used to connect the satellite with the core network.
  • the ground station can transparently transmit the signaling between the satellite and the core network.
  • the ground station can be used as a base station for wireless communication, and the satellite can transparently transmit signaling between the terminal device and the ground station.
  • the ground station can send the signaling from the core network to the satellite through the feedback link (or feeder link);
  • the terminal device may also send signaling to the satellite through the service link, and the satellite sends the signaling to the core network through the ground station.
  • FIG. 1 only shows one satellite and one ground station, and in actual use, a multi-satellite and/or multi-ground station architecture may be adopted as required.
  • each satellite can provide services to one or more terminal devices, each satellite can correspond to one or more ground stations, and each ground station can correspond to one or more satellites, etc., which are not specified in this application. limited.
  • FIG. 2 is a schematic structural diagram of another NTN communication system provided by an embodiment of the present application.
  • the terminal device can access the network through the air interface (the air interface can be various types of air interface, such as 5G air interface, etc.), the base station can be deployed on the satellite (such as satellite regeneration mode), and communicate with the ground through a wireless link connected to the core network. At the same time, there is a wireless link between the satellites, thereby completing signaling interaction and user data transmission between base stations.
  • the base station can also be deployed on the ground and connected to the core network through optical fiber.
  • the satellite acts as a transparent forwarding node (such as the transparent transmission mode of the satellite) and undertakes the function of transparent data forwarding.
  • each network element and their interfaces in Figure 2 may be as follows:
  • Terminal equipment can access the satellite network through the air interface and initiate calls, surf the Internet and other services.
  • the base station can be used to provide wireless access services, schedule wireless resources to access terminal devices, and provide reliable wireless transmission protocols and data encryption protocols.
  • the ground station can be used to forward the signaling and service data between the satellite base station and the core network.
  • the core network can be used for user access control, mobility management, session management, user security authentication or billing, etc.
  • the core network can be composed of multiple functional units, such as functional entities including control plane and data plane. Exemplarily, as shown in Figure 2, the core network may include an access and mobility management function (access and mobility management function, AMF), a session management function (session management function, SMF) and a user plane function (user plane function, UPF) wait.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • AMF access and mobility management function
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • AMF access and mobility management function
  • the air interface shown in FIG. 2 can be understood as a wireless link between the terminal and the base station;
  • the Xn interface can be understood as an interface between the base station and the base station, and is mainly used for signaling interaction such as handover;
  • the NG interface can be used for The interface between the base station and the core network is used to exchange non-access (non-access stratum, NAS) signaling of the core network and user service data.
  • NAS non-access stratum
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the terminal device sends a random access preamble (random access preamble), which may also be called Msg1, to the network device (Msg1 is shown as an example in FIG. 3 ).
  • Msg1 random access preamble
  • the network device receives the Msg1.
  • the role of the random access preamble is to notify the network device that there is a random access request, and enable the network device to estimate the transmission delay between it and the terminal device, so that the network device can calibrate uplink timing (uplink timing) and The calibration information is notified to the terminal device through a timing advance (TA) command (timing advance command).
  • TA timing advance
  • the network device sends a random access response (random access response, RAR), which may also be called Msg2, to the terminal device.
  • RAR random access response
  • Msg2 random access response
  • the terminal device receives the Msg2.
  • the random access response may include the sequence number of the random access preamble, a timing advance command (timing advance command, TAC), uplink resource allocation information, and the like.
  • a timing advance command timing advance command, TAC
  • uplink resource allocation information and the like.
  • the terminal device sends an uplink message to the network device, which may also be called Msg3.
  • the network device receives Msg3.
  • the terminal device if the random access preamble indicated by the sequence number of the random access preamble in the random access response received by the terminal device is the same as the random access preamble sent by the terminal device to the network device, the terminal device considers that the random access preamble
  • the access response is a random access response for the terminal device.
  • the terminal device After receiving the random access response, the terminal device sends an uplink message on the uplink resource indicated by the random access response, for example, sends uplink data on a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • Msg3 may carry a unique user identifier.
  • the network device returns a conflict resolution message, also referred to as Msg4, to the terminal device.
  • the network device will carry the unique user identifier in Msg3 in the conflict resolution message to indicate the terminal device with successful access, while other terminal devices with unsuccessful access will re-initiate random access.
  • the IoT network in order to reduce the power consumption of the terminal device and the communication delay, the IoT network also allows the terminal device to carry uplink data in Msg3, for example, the amount of the uplink data is limited. Therefore, the terminal device can continue to maintain the idle state after receiving the Msg4. It means that the terminal device has finished sending data through Msg3 and does not need to enter the connection state. If there is more uplink data to be sent, the terminal device needs to enter the connected state to continue sending data.
  • the uplink data carried by Msg3 shown above may also be referred to as early data transmission (edt). It can be understood that after the uplink data is sent through Msg3, the terminal device can remain in an idle state after receiving Msg4.
  • the IoT network can support the terminal device to directly send uplink data in an idle state, and the uplink resource used for sending the uplink data can be configured in advance by the network device.
  • the terminal device can judge whether the timing advance (timing advance, TA) is valid, and if it is valid, it can use the preconfigured uplink resource (preconfigured uplink resource, PUR) to send data. For example, when the TA is invalid, or according to the radio resource control (radio resource control, RRC) signaling issued by the network device, it is determined whether to end the PUR mode.
  • timing advance timing advance
  • PUR preconfigured uplink resource
  • the PUR shown in this application may also be referred to as pre-configured uplink resources, etc., and the PUR may be used to indicate that the resource is a resource configured in advance by the network device for the terminal device for sending uplink data. Therefore, resources or resource names with similar functions all belong to the protection scope of this application.
  • the method shown above is an example of terrestrial communication.
  • the TA in satellite communication is different from the TA in terrestrial communication (for example, the value of the advance adjustment of the uplink signal timing in satellite communication is greater than that in terrestrial communication)
  • the value of adjusting the timing advance of the uplink signal so the PUR mode shown above is more suitable for ground communication.
  • the embodiments of the present application provide a satellite communication method and device, which can combine the PUR mode with the satellite communication, so that the PUR can be better applied to the satellite communication.
  • the terminal device In satellite communication, in order to align the timing of the uplink signal with the downlink signal when it arrives at the base station, it is necessary for the terminal device to adjust the timing in advance when sending the uplink signal.
  • the timing advance is related to the round-trip transmission delay from the terminal equipment to the base station.
  • the round-trip transmission delay from the terminal device to the base station includes the round-trip transmission delay from the terminal device to the satellite and from the satellite to the ground station.
  • the terminal device needs to determine the round-trip transmission delay from the terminal device to the satellite according to the broadcasted ephemeris information, and the round-trip transmission delay from the satellite to the ground station can be notified to the terminal device through the broadcasted public timing advance information.
  • the ephemeris information may include location information of the terminal device and location information of satellites.
  • the round-trip transmission delay from the terminal device to the base station includes the round-trip transmission delay from the terminal device to the satellite.
  • the terminal device needs to determine the round-trip transmission delay from the terminal device to the satellite according to the broadcasted ephemeris information.
  • the terminal device Since the round-trip transmission delay from the satellite to the ground station is shared by all terminal devices in the satellite coverage area, and the moving speed of the satellite is very fast, the above public timing advance information and ephemeris information need to be refreshed from time to time. Therefore, the terminal device needs to continuously monitor the broadcast message, so as to obtain the public timing advance information and ephemeris information in time.
  • the embodiments of the present application provide a satellite communication method and device, which can effectively improve the above situation and better integrate the IoT network and satellite communication.
  • the method provided by the embodiment of the present application can better combine satellite communication with the PUR mode or EDT method in the IoT network.
  • the terminal device can obtain ephemeris information, public TA information, and system information related to satellite communication in a timely manner, so as to ensure the reliability and continuity of data transmission of the terminal device.
  • the satellite communication shown in the embodiment of the present application can provide communication services for areas such as oceans and forests that cannot be covered by ground communication networks.
  • the reliability of 5G communication or future communication can be enhanced, such as ensuring that airplanes, trains, and users on these transportations can obtain better communication services; another example is to provide more data transmission resources for 5G communication, and increase the speed of the network, etc. .
  • IoT can be better supported by satellite communications.
  • Fig. 4 is a schematic flow chart of a satellite communication method provided by the embodiment of the present application. As shown in Fig. 4, the method includes:
  • the network device sends information about the first timer.
  • the terminal device receives the information of the first timer.
  • the information about the first timer may be understood as information related to the first timer.
  • the information of the first timer may be included in a system message, such as delivered through a broadcast message.
  • the information of the first timer may be included in a unicast message, such as UE-specific control signaling.
  • the first timer may be any one in the timer set.
  • the timer set includes any one or more of the following: a timer corresponding to the ephemeris information configured by the network device, a timer corresponding to the public TA information configured by the network device, and a timing corresponding to the historical GNSS reported by the terminal device device.
  • the information of the first timer may include duration information of the first timer.
  • the first timer may be determined by any one or more of timers corresponding to ephemeris information, timers corresponding to public TA information, or timers corresponding to historical GNSS.
  • the duration of the first timer may be determined by any one or more of the valid duration corresponding to ephemeris information, the valid duration corresponding to public TA information, or the valid duration corresponding to historical GNSS.
  • the network device may determine the duration of the first timer according to the minimum value of the valid duration corresponding to the ephemeris information or the valid duration corresponding to the public TA information.
  • the network device may determine the duration of the first timer according to the minimum value of the valid duration corresponding to the ephemeris information, the valid duration corresponding to the public TA information, and the valid duration corresponding to the GNSS.
  • the timer corresponding to the historical GNSS may be estimated by the network device based on the historical GNSS, or determined by the network device based on the valid duration of the historical GNSS reported by the terminal device. The corresponding timer is not limited.
  • the information of the first timer may include ephemeris information and duration information of the first timer.
  • the network device delivers the duration information of the first timer while delivering the ephemeris information.
  • the information of the first timer may include public TA information and duration information of the first timer.
  • the network device delivers the duration information of the first timer while delivering the public TA.
  • the timer corresponding to the ephemeris information and the timer corresponding to the public TA information shown in the embodiment of the present application may be different timers, or may be the same timer.
  • the ephemeris information and the public TA information may be included in (also can be understood as being carried in) the same system message, for example, the ephemeris information and the public TA information share a timer (such as the first timer), and for example Even the ephemeris information and public TA information in the same system message may not share a timer.
  • the system message that the network device may send includes ephemeris information, public TA information, and duration information of the first timer.
  • the ephemeris information and the public TA information may be included in different system messages, for example, the ephemeris information and the public TA information respectively correspond to different timers.
  • the ephemeris information corresponds to a timer, and the valid duration of the public TA information can be read according to the agreed valid duration or according to the change of the corresponding system message.
  • the network device may configure the PUR information according to the timer corresponding to the ephemeris information and the effective duration agreed upon in the public TA information.
  • the ephemeris information and the public TA information are included in system messages and UE-specific control signaling, respectively.
  • the ephemeris information is included in the system message, and the public TA information is included in the UE-specific control signaling; or, the ephemeris information is included in the UE-specific control signaling, and the public TA information is included in the system message.
  • the first timer information sent by the network device can also directly include the effective duration of each timer, and then the terminal device selects a timer as the first timer, etc.
  • the terminal device selects a timer as the first timer, etc.
  • the terminal device starts a first timer.
  • the terminal device may start the first timer according to the effective time of the first timer.
  • the effective time of the first timer may be defined by a standard or protocol, or negotiated between the network device and the terminal device, or set by the network device, etc., which is not limited in this embodiment of the present application. It can be understood that the effective time of the first timer can be understood as the time when the first timer starts counting, or the start time of the first timer, or the time when the first timer starts running.
  • the effective duration of the first timer shown below can be understood as the first timer has not expired, or the first timer has not expired, or the timing of the first timer has not ended, or the first timer Still running and so on.
  • the effective duration of the first timer maintained in the terminal device may be different from the effective duration of the first timer maintained in the network device. It can be understood that regarding the effective time and effective duration of the first timer, the second timer shown below is also applicable, and will not be described in detail below.
  • the time when the terminal device receives the information of the first timer is the effective time of the first timer.
  • the valid duration of the first timer in the terminal device is equal to the duration of the first timer.
  • the terminal device starts the first timer when receiving the information of the first timer.
  • the network device may start the first timer according to the transmission delay between the terminal device and the network device.
  • the transmission delay may include the transmission delay between the ground station and the satellite, and the round-trip delay between the satellite and the terminal device (such as the transparent transmission mode of the satellite).
  • the transmission delay may include the transmission delay between the terminal device and the satellite (such as the regenerative mode of the satellite). It can be understood that there may be some deviation between the time when the network device and the terminal device start the first timer, but the deviation is within a normal range, so the deviation should not be interpreted as a limitation to the embodiment of the present application. It can be understood that the description of the deviation is also applicable below.
  • a period of time after the terminal device receives the information of the first timer is the effective time of the first timer.
  • the valid duration of the first timer in the terminal device is equal to the duration of the first timer.
  • the terminal device receives the information of the first timer at 10:00, and the duration of the period is 5ms, then the effective time of the first timer is 5ms at 10:00.
  • the period of time may be defined by a standard or protocol, or set by a network device, or negotiated between a terminal device and a network device.
  • the period of time may also be determined by the network device according to the maximum transmission delay between the terminal device and the network device, and this period of time is not limited in this embodiment of the present application.
  • the maximum transmission delay may be, for example, the transmission delay of a point farthest from the network device in a beam covered by the network device or in a cell area.
  • the network device may start the first timer according to the transmission delay between the terminal device and the network device and the period of time.
  • the time when the network device sends the information of the first timer is the effective time of the first timer.
  • the time when the network device sends the information of the first timer is T 1 , and then T 1 is the effective time of the first timer.
  • T 1 is the effective time of the first timer.
  • the effective duration of the first timer maintained in the terminal device will be reduced.
  • the duration of the first timer is D 1 , if T 1 is taken as the effective time of the first timer, due to the transmission delay between the network device and the terminal device (for example, delay 1 ), it means that the terminal device maintains
  • the effective duration of the first timer will be reduced, for example, the effective duration of the first timer in the terminal device is D 1 ⁇ delay 1 .
  • the information of the first timer may carry the time when the network device sends the information of the first timer.
  • the information of the first timer may not carry the time at which the network device sends the information of the first timer, but the terminal device estimates the time at which the network device sends the first timer according to the transmission delay between the terminal device and the network device. information time.
  • the effective duration of the first timer may be determined according to the maximum transmission delay delay max between the terminal device and the network device, or the first timing may be determined according to the minimum transmission delay delay min between the terminal device and the network device
  • the effective duration of the device the terminal device can compensate the effective duration of the first timer according to the transmission delay between it and the network device.
  • the effective time of the first timer is determined according to the maximum transmission delay delay max , and if the transmission delay delay 1 between the terminal device and the network device is less than delay max , it means that the effective duration of the first timer can be delay max -delay 1 +D 1 .
  • the effective time of the first timer is determined according to the minimum transmission delay delay min , and the transmission delay delay 1 between the terminal device and the network device is greater than delay min , it means that the effective duration of the first timer can be is D 1 -(delay 1 -delay min ). Since the maximum or minimum transmission delay between a terminal device and a network device is the same for terminal devices within the coverage of the network device, both the terminal device and the network device can The delay determines the effective duration of the first timer maintained respectively.
  • the time when the satellite receives the information of the first timer is taken as the effective time of the first timer.
  • the effective duration of the first timer in the terminal device is shorter than the duration of the first timer.
  • the satellite may be in transparent transmission mode.
  • transparent transmission mode it means that the equipment with base station function (that is, network equipment) is a ground station.
  • the transmission delay between the network equipment and the satellite is the same, so by The time when the satellite receives the information of the first timer is the effective time of the first timer, which can be applied to all terminal devices within the coverage of the network device.
  • the information of the first timer may carry the time when the network device sends the information of the first timer.
  • the network device sends the information of the first timer it may not carry the sending time of the information of the first timer, and when the satellite forwards the information of the first timer, it may carry the information of the first timer received by it. time.
  • the information of the first timer may not carry the time when the ground station sends the information of the first timer, or the time when the satellite receives the information of the first timer.
  • the effective duration of the first timer maintained by the terminal device is estimated according to the transmission delay between it and the satellite and the duration of the first timer.
  • the network device may estimate the effective time of the first timer maintained by the network device according to the transmission delay between it and the satellite.
  • the effective duration of the first timer in the network device is equal to the duration of the first timer.
  • the second timer takes effect before the first timer expires.
  • the effective duration of the first timer is extended. For example, even if the time when the network device sends the information of the first timer is the valid time of the first timer, the valid duration of the first timer may still be greater than D 1 .
  • the second timer can also be reconfigured.
  • the network device sends configuration information, where the configuration information carries PUR information, and the PUR information carries a duration of a second timer, and the effective time of the second timer is within the effective duration of the first timer.
  • the terminal device receives the configuration information.
  • the second timer may indicate whether the PUR is valid. For example, when the second timer is running, it may indicate that the PUR is valid, and if the second timer times out or expires, it indicates that the PUR is invalid.
  • the valid time of the second timer may be within the valid duration of the first timer maintained by the network device, or the valid time of the second timer may be within the valid duration of the first timer maintained by the terminal device.
  • the effective duration of the first timer reference may be made to the above step 402, and details will not be detailed here.
  • the network device may send the configuration information to the terminal device within the valid duration of the first timer.
  • the network device may send configuration information to the terminal device.
  • the valid time of the second timer is within the valid duration of the first timer.
  • the terminal device when the first timer is about to expire (that is, before the expiration or before the timeout), the terminal device still has uplink data to transmit (at the same time, the uplink transmission takes a long time), the terminal device expects the network device to send configuration information, for the terminal
  • the device is configured with PUR to ensure that the terminal device can still send uplink data through PUR when it is idle. That is, the terminal device needs to receive the configuration information before the first timer expires, and start the second timer at the same time.
  • the network device may send the configuration information to the terminal device before it sends the information of the first timer.
  • the second timer carried in the configuration information may not take effect.
  • the second timer may take effect within the effective duration of the first timer after the terminal device runs the first timer. That is to say, the terminal device may receive the configuration information before receiving the information of the first timer, and at the same time, when the terminal device starts the first timer (such as when starting the first timer, or starting the first After the timer and before the first timer expires), start the second timer.
  • configuration information shown in the embodiment of the present application may be included in any one of high-level signaling, Msg2, Msg4, or MsgB.
  • Msg2, Msg4, or MsgB For specific descriptions about the configuration information, reference may also be made to the methods shown in FIG. 5a to FIG. 8 below.
  • the terminal device Before the first timer expires and before the second timer expires, the terminal device sends uplink data through PUR. Correspondingly, the network device receives the uplink data.
  • the terminal device sends uplink data through PUR. Or, within the valid duration of the first timer and the valid duration of the second timer, the uplink data is sent through PUR.
  • the terminal device may send uplink data through PUR in an idle state. For example, the terminal device may automatically enter the idle state when receiving the configuration information or starting the second timer. For another example, the terminal device may automatically enter the idle state after completing the random access process, and the embodiment of the present application does not limit the time for the terminal device to enter the idle state.
  • the network device may receive the uplink data through the PUR before the first timer expires and before the second timer expires.
  • the terminal device when the second timer expires or the first timer expires, if the terminal device has not received the configuration information, or has not completed GNSS positioning, or has not obtained updated ephemeris information and /or public TA information, the terminal device re-initiates the random access procedure.
  • the terminal device does not receive the configuration information sent by the network device before the first timer expires, or the terminal device is not configured with PUR, or the terminal device does not parse the configuration information sent to the network device, then at the When a timer expires (for example, when or after the timeout), the terminal device needs to trigger a radio link failure, for example, it may re-initiate a random access process.
  • the terminal device if the first timer expires or the second timer expires, and the terminal device has not yet obtained the updated ephemeris information and/or public TA information, it means that the terminal device cannot obtain the updated ephemeris information and/or public TA information in time after the timing advance is invalidated.
  • the timing of the update is advanced, which may cause the uplink and downlink data to be out of alignment, resulting in uplink out-of-synchronization and uplink failure.
  • the first timer expires or the second timer expires, and the terminal device has not yet completed the positioning of the GNSS, it means that it cannot report the effective duration of the GNSS in time, which may cause the network device to fail to budget the first timer duration (for example, when the first timer is a timer corresponding to GNSS).
  • the timeout of the first timer or the timeout of the second timer shown above includes the timeout of the first timer and the timeout of the second timer.
  • the above implementation manner can also be understood as: before the first timer expires or before the second timer expires, the terminal device needs to complete any one of GNSS positioning, acquisition of updated ephemeris information and public TA information, or multiple. Alternatively, before the first timer expires and before the second timer expires, the terminal device needs to complete any one or more items of GNSS positioning, acquisition of updated ephemeris information, and public TA information.
  • the terminal device can complete GNSS positioning and obtain updated ephemeris information or public TA information in a connected state or an idle state.
  • the terminal device can perform GNSS positioning in the connected state and monitor NTN-related system messages.
  • NTN-related system messages For example, for IoT devices, it may be in half-duplex mode, so when listening to NTN-related system messages or performing GNSS positioning in the connected state, it is sufficient not to conflict with data transmission.
  • the terminal device by setting the first timer, not only the situation that the terminal device needs to monitor the information of the first timer (such as ephemeris information or public TA information, etc.)
  • the effective duration of a timer there is no need to monitor the information of the first timer from time to time, thereby effectively saving power consumption; and it also ensures that the terminal device can monitor the information of the first timer in the connected state (such as in the first timing monitor when the timer or the second timer is about to expire, etc.), so that the terminal device can also update the duration of the first timer in a timely and effective manner.
  • the terminal device can send uplink data within the effective duration of the second timer, effectively ensuring the validity of the PUR.
  • the following describes the satellite communication method provided by the embodiment of the present application in combination with specific scenarios.
  • the following takes the effective time of the first timer as the time when the terminal device receives the information of the first timer, or as a period of time after the time when the terminal device receives the information of the first timer.
  • Fig. 5a is a schematic diagram of a scenario of a satellite communication method provided by an embodiment of the present application. As shown in Fig. 5a, the method includes:
  • the network device sends information about the first timer to the terminal device, and correspondingly, the terminal device receives the information about the first timer.
  • the duration of the first timer shown in step 501 may be determined according to ephemeris information and/or public TA information.
  • the first timer takes effect, and the terminal device starts the first timer.
  • the terminal device starts a first timer, and the effective duration of the first timer is equal to the duration D 1 of the first timer.
  • the terminal device can start the first timer after receiving the information of the first timer, but the first timer The effective duration of the timer is less than the duration D 1 of the first timer.
  • the terminal device initiates a random access process.
  • the terminal device may initiate a four-step random access process, as shown in FIG. 3 .
  • the terminal device may also initiate a two-step random access process, etc., which is not limited in this embodiment of the present application.
  • the two-step random access process may include: the terminal device simultaneously sends a random access preamble and data to the network device in MsgA. After receiving the MsgA, the network device sends MsgB (also called a random access response) to the terminal device.
  • MsgA includes a MsgA preamble part and a MsgA data part, the preamble is carried on a physical random access channel (physical random access channel, PRACH), and the data part is carried on a PUSCH.
  • PRACH physical random access channel
  • Steps 501 to 503 shown in FIG. 5a do not represent the sequence of the steps.
  • the terminal device enters a connection state.
  • the terminal device may send an RRC connection request (RRC connection request) message to the network device, and the network device may send an RRC connection setup (RRC connection setup) message to the terminal device after receiving the RRC connection request message; then, After receiving the RRC connection setup message, the terminal device may send an RRC connection setup complete (RRC connection setup complete) message to the network device.
  • RRC connection request RRC connection request
  • RRC connection setup RRC connection setup
  • RRC connection setup complete RRC connection setup complete
  • the first timer is about to expire, and before the uplink data sent by the terminal device is completed (for example, a large number of repetitions may lead to a long uplink transmission time), the terminal device expects the network device to pass high-level signaling such as narrowband Internet of things (narrow Band internet of things, NB-IoT) PUR resource configuration signaling (for example, it can also be called PUR-Config-NB) configures PUR.
  • the PUR-Config-NB can configure the related second timer (also called PUR Time Alignment Timer).
  • the terminal device needs to Trigger radio link failure, such as reinitiating the random access procedure. Understandably, the terminal device also needs to reacquire system information.
  • the terminal device enters an idle state.
  • the terminal device may automatically enter the idle state after receiving the configuration information. It can be understood that the automatic entry of the terminal device into the idle state according to the configuration information shown here is only an example. For example, the terminal device may also enter the idle state through other trigger conditions, etc. This embodiment of the present application does not limit this.
  • the terminal device after the terminal device enters the idle state, it can read synchronization-related system information (that is, the information of the first timer shown above), and continue to send unfinished uplink data on the corresponding PUR. It can be understood that the network device may also send downlink data through the PUR, which is not limited in this embodiment of the present application.
  • the terminal device Before the first timer expires or before the second timer expires, the terminal device performs GNSS positioning.
  • the terminal device may judge the valid duration of the GNSS according to its own moving speed, and report the valid duration of the GNSS to the network device.
  • step 509 is described by taking GNSS positioning by the terminal device as an example, and the terminal device may also acquire updated information of the first timer before the first timer expires or before the second timer expires. That is to say, the terminal device needs to complete GNSS positioning (or report the effective duration of GNSS), obtain updated ephemeris information, obtain updated public TA information, or update Any one or more items of the duration of the first timer.
  • the reason why the terminal device reports the valid duration of the GNSS is that the network device can better estimate the expiration time of the GNSS information of the terminal device by reporting the valid duration of the GNSS. Therefore, useful information can be provided for the network device to subsequently update the information of the first timer.
  • the reason for obtaining updated ephemeris information, public TA information, and the duration of the first timer is that the terminal device can continue to send uplink data in an idle state by obtaining the above information in time.
  • Fig. 5b is a schematic diagram of another satellite communication method provided by the embodiment of the present application. As shown in Fig. 5b, the method includes:
  • the network device sends information about the first timer to the terminal device, and correspondingly, the terminal device receives the information about the first timer.
  • the first timer takes effect, and the terminal device starts the first timer.
  • the terminal device initiates a random access process.
  • the terminal device enters a connection state.
  • the terminal device enters an idle state.
  • the first timer is about to time out, and the second timer is started.
  • the network device sends the information of the first timer to the terminal device, and correspondingly, the terminal device receives the information of the first timer.
  • the terminal device may report the effective duration of the GNSS.
  • the network device may reconfigure a timer corresponding to the GNSS for the terminal device.
  • the network device may also reconfigure ephemeris information and/or public TA information and the like. That is to say, before the first timer expires, the network device may also resend the information of the first timer to the terminal device.
  • the first timer is reconfigured.
  • the terminal device since the first timer has not expired and the terminal device has received the information of the first timer at the same time, it means that the effective duration of the first timer has been extended.
  • the terminal device when the terminal device does not obtain the information of the first timer before the first timer expires or before the second timer expires, the terminal device needs to trigger the wireless link failure, or the network device can also trigger the wireless link failure. way failed.
  • the method provided by the embodiment of the present application can effectively ensure that the terminal device can enter the idle state when the uplink data transmission is not completed and continue to send the unfinished uplink data in the idle state, and at the same time, the terminal device can also realize GNSS positioning in the idle state, and obtain Ephemeris and public TA information. It effectively combines the characteristics of high mobility of satellite communication and the feature that terminal devices cannot read system messages in the connected state in order to save power consumption in the IoT network, so that the PUR mode in the IoT network is applied to satellite communication. During data transmission, the problem of uplink failure caused by system message expiration or GNSS information expiration is effectively improved.
  • Fig. 6 is a schematic diagram of another satellite communication method provided by the embodiment of the present application. As shown in Fig. 6, the method includes:
  • the network device sends information about the first timer to the terminal device, and correspondingly, the terminal device receives the information about the first timer.
  • the first timer takes effect, and the terminal device starts the first timer.
  • the terminal device initiates a four-step random access process.
  • the random access process initiated by the terminal device is illustrated by taking the above-mentioned EDT as an example, for example, uplink data may be carried in Msg3.
  • uplink data may be carried in Msg3.
  • the terminal device can upload uplink data in Msg3.
  • the terminal device may send uplink data and the like according to the number of repetitions.
  • the configuration information may be included in Msg2 or Msg4.
  • FIG. 6 shows Msg4 as an example, which should not be construed as a limitation to the embodiment of the present application.
  • the network device Msg4 includes related information of the subsequent PUR, for example, the related information of the PUR includes parameters such as reserved resources or the duration of the second timer. It can be understood that for other descriptions about the four-step random access process, reference may be made to the method shown in FIG. 3 , or to relevant standards or protocols, etc., which will not be described in detail here.
  • the terminal device sends uplink data through PUR.
  • the terminal device may finish sending the uplink data on the reserved resource.
  • the terminal device performs GNSS positioning.
  • step 604 and step 605 Perform GNSS positioning before the first timer expires or before the second timer expires. It can be understood that for specific descriptions of step 604 and step 605, reference may be made to FIG. 4 or FIG. 5a, etc., and details are not described here again.
  • the network device may select a fallback mode according to the uplink data sent by the terminal device.
  • the fallback method includes adopting four-step random access or two-step random access or EDT.
  • the terminal device may select a fallback mode according to the instruction information of the network device.
  • the terminal device may choose a fallback method according to the channel quality state. If the channel quality is relatively good, the terminal device can use the EDT method, and if the channel quality is poor, the terminal device can use four-step random access or two-step random access.
  • the terminal device can choose a fallback method according to its relative position relationship with the network device. If the relative position between the terminal device and the network device is relatively close, the terminal device can adopt EDT or four-step random access. It can be understood that the embodiment of the present application does not limit the specific method for the terminal device to select a fallback manner.
  • FIG. 4 or FIG. 5 a for places not described in detail in the method shown in FIG. 6 , and no detailed description is given here.
  • the method shown in Figure 5a or Figure 5b is that when the terminal device has not finished transmitting uplink data in the connected state, the terminal device can continue to send unfinished data in the idle state through the combination of the first timer and the second timer. data.
  • the method shown in Figure 6 effectively combines EDT transmission, so that the terminal device can complete all uplink data transmission in the idle state, and at the same time, the terminal device always has the opportunity to read system information, reducing the probability of wireless link failure.
  • Fig. 7 is a schematic diagram of another satellite communication method provided by the embodiment of the present application. As shown in Fig. 7, the method includes:
  • the network device sends information about the first timer to the terminal device, and correspondingly, the terminal device receives the information about the first timer.
  • the first timer takes effect, and the terminal device starts the first timer.
  • the terminal device initiates a two-step random access process.
  • the terminal device can send preamble and uplink data in MsgA. If the network device receives Msg2 correctly, the network device may include PUR related information in MsgB.
  • the relevant information of the PUR includes parameters such as reserved resources or the duration of the second timer.
  • the network device can use Msg2 to inform the terminal device to perform a four-step random access process, such as telling the terminal device to continue sending Msg3 Complete the process of random access.
  • the terminal device sends Msg3 to the network device, and the network device sends Msg4 to the terminal device after receiving the Msg3.
  • the terminal device establishes an RRC connection and enters a connected state to perform data transmission (for example, the terminal device can send uplink data to the network device).
  • start the second timer within the effective duration of the first timer, and send the uplink data through PUR before the first timer expires and before the second timer expires.
  • the terminal device sends Msg3 to the network device, and after receiving Msg3, the network device sends Msg4 to the terminal device, where the Msg4 may include configuration information.
  • Msg3 may include uplink data. Therefore, the terminal device sends uplink data through PUR before the first timer expires and before the second timer expires.
  • the terminal device may complete GNSS positioning, acquire updated ephemeris information, updated public TA information, or the duration of the first timer before sending uplink data through PUR.
  • the terminal device may complete GNSS positioning, acquire updated ephemeris information, updated public TA information, or the duration of the first timer after sending the uplink data through the PUR. It can be understood that, for specific descriptions about implementation mode 2, reference may be made to the method shown in FIG. 4 or FIG. 6 , and details are not described here again.
  • the terminal device sends uplink data through PUR.
  • the terminal device performs GNSS positioning.
  • the method provided by the embodiment of this application combines the PUR mode, EDT and two-step random access, so that the terminal device can complete all uplink data transmission in the idle state, and at the same time, allows the terminal device to always have the opportunity to read system messages, reducing wireless Probability of link failure.
  • the embodiment of the present application also provides a schematic diagram of a satellite communication method scenario, as shown in Figure 8, the method includes:
  • the network device sends information about the first timer to the terminal device, and correspondingly, the terminal device receives the information about the first timer.
  • the first timer takes effect, and the terminal device starts the first timer.
  • the terminal device initiates a random access process.
  • the first timer is about to time out, and the second timer is started.
  • the network device sends the information of the first timer to the terminal device, and correspondingly, the terminal device receives the information of the first timer.
  • the first timer is reconfigured.
  • a terminal device sends uplink data through PUR
  • a network device sends downlink data through PUR.
  • the second timer is reconfigured.
  • the second timer may be reconfigured, and the closed-loop TAC information is used to compensate timing advance. It can be understood that for the description of the closed-loop TAC information, reference may be made to relevant standards or protocols, and details are not described here.
  • the network device sends the information of the first timer to the terminal device, and correspondingly, the terminal device receives the information of the first timer.
  • the first timer is reconfigured.
  • steps 801 to 803 reference may be made to the four-step random access shown in FIG. 6 , or to the two-step random access shown in FIG. 7 .
  • steps 804 to 806 and steps 809 to 811 reference may be made to the satellite communication method shown in FIG. 5a or FIG. 5b . No more details here.
  • the terminal device can directly trigger the failure of the wireless link.
  • the network device will monitor the uplink signal within the expected time (such as the expected reserved resource), if the network device has not received the uplink signal of the terminal device within the expected time, the network device can also trigger the wireless Link failed.
  • the embodiment of the present application also provides an implementation manner, such as considering the GNSS, ephemeris information or public TA information separately. Considering the valid period of GNSS (also called valid period), the valid period of ephemeris information and the valid period of public TA information may be different.
  • the network device can know the time when the terminal device performs GNSS positioning again. Therefore, when the GNSS is invalid, but the ephemeris information and the public TA information are still valid, the terminal device may not monitor the system messages.
  • the network device can reserve time resources for the terminal device according to the effective duration of the GNSS reported by the terminal device (such as a GNSS time window), so as to ensure that the terminal device can perform GNSS positioning.
  • the terminal device continues to connect data communication.
  • the network device may configure PUR information for the terminal device.
  • the network device can also reserve a time window for the terminal device to read the system message according to the effective duration of the ephemeris information or the effective duration of the public TA information (assuming that this type is a special system message, it can be read during the transmission process) to read).
  • the terminal device thus continues to communicate after receiving the updated system message.
  • the network device can configure PUR information for the terminal device.
  • the reserved resource of PUR can be periodic or aperiodic, and the terminal device can initiate non-contention based random access on the resource of PUR.
  • the reserved resource interval may be determined by the periodicity of the current satellite serving the area, or by the time interval between the current satellite and subsequent other satellites serving the area.
  • the current satellite indicates the synchronization information of the next satellite, including ephemeris information and public TA information, and configures the PUR reserved resources corresponding to the next satellite according to the service time of the neighboring satellite for the area, and the terminal Based on the configuration of the previous star, the device initiates non-contention-based random access on PUR resources, or directly initiates data transmission.
  • the present application divides the communication device into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 9 to FIG. 11 .
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 9 , the communication device includes a processing unit 901 and a transceiver unit 902 .
  • the communication device may be the terminal device or a chip in the terminal device shown above. That is, the communication device may be used to perform the steps or functions performed by the terminal device in the above method embodiments.
  • the processing unit 901 is configured to start a first timer
  • the transceiver unit 902 is configured to receive configuration information from a network device, the configuration information carries information about a pre-configured uplink resource PUR, and the information about PUR carries a duration of a second timer, and the effective time of the second timer is at Within the effective duration of a timer;
  • the transceiver unit 902 is further configured to send uplink data through PUR before the first timer expires and before the second timer expires.
  • the transceiving unit 902 is further configured to receive information from the first timer of the network device.
  • the processing unit 901 is configured to control the transceiving unit 902 to send uplink data through PUR before the first timer expires and before the second timer expires.
  • the processing unit 901 is further configured to: if the second timer expires, or the first timer expires, if the configuration information is not received, or the GNSS positioning is not completed, or the update is not obtained ephemeris information and/or public timing advance TA information, then re-initiate the random access process.
  • processing unit 901 may initiate a random access process through the transceiver unit 902 .
  • the information about the first timer, the first timer, the effective duration, the effective time, and the second timer can also refer to the introduction in the method embodiment above, and will not be detailed here. stated.
  • transceiver unit and the processing unit shown in the embodiment of the present application is only an example, and for the specific functions or steps performed by the transceiver unit and the processing unit, you can refer to the above method embodiments (as shown in Figures 4 to 8). , which will not be described in detail here.
  • the communication device may be the network device or a chip in the network device shown above. That is, the communication device may be used to execute the steps or functions executed by the network device in the above method embodiments.
  • a transceiver unit 902 configured to send information about the first timer
  • the transceiver unit 902 is further configured to send configuration information, where the configuration information carries information about the pre-configured uplink resource PUR, and the information about PUR carries the duration of the second timer, and the effective time of the second timer is equal to that of the first timer. within the effective period;
  • the transceiver unit 902 is also configured to receive uplink data through PUR.
  • the processing unit 901 is configured to determine information and configuration information of the first timer.
  • the information about the first timer, the first timer, the effective duration, the effective time, and the second timer can also refer to the introduction in the method embodiment above, and will not be detailed here. stated.
  • transceiver unit and the processing unit shown in the embodiment of the present application is only an example, and for the specific functions or steps performed by the transceiver unit and the processing unit, you can refer to the above method embodiments (as shown in Figures 4 to 8). , which will not be described in detail here.
  • terminal device and the network device according to the embodiments of the present application are introduced above, and possible product forms of the terminal device and the network device are introduced below. It should be understood that any product in any form that has the functions of the terminal device described in Figure 9 above, or any product in any form that has the function of the network device described in Figure 9 above, falls under the protection of this embodiment of the application scope. It should also be understood that the following introduction is only an example, and product forms of the terminal device and the network device in the embodiment of the present application are not limited thereto.
  • the processing unit 901 may be one or more processors
  • the transceiver unit 902 may be a transceiver, or the transceiver unit 902 may also be a sending unit and a receiving unit
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, and the connection manner of the processor and the transceiver is not limited in the embodiment of the present application.
  • the communication device 100 includes one or more processors 1020 and a transceiver 1010 .
  • the transceiver 1010 is used to send information and configuration information of the first timer; and receive uplink data through PUR.
  • the transceiver 1010 is used to receive the information of the first timer; the processor 1020 is used to start the first timer; Device 1010, configured to receive configuration information and send uplink data through PUR.
  • descriptions about the information about the first timer, the first timer, the effective duration, the effective time, and the second timer can also refer to the descriptions in the above method embodiments (as shown in Figures 4 to 8). Introduction, not detailed here.
  • the transceiver may include a receiver and a transmitter, the receiver is used to perform the function (or operation) of receiving, and the transmitter is used to perform the function (or operation) of transmitting ). And the transceiver is used to communicate with other devices/devices through the transmission medium.
  • the communication device 100 may further include one or more memories 1030 for storing program instructions and/or data.
  • the memory 1030 is coupled to the processor 1020 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1020 may cooperate with memory 1030 .
  • the processor 1020 may execute program instructions stored in the memory 1030.
  • at least one of the above one or more memories may be included in the processor.
  • the specific connection medium among the transceiver 1010, the processor 1020, and the memory 1030 is not limited.
  • the memory 1030, the processor 1020, and the transceiver 1010 are connected through the bus 1040.
  • the bus is represented by a thick line in FIG. 10, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 10 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., and may realize Or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may include but not limited to hard disk drive (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD) and other non-volatile memory, random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM), etc.
  • the memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and can be read and/or written by a computer (such as the communication device shown in this application, etc.), but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the processor 1020 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • the memory 1030 is mainly used to store software programs and data.
  • the transceiver 1010 may include a control circuit and an antenna, and the control circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1020 can read the software program in the memory 1030, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1020 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1020, and the processor 1020 converts the baseband signal into data and processes the data deal with.
  • the radio frequency circuit and the antenna can be set independently from the processor for baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the communication device shown in the embodiment of the present application may have more components than those shown in FIG. 10 , which is not limited in the embodiment of the present application.
  • the method performed by the processor and the transceiver shown above is only an example, and for the specific steps performed by the processor and the transceiver, reference may be made to the method introduced above.
  • the processing unit 901 may be one or more logic circuits, and the transceiver unit 902 may be an input-output interface, or a communication interface, or an interface circuit , or interfaces and so on.
  • the transceiver unit 902 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the communication device shown in FIG. 11 includes a logic circuit 1101 and an interface 1102 .
  • the above-mentioned processing unit 901 can be realized by a logic circuit 1101
  • the transceiver unit 902 can be realized by an interface 1102
  • the logic circuit 1101 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1102 may be a communication interface, an input/output interface, a pin, etc.
  • FIG. 11 takes the aforementioned communication device as a chip as an example, and the chip includes a logic circuit 1101 and an interface 1102 .
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection manner of the logic circuit and the interface.
  • the interface 1102 is used to input the information of the first timer; the logic circuit 1101 is used to start the first timer; the interface 1102, It is also used to input configuration information and output uplink data.
  • the interface 1102 is used to output the information and configuration information of the first timer; and is also used to input uplink data.
  • the logic circuit 1101 is configured to determine information and configuration information of the first timer.
  • the interface 1102 is also used to output downlink data through PUR.
  • An embodiment of the present application also provides a wireless communication system, where the wireless communication system includes a terminal device and a network device, and the terminal device and the network device may be used to execute the method in any one of the preceding embodiments.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the terminal device in the method provided in the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the network device in the method provided in the present application.
  • the present application also provides a computer-readable storage medium, where computer code is stored in the computer-readable storage medium, and when the computer code is run on the computer, the computer is made to perform the operations performed by the terminal device in the method provided by the present application and/or or process.
  • the present application also provides a computer-readable storage medium, where computer code is stored in the computer-readable storage medium, and when the computer code is run on the computer, the computer is made to perform the operations performed by the network device in the method provided by the present application and/or or process.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on the computer, the operation performed by the terminal device in the method provided by the present application and/or Processing is performed.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on the computer, the operation performed by the network device in the method provided by the present application and/or Processing is performed.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to realize the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the storage medium includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk, etc., which can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种卫星通信方法及装置,该方法包括:开启第一定时器;接收来自网络设备的配置信息,所述配置信息携带预配置的上行链路资源PUR的信息,所述PUR的信息中携带第二定时器的时长,所述第二定时器的生效时间在所述第一定时器的有效时长内;在所述第一定时器超时前且所述第二定时器超时前,通过所述PUR发送上行数据。本申请提供的方法可以更好地融合物联网(internet of things,IoT)网络和卫星通信。

Description

卫星通信方法及装置
本申请要求于2021年09月29日提交中国专利局、申请号为202111153109.5、申请名称为“卫星通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种卫星通信方法及装置。
背景技术
卫星通信相比地面通信有其独有的优点,例如可以提供更广的覆盖范围;又如卫星基站不容易受到自然灾害或者外力的破坏,因此,同时支持与地面与卫星的通信是未来通信的趋势。
同时,由于物联网(internet of things,IoT)具有数据突发,延迟不敏感,海量链接,广覆盖等通信特点,与第五代(5th generation,5G)网络的其他通信场景相比(如增强移动带宽(enhanced mobile broadband,eMBB)或超可靠低时延通信(ultra reliable low latency communications,URLLc)),IoT的这些特点能够更好的被卫星通信所支持。
因此,如何将IoT与卫星通信更好地融合亟待解决。
发明内容
本申请提供一种卫星通信方法及装置,能够更好地融合物联网(internet of things,IoT)网络和卫星通信。
第一方面,本申请实施例提供一种卫星通信方法,所述方法包括:
开启第一定时器;接收来自网络设备的配置信息,所述配置信息携带预配置的上行链路资源(preconfigured uplink resource,PUR)的信息,所述PUR的信息中携带第二定时器的时长,所述第二定时器的生效时间在所述第一定时器的有效时长内;在所述第一定时器超时前且所述第二定时器超时前,通过所述PUR发送上行数据。
本申请实施例中,通过设置第一定时器,不仅有效改善了终端设备需要时时监听第一定时器的信息(如包括星历信息或公共(timing advance,TA)信息等)的情况,如该终端设备在该第一定时器的有效时长内可以不需要时时监听第一定时器的信息,从而有效节省了功耗;而且还保证了终端设备能够在连接态监听该第一定时器的信息(如在第一定时器或第二定时器快过期时监听等),从而该终端设备还能够及时有效地更新第一定时器的时长。通过设置第二定时器,终端设备可以在该第二定时器的有效时长内发送上行数据,有效保证了PUR的有效性。因此,本申请实施例中,在第一定时器超时前且第二定时器超时前,该终端设备通过PUR发送上行数据,既可以使得该PUR的有效性,还可以保证TA的有效性。从而有效保障了终端设备数据传输的有效性与可靠性,有效结合了卫星通信的特点与IoT网络中的PUR模式,有效融合了IoT网络与卫星通信。
在一种可能的实现方式中,所述第一定时器是定时器集合中的任一个。
在一种可能的实现方式中,所述定时器集合包括以下任一项或多项:所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***(global navigation satellite system,GNSS)对应的定时器。
在一种可能的实现方式中,所述开启第一定时器之前,所述方法还包括:接收第一定时 器的信息,所述第一定时器的信息包括所述第一定时器的时长信息。
在一种可能的实现方式中,所述第一定时器的时长是所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器中的最小时长。
在一种可能的实现方式中,所述网络设备配置的星历信息对应的定时器和所述网络设备配置的公共定时提前TA信息对应的定时器是不同的定时器;或者,是相同的定时器。
在一种可能的实现方式中,所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器是同一个定时器。
在一种可能的实现方式中,所述通过所述PUR发送上行数据包括:在空闲态通过所述PUR发送上行数据。
在一种可能的实现方式中,所述配置信息包含于高层信令、消息Msg2、消息Msg4或消息MsgB的任一项中。
在一种可能的实现方式中,所述方法还包括:在所述第二定时器超时,或所述第一定时器超时的情况下,未接收到所述配置信息,或者未完成全球导航卫星***GNSS定位,或者未获取到更新的星历信息和/或公共定时提前TA信息,则重新发起随机接入过程。
在一种可能的实现方式中,所述星历信息和所述公共TA信息包含于同一个***消息中,或者所述星历信息和所述公共TA信息包含于不同的***消息中,或者所述星历信息和所述公共TA信息包含于所述终端设备专用的控制信令中。
可理解,本申请实施例所示的第一定时器的信息可以包含于***消息中,也可以包含于终端设备专用的控制信令中。例如,该第一定时器的信息中可以包括星历信息和/或公共TA信息。
第二方面,本申请实施例提供一种卫星通信方法,所述方法包括:
发送第一定时器的信息;发送配置信息,所述配置信息携带预配置的上行链路资源PUR的信息,所述PUR的信息中携带第二定时器的时长,所述第二定时器的生效时间在所述第一定时器的有效时长内;通过所述PUR接收上行数据。
在一种可能的实现方式中,第一定时器的信息包括第一定时器的时长信息。
在一种可能的实现方式中,所述通过所述PUR接收上行数据包括:在所述第一定时器超时前且所述第二定时器超时前,通过所述PUR接收上行数据。
在一种可能的实现方式中,所述第一定时器是定时器集合中的任一个。
在一种可能的实现方式中,所述定时器集合中包括以下任一项或多项:
网络设备配置的星历信息对应的定时器、网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器。
在一种可能的实现方式中,所述第一定时器的时长是所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器中的最小时长。
在一种可能的实现方式中,所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器是不同的定时器;或者,是相同的定时器。
在一种可能的实现方式中,所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器是同一个定时器。
在一种可能的实现方式中,所述配置信息包含于高层信令、消息Msg2、消息Msg4或消息MsgB的任一项中。
在一种可能的实现方式中,所述第一定时器的信息包括星历信息和/或公共TA信息。
示例性的,第一定时器的信息可以包含于***消息中,也可以包含于终端设备专用的控制信令中。
在一种可能的实现方式中,所述星历信息和所述公共TA信息包含于同一个***消息中,或者所述星历信息和所述公共TA信息包含于不同的***消息中,或者所述星历信息和所述公共TA信息包含于所述终端设备专用的控制信令中。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的相应单元。
示例性的,该通信装置可以为终端设备或终端设备中的芯片等。
第四方面,本申请实施例提供一种通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的相应方法。
示例性的,该通信装置可以为网络设备或网络设备中的芯片等。
在第三方面或第四方面中,上述通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器还可以用于接收第一定时器的信息、配置信息,以及发送上行数据等。
本申请实施例中,该通信装置可以为终端设备或终端设备中的芯片等。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器可以用于发送第一定时器的信息、配置信息,以及接收上行数据等。
本申请实施例中,该通信装置可以为网络设备或网络设备中的芯片等。
第七方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于开启第一定时器;所述接口,用于输入配置信息以及输出上行数据。
示例性的,所述接口,用于输入第一定时器的信息;所述逻辑电路,用于对所述第一定时器的信息进行处理,如开启第一定时器。
可理解,关于第一定时器、配置信息、第二定时器及PUR等的描述,可以参考上述第一方面或第二方面的描述;或者,还可以参考下文示出的各个实施例,这里不再详述。
第八方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述接口,用于输出第一定时器的信息和配置信息;所述接口,还用于输入上行数据。
示例性的,所述逻辑电路,用于确定第一定时器的信息和配置信息,然后通过接口输出该第一定时器的信息和配置信息。所述逻辑电路,还用于控制接口通过PUR输入上行数据。
可理解,关于第一定时器、配置信息、第二定时器及PUR等的描述,可以参考上述第一方面或第二方面的描述;或者,还可以参考下文示出的各个实施例,这里不再详述。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信***,该无线通信***包括终端设备和网络设备,所述终端设备用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述网络设备用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
附图说明
图1是本申请实施例提供的一种非陆地网络(non-terrestrial networks,NTN)通信***的架构示意图;
图2是本申请实施例提供的另一种NTN通信***的架构示意图;
图3是本申请实施例提供的一种四步随机接入的流程示意图;
图4是本申请实施例提供的一种卫星通信方法的流程示意图;
图5a是本申请实施例提供的一种卫星通信方法的场景示意图;
图5b是本申请实施例提供的另一种卫星通信方法的场景示意图;
图6是本申请实施例提供的另一种卫星通信方法的场景示意图;
图7是本申请实施例提供的又一种卫星通信方法的场景示意图;
图8是本申请实施例提供的又一种卫星通信方法的场景示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的另一种通信装置的结构示意图;
图11是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的方法可以应用于非陆地网络(non-terrestrial networks,NTN)通信***,如图1所示,该通信***包括终端设备、卫星(也可以称为卫星基站)以及地面站(也可以称为关口站、信关站)(gateway)。
本申请中的终端设备是一种具有无线收发功能的装置。终端设备可以与无线接入网(radio access network,RAN)中的接入网设备(或者也可以称为接入设备)进行通信。终端设备也可以称为用户设备(user equipment,UE)、接入终端、终端(terminal)、用户单元(subscriber unit)、用户站、移动站、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。在一种可能的实现方式中,终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等)。在一种可能的实现方式中,终端设备可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、传感器、物联网中的终端、车联网中的终端、无人机、第五代(5th generation,5G)网络以及未来网络中的任意形态的终端设备等,本申请对此不作限定。
可理解,本申请示出的终端设备与终端设备之间还可以通过设备到设备(device-todevice,D2D)、机器到机器(machine to machine,M2M)等通信。
可理解,本申请所示的终端设备还可以是物联网(internet of things,IoT)中的设备等。该IoT网络例如可以包括车联网。其中,车联网***中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请中的卫星可为终端设备提供无线接入服务,调度无线资源给接入的终端设备,提供可靠的无线传输协议和数据加密协议等。卫星可以是将人造地球卫星和高空飞行器等作为无线通信的基站,例如演进型基站(evolutional NodeB,eNB)和下一代节点B(next generation node B,gNB)等。或者,卫星也可以作为这些基站的中继,向终端设备透传这些基站的无线信号,此时,地面站可视为无线通信的基站。因此,本申请实施例中,在一些实施例中,比如在卫星的再生场景下,网络设备可以为图1所示的卫星基站;在另一些实施例中,比如在卫星的透传场景下,网络设备可以为图1所示的地面站。可理解,在不同的无线接入技术的***中,具备网络设备功能的设备的名称可能会有所不同,本申请不再一一示出。
可选的,卫星可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星或低轨道(low earth orbit,LEO)卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。本申请对于卫星的具体类型不作限定。
本申请中的地面站可用于连接卫星与核心网。例如,当卫星作为无线通信的基站时,地面站可透传卫星与核心网之间的信令。又或者,地面站可作为无线通信的基站,卫星可透传终端设备与地面站之间的信令。示例性的,当进行通信时,地面站可将来自于核心网的信令通过反馈链路(或称馈电链路)(feeder link)发送至卫星;并由卫星通过该卫星与终端设备之间的服务链路(service link)向该终端设备发送该信令。相应的,终端设备也可以通过服务链路向卫星发送信令,由该卫星通过地面站向核心网发送该信令。
可理解,图1仅示出了一个卫星以及一个地面站,在实际使用中,可根据需要采取多卫星和/或多地面站的架构。其中,每个卫星可向一个或多个终端设备提供服务,每个卫星可对应于一个或多个地面站,每个地面站可对应于一个或多个卫星等等,本申请中不予具体限定。
示例性的,图2是本申请实施例提供的另一种NTN通信***的架构示意图。示例性的,终端设备可以通过空口(该空口可以是各种类型的空口,例如5G空口等)接入网络,基站可以部署在卫星上(如卫星的再生模式),并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,从而完成基站与基站之间的信令交互和用户数据传输。当然基站也可以部署在地面,通过光纤和核心网相连,此时卫星作为一个透明转发的节点(如卫星的透传模式),承担数据透明转发的功能。
示例性的,图2中的各个网元以及他们的接口可以如下所示:
终端设备可以通过空口接入卫星网络并发起呼叫,上网等业务。基站可以用于提供无线接入服务,调度无线资源给接入的终端设备,提供可靠的无线传输协议和数据加密协议等。地面站可以用于负责转发卫星基站和核心网之间的信令和业务数据。核心网可以用于用户接入控制、移动性管理、会话管理、用户安全认证或计费等。核心网可以由多个功能单元组成,如包括控制面和数据面的功能实体。示例性的,如图2所示,核心网可以包括接入移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)和用户面功能(user plane function,UPF)等。如AMF可以用于负责用户接入管理,安全认证,还有移动性管理等。UPF可以用于负责管理用户面数据的传输,流量统 计等。
示例性的,图2所示的空口可以理解为终端和基站之间的无线链路;Xn接口可以理解为基站和基站之间的接口,主要用于切换等信令交互;NG接口可以用于基站和核心网之间接口,用于交互核心网的非接入(non-access stratum,NAS)等信令,以及用户的业务数据。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下详细介绍本申请实施例所涉及的四步随机接入方法。如图3所示:
301、终端设备向网络设备发送随机接入前导(random access preamble),也可以称为Msg1(图3是以Msg1为例示出的)。对应的,网络设备接收该Msg1。
示例性的,随机接入前导的作用是通知网络设备有一个随机接入请求,并使得网络设备能估计其与终端设备之间的传输时延,以便网络设备校准上行定时(uplink timing)并将校准信息通过定时提前(timing advance,TA)命令(timing advance command)告知终端设备。
302、网络设备向终端设备发送随机接入响应(random access response,RAR),也可以称为Msg2。对应的,终端设备接收该Msg2。
示例性的,随机接入响应可以包括上述随机接入前导的序列编号、定时提前命令(timing advance command,TAC)、上行资源分配信息等。
303、终端设备向网络设备发送上行消息,也可以称为Msg3。对应的,网络设备接收Msg3。
示例性的,如果终端设备接收到的随机接入响应中的随机接入前导的序列编号所指示的随机接入前导和终端设备向网络设备发送的随机接入前导相同,则终端设备认为该随机接入响应是针对该终端设备的随机接入响应。终端设备接收到随机接入响应后,在随机接入响应指示的上行资源上发送上行消息,例如在物理上行共享信道(physical uplink shared channel,PUSCH)上发送上行数据。示例性的,Msg3可以携带唯一的用户标识。
304、网络设备向终端设备返回冲突解决消息,也称为Msg4。
示例性的,网络设备在冲突解决消息中将携带Msg3中的唯一用户标识以指示接入成功的终端设备,而其他没有接入成功的终端设备将重新发起随机接入。
示例性的,为了减少终端设备的功耗和通信的延迟IoT网络中也允许终端设备在Msg3带上行数据,如该上行数据的数据量有限。从而,终端设备可以在接收到Msg4之后继续保持idle态。即表示终端设备通过Msg3已经完成了数据的发送,无需进入连接态。如若有更多的上行数据需要发送,则终端设备需要进入连接态继续发送数据。
以上所示的通过Msg3携带上行数据,也可以称为提前数据传输(early data transmission,EDT)。可理解,当通过Msg3发送完上行数据之后,终端设备在接收到Msg4后则可以保持idle态。
一般的,为了减少终端设备的功耗和通信的延迟,在IoT网络中可以支持终端设备在空闲(idle)态直接发送上行数据,发送该上行数据所使用的上行资源可以由网络设备提前配置。示例性的,终端设备进入idle态后,可以判断定时提前(timing advance,TA)是否有效,如果有效,则可以采用预配置的上行资源(preconfigured uplink resource,PUR)进行数据发送。例如,在TA无效时,或根据网络设备下发的无线资源控制(radio resource control,RRC)信 令,决定是否结束PUR模式。
可理解,本申请所示的PUR还可以称为预配置上行资源等,该PUR可以用于表示其资源是网络设备为终端设备提前配置的用于发送上行数据的资源。因此,具有类似功能的资源或资源名称均属于本申请的保护范围。
以上所示的方法是以地面通信为例示出的,对于卫星通信来说,由于卫星通信中的TA与地面通信的TA不同(如卫星通信中对上行信号定时提前调整的量值大于地面通信中对上行信号定时提前调整的量值),因此上文所示的PUR模式更适用于地面通信。然而,本申请实施例提供一种卫星通信方法及装置,可以将PUR模式与卫星通信结合,使得该PUR能够更好地适用于卫星通信。
卫星通信中,为了令上行信号到达基站时与下行信号的定时对齐,需要终端设备在发送上行信号时做定时提前调整。该定时提前与终端设备到基站的往返传输时延相关。
示例性的,如果卫星是透传模式,则终端设备到基站的往返传输时延包括终端设备到卫星以及卫星到地面站的往返传输时延。该情况下,终端设备需要根据广播的星历信息确定终端设备到卫星的往返传输时延,卫星到地面站的往返传输时延可以通过广播的公共定时提前信息通知终端设备。例如,星历信息可以包括终端设备的位置信息和卫星的位置信息。
示例性的,如果卫星是再生模式,则终端设备到基站的往返传输时延包括终端设备到卫星的往返传输时延。该情况下,终端设备需要根据广播的星历信息确定终端设备到卫星的往返传输时延。
由于,卫星到地面站的往返传输时延为卫星覆盖区内所有终端设备共有,另外卫星的移动速度很快,因此上述公共定时提前信息和星历信息需要时时刷新。由此,终端设备需要不断地监听广播消息,以便于及时获取公共定时提前信息和星历信息。
然而,IoT网络中为了减少终端设备的功耗,在连接态的时候不会监听***消息(包括广播消息)。因此,当IoT网络中的设备(如简称为IoT设备,或者也可以称为终端设备)与卫星进行通信,如果该终端设备长时间处于连接态,则会由于无法监听广播消息而引起上行失步,导致上行链路失败。
鉴于此,本申请实施例提供一种卫星通信方法及装置,可以有效改善上述情况,更好地融合IoT网络与卫星通信。示例性的,本申请实施例提供的方法能够更好地结合卫星通信与IoT网络中的PUR模式或EDT方法等。示例性的,终端设备可以及时地获取星历信息、公共TA信息等于卫星通信相关的***消息,从而保证终端设备的数据传输的可靠性与连续性。
可理解,本申请实施例所示的卫星通信可以为海洋,森林等一些地面通信网络不能覆盖的地区提供通信服务。从而可以增强5G通信或未来通信的可靠性,例如确保飞机,火车,以及这些交通上的用户获得更优质的通信服务;又如可以为5G通信提供更多数据传输的资源,提升网络的速率等。同时,由于IoT的特点,IoT能够更好的被卫星通信支持。
可理解,下文所示的卫星通信方法中涉及的终端设备、网络设备、四步随机接入等术语可以参考上文。
图4是本申请实施例提供的一种卫星通信方法的流程示意图,如图4所示,该方法包括:
401、网络设备发送第一定时器的信息。对应的,终端设备接收该第一定时器的信息。
本申请实施例中,第一定时器的信息可以理解为是与第一定时器相关的信息。作为一示例,该第一定时器的信息可以包含于***消息,如通过广播消息下发的。作为另一示例,该第一定时器的信息可以包含于单播消息中,如UE专用的(UE-specific)控制信令中。
第一定时器可以是定时器集合中的任一个。示例性的,该定时器集合包括以下任一项或多项:网络设备配置的星历信息对应的定时器、网络设备配置的公共TA信息对应的定时器、终端设备上报的历史GNSS对应的定时器。
作为一示例,第一定时器的信息可以包括第一定时器的时长信息。该第一定时器可以由星历信息对应的定时器、公共TA信息对应的定时器或历史GNSS对应的定时器中的任一项或多项确定。换句话说,第一定时器的时长可以由星历信息对应的有效时长、公共TA信息对应的有效时长或历史GNSS对应的有效时长中的任一项或多项确定。示例性的,网络设备可以根据星历信息对应的有效时长或公共TA信息对应的有效时长中的最小值确定第一定时器的时长。又或者,网络设备可以根据星历信息对应的有效时长、公共TA信息对应的有效时长以及GNSS对应的有效时长中的最小值确定第一定时器的时长。例如,该历史GNSS对应的定时器可以是网络设备根据历史GNSS估算的,或者,是该网络设备根据终端设备上报的历史GNSS的有效时长确定等,本申请实施例对于该网络设备如何获知历史GNSS对应的定时器不作限定。
作为另一示例,该第一定时器的信息可以包括星历信息和第一定时器的时长信息。例如,网络设备在下发星历信息的同时,下发第一定时器的时长信息。
作为又一示例,该第一定时器的信息可以包括公共TA信息和第一定时器的时长信息。例如,网络设备在下发公共TA的同时,下发第一定时器的时长信息。
本申请实施例所示的星历信息对应的定时器和公共TA信息对应的定时器可以是不同的定时器,或者,是相同的定时器。作为一示例,星历信息和公共TA信息可以包含于(也可以理解为承载于)同一个***消息中,如星历信息和公共TA信息共用一个定时器(如第一定时器),又如即使是在同一个***消息中星历信息和公共TA信息也可以不共用一个定时器。例如,网络设备可以发送的***消息中包括星历信息、公共TA信息和第一定时器的时长信息。作为另一示例,该星历信息和公共TA信息可以包含在不同的***消息中,如星历信息和公共TA信息分别对应不同的定时器。又如在不同的***消息中,星历信息对应有定时器,公共TA信息的有效时长则可以根据约定的有效时长或者根据对应的***消息的变更来读取。例如,网络设备可以根据星历信息对应的定时器和公共TA信息约定的有效时长配置PUR的信息。作为又一示例,星历信息和公共TA信息分别包含于***消息和UE专用的控制信令中。如星历信息包含于***消息中,公共TA信息包含于UE专用的控制信令中;或者,星历信息包含于UE专用的控制信令中,公共TA包含于***消息中。
可理解,网络设备发送的第一定时器的信息中还可以直接包括各个定时器的有效时长,然后由终端设备选择一个定时器作为第一定时器等,对于该种实现方式,可以参考上述描述,这里不再详述。
402、终端设备开启第一定时器。
终端设备可以根据第一定时器的生效时间开启第一定时器。该第一定时器的生效时间可以由标准或协议定义,或者由网络设备和终端设备协商,或者由网络设备设置等,本申请实施例对此不作限定。可理解,第一定时器的生效时间可以理解为该第一定时器开始计时的时间,或者该第一定时器的开启时间,或该第一定时器开始运行的时间等。下文所示的第一定时器的有效时长可以理解为该第一定时器还未超时,或者该第一定时器未超期,或者该第一定时器的计时还未结束,或者该第一定时器还在运行等。可理解,本申请实施例中,终端设备中维护的第一定时器的有效时长与网络设备中维护的第一定时器的有效时长可能会有所不同。可理解,关于第一定时器的生效时间和有效时长的说明,下文所示的第二定时器同样适 用,下文不再赘述。
示例性的,对于第一定时器的生效时间有如下多种实现方式:
实现方式1、
终端设备接收到第一定时器的信息的时间为该第一定时器的生效时间。该终端设备中第一定时器的有效时长等于第一定时器的时长。
例如,该终端设备在接收到第一定时器的信息的情况下,就开启第一定时器。该情况下表,示例性的,网络设备可以根据终端设备与网络设备之间的传输时延开启第一定时器。例如,该传输时延可以包括地面站与卫星之间的传输时延,以及卫星与终端设备之间的往返时延(如卫星的透传模式)。又如,该传输时延可以包括终端设备到卫星之间的传输时延(如卫星的再生模式)。可理解,网络设备与终端设备开启第一定时器的时间可能会有些偏差,但是该偏差属于正常范围之内,因此不应将该偏差理解为对本申请实施例的限定。可理解,对于该偏差的说明,下文同样适用。
实现方式2、
终端设备接收到第一定时器的信息之后的一段时长后为第一定时器的生效时间。该终端设备中第一定时器的有效时长等于第一定时器的时长。
例如,终端设备在10点接收到第一定时器的信息,该一段时长为5ms,则该第一定时器的生效时间是在10点5毫秒。示例性的,该一段时长可以由标准或协议定义,或者由网络设备设置,或者由终端设备和网络设备协商等。示例性的,该一段时长也可以由网络设备根据终端设备与网络设备之间的最大传输时延确定等,本申请实施例对于该一段时长不作限定。该最大传输时延如可以为网络设备覆盖的波束或小区区域中距离网络设备最远的点的传输时延。该情况下,示例性的,网络设备可以根据终端设备与网络设备之间的传输时延以及该一段时长开启第一定时器。
实现方式3、
网络设备发送第一定时器的信息的时间为第一定时器的生效时间。
示例性的,网络设备发送第一定时器的信息的时间为T 1,则该T 1为第一定时器的生效时间。该情况下,终端设备接收到第一定时器的信息之后,该终端设备中维护的第一定时器的有效时长会有所减小。
例如,第一定时器的时长为D 1,如果以T 1为第一定时器的生效时间,由于网络设备与终端设备之间的传输时延(如为delay 1),则表示该终端设备维护的第一定时器的有效时长会有所减少,如终端设备中的第一定时器的有效时长为D 1-delay 1。可理解,第一定时器的信息中可以携带网络设备发送第一定时器的信息的时间。或者,第一定时器的信息中可以不携带网络设备发送第一定时器的信息的时间,而是由终端设备根据终端设备与网络设备之间的传输时延估算网络设备发送第一定时器的信息的时间。
又例如,可以根据终端设备到网络设备之间的最大传输时延delay max确定第一定时器的有效时长,或者,可以根据终端设备到网络设备之间的最小传输时延delay min确定第一定时器的有效时长。即终端设备可以根据其与网络设备之间的传输时延补偿第一定时器的有效时长。例如,第一定时器的生效时间是根据最大传输时延delay max确定的,终端设备与网络设备之间的传输时延delay 1小于delay max,则表示该第一定时器的有效时长可以为delay max-delay 1+D 1。又例如,第一定时器的生效时间是根据最小传输时延delay min确定的,而终端设备与网络设备之间的传输时延delay 1大于delay min,则表示该第一定时器的有效时长可以为D 1-(delay 1-delay min)。由于终端设备到网络设备之间的最大传输时延或最小传输时延对于该网络 设备覆盖范围内的终端设备是相同的,因此终端设备和网络设备都可以根据该最大传输时延或最小传输时延确定各自维护的第一定时器的有效时长。
实现方式4、
以卫星接收到第一定时器的信息的时间为第一定时器的生效时间。终端设备中第一定时器的有效时长小于第一定时器的时长。
示例性的,该卫星可以是透传模式。当卫星是透传模式时,则表示具有基站功能的设备(即网络设备)是地面站,在该网络设备的覆盖范围内,网络设备到卫星之间的传输时延是相同的,因此通过将卫星接收到第一定时器的信息的时间为第一定时器的生效时间,则可以适用于该网络设备的覆盖范围内的所有终端设备。
可理解,对于实现方式4来说,第一定时器的信息中可以携带网络设备发送第一定时器的信息的时间。或者,在网络设备发送第一定时器的信息时,可以不携带第一定时器的信息的发送时间,卫星在转发该第一定时器的信息时,可以携带其接收到第一定时器的信息的时间。该情况下,网络设备与终端设备开启第一定时器的时间可能会有些偏差,但是该偏差属于正常范围之内。
可理解,对于实现方式4来说,第一定时器的信息中可以不携带地面站发送第一定时器的信息的时间,或卫星接收到第一定时器的信息的时间。例如,由终端设备根据其与卫星之间的传输时延以及第一定时器的时长估算其维护的第一定时器的有效时长。
示例性的,网络设备可以根据其与卫星之间的传输时延估算其维护的第一定时器的生效时间。该网络设备中第一定时器的有效时长等于第一定时器的时长。
可理解,当第一定时器超时前,第二定时器生效,该情况下,如果第一定时器被重新配置,则该第一定时器的有效时长被延长。例如,即使是根据网络设备发送第一定时器的信息的时间为第一定时器的生效时间,但是该第一定时器的有效时长仍可能大于D 1。当然,第二定时器也可以被重新配置。
403、网络设备发送配置信息,该配置信息携带PUR的信息,该PUR的信息中携带第二定时器的时长,该第二定时器的生效时间在第一定时器的有效时长内。对应的,终端设备接收该配置信息。
本申请实施例中,第二定时器可以表示PUR是否有效。例如,在该第二定时器处于运行状态时,可以表示该PUR有效,如果第二定时器超时或过期,则表示PUR无效。第二定时器的生效时间可以在网络设备维护的第一定时器的有效时长内,或者,该第二定时器的生效时间可以在终端设备维护的第一定时器的有效时长内。关于该第一定时器的有效时长的说明可以参考上述步骤402,这里不再一一详述。
在一种可能的实现方式中,网络设备可以在第一定时器的有效时长内向终端设备发送配置信息。示例性的,在第一定时器超时前,网络设备可以向终端设备发送配置信息。同时,第二定时器的生效时间在第一定时器的有效时长内。例如,当第一定时器即将过期(即超期前或超时前),终端设备仍有上行数据需要传输(同时,上行传输的时长较长),则终端设备期望网络设备发送配置信息,为该终端设备配置PUR,以保证终端设备在空闲态时仍可以通过PUR发送上行数据。即终端设备需要在第一定时器超时前接收到配置信息,同时启动第二定时器。
在另一种可能的实现方式中,网络设备可以在其未发送第一定时器的信息之前,向终端设备发送配置信息。该情况下,尽管网络设备已经发送配置信息,但是,该配置信息中携带的第二定时器可以不生效。如该第二定时器可以在终端设备运行第一定时器后,在该第一定 时器的有效时长内生效。也就是说,终端设备可以在接收到第一定时器的信息之前,接收到配置信息,同时,在终端设备启动第一定时器的情况下(如包括启动第一定时器时,或启动第一定时器后且第一定时器超时前),启动第二定时器。
可理解,本申请实施例所示的配置信息可以包含于高层信令、Msg2、Msg4或MsgB的任一项中。关于配置信息的具体说明还可以参考下文关于图5a至图8所示的方法。
404、在第一定时器超时前且第二定时器超时前,终端设备通过PUR发送上行数据。对应的,网络设备接收该上行数据。
示例性的,在终端设备中的第一定时器超时前且第二定时器超时前,该终端设备通过PUR发送上行数据。或者,在第一定时器的有效时长内且第二定时器的有效时长内,通过PUR发送上行数据。示例性的,终端设备可以在空闲态通过PUR发送上行数据。例如,该终端设备可以在接收到配置信息时,或开启第二定时器时,自动进入空闲态。又例如,该终端设备可以在完成随机接入过程后,自动进入空闲态等,本申请实施例对于该终端设备进入空闲态的时间不作限定。
在一种可能的实现方式中,网络设备可以在第一定时器超时前且第二定时器超时前,通过PUR接收上行数据。
在一种可能的实现方式中,在第二定时器超时或第一定时器超时的情况下,若终端设备未接收到配置信息,或者未完成GNSS定位,或者未获取到更新的星历信息和/或公共TA信息,则该终端设备重新发起随机接入过程。
示例性的,如果在第一定时器超时前,如果终端设备未接收到网络设备发送的配置信息,或者终端设备未被配置PUR,或者终端设备未解析对网络设备发送的配置信息,则在第一定时器超时(如超时时或超时后)的情况下,该终端设备需要触发无线链路失败,如可以重新发起随机接入过程中。示例性的,第一定时器超时或第二定时器超时,终端设备仍未获取到更新的星历信息和/或公共TA信息,则表示终端设备当前使用的定时提前无效后,其无法及时得到更新的定时提前,从而可能会导致上下行数据无法对齐,从而引起上行失步,导致上行链路失败。示例性的,如果第一定时器超时或第二定时器超时,终端设备仍未完成对GNSS的定位,则说明其无法及时上报GNSS的有效时长,从而可能会导致网络设备无法预算第一定时器的时长(如第一定时器是GNSS对应的定时器时)。当然,上述所示的第一定时器超时或第二定时器超时包括第一定时器超时且第二定时器超时。
示例性的,上述实现方式还可以理解为:在第一定时器超时前或第二定时器超时前,终端设备需要完成GNSS定位、获取更新的星历信息和公共TA信息中的任一项或多项。或者,第一定时器超时前且第二定时器超时前,终端设备需要完成GNSS定位、获取更新的星历信息和公共TA信息中的任一项或多项。
可理解,终端设备可以在连接态或空闲态完成GNSS定位、获取更新的星历信息或公共TA信息。例如,终端设备可以在连接态执行GNSS定位,监听NTN相关的***消息。如对于IoT设备来说,其可能是半双工的模式,因此在连接态监听NTN相关的***消息或执行GNSS定位等时,不与数据传输相冲突即可。
本申请实施例中,通过设置第一定时器,不仅有效改善了终端设备需要时时监听第一定时器的信息(如包括星历信息或公共TA信息等)的情况,如该终端设备在该第一定时器的有效时长内可以不需要时时监听第一定时器的信息,从而有效节省了功耗;而且还保证了终端设备能够在连接态监听该第一定时器的信息(如在第一定时器或第二定时器快过期时监听等),从而该终端设备还能够及时有效地更新第一定时器的时长。通过设置第二定时器,终端 设备可以在该第二定时器的有效时长内发送上行数据,有效保证了PUR的有效性。通过idle态配置上下行资源(即PUR),保证终端有大量数据或者大量重复次数传输时,不会由于***消息过期导致上行链路失步。因此,本申请实施例中,在第一定时器超时前且第二定时器超时前,该终端设备通过PUR发送上行数据,既可以使得该PUR的有效性,还可以保证TA的有效性。从而有效保障了终端设备数据传输的有效性与可靠性,有效结合了卫星通信的特点与IoT网络中的PUR模式,有效融合了IoT网络与卫星通信。
以下结合具体场景说明本申请实施例提供的卫星通信方法。为便于描述,下文是以第一定时器的生效时间为终端设备接收到第一定时器的信息的时间,或者为终端设备接收到第一定时器的信息的时间后的一段时长。
图5a是本申请实施例提供的一种卫星通信方法的场景示意图,如图5a所示,该方法包括:
501、网络设备向终端设备发送第一定时器的信息,对应的,该终端设备接收该第一定时器的信息。
可理解,关于第一定时器的信息可以参考上文,这里不再详述。可理解,步骤501中所示的第一定时器的时长可以根据星历信息和/或公共TA信息确定。
502、第一定时器生效,终端设备开启第一定时器。
示例性的,终端设备开启第一定时器,该第一定时器的有效时长等于第一定时器的时长D 1
可理解,如果第一定时器的生效时间是在第一定时器的信息的接收时间之前,则该终端设备接收到第一定时器的信息之后可以开启第一定时器,但是,该第一定时器的有效时长小于第一定时器的时长D 1
503、终端设备发起随机接入过程。
可理解,该终端设备可以发起四步随机接入过程,如图3所示。或者,该终端设备也可以发起两步随机接入过程等,本申请实施例对此不作限定。
示例性的,两步随机接入过程可以包括:终端设备在MsgA中同时向网络设备发送随机接入前导和数据。网络设备接收到该MsgA之后,向终端设备发送MsgB(也可以称为随机接入响应)。示例性的,MsgA包括MsgA preamble部分和MsgA数据部分,preamble承载在物理随机接入信道(physical random access channel,PRACH)上,数据部分承载在PUSCH上。可理解,这里所示的两步随机接入过程仅为示例,随着标准或技术的演进,四步随机接入过程或两步随机接入过程可能会有所变化,本申请实施例对此不作限定。
可理解,本申请实施例对于步骤501至步骤503之间的先后顺序不作限定。图5a所示的步骤501至步骤503不代表各个步骤的先后顺序。
504、终端设备进入连接态。
示例性的,终端设备可以向网络设备发送RRC连接请求(RRC connection request)消息,网络设备在接收到该RRC连接请求消息之后,可以向终端设备发送RRC连接建立(RRC connection setup)消息;接着,终端设备在接收到该RRC连接建立消息之后,可以向网络设备发送RRC连接建立完成(RRC connection setup complete)消息。可理解,这里所示的RRC连接建立流程仅为示例,本申请实施例对于该终端设备进入连接态的具体流程不作限定。
505、终端设备与网络设备之间进行上下行数据通信。
506、在第一定时器的有效时长内,接收网络设备发送的配置信息。
示例性的,第一定时器即将过期,且终端设备发送的上行数据没有完成之前(如大量的重复可能导致上行传输时长较长),终端设备期望网络设备通过高层信令如窄带物联网(narrow band internet of things,NB-IoT)的PUR资源配置信令(如也可以称为PUR-Config-NB)配置PUR。该PUR-Config-NB可以配置相关的第二定时器(也可以称为PUR Time Alignment Timer)。
如果终端设备未被配置PUR或者终端设备未接收到该配置信息,或者终端设备未解对该配置信息,或者终端设备未解对网络设备配置的PUR,且第一定时器超时,则终端设备需要触发无线链路失败,如重新发起随机接入过程。可理解,终端设备还需要重新获取***消息。
507、终端设备进入空闲态。
如果终端设备在第一定时器的有效时长内,正确接收到了配置信息,则该终端设备可以在接收到配置信息之后自动进入idle态。可理解,这里所示的终端设备根据配置信息自动进入idle态仅为示例,如该终端设备也可以通过其他触发条件进入idle态等本申请实施例对此不作限定。
508、在第一定时器超时前且第二定时器超时前,通过PUR发送上行数据。
示例性的,终端设备在进入空闲态之后,可以读取同步相关的***消息(即上文所示的第一定时器的信息),在相应的PUR上继续发送未完成的上行数据。可理解,网络设备也可以通过PUR发送下行数据,本申请实施例对此不作限定。
509、在第一定时器超时前或第二定时器超时前,终端设备进行GNSS定位。
示例性的,终端设备可以根据自己的移动速率判断GNSS的有效时长,从而向网络设备上报该GNSS的有效时长。
可理解,步骤509是以终端设备进行GNSS定位为例进行说明的,该终端设备还可以在该第一定时器超时前或第二定时器超时前,获取更新的第一定时器的信息。也就是说,该终端设备需要在第一定时器超时前或第二定时器超时前,完成GNSS定位(或上报GNSS的有效时长)、获取更新的星历信息、获取更新的公共TA信息或更新的第一定时器的时长中的任一项或多项。终端设备上报GNSS的有效时长的原因在于:通过上报GNSS的有效时长可使得网络设备能够更好地估算终端设备的GNSS信息的过期时间。从而,可以为网络设备后续更新第一定时器的信息提供有益信息。获取更新的星历信息、公共TA信息以及第一定时器的时长的原因在于:该终端设备通过及时获取上述信息可使得该终端设备能够继续在idle态发送上行数据。
图5b是本申请实施例提供的另一种卫星通信方法的场景示意图,如图5b所示,该方法包括:
511、网络设备向终端设备发送第一定时器的信息,对应的,该终端设备接收该第一定时器的信息。
512、第一定时器生效,终端设备开启第一定时器。
513、终端设备发起随机接入过程。
514、终端设备进入连接态。
515、终端设备与网络设备之间进行上下行数据通信。
516、在第一定时器的有效时长内,接收网络设备发送的配置信息。
517、终端设备进入空闲态。
可理解,关于步骤511至步骤517的具体说明可以参考图5a,这里不再详述。
518、第一定时器即将超时,启动第二定时器。
519、网络设备向终端设备发送第一定时器的信息,对应的,终端设备接收第一定时器的信息。
示例性的,终端设备可以上报GNSS的有效时长。该情况下,网络设备可以重新为终端设备配置GNSS对应的定时器。或者,该网络设备也可以重新配置星历信息和/或公共TA信息等。也就是说,在第一定时器超时前,网络设备也可以重新向终端设备发送第一定时器的信息。
520、第一定时器被重新配置。
也就是说,由于第一定时器未超时,同时终端设备又接收到了第一定时器的信息,则说明该第一定时器的有效时长被延长了。
521、在第一定时器超时前且第二定时器超时前,通过PUR发送上行数据。
可理解,当第一定时器超时前或第二定时器超时前,终端设备未获取到第一定时器的信息等,则终端设备需要触发无线链路失败,或者,网络设备也可以触发无线链路失败。
本申请实施例提供的方法,能够有效保证终端设备在未完成上行数据传输时能够进入idle态并继续在idle态发送未完成发送的上行数据,同时终端设备还能够在idle态实现GNSS定位,获取星历和公共TA的信息。有效结合了卫星通信高移动性的特点和IoT网络中为省功耗使得终端设备无法在连接态读取***消息的特点,从而将IoT网络中的PUR模式应用在卫星通信当中,在有大量上行数据传输时,有效改善了由于***消息过期或者GNSS信息过期引起上行链路失败的问题。
图6是本申请实施例提供的另一种卫星通信方法的场景示意图,如图6所示,该方法包括:
601、网络设备向终端设备发送第一定时器的信息,对应的,该终端设备接收该第一定时器的信息。
602、第一定时器生效,终端设备开启第一定时器。
603、终端设备发起四步随机接入过程。
本申请实施例中,终端设备发起随机接入过程是以上文所示的EDT为例示出的,如Msg3中可以携带上行数据。例如,终端设备可以在Msg3中上传上行数据。例如,终端设备可以根据重复次数发送上行数据等。
本申请实施例中,配置信息可以包含于Msg2或Msg4中,图6是以Msg4为例示出的,不应将其理解为对本申请实施例的限定。例如,网络设备Msg4中包括后续的PUR的相关信息,如该PUR的相关信息包括预留的资源或第二定时器的时长等参数。可理解,关于四步随机接入过程的其他说明可以参考图3所示的方法,或者参考相关标准或协议等,这里不再详述。
604、在第一定时器超时前或第二定时器超时前,终端设备通过PUR发送上行数据。
示例性的,终端设备在接收到Msg4之后,可以在预留的资源上完成上行数据的发送。
605、终端设备进行GNSS定位。
在第一定时器超时前或第二定时器超时前,进行GNSS定位。可理解,关于步骤604和步骤605的具体说明可以参考图4或图5a等,这里不再详述。
示例性的,网络设备可以根据终端设备的上行发送的数据情况选择回退的方式。例如该回退的方式包括采用四步随机接入或者两步随机接入或者EDT方式。例如,终端设备可以根据网络设备的指示信息选择回退的方式。又例如,终端设备可以根据信道质量状态选择回退 的方式。如信道质量比较好,则该终端设备可以采用EDT的方式,又如信道质量较差,则终端设备可以采用四步随机接入或两步随机接入。又例如,终端设备可以根据其与网络设备之间的相对位置关系选择回退的方式,如终端设备与网络设备之间的相对位置较近,则终端设备可以采用EDT或四步随机接入。可理解,对于终端设备选择回退的方式的具体方法,本申请实施例对此不作限定。
可理解,关于图6所示的方法中未详细说明的地方可以参考图4或图5a等,这里不再详述。
图5a或图5b所示的方法是终端设备在连接态没有传输完上行数据的情况下,通过第一定时器和第二定时器的结合,使得终端设备可以继续在idle态发送未发送完的数据。图6所示的方法有效结合了EDT传输,使得终端设备在idle态可以完成所有的上行数据发送,同时,使得终端设备始终有机会读取***消息,减少无线链路失败的概率。
图7是本申请实施例提供的又一种卫星通信方法的场景示意图,如图7所示,该方法包括:
701、网络设备向终端设备发送第一定时器的信息,对应的,该终端设备接收该第一定时器的信息。
702、第一定时器生效,终端设备开启第一定时器。
703、终端设备发起两步随机接入过程。
示例性的,终端设备可以MsgA中发送preamble和上行数据。如果网络设备正确接收Msg2,则该网络设备可以在MsgB中包括PUR的相关信息。如该PUR的相关信息包括预留的资源或第二定时器的时长等参数。
如果网络设备未正确接收Msg2,如网络设备检测到preamble但是未正确解析出MsgA中的数据部分,则该网络设备可以通过Msg2告知终端设备执行四步随机接入过程,如告知终端设备继续发送Msg3完成随机接入的过程。
示例性的,如果终端设备回退到Msg3,则可以有如下两种实现方式:
实现方式1、
终端设备向网络设备发送Msg3,网络设备在接收到该Msg3后,向终端设备发送Msg4。终端设备在接收到Msg4之后,建立RRC连接进入连接态进行数据的传输(如终端设备可以向网络设备发送上行数据)。在第一定时器的有效时长内开启第二定时器,并在该第一定时器超时前,第二定时器超时前,通过PUR发送上行数据。可理解,关于该实现实现1的具体说明可以参考图4或图5a或图5b等所示的方法,这里不再详述。
实现方式2、
终端设备向网络设备发送Msg3,网络设备接收到Msg3后,向终端设备发送Msg4,该Msg4中可以包括配置信息。可理解,Msg3中可以包括上行数据。从而,终端设备在第一定时器超时前且第二定时器超时前,通过PUR发送上行数据。可理解,终端设备可以在通过PUR发送上行数据之前,完成GNSS定位、获取更新的星历信息、更新的公共TA信息或第一定时器的时长。或者,终端设备也可以在通过PUR发送上行数据之后,完成GNSS定位、获取更新的星历信息、更新的公共TA信息或第一定时器的时长。可理解,关于实现方式2的具体说明可以参考图4或图6所示的方法,这里不再详述。
704、在第一定时器超时前或第二定时器超时前,终端设备通过PUR发送上行数据。
705、终端设备进行GNSS定位。
本申请实施例提供的方法,将PUR模式、EDT与两步随机接入结合,使得终端设备在idle态可以完成所有的上行数据发送,同时,使得终端设备始终有机会读取***消息,减少无线链路失败的概率。
结合图6和图7所示的随机接入过程,本申请实施例还提供了一种卫星通信方法的场景示意图,如图8所示,该方法包括:
801、网络设备向终端设备发送第一定时器的信息,对应的,该终端设备接收该第一定时器的信息。
802、第一定时器生效,终端设备开启第一定时器。
803、终端设备发起随机接入过程。
804、第一定时器即将超时,启动第二定时器。
805、网络设备向终端设备发送第一定时器的信息,对应的,终端设备接收第一定时器的信息。
806、第一定时器被重新配置。
807、终端设备与网络设备之间通过PUR进行上下行数据传输。
例如,终端设备通过PUR发送上行数据,网络设备通过PUR发送下行数据等。
808、第二定时器被重新配置。
示例性的,终端设备接收到新的闭环TAC信息,则第二定时器可以被重新配置,该闭环TAC信息用于补偿定时提前。可理解,关于闭环TAC信息的说明可以参考相关标准或协议等,这里不作详述。
809、网络设备向终端设备发送第一定时器的信息,对应的,终端设备接收第一定时器的信息。
810、第一定时器被重新配置。
811、在第一定时器超时前且第二定时器超时前,通过PUR发送上行数据。
可理解,关于步骤801至步骤803的具体说明可以参考图6所示的四步随机接入,也可以参考图7所示的两步随机接入。关于步骤804至步骤806、步骤809至步骤811的具体说明可以参考图5a或图5b所示的卫星通信方法等。这里不再一一详述。
可理解,以上所示的各个实施例中,如果终端设备在第一定时器超时前或第二定时器超时前(如也可以称为资源预留的时间内)未完成星历信息的读取,或者GNSS定位等,该终端设备可以直接触发无线链路失败。示例性的,网络设备会在期望的时间内(如期望的预留资源上)监听上行信号,如果在期望的时间内网络设备始终没有收到终端设备的上行信号,则网络设备也可以触发无线链路失败。
可理解,上述实施例中,当根据星历信息对应的有效时长、公共TA信息对应的有效时长以及GNSS对应的有效时长中的最小值确定第一定时器的时长,则表示任一个定时器超时前,第二定时器都必须生效(如包括任一个定时器超时前,都需要配置PUR的相关信息)。然而,本申请实施例还提供了一种实现方式,如将GNSS、星历信息或者公共TA信息分开考虑。考虑到GNSS的有效时长(也可以称为有效期),星历信息的有效时长和公共TA信息的有效时长可能是不一样的。示例性的,当终端设备上报了GNSS的有效时长之后,网络设备就可以获知终端设备重新进行GNSS定位的时间。因此当GNSS无效后,但是星历信息和公共TA信息仍有效的情况,终端设备也可以不进行***消息的监听。网络设备可以根据终端设备上报的GNSS的有效时长,为终端设备预留时间资源(如可以是GNSS时间窗),从而保 证终端设备进行GNSS定位,当GNSS时间窗结束之后,终端设备继续进行连接态的数据通信。当星历信息或者公共TA信息对应的定时器超时前,网络设备可以为终端设备配置PUR的信息。
可选的,网络设备也可以根据星历信息的有效时长或公共TA信息的有效时长为终端设备预留时间窗进行***消息的读取(假设该类为特殊的***消息,可以在传输过程当中进行读取)。从而终端设备在接收到更新的***消息之后继续通信。当GNSS对应的定时器超时前,网络设备可以为终端设备配置PUR的信息。
可理解,本申请所示的实施例中,PUR的预留资源可以是周期的或者是非周期,终端设备在PUR的资源上可以发起基于非竞争的随机接入。其中预留的资源间隔可以由当前卫星服务该区域的周期性决定,或者根据当前卫星和后续其他卫星服务该区域的时间间隔来确定。示例性的,当前卫星指示下一颗卫星的同步信息,包括星历信息和公共TA信息,并且根据邻星为该区域的服务时间来配置下一颗星所对应的PUR的预留资源,终端设备基于前一颗星的配置,在PUR的资源上发起基于非竞争的随机接入,或者直接发起数据传输。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图9至图11详细描述本申请实施例的通信装置。
图9是本申请实施例提供的一种通信装置的结构示意图,如图9所示,该通信装置包括处理单元901和收发单元902。
在本申请的一些实施例中,该通信装置可以是上文示出的终端设备或终端设备中的芯片等。即该通信装置可以用于执行上文方法实施例中由终端设备执行的步骤或功能等。
示例性的,处理单元901,用于开启第一定时器;
收发单元902,用于接收来自网络设备的配置信息,该配置信息携带预配置的上行链路资源PUR的信息,PUR的信息中携带第二定时器的时长,第二定时器的生效时间在第一定时器的有效时长内;
收发单元902,还用于在第一定时器超时前且第二定时器超时前,通过PUR发送上行数据。
可理解,收发单元902,还用于接收来自网络设备的第一定时器的信息。又例如,处理单元901,用于在第一定时器超时前且第二定时器超时前,控制收发单元902通过PUR发送上行数据。
示例性的,处理单元901,还用于在第二定时器超时,或第一定时器超时的情况下,若未接收到配置信息,或者未完成全球导航卫星***GNSS定位,或者未获取到更新的星历信息和/或公共定时提前TA信息,则重新发起随机接入过程。
可理解,该处理单元901,可以通过收发单元902发起随机接入过程。
本申请实施例中,关于第一定时器的信息、第一定时器、有效时长、生效时间以及第二定时器等的说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例(如图4至图8),这里不再详述。
复用图9,在本申请的另一些实施例中,该通信装置可以是上文示出的网络设备或网络设备中的芯片等。即该通信装置可以用于执行上文方法实施例中由网络设备执行的步骤或功能等。
收发单元902,用于发送第一定时器的信息;
收发单元902,还用于发送配置信息,配置信息携带预配置的上行链路资源PUR的信息,PUR的信息中携带第二定时器的时长,第二定时器的生效时间在第一定时器的有效时长内;
收发单元902,还用于通过PUR接收上行数据。
示例性的,处理单元901,用于确定第一定时器的信息以及配置信息。
本申请实施例中,关于第一定时器的信息、第一定时器、有效时长、生效时间以及第二定时器等的说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例(如图4至图8),这里不再详述。
以上介绍了本申请实施例的终端设备和网络设备,以下介绍所述终端设备和网络设备可能的产品形态。应理解,但凡具备上述图9所述的终端设备的功能的任何形态的产品,或者,但凡具备上述图9所述的网络设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的终端设备和网络设备的产品形态仅限于此。
在一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个处理器,收发单元902可以是收发器,或者收发单元902还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
如图10所示,该通信装置100包括一个或多个处理器1020和收发器1010。
示例性的,当该通信装置用于执行上述网络设备执行的步骤或方法或功能时,收发器1010,用于发送第一定时器的信息和配置信息;以及通过PUR接收上行数据。
示例性的,当该通信装置用于执行上述终端设备执行的步骤或方法或功能时,收发器1010,用于接收第一定时器的信息;处理器1020,用于开启第一定时器;收发器1010,用于接收配置信息,并通过PUR发送上行数据。
本申请实施例中,关于第一定时器的信息、第一定时器、有效时长、生效时间以及第二定时器等的说明还可以参考上文方法实施例(如图4至图8)中的介绍,这里不再一一详述。
可理解,对于处理器和收发器的具体说明还可以参考图9所示的处理单元和收发单元的介绍,这里不再赘述。
在图10所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置100还可以包括一个或多个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可可以执行存储器1030中存储的程 序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及收发器1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
处理器1020主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1030主要用于存储软件程序和数据。收发器1010可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1020可以读取存储器1030中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1020对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1020,处理器1020将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图10更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个逻辑电路,收发单元902可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元902还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图11所示,图11所示的通信装置包括逻辑电路1101和接口1102。即上述处理单元901可以用逻辑电路1101实现,收发单元902可以用接口1102实现。其中,该逻辑电路1101可以为芯片、处理电路、集 成电路或片上***(system on chip,SoC)芯片等,接口1102可以为通信接口、输入输出接口、管脚等。示例性的,图11是以上述通信装置为芯片为例出的,该芯片包括逻辑电路1101和接口1102。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述终端设备执行的方法或功能或步骤时,接口1102,用于输入第一定时器的信息;逻辑电路1101,用于开启第一定时器;接口1102,还用于输入配置信息以及输出上行数据。
示例性的,当通信装置用于执行上述网络设备执行的方法或功能或步骤时,接口1102,用于输出第一定时器的信息和配置信息;以及还用于输入上行数据。
示例性的,逻辑电路1101,用于确定第一定时器的信息和配置信息。示例性的,接口1102,还用于通过PUR输出下行数据等。
对于图11所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信***,该无线通信***包括终端设备和网络设备,该终端设备和该网络设备可以用于执行前述任一实施例中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由网络设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由网络设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由终端设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由网络设备执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技 术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种卫星通信方法,其特征在于,所述方法包括:
    开启第一定时器;
    接收来自网络设备的配置信息,所述配置信息携带预配置的上行链路资源PUR的信息,所述PUR的信息中携带第二定时器的时长,所述第二定时器的生效时间在所述第一定时器的有效时长内;
    在所述第一定时器超时前且所述第二定时器超时前,通过所述PUR发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一定时器是定时器集合中的任一个。
  3. 根据权利要求2所述的方法,其特征在于,所述定时器集合包括以下任一项或多项:
    所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述通过所述PUR发送上行数据包括:
    在空闲态通过所述PUR发送上行数据。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述配置信息包含于高层信令、消息Msg2、消息Msg4或消息MsgB的任一项中。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    在所述第二定时器超时,或所述第一定时器超时的情况下,若未接收到所述配置信息,或者未完成全球导航卫星***GNSS定位,或者未获取到更新的星历信息和/或公共定时提前TA信息,则重新发起随机接入过程。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,所述星历信息和所述公共TA信息包含于同一个***消息中,或者所述星历信息和所述公共TA信息包含于不同的***消息中,或者所述星历信息和所述公共TA信息包含于所述终端设备专用的控制信令中。
  8. 一种卫星通信方法,其特征在于,所述方法包括:
    发送第一定时器的信息;
    发送配置信息,所述配置信息携带预配置的上行链路资源PUR的信息,所述PUR的信息中携带第二定时器的时长,所述第二定时器的生效时间在所述第一定时器的有效时长内;
    通过所述PUR接收上行数据。
  9. 根据权利要求8所述的方法,其特征在于,所述通过所述PUR接收上行数据包括:
    在所述第一定时器超时前且所述第二定时器超时前,通过所述PUR接收上行数据。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一定时器是定时器集合中的任一个。
  11. 根据权利要求10所述的方法,其特征在于,所述定时器集合中包括以下任一项或多项:
    网络设备配置的星历信息对应的定时器、网络设备配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述配置信息包含于高层信令、消息Msg2、消息Msg4或消息MsgB的任一项中。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述第一定时器的信息包括星历信息和/或公共TA信息。
  14. 根据权利要求13所述的方法,其特征在于,所述星历信息和所述公共TA信息包含 于同一个***消息中,或者所述星历信息和所述公共TA信息包含于不同的***消息中,或者所述星历信息和所述公共TA信息包含于所述终端设备专用的控制信令中。
  15. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于开启第一定时器;
    收发单元,用于接收来自网络设备的配置信息,所述配置信息携带预配置的上行链路资源PUR的信息,所述PUR的信息中携带第二定时器的时长,所述第二定时器的生效时间在所述第一定时器的有效时长内;
    所述收发单元,还用于在所述第一定时器超时前且所述第二定时器超时前,通过所述PUR发送上行数据。
  16. 根据权利要求15所述的装置,其特征在于,所述第一定时器是定时器集合中的任一个。
  17. 根据权利要求16所述的装置,其特征在于,所述定时器集合包括以下任一项或多项:
    所述网络设备配置的星历信息对应的定时器、所述网络设备配置的公共定时提前TA信息对应的定时器、所述通信装置上报的历史全球导航卫星***GNSS对应的定时器。
  18. 根据权利要求15-17任一项所述的装置,其特征在于,所述收发单元,具体用于在空闲态通过所述PUR发送上行数据。
  19. 根据权利要求15-18任一项所述的装置,其特征在于,所述配置信息包含于高层信令、消息Msg2、消息Msg4或消息MsgB的任一项中。
  20. 根据权利要求15-19任一项所述的装置,其特征在于,
    所述处理单元,还用于在所述第二定时器超时,或所述第一定时器超时的情况下,若未接收到所述配置信息,或者未完成全球导航卫星***GNSS定位,或者未获取到更新的星历信息和/或公共定时提前TA信息,则重新发起随机接入过程。
  21. 根据权利要求17-20任一项所述的装置,其特征在于,所述星历信息和所述公共TA信息包含于同一个***消息中,或者所述星历信息和所述公共TA信息包含于不同的***消息中,或者所述星历信息和所述公共TA信息包含于所述通信装置专用的控制信令中。
  22. 一种通信装置,其特征在于,所述装置包括:
    收发单元,用于发送第一定时器的信息;
    所述收发单元,还用于发送配置信息,所述配置信息携带预配置的上行链路资源PUR的信息,所述PUR的信息中携带第二定时器的时长,所述第二定时器的生效时间在所述第一定时器的有效时长内;
    所述收发单元,还用于通过所述PUR接收上行数据。
  23. 根据权利要求22所述的装置,其特征在于,所述收发单元,具体用于在所述第一定时器超时前且所述第二定时器超时前,通过所述PUR接收上行数据。
  24. 根据权利要求22或23所述的装置,其特征在于,所述第一定时器是定时器集合中的任一个。
  25. 根据权利要求24所述的装置,其特征在于,所述定时器集合中包括以下任一项或多项:
    所述通信装置配置的星历信息对应的定时器、所述通信装置配置的公共定时提前TA信息对应的定时器、终端设备上报的历史全球导航卫星***GNSS对应的定时器。
  26. 根据权利要求22-25任一项所述的装置,其特征在于,所述配置信息包含于高层信令、消息Msg2、消息Msg4或消息MsgB的任一项中。
  27. 根据权利要求22-26任一项所述的装置,其特征在于,所述第一定时器的信息包括星历信息和/或公共TA信息。
  28. 根据权利要求27所述的装置,其特征在于,所述星历信息和所述公共TA信息包含于同一个***消息中,或者所述星历信息和所述公共TA信息包含于不同的***消息中,或者所述星历信息和所述公共TA信息包含于所述终端设备专用的控制信令中。
  29. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1-14任一项所述的方法被执行。
  30. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和所述接口耦合;
    所述接口用于输入待处理的数据,所述逻辑电路按照如权利要求1-14任一项所述的方法对所述待处理的数据进行处理,获得处理后的数据,所述接口用于输出所述处理后的数据。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1-14任一项所述的方法被执行。
  32. 一种通信装置,其特征在于,包括处理器,所述处理器用于执行指令,以使权利要求1-14任一项所述的方法被执行。
  33. 一种通信装置,其特征在于,包括处理器和收发器:
    所述收发器,用于接收信号或发送信号;
    所述处理器,用于执行权利要求1-14任一项所述的方法。
  34. 一种包括指令的计算机程序产品,其特征在于,当所述指令在计算机上允许时,使得权利要求1-14任一项所述的方法被执行。
  35. 一种通信***,其特征在于,所述***包括终端设备和网络设备,所述终端设备用于执行如权利要求1-7任一项所述的方法,所述网络设备用于执行如权利要求8-14任一项所述的方法。
PCT/CN2022/116921 2021-09-29 2022-09-02 卫星通信方法及装置 WO2023051171A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22874562.6A EP4395429A1 (en) 2021-09-29 2022-09-02 Satellite communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111153109.5 2021-09-29
CN202111153109.5A CN115884349A (zh) 2021-09-29 2021-09-29 卫星通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023051171A1 true WO2023051171A1 (zh) 2023-04-06

Family

ID=85756241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116921 WO2023051171A1 (zh) 2021-09-29 2022-09-02 卫星通信方法及装置

Country Status (3)

Country Link
EP (1) EP4395429A1 (zh)
CN (1) CN115884349A (zh)
WO (1) WO2023051171A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347623A (zh) * 2023-05-29 2023-06-27 之江实验室 一种任务调度的方法、装置、存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112399453A (zh) * 2019-08-12 2021-02-23 大唐移动通信设备有限公司 一种小区接入失败后的处理方法和装置
CN113228799A (zh) * 2018-09-27 2021-08-06 瑞典爱立信有限公司 对预配置ul资源中的传输的支持
CN113302981A (zh) * 2018-09-27 2021-08-24 瑞典爱立信有限公司 对预配置ul资源中的传输的支持

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228799A (zh) * 2018-09-27 2021-08-06 瑞典爱立信有限公司 对预配置ul资源中的传输的支持
CN113302981A (zh) * 2018-09-27 2021-08-24 瑞典爱立信有限公司 对预配置ul资源中的传输的支持
CN112399453A (zh) * 2019-08-12 2021-02-23 大唐移动通信设备有限公司 一种小区接入失败后的处理方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347623A (zh) * 2023-05-29 2023-06-27 之江实验室 一种任务调度的方法、装置、存储介质及电子设备
CN116347623B (zh) * 2023-05-29 2023-08-15 之江实验室 一种任务调度的方法、装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN115884349A (zh) 2023-03-31
EP4395429A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
EP4012998B1 (en) Random access method, terminal device, network device and storage medium
US20220159732A1 (en) Random access method and device
US20220330347A1 (en) Random access method and terminal device
WO2021016773A1 (zh) 监听随机接入响应的方法、终端设备、网络设备及存储介质
US20220124824A1 (en) Method for random access and communication device
WO2023051171A1 (zh) 卫星通信方法及装置
CN115175333A (zh) 通信参数指示方法及装置
CN117480815A (zh) 用于非地面网络卫星切换的方法、终端设备及网络设备
US20230042104A1 (en) Wireless communication method, terminal device, and network device
WO2023020367A1 (zh) 一种数据传输方法及相关装置
WO2022116099A1 (zh) 随机接入的触发控制方法、装置、设备及存储介质
WO2022120842A1 (zh) Ntn网络中定时提前的预补偿方法、终端设备和网络设备
WO2022040867A1 (zh) 随机接入的方法、终端设备和网络设备
CN116438864A (zh) 定时器启动方法、装置、终端及存储介质
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、***、芯片及存储介质
WO2024119496A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2022205015A1 (zh) 一种同步方法及装置、终端设备、网络设备
WO2024066934A1 (zh) 通信方法及装置
WO2024027739A1 (zh) 一种通信方法及装置
WO2023015406A1 (zh) 通信方法及装置
WO2023011148A1 (zh) 上行信号同步方法和通信装置
WO2023097421A1 (zh) 信息上报方法、装置、设备、存储介质及程序产品
WO2021146836A1 (zh) 随机接入类型选择方法及装置
WO2023097504A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2023082114A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874562

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874562

Country of ref document: EP

Effective date: 20240326

NENP Non-entry into the national phase

Ref country code: DE